Sample records for engineering design techniques

  1. Evolutionary and biological metaphors for engineering design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakiela, M.

    1994-12-31

    Since computing became generally available, there has been strong interest in using computers to assist and automate engineering design processes. Specifically, for design optimization and automation, nonlinear programming and artificial intelligence techniques have been extensively studied. New computational techniques, based upon the natural processes of evolution, adaptation, and learing, are showing promise because of their generality and robustness. This presentation will describe the use of two such techniques, genetic algorithms and classifier systems, for a variety of engineering design problems. Structural topology optimization, meshing, and general engineering optimization are shown as example applications.

  2. Group Design Problems in Engineering Design Graphics.

    ERIC Educational Resources Information Center

    Kelley, David

    2001-01-01

    Describes group design techniques used within the engineering design graphics sequence at Western Washington University. Engineering and design philosophies such as concurrent engineering place an emphasis on group collaboration for the solving of design problems. (Author/DDR)

  3. [Development of computer aided forming techniques in manufacturing scaffolds for bone tissue engineering].

    PubMed

    Wei, Xuelei; Dong, Fuhui

    2011-12-01

    To review recent advance in the research and application of computer aided forming techniques for constructing bone tissue engineering scaffolds. The literature concerning computer aided forming techniques for constructing bone tissue engineering scaffolds in recent years was reviewed extensively and summarized. Several studies over last decade have focused on computer aided forming techniques for bone scaffold construction using various scaffold materials, which is based on computer aided design (CAD) and bone scaffold rapid prototyping (RP). CAD include medical CAD, STL, and reverse design. Reverse design can fully simulate normal bone tissue and could be very useful for the CAD. RP techniques include fused deposition modeling, three dimensional printing, selected laser sintering, three dimensional bioplotting, and low-temperature deposition manufacturing. These techniques provide a new way to construct bone tissue engineering scaffolds with complex internal structures. With rapid development of molding and forming techniques, computer aided forming techniques are expected to provide ideal bone tissue engineering scaffolds.

  4. [An object-oriented intelligent engineering design approach for lake pollution control].

    PubMed

    Zou, Rui; Zhou, Jing; Liu, Yong; Zhu, Xiang; Zhao, Lei; Yang, Ping-Jian; Guo, Huai-Cheng

    2013-03-01

    Regarding the shortage and deficiency of traditional lake pollution control engineering techniques, a new lake pollution control engineering approach was proposed in this study, based on object-oriented intelligent design (OOID) from the perspective of intelligence. It can provide a new methodology and framework for effectively controlling lake pollution and improving water quality. The differences between the traditional engineering techniques and the OOID approach were compared. The key points for OOID were described as object perspective, cause and effect foundation, set points into surface, and temporal and spatial optimization. The blue algae control in lake was taken as an example in this study. The effect of algae control and water quality improvement were analyzed in details from the perspective of object-oriented intelligent design based on two engineering techniques (vertical hydrodynamic mixer and pumping algaecide recharge). The modeling results showed that the traditional engineering design paradigm cannot provide scientific and effective guidance for engineering design and decision-making regarding lake pollution. Intelligent design approach is based on the object perspective and quantitative causal analysis in this case. This approach identified that the efficiency of mixers was much higher than pumps in achieving the goal of low to moderate water quality improvement. However, when the objective of water quality exceeded a certain value (such as the control objective of peak Chla concentration exceeded 100 microg x L(-1) in this experimental water), the mixer cannot achieve this goal. The pump technique can achieve the goal but with higher cost. The efficiency of combining the two techniques was higher than using one of the two techniques alone. Moreover, the quantitative scale control of the two engineering techniques has a significant impact on the actual project benefits and costs.

  5. Metamodels for Computer-Based Engineering Design: Survey and Recommendations

    NASA Technical Reports Server (NTRS)

    Simpson, Timothy W.; Peplinski, Jesse; Koch, Patrick N.; Allen, Janet K.

    1997-01-01

    The use of statistical techniques to build approximations of expensive computer analysis codes pervades much of todays engineering design. These statistical approximations, or metamodels, are used to replace the actual expensive computer analyses, facilitating multidisciplinary, multiobjective optimization and concept exploration. In this paper we review several of these techniques including design of experiments, response surface methodology, Taguchi methods, neural networks, inductive learning, and kriging. We survey their existing application in engineering design and then address the dangers of applying traditional statistical techniques to approximate deterministic computer analysis codes. We conclude with recommendations for the appropriate use of statistical approximation techniques in given situations and how common pitfalls can be avoided.

  6. Orbit Transfer Vehicle (OTV) advanced expander cycle engine point design study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1980-01-01

    Engine control techniques were established and new technology requirements were identified. The designs of the components and engine were prepared in sufficient depth to calculate engine and component weights and envelopes, turbopump efficiencies and recirculation leakage rates, and engine performance. Engine design assumptions are presented along with the structural design criteria.

  7. The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology: Capabilities and Applications

    NASA Technical Reports Server (NTRS)

    Evers, Ken H.; Bachert, Robert F.

    1987-01-01

    The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology has been formulated and applied over a five-year period. It has proven to be a unique, integrated approach utilizing a top-down, structured technique to define and document the system of interest; a knowledge engineering technique to collect and organize system descriptive information; a rapid prototyping technique to perform preliminary system performance analysis; and a sophisticated simulation technique to perform in-depth system performance analysis.

  8. Wood lens design philosophy based on a binary additive manufacturing technique

    NASA Astrophysics Data System (ADS)

    Marasco, Peter L.; Bailey, Christopher

    2016-04-01

    Using additive manufacturing techniques in optical engineering to construct a gradient index (GRIN) optic may overcome a number of limitations of GRIN technology. Such techniques are maturing quickly, yielding additional design degrees of freedom for the engineer. How best to employ these degrees of freedom is not completely clear at this time. This paper describes a preliminary design philosophy, including assumptions, pertaining to a particular printing technique for GRIN optics. It includes an analysis based on simulation and initial component measurement.

  9. A Comparison of Multivariable Control Design Techniques for a Turbofan Engine Control

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Watts, Stephen R.

    1995-01-01

    This paper compares two previously published design procedures for two different multivariable control design techniques for application to a linear engine model of a jet engine. The two multivariable control design techniques compared were the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and the H-Infinity synthesis. The two control design techniques were used with specific previously published design procedures to synthesize controls which would provide equivalent closed loop frequency response for the primary control loops while assuring adequate loop decoupling. The resulting controllers were then reduced in order to minimize the programming and data storage requirements for a typical implementation. The reduced order linear controllers designed by each method were combined with the linear model of an advanced turbofan engine and the system performance was evaluated for the continuous linear system. Included in the performance analysis are the resulting frequency and transient responses as well as actuator usage and rate capability for each design method. The controls were also analyzed for robustness with respect to structured uncertainties in the unmodeled system dynamics. The two controls were then compared for performance capability and hardware implementation issues.

  10. Model building techniques for analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walther, Howard P.; McDaniel, Karen Lynn; Keener, Donald

    2009-09-01

    The practice of mechanical engineering for product development has evolved into a complex activity that requires a team of specialists for success. Sandia National Laboratories (SNL) has product engineers, mechanical designers, design engineers, manufacturing engineers, mechanical analysts and experimentalists, qualification engineers, and others that contribute through product realization teams to develop new mechanical hardware. The goal of SNL's Design Group is to change product development by enabling design teams to collaborate within a virtual model-based environment whereby analysis is used to guide design decisions. Computer-aided design (CAD) models using PTC's Pro/ENGINEER software tools are heavily relied upon in the productmore » definition stage of parts and assemblies at SNL. The three-dimensional CAD solid model acts as the design solid model that is filled with all of the detailed design definition needed to manufacture the parts. Analysis is an important part of the product development process. The CAD design solid model (DSM) is the foundation for the creation of the analysis solid model (ASM). Creating an ASM from the DSM currently is a time-consuming effort; the turnaround time for results of a design needs to be decreased to have an impact on the overall product development. This effort can be decreased immensely through simple Pro/ENGINEER modeling techniques that summarize to the method features are created in a part model. This document contains recommended modeling techniques that increase the efficiency of the creation of the ASM from the DSM.« less

  11. Analytical Modelling of the Effects of Different Gas Turbine Cooling Techniques on Engine Performance =

    NASA Astrophysics Data System (ADS)

    Uysal, Selcuk Can

    In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).

  12. Parametric and Generative Design Techniques for Digitalization in Building Industry: the Case Study of Glued- Laminated-Timber Industry

    NASA Astrophysics Data System (ADS)

    Pasetti Monizza, G.; Matt, D. T.; Benedetti, C.

    2016-11-01

    According to Wortmann classification, the Building Industry (BI) can be defined as engineer-to-order (ETO) industry: the engineering-process starts only when an order is acquired. This definition implies that every final product (building) is almost unique’ and processes cannot be easily standardized or automated. Because of this, BI is one of the less efficient industries today’ mostly leaded by craftsmanship. In the last years’ several improvements in process efficiency have been made focusing on manufacturing and installation processes only. In order to improve the efficiency of design and engineering processes as well, the scientific community agrees that the most fruitful strategy should be Front-End Design (FED). Nevertheless, effective techniques and tools are missing. This paper discusses outcomes of a research activity that aims at highlighting whether Parametric and Generative Design techniques allow reducing wastes of resources and improving the overall efficiency of the BI, by pushing the Digitalization of design and engineering processes of products. Focusing on the Glued-Laminated-Timber industry, authors will show how Parametric and Generative Design techniques can be introduced in a standard supply-chain system, highlighting potentials and criticism on the supply-chain system as a whole.

  13. Image-guided tissue engineering

    PubMed Central

    Ballyns, Jeffrey J; Bonassar, Lawrence J

    2009-01-01

    Replication of anatomic shape is a significant challenge in developing implants for regenerative medicine. This has lead to significant interest in using medical imaging techniques such as magnetic resonance imaging and computed tomography to design tissue engineered constructs. Implementation of medical imaging and computer aided design in combination with technologies for rapid prototyping of living implants enables the generation of highly reproducible constructs with spatial resolution up to 25 μm. In this paper, we review the medical imaging modalities available and a paradigm for choosing a particular imaging technique. We also present fabrication techniques and methodologies for producing cellular engineered constructs. Finally, we comment on future challenges involved with image guided tissue engineering and efforts to generate engineered constructs ready for implantation. PMID:19583811

  14. Engineering Design Education Program for Graduate School

    NASA Astrophysics Data System (ADS)

    Ohbuchi, Yoshifumi; Iida, Haruhiko

    The new educational methods of engineering design have attempted to improve mechanical engineering education for graduate students in a way of the collaboration in education of engineer and designer. The education program is based on the lecture and practical exercises concerning the product design, and has engineering themes and design process themes, i.e. project management, QFD, TRIZ, robust design (Taguchi method) , ergonomics, usability, marketing, conception etc. At final exercise, all students were able to design new product related to their own research theme by applying learned knowledge and techniques. By the method of engineering design education, we have confirmed that graduate students are able to experience technological and creative interest.

  15. Computer-aided system design

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.

    1991-01-01

    A technique has been developed for combining features of a systems architecture design and assessment tool and a software development tool. This technique reduces simulation development time and expands simulation detail. The Architecture Design and Assessment System (ADAS), developed at the Research Triangle Institute, is a set of computer-assisted engineering tools for the design and analysis of computer systems. The ADAS system is based on directed graph concepts and supports the synthesis and analysis of software algorithms mapped to candidate hardware implementations. Greater simulation detail is provided by the ADAS functional simulator. With the functional simulator, programs written in either Ada or C can be used to provide a detailed description of graph nodes. A Computer-Aided Software Engineering tool developed at the Charles Stark Draper Laboratory (CSDL CASE) automatically generates Ada or C code from engineering block diagram specifications designed with an interactive graphical interface. A technique to use the tools together has been developed, which further automates the design process.

  16. Quiet engine program: Turbine noise suppression. -Volume 1: General treatment evaluation and measurement techniques

    NASA Technical Reports Server (NTRS)

    Clemons, A.; Hehmann, H.; Radecki, K.

    1973-01-01

    Acoustic treatment was developed for jet engine turbine noise suppression. Acoustic impedance and duct transmission loss measurements were made for various suppression systems. An environmental compatibility study on several material types having suppression characteristics is presented. Two sets of engine hardware were designed and are described along with engine test results which include probe, farfield, near field, and acoustic directional array data. Comparisons of the expected and the measured suppression levels are given as well as a discussion of test results and design techniques.

  17. An investigation of constraint-based component-modeling for knowledge representation in computer-aided conceptual design

    NASA Technical Reports Server (NTRS)

    Kolb, Mark A.

    1990-01-01

    Originally, computer programs for engineering design focused on detailed geometric design. Later, computer programs for algorithmically performing the preliminary design of specific well-defined classes of objects became commonplace. However, due to the need for extreme flexibility, it appears unlikely that conventional programming techniques will prove fruitful in developing computer aids for engineering conceptual design. The use of symbolic processing techniques, such as object-oriented programming and constraint propagation, facilitate such flexibility. Object-oriented programming allows programs to be organized around the objects and behavior to be simulated, rather than around fixed sequences of function- and subroutine-calls. Constraint propagation allows declarative statements to be understood as designating multi-directional mathematical relationships among all the variables of an equation, rather than as unidirectional assignments to the variable on the left-hand side of the equation, as in conventional computer programs. The research has concentrated on applying these two techniques to the development of a general-purpose computer aid for engineering conceptual design. Object-oriented programming techniques are utilized to implement a user-extensible database of design components. The mathematical relationships which model both geometry and physics of these components are managed via constraint propagation. In addition, to this component-based hierarchy, special-purpose data structures are provided for describing component interactions and supporting state-dependent parameters. In order to investigate the utility of this approach, a number of sample design problems from the field of aerospace engineering were implemented using the prototype design tool, Rubber Airplane. The additional level of organizational structure obtained by representing design knowledge in terms of components is observed to provide greater convenience to the program user, and to result in a database of engineering information which is easier both to maintain and to extend.

  18. Preliminary engineering report for design of a subscale ejector/diffuser system for high expansion ratio space engine testing

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.; Kurzius, S. C.; Doktor, M. F.

    1984-01-01

    The design of a subscale jet engine driven ejector/diffuser system is examined. Analytical results and preliminary design drawings and plans are included. Previously developed performance prediction techniques are verified. A safety analysis is performed to determine the mechanism for detonation suppression.

  19. Tissue engineering, stem cells, and cloning for the regeneration of urologic organs.

    PubMed

    Atala, Anthony

    2003-10-01

    Tissue engineering efforts are currently being undertaken for every type of tissue and organ within the urinary system. Most of the effort expended to engineer genitourinary tissues has occurred within the last decade. Tissue engineering techniques require a cell culture facility designed for human application. Personnel who have mastered the techniques of cell harvest, culture, and expansion as well as polymer design are essential for the successful application of this technology. Various engineered genitourinary tissues are at different stages of development, with some already being used clinically, a few in preclinical trials, and some in the discovery stage. Recent progress suggests that engineered urologic tissues may have an expanded clinical applicability in the future.

  20. Application of advanced control techniques to aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.

    1984-01-01

    Two programs are described which involve the application of advanced control techniques to the design of engine control algorithms. Multivariable control theory is used in the F100 MVCS (multivariable control synthesis) program to design controls which coordinate the control inputs for improved engine performance. A systematic method for handling a complex control design task is given. Methods of analytical redundancy are aimed at increasing the control system reliability. The F100 DIA (detection, isolation, and accommodation) program, which investigates the uses of software to replace or augment hardware redundancy for certain critical engine sensor, is described.

  1. Wide range operation of advanced low NOx aircraft gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; Fiorito, R. J.; Butze, H. F.

    1978-01-01

    The paper summarizes the results of an experimental test rig program designed to define and demonstrates techniques which would allow the jet-induced circulation and vortex air blast combustors to operate stably with acceptable emissions at simulated engine idle without compromise to the low NOx emissions under the high-altitude supersonic cruise condition. The discussion focuses on the test results of the key combustor modifications for both the simulated engine idle and cruise conditions. Several range-augmentation techniques are demonstrated that allow the lean-reaction premixed aircraft gas turbine combustor to operate with low NOx emissons at engine cruise and acceptable CO and UHC levels at engine idle. These techniques involve several combinations, including variable geometry and fuel switching designs.

  2. Using the Continuum of Design Modelling Techniques to Aid the Development of CAD Modeling Skills in First Year Industrial Design Students

    ERIC Educational Resources Information Center

    Storer, I. J.; Campbell, R. I.

    2012-01-01

    Industrial Designers need to understand and command a number of modelling techniques to communicate their ideas to themselves and others. Verbal explanations, sketches, engineering drawings, computer aided design (CAD) models and physical prototypes are the most commonly used communication techniques. Within design, unlike some disciplines,…

  3. Working on the Boundaries: Philosophies and Practices of the Design Process

    NASA Technical Reports Server (NTRS)

    Ryan, R.; Blair, J.; Townsend, J.; Verderaime, V.

    1996-01-01

    While systems engineering process is a program formal management technique and contractually binding, the design process is the informal practice of achieving the design project requirements throughout all design phases of the systems engineering process. The design process and organization are systems and component dependent. Informal reviews include technical information meetings and concurrent engineering sessions, and formal technical discipline reviews are conducted through the systems engineering process. This paper discusses and references major philosophical principles in the design process, identifies its role in interacting systems and disciplines analyses and integrations, and illustrates the process application in experienced aerostructural designs.

  4. Laser-Etched Designs for Molding Hydrogel-Based Engineered Tissues

    PubMed Central

    Munarin, Fabiola; Kaiser, Nicholas J.; Kim, Tae Yun; Choi, Bum-Rak

    2017-01-01

    Rapid prototyping and fabrication of elastomeric molds for sterile culture of engineered tissues allow for the development of tissue geometries that can be tailored to different in vitro applications and customized as implantable scaffolds for regenerative medicine. Commercially available molds offer minimal capabilities for adaptation to unique conditions or applications versus those for which they are specifically designed. Here we describe a replica molding method for the design and fabrication of poly(dimethylsiloxane) (PDMS) molds from laser-etched acrylic negative masters with ∼0.2 mm resolution. Examples of the variety of mold shapes, sizes, and patterns obtained from laser-etched designs are provided. We use the patterned PDMS molds for producing and culturing engineered cardiac tissues with cardiomyocytes derived from human-induced pluripotent stem cells. We demonstrate that tight control over tissue morphology and anisotropy results in modulation of cell alignment and tissue-level conduction properties, including the appearance and elimination of reentrant arrhythmias, or circular electrical activation patterns. Techniques for handling engineered cardiac tissues during implantation in vivo in a rat model of myocardial infarction have been developed and are presented herein to facilitate development and adoption of surgical techniques for use with hydrogel-based engineered tissues. In summary, the method presented herein for engineered tissue mold generation is straightforward and low cost, enabling rapid design iteration and adaptation to a variety of applications in tissue engineering. Furthermore, the burden of equipment and expertise is low, allowing the technique to be accessible to all. PMID:28457187

  5. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.

    2014-01-01

    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  6. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan Walker

    2015-01-01

    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  7. Large space antennas: A systems analysis case history

    NASA Technical Reports Server (NTRS)

    Keafer, Lloyd S. (Compiler); Lovelace, U. M. (Compiler)

    1987-01-01

    The value of systems analysis and engineering is aptly demonstrated by the work on Large Space Antennas (LSA) by the NASA Langley Spacecraft Analysis Branch. This work was accomplished over the last half-decade by augmenting traditional system engineering, analysis, and design techniques with computer-aided engineering (CAE) techniques using the Langley-developed Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) system. This report chronicles the research highlights and special systems analyses that focused the LSA work on deployable truss antennas. It notes developmental trends toward greater use of CAE techniques in their design and analysis. A look to the future envisions the application of improved systems analysis capabilities to advanced space systems such as an advanced space station or to lunar and Martian missions and human habitats.

  8. A top-down approach in control engineering third-level teaching: The case of hydrogen-generation

    NASA Astrophysics Data System (ADS)

    Setiawan, Eko; Habibi, M. Afnan; Fall, Cheikh; Hodaka, Ichijo

    2017-09-01

    This paper presents a top-down approach in control engineering third-level teaching. The paper shows the control engineering solution for the issue of practical implementation in order to motivate students. The proposed strategy only focuses on one technique of control engineering to lead student correctly. The proposed teaching steps are 1) defining the problem, 2) listing of acquired knowledge or required skill, 3) selecting of one control engineering technique, 4) arrangement the order of teaching: problem introduction, implementation of control engineering technique, explanation of system block diagram, model derivation, controller design, and 5) enrichment knowledge by the other control techniques. The approach presented highlights hardware implementation and the use of software simulation as a self-learning tool for students.

  9. Photovoltaic power system reliability considerations

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.

    1980-01-01

    An example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems is presented. This particular application is for a solar cell power system demonstration project designed to provide electric power requirements for remote villages. The techniques utilized involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of fail-safe and planned spare parts engineering philosophy.

  10. Ingenuity in Action: Connecting Tinkering to Engineering Design Processes

    ERIC Educational Resources Information Center

    Wang, Jennifer; Werner-Avidon, Maia; Newton, Lisa; Randol, Scott; Smith, Brooke; Walker, Gretchen

    2013-01-01

    The Lawrence Hall of Science, a science center, seeks to replicate real-world engineering at the "Ingenuity in Action" exhibit, which consists of three open-ended challenges. These problems encourage children to engage in engineering design processes and problem-solving techniques through tinkering. We observed and interviewed 112…

  11. A design support simulation of the augmentor wing jet STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Rumsey, P. C.; Spitzer, R. E.; Glende, W. L. B.

    1972-01-01

    The modification of a C-8A (De Havilland Buffalo) aircraft to a STOL configuration is discussed. The modification consisted of the installation of an augmentor-wing jet flap system. System design requirements were investigated for the lateral and directional flight control systems, the lateral and directional axes stability augmentation systems, the engine and Pegasus nozzle control systems, and the hydraulic systems. Operational techniques for STOL landings, control of engine failures, and pilot techniques for improving engine-out go-around performance were examined. Design changes have been identified to correct deficiencies in areas of the airplane control sytems and to improve the airplane flying qualities.

  12. Engineering Encounters: The Cat in the Hat Builds Satellites. A Unit Promoting Scientific Literacy and the Engineering Design Process

    ERIC Educational Resources Information Center

    Rehmat, Abeera P.; Owens, Marissa C.

    2016-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information about a unit promoting scientific literacy and the engineering design process. The integration of engineering with scientific practices in K-12 education can promote creativity, hands-on learning, and an improvement in students'…

  13. Design of Modular, Shape-transitioning Inlets for a Conical Hypersonic Vehicle

    NASA Technical Reports Server (NTRS)

    Gollan, Rowan J.; Smart, Michael K.

    2010-01-01

    For a hypersonic vehicle, propelled by scramjet engines, integration of the engines and airframe is highly desirable. Thus, the forward capture shape of the engine inlet should conform to the vehicle body shape. Furthermore, the use of modular engines places a constraint on the shape of the inlet sidewalls. Finally, one may desire a combustor cross- section shape that is different from that of the inlet. These shape constraints for the inlet can be accommodated by employing a streamline-tracing and lofting technique. This design technique was developed by Smart for inlets with a rectangular-to-elliptical shape transition. In this paper, we generalise that technique to produce inlets that conform to arbitrary shape requirements. As an example, we show the design of a body-integrated hypersonic inlet on a winged-cone vehicle, typical of what might be used in a three-stage orbital launch system. The special challenge of inlet design for this conical vehicle at an angle-of-attack is also discussed. That challenge is that the bow shock sits relatively close to the vehicle body.

  14. Design and optimization of the micro-engine turbine rotor manufacturing using the rapid prototyping technology

    NASA Astrophysics Data System (ADS)

    Vdovin, R. A.; Smelov, V. G.

    2017-02-01

    This work describes the experience in manufacturing the turbine rotor for the micro-engine. It demonstrates the design principles for the complex investment casting process combining the use of the ProCast software and the rapid prototyping techniques. At the virtual modelling stage, in addition to optimized process parameters, the casting structure was improved to obtain the defect-free section. The real production stage allowed demonstrating the performance and fitness of rapid prototyping techniques for the manufacture of geometrically-complex engine-building parts.

  15. The Critical Incident Technique: An Effective Tool for Gathering Experience from Practicing Engineers

    ERIC Educational Resources Information Center

    Hanson, James H.; Brophy, Patrick D.

    2012-01-01

    Not all knowledge and skills that educators want to pass to students exists yet in textbooks. Some still resides only in the experiences of practicing engineers (e.g., how engineers create new products, how designers identify errors in calculations). The critical incident technique, CIT, is an established method for cognitive task analysis. It is…

  16. Mechanical Design of Spacecraft

    NASA Technical Reports Server (NTRS)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  17. Application of an Optimal Tuner Selection Approach for On-Board Self-Tuning Engine Models

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Armstrong, Jeffrey B.; Garg, Sanjay

    2012-01-01

    An enhanced design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented in this paper. It specific-ally addresses the under-determined estimation problem, in which there are more unknown parameters than available sensor measurements. This work builds upon an existing technique for systematically selecting a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. While the existing technique was optimized for open-loop engine operation at a fixed design point, in this paper an alternative formulation is presented that enables the technique to be optimized for an engine operating under closed-loop control throughout the flight envelope. The theoretical Kalman filter mean squared estimation error at a steady-state closed-loop operating point is derived, and the tuner selection approach applied to minimize this error is discussed. A technique for constructing a globally optimal tuning parameter vector, which enables full-envelope application of the technology, is also presented, along with design steps for adjusting the dynamic response of the Kalman filter state estimates. Results from the application of the technique to linear and nonlinear aircraft engine simulations are presented and compared to the conventional approach of tuner selection. The new methodology is shown to yield a significant improvement in on-line Kalman filter estimation accuracy.

  18. Genome scale engineering techniques for metabolic engineering.

    PubMed

    Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T

    2015-11-01

    Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Evolutionary engineering for industrial microbiology.

    PubMed

    Vanee, Niti; Fisher, Adam B; Fong, Stephen S

    2012-01-01

    Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.

  20. A review of rapid prototyping techniques for tissue engineering purposes.

    PubMed

    Peltola, Sanna M; Melchels, Ferry P W; Grijpma, Dirk W; Kellomäki, Minna

    2008-01-01

    Rapid prototyping (RP) is a common name for several techniques, which read in data from computer-aided design (CAD) drawings and manufacture automatically three-dimensional objects layer-by-layer according to the virtual design. The utilization of RP in tissue engineering enables the production of three-dimensional scaffolds with complex geometries and very fine structures. Adding micro- and nanometer details into the scaffolds improves the mechanical properties of the scaffold and ensures better cell adhesion to the scaffold surface. Thus, tissue engineering constructs can be customized according to the data acquired from the medical scans to match the each patient's individual needs. In addition RP enables the control of the scaffold porosity making it possible to fabricate applications with desired structural integrity. Unfortunately, every RP process has its own unique disadvantages in building tissue engineering scaffolds. Hence, the future research should be focused on the development of RP machines designed specifically for fabrication of tissue engineering scaffolds, although RP methods already can serve as a link between tissue and engineering.

  1. Manufacturing engineering: Principles for optimization

    NASA Astrophysics Data System (ADS)

    Koenig, Daniel T.

    Various subjects in the area of manufacturing engineering are addressed. The topics considered include: manufacturing engineering organization concepts and management techniques, factory capacity and loading techniques, capital equipment programs, machine tool and equipment selection and implementation, producibility engineering, methods, planning and work management, and process control engineering in job shops. Also discussed are: maintenance engineering, numerical control of machine tools, fundamentals of computer-aided design/computer-aided manufacture, computer-aided process planning and data collection, group technology basis for plant layout, environmental control and safety, and the Integrated Productivity Improvement Program.

  2. Systems Engineering in NASA's R&TD Programs

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is largely the analysis and planning that support the design, development, and operation of systems. The most common application of systems engineering is in guiding systems development projects that use a phased process of requirements, specifications, design, and development. This paper investigates how systems engineering techniques should be applied in research and technology development programs for advanced space systems. These programs should include anticipatory engineering of future space flight systems and a project portfolio selection process, as well as systems engineering for multiple development projects.

  3. Practical Techniques for Modeling Gas Turbine Engine Performance

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.

    2016-01-01

    The cost and risk associated with the design and operation of gas turbine engine systems has led to an increasing dependence on mathematical models. In this paper, the fundamentals of engine simulation will be reviewed, an example performance analysis will be performed, and relationships useful for engine control system development will be highlighted. The focus will be on thermodynamic modeling utilizing techniques common in industry, such as: the Brayton cycle, component performance maps, map scaling, and design point criteria generation. In general, these topics will be viewed from the standpoint of an example turbojet engine model; however, demonstrated concepts may be adapted to other gas turbine systems, such as gas generators, marine engines, or high bypass aircraft engines. The purpose of this paper is to provide an example of gas turbine model generation and system performance analysis for educational uses, such as curriculum creation or student reference.

  4. Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding.

    PubMed

    Ballyns, Jeffery J; Gleghorn, Jason P; Niebrzydowski, Vicki; Rawlinson, Jeremy J; Potter, Hollis G; Maher, Suzanne A; Wright, Timothy M; Bonassar, Lawrence J

    2008-07-01

    This study demonstrates for the first time the development of engineered tissues based on anatomic geometries derived from widely used medical imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). Computer-aided design and tissue injection molding techniques have demonstrated the ability to generate living implants of complex geometry. Due to its complex geometry, the meniscus of the knee was used as an example of this technique's capabilities. MRI and microcomputed tomography (microCT) were used to design custom-printed molds that enabled the generation of anatomically shaped constructs that retained shape throughout 8 weeks of culture. Engineered constructs showed progressive tissue formation indicated by increases in extracellular matrix content and mechanical properties. The paradigm of interfacing tissue injection molding technology can be applied to other medical imaging techniques that render 3D models of anatomy, demonstrating the potential to apply the current technique to engineering of many tissues and organs.

  5. Systems design analysis applied to launch vehicle configuration

    NASA Technical Reports Server (NTRS)

    Ryan, R.; Verderaime, V.

    1993-01-01

    As emphasis shifts from optimum-performance aerospace systems to least lift-cycle costs, systems designs must seek, adapt, and innovate cost improvement techniques in design through operations. The systems design process of concept, definition, and design was assessed for the types and flow of total quality management techniques that may be applicable in a launch vehicle systems design analysis. Techniques discussed are task ordering, quality leverage, concurrent engineering, Pareto's principle, robustness, quality function deployment, criteria, and others. These cost oriented techniques are as applicable to aerospace systems design analysis as to any large commercial system.

  6. Applying the design-build-test paradigm in microbiome engineering.

    PubMed

    Pham, Hoang Long; Ho, Chun Loong; Wong, Adison; Lee, Yung Seng; Chang, Matthew Wook

    2017-12-01

    The recently discovered roles of human microbiome in health and diseases have inspired research efforts across many disciplines to engineer microbiome for health benefits. In this review, we highlight recent progress in human microbiome research and how modifications to the microbiome could result in implications to human health. Furthermore, we discuss the application of a 'design-build-test' framework to expedite microbiome engineering efforts by reviewing current literature on three key aspects: design principles to engineer the human microbiome, methods to engineer microbiome with desired functions, and analytical techniques to examine complex microbiome samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Materials and structural aspects of advanced gas-turbine helicopter engines

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Acurio, J.

    1979-01-01

    The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.

  8. Engineering Encounters: An Engineering Design Process for Early Childhood

    ERIC Educational Resources Information Center

    Lottero-Perdue, Pamela; Bowditch, Michelle; Kagan, Michelle; Robinson-Cheek, Linda; Webb, Tedra; Meller, Megan; Nosek, Theresa

    2016-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information about trying (again) to engineer an egg package. Engineering is an essential part of science education, as emphasized in the "Next Generation Science Standards" (NGSS Lead States 2013). Engineering practices and performance…

  9. Strategic Design and Fabrication of Engineered Scaffolds for Articular Cartilage Repair

    PubMed Central

    Izadifar, Zohreh; Chen, Xiongbiao; Kulyk, William

    2012-01-01

    Damage to articular cartilage can eventually lead to osteoarthritis (OA), a debilitating, degenerative joint disease that affects millions of people around the world. The limited natural healing ability of cartilage and the limitations of currently available therapies make treatment of cartilage defects a challenging clinical issue. Hopes have been raised for the repair of articular cartilage with the help of supportive structures, called scaffolds, created through tissue engineering (TE). Over the past two decades, different designs and fabrication techniques have been investigated for developing TE scaffolds suitable for the construction of transplantable artificial cartilage tissue substitutes. Advances in fabrication technologies now enable the strategic design of scaffolds with complex, biomimetic structures and properties. In particular, scaffolds with hybrid and/or biomimetic zonal designs have recently been developed for cartilage tissue engineering applications. This paper reviews critical aspects of the design of engineered scaffolds for articular cartilage repair as well as the available advanced fabrication techniques. In addition, recent studies on the design of hybrid and zonal scaffolds for use in cartilage tissue repair are highlighted. PMID:24955748

  10. New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds.

    PubMed

    Yoo, Dongjin

    2012-07-01

    Advanced additive manufacture (AM) techniques are now being developed to fabricate scaffolds with controlled internal pore architectures in the field of tissue engineering. In general, these techniques use a hybrid method which combines computer-aided design (CAD) with computer-aided manufacturing (CAM) tools to design and fabricate complicated three-dimensional (3D) scaffold models. The mathematical descriptions of micro-architectures along with the macro-structures of the 3D scaffold models are limited by current CAD technologies as well as by the difficulty of transferring the designed digital models to standard formats for fabrication. To overcome these difficulties, we have developed an efficient internal pore architecture design system based on triply periodic minimal surface (TPMS) unit cell libraries and associated computational methods to assemble TPMS unit cells into an entire scaffold model. In addition, we have developed a process planning technique based on TPMS internal architecture pattern of unit cells to generate tool paths for freeform fabrication of tissue engineering porous scaffolds. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Concurrent engineering: Spacecraft and mission operations system design

    NASA Technical Reports Server (NTRS)

    Landshof, J. A.; Harvey, R. J.; Marshall, M. H.

    1994-01-01

    Despite our awareness of the mission design process, spacecraft historically have been designed and developed by one team and then turned over as a system to the Mission Operations organization to operate on-orbit. By applying concurrent engineering techniques and envisioning operability as an essential characteristic of spacecraft design, tradeoffs can be made in the overall mission design to minimize mission lifetime cost. Lessons learned from previous spacecraft missions will be described, as well as the implementation of concurrent mission operations and spacecraft engineering for the Near Earth Asteroid Rendezvous (NEAR) program.

  12. Emerging Techniques in Stratified Designs and Continuous Gradients for Tissue Engineering of Interfaces

    PubMed Central

    Dormer, Nathan H.; Berkland, Cory J.; Detamore, Michael S.

    2013-01-01

    Interfacial tissue engineering is an emerging branch of regenerative medicine, where engineers are faced with developing methods for the repair of one or many functional tissue systems simultaneously. Early and recent solutions for complex tissue formation have utilized stratified designs, where scaffold formulations are segregated into two or more layers, with discrete changes in physical or chemical properties, mimicking a corresponding number of interfacing tissue types. This method has brought forth promising results, along with a myriad of regenerative techniques. The latest designs, however, are employing “continuous gradients” in properties, where there is no discrete segregation between scaffold layers. This review compares the methods and applications of recent stratified approaches to emerging continuously graded methods. PMID:20411333

  13. Review of jet engine emissions

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.

    1972-01-01

    A review of the emission characteristics of jet engines is presented. The sources and concentrations of the various constituents in the engine exhaust and the influence of engine operating conditions on emissions are discussed. Cruise emissions to be expected from supersonic engines are compared with emissions from subsonic engines. The basic operating principles of the gas turbine combustor are reviewed together with the effects of combustor operating conditions on emissions. The performance criteria that determine the design of gas turbine combustors are discussed. Combustor design techniques are considered that may be used to reduce emissions.

  14. Safety considerations in the design and operation of large wind turbines

    NASA Technical Reports Server (NTRS)

    Reilly, D. H.

    1979-01-01

    The engineering and safety techniques used to assure the reliable and safe operation of large wind turbine generators utilizing the Mod 2 Wind Turbine System Program as an example is described. The techniques involve a careful definition of the wind turbine's natural and operating environments, use of proven structural design criteria and analysis techniques, an evaluation of potential failure modes and hazards, and use of a fail safe and redundant component engineering philosophy. The role of an effective quality assurance program, tailored to specific hardware criticality, and the checkout and validation program developed to assure system integrity are described.

  15. Building Safer Systems With SpecTRM

    NASA Technical Reports Server (NTRS)

    2003-01-01

    System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.

  16. Designing a hands-on brain computer interface laboratory course.

    PubMed

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2016-08-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.

  17. Robust fault detection of turbofan engines subject to adaptive controllers via a Total Measurable Fault Information Residual (ToMFIR) technique.

    PubMed

    Chen, Wen; Chowdhury, Fahmida N; Djuric, Ana; Yeh, Chih-Ping

    2014-09-01

    This paper provides a new design of robust fault detection for turbofan engines with adaptive controllers. The critical issue is that the adaptive controllers can depress the faulty effects such that the actual system outputs remain the pre-specified values, making it difficult to detect faults/failures. To solve this problem, a Total Measurable Fault Information Residual (ToMFIR) technique with the aid of system transformation is adopted to detect faults in turbofan engines with adaptive controllers. This design is a ToMFIR-redundancy-based robust fault detection. The ToMFIR is first introduced and existing results are also summarized. The Detailed design process of the ToMFIRs is presented and a turbofan engine model is simulated to verify the effectiveness of the proposed ToMFIR-based fault-detection strategy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Flux analysis and metabolomics for systematic metabolic engineering of microorganisms.

    PubMed

    Toya, Yoshihiro; Shimizu, Hiroshi

    2013-11-01

    Rational engineering of metabolism is important for bio-production using microorganisms. Metabolic design based on in silico simulations and experimental validation of the metabolic state in the engineered strain helps in accomplishing systematic metabolic engineering. Flux balance analysis (FBA) is a method for the prediction of metabolic phenotype, and many applications have been developed using FBA to design metabolic networks. Elementary mode analysis (EMA) and ensemble modeling techniques are also useful tools for in silico strain design. The metabolome and flux distribution of the metabolic pathways enable us to evaluate the metabolic state and provide useful clues to improve target productivity. Here, we reviewed several computational applications for metabolic engineering by using genome-scale metabolic models of microorganisms. We also discussed the recent progress made in the field of metabolomics and (13)C-metabolic flux analysis techniques, and reviewed these applications pertaining to bio-production development. Because these in silico or experimental approaches have their respective advantages and disadvantages, the combined usage of these methods is complementary and effective for metabolic engineering. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. SAGA: A project to automate the management of software production systems

    NASA Technical Reports Server (NTRS)

    Campbell, Roy H.; Beckman-Davies, C. S.; Benzinger, L.; Beshers, G.; Laliberte, D.; Render, H.; Sum, R.; Smith, W.; Terwilliger, R.

    1986-01-01

    Research into software development is required to reduce its production cost and to improve its quality. Modern software systems, such as the embedded software required for NASA's space station initiative, stretch current software engineering techniques. The requirements to build large, reliable, and maintainable software systems increases with time. Much theoretical and practical research is in progress to improve software engineering techniques. One such technique is to build a software system or environment which directly supports the software engineering process, i.e., the SAGA project, comprising the research necessary to design and build a software development which automates the software engineering process. Progress under SAGA is described.

  20. Conceptual design of single turbofan engine powered light aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, F. S.; Voorhees, C. G.; Heinrich, A. M.; Baisden, D. N.

    1977-01-01

    The conceptual design of a four place single turbofan engine powered light aircraft was accomplished utilizing contemporary light aircraft conventional design techniques as a means of evaluating the NASA-Ames General Aviation Synthesis Program (GASP) as a preliminary design tool. In certain areas, disagreement or exclusion were found to exist between the results of the conventional design and GASP processes. Detail discussion of these points along with the associated contemporary design methodology are presented.

  1. Effects of Structural Flexibility on Aircraft-Engine Mounts

    NASA Technical Reports Server (NTRS)

    Phillips, W. H.

    1986-01-01

    Analysis extends technique for design of widely used type of vibration-isolating mounts for aircraft engines, in which rubber mounting pads located in plane behind center of gravity of enginepropeller combination. New analysis treats problem in statics. Results of simple approach useful in providing equations for design of vibrationisolating mounts. Equations applicable in usual situation in which engine-mount structure itself relatively light and placed between large mass of engine and other heavy components of airplane.

  2. Application of Optimization Techniques to Design of Unconventional Rocket Nozzle Configurations

    NASA Technical Reports Server (NTRS)

    Follett, W.; Ketchum, A.; Darian, A.; Hsu, Y.

    1996-01-01

    Several current rocket engine concepts such as the bell-annular tri-propellant engine, and the linear aerospike being proposed for the X-33 require unconventional three dimensional rocket nozzles which must conform to rectangular or sector shaped envelopes to meet integration constraints. These types of nozzles exist outside the current experience database, therefore, the application of efficient design methods for these propulsion concepts is critical to the success of launch vehicle programs. The objective of this work is to optimize several different nozzle configurations, including two- and three-dimensional geometries. Methodology includes coupling computational fluid dynamic (CFD) analysis to genetic algorithms and Taguchi methods as well as implementation of a streamline tracing technique. Results of applications are shown for several geometeries including: three dimensional thruster nozzles with round or super elliptic throats and rectangualar exits, two- and three-dimensional thrusters installed within a bell nozzle, and three dimensional thrusters with round throats and sector shaped exits. Due to the novel designs considered for this study, there is little experience which can be used to guide the effort and limit the design space. With a nearly infinite parameter space to explore, simple parametric design studies cannot possibly search the entire design space within the time frame required to impact the design cycle. For this reason, robust and efficient optimization methods are required to explore and exploit the design space to achieve high performance engine designs. Five case studies which examine the application of various techniques in the engineering environment are presented in this paper.

  3. An Electronic Engineering Curriculum Design Based on Concept-Mapping Techniques

    ERIC Educational Resources Information Center

    Toral, S. L.; Martinez-Torres, M. R.; Barrero, F.; Gallardo, S.; Duran, M. J.

    2007-01-01

    Curriculum design is a concern in European Universities as they face the forthcoming European Higher Education Area (EHEA). This process can be eased by the use of scientific tools such as Concept-Mapping Techniques (CMT) that extract and organize the most relevant information from experts' experience using statistics techniques, and helps a…

  4. Quantitative ultrasonic evaluation of mechanical properties of engineering materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Current progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength properties of engineering materials is reviewed. Even where conventional NDE techniques have shown that a part is free of overt defects, advanced NDE techniques should be available to confirm the material properties assumed in the part's design. There are many instances where metallic, composite, or ceramic parts may be free of critical defects while still being susceptible to failure under design loads due to inadequate or degraded mechanical strength. This must be considered in any failure prevention scheme that relies on fracture analysis. This review will discuss the availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions.

  5. Designing a Pedagogical Model for Web Engineering Education: An Evolutionary Perspective

    ERIC Educational Resources Information Center

    Hadjerrouit, Said

    2005-01-01

    In contrast to software engineering, which relies on relatively well established development approaches, there is a lack of a proven methodology that guides Web engineers in building reliable and effective Web-based systems. Currently, Web engineering lacks process models, architectures, suitable techniques and methods, quality assurance, and a…

  6. Engineering Encounters: Reverse Engineering

    ERIC Educational Resources Information Center

    McGowan, Veronica Cassone; Ventura, Marcia; Bell, Philip

    2017-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information on how students' everyday experiences can support science learning through engineering design. In this article, the authors outline a reverse-engineering model of instruction and describe one example of how it looked in our fifth-grade…

  7. Software Engineering Education Directory

    DTIC Science & Technology

    1990-04-01

    and Engineering (CMSC 735) Codes: GPEV2 * Textiooks: IEEE Tutoria on Models and Metrics for Software Management and Engameeing by Basi, Victor R...Software Engineering (Comp 227) Codes: GPRY5 Textbooks: IEEE Tutoria on Software Design Techniques by Freeman, Peter and Wasserman, Anthony 1. Software

  8. Sensor failure and multivariable control for airbreathing propulsion systems. Ph.D. Thesis - Dec. 1979 Final Report

    NASA Technical Reports Server (NTRS)

    Behbehani, K.

    1980-01-01

    A new sensor/actuator failure analysis technique for turbofan jet engines was developed. Three phases of failure analysis, namely detection, isolation, and accommodation are considered. Failure detection and isolation techniques are developed by utilizing the concept of Generalized Likelihood Ratio (GLR) tests. These techniques are applicable to both time varying and time invariant systems. Three GLR detectors are developed for: (1) hard-over sensor failure; (2) hard-over actuator failure; and (3) brief disturbances in the actuators. The probability distribution of the GLR detectors and the detectability of sensor/actuator failures are established. Failure type is determined by the maximum of the GLR detectors. Failure accommodation is accomplished by extending the Multivariable Nyquest Array (MNA) control design techniques to nonsquare system designs. The performance and effectiveness of the failure analysis technique are studied by applying the technique to a turbofan jet engine, namely the Quiet Clean Short Haul Experimental Engine (QCSEE). Single and multiple sensor/actuator failures in the QCSEE are simulated and analyzed and the effects of model degradation are studied.

  9. Evaluation of analysis techniques for low frequency interior noise and vibration of commercial aircraft

    NASA Technical Reports Server (NTRS)

    Landmann, A. E.; Tillema, H. F.; Marshall, S. E.

    1989-01-01

    The application of selected analysis techniques to low frequency cabin noise associated with advanced propeller engine installations is evaluated. Three design analysis techniques were chosen for evaluation including finite element analysis, statistical energy analysis (SEA), and a power flow method using element of SEA (computer program Propeller Aircraft Interior Noise). An overview of the three procedures is provided. Data from tests of a 727 airplane (modified to accept a propeller engine) were used to compare with predictions. Comparisons of predicted and measured levels at the end of the first year's effort showed reasonable agreement leading to the conclusion that each technique had value for propeller engine noise predictions on large commercial transports. However, variations in agreement were large enough to remain cautious and to lead to recommendations for further work with each technique. Assessment of the second year's results leads to the conclusion that the selected techniques can accurately predict trends and can be useful to a designer, but that absolute level predictions remain unreliable due to complexity of the aircraft structure and low modal densities.

  10. Making Informed Decisions: The Role of Information Literacy in Ethical and Effective Engineering Design

    ERIC Educational Resources Information Center

    Fosmire, Michael

    2017-01-01

    Engineering designers must make evidence-based decisions when applying the practical tools and techniques of their discipline to human problems. Information literacy provides a structure for determining information gaps, locating appropriate and relevant information, applying that information effectively, and documenting and managing the knowledge…

  11. The Engineering Design Process as a Model for STEM Curriculum Design

    ERIC Educational Resources Information Center

    Corbett, Krystal Sno

    2012-01-01

    Engaging pedagogics have been proven to be effective in the promotion of deep learning for science, technology, engineering, and mathematics (STEM) students. In many cases, academic institutions have shown a desire to improve education by implementing more engaging techniques in the classroom. The research framework established in this…

  12. Biomimetic Layer-by-Layer Self-Assembly of Nanofilms, Nanocoatings, and 3D Scaffolds for Tissue Engineering.

    PubMed

    Zhang, Shichao; Xing, Malcolm; Li, Bingyun

    2018-06-01

    Achieving surface design and control of biomaterial scaffolds with nanometer- or micrometer-scaled functional films is critical to mimic the unique features of native extracellular matrices, which has significant technological implications for tissue engineering including cell-seeded scaffolds, microbioreactors, cell assembly, tissue regeneration, etc. Compared with other techniques available for surface design, layer-by-layer (LbL) self-assembly technology has attracted extensive attention because of its integrated features of simplicity, versatility, and nanoscale control. Here we present a brief overview of current state-of-the-art research related to the LbL self-assembly technique and its assembled biomaterials as scaffolds for tissue engineering. An overview of the LbL self-assembly technique, with a focus on issues associated with distinct routes and driving forces of self-assembly, is described briefly. Then, we highlight the controllable fabrication, properties, and applications of LbL self-assembly biomaterials in the forms of multilayer nanofilms, scaffold nanocoatings, and three-dimensional scaffolds to systematically demonstrate advances in LbL self-assembly in the field of tissue engineering. LbL self-assembly not only provides advances for molecular deposition but also opens avenues for the design and development of innovative biomaterials for tissue engineering.

  13. Coupling artificial intelligence and numerical computation for engineering design (Invited paper)

    NASA Astrophysics Data System (ADS)

    Tong, S. S.

    1986-01-01

    The possibility of combining artificial intelligence (AI) systems and numerical computation methods for engineering designs is considered. Attention is given to three possible areas of application involving fan design, controlled vortex design of turbine stage blade angles, and preliminary design of turbine cascade profiles. Among the AI techniques discussed are: knowledge-based systems; intelligent search; and pattern recognition systems. The potential cost and performance advantages of an AI-based design-generation system are discussed in detail.

  14. The design of a turboshaft speed governor using modern control techniques

    NASA Technical Reports Server (NTRS)

    Delosreyes, G.; Gouchoe, D. R.

    1986-01-01

    The objectives of this program were: to verify the model of off schedule compressor variable geometry in the T700 turboshaft engine nonlinear model; to evaluate the use of the pseudo-random binary noise (PRBN) technique for obtaining engine frequency response data; and to design a high performance power turbine speed governor using modern control methods. Reduction of T700 engine test data generated at NASA-Lewis indicated that the off schedule variable geometry effects were accurate as modeled. Analysis also showed that the PRBN technique combined with the maximum likelihood model identification method produced a Bode frequency response that was as accurate as the response obtained from standard sinewave testing methods. The frequency response verified the accuracy of linear models consisting of engine partial derivatives and used for design. A power turbine governor was designed using the Linear Quadratic Regulator (LQR) method of full state feedback control. A Kalman filter observer was used to estimate helicopter main rotor blade velocity. Compared to the baseline T700 power turbine speed governor, the LQR governor reduced droop up to 25 percent for a 490 shaft horsepower transient in 0.1 sec simulating a wind gust, and up to 85 percent for a 700 shaft horsepower transient in 0.5 sec simulating a large collective pitch angle transient.

  15. Value Engineering. "A Working Tool for Cost Control in the Design of Educational Facilities."

    ERIC Educational Resources Information Center

    Lawrence, Jerry

    Value Engineering (VE) is a cost optimizing technique used to analyze design quality and cost-effectiveness. The application of VE procedures to the design and construction of school facilities has been adopted by the state of Washington. By using VE, the optimum value for every life cycle dollar spent on a facility is obtained by identifying not…

  16. Intertwining Risk Insights and Design Decisions

    NASA Technical Reports Server (NTRS)

    Cornford, Steven L.; Feather, Martin S.; Jenkins, J. Steven

    2006-01-01

    The state of systems engineering is such that a form of early and continued use of risk assessments is conducted (as evidenced by NASA's adoption and use of the 'Continuous Risk Management' paradigm developed by SEI). ... However, these practices fall short of theideal: (1) Integration between risk assessment techniques and other systems engineering tools is weak. (2) Risk assessment techniques and the insights they yield are only informally coupled to design decisions. (3) Individual riskassessment techniques lack the mix of breadth, fidelity and agility required to span the gamut of the design space. In this paper we present an approach that addresses these shortcomings. The hallmark of our approach is a simple representation comprising objectives (what the system is to do), risks (whose occurrence would detract from attainment of objectives) and activities (a.k.a. 'mitigations') that, if performed, will decrease those risks. These are linked to indicate by how much a risk would detract from attainment of an objective, and by how much an activity would reduce a risk. The simplicity of our representational framework gives it the breadth to encompass the gamut of the design space concerns, the agility to be utilized in even the earliest phases of designs, and the capability to connect to system engineering models and higher-fidelity risk tools. It is through this integration that we address the shortcomings listed above, and so achieve the intertwining between risk insights and design decisions needed to guide systems engineering towards superior final designs while avoiding costly rework to achieve them. The paper will use an example, constructed to be representative of space mission design, to illustrate our approach.

  17. Designing a Hands-On Brain Computer Interface Laboratory Course

    PubMed Central

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2017-01-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI. PMID:28268946

  18. Stability and performance of propulsion control systems with distributed control architectures and failures

    NASA Astrophysics Data System (ADS)

    Belapurkar, Rohit K.

    Future aircraft engine control systems will be based on a distributed architecture, in which, the sensors and actuators will be connected to the Full Authority Digital Engine Control (FADEC) through an engine area network. Distributed engine control architecture will allow the implementation of advanced, active control techniques along with achieving weight reduction, improvement in performance and lower life cycle cost. The performance of a distributed engine control system is predominantly dependent on the performance of the communication network. Due to the serial data transmission policy, network-induced time delays and sampling jitter are introduced between the sensor/actuator nodes and the distributed FADEC. Communication network faults and transient node failures may result in data dropouts, which may not only degrade the control system performance but may even destabilize the engine control system. Three different architectures for a turbine engine control system based on a distributed framework are presented. A partially distributed control system for a turbo-shaft engine is designed based on ARINC 825 communication protocol. Stability conditions and control design methodology are developed for the proposed partially distributed turbo-shaft engine control system to guarantee the desired performance under the presence of network-induced time delay and random data loss due to transient sensor/actuator failures. A fault tolerant control design methodology is proposed to benefit from the availability of an additional system bandwidth and from the broadcast feature of the data network. It is shown that a reconfigurable fault tolerant control design can help to reduce the performance degradation in presence of node failures. A T-700 turbo-shaft engine model is used to validate the proposed control methodology based on both single input and multiple-input multiple-output control design techniques.

  19. Nanofibers and their applications in tissue engineering

    PubMed Central

    Vasita, Rajesh; Katti, Dhirendra S

    2006-01-01

    Developing scaffolds that mimic the architecture of tissue at the nanoscale is one of the major challenges in the field of tissue engineering. The development of nanofibers has greatly enhanced the scope for fabricating scaffolds that can potentially meet this challenge. Currently, there are three techniques available for the synthesis of nanofibers: electrospinning, self-assembly, and phase separation. Of these techniques, electrospinning is the most widely studied technique and has also demonstrated the most promising results in terms of tissue engineering applications. The availability of a wide range of natural and synthetic biomaterials has broadened the scope for development of nanofibrous scaffolds, especially using the electrospinning technique. The three dimensional synthetic biodegradable scaffolds designed using nanofibers serve as an excellent framework for cell adhesion, proliferation, and differentiation. Therefore, nanofibers, irrespective of their method of synthesis, have been used as scaffolds for musculoskeletal tissue engineering (including bone, cartilage, ligament, and skeletal muscle), skin tissue engineering, vascular tissue engineering, neural tissue engineering, and as carriers for the controlled delivery of drugs, proteins, and DNA. This review summarizes the currently available techniques for nanofiber synthesis and discusses the use of nanofibers in tissue engineering and drug delivery applications. PMID:17722259

  20. Design, evaluation and test of an electronic, multivariable control for the F100 turbofan engine

    NASA Technical Reports Server (NTRS)

    Skira, C. A.; Dehoff, R. L.; Hall, W. E., Jr.

    1980-01-01

    A digital, multivariable control design procedure for the F100 turbofan engine is described. The controller is based on locally linear synthesis techniques using linear, quadratic regulator design methods. The control structure uses an explicit model reference form with proportional and integral feedback near a nominal trajectory. Modeling issues, design procedures for the control law and the estimation of poorly measured variables are presented.

  1. Probabilistic/Fracture-Mechanics Model For Service Life

    NASA Technical Reports Server (NTRS)

    Watkins, T., Jr.; Annis, C. G., Jr.

    1991-01-01

    Computer program makes probabilistic estimates of lifetime of engine and components thereof. Developed to fill need for more accurate life-assessment technique that avoids errors in estimated lives and provides for statistical assessment of levels of risk created by engineering decisions in designing system. Implements mathematical model combining techniques of statistics, fatigue, fracture mechanics, nondestructive analysis, life-cycle cost analysis, and management of engine parts. Used to investigate effects of such engine-component life-controlling parameters as return-to-service intervals, stresses, capabilities for nondestructive evaluation, and qualities of materials.

  2. New head gradient coil design and construction techniques.

    PubMed

    Handler, William B; Harris, Chad T; Scholl, Timothy J; Parker, Dennis L; Goodrich, K Craig; Dalrymple, Brian; Van Sass, Frank; Chronik, Blaine A

    2014-05-01

    To design and build a head insert gradient coil to use in conjunction with body gradients for superior imaging. The use of the boundary element method to solve for a gradient coil wire pattern on an arbitrary surface allowed us to incorporate engineering changes into the electromagnetic design of a gradient coil directly. Improved wire pattern design was combined with robust manufacturing techniques and novel cooling methods. The finished coil had an efficiency of 0.15 mT/m/A in all three axes and allowed the imaging region to extend across the entire head and upper part of the neck. The ability to adapt an electromagnetic design to necessary changes from an engineering perspective leads to superior coil performance. Copyright © 2013 Wiley Periodicals, Inc.

  3. Cognitive Mapping Techniques: Implications for Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Dixon, Raymond A.; Lammi, Matthew

    2014-01-01

    The primary goal of this paper is to present the theoretical basis and application of two types of cognitive maps, concept map and mind map, and explain how they can be used by educational researchers in engineering design research. Cognitive mapping techniques can be useful to researchers as they study students' problem solving strategies…

  4. Application of a Constant Gain Extended Kalman Filter for In-Flight Estimation of Aircraft Engine Performance Parameters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.; Litt, Jonathan S.

    2005-01-01

    An approach based on the Constant Gain Extended Kalman Filter (CGEKF) technique is investigated for the in-flight estimation of non-measurable performance parameters of aircraft engines. Performance parameters, such as thrust and stall margins, provide crucial information for operating an aircraft engine in a safe and efficient manner, but they cannot be directly measured during flight. A technique to accurately estimate these parameters is, therefore, essential for further enhancement of engine operation. In this paper, a CGEKF is developed by combining an on-board engine model and a single Kalman gain matrix. In order to make the on-board engine model adaptive to the real engine s performance variations due to degradation or anomalies, the CGEKF is designed with the ability to adjust its performance through the adjustment of artificial parameters called tuning parameters. With this design approach, the CGEKF can maintain accurate estimation performance when it is applied to aircraft engines at offnominal conditions. The performance of the CGEKF is evaluated in a simulation environment using numerous component degradation and fault scenarios at multiple operating conditions.

  5. Design concepts for low-cost composite turbofan engine frame

    NASA Technical Reports Server (NTRS)

    Mitchell, S. C.; Stoffer, L. J.

    1980-01-01

    Design concepts for low cost, lightweight composite engine frames were applied to the design requirements for the frame of a commercial, high bypass engine. Four alternative composite frame design concepts identified which consisted of generic type components and subcomponents that could be adapted to use in different locations in the engine and the different engine sizes. A variety of materials and manufacturing methods were projected with a goal for the lowest number of parts at the lowest possible cost. After a preliminary evaluation of all four frame concepts, two designs were selected for an extended design and evaluation which narrowed the final selection down to one frame that was significantly lower in cost and slighty lighter than the other frame. An implementation plan for this lowest cost frame is projected for future development and includes prospects for reducing its weight with proposed unproven, innovative fabrication techniques.

  6. A Web Centric Architecture for Deploying Multi-Disciplinary Engineering Design Processes

    NASA Technical Reports Server (NTRS)

    Woyak, Scott; Kim, Hongman; Mullins, James; Sobieszczanski-Sobieski, Jaroslaw

    2004-01-01

    There are continuous needs for engineering organizations to improve their design process. Current state of the art techniques use computational simulations to predict design performance, and optimize it through advanced design methods. These tools have been used mostly by individual engineers. This paper presents an architecture for achieving results at an organization level beyond individual level. The next set of gains in process improvement will come from improving the effective use of computers and software within a whole organization, not just for an individual. The architecture takes advantage of state of the art capabilities to produce a Web based system to carry engineering design into the future. To illustrate deployment of the architecture, a case study for implementing advanced multidisciplinary design optimization processes such as Bi-Level Integrated System Synthesis is discussed. Another example for rolling-out a design process for Design for Six Sigma is also described. Each example explains how an organization can effectively infuse engineering practice with new design methods and retain the knowledge over time.

  7. Generalized dynamic engine simulation techniques for the digital computer

    NASA Technical Reports Server (NTRS)

    Sellers, J.; Teren, F.

    1974-01-01

    Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program, DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design-point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar all-digital programs on future engine simulation philosophy is also discussed.

  8. Generalized dynamic engine simulation techniques for the digital computer

    NASA Technical Reports Server (NTRS)

    Sellers, J.; Teren, F.

    1974-01-01

    Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design-point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar all-digital programs on future engine simulation philosophy is also discussed.

  9. Generalized dynamic engine simulation techniques for the digital computers

    NASA Technical Reports Server (NTRS)

    Sellers, J.; Teren, F.

    1975-01-01

    Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program, DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar digital programs on future engine simulation philosophy is also discussed.

  10. Robust Nonlinear Feedback Control of Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)

    2001-01-01

    This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.

  11. Introducing Creativity in a Design Laboratory for a Freshman Level Electrical and Computer Engineering Course

    ERIC Educational Resources Information Center

    Burkett, Susan L.; Kotru, Sushma; Lusth, John C.; McCallum, Debra; Dunlap, Sarah

    2014-01-01

    Dunlap, The University of Alabama, USA ABSTRACT In the electrical and computer engineering (ECE) curriculum at The University of Alabama, freshmen are introduced to fundamental electrical concepts and units, DC circuit analysis techniques, operational amplifiers, circuit simulation, design, and professional ethics. The two credit course has both…

  12. Engineering Encounters: Building Technological Literacy with Philosophy and Nature of Technology

    ERIC Educational Resources Information Center

    Kruse, Jerrid; Wilcox, Jesse

    2017-01-01

    This column presents ideas and techniques to enhance your science teaching. In this issue the authors discuss a design project they have used with upper elementary students (grades 4-6). They note ways to engage students in thinking philosophically about technology to meet engineering design outcomes in the "Next Generation Science…

  13. Value Engineering. Technical Manual. School Facilities Development Procedures Manual.

    ERIC Educational Resources Information Center

    Washington Office of the State Superintendent of Public Instruction, Olympia.

    Value Engineering (VE) is a cost-optimizing technique used to analyze design quality and cost-effectiveness. The application of VE procedures to the design and construction of school facilities has been adopted by the state of Washington. This technical manual provides guidance in developing the scope and applicability of VE to school projects; in…

  14. Engineering Design Handbook. Army Weapon Systems Analysis. Part 2

    DTIC Science & Technology

    1979-10-01

    EXPERIMENTAL DESIGN ............................... ............ 41-3 41-5 RESULTS OF THE ASARS lIX SIMULATIONS ........................... 41-4 41-6 LATIN...sciences and human factors engineering fields utilizing experimental methodology and multi-variable statistical techniques drawn from experimental ...randomly to grenades for the test design . The nine experimental types of hand grenades (first’ nine in Table 33-2) had a "pip" on their spherical

  15. Design of Optical Systems with Extended Depth of Field: An Educational Approach to Wavefront Coding Techniques

    ERIC Educational Resources Information Center

    Ferran, C.; Bosch, S.; Carnicer, A.

    2012-01-01

    A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image…

  16. Designing primary health care teams for developing countries.

    PubMed Central

    Reisman, A; Duran, L

    1983-01-01

    A time-honored industrial engineering technique, job evaluation, which was developed to set rates for manual labor, was used in the design of new teams for delivering primary health care in Latin America. The technique was used both in writing job descriptions for new allied health personnel and in designing the curriculums needed to train the personnel. PMID:6856744

  17. Integrating computer programs for engineering analysis and design

    NASA Technical Reports Server (NTRS)

    Wilhite, A. W.; Crisp, V. K.; Johnson, S. C.

    1983-01-01

    The design of a third-generation system for integrating computer programs for engineering and design has been developed for the Aerospace Vehicle Interactive Design (AVID) system. This system consists of an engineering data management system, program interface software, a user interface, and a geometry system. A relational information system (ARIS) was developed specifically for the computer-aided engineering system. It is used for a repository of design data that are communicated between analysis programs, for a dictionary that describes these design data, for a directory that describes the analysis programs, and for other system functions. A method is described for interfacing independent analysis programs into a loosely-coupled design system. This method emphasizes an interactive extension of analysis techniques and manipulation of design data. Also, integrity mechanisms exist to maintain database correctness for multidisciplinary design tasks by an individual or a team of specialists. Finally, a prototype user interface program has been developed to aid in system utilization.

  18. Global Design Optimization for Aerodynamics and Rocket Propulsion Components

    NASA Technical Reports Server (NTRS)

    Shyy, Wei; Papila, Nilay; Vaidyanathan, Rajkumar; Tucker, Kevin; Turner, James E. (Technical Monitor)

    2000-01-01

    Modern computational and experimental tools for aerodynamics and propulsion applications have matured to a stage where they can provide substantial insight into engineering processes involving fluid flows, and can be fruitfully utilized to help improve the design of practical devices. In particular, rapid and continuous development in aerospace engineering demands that new design concepts be regularly proposed to meet goals for increased performance, robustness and safety while concurrently decreasing cost. To date, the majority of the effort in design optimization of fluid dynamics has relied on gradient-based search algorithms. Global optimization methods can utilize the information collected from various sources and by different tools. These methods offer multi-criterion optimization, handle the existence of multiple design points and trade-offs via insight into the entire design space, can easily perform tasks in parallel, and are often effective in filtering the noise intrinsic to numerical and experimental data. However, a successful application of the global optimization method needs to address issues related to data requirements with an increase in the number of design variables, and methods for predicting the model performance. In this article, we review recent progress made in establishing suitable global optimization techniques employing neural network and polynomial-based response surface methodologies. Issues addressed include techniques for construction of the response surface, design of experiment techniques for supplying information in an economical manner, optimization procedures and multi-level techniques, and assessment of relative performance between polynomials and neural networks. Examples drawn from wing aerodynamics, turbulent diffuser flows, gas-gas injectors, and supersonic turbines are employed to help demonstrate the issues involved in an engineering design context. Both the usefulness of the existing knowledge to aid current design practices and the need for future research are identified.

  19. The E3 combustors: Status and challenges. [energy efficient turbofan engines

    NASA Technical Reports Server (NTRS)

    Sokolowski, D. E.; Rohde, J. E.

    1981-01-01

    The design, fabrication, and initial testing of energy efficient engine combustors, developed for the next generation of turbofan engines for commercial aircraft, are described. The combustor designs utilize an annular configuration with two zone combustion for low emissions, advanced liners for improved durability, and short, curved-wall, dump prediffusers for compactness. Advanced cooling techniques and segmented construction characterize the advanced liners. Linear segments are made from castable, turbine-type materials.

  20. Method and Tool for Design Process Navigation and Automatic Generation of Simulation Models for Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Nakano, Masaru; Kubota, Fumiko; Inamori, Yutaka; Mitsuyuki, Keiji

    Manufacturing system designers should concentrate on designing and planning manufacturing systems instead of spending their efforts on creating the simulation models to verify the design. This paper proposes a method and its tool to navigate the designers through the engineering process and generate the simulation model automatically from the design results. The design agent also supports collaborative design projects among different companies or divisions with distributed engineering and distributed simulation techniques. The idea was implemented and applied to a factory planning process.

  1. The Teaching of Mechanical Engineering Design at UCD, Dublin.

    ERIC Educational Resources Information Center

    Timoney, Seamus

    1988-01-01

    Describes a design course which stresses the identification of talented students and gives them techniques for synthesis. Explains the course requirements, design and manufacturing functions, and product concept. (YP)

  2. Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Chen, Wenjing; Zhang, Qican; Liu, Yuankun; Li, Dahai; Zhou, Xinzhi; Wei, Jun

    2017-08-01

    Common problems faced in optical comprehensive design experiment and going against the Washington Accord are pointed out. For resolving these problems, an instructional and innovative teaching scheme for Optics Comprehensive Design Experiment is proposed. We would like to understand the student that can improve the hands-on practical ability, theory knowledge understanding ability, complex problem solving ability, engineering application ability, cooperative ability after tracking and researching the student who have attended the class about Optical Comprehensive Design Experiment, We found that there are some problems on the course such as the experiment content vague, the student beginning less time, phase separation theory and engineering application, the experiment content lack of selectivity and so on. So we have made some improvements reference to the Washington Accord for the class teaching plan about Optical Comprehensive Design Experiment. This class must relevant to the engineering basic courses, professional foundation course and the major courses, so far as to the future study and work that which can play a role in inheriting and continuity to the students. The Optical Comprehensive Design Experiment teaching program requires students learning this course to have learnt basic courses like analog electronics technique, digital electronic technique, applied optics and computer and other related courses which students are required to comprehensively utilize. This teaching scheme contains six practical complex engineering problems which are respectively optical system design, light energy meter design, illuminometer design, material refractive index measuring system design, light intensity measuring system design and open design. Establishing the optional experiment and open experiment can provide students with a greater choice and enhance the students' creativity, vivid teaching experimental teachers and enriching contents of experiment can make the experiment more interesting, providing students with more opportunities to conduct experiment and improving students' practical ability with long learning time, putting emphasis on student's understanding of complex engineering problems and the cognitive of the process to solve complex engineering problems with actual engineering problems. Applying the scheme in other courses and improving accordingly will be able to ensure the quality of engineering education. Look forward to offering useful reference for the curriculum system construction in colleges and universities.

  3. Engine System Loads Analysis Compared to Hot-Fire Data

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Jennings, John M.; Mims, Katherine; Brunty, Joseph; Christensen, Eric R.; McConnaughey, Paul R. (Technical Monitor)

    2002-01-01

    Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the NASA MC-1 engine program, the focus was to reduce the cost-to-weight ratio. The techniques for structural dynamics analysis practices, were tailored in this program to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of MC-1 load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are important during the design and integration of a new engine system. During the final stages of development, it is important to verify the results of an engine system model to determine the validity of the results. During the final stages of the MC-1 program, hot-fire test results were obtained and compared to the structural design loads calculated by the engine system model. These comparisons are presented in this paper.

  4. Beam modulation: A novel ToF-technique for high resolution diffraction at the Beamline for European Materials Engineering Research (BEER)

    NASA Astrophysics Data System (ADS)

    Rouijaa, M.; Kampmann, R.; Šaroun, J.; Fenske, J.; Beran, P.; Müller, M.; Lukáš, P.; Schreyer, A.

    2018-05-01

    The Beamline for European Materials Engineering Research (BEER) is under construction at the European Spallation Source (ESS) in Lund, Sweden. A basic requirement on BEER is to make best use of the long ESS pulse (2.86 ms) for engineering investigations. High-resolution diffraction, however, demands timing resolution up to 0.1% corresponding to a pulse length down to about 70 μs for the case of thermal neutrons (λ ∼ 1.8 Å). Such timing resolution can be achieved by pulse shaping techniques cutting a short section out of the long pulse, and thus paying for resolution by strong loss of intensity. In contrast to this, BEER proposes a novel operation mode called pulse modulation technique based on a new chopper design, which extracts several short pulses out of the long ESS pulse, and hence leads to a remarkable gain of intensity compared to nowadays existing conventional pulse shaping techniques. The potential of the new technique can be used with full advantage for investigating strains and textures of highly symmetric materials. Due to its instrument design and the high brilliance of the ESS pulse, BEER is expected to become the European flagship for engineering research for strain mapping and texture analysis.

  5. An engineering perspective on 3D printed personalized scaffolds for tracheal suspension technique

    PubMed Central

    An, Jia

    2016-01-01

    3D printing is a large family of many distinct technologies covering a wide range of topics. From an engineering point of view, there should be considerations for selection of design, material, and process when using 3D printing for surgical technique innovation such as personalized scaffolds. Moreover, cost should also be considered if there are equally effective alternatives to the innovation. Furthermore, engineering considerations and options should be clearly communicated and readily available to surgeons for advancement in future. PMID:28149624

  6. An engineering perspective on 3D printed personalized scaffolds for tracheal suspension technique.

    PubMed

    An, Jia; Chua, Chee Kai

    2016-12-01

    3D printing is a large family of many distinct technologies covering a wide range of topics. From an engineering point of view, there should be considerations for selection of design, material, and process when using 3D printing for surgical technique innovation such as personalized scaffolds. Moreover, cost should also be considered if there are equally effective alternatives to the innovation. Furthermore, engineering considerations and options should be clearly communicated and readily available to surgeons for advancement in future.

  7. Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.

  8. New head gradient coil design and construction techniques

    PubMed Central

    Handler, William B; Harris, Chad T; Scholl, Timothy J; Parker, Dennis L; Goodrich, K Craig; Dalrymple, Brian; Van Sass, Frank; Chronik, Blaine A

    2013-01-01

    Purpose To design and build a head insert gradient coil to use in conjunction with body gradients for superior imaging. Materials and Methods The use of the Boundary Element Method to solve for a gradient coil wire pattern on an arbitrary surface has allowed us to incorporate engineering changes into the electromagnetic design of a gradient coil directly. Improved wire pattern design has been combined with robust manufacturing techniques and novel cooling methods. Results The finished coil had an efficiency of 0.15 mT/m/A in all three axes and allowed the imaging region to extend across the entire head and upper part of the neck. Conclusion The ability to adapt your electromagnetic design to necessary changes from an engineering perspective leads to superior coil performance. PMID:24123485

  9. Protein design in systems metabolic engineering for industrial strain development.

    PubMed

    Chen, Zhen; Zeng, An-Ping

    2013-05-01

    Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development and Testing of a High Stability Engine Control (HISTEC) System

    NASA Technical Reports Server (NTRS)

    Orme, John S.; DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Doane, Paul M.

    1998-01-01

    Flight tests were recently completed to demonstrate an inlet-distortion-tolerant engine control system. These flight tests were part of NASA's High Stability Engine Control (HISTEC) program. The objective of the HISTEC program was to design, develop, and flight demonstrate an advanced integrated engine control system that uses measurement-based, real-time estimates of inlet airflow distortion to enhance engine stability. With improved stability and tolerance of inlet airflow distortion, future engine designs may benefit from a reduction in design stall-margin requirements and enhanced reliability, with a corresponding increase in performance and decrease in fuel consumption. This paper describes the HISTEC methodology, presents an aircraft test bed description (including HISTEC-specific modifications) and verification and validation ground tests. Additionally, flight test safety considerations, test plan and technique design and approach, and flight operations are addressed. Some illustrative results are presented to demonstrate the type of analysis and results produced from the flight test program.

  11. A case study on topology optimized design for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Gebisa, A. W.; Lemu, H. G.

    2017-12-01

    Topology optimization is an optimization method that employs mathematical tools to optimize material distribution in a part to be designed. Earlier developments of topology optimization considered conventional manufacturing techniques that have limitations in producing complex geometries. This has hindered the topology optimization efforts not to fully be realized. With the emergence of additive manufacturing (AM) technologies, the technology that builds a part layer upon a layer directly from three dimensional (3D) model data of the part, however, producing complex shape geometry is no longer an issue. Realization of topology optimization through AM provides full design freedom for the design engineers. The article focuses on topologically optimized design approach for additive manufacturing with a case study on lightweight design of jet engine bracket. The study result shows that topology optimization is a powerful design technique to reduce the weight of a product while maintaining the design requirements if additive manufacturing is considered.

  12. Program user's manual for optimizing the design of a liquid or gaseous propellant rocket engine with the automated combustor design code AUTOCOM

    NASA Technical Reports Server (NTRS)

    Reichel, R. H.; Hague, D. S.; Jones, R. T.; Glatt, C. R.

    1973-01-01

    This computer program manual describes in two parts the automated combustor design optimization code AUTOCOM. The program code is written in the FORTRAN 4 language. The input data setup and the program outputs are described, and a sample engine case is discussed. The program structure and programming techniques are also described, along with AUTOCOM program analysis.

  13. 49 CFR 213.305 - Designation of qualified individuals; general qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... college level engineering program, supplemented by special on the job training emphasizing the techniques... of high speed track provided by the employer or by a college level engineering program, supplemented... maintenance of high speed track provided by the employer or by a college level engineering program...

  14. 49 CFR 213.305 - Designation of qualified individuals; general qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... college level engineering program, supplemented by special on the job training emphasizing the techniques... of high speed track provided by the employer or by a college level engineering program, supplemented... maintenance of high speed track provided by the employer or by a college level engineering program...

  15. 49 CFR 213.305 - Designation of qualified individuals; general qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... college level engineering program, supplemented by special on the job training emphasizing the techniques... of high speed track provided by the employer or by a college level engineering program, supplemented... maintenance of high speed track provided by the employer or by a college level engineering program...

  16. Evaluating the Effectiveness of Integrative STEM Education: Teacher and Administrator Professional Development

    ERIC Educational Resources Information Center

    Havice, William; Havice, Pamela; Waugaman, Chelsea; Walker, Kristin

    2018-01-01

    The integration of science, technology, engineering, and mathematics (STEM) education, also referred to as integrative STEM education, is a relatively new interdisciplinary teaching technique that incorporates an engineering design-based learning approach with mathematics, science, technology, and engineering education (Sanders, 2010, 2012, 2013;…

  17. Proceedings of Tenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Papers are presented on the following topics: measurement of software technology, recent studies of the Software Engineering Lab, software management tools, expert systems, error seeding as a program validation technique, software quality assurance, software engineering environments (including knowledge-based environments), the Distributed Computing Design System, and various Ada experiments.

  18. RADC thermal guide for reliability engineers

    NASA Astrophysics Data System (ADS)

    Morrison, G. N.; Kallis, J. M.; Strattan, L. A.; Jones, I. R.; Lena, A. L.

    1982-06-01

    This guide was developed to provide a reliability engineer, who is not proficient in thermal design and analysis techniques, with the tools for managing and evaluating the thermal design and production of electronic equipment. It defines the requirements and tasks that should be addressed in system equipment specifications and statements of work, and describes how to evaluate performance.

  19. Engineering Encounters: Designing Healthy Ice Pops. A STEM Enrichment Project for Second Graders Incorporates Nutrition and Design Principles

    ERIC Educational Resources Information Center

    Bubnick, Laura; Enneking, Katie; Egbers, Julie

    2016-01-01

    Science, technology, engineering, and math (STEM) education piques students' innate curiosity and opens their eyes to hundreds of career possibilities. This column presents ideas and techniques to enhance your science teaching. This month's issue shares information about a STEM enrichment project for second graders that incorporates nutrition and…

  20. The Design of Transportation Equipment in Terms of Human Capabilities. The Role of Engineering Psychology in Transport Safety.

    ERIC Educational Resources Information Center

    McFarland, Ross A.

    Human factors engineering is considered with regard to the design of safety factors for aviation and highway transportation equipment. Current trends and problem areas are identified for jet air transportation and for highway transportation. Suggested solutions to transportation safety problems are developed by applying the techniques of human…

  1. Engineering Analysis of Stresses in Railroad Rails.

    DOT National Transportation Integrated Search

    1981-10-01

    One portion of the Federal Railroad Administration's (FRA) Track Performance Improvement Program is the development of engineering and analytic techniques required for the design and maintenance of railroad track of increased integrity and safety. Un...

  2. An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.

    2007-01-01

    A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs, such as thrust. The engine's performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends on knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined that accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.

  3. An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.

    2007-01-01

    A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs, such as thrust. The engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends on knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined that accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least-squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.

  4. An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.

    2005-01-01

    A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs such as thrust. The engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends upon knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined which accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.

  5. Optimization applications in aircraft engine design and test

    NASA Technical Reports Server (NTRS)

    Pratt, T. K.

    1984-01-01

    Starting with the NASA-sponsored STAEBL program, optimization methods based primarily upon the versatile program COPES/CONMIN were introduced over the past few years to a broad spectrum of engineering problems in structural optimization, engine design, engine test, and more recently, manufacturing processes. By automating design and testing processes, many repetitive and costly trade-off studies have been replaced by optimization procedures. Rather than taking engineers and designers out of the loop, optimization has, in fact, put them more in control by providing sophisticated search techniques. The ultimate decision whether to accept or reject an optimal feasible design still rests with the analyst. Feedback obtained from this decision process has been invaluable since it can be incorporated into the optimization procedure to make it more intelligent. On several occasions, optimization procedures have produced novel designs, such as the nonsymmetric placement of rotor case stiffener rings, not anticipated by engineering designers. In another case, a particularly difficult resonance contraint could not be satisfied using hand iterations for a compressor blade, when the STAEBL program was applied to the problem, a feasible solution was obtained in just two iterations.

  6. Designing Online Courses To Discourage Dishonesty.

    ERIC Educational Resources Information Center

    Christe, Barbara

    2003-01-01

    Presents techniques used within one university's Electrical and Computer Engineering Technology department to develop online courses that discourage student dishonesty, focusing on: academic dishonesty; course design focus area (syllabus design, content presentation, student-teacher relationship, assessment design, and monitoring tools); and…

  7. Genome Engineering and Modification Toward Synthetic Biology for the Production of Antibiotics.

    PubMed

    Zou, Xuan; Wang, Lianrong; Li, Zhiqiang; Luo, Jie; Wang, Yunfu; Deng, Zixin; Du, Shiming; Chen, Shi

    2018-01-01

    Antibiotic production is often governed by large gene clusters composed of genes related to antibiotic scaffold synthesis, tailoring, regulation, and resistance. With the expansion of genome sequencing, a considerable number of antibiotic gene clusters has been isolated and characterized. The emerging genome engineering techniques make it possible towards more efficient engineering of antibiotics. In addition to genomic editing, multiple synthetic biology approaches have been developed for the exploration and improvement of antibiotic natural products. Here, we review the progress in the development of these genome editing techniques used to engineer new antibiotics, focusing on three aspects of genome engineering: direct cloning of large genomic fragments, genome engineering of gene clusters, and regulation of gene cluster expression. This review will not only summarize the current uses of genomic engineering techniques for cloning and assembly of antibiotic gene clusters or for altering antibiotic synthetic pathways but will also provide perspectives on the future directions of rebuilding biological systems for the design of novel antibiotics. © 2017 Wiley Periodicals, Inc.

  8. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2015-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  9. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2014-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  10. Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms

    PubMed Central

    Yahya, Wan Nurlina Wan; Kadri, Nahrizul Adib; Ibrahim, Fatimah

    2014-01-01

    Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP) force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration. PMID:24991941

  11. Photovoltaic power system reliability considerations

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.

    1980-01-01

    This paper describes an example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems. This particular application was for a solar cell power system demonstration project in Tangaye, Upper Volta, Africa. The techniques involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of a fail-safe and planned spare parts engineering philosophy.

  12. Nutrient Control Design Manual

    EPA Science Inventory

    The Nutrient Control Design Manual will present an extensive state-of-the-technology review of the engineering design and operation of nitrogen and phosphorous control technologies and techniques applied at municipal wastewater treatment plants (WWTPs). This manual will present ...

  13. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    PubMed

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016. © 2016 American Institute of Chemical Engineers.

  14. Implementation of In-Situ Impedance Techniques on a Full Scale Aero-Engine System

    NASA Technical Reports Server (NTRS)

    Gaeta, R. J.; Mendoza, J. M.; Jones, M. G.

    2007-01-01

    Determination of acoustic liner impedance for jet engine applications remains a challenge for the designer. Although suitable models have been developed that take account of source amplitude and the local flow environment experienced by the liner, experimental validation of these models has been difficult. This is primarily due to the inability of researchers to faithfully mimic the environment in jet engine nacelles in the laboratory. An in-situ measurement technique, one that can be implemented in an actual engine, is desirable so an accurate impedance can be determined for future modeling and quality control. This paper documents the implementation of such a local acoustic impedance measurement technique that is used under controlled laboratory conditions as well as on full scale turbine engine liner test article. The objective for these series of in-situ measurements is to substantiate treatment design, provide understanding of flow effects on installed liner performance, and provide modeling input for fan noise propagation computations. A series of acoustic liner evaluation tests are performed that includes normal incidence tube, grazing incidence tube, and finally testing on a full scale engine on a static test stand. Lab tests were intended to provide insight and guidance for accurately measuring the impedance of the liner housed in the inlet of a Honeywell Tech7000 turbofan. Results have shown that one can acquire very reasonable liner impedance data for a full scale engine under realistic test conditions. Furthermore, higher fidelity results can be obtained by using a three-microphone coherence technique that can enhance signal-to-noise ratio at high engine power settings. This research has also confirmed the limitations of this particular type of in-situ measurement. This is most evident in the installation of instrumentation and its effect on what is being measured.

  15. Aeropropulsion 1979. [conferences

    NASA Technical Reports Server (NTRS)

    1979-01-01

    State of the art technology in aeronautical propulsion is assessed. Noise and air pollution control techniques, advances in supersonic propulsion for transport aircraft, and composite materials and structures for reliable engine components are covered along with engine design for improved fuel consumption.

  16. Alternatives for jet engine control

    NASA Technical Reports Server (NTRS)

    Leake, R. J.; Sain, M. K.

    1978-01-01

    General goals of the research were classified into two categories. The first category involves the use of modern multivariable frequency domain methods for control of engine models in the neighborhood of a quiescent point. The second category involves the use of nonlinear modelling and optimization techniques for control of engine models over a more extensive part of the flight envelope. In the frequency domain category, works were published in the areas of low-interaction design, polynomial design, and multiple setpoint studies. A number of these ideas progressed to the point at which they are starting to attract practical interest. In the nonlinear category, advances were made both in engine modelling and in the details associated with software for determination of time optimal controls. Nonlinear models for a two spool turbofan engine were expanded and refined; and a promising new approach to automatic model generation was placed under study. A two time scale scheme was developed to do two-dimensional dynamic programming, and an outward spiral sweep technique has greatly speeded convergence times in time optimal calculations.

  17. High-speed engine/component performance assessment using exergy and thrust-based methods

    NASA Technical Reports Server (NTRS)

    Riggins, D. W.

    1996-01-01

    This investigation summarizes a comparative study of two high-speed engine performance assessment techniques based on energy (available work) and thrust-potential (thrust availability). Simple flow-fields utilizing Rayleigh heat addition and one-dimensional flow with friction are used to demonstrate the fundamental inability of conventional energy techniques to predict engine component performance, aid in component design, or accurately assess flow losses. The use of the thrust-based method on these same examples demonstrates its ability to yield useful information in all these categories. Energy and thrust are related and discussed from the stand-point of their fundamental thermodynamic and fluid dynamic definitions in order to explain the differences in information obtained using the two methods. The conventional definition of energy is shown to include work which is inherently unavailable to an aerospace Brayton engine. An engine-based energy is then developed which accurately accounts for this inherently unavailable work; performance parameters based on this quantity are then shown to yield design and loss information equivalent to the thrust-based method.

  18. Solid Free-form Fabrication Technology and Its Application to Bone Tissue Engineering

    PubMed Central

    Lee, Jin Woo; Kim, Jong Young; Cho, Dong-Woo

    2010-01-01

    The development of scaffolds for use in cell-based therapies to repair damaged bone tissue has become a critical component in the field of bone tissue engineering. However, design of scaffolds using conventional fabrication techniques has limited further advancement, due to a lack of the required precision and reproducibility. To overcome these constraints, bone tissue engineers have focused on solid free-form fabrication (SFF) techniques to generate porous, fully interconnected scaffolds for bone tissue engineering applications. This paper reviews the potential application of SFF fabrication technologies for bone tissue engineering with respect to scaffold fabrication. In the near future, bone scaffolds made using SFF apparatus should become effective therapies for bone defects. PMID:24855546

  19. Design of three-dimensional scramjet inlets for hypersonic propulsion

    NASA Technical Reports Server (NTRS)

    Simmons, J. M.; Weidner, E. H.

    1986-01-01

    The paper outlines an approach to the design of three-dimensional inlets for scramjet engines. The basis of the techniques used is the method of streamline tracing through an inviscid axisymmetric flow field. A technique is described for making a smooth change of cross-section shape from rectangular to circular. A feature is the considerable use of computer-graphics to provide a 'user-oriented' procedure which can produce promising design configurations for subsequent analysis with CFD codes. An example is given to demonstrate the capabilities of the design techniques.

  20. A hydrogen-oxygen rocket engine coolant passage design program (RECOP) for fluid-cooled thrust chambers and nozzles

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.

    1994-01-01

    The design of coolant passages in regeneratively cooled thrust chambers is critical to the operation and safety of a rocket engine system. Designing a coolant passage is a complex thermal and hydraulic problem requiring an accurate understanding of the heat transfer between the combustion gas and the coolant. Every major rocket engine company has invested in the development of thrust chamber computer design and analysis tools; two examples are Rocketdyne's REGEN code and Aerojet's ELES program. In an effort to augment current design capabilities for government and industry, the NASA Lewis Research Center is developing a computer model to design coolant passages for advanced regeneratively cooled thrust chambers. The RECOP code incorporates state-of-the-art correlations, numerical techniques and design methods, certainly minimum requirements for generating optimum designs of future space chemical engines. A preliminary version of the RECOP model was recently completed and code validation work is in progress. This paper introduces major features of RECOP and compares the analysis to design points for the first test case engine; the Pratt & Whitney RL10A-3-3A thrust chamber.

  1. Design Approaches to Myocardial and Vascular Tissue Engineering.

    PubMed

    Akintewe, Olukemi O; Roberts, Erin G; Rim, Nae-Gyune; Ferguson, Michael A H; Wong, Joyce Y

    2017-06-21

    Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues. Because the ultimate solution to engineered tissue vascularization will require collaboration between wide-ranging disciplines such as developmental biology, tissue engineering, and computational modeling, we explore contributions from each field.

  2. Adaptation of aeronautical engines to high altitude flying

    NASA Technical Reports Server (NTRS)

    Kutzbach, K

    1923-01-01

    Issues and techniques relative to the adaptation of aircraft engines to high altitude flight are discussed. Covered here are the limits of engine output, modifications and characteristics of high altitude engines, the influence of air density on the proportions of fuel mixtures, methods of varying the proportions of fuel mixtures, the automatic prevention of fuel waste, and the design and application of air pressure regulators to high altitude flying. Summary: 1. Limits of engine output. 2. High altitude engines. 3. Influence of air density on proportions of mixture. 4. Methods of varying proportions of mixture. 5. Automatic prevention of fuel waste. 6. Design and application of air pressure regulators to high altitude flying.

  3. Performance of a Turboprop Engine with Heat Recovery in Off-Design Conditions

    NASA Astrophysics Data System (ADS)

    Andriani, Roberto; Ghezzi, Umberto; Gamma, Fausto; Ingenito, Antonella; Agresta, Antonio

    2013-09-01

    The research for fuel consumption and pollution reduction in new generation aero engines has indicated intercooling and regeneration as very effective methods for this purpose. Hence, different countries have joined their efforts in common research programs, to develop new gas turbine engines able to reduce considerably the fuel consumption and the ambient impact by means of these two techniques. To study their effects on the engine performance and characteristics, a thermodynamic numerical program that simulates the behavior of a turboprop engine with intercooling and regeneration in different operating conditions has been developed. After the parametric study, and the definition of the design conditions, the off-design analysis is carried on, comparing the main characteristics of the intercooled-regenerated turboprop with those of a conventional engine. Then, once a particular mission profile was fixed, the engine performance, in particular the equivalent power, the fuel consumption and the heat exchanger weight were discussed.

  4. Hierarchical Modeling and Robust Synthesis for the Preliminary Design of Large Scale Complex Systems

    NASA Technical Reports Server (NTRS)

    Koch, Patrick N.

    1997-01-01

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis; Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration; and Noise modeling techniques for implementing robust preliminary design when approximate models are employed. Hierarchical partitioning and modeling techniques including intermediate responses, linking variables, and compatibility constraints are incorporated within a hierarchical compromise decision support problem formulation for synthesizing subproblem solutions for a partitioned system. Experimentation and approximation techniques are employed for concurrent investigations and modeling of partitioned subproblems. A modified composite experiment is introduced for fitting better predictive models across the ranges of the factors, and an approach for constructing partitioned response surfaces is developed to reduce the computational expense of experimentation for fitting models in a large number of factors. Noise modeling techniques are compared and recommendations are offered for the implementation of robust design when approximate models are sought. These techniques, approaches, and recommendations are incorporated within the method developed for hierarchical robust preliminary design exploration. This method as well as the associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system. The case study is developed in collaboration with Allison Engine Company, Rolls Royce Aerospace, and is based on the Allison AE3007 existing engine designed for midsize commercial, regional business jets. For this case study, the turbofan system-level problem is partitioned into engine cycle design and configuration design and a compressor modules integrated for more detailed subsystem-level design exploration, improving system evaluation. The fan and low pressure turbine subsystems are also modeled, but in less detail. Given the defined partitioning, these subproblems are investigated independently and concurrently, and response surface models are constructed to approximate the responses of each. These response models are then incorporated within a commercial turbofan hierarchical compromise decision support problem formulation. Five design scenarios are investigated, and robust solutions are identified. The method and solutions identified are verified by comparison with the AE3007 engine. The solutions obtained are similar to the AE3007 cycle and configuration, but are better with respect to many of the requirements.

  5. TF34 convertible engine control system design

    NASA Technical Reports Server (NTRS)

    Gilmore, D. R., Jr.

    1984-01-01

    The characteristics of the TF34 convertible engine, capable of producing shaft power, thrust, or a combination of both, is investigated with respect to the control system design, development, bench testing, and the anticipated transient response during engine testing at NASA. The modifications to the prototype standard TF34-GE-400 turbofan, made primarily in the fan section, consist of the variable inlet guide vanes and variable exit guide vanes. The control system was designed using classical frequency domain techniques and was based on the anticipated convertible/VTOL airframe requirements. The engine has been run in the fan mode and in the shaft mode, exhibiting a response of 0.14 second to a 5-percent thrust change.

  6. EGADS: A microcomputer program for estimating the aerodynamic performance of general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Melton, John E.

    1994-01-01

    EGADS is a comprehensive preliminary design tool for estimating the performance of light, single-engine general aviation aircraft. The software runs on the Apple Macintosh series of personal computers and assists amateur designers and aeronautical engineering students in performing the many repetitive calculations required in the aircraft design process. The program makes full use of the mouse and standard Macintosh interface techniques to simplify the input of various design parameters. Extensive graphics, plotting, and text output capabilities are also included.

  7. Advanced Computational Techniques for Power Tube Design.

    DTIC Science & Technology

    1986-07-01

    fixturing applications, in addition to the existing computer-aided engineering capabilities. o Helix TWT Manufacturing has Implemented a tooling and fixturing...illustrates the ajor features of this computer network. ) The backbone of our system is a Sytek Broadband Network (LAN) which Interconnects terminals and...automatic network analyzer (FANA) which electrically characterizes the slow-wave helices of traveling-wave tubes ( TWTs ) -- both for engineering design

  8. From Brainstorming to C-Sketch to Principles of Historical Innovators: Ideation Techniques to Enhance Student Creativity

    ERIC Educational Resources Information Center

    White, Christina; Wood, Kristin; Jensen, Dan

    2012-01-01

    The heart and soul of engineering is innovation and our ability to improve the human condition through design. To enrich engineering education, it is critical that we advance our teaching in innovation and design processes. This research focuses on the ideation component of innovation through the investigation of a suite of concept generation…

  9. Assessing an Entrepreneurship Education Project in Engineering Studies by Means of Participatory Techniques

    ERIC Educational Resources Information Center

    Ortiz-Medina, Leovigilda; Fernández-Ahumada, Elvira; Lara-Vélez, Pablo; Garrido-Varo, Ana; Pérez-Marin, Dolores; Guerrero-Ginel, José Emilio

    2014-01-01

    The new imperatives of the knowledge-based society require engineering students to equip themselves with a broad range of skills, among which entrepreneurship plays a critical role. An academic itinerary was designed with the explicit aim of improving the entrepreneurial attitudes of agricultural engineering students in a state university in…

  10. Computer Programming Languages and Expertise Needed by Practicing Engineers.

    ERIC Educational Resources Information Center

    Doelling, Irvin

    1980-01-01

    Discussed is the present engineering computer environment of a large aerospace company recognized as a leader in the application and development of computer-aided design and computer-aided manufacturing techniques. A review is given of the exposure spectrum of engineers to the world of computing, the computer languages used, and the career impacts…

  11. Research and Exploration for Operational Research Education in Industry and Engineering Subject

    ERIC Educational Resources Information Center

    Wu, Yu-hua; Wang, Feng-ming; Du, Gang

    2007-01-01

    On the basic of exploring the relationship of industry engineering and operational research technique, the thesis analyzes the location and utility of the operational research education in the whole industry engineering subject education. It brings forward the system design about operational research and relative class among industry engineering…

  12. Simulation reduction using the Taguchi method

    NASA Technical Reports Server (NTRS)

    Mistree, Farrokh; Lautenschlager, Ume; Erikstad, Stein Owe; Allen, Janet K.

    1993-01-01

    A large amount of engineering effort is consumed in conducting experiments to obtain information needed for making design decisions. Efficiency in generating such information is the key to meeting market windows, keeping development and manufacturing costs low, and having high-quality products. The principal focus of this project is to develop and implement applications of Taguchi's quality engineering techniques. In particular, we show how these techniques are applied to reduce the number of experiments for trajectory simulation of the LifeSat space vehicle. Orthogonal arrays are used to study many parameters simultaneously with a minimum of time and resources. Taguchi's signal to noise ratio is being employed to measure quality. A compromise Decision Support Problem and Robust Design are applied to demonstrate how quality is designed into a product in the early stages of designing.

  13. Design and Implementation of High-Performance GIS Dynamic Objects Rendering Engine

    NASA Astrophysics Data System (ADS)

    Zhong, Y.; Wang, S.; Li, R.; Yun, W.; Song, G.

    2017-12-01

    Spatio-temporal dynamic visualization is more vivid than static visualization. It important to use dynamic visualization techniques to reveal the variation process and trend vividly and comprehensively for the geographical phenomenon. To deal with challenges caused by dynamic visualization of both 2D and 3D spatial dynamic targets, especially for different spatial data types require high-performance GIS dynamic objects rendering engine. The main approach for improving the rendering engine with vast dynamic targets relies on key technologies of high-performance GIS, including memory computing, parallel computing, GPU computing and high-performance algorisms. In this study, high-performance GIS dynamic objects rendering engine is designed and implemented for solving the problem based on hybrid accelerative techniques. The high-performance GIS rendering engine contains GPU computing, OpenGL technology, and high-performance algorism with the advantage of 64-bit memory computing. It processes 2D, 3D dynamic target data efficiently and runs smoothly with vast dynamic target data. The prototype system of high-performance GIS dynamic objects rendering engine is developed based SuperMap GIS iObjects. The experiments are designed for large-scale spatial data visualization, the results showed that the high-performance GIS dynamic objects rendering engine have the advantage of high performance. Rendering two-dimensional and three-dimensional dynamic objects achieve 20 times faster on GPU than on CPU.

  14. The application of LQR synthesis techniques to the turboshaft engine control problem

    NASA Technical Reports Server (NTRS)

    Pfeil, W. H.; De Los Reyes, G.; Bobula, G. A.

    1984-01-01

    A power turbine governor was designed for a recent-technology turboshaft engine coupled to a modern, articulated rotor system using Linear Quadratic Regulator (LQR) and Kalman Filter (KF) techniques. A linear, state-space model of the engine and rotor system was derived for six engine power settings from flight idle to maximum continuous. An integrator was appended to the fuel flow input to reduce the steady-state governor error to zero. Feedback gains were calculated for the system states at each power setting using the LQR technique. The main rotor tip speed state is not measurable, so a Kalman Filter of the rotor was used to estimate this state. The crossover of the system was increased to 10 rad/s compared to 2 rad/sec for a current governor. Initial computer simulations with a nonlinear engine model indicate a significant decrease in power turbine speed variation with the LQR governor compared to a conventional governor.

  15. A novel technique for presurgical nasoalveolar molding using computer-aided reverse engineering and rapid prototyping.

    PubMed

    Yu, Quan; Gong, Xin; Wang, Guo-Min; Yu, Zhe-Yuan; Qian, Yu-Fen; Shen, Gang

    2011-01-01

    To establish a new method of presurgical nasoalveolar molding (NAM) using computer-aided reverse engineering and rapid prototyping technique in infants with unilateral cleft lip and palate (UCLP). Five infants (2 males and 3 females with mean age of 1.2 w) with complete UCLP were recruited. All patients were subjected to NAM before the cleft lip repair. The upper denture casts were recorded using a three-dimensional laser scanner within 2 weeks after birth in UCLP infants. A digital model was constructed and analyzed to simulate the NAM procedure with reverse engineering software. The digital geometrical data were exported to print the solid model with rapid prototyping system. The whole set of appliances was fabricated based on these solid models. Laser scanning and digital model construction simplified the NAM procedure and estimated the treatment objective. The appliances were fabricated based on the rapid prototyping technique, and for each patient, the complete set of appliances could be obtained at one time. By the end of presurgical NAM treatment, the cleft was narrowed, and the malformation of nasoalveolar segments was aligned normally. We have developed a novel technique of presurgical NAM based on a computer-aided design. The accurate digital denture model of UCLP infants could be obtained with laser scanning. The treatment design and appliance fabrication could be simplified with a computer-aided reverse engineering and rapid prototyping technique.

  16. Visual communication of engineering and scientific data in the courtroom

    NASA Astrophysics Data System (ADS)

    Jackson, Gerald W.; Henry, Andrew C.

    1993-01-01

    Presenting engineering and scientific information in the courtroom is challenging. Quite often the data is voluminous and, therefore, difficult to digest by engineering experts, let alone a lay judge, lawyer, or jury. This paper discusses computer visualization techniques designed to provide the court methods of communicating data in visual formats thus allowing a more accurate understanding of complicated concepts and results. Examples are presented that include accident reconstructions, technical concept illustration, and engineering data visualization. Also presented is the design of an electronic courtroom which facilitates the display and communication of information to the courtroom.

  17. Application of Function-Failure Similarity Method to Rotorcraft Component Design

    NASA Technical Reports Server (NTRS)

    Roberts, Rory A.; Stone, Robert E.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Performance and safety are the top concerns of high-risk aerospace applications at NASA. Eliminating or reducing performance and safety problems can be achieved with a thorough understanding of potential failure modes in the designs that lead to these problems. The majority of techniques use prior knowledge and experience as well as Failure Modes and Effects as methods to determine potential failure modes of aircraft. During the design of aircraft, a general technique is needed to ensure that every potential failure mode is considered, while avoiding spending time on improbable failure modes. In this work, this is accomplished by mapping failure modes to specific components, which are described by their functionality. The failure modes are then linked to the basic functions that are carried within the components of the aircraft. Using this technique, designers can examine the basic functions, and select appropriate analyses to eliminate or design out the potential failure modes. The fundamentals of this method were previously introduced for a simple rotating machine test rig with basic functions that are common to a rotorcraft. In this paper, this technique is applied to the engine and power train of a rotorcraft, using failures and functions obtained from accident reports and engineering drawings.

  18. Space vehicle engine and heat shield environment review. Volume 1: Engineering analysis

    NASA Technical Reports Server (NTRS)

    Mcanelly, W. B.; Young, C. T. K.

    1973-01-01

    Methods for predicting the base heating characteristics of a multiple rocket engine installation are discussed. The environmental data is applied to the design of adequate protection system for the engine components. The methods for predicting the base region thermal environment are categorized as: (1) scale model testing, (2) extrapolation of previous and related flight test results, and (3) semiempirical analytical techniques.

  19. Expert vs. novice: Problem decomposition/recomposition in engineering design

    NASA Astrophysics Data System (ADS)

    Song, Ting

    The purpose of this research was to investigate the differences of using problem decomposition and problem recomposition among dyads of engineering experts, dyads of engineering seniors, and dyads of engineering freshmen. Fifty participants took part in this study. Ten were engineering design experts, 20 were engineering seniors, and 20 were engineering freshmen. Participants worked in dyads to complete an engineering design challenge within an hour. The entire design process was video and audio recorded. After the design session, members participated in a group interview. This study used protocol analysis as the methodology. Video and audio data were transcribed, segmented, and coded. Two coding systems including the FBS ontology and "levels of the problem" were used in this study. A series of statistical techniques were used to analyze data. Interview data and participants' design sketches also worked as supplemental data to help answer the research questions. By analyzing the quantitative and qualitative data, it was found that students used less problem decomposition and problem recomposition than engineer experts in engineering design. This result implies that engineering education should place more importance on teaching problem decomposition and problem recomposition. Students were found to spend less cognitive effort when considering the problem as a whole and interactions between subsystems than engineer experts. In addition, students were also found to spend more cognitive effort when considering details of subsystems. These results showed that students tended to use dept-first decomposition and experts tended to use breadth-first decomposition in engineering design. The use of Function (F), Behavior (B), and Structure (S) among engineering experts, engineering seniors, and engineering freshmen was compared on three levels. Level 1 represents designers consider the problem as an integral whole, Level 2 represents designers consider interactions between subsystems, and Level 3 represents designers consider details of subsystems. The results showed that students used more S on Level 1 and 3 but they used less F on Level 1 than engineering experts. The results imply that engineering curriculum should improve the teaching of problem definition in engineering design because students need to understand the problem before solving it.

  20. Teaching ethics to engineers: ethical decision making parallels the engineering design process.

    PubMed

    Bero, Bridget; Kuhlman, Alana

    2011-09-01

    In order to fulfill ABET requirements, Northern Arizona University's Civil and Environmental engineering programs incorporate professional ethics in several of its engineering courses. This paper discusses an ethics module in a 3rd year engineering design course that focuses on the design process and technical writing. Engineering students early in their student careers generally possess good black/white critical thinking skills on technical issues. Engineering design is the first time students are exposed to "grey" or multiple possible solution technical problems. To identify and solve these problems, the engineering design process is used. Ethical problems are also "grey" problems and present similar challenges to students. Students need a practical tool for solving these ethical problems. The step-wise engineering design process was used as a model to demonstrate a similar process for ethical situations. The ethical decision making process of Martin and Schinzinger was adapted for parallelism to the design process and presented to students as a step-wise technique for identification of the pertinent ethical issues, relevant moral theories, possible outcomes and a final decision. Students had greatest difficulty identifying the broader, global issues presented in an ethical situation, but by the end of the module, were better able to not only identify the broader issues, but also to more comprehensively assess specific issues, generate solutions and a desired response to the issue.

  1. Large-Scale Bi-Level Strain Design Approaches and Mixed-Integer Programming Solution Techniques

    PubMed Central

    Kim, Joonhoon; Reed, Jennifer L.; Maravelias, Christos T.

    2011-01-01

    The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering. PMID:21949695

  2. Large-scale bi-level strain design approaches and mixed-integer programming solution techniques.

    PubMed

    Kim, Joonhoon; Reed, Jennifer L; Maravelias, Christos T

    2011-01-01

    The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering.

  3. A system approach to aircraft optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1991-01-01

    Mutual couplings among the mathematical models of physical phenomena and parts of a system such as an aircraft complicate the design process because each contemplated design change may have a far reaching consequence throughout the system. Techniques are outlined for computing these influences as system design derivatives useful for both judgemental and formal optimization purposes. The techniques facilitate decomposition of the design process into smaller, more manageable tasks and they form a methodology that can easily fit into existing engineering organizations and incorporate their design tools.

  4. Acoustic design of the QCSEE propulsion systems

    NASA Technical Reports Server (NTRS)

    Loeffler, I. J.; Smith, E. B.; Sowers, H. D.

    1976-01-01

    Acoustic design features and techniques employed in the Quiet Clean Short-Haul Experimental Engine (QCSEE) Program are described. The role of jet/flap noise in selecting the engine fan pressure ratio for powered lift propulsion systems is discussed. The QCSEE acoustic design features include a hybrid inlet (near-sonic throat velocity with acoustic treatment); low fan and core pressure ratios; low fan tip speeds; gear-driven fans; high and low frequency stacked core noise treatment; multiple-thickness treatment; bulk absorber treatment; and treatment on the stator vanes. The QCSEE designs represent and anticipated acoustic technology improvement of 12 to 16 PNdb relative to the noise levels of the low-noise engines used on current wide-body commercial jet transport aircraft.

  5. Space Software for Automotive Design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    John Thousand of Wolverine Western Corp. put his aerospace group to work on an unfamiliar job, designing a brake drum using computer design techniques. Computer design involves creation of a mathematical model of a product and analyzing its effectiveness in simulated operation. Technique enables study of performance and structural behavior of a number of different designs before settling on a final configuration. Wolverine employees attacked a traditional brake drum problem, the sudden buildup of heat during fast and repeated braking. Part of brake drum not confined tends to change its shape under combination of heat, physical pressure and rotational forces, a condition known as bellmouthing. Since bellmouthing is a major factor in braking effectiveness, a solution of problem would be a major advance in automotive engineering. A former NASA employee, now a Wolverine employee, knew of a series of NASA computer programs ideally suited to confronting bellmouthing. Originally developed as aids to rocket engine nozzle design, it's capable of analyzing problems generated in a rocket engine or automotive brake drum by heat, expansion, pressure and rotational forces. Use of these computer programs led to new brake drum concept featuring a more durable axle, and heat transfer ribs, or fins, on hub of drum.

  6. Advanced online control mode selection for gas turbine aircraft engines

    NASA Astrophysics Data System (ADS)

    Wiseman, Matthew William

    The modern gas turbine aircraft engine is a complex, highly nonlinear system the operates in a widely varying environment. Traditional engine control techniques based on the hydro mechanical control concepts of early turbojet engines are unable to deliver the performance required from today's advanced engine designs. A new type of advanced control utilizing multiple control modes and an online mode selector is investigated, and various strategies for improving the baseline mode selection architecture are introduced. The ability to five-tune actuator command outputs is added to the basic mode selection and blending process, and mode selection designs that we valid for the entire flight envelope are presented. Methods for optimizing the mode selector to improve overall engine performance are also discussed. Finally, using flight test data from a GE F110-powered F16 aircraft, the full-envelope mode selector designs are validated and shown to provide significant performance benefits. Specifically, thrust command tracking is enhanced while critical engine limits are protected, with very little impact on engine efficiency.

  7. Design of an expert-system flight status monitor

    NASA Technical Reports Server (NTRS)

    Regenie, V. A.; Duke, E. L.

    1985-01-01

    The modern advanced avionics in new high-performance aircraft strains the capability of current technology to safely monitor these systems for flight test prior to their generalized use. New techniques are needed to improve the ability of systems engineers to understand and analyze complex systems in the limited time available during crucial periods of the flight test. The Dryden Flight Research Facility of NASA's Ames Research Center is involved in the design and implementation of an expert system to provide expertise and knowledge to aid the flight systems engineer. The need for new techniques in monitoring flight systems and the conceptual design of an expert-system flight status monitor is discussed. The status of the current project and its goals are described.

  8. Optimizing spacecraft design - optimization engine development : progress and plans

    NASA Technical Reports Server (NTRS)

    Cornford, Steven L.; Feather, Martin S.; Dunphy, Julia R; Salcedo, Jose; Menzies, Tim

    2003-01-01

    At JPL and NASA, a process has been developed to perform life cycle risk management. This process requires users to identify: goals and objectives to be achieved (and their relative priorities), the various risks to achieving those goals and objectives, and options for risk mitigation (prevention, detection ahead of time, and alleviation). Risks are broadly defined to include the risk of failing to design a system with adequate performance, compatibility and robustness in addition to more traditional implementation and operational risks. The options for mitigating these different kinds of risks can include architectural and design choices, technology plans and technology back-up options, test-bed and simulation options, engineering models and hardware/software development techniques and other more traditional risk reduction techniques.

  9. Intelligent Agents for Design and Synthesis Environments: My Summary

    NASA Technical Reports Server (NTRS)

    Norvig, Peter

    1999-01-01

    This presentation gives a summary of intelligent agents for design synthesis environments. We'll start with the conclusions, and work backwards to justify them. First, an important assumption is that agents (whatever they are) are good for software engineering. This is especially true for software that operates in an uncertain, changing environment. The "real world" of physical artifacts is like that: uncertain in what we can measure, changing in that things are always breaking down, and we must interact with non-software entities. The second point is that software engineering techniques can contribute to good design. There may have been a time when we wanted to build simple artifacts containing little or no software. But modern aircraft and spacecraft are complex, and rely on a great deal of software. So better software engineering leads to better designed artifacts, especially when we are designing a series of related artifacts and can amortize the costs of software development. The third point is that agents are especially useful for design tasks, above and beyond their general usefulness for software engineering, and the usefulness of software engineering to design.

  10. Numerical methods for engine-airframe integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, S.N.B.; Paynter, G.C.

    1986-01-01

    Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison ofmore » full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment.« less

  11. Biocatalysts: application and engineering for industrial purposes.

    PubMed

    Jemli, Sonia; Ayadi-Zouari, Dorra; Hlima, Hajer Ben; Bejar, Samir

    2016-01-01

    Enzymes are widely applied in various industrial applications and processes, including the food and beverage, animal feed, textile, detergent and medical industries. Enzymes screened from natural origins are often engineered before entering the market place because their native forms do not meet the requirements for industrial application. Protein engineering is concerned with the design and construction of novel enzymes with tailored functional properties, including stability, catalytic activity, reaction product inhibition and substrate specificity. Two broad approaches have been used for enzyme engineering, namely, rational design and directed evolution. The powerful and revolutionary techniques so far developed for protein engineering provide excellent opportunities for the design of industrial enzymes with specific properties and production of high-value products at lower production costs. The present review seeks to highlight the major fields of enzyme application and to provide an updated overview on previous protein engineering studies wherein natural enzymes were modified to meet the operational conditions required for industrial application.

  12. Preliminary Component Integration Using Rapid Prototyping Techniques

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Salvail, Pat; Gordon, Gail (Technical Monitor)

    2001-01-01

    Rapid prototyping is a very important tool that should be used by both design and manufacturing disciplines during the development of elements for the aerospace industry. It helps prevent lack of adequate communication between design and manufacturing engineers (which could lead to costly errors) through mutual consideration of functional models generated from drawings. Rapid prototyping techniques are used to test hardware for design and material compatibility at Marshall Space Flight Center.

  13. Optimization of scaffold design for bone tissue engineering: A computational and experimental study.

    PubMed

    Dias, Marta R; Guedes, José M; Flanagan, Colleen L; Hollister, Scott J; Fernandes, Paulo R

    2014-04-01

    In bone tissue engineering, the scaffold has not only to allow the diffusion of cells, nutrients and oxygen but also provide adequate mechanical support. One way to ensure the scaffold has the right properties is to use computational tools to design such a scaffold coupled with additive manufacturing to build the scaffolds to the resulting optimized design specifications. In this study a topology optimization algorithm is proposed as a technique to design scaffolds that meet specific requirements for mass transport and mechanical load bearing. Several micro-structures obtained computationally are presented. Designed scaffolds were then built using selective laser sintering and the actual features of the fabricated scaffolds were measured and compared to the designed values. It was possible to obtain scaffolds with an internal geometry that reasonably matched the computational design (within 14% of porosity target, 40% for strut size and 55% for throat size in the building direction and 15% for strut size and 17% for throat size perpendicular to the building direction). These results support the use of these kind of computational algorithms to design optimized scaffolds with specific target properties and confirm the value of these techniques for bone tissue engineering. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Principles of Biomimetic Vascular Network Design Applied to a Tissue-Engineered Liver Scaffold

    PubMed Central

    Hoganson, David M.; Pryor, Howard I.; Spool, Ira D.; Burns, Owen H.; Gilmore, J. Randall

    2010-01-01

    Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow. PMID:20001254

  15. Principles of biomimetic vascular network design applied to a tissue-engineered liver scaffold.

    PubMed

    Hoganson, David M; Pryor, Howard I; Spool, Ira D; Burns, Owen H; Gilmore, J Randall; Vacanti, Joseph P

    2010-05-01

    Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow.

  16. Embedded systems engineering for products and services design.

    PubMed

    Ahram, Tareq Z; Karwowski, Waldemar; Soares, Marcelo M

    2012-01-01

    Systems engineering (SE) professionals strive to develop new techniques to enhance the value of contributions to multidisciplinary smart product design teams. Products and services designers challenge themselves to search beyond the traditional design concept of addressing the physical, social, and cognitive factors. This paper covers the application of embedded user-centered systems engineering design practices into work processes based on the ISO 13407 framework [20] to support smart systems and services design and development. As practitioners collaborate to investigate alternative smart product designs, they concentrate on creating valuable products which will enhance positive interaction. This paper capitalizes on the need to follow a user-centered SE approach to smart products design [4, 22]. Products and systems intelligence should embrace a positive approach to user-centered design while improving our understanding of usable value-adding, experience and extending our knowledge of what inspires others to design enjoyable services and products.

  17. Sensor Data Qualification Technique Applied to Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Simon, Donald L.

    2013-01-01

    This paper applies a previously developed sensor data qualification technique to a commercial aircraft engine simulation known as the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k). The sensor data qualification technique is designed to detect, isolate, and accommodate faulty sensor measurements. It features sensor networks, which group various sensors together and relies on an empirically derived analytical model to relate the sensor measurements. Relationships between all member sensors of the network are analyzed to detect and isolate any faulty sensor within the network.

  18. NASA Space Engineering Research Center for VLSI systems design

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design.

  19. A technique for integrating engine cycle and aircraft configuration optimization

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A.

    1994-01-01

    A method for conceptual aircraft design that incorporates the optimization of major engine design variables for a variety of cycle types was developed. The methodology should improve the lengthy screening process currently involved in selecting an appropriate engine cycle for a given application or mission. The new capability will allow environmental concerns such as airport noise and emissions to be addressed early in the design process. The ability to rapidly perform optimization and parametric variations using both engine cycle and aircraft design variables, and to see the impact on the aircraft, should provide insight and guidance for more detailed studies. A brief description of the aircraft performance and mission analysis program and the engine cycle analysis program that were used is given. A new method of predicting propulsion system weight and dimensions using thermodynamic cycle data, preliminary design, and semi-empirical techniques is introduced. Propulsion system performance and weights data generated by the program are compared with industry data and data generated using well established codes. The ability of the optimization techniques to locate an optimum is demonstrated and some of the problems that had to be solved to accomplish this are illustrated. Results from the application of the program to the analysis of three supersonic transport concepts installed with mixed flow turbofans are presented. The results from the application to a Mach 2.4, 5000 n.mi. transport indicate that the optimum bypass ratio is near 0.45 with less than 1 percent variation in minimum gross weight for bypass ratios ranging from 0.3 to 0.6. In the final application of the program, a low sonic boom fix a takeoff gross weight concept that would fly at Mach 2.0 overwater and at Mach 1.6 overland is compared with a baseline concept of the same takeoff gross weight that would fly Mach 2.4 overwater and subsonically overland. The results indicate that for the design mission, the low boom concept has a 5 percent total range penalty relative to the baseline. Additional cycles were optimized for various design overland distances and the effect of flying off-design overland distances is illustrated.

  20. On the Use of Statistics in Design and the Implications for Deterministic Computer Experiments

    NASA Technical Reports Server (NTRS)

    Simpson, Timothy W.; Peplinski, Jesse; Koch, Patrick N.; Allen, Janet K.

    1997-01-01

    Perhaps the most prevalent use of statistics in engineering design is through Taguchi's parameter and robust design -- using orthogonal arrays to compute signal-to-noise ratios in a process of design improvement. In our view, however, there is an equally exciting use of statistics in design that could become just as prevalent: it is the concept of metamodeling whereby statistical models are built to approximate detailed computer analysis codes. Although computers continue to get faster, analysis codes always seem to keep pace so that their computational time remains non-trivial. Through metamodeling, approximations of these codes are built that are orders of magnitude cheaper to run. These metamodels can then be linked to optimization routines for fast analysis, or they can serve as a bridge for integrating analysis codes across different domains. In this paper we first review metamodeling techniques that encompass design of experiments, response surface methodology, Taguchi methods, neural networks, inductive learning, and kriging. We discuss their existing applications in engineering design and then address the dangers of applying traditional statistical techniques to approximate deterministic computer analysis codes. We conclude with recommendations for the appropriate use of metamodeling techniques in given situations and how common pitfalls can be avoided.

  1. Progress in multidisciplinary design optimization at NASA Langley

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.

    1993-01-01

    Multidisciplinary Design Optimization refers to some combination of disciplinary analyses, sensitivity analysis, and optimization techniques used to design complex engineering systems. The ultimate objective of this research at NASA Langley Research Center is to help the US industry reduce the costs associated with development, manufacturing, and maintenance of aerospace vehicles while improving system performance. This report reviews progress towards this objective and highlights topics for future research. Aerospace design problems selected from the author's research illustrate strengths and weaknesses in existing multidisciplinary optimization techniques. The techniques discussed include multiobjective optimization, global sensitivity equations and sequential linear programming.

  2. Ceramic applications in turbine engines. [for improved component performance and reduced fuel usage

    NASA Technical Reports Server (NTRS)

    Hudson, M. S.; Janovicz, M. A.; Rockwood, F. A.

    1980-01-01

    Ceramic material characterization and testing of ceramic nozzle vanes, turbine tip shrouds, and regenerators disks at 36 C above the baseline engine TIT and the design, analysis, fabrication and development activities are described. The design of ceramic components for the next generation engine to be operated at 2070 F was completed. Coupons simulating the critical 2070 F rotor blade was hot spin tested for failure with sufficient margin to quality sintered silicon nitride and sintered silicon carbide, validating both the attachment design and finite element strength. Progress made in increasing strength, minimizing variability, and developing nondestructive evaluation techniques is reported.

  3. Mathematical techniques: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Articles on theoretical and applied mathematics are introduced. The articles cover information that might be of interest to workers in statistics and information theory, computational aids that could be used by scientists and engineers, and mathematical techniques for design and control.

  4. Application of Taguchi methods to infrared window design

    NASA Astrophysics Data System (ADS)

    Osmer, Kurt A.; Pruszynski, Charles J.

    1990-10-01

    Dr. Genichi Taguchi, a prominent quality consultant, reduced a branch of statistics known as "Design of Experiments" to a cookbook methodology that can be employed by any competent engineer. This technique has been extensively employed by Japanese manufacturers, and is widely credited with helping them attain their current level of success in low cost, high quality product design and fabrication. Although this technique was originally put forth as a tool to streamline the determination of improved production processes, it can also be applied to a wide range of engineering problems. As part of an internal research project, this method of experimental design has been adapted to window trade studies and materials research. Two of these analyses are presented herein, and have been chosen to illustrate the breadth of applications to which the Taguchi method can be utilized.

  5. Use of the flight simulator in the design of a STOL research aircraft.

    NASA Technical Reports Server (NTRS)

    Spitzer, R. E.; Rumsey, P. C.; Quigley, H. C.

    1972-01-01

    Piloted simulator tests on the NASA-Ames Flight Simulator for Advanced Aircraft motion base played a major role in guiding the design of the Modified C-8A 'Buffalo' augmentor wing jet flap STOL research airplane. Design results are presented for the flight control systems, lateral-directional SAS, hydraulic systems, and engine and thrust vector controls. Emphasis is given to lateral control characteristics on STOL landing approach, engine-out control and recovery techniques in the powered-lift regime, and operational flight procedures which affected airplane design.

  6. Studies of scramjet/airframe integration techniques for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Edwards, C. L. W.; Small, W. J.; Weidner, J. P.; Johnston, P. J.

    1975-01-01

    New design and analysis techniques for engine-airframe integration were applied in a recent hypersonic vehicle design study. A new technique was developed to design the vehicle's forebody so that uniform precompressed flow was produced at the inlet entrance. Results are verified with three-dimensional characteristic calculations. Results from a new three-dimensional method for calculating nozzle flows show that the entire lower afterbody of the vehicle can be used as a scramjet exhaust nozzle to achieve efficient, controlled, and stable flight over a wide range of flight conditions.

  7. Ergonomics and design: its principles applied in the industry.

    PubMed

    Tavares, Ademario Santos; Silva, Francisco Nilson da

    2012-01-01

    Industrial Design encompasses both product development and optimization of production process. In this sense, Ergonomics plays a fundamental role, because its principles, methods and techniques can help operators to carry out their tasks most successfully. A case study carried out in an industry shows that the interaction among Design, Production Engineering and Materials Engineering departments may improve some aspects concerned security, comfort, efficiency and performance. In this process, Ergonomics had shown to be of essential importance to strategic decision making to the improvement of production section.

  8. Ceramic thermal barrier coatings for commercial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Meier, Susan Manning; Gupta, Dinesh K.; Sheffler, Keith D.

    1991-01-01

    The paper provides an overview of the short history, current status, and future prospects of ceramic thermal barrier coatings for gas turbine engines. Particular attention is given to plasma-sprayed and electron beam-physical vapor deposited yttria-stabilized (7 wt pct Y2O3) zirconia systems. Recent advances include improvements in the spallation life of thermal barrier coatings, improved bond coat composition and spraying techniques, and improved component design. The discussion also covers field experience, life prediction modeling, and future directions in ceramic coatings in relation to gas turbine engine design.

  9. EFFECTS OF MUSIC ON WORK PERFORMANCE.

    DTIC Science & Technology

    MUSIC , *HUMAN FACTORS ENGINEERING), (*ATTENTION, PERFORMANCE(HUMAN)), REACTION(PSYCHOLOGY), REFLEXES, ATTITUDES(PSYCHOLOGY), QUESTIONNAIRES, STIMULATION(PHYSIOLOGY), EXPERIMENTAL DESIGN, CORRELATION TECHNIQUES

  10. Development of a robust framework for controlling high performance turbofan engines

    NASA Astrophysics Data System (ADS)

    Miklosovic, Robert

    This research involves the development of a robust framework for controlling complex and uncertain multivariable systems. Where mathematical modeling is often tedious or inaccurate, the new method uses an extended state observer (ESO) to estimate and cancel dynamic information in real time and dynamically decouple the system. As a result, controller design and tuning become transparent as the number of required model parameters is reduced. Much research has been devoted towards the application of modern multivariable control techniques on aircraft engines. However, few, if any, have been implemented on an operational aircraft, partially due to the difficulty in tuning the controller for satisfactory performance. The new technique is applied to a modern two-spool, high-pressure ratio, low-bypass turbofan with mixed-flow afterburning. A realistic Modular Aero-Propulsion System Simulation (MAPSS) package, developed by NASA, is used to demonstrate the new design process and compare its performance with that of a supplied nominal controller. This approach is expected to reduce gain scheduling over the full operating envelope of the engine and allow a controller to be tuned for engine-to-engine variations.

  11. Life with Four Billion Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Thomas

    2013-04-10

    Today it is commonplace to design and construct single silicon chips with billions of transistors. These are complex systems, difficult (but possible) to design, test, and fabricate. Remarkably, simple living systems can be assembled from a similar number of atoms, most of them in water molecules. In this talk I will present the current status of our attempts at full understanding and complexity reduction of one of the simplest living systems, the free-living bacterial species Mesoplasma florum. This 400 nm diameter cell thrives and replicates every 40 minutes with a genome of only 800 kilobases. Our recent experiments using transposonmore » gene knockouts identified 354 of 683 annotated genes as inessential in laboratory culture when inactivated individually. While a functional redesigned genome will certainly not remove all of those genes, this suggests that roughly half the genome can be removed in an intentional redesign. I will discuss our recent knockout results and methodology, and our future plans for Genome re-engineering using targeted knock-in/knock-out double recombination; whole cell metabolic models; comprehensive whole cell metabolite measurement techniques; creation of plug-and-play metabolic modules for the simplified organism; inherent and engineered biosafety control mechanisms. This redesign is part of a comprehensive plan to lay the foundations for a new discipline of engineering biology. Engineering biological systems requires a fundamentally different viewpoint from that taken by the science of biology. Key engineering principles of modularity, simplicity, separation of concerns, abstraction, flexibility, hierarchical design, isolation, and standardization are of critical importance. The essence of engineering is the ability to imagine, design, model, build, and characterize novel systems to achieve specific goals. Current tools and components for these tasks are primitive. Our approach is to create and distribute standard biological parts, organisms, assembly techniques, and measurement techniques as a way of enabling this new field.« less

  12. Adaptive critic learning techniques for engine torque and air-fuel ratio control.

    PubMed

    Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting

    2008-08-01

    A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved.

  13. Usability engineering: domain analysis activities for augmented-reality systems

    NASA Astrophysics Data System (ADS)

    Gabbard, Joseph; Swan, J. E., II; Hix, Deborah; Lanzagorta, Marco O.; Livingston, Mark; Brown, Dennis B.; Julier, Simon J.

    2002-05-01

    This paper discusses our usability engineering process for the Battlefield Augmented Reality System (BARS). Usability engineering is a structured, iterative, stepwise development process. Like the related disciplines of software and systems engineering, usability engineering is a combination of management principals and techniques, formal and semi- formal evaluation techniques, and computerized tools. BARS is an outdoor augmented reality system that displays heads- up battlefield intelligence information to a dismounted warrior. The paper discusses our general usability engineering process. We originally developed the process in the context of virtual reality applications, but in this work we are adapting the procedures to an augmented reality system. The focus of this paper is our work on domain analysis, the first activity of the usability engineering process. We describe our plans for and our progress to date on our domain analysis for BARS. We give results in terms of a specific urban battlefield use case we have designed.

  14. Civil and mechanical engineering applications of sensitivity analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komkov, V.

    1985-07-01

    In this largely tutorial presentation, the historical development of optimization theories has been outlined as they applied to mechanical and civil engineering designs and the development of modern sensitivity techniques during the last 20 years has been traced. Some of the difficulties and the progress made in overcoming them have been outlined. Some of the recently developed theoretical methods have been stressed to indicate their importance to computer-aided design technology.

  15. PROFIL: A Method for the Development of Multimedia.

    ERIC Educational Resources Information Center

    Koper, Rob

    1995-01-01

    Describes a dedicated method for the design of multimedia courseware, called PROFIL, which integrates instructional design with software engineering techniques and incorporates media selection in the design methodology. The phases of development are outlined: preliminary investigation, definition, script, technical realization, implementation, and…

  16. 1000542

    NASA Image and Video Library

    2010-04-13

    HORACE STORNG (AEROSPACE ENGINEER, ER31 PROPULSION TURBOMACHINERY DESIGN & DEVELOPMENT BRANCH) ADJUSTS A UNIQUE MECHANICAL TEST SETUP THAT MEASURES STRAIN ON A SINGLE SAMPLE, USING TWO DIFFERENT TECHNIQUES AT THE SAME TIME. THE TEST FIXTURE HOLDS A SPECIMEN THAT REPRESENTS A LIQUID OXYGEN (LOX) BEARING FROM THE J2-X ENGINE

  17. Centrifugal pumps for rocket engines

    NASA Technical Reports Server (NTRS)

    Campbell, W. E.; Farquhar, J.

    1974-01-01

    The use of centrifugal pumps for rocket engines is described in terms of general requirements of operational and planned systems. Hydrodynamic and mechanical design considerations and techniques and test procedures are summarized. Some of the pump development experiences, in terms of both problems and solutions, are highlighted.

  18. An overview of reliability assessment and control for design of civil engineering structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, R.V. Jr.; Grigoriadis, K.M.; Bergman, L.A.

    1998-06-01

    Random variations, whether they occur in the input signal or the system parameters, are phenomena that occur in nearly all engineering systems of interest. As a result, nondeterministic modeling techniques must somehow account for these variations to ensure validity of the solution. As might be expected, this is a difficult proposition and the focus of many current research efforts. Controlling seismically excited structures is one pertinent application of nondeterministic analysis and is the subject of the work presented herein. This overview paper is organized into two sections. First, techniques to assess system reliability, in a context familiar to civil engineers,more » are discussed. Second, and as a consequence of the first, active control methods that ensure good performance in this random environment are presented. It is the hope of the authors that these discussions will ignite further interest in the area of reliability assessment and design of controlled civil engineering structures.« less

  19. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1979-01-01

    The computational techniques utilized to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements are described. The characteristics and use of the following computer codes are discussed: (1) NNEP - a very general cycle analysis code that can assemble an arbitrary matrix fans, turbines, ducts, shafts, etc., into a complete gas turbine engine and compute on- and off-design thermodynamic performance; (2) WATE - a preliminary design procedure for calculating engine weight using the component characteristics determined by NNEP; (3) POD DRG - a table look-up program to calculate wave and friction drag of nacelles; (4) LIFCYC - a computer code developed to calculate life cycle costs of engines based on the output from WATE; and (5) INSTAL - a computer code developed to calculate installation effects, inlet performance and inlet weight. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight, and cost for representative types of aircraft and missions.

  20. Engineering Your Job Search: A Job-Finding Resource for Engineering Professionals.

    ERIC Educational Resources Information Center

    1995

    This guide, which is intended for engineering professionals, explains how to use up-to-date job search techniques to design and conduct an effective job hunt. The first 11 chapters discuss the following steps in searching for a job: handling a job loss; managing time and financial resources while conducting a full-time job search; using objective…

  1. Deep Space Telecommunications Systems Engineering

    NASA Technical Reports Server (NTRS)

    Yuen, J. H. (Editor)

    1982-01-01

    Descriptive and analytical information useful for the optimal design, specification, and performance evaluation of deep space telecommunications systems is presented. Telemetry, tracking, and command systems, receiver design, spacecraft antennas, frequency selection, interference, and modulation techniques are addressed.

  2. LATUX: An Iterative Workflow for Designing, Validating, and Deploying Learning Analytics Visualizations

    ERIC Educational Resources Information Center

    Martinez-Maldonado, Roberto; Pardo, Abelardo; Mirriahi, Negin; Yacef, Kalina; Kay, Judy; Clayphan, Andrew

    2015-01-01

    Designing, validating, and deploying learning analytics tools for instructors or students is a challenge that requires techniques and methods from different disciplines, such as software engineering, human-computer interaction, computer graphics, educational design, and psychology. Whilst each has established its own design methodologies, we now…

  3. Novel technique for online characterization of cartilaginous tissue properties.

    PubMed

    Yuan, Tai-Yi; Huang, Chun-Yuh; Yong Gu, Wei

    2011-09-01

    The goal of tissue engineering is to use substitutes to repair and restore organ function. Bioreactors are an indispensable tool for monitoring and controlling the unique environment for engineered constructs to grow. However, in order to determine the biochemical properties of engineered constructs, samples need to be destroyed. In this study, we developed a novel technique to nondestructively online-characterize the water content and fixed charge density of cartilaginous tissues. A new technique was developed to determine the tissue mechano-electrochemical properties nondestructively. Bovine knee articular cartilage and lumbar annulus fibrosus were used in this study to demonstrate that this technique could be used on different types of tissue. The results show that our newly developed method is capable of precisely predicting the water volume fraction (less than 3% disparity) and fixed charge density (less than 16.7% disparity) within cartilaginous tissues. This novel technique will help to design a new generation of bioreactors which are able to actively determine the essential properties of the engineered constructs, as well as regulate the local environment to achieve the optimal conditions for cultivating constructs.

  4. 3D printing for the design and fabrication of polymer-based gradient scaffolds.

    PubMed

    Bracaglia, Laura G; Smith, Brandon T; Watson, Emma; Arumugasaamy, Navein; Mikos, Antonios G; Fisher, John P

    2017-07-01

    To accurately mimic the native tissue environment, tissue engineered scaffolds often need to have a highly controlled and varied display of three-dimensional (3D) architecture and geometrical cues. Additive manufacturing in tissue engineering has made possible the development of complex scaffolds that mimic the native tissue architectures. As such, architectural details that were previously unattainable or irreproducible can now be incorporated in an ordered and organized approach, further advancing the structural and chemical cues delivered to cells interacting with the scaffold. This control over the environment has given engineers the ability to unlock cellular machinery that is highly dependent upon the intricate heterogeneous environment of native tissue. Recent research into the incorporation of physical and chemical gradients within scaffolds indicates that integrating these features improves the function of a tissue engineered construct. This review covers recent advances on techniques to incorporate gradients into polymer scaffolds through additive manufacturing and evaluate the success of these techniques. As covered here, to best replicate different tissue types, one must be cognizant of the vastly different types of manufacturing techniques available to create these gradient scaffolds. We review the various types of additive manufacturing techniques that can be leveraged to fabricate scaffolds with heterogeneous properties and discuss methods to successfully characterize them. Additive manufacturing techniques have given tissue engineers the ability to precisely recapitulate the native architecture present within tissue. In addition, these techniques can be leveraged to create scaffolds with both physical and chemical gradients. This work offers insight into several techniques that can be used to generate graded scaffolds, depending on the desired gradient. Furthermore, it outlines methods to determine if the designed gradient was achieved. This review will help to condense the abundance of information that has been published on the creation and characterization of gradient scaffolds and to provide a single review discussing both methods for manufacturing gradient scaffolds and evaluating the establishment of a gradient. Copyright © 2017. Published by Elsevier Ltd.

  5. Model-based Acceleration Control of Turbofan Engines with a Hammerstein-Wiener Representation

    NASA Astrophysics Data System (ADS)

    Wang, Jiqiang; Ye, Zhifeng; Hu, Zhongzhi; Wu, Xin; Dimirovsky, Georgi; Yue, Hong

    2017-05-01

    Acceleration control of turbofan engines is conventionally designed through either schedule-based or acceleration-based approach. With the widespread acceptance of model-based design in aviation industry, it becomes necessary to investigate the issues associated with model-based design for acceleration control. In this paper, the challenges for implementing model-based acceleration control are explained; a novel Hammerstein-Wiener representation of engine models is introduced; based on the Hammerstein-Wiener model, a nonlinear generalized minimum variance type of optimal control law is derived; the feature of the proposed approach is that it does not require the inversion operation that usually upsets those nonlinear control techniques. The effectiveness of the proposed control design method is validated through a detailed numerical study.

  6. Development of a Spray System for an Unmanned Aerial Vehicle Platform

    DTIC Science & Technology

    2008-09-01

    Applied Engineering in Agriculture Vol. 25(6): 803‐809 2009 American Society of Agricultural and Biological Engineers ISSN 0883-8542 803...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 804 APPLIED ENGINEERING IN AGRICULTURE non‐chemical or least toxic chemical techniques...and electrically shielded (fig. 4). 806 APPLIED ENGINEERING IN AGRICULTURE Figure 2. Computer‐aided model and design of the tank with baffles, and

  7. Deriving Function-failure Similarity Information for Failure-free Rotorcraft Component Design

    NASA Technical Reports Server (NTRS)

    Roberts, Rory A.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Performance and safety are the top concerns of high-risk aerospace applications at NASA. Eliminating or reducing performance and safety problems can be achieved with a thorough understanding of potential failure modes in the design that lead to these problems. The majority of techniques use prior knowledge and experience as well as Failure Modes and Effects as methods to determine potential failure modes of aircraft. The aircraft design needs to be passed through a general technique to ensure that every potential failure mode is considered, while avoiding spending time on improbable failure modes. In this work, this is accomplished by mapping failure modes to certain components, which are described by their functionality. In turn, the failure modes are then linked to the basic functions that are carried within the components of the aircraft. Using the technique proposed in this paper, designers can examine the basic functions, and select appropriate analyses to eliminate or design out the potential failure modes. This method was previously applied to a simple rotating machine test rig with basic functions that are common to a rotorcraft. In this paper, this technique is applied to the engine and power train of a rotorcraft, using failures and functions obtained from accident reports and engineering drawings.

  8. The application of LQR synthesis techniques to the turboshaft engine control problem. [Linear Quadratic Regulator

    NASA Technical Reports Server (NTRS)

    Pfeil, W. H.; De Los Reyes, G.; Bobula, G. A.

    1985-01-01

    A power turbine governor was designed for a recent-technology turboshaft engine coupled to a modern, articulated rotor system using Linear Quadratic Regulator (LQR) and Kalman Filter (KF) techniques. A linear, state-space model of the engine and rotor system was derived for six engine power settings from flight idle to maximum continuous. An integrator was appended to the fuel flow input to reduce the steady-state governor error to zero. Feedback gains were calculated for the system states at each power setting using the LQR technique. The main rotor tip speed state is not measurable, so a Kalman Filter of the rotor was used to estimate this state. The crossover of the system was increased to 10 rad/s compared to 2 rad/sec for a current governor. Initial computer simulations with a nonlinear engine model indicate a significant decrease in power turbine speed variation with the LQR governor compared to a conventional governor.

  9. Langley Research Center Standard for the Evaluation of Socket Welds

    NASA Technical Reports Server (NTRS)

    Berry, R. F., Jr.

    1985-01-01

    A specification utilized for the nondestructive evaluation of socket type pipe joints at Langley Research Center (LaRC) is discussed. The scope of hardware shall include, but is not limited to, all common pipe fittings: tees, elbows, couplings, caps, and so forth, socket type flanges, unions, and valves. In addition, the exterior weld of slip on flanges shall be inspected using this specification. At the discretion of the design engineer, standard practice engineer, Fracture Mechanics Engineering Section, Pressure Systems Committee, or other authority, four nondestructive evaluation techniques may be utilized exclusively, or in combination, to inspect socket type welds. These techniques are visual, radiographic, magnetic particle, and dye penetrant. Under special circumstances, other techniques (such as eddy current or ultrasonics) may be required and their application shall be guided by the appropriate sections of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (B&PVC).

  10. de novo computational enzyme design.

    PubMed

    Zanghellini, Alexandre

    2014-10-01

    Recent advances in systems and synthetic biology as well as metabolic engineering are poised to transform industrial biotechnology by allowing us to design cell factories for the sustainable production of valuable fuels and chemicals. To deliver on their promises, such cell factories, as much as their brick-and-mortar counterparts, will require appropriate catalysts, especially for classes of reactions that are not known to be catalyzed by enzymes in natural organisms. A recently developed methodology, de novo computational enzyme design can be used to create enzymes catalyzing novel reactions. Here we review the different classes of chemical reactions for which active protein catalysts have been designed as well as the results of detailed biochemical and structural characterization studies. We also discuss how combining de novo computational enzyme design with more traditional protein engineering techniques can alleviate the shortcomings of state-of-the-art computational design techniques and create novel enzymes with catalytic proficiencies on par with natural enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Using Green Chemistry and Engineering Principles to Design, Assess, and Retrofit Chemical Processes for Sustainability

    EPA Science Inventory

    The concepts of green chemistry and engineering (GC&E) have been promoted as an effective qualitative framework for developing more sustainable chemical syntheses, processes, and material management techniques. This has been demonstrated by many theoretical and practical cases. I...

  12. Developing an Engineering Design Process Assessment using Mixed Methods.

    PubMed

    Wind, Stefanie A; Alemdar, Meltem; Lingle, Jeremy A; Gale, Jessica D; Moore, Roxanne A

    Recent reforms in science education worldwide include an emphasis on engineering design as a key component of student proficiency in the Science, Technology, Engineering, and Mathematics disciplines. However, relatively little attention has been directed to the development of psychometrically sound assessments for engineering. This study demonstrates the use of mixed methods to guide the development and revision of K-12 Engineering Design Process (EDP) assessment items. Using results from a middle-school EDP assessment, this study illustrates the combination of quantitative and qualitative techniques to inform item development and revisions. Overall conclusions suggest that the combination of quantitative and qualitative evidence provides an in-depth picture of item quality that can be used to inform the revision and development of EDP assessment items. Researchers and practitioners can use the methods illustrated here to gather validity evidence to support the interpretation and use of new and existing assessments.

  13. Application of dual-fuel propulsion to a single stage AMLS vehicle

    NASA Technical Reports Server (NTRS)

    Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit

    1993-01-01

    As part of NASA's Advanced Manned Launch System (AMLS) study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate engine concept combining Russian RD-170 kerosene-fueled engines with SSME-derivative engines; the kerosene and hydrogen-fueled Russian RD-701 engine concept; and a dual-fuel, dual-expander engine concept. Analysis to determine vehicle weight and size characteristics was performed using conceptual level design techniques. A response surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicle concepts with respect to several important propulsion system and vehicle design parameters in order to achieve minimum empty weight. Comparisons were then made with a hydrogen-fueled reference, single-stage vehicle. The tools and methods employed in the analysis process are also summarized.

  14. Overview of Engineering Design and Analysis at the NASA John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Ryan, Harry; Congiardo, Jared; Junell, Justin; Kirkpatrick, Richard

    2007-01-01

    A wide range of rocket propulsion test work occurs at the NASA John C. Stennis Space Center (SSC) including full-scale engine test activities at test facilities A-1, A-2, B-1 and B-2 as well as combustion device research and development activities at the E-Complex (E-1, E-2, E-3 and E-4) test facilities. The propulsion test engineer at NASA SSC faces many challenges associated with designing and operating a test facility due to the extreme operating conditions (e.g., cryogenic temperatures, high pressures) of the various system components and the uniqueness of many of the components and systems. The purpose of this paper is to briefly describe the NASA SSC Engineering Science Directorate s design and analysis processes, experience, and modeling techniques that are used to design and support the operation of unique rocket propulsion test facilities.

  15. Railway vehicle body structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    The strength and durability of railway vehicle structures is a major topic of engineering research and design. To reflect this importance the Railway Division of the Institution of Mechanical Engineers organised a conference to discuss all matters relating to railway vehicle design. This book presents the papers discussed in that conference. The contents include: Vehicle body design and the UIC's international contribution; LUL prototype 1986 stock - body structure; vehicle structure for the intermediate capacity transmit system vehicles; car body technology of advanced light rapid transit vehicles; concepts, techniques and experience in the idealization of car body structures for finitemore » element analysis; Calcutta metropolitan railway; design for a lightweight diesel multiple unit body; the design of lightweight inter-city coal structures; the BREL international coach body shell structure; new concepts and design techniques versus material standards; structures of BR diesel electric freight locomotives; structural design philosophy for electric locomotives; suspension design for a locomotive with low structural frequencies; freight wagon structures; a finite element study of coal bodyside panels including the effects of joint flexibility; a fresh approach to the problem of car body design strength; energy absorption in automatic couplings and draw gear; passenger vehicle design loads and structural crashworthiness; design of the front part of railway vehicles (in case of frontal impact); the development of a theoretical technique for rail vehicle structural crashworthiness.« less

  16. Using Innovative Technologies for Manufacturing and Evaluating Rocket Engine Hardware

    NASA Technical Reports Server (NTRS)

    Betts, Erin M.; Hardin, Andy

    2011-01-01

    Many of the manufacturing and evaluation techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing and evaluating hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) and white light scanning are being adopted and evaluated for their use on J-2X, with hopes of employing both technologies on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powdered metal manufacturing process in order to produce complex part geometries. The white light technique is a non-invasive method that can be used to inspect for geometric feature alignment. Both the DMLS manufacturing method and the white light scanning technique have proven to be viable options for manufacturing and evaluating rocket engine hardware, and further development and use of these techniques is recommended.

  17. On the Development of a Computing Infrastructure that Facilitates IPPD from a Decision-Based Design Perspective

    NASA Technical Reports Server (NTRS)

    Hale, Mark A.; Craig, James I.; Mistree, Farrokh; Schrage, Daniel P.

    1995-01-01

    Integrated Product and Process Development (IPPD) embodies the simultaneous application of both system and quality engineering methods throughout an iterative design process. The use of IPPD results in the time-conscious, cost-saving development of engineering systems. Georgia Tech has proposed the development of an Integrated Design Engineering Simulator that will merge Integrated Product and Process Development with interdisciplinary analysis techniques and state-of-the-art computational technologies. To implement IPPD, a Decision-Based Design perspective is encapsulated in an approach that focuses on the role of the human designer in product development. The approach has two parts and is outlined in this paper. First, an architecture, called DREAMS, is being developed that facilitates design from a decision-based perspective. Second, a supporting computing infrastructure, called IMAGE, is being designed. The current status of development is given and future directions are outlined.

  18. Integration of magnetic bearings in the design of advanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.

    1994-01-01

    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.

  19. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss "small-group apprenticeships (SGAs)" as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments…

  20. Advanced silver zinc battery development for the SRB and ET range safety subsystems

    NASA Technical Reports Server (NTRS)

    Adamedes, Zoe

    1994-01-01

    This document presents in viewgraph format the design and development of silver zinc (AgZn) batteries for the solid rocket booster (SRB) and external tank (ET) range safety subsystems. Various engineering techniques, including composite separator systems, new electrode processing techniques, and new restraint techniques, were used to meet difficult requirements.

  1. The application of measurement techniques to track flutter testing

    NASA Technical Reports Server (NTRS)

    Roglin, H. R.

    1975-01-01

    The application is discussed of measurement techniques to captive flight flutter tests at the Supersonic Naval Ordnance Research Track (SNORT), U. S. Naval Ordnance Test Station, China Lake, California. The high-speed track, by its ability to prove the validity of design and to accurately determine the actual margin of safety, offers a unique method of flutter testing for the aircraft design engineer.

  2. Developing Creativity and Problem-Solving Skills of Engineering Students: A Comparison of Web- and Pen-and-Paper-Based Approaches

    ERIC Educational Resources Information Center

    Valentine, Andrew; Belski, Iouri; Hamilton, Margaret

    2017-01-01

    Problem-solving is a key engineering skill, yet is an area in which engineering graduates underperform. This paper investigates the potential of using web-based tools to teach students problem-solving techniques without the need to make use of class time. An idea generation experiment involving 90 students was designed. Students were surveyed…

  3. COED Transactions, Vol. X, No. 4, April 1978. An Experience in Teaching "COBOL?" to Graduate Engineers.

    ERIC Educational Resources Information Center

    Bremmer, Dale; Childs, Bart

    This document discusses the importance of computing knowledge and experience in the techniques of fast data retrieval for today's engineer. It describes a course designed to teach the engineer the COBOL Language structure. One of the projects of the course, a report generator (REGE) written in COBOL which is used to alter, sort and print selected…

  4. The Search for Extension: 7 Steps to Help People Find Research-Based Information on the Internet

    ERIC Educational Resources Information Center

    Hill, Paul; Rader, Heidi B.; Hino, Jeff

    2012-01-01

    For Extension's unbiased, research-based content to be found by people searching the Internet, it needs to be organized in a way conducive to the ranking criteria of a search engine. With proper web design and search engine optimization techniques, Extension's content can be found, recognized, and properly indexed by search engines and…

  5. Toward Reusable Graphics Components in Ada

    DTIC Science & Technology

    1993-03-01

    Then alternatives for obtaining well- engineered reusable software components were examined. Finally, the alternatives were analyzed, and the most...reusable software components. Chapter 4 describes detailed design and implementation strategies in building a well- engineered reusable set of components in...study. 2.2 The Object-Oriented Paradigm 2.2.1 The Need for Object-Oriented Techniques. Among software engineers the software crisis is a well known

  6. System Engineering for J-2X Development: The Simpler, the Better

    NASA Technical Reports Server (NTRS)

    Kelly, William M.; Greasley, Paul; Greene, William D.; Ackerman, Peter

    2008-01-01

    The Ares I and Ares V Vehicles will utilize the J-2X rocket engine developed for NASA by the Pratt and Whitney Rocketdyne Company (PWR) as the upper stage engine (USE). The J-2X is an improved higher power version of the original J-2 engine used for Apollo. System Engineering (SE) facilitates direct and open discussions of issues and problems. This simple idea is often overlooked in large, complex engineering development programs. Definition and distribution of requirements from the engine level to the component level is controlled by Allocation Reports which breaks down numerical design objectives (weight, reliability, etc.) into quanta goals for each component area. Linked databases of design and verification requirements help eliminate redundancy and potential mistakes inherent in separated systems. Another tool, the Architecture Design Description (ADD), is used to control J-2X system architecture and effectively communicate configuration changes to those involved in the design process. But the proof of an effective process is in successful program accomplishment. SE is the methodology being used to meet the challenge of completing J-2X engine certification 2 years ahead of any engine program ever developed at PWR. This paper describes the simple, better SE tools and techniques used to achieve this success.

  7. Booster propulsion/vehicle impact study

    NASA Technical Reports Server (NTRS)

    Weldon, Vincent; Dunn, Michael; Fink, Lawrence; Phillips, Dwight; Wetzel, Eric

    1988-01-01

    The use of hydrogen RP-1, propane, and methane as fuels for booster engines of launch vehicles is discussed. An automated procedure for integrated launch vehicle, engine sizing, and design optimization was used to define two stage and single stage concepts for minimum dry weight. The two stage vehicles were unmanned and used a flyback booster and partially reusable orbiter. The single stage designs were fully reusable, manned flyback vehicles. Comparisons of these vehicle designs, showing the effects of using different fuels, as well as sensitivity and trending data, are presented. In addition, the automated design technique utilized for the study is described.

  8. Application of the MNA design method to a nonlinear turbofan engine. [multivariable Nyquist array method

    NASA Technical Reports Server (NTRS)

    Leininger, G. G.

    1981-01-01

    Using nonlinear digital simulation as a representative model of the dynamic operation of the QCSEE turbofan engine, a feedback control system is designed by variable frequency design techniques. Transfer functions are generated for each of five power level settings covering the range of operation from approach power to full throttle (62.5% to 100% full power). These transfer functions are then used by an interactive control system design synthesis program to provide a closed loop feedback control using the multivariable Nyquist array and extensions to multivariable Bode diagrams and Nichols charts.

  9. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2004-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  10. A Computer Code for Gas Turbine Engine Weight And Disk Life Estimation

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Ghosn, Louis J.; Halliwell, Ian; Wickenheiser, Tim (Technical Monitor)

    2002-01-01

    Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. In this paper, the major enhancements to NASA's engine-weight estimate computer code (WATE) are described. These enhancements include the incorporation of improved weight-calculation routines for the compressor and turbine disks using the finite-difference technique. Furthermore, the stress distribution for various disk geometries was also incorporated, for a life-prediction module to calculate disk life. A material database, consisting of the material data of most of the commonly-used aerospace materials, has also been incorporated into WATE. Collectively, these enhancements provide a more realistic and systematic way to calculate the engine weight. They also provide additional insight into the design trade-off between engine life and engine weight. To demonstrate the new capabilities, the enhanced WATE code is used to perform an engine weight/life trade-off assessment on a production aircraft engine.

  11. A systematic approach to engineering ethics education.

    PubMed

    Li, Jessica; Fu, Shengli

    2012-06-01

    Engineering ethics education is a complex field characterized by dynamic topics and diverse students, which results in significant challenges for engineering ethics educators. The purpose of this paper is to introduce a systematic approach to determine what to teach and how to teach in an ethics curriculum. This is a topic that has not been adequately addressed in the engineering ethics literature. This systematic approach provides a method to: (1) develop a context-specific engineering ethics curriculum using the Delphi technique, a process-driven research method; and (2) identify appropriate delivery strategies and instructional strategies using an instructional design model. This approach considers the context-specific needs of different engineering disciplines in ethics education and leverages the collaboration of engineering professors, practicing engineers, engineering graduate students, ethics scholars, and instructional design experts. The proposed approach is most suitable for a department, a discipline/field or a professional society. The approach helps to enhance learning outcomes and to facilitate ethics education curriculum development as part of the regular engineering curriculum.

  12. Research Reports: 1988 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Freeman, L. Michael (Editor); Chappell, Charles R. (Editor); Cothran, Ernestine K. (Editor); Karr, Gerald R. (Editor)

    1988-01-01

    The basic objectives are to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA: to enrich and refresh the research and teaching activities of the participants' institutions; and to contribute to the research objectives of the NASA centers. Topics addressed include: cryogenics; thunderstorm simulation; computer techniques; computer assisted instruction; system analysis weather forecasting; rocket engine design; crystal growth; control systems design; turbine pumps for the Space Shuttle Main engine; electron mobility; heat transfer predictions; rotor dynamics; mathematical models; computational fluid dynamics; and structural analysis.

  13. Velocity measurements in the plume of an arcjet engine

    NASA Technical Reports Server (NTRS)

    Pivirotto, T. J.; Deininger, W. D.

    1987-01-01

    A nonintrusive technique has been used to conduct a radial survey in the flow field of an arcjet engine plume. The technique measures the Doppler shift of an optically thin line resulting from recombination and relaxation processes in the high Mach number stream, in order to determine flow velocities. Atom temperature can also be calculated from the same Doppler-broadened line widths, when these shifts are measured with a scanning Fabry-Perot spectrometer whose design is presented in detail.

  14. Bearings working group

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The service life of the Space Shuttle Main Engine (SSME) turbomachinery bearings was a predominant factor in engine durability and maintenance problems. Recent data has indicated that bearing life is about one order of magnitude lower than the goal of seven and one-half hours particularly those in the High Pressure Oxidizer Turbopump (HPOTP). Bearing technology, primarily cryogenic turbomachinery bearing technology, is expanded by exploring the life and performance effects of design changes; design concept changes; materials changes; manufacturing technique changes; and lubrication system changes. Each variation is assessed against the current bearing design in full scale cryogenic tests.

  15. Model-based engineering for medical-device software.

    PubMed

    Ray, Arnab; Jetley, Raoul; Jones, Paul L; Zhang, Yi

    2010-01-01

    This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software. 1.

  16. Management Of Optical Projects

    NASA Astrophysics Data System (ADS)

    Young, Peter S.; Olson, David R.

    1981-03-01

    This paper discusses the management of optical projects from the concept stage, beginning with system specifications, through design, optical fabrication and test tasks. Special emphasis is placed on effective coupling of design engineering with fabrication development and utilization of available technology. Contrasts are drawn between accepted formalized management techniques, the realities of dealing with fragile components and the necessity of an effective project team which integrates the special characteristics of highly skilled optical specialists including lens designers, optical engineers, opticians, and metrologists. Examples are drawn from the HEAO-2 X-Ray Telescope and Space Telescope projects.

  17. Some historical trends in the research and development of aircraft

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1983-01-01

    A survey of some trends in aircraft design was made in an effort to determine the relation between research, development, test, and evaluation (RDT and E) and aircraft mission capability, requirements, and objectives. Driving forces in the history of aircraft include the quest for speed which involved design concepts incorporating jet propulsion systems and low drag features. The study of high speed design concepts promoted new experimental and analytical research techniques. These research techniques, in turn, have lead to concepts offering new performance potential. Design trends were directed toward increased speed, efficiency, productivity, and safety. Generally speaking, the research and development effort has been evolutionary in nature and, with the exception of the transition to supersonic flight, little has occurred since the origin of flight that has drastically changed the basic design fundamentals of aircraft. However, this does not preclude the possibility of dramatic changes in the future since the products of research are frequently unpredictable. Advances should be expected and sought in improved aerodynamics (reduced drag, enhanced lift, flow field exploitation); propulsion (improved engine cycles, multimode engines, alternate fuels, alternate power sources); structures (new materials, manufacturing techniques); all with a view toward increased efficiency and utility.

  18. Artistic and Industrial Institutions in Russian Education Structure in First Quarter of XXth Century

    NASA Astrophysics Data System (ADS)

    Chernyh, D. G.

    2017-11-01

    The article tells about the formation of Russian design education in the XXth century. It focuses on the peculiar features and causes of its insufficient effectiveness in the historical context. It studies the dynamics of changes in the priorities related to the artistic and industrial education in Russia and the connection of these processes with socio-political transformations. The article identifies the role of constructivist artists in the formation and approbation of advanced design-engineering techniques. It emphasizes the interdisciplinary essence of the profession of a designer as a special kind of design activities, its organizing, consolidating and progressive origin in the sphere of industrial production and carrying out interdisciplinary studies. It discloses the essence of a new “engineer-artist” profession. It briefly describes the influence of the fundamental principle of design - projectivity, on engineering and design disciplines when the interaction of an artist, an engineer and an architect is achieved on the basis of design, arrangement and inventive art as well as production organization where science and technology form the basis for creative work.

  19. Water supply pipe dimensioning using hydraulic power dissipation

    NASA Astrophysics Data System (ADS)

    Sreemathy, J. R.; Rashmi, G.; Suribabu, C. R.

    2017-07-01

    Proper sizing of the pipe component of water distribution networks play an important role in the overall design of the any water supply system. Several approaches have been applied for the design of networks from an economical point of view. Traditional optimization techniques and population based stochastic algorithms are widely used to optimize the networks. But the use of these approaches is mostly found to be limited to the research level due to difficulties in understanding by the practicing engineers, design engineers and consulting firms. More over due to non-availability of commercial software related to the optimal design of water distribution system,it forces the practicing engineers to adopt either trial and error or experience-based design. This paper presents a simple approach based on power dissipation in each pipeline as a parameter to design the network economically, but not to the level of global minimum cost.

  20. A shrinking hypersphere PSO for engineering optimisation problems

    NASA Astrophysics Data System (ADS)

    Yadav, Anupam; Deep, Kusum

    2016-03-01

    Many real-world and engineering design problems can be formulated as constrained optimisation problems (COPs). Swarm intelligence techniques are a good approach to solve COPs. In this paper an efficient shrinking hypersphere-based particle swarm optimisation (SHPSO) algorithm is proposed for constrained optimisation. The proposed SHPSO is designed in such a way that the movement of the particle is set to move under the influence of shrinking hyperspheres. A parameter-free approach is used to handle the constraints. The performance of the SHPSO is compared against the state-of-the-art algorithms for a set of 24 benchmark problems. An exhaustive comparison of the results is provided statistically as well as graphically. Moreover three engineering design problems namely welded beam design, compressed string design and pressure vessel design problems are solved using SHPSO and the results are compared with the state-of-the-art algorithms.

  1. Managing bioengineering complexity with AI techniques.

    PubMed

    Beal, Jacob; Adler, Aaron; Yaman, Fusun

    2016-10-01

    Our capabilities for systematic design and engineering of biological systems are rapidly increasing. Effectively engineering such systems, however, requires the synthesis of a rapidly expanding and changing complex body of knowledge, protocols, and methodologies. Many of the problems in managing this complexity, however, appear susceptible to being addressed by artificial intelligence (AI) techniques, i.e., methods enabling computers to represent, acquire, and employ knowledge. Such methods can be employed to automate physical and informational "routine" work and thus better allow humans to focus their attention on the deeper scientific and engineering issues. This paper examines the potential impact of AI on the engineering of biological organisms through the lens of a typical organism engineering workflow. We identify a number of key opportunities for significant impact, as well as challenges that must be overcome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Pen-based Interfaces for Engineering and Education

    NASA Astrophysics Data System (ADS)

    Stahovich, Thomas F.

    Sketches are an important problem-solving tool in many fields. This is particularly true of engineering design, where sketches facilitate creativity by providing an efficient medium for expressing ideas. However, despite the importance of sketches in engineering practice, current engineering software still relies on traditional mouse and keyboard interfaces, with little or no capabilities to handle free-form sketch input. With recent advances in machine-interpretation techniques, it is now becoming possible to create practical interpretation-based interfaces for such software. In this chapter, we report on our efforts to create interpretation techniques to enable pen-based engineering applications. We describe work on two fundamental sketch understanding problems. The first is sketch parsing, the task of clustering pen strokes or geometric primitives into individual symbols. The second is symbol recognition, the task of classifying symbols once they have been located by a parser. We have used the techniques that we have developed to construct several pen-based engineering analysis tools. These are used here as examples to illustrate our methods. We have also begun to use our techniques to create pen-based tutoring systems that scaffold students in solving problems in the same way they would ordinarily solve them with paper and pencil. The chapter concludes with a brief discussion of these systems.

  3. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1989-01-01

    Research aircraft have become increasingly dependent on advanced control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objectives. This integration is being accomplished through electronic control systems. Because of the number of systems involved and the variety of engineering disciplines, systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control system is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary objective is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences of three highly complex, integrated aircraft programs are reviewed: the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) program. Significant operating anomalies and the design errors which cause them, are examined to help identify what functions a system design/information tool should provide to assist designers in avoiding errors.

  4. Teaching Process Design through Integrated Process Synthesis

    ERIC Educational Resources Information Center

    Metzger, Matthew J.; Glasser, Benjamin J.; Patel, Bilal; Hildebrandt, Diane; Glasser, David

    2012-01-01

    The design course is an integral part of chemical engineering education. A novel approach to the design course was recently introduced at the University of the Witwatersrand, Johannesburg, South Africa. The course aimed to introduce students to systematic tools and techniques for setting and evaluating performance targets for processes, as well as…

  5. A design strategy for the use of vortex generators to manage inlet-engine distortion using computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Levy, Ralph

    1991-01-01

    A reduced Navier-Stokes solution technique was successfully used to design vortex generator installations for the purpose of minimizing engine face distortion by restructuring the development of secondary flow that is induced in typical 3-D curved inlet ducts. The results indicate that there exists an optimum axial location for this installation of corotating vortex generators, and within this configuration, there exists a maximum spacing between generator blades above which the engine face distortion increases rapidly. Installed vortex generator performance, as measured by engine face circumferential distortion descriptors, is sensitive to Reynolds number and thereby the generator scale, i.e., the ratio of generator blade height to local boundary layer thickness. Installations of corotating vortex generators work well in terms of minimizing engine face distortion within a limited range of generator scales. Hence, the design of vortex generator installations is a point design, and all other conditions are off design. In general, the loss levels associated with a properly designed vortex generator installation are very small; thus, they represent a very good method to manage engine face distortion. This study also showed that the vortex strength, generator scale, and secondary flow field structure have a complicated and interrelated influence over engine face distortion, over and above the influence of the initial arrangement of generators.

  6. Evolution of Nickel-titanium Alloys in Endodontics.

    PubMed

    Ounsi, Hani F; Nassif, Wadih; Grandini, Simone; Salameh, Ziad; Neelakantan, Prasanna; Anil, Sukumaran

    2017-11-01

    To improve clinical use of nickel-titanium (NiTi) endodontic rotary instruments by better understanding the alloys that compose them. A large number of engine-driven NiTi shaping instruments already exists on the market and newer generations are being introduced regularly. While emphasis is being put on design and technique, manufacturers are more discreet about alloy characteristics that dictate instrument behavior. Along with design and technique, alloy characteristics of endodontic instruments is one of the main variables affecting clinical performance. Modification in NiTi alloys is numerous and may yield improvements, but also drawbacks. Martensitic instruments seem to display better cyclic fatigue properties at the expense of surface hardness, prompting the need for surface treatments. On the contrary, such surface treatments may improve cutting efficiency but are detrimental to the gain in cyclic fatigue resistance. Although the design of the instrument is vital, it should in no way cloud the importance of the properties of the alloy and how they influence the clinical behavior of NiTi instruments. Dentists are mostly clinicians rather than engineers. With the advances in instrumentation design and alloys, they have an obligation to deal more intimately with engineering consideration to not only take advantage of their possibilities but also acknowledge their limitations.

  7. Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues.

    PubMed

    Ozturk, Mehmet S; Chen, Chao-Wei; Ji, Robin; Zhao, Lingling; Nguyen, Bao-Ngoc B; Fisher, John P; Chen, Yu; Intes, Xavier

    2016-03-01

    Optimization of regenerative medicine strategies includes the design of biomaterials, development of cell-seeding methods, and control of cell-biomaterial interactions within the engineered tissues. Among these steps, one paramount challenge is to non-destructively image the engineered tissues in their entirety to assess structure, function, and molecular expression. It is especially important to be able to enable cell phenotyping and monitor the distribution and migration of cells throughout the bulk scaffold. Advanced fluorescence microscopic techniques are commonly employed to perform such tasks; however, they are limited to superficial examination of tissue constructs. Therefore, the field of tissue engineering and regenerative medicine would greatly benefit from the development of molecular imaging techniques which are capable of non-destructive imaging of three-dimensional cellular distribution and maturation within a tissue-engineered scaffold beyond the limited depth of current microscopic techniques. In this review, we focus on an emerging depth-resolved optical mesoscopic imaging technique, termed laminar optical tomography (LOT) or mesoscopic fluorescence molecular tomography (MFMT), which enables longitudinal imaging of cellular distribution in thick tissue engineering constructs at depths of a few millimeters and with relatively high resolution. The physical principle, image formation, and instrumentation of LOT/MFMT systems are introduced. Representative applications in tissue engineering include imaging the distribution of human mesenchymal stem cells embedded in hydrogels, imaging of bio-printed tissues, and in vivo applications.

  8. Engine With Regression and Neural Network Approximators Designed

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    2001-01-01

    At the NASA Glenn Research Center, the NASA engine performance program (NEPP, ref. 1) and the design optimization testbed COMETBOARDS (ref. 2) with regression and neural network analysis-approximators have been coupled to obtain a preliminary engine design methodology. The solution to a high-bypass-ratio subsonic waverotor-topped turbofan engine, which is shown in the preceding figure, was obtained by the simulation depicted in the following figure. This engine is made of 16 components mounted on two shafts with 21 flow stations. The engine is designed for a flight envelope with 47 operating points. The design optimization utilized both neural network and regression approximations, along with the cascade strategy (ref. 3). The cascade used three algorithms in sequence: the method of feasible directions, the sequence of unconstrained minimizations technique, and sequential quadratic programming. The normalized optimum thrusts obtained by the three methods are shown in the following figure: the cascade algorithm with regression approximation is represented by a triangle, a circle is shown for the neural network solution, and a solid line indicates original NEPP results. The solutions obtained from both approximate methods lie within one standard deviation of the benchmark solution for each operating point. The simulation improved the maximum thrust by 5 percent. The performance of the linear regression and neural network methods as alternate engine analyzers was found to be satisfactory for the analysis and operation optimization of air-breathing propulsion engines (ref. 4).

  9. Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle

    NASA Technical Reports Server (NTRS)

    Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit

    1995-01-01

    As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential.

  10. A Boilerplate Capsule Test Technique for the Orion Parachute Test Program

    NASA Technical Reports Server (NTRS)

    Moore, James W.; Fraire, Usbaldo, Jr.

    2013-01-01

    The test program developing parachutes for the Orion/MPCV includes drop tests of a Parachute Test Vehicle designed to emulate the wake of the Orion capsule. Delivery of this test vehicle to the initial velocity, altitude, and orientation required for the test is a difficult problem involving multiple engineering disciplines. The available delivery of aircraft options imposed constraints on the test vehicle development and concept of operations. This paper describes the development of this test technique. The engineering challenges include the extraction from an aircraft and separation of two aerodynamically unstable vehicles, one of which will be delivered to a specific orientation with reasonably small rates. The desired attitude is achieved by precisely targeting the separation point using on-board monitoring of the motion. The design of the test vehicle is described. The trajectory simulations and other analyses used to develop this technique and predict the behavior of the test article are reviewed in detail. The application of the technique on several successful drop tests is summarized.

  11. Design and Control of Chemical Grouting : Volume 4 - Executive Summary

    DOT National Transportation Integrated Search

    1983-04-01

    This report focuses on the engineering practice of chemical grouting, summarizing the findings of a study to improve design and control techniques for chemical grouting in soils. Improved methods for the planning, control and evaluation of chemical g...

  12. 1000537

    NASA Image and Video Library

    2010-04-13

    NATHAN HORACE STRONG (AEROSPACE ENGINEER, ER31 PROPULSION TURBOMACHINERY DESIGN & DEVELOPMENT BRANCH) AND NATHAN COFFEE (EM10 MATERIALS TEST ENGINEER, JACOBS ESTS GROUP/JTI) ADJUST A UNIQUE MECHANICAL TEST SETUP THAT MEASURES STRAIN ON A SINGLE SAMPLE, USING TWO DIFFERENT TECHNIQUES AT THE SAME TIME. THE TEST FIXTURE HOLDS A SPECIMEN THAT REPRESENTS A LIQUID OXYGEN (LOX) BEARING FROM THE J2-X ENGINE. COFFEY, AT RIGHT, WORK IN A LAB IN BUILDING 4612 ON A BEARING TEST

  13. Shuttle wave experiments. [space plasma investigations: design and instrumentation

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1976-01-01

    Wave experiments on shuttle are needed to verify dispersion relations, to study nonlinear and exotic phenomena, to support other plasma experiments, and to test engineering designs. Techniques based on coherent detection and bistatic geometry are described. New instrumentation required to provide modules for a variety of missions and to incorporate advanced signal processing and control techniques is discussed. An experiment for Z to 0 coupling is included.

  14. The Design and Testing of a Miniature Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.; Murray, James E.

    2009-01-01

    Off-the-shelf jet propulsion in the 50 - 500 lb thrust class sparse. A true twin-spool turbofan in this range does not exist. Adapting an off-the-shelf turboshaft engine is feasible. However the approx.10 Hp SPT5 can t quite make 50 lbs. of thrust. Packaging and integration is challenging, especially the exhaust. Building on our engine using a 25 Hp turboshaft seems promising if the engine becomes available. Test techniques used, though low cost, adequate for the purpose.

  15. Hybrid computational and experimental approach for the study and optimization of mechanical components

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    1998-05-01

    Increased demands on the performance and efficiency of mechanical components impose challenges on their engineering design and optimization, especially when new and more demanding applications must be developed in relatively short periods of time while satisfying design objectives, as well as cost and manufacturability. In addition, reliability and durability must be taken into consideration. As a consequence, effective quantitative methodologies, computational and experimental, should be applied in the study and optimization of mechanical components. Computational investigations enable parametric studies and the determination of critical engineering design conditions, while experimental investigations, especially those using optical techniques, provide qualitative and quantitative information on the actual response of the structure of interest to the applied load and boundary conditions. We discuss a hybrid experimental and computational approach for investigation and optimization of mechanical components. The approach is based on analytical, computational, and experimental resolutions methodologies in the form of computational, noninvasive optical techniques, and fringe prediction analysis tools. Practical application of the hybrid approach is illustrated with representative examples that demonstrate the viability of the approach as an effective engineering tool for analysis and optimization.

  16. Students' perceptions of the relevance of mathematics in engineering

    NASA Astrophysics Data System (ADS)

    Flegg, Jennifer; Mallet, Dann; Lupton, Mandy

    2012-09-01

    In this article, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society [M. Kirschenman and B. Brenner, Education for Civil Engineering: A Profession of Practice, Leader. Manag. Eng. 10 (2010), p. 54]. Qualitative and quantitative data on students' views of the relevance of their mathematics study to their engineering studies and future careers in engineering was collected. The students described using a range of mathematics techniques (mathematics skills developed, mathematics concepts applied to engineering and skills developed relevant for engineering) for various usages (as a subject of study, a tool for other subjects or a tool for real world problems). We found a number of themes relating to the design of engineering mathematics curriculum emerged from the data. These included the relevance of mathematics within different engineering majors, the relevance of mathematics to future studies, the relevance of learning mathematical rigour and the effectiveness of problem-solving tasks in conveying the relevance of mathematics more effectively than other forms of assessment. We make recommendations for the design of engineering mathematics curriculum based on our findings.

  17. Software Requirements Engineering Methodology (Development)

    DTIC Science & Technology

    1979-06-01

    Higher Order Software [20]; and the Michael Jackson Design Methodology [21]. Although structured programming constructs have proven to be more useful...reviewed here. Similarly, the manual techniques for software design (e.g., HIPO Diagrams, Nassi-Schneidermann charts, Top-Down Design, the Michael ... Jackson Design Methodology, Yourdon’s Structured Design) are not addressed. 6.1.3 Research Programs There are a number of research programs underway

  18. Motor-Reducer Sizing through a MATLAB-Based Graphical Technique

    ERIC Educational Resources Information Center

    Giberti, H.; Cinquemani, S.

    2012-01-01

    The design of the drive system for an automatic machine and its correct sizing is a very important competence for an electrical or mechatronic engineer. This requires knowledge that crosses the fields of electrical engineering, electronics and mechanics, as well as the skill to choose commercial components based upon their technical documentation.…

  19. Changes in Teachers' Adaptive Expertise in an Engineering Professional Development Course

    ERIC Educational Resources Information Center

    Martin, Taylor; Peacock, Stephanie Baker; Ko, Pat; Rudolph, Jennifer J.

    2015-01-01

    Although the consensus seems to be that high-school-level introductory engineering courses should focus on design, this creates a problem for teacher training. Traditionally, math and science teachers are trained to teach and assess factual knowledge and closed-ended problem-solving techniques specific to a particular discipline, which is unsuited…

  20. Effective Design of Educational Virtual Reality Applications for Medicine Using Knowledge-Engineering Techniques

    ERIC Educational Resources Information Center

    Górski, Filip; Bun, Pawel; Wichniarek, Radoslaw; Zawadzki, Przemyslaw; Hamrol, Adam

    2017-01-01

    Effective medical and biomedical engineering education is an important problem. Traditional methods are difficult and costly. That is why Virtual Reality is often used for that purpose. Educational medical VR is a well-developed IT field, with many available hardware and software solutions. Current solutions are prepared without methodological…

  1. Model-based optimal design of experiments - semidefinite and nonlinear programming formulations

    PubMed Central

    Duarte, Belmiro P.M.; Wong, Weng Kee; Oliveira, Nuno M.C.

    2015-01-01

    We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D–, A– and E–optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D–optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice. PMID:26949279

  2. Model-based optimal design of experiments - semidefinite and nonlinear programming formulations.

    PubMed

    Duarte, Belmiro P M; Wong, Weng Kee; Oliveira, Nuno M C

    2016-02-15

    We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D -, A - and E -optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D -optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice.

  3. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing.

    PubMed

    Butscher, A; Bohner, M; Hofmann, S; Gauckler, L; Müller, R

    2011-03-01

    This article reviews the current state of knowledge concerning the use of powder-based three-dimensional printing (3DP) for the synthesis of bone tissue engineering scaffolds. 3DP is a solid free-form fabrication (SFF) technique building up complex open porous 3D structures layer by layer (a bottom-up approach). In contrast to traditional fabrication techniques generally subtracting material step by step (a top-down approach), SFF approaches allow nearly unlimited designs and a large variety of materials to be used for scaffold engineering. Today's state of the art materials, as well as the mechanical and structural requirements for bone scaffolds, are summarized and discussed in relation to the technical feasibility of their use in 3DP. Advances in the field of 3DP are presented and compared with other SFF methods. Existing strategies on material and design control of scaffolds are reviewed. Finally, the possibilities and limiting factors are addressed and potential strategies to improve 3DP for scaffold engineering are proposed. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. A new technique for thermodynamic engine modeling

    NASA Astrophysics Data System (ADS)

    Matthews, R. D.; Peters, J. E.; Beckel, S. A.; Shizhi, M.

    1983-12-01

    Reference is made to the equations given by Matthews (1983) for piston engine performance, which show that this performance depends on four fundamental engine efficiencies (combustion, thermodynamic cycle or indicated thermal, volumetric, and mechanical) as well as on engine operation and design parameters. This set of equations is seen to suggest a different technique for engine modeling; that is, that each efficiency should be modeled individually and the efficiency submodels then combined to obtain an overall engine model. A simple method for predicting the combustion efficiency of piston engines is therefore required. Various methods are proposed here and compared with experimental results. These combustion efficiency models are then combined with various models for the volumetric, mechanical, and indicated thermal efficiencies to yield three different engine models of varying degrees of sophistication. Comparisons are then made of the predictions of the resulting engine models with experimental data. It is found that combustion efficiency is almost independent of load, speed, and compression ratio and is not strongly dependent on fuel type, at least so long as the hydrogen-to-carbon ratio is reasonably close to that for isooctane.

  5. Software engineering techniques and CASE tools in RD13

    NASA Astrophysics Data System (ADS)

    Buono, S.; Gaponenko, I.; Jones, R.; Khodabandeh, A.; Mapelli, L.; Mornacchi, G.; Prigent, D.; Sanchez-Corral, E.; Skiadelli, M.; Toppers, A.; Duval, P. Y.; Ferrato, D.; Le Van Suu, A.; Qian, Z.; Rondot, C.; Ambrosini, G.; Fumagalli, G.; Polesello, G.; Aguer, M.; Huet, M.

    1994-12-01

    The RD13 project was approved in April 1991 for the development of a scalable data-taking system suitable for hosting various LHC studies. One of its goals is the exploitation of software engineering techniques, in order to indicate their overall suitability for data acquisition (DAQ), software design and implementation. This paper describes how such techniques have been applied to the development of components of the RD13 DAQ used in test-beam runs at CERN. We describe our experience with the Artifex CASE tool and its associated methodology. The issues raised when code generated by a CASE tool has to be integrated into an existing environment are also discussed.

  6. Biomimetic approaches to control soluble concentration gradients in biomaterials.

    PubMed

    Nguyen, Eric H; Schwartz, Michael P; Murphy, William L

    2011-04-08

    Soluble concentration gradients play a critical role in controlling tissue formation during embryonic development. The importance of soluble signaling in biology has motivated engineers to design systems that allow precise and quantitative manipulation of gradient formation in vitro. Engineering techniques have increasingly moved to the third dimension in order to provide more physiologically relevant models to study the biological role of gradient formation and to guide strategies for controlling new tissue formation for therapeutic applications. This review provides an overview of efforts to design biomimetic strategies for soluble gradient formation, with a focus on microfluidic techniques and biomaterials approaches for moving gradient generation to the third dimension. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Life and Utilization Criteria Identification in Design (LUCID). Volume II

    DTIC Science & Technology

    1981-10-01

    AFWAL-.TR.412101 VOLUME Iff LIFE AND UTILIZATION CRITERIA IDENTIFICATION oIN DESIGN , VOLUME I[ SMcDonnell Aircraft Company SMcDonnell Douglas... design , a complexinteractive air- craft/engine design effort is conducted. The primary objective of the Life and Utilization Criteria Identification in... Design (LUCID) Program was to develop and demonstrate techniques which will aid in identifying, during conceptual design , balanced and consistent

  8. Free-piston engine linear generator for hybrid vehicles modeling study

    NASA Astrophysics Data System (ADS)

    Callahan, T. J.; Ingram, S. K.

    1995-05-01

    Development of a free piston engine linear generator was investigated for use as an auxiliary power unit for a hybrid electric vehicle. The main focus of the program was to develop an efficient linear generator concept to convert the piston motion directly into electrical power. Computer modeling techniques were used to evaluate five different designs for linear generators. These designs included permanent magnet generators, reluctance generators, linear DC generators, and two and three-coil induction generators. The efficiency of the linear generator was highly dependent on the design concept. The two-coil induction generator was determined to be the best design, with an efficiency of approximately 90 percent.

  9. Variable mixer propulsion cycle

    NASA Technical Reports Server (NTRS)

    Rundell, D. J.; Mchugh, D. P.; Foster, T.; Brown, R. H. (Inventor)

    1978-01-01

    A design technique, method and apparatus are delineated for controlling the bypass gas stream pressure and varying the bypass ratio of a mixed flow gas turbine engine in order to achieve improved performance. The disclosed embodiments each include a mixing device for combining the core and bypass gas streams. The variable area mixing device permits the static pressures of the core and bypass streams to be balanced prior to mixing at widely varying bypass stream pressure levels. The mixed flow gas turbine engine therefore operates efficiently over a wide range of bypass ratios and the dynamic pressure of the bypass stream is maintained at a level which will keep the engine inlet airflow matched to an optimum design level throughout a wide range of engine thrust settings.

  10. A simulation study of turbofan engine deterioration estimation using Kalman filtering techniques

    NASA Technical Reports Server (NTRS)

    Lambert, Heather H.

    1991-01-01

    Deterioration of engine components may cause off-normal engine operation. The result is an unecessary loss of performance, because the fixed schedules are designed to accommodate a wide range of engine health. These fixed control schedules may not be optimal for a deteriorated engine. This problem may be solved by including a measure of deterioration in determining the control variables. These engine deterioration parameters usually cannot be measured directly but can be estimated. A Kalman filter design is presented for estimating two performance parameters that account for engine deterioration: high and low pressure turbine delta efficiencies. The delta efficiency parameters model variations of the high and low pressure turbine efficiencies from nominal values. The filter has a design condition of Mach 0.90, 30,000 ft altitude, and 47 deg power level angle (PLA). It was evaluated using a nonlinear simulation of the F100 engine model derivative (EMD) engine, at the design Mach number and altitude over a PLA range of 43 to 55 deg. It was found that known high pressure turbine delta efficiencies of -2.5 percent and low pressure turbine delta efficiencies of -1.0 percent can be estimated with an accuracy of + or - 0.25 percent efficiency with a Kalman filter. If both the high and low pressure turbine are deteriorated, the delta efficiencies of -2.5 percent to both turbines can be estimated with the same accuracy.

  11. Creating meaningful learning experiences: Understanding students' perspectives of engineering design

    NASA Astrophysics Data System (ADS)

    Aleong, Richard James Chung Mun

    There is a societal need for design education to prepare holistic engineers with the knowledge, skills, and attitudes to innovate and compete globally. Design skills are paramount to the espoused values of higher education, as institutions of higher learning strive to develop in students the cognitive abilities of critical thinking, problem solving, and creativity. To meet these interests from industry and academia, it is important to advance the teaching and learning of engineering design. This research aims to understand how engineering students learn and think about design, as a way for engineering educators to optimize instructional practice and curriculum development. Qualitative research methodology was used to investigate the meaning that engineering students' ascribe to engineering design. The recruitment of participants and corresponding collection of data occurred in two phases using two different data collection techniques. The first phase involved the distribution of a one-time online questionnaire to all first year, third year, and fourth year undergraduate engineering students at three Canadian Universities. After the questionnaire, students were asked if they would be willing to participate in the second phase of data collection consisting of a personal interview. A total of ten students participated in interviews. Qualitative data analysis procedures were conducted on students' responses from the questionnaire and interviews. The data analysis process consisted of two phases: a descriptive phase to code and categorize the data, followed by an interpretative phase to generate further meaning and relationships. The research findings present a conceptual understanding of students' descriptions about engineering design, structured within two educational orientations: a learning studies orientation and a curriculum studies orientation. The learning studies orientation captured three themes of students' understanding of engineering design: awareness, relevance, and transfer. With this framework of student learning, engineering educators can enhance learning experiences by engaging all three levels of students' understanding. The curriculum studies orientation applied the three holistic elements of curriculum---subject matter, society, and the individual---to conceptualize design considerations for engineering curriculum and teaching practice. This research supports the characterization of students' learning experiences to help educators and students optimize their teaching and learning of design education.

  12. Application of modern tools and techniques to maximize engineering productivity in the development of orbital operations plans for the space station progrm

    NASA Technical Reports Server (NTRS)

    Manford, J. S.; Bennett, G. R.

    1985-01-01

    The Space Station Program will incorporate analysis of operations constraints and considerations in the early design phases to avoid the need for later modifications to the Space Station for operations. The application of modern tools and administrative techniques to minimize the cost of performing effective orbital operations planning and design analysis in the preliminary design phase of the Space Station Program is discussed. Tools and techniques discussed include: approach for rigorous analysis of operations functions, use of the resources of a large computer network, and providing for efficient research and access to information.

  13. Recent advances in automated protein design and its future challenges.

    PubMed

    Setiawan, Dani; Brender, Jeffrey; Zhang, Yang

    2018-04-25

    Protein function is determined by protein structure which is in turn determined by the corresponding protein sequence. If the rules that cause a protein to adopt a particular structure are understood, it should be possible to refine or even redefine the function of a protein by working backwards from the desired structure to the sequence. Automated protein design attempts to calculate the effects of mutations computationally with the goal of more radical or complex transformations than are accessible by experimental techniques. Areas covered: The authors give a brief overview of the recent methodological advances in computer-aided protein design, showing how methodological choices affect final design and how automated protein design can be used to address problems considered beyond traditional protein engineering, including the creation of novel protein scaffolds for drug development. Also, the authors address specifically the future challenges in the development of automated protein design. Expert opinion: Automated protein design holds potential as a protein engineering technique, particularly in cases where screening by combinatorial mutagenesis is problematic. Considering solubility and immunogenicity issues, automated protein design is initially more likely to make an impact as a research tool for exploring basic biology in drug discovery than in the design of protein biologics.

  14. Current and future technology in radial and axial gas turbines

    NASA Technical Reports Server (NTRS)

    Rohlik, H. E.

    1983-01-01

    Design approaches and flow analysis techniques currently employed by aircraft engine manufacturers are assessed. Studies were performed to define the characteristics of aircraft and engines for civil missions of the 1990's and beyond. These studies, coupled with experience in recent years, identified the critical technologies needed to meet long range goals in fuel economy and other operating costs. Study results, recent and current research and development programs, and an estimate of future design and analytic capabilities are discussed.

  15. Skylab experiments. Volume 7: Living and working in space. [Skylab mission data on human factors engineering and spacecraft components for high school level education

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Experiments conducted on the Skylab vehicle that will measure and evaluate the ability of the crew to live and work effectively in space are discussed. The methods and techniques of human engineering as they relate to the design and evaluation of work spaces, requirements, and tools are described. The application of these methods and the Skylab measurements to the design of future spacecraft are analyzed.

  16. Design of Z-Pinch and Dense Plasma Focus Powered Vehicles

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Fincher, Sharon; Adams, Robert B.; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Maples, C. Daphne; Miermik, Janie N.; Statham, Geoffrey N.; Fabisinski, Leo; hide

    2011-01-01

    Z-pinch and Dense Plasma Focus (DPF) are two promising techniques for bringing fusion power to the field of in-space propulsion. A design team comprising of engineers and scientists from UAHuntsville, NASA's George C. Marshall Space Flight Center and the University of Wisconsin developed concept vehicles for a crewed round trip mission to Mars and an interstellar precursor mission. Outlined in this paper are vehicle concepts, complete with conceptual analysis of the mission profile, operations, structural and thermal analysis and power/avionics design. Additionally engineering design of the thruster itself is included. The design efforts adds greatly to the fidelity of estimates for power density (alpha) and overall performance for these thruster concepts

  17. Developments in Cylindrical Shell Stability Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Starnes, James H., Jr.

    1998-01-01

    Today high-performance computing systems and new analytical and numerical techniques enable engineers to explore the use of advanced materials for shell design. This paper reviews some of the historical developments of shell buckling analysis and design. The paper concludes by identifying key research directions for reliable and robust methods development in shell stability analysis and design.

  18. Protein Design for Nanostructural Engineering: General Aspects.

    PubMed

    Grove, Tijana Z; Cortajarena, Aitziber L

    2016-01-01

    This chapter aims to introduce the main challenges in the field of protein design for engineering of nanostructures and functional materials. First, we introduce proteins and illustrate the key characteristics that open many possibilities for the use of proteins in nanotechnology. Then, we describe the current state of the art of nanopatterning techniques and the actual needs of the emerging field of nanotechnology to develop new tools in order to achieve precise control and manipulation of elements at the nanoscale. In this sense, the increasing knowledge of protein science and advances in protein design allow to tackle current challenges such as the design of nanodevices, nanopatterned surfaces, and nanomachines. This book highlights the recent progresses of protein nanotechnology over the last decade and emphasizes the power of protein engineering through illustrative examples of protein based-assemblies and their potential applications.

  19. Design and preparation of polymeric scaffolds for tissue engineering.

    PubMed

    Weigel, Thomas; Schinkel, Gregor; Lendlein, Andreas

    2006-11-01

    Polymeric scaffolds for tissue engineering can be prepared with a multitude of different techniques. Many diverse approaches have recently been under development. The adaptation of conventional preparation methods, such as electrospinning, induced phase separation of polymer solutions or porogen leaching, which were developed originally for other research areas, are described. In addition, the utilization of novel fabrication techniques, such as rapid prototyping or solid free-form procedures, with their many different methods to generate or to embody scaffold structures or the usage of self-assembly systems that mimic the properties of the extracellular matrix are also described. These methods are reviewed and evaluated with specific regard to their utility in the area of tissue engineering.

  20. A History of Welding on the Space Shuttle Main Engine (1975 to 2010)

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.; Russell, Carolyn K.

    2010-01-01

    The Space Shuttle Main Engine (SSME) is a high performance, throttleable, liquid hydrogen fueled rocket engine. High thrust and specific impulse (Isp) are achieved through a staged combustion engine cycle, combined with high combustion pressure (approx.3000psi) generated by the two-stage pump and combustion process. The SSME is continuously throttleable from 67% to 109% of design thrust level. The design criteria for this engine maximize performance and weight, resulting in a 7,800 pound rocket engine that produces over a half million pounds of thrust in vacuum with a specific impulse of 452/sec. It is the most reliable rocket engine in the world, accumulating over one million seconds of hot-fire time and achieving 100% flight success in the Space Shuttle program. A rocket engine with the unique combination of high reliability, performance, and reusability comes at the expense of manufacturing simplicity. Several innovative design features and fabrication techniques are unique to this engine. This is as true for welding as any other manufacturing process. For many of the weld joints it seemed mean cheating physics and metallurgy to meet the requirements. This paper will present a history of the welding used to produce the world s highest performance throttleable rocket engine.

  1. Nonlinear Control of a Reusable Rocket Engine for Life Extension

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok

    1998-01-01

    This paper presents the conceptual development of a life-extending control system where the objective is to achieve high performance and structural durability of the plant. A life-extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel (H2) and oxidizer (O2) turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. The design procedure makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life-extending controller module to augment a conventional performance controller of the rocket engine. The nonlinear aspect of the design is achieved using non-linear parameter optimization of a prescribed control structure. Fatigue damage in fuel and oxidizer turbine blades is primarily caused by stress cycling during start-up, shutdown, and transient operations of a rocket engine. Fatigue damage in the turbine blades is one of the most serious causes for engine failure.

  2. Fiber optic (flight quality) sensors for advanced aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Poppel, Gary L.

    1994-01-01

    Development of flight prototype, fiber-optic sensing system components for measuring nine sensed parameters (three temperatures, two speeds, three positions, and one flame) on an F404-400 aircraft engine is described. Details of each sensor's design, functionality, and environmental testing, and the electro-optics architecture for sensor signal conditioning are presented. Eight different optical sensing techniques were utilized. Design, assembly, and environmental testing of an engine-mounted, electro-optics chassis unit (EOU), providing MIL-C-1553 data output, are related. Interconnection cables and connectors between the EOU and the sensors are identified. Results of sensor/cable/circuitry integrated testing, and installation and ground testing of the sensor system on an engine in October 1993 and April 1994 are given, including comparisons with the engine control system's electrical sensors. Lessons learned about the design, fabrication, testing, and integration of the sensor system components are included.

  3. Bioinspiration: applying mechanical design to experimental biology.

    PubMed

    Flammang, Brooke E; Porter, Marianne E

    2011-07-01

    The production of bioinspired and biomimetic constructs has fostered much collaboration between biologists and engineers, although the extent of biological accuracy employed in the designs produced has not always been a priority. Even the exact definitions of "bioinspired" and "biomimetic" differ among biologists, engineers, and industrial designers, leading to confusion regarding the level of integration and replication of biological principles and physiology. By any name, biologically-inspired mechanical constructs have become an increasingly important research tool in experimental biology, offering the opportunity to focus research by creating model organisms that can be easily manipulated to fill a desired parameter space of structural and functional repertoires. Innovative researchers with both biological and engineering backgrounds have found ways to use bioinspired models to explore the biomechanics of organisms from all kingdoms to answer a variety of different questions. Bringing together these biologists and engineers will hopefully result in an open discourse of techniques and fruitful collaborations for experimental and industrial endeavors.

  4. SSME fault monitoring and diagnosis expert system

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Norman, Arnold M.; Gupta, U. K.

    1989-01-01

    An expert system, called LEADER, has been designed and implemented for automatic learning, detection, identification, verification, and correction of anomalous propulsion system operations in real time. LEADER employs a set of sensors to monitor engine component performance and to detect, identify, and validate abnormalities with respect to varying engine dynamics and behavior. Two diagnostic approaches are adopted in the architecture of LEADER. In the first approach fault diagnosis is performed through learning and identifying engine behavior patterns. LEADER, utilizing this approach, generates few hypotheses about the possible abnormalities. These hypotheses are then validated based on the SSME design and functional knowledge. The second approach directs the processing of engine sensory data and performs reasoning based on the SSME design, functional knowledge, and the deep-level knowledge, i.e., the first principles (physics and mechanics) of SSME subsystems and components. This paper describes LEADER's architecture which integrates a design based reasoning approach with neural network-based fault pattern matching techniques. The fault diagnosis results obtained through the analyses of SSME ground test data are presented and discussed.

  5. A survey of instabilities within centrifugal pumps and concepts for improving the flow range of pumps in rocket engines

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1992-01-01

    Design features and concepts that have primary influence on the stable operating flow range of propellant-feed centrifugal turbopumps in a rocket engine are discussed. One of the throttling limitations of a pump-fed rocket engine is the stable operating range of the pump. Several varieties of pump hydraulic instabilities are mentioned. Some pump design criteria are summarized and a qualitative correlation of key parameters to pump stall and surge are referenced. Some of the design criteria were taken from the literature on high pressure ratio centrifugal compressors. Therefore, these have yet to be validated for extending the stable operating flow range of high-head pumps. Casing treatment devices, dynamic fluid-damping plenums, backflow-stabilizing vanes and flow-reinjection techniques are summarized. A planned program was undertaken at LeRC to validate these concepts. Technologies developed by this program will be available for the design of turbopumps for advanced space rocket engines for use by NASA in future space missions where throttling is essential.

  6. Scramjet nozzle design and analysis as applied to a highly integrated hypersonic research airplane

    NASA Technical Reports Server (NTRS)

    Small, W. J.; Weidner, J. P.; Johnston, P. J.

    1976-01-01

    Engine-nozzle airframe integration at hypersonic speeds was conducted by using a high-speed research aircraft concept as a focus. Recently developed techniques for analysis of scramjet-nozzle exhaust flows provide a realistic analysis of complex forces resulting from the engine-nozzle airframe coupling. By properly integrating the engine-nozzle propulsive system with the airframe, efficient, controlled and stable flight results over a wide speed range.

  7. System engineering techniques for establishing balanced design and performance guidelines for the advanced telerobotic testbed

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Matijevic, J. R.

    1987-01-01

    Novel system engineering techniques have been developed and applied to establishing structured design and performance objectives for the Telerobotics Testbed that reduce technical risk while still allowing the testbed to demonstrate an advancement in state-of-the-art robotic technologies. To estblish the appropriate tradeoff structure and balance of technology performance against technical risk, an analytical data base was developed which drew on: (1) automation/robot-technology availability projections, (2) typical or potential application mission task sets, (3) performance simulations, (4) project schedule constraints, and (5) project funding constraints. Design tradeoffs and configuration/performance iterations were conducted by comparing feasible technology/task set configurations against schedule/budget constraints as well as original program target technology objectives. The final system configuration, task set, and technology set reflected a balanced advancement in state-of-the-art robotic technologies, while meeting programmatic objectives and schedule/cost constraints.

  8. Geoscience techniques for engineering assessment of Oman to India pipeline route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baerenwald, P.D.; Mullee, J.E.; Campbell, K.J.

    1996-12-31

    A variety of geoscience techniques were used to define soil conditions and evaluate geologic processes in order to develop design criteria for complex segments of the proposed Oman to Indian pipeline route. Geophysical survey data, seafloor cores, ROV observation of the seafloor, and oceanographic measurements were the principal field data collected. Geotechnical soil testing, and X-ray radiography, detailed geologic logging, and C-14 age dating of cores were carried out. The diverse sets of field data and lab test results were integrated by a multi-disciplined team of geoscientists and engineers to develop geologic and soil models, soil design criteria, a turbidmore » flow model, and seafloor stability models. The integrated approach used here is applicable to other complex areas where seafloor stability needs to be assessed or design criteria need to be developed for active geologic processes.« less

  9. A knowledge-based tool for multilevel decomposition of a complex design problem

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    1989-01-01

    Although much work has been done in applying artificial intelligence (AI) tools and techniques to problems in different engineering disciplines, only recently has the application of these tools begun to spread to the decomposition of complex design problems. A new tool based on AI techniques has been developed to implement a decomposition scheme suitable for multilevel optimization and display of data in an N x N matrix format.

  10. Fundamentals of Digital Engineering: Designing for Reliability

    NASA Technical Reports Server (NTRS)

    Katz, R.; Day, John H. (Technical Monitor)

    2001-01-01

    The concept of designing for reliability will be introduced along with a brief overview of reliability, redundancy and traditional methods of fault tolerance is presented, as applied to current logic devices. The fundamentals of advanced circuit design and analysis techniques will be the primary focus. The introduction will cover the definitions of key device parameters and how analysis is used to prove circuit correctness. Basic design techniques such as synchronous vs asynchronous design, metastable state resolution time/arbiter design, and finite state machine structure/implementation will be reviewed. Advanced topics will be explored such as skew-tolerant circuit design, the use of triple-modular redundancy and circuit hazards, device transients and preventative circuit design, lock-up states in finite state machines generated by logic synthesizers, device transient characteristics, radiation mitigation techniques. worst-case analysis, the use of timing analyzer and simulators, and others. Case studies and lessons learned from spaceflight designs will be given as examples

  11. Analyzing Engineering Design through the Lens of Computation

    ERIC Educational Resources Information Center

    Worsley, Marcelo; Blikstein, Paulo

    2014-01-01

    Learning analytics and educational data mining are introducing a number of new techniques and frameworks for studying learning. The scalability and complexity of these novel techniques has afforded new ways for enacting education research and has helped scholars gain new insights into human cognition and learning. Nonetheless, there remain some…

  12. Microwave and radiofrequency techniques for clinical hyperthermia.

    PubMed Central

    Cheung, A. Y.

    1982-01-01

    Biological and practical constraints on the use of clinical hyperthermia for the management of cancer are discussed. Commonly used electromagnetic techniques for producing clinical hyperthermia are reviewed and compared. Innovative engineering designs leading to the realization of an integrated, safe and reliable clinical hyperthermia system are also presented. PMID:6950753

  13. Real-time application of advanced three-dimensional graphic techniques for research aircraft simulation

    NASA Technical Reports Server (NTRS)

    Davis, Steven B.

    1990-01-01

    Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.

  14. Methods for Improving Information from ’Undesigned’ Human Factors Experiments.

    DTIC Science & Technology

    Human factors engineering, Information processing, Regression analysis , Experimental design, Least squares method, Analysis of variance, Correlation techniques, Matrices(Mathematics), Multiple disciplines, Mathematical prediction

  15. Additive Manufacture of Plasma Diagnostic Components Final Report Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, Simon; Romero-Talamas, Carlos; You, Setthivoine

    There is now a well-established set of plasma diagnostics (see e.g. [3]), but these remain some of the mostexpensive assemblies in fusion systems since for every system they have to be custom built, and time fordiagnostic development can pace the project. Additive manufacturing (AM) has the potential to decreaseproduction cost and significantly lower design time of fusion diagnostic subsystems, which would realizesignificant cost reduction for standard diagnostics. In some cases, these basic components can be additivelymanufactured for less than 1/100th costs of conventional manufacturing.In our DOE Phase II SBIR, we examined the impact that AM can have on plasma diagnosticmore » cost bytaking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) tech-niques, then optimizing the design to exploit the benefits of AM. The impact of AM techniques on cost isfound to be in several areas. First, the cost of materials falls because AM parts can be manufactured withlittle to no waste, and engineered to use less material than CM. Next, the cost of fabrication falls for AMparts relative to CM since the fabrication time can be computed exactly, and often no post-processing isrequired for the part to be functional. We find that AM techniques are well suited for plasma diagnosticssince typical diagnostic complexity comes at no additional cost. Cooling channels, for example, can be builtin to plasma-facing components at no extra cost. Fabrication costs associated with assembly are lower forAM parts because many components can be combined and printed as monoliths, thereby mitigating the needfor alignment or calibration. Finally, the cost of engineering is impacted by exploiting AM design tools thatallow standard components to be customized through web-interfaces. Furthermore, we find that conceptdesign costs can be impacted by scripting interfaces for online engineering design tools.« less

  16. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.

    PubMed

    Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu

    2011-05-23

    The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Engineering report. Part 1: NASA wheel air seal development for space shuttle type environmental requirements

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The sealing techniques are studied for existing aircraft wheel-tire designs to meet the hard vacuum .00001 torr and cold temperature -65 F requirements of space travel. The investigation covers the use of existing wheel seal designs.

  18. Turning up the heat on aircraft structures. [design and analysis for high-temperature conditions

    NASA Technical Reports Server (NTRS)

    Dobyns, Alan; Saff, Charles; Johns, Robert

    1992-01-01

    An overview is presented of the current effort in design and development of aircraft structures to achieve the lowest cost for best performance. Enhancements in this area are focused on integrated design, improved design analysis tools, low-cost fabrication techniques, and more sophisticated test methods. 3D CAD/CAM data are becoming the method through which design, manufacturing, and engineering communicate.

  19. Enhanced Teaching and Student Learning through a Simulator-Based Course in Chemical Unit Operations Design

    ERIC Educational Resources Information Center

    Ghasem, Nayef

    2016-01-01

    This paper illustrates a teaching technique used in computer applications in chemical engineering employed for designing various unit operation processes, where the students learn about unit operations by designing them. The aim of the course is not to teach design, but rather to teach the fundamentals and the function of unit operation processes…

  20. Low-Cost Approach to the Design and Fabrication of a LOX/RP-1 Injector

    NASA Technical Reports Server (NTRS)

    Shadoan, Michael D.; Sparks, Dave L.; Turner, James E. (Technical Monitor)

    2000-01-01

    NASA Marshall Space Flight Center (MSFC) has designed, built, and is currently testing Fastrac, a liquid oxygen (LOX)/RP-1 fueled 60K-lb thrust class rocket engine. One facet of Fastrac, which makes it unique is that it is the first large-scale engine designed and developed in accordance with the Agency's mandated "faster, better, cheaper" (FBC) program policy. The engine was developed under the auspices of MSFC's Low Cost Boost Technology office. Development work for the main injector actually began in 1993 in subscale form. In 1996, work began on the full-scale unit approximately 1 year prior to initiation of the engine development program. In order to achieve the value goals established by the FBC policy, a review of traditional design practices was necessary. This internal reevaluation would ultimately challenge more conventional methods of material selection. design process, and fabrication techniques. The effort was highly successful. This "new way" of thinking has resulted in an innovative injector design, one with reduced complexity and significantly lower cost. Application of lessons learned during this effort to new or existing designs can have a similar effect on costs and future program successes.

  1. Transient Response of a Second Order System Using State Variables.

    ERIC Educational Resources Information Center

    LePage, Wilbur R.

    This programed booklet is designed for the engineering student who is familiar with the techniques of integral calculus and electrical networks. The booklet teaches how to determine the current and voltages across a resistor, inductor, and capacitor after the switch in a network has been closed. This is a classical problem in engineering, the…

  2. An International Collaboration to Promote Inquiry-Based Learning in Undergraduate Engineering Classrooms

    ERIC Educational Resources Information Center

    Randall, D'Arcy C.; Moore, Christy; Carvalho, Isabel S.

    2012-01-01

    Purpose: The purpose of this paper is to describe specific techniques of "inquiry-based learning" employed by three instructors in Engineering schools, one in Europe and two in the USA. Design/methodology/approach: Theorists such as Bransford et al. argue that twenty-first century educators need to teach students to do more than simply…

  3. Parts plus pipes: synthetic biology approaches to metabolic engineering

    PubMed Central

    Boyle, Patrick M.; Silver, Pamela A.

    2011-01-01

    Synthetic biologists combine modular biological “parts” to create higher-order devices. Metabolic engineers construct biological “pipes” by optimizing the microbial conversion of basic substrates to desired compounds. Many scientists work at the intersection of these two philosophies, employing synthetic devices to enhance metabolic engineering efforts. These integrated approaches promise to do more than simply improve product yields; they can expand the array of products that are tractable to produce biologically. In this review, we explore the application of synthetic biology techniques to next-generation metabolic engineering challenges, as well as the emerging engineering principles for biological design. PMID:22037345

  4. Estimation of velocity fluctuation in internal combustion engine exhaust systems through beamforming techniques

    NASA Astrophysics Data System (ADS)

    Piñero, G.; Vergara, L.; Desantes, J. M.; Broatch, A.

    2000-11-01

    The knowledge of the particle velocity fluctuations associated with acoustic pressure oscillation in the exhaust system of internal combustion engines may represent a powerful aid in the design of such systems, from the point of view of both engine performance improvement and exhaust noise abatement. However, usual velocity measurement techniques, even if applicable, are not well suited to the aggressive environment existing in exhaust systems. In this paper, a method to obtain a suitable estimate of velocity fluctuations is proposed, which is based on the application of spatial filtering (beamforming) techniques to instantaneous pressure measurements. Making use of simulated pressure-time histories, several algorithms have been checked by comparison between the simulated and the estimated velocity fluctuations. Then, problems related to the experimental procedure and associated with the proposed methodology are addressed, making application to measurements made in a real exhaust system. The results indicate that, if proper care is taken when performing the measurements, the application of beamforming techniques gives a reasonable estimate of the velocity fluctuations.

  5. NASA systems engineering handbook

    NASA Astrophysics Data System (ADS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-06-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  6. The Systems Engineering Process for Human Support Technology Development

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is designing and optimizing systems. This paper reviews the systems engineering process and indicates how it can be applied in the development of advanced human support systems. Systems engineering develops the performance requirements, subsystem specifications, and detailed designs needed to construct a desired system. Systems design is difficult, requiring both art and science and balancing human and technical considerations. The essential systems engineering activity is trading off and compromising between competing objectives such as performance and cost, schedule and risk. Systems engineering is not a complete independent process. It usually supports a system development project. This review emphasizes the NASA project management process as described in NASA Procedural Requirement (NPR) 7120.5B. The process is a top down phased approach that includes the most fundamental activities of systems engineering - requirements definition, systems analysis, and design. NPR 7120.5B also requires projects to perform the engineering analyses needed to ensure that the system will operate correctly with regard to reliability, safety, risk, cost, and human factors. We review the system development project process, the standard systems engineering design methodology, and some of the specialized systems analysis techniques. We will discuss how they could apply to advanced human support systems development. The purpose of advanced systems development is not directly to supply human space flight hardware, but rather to provide superior candidate systems that will be selected for implementation by future missions. The most direct application of systems engineering is in guiding the development of prototype and flight experiment hardware. However, anticipatory systems engineering of possible future flight systems would be useful in identifying the most promising development projects.

  7. Flat-plate solar array project. Volume 6: Engineering sciences and reliability

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Smokler, M. I.

    1986-01-01

    The Flat-Plate Solar Array (FSA) Project activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety, and reliability requirements of large scale terrestrial photovoltaic systems applications are reported. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis of define design shortfalls and, thus, areas requiring additional research and development. A summary of the approach and technical outcome of these activities are provided along with a complete bibliography of the published documentation covering the detailed accomplishments and technologies developed.

  8. The Importance of Engine External's Health

    NASA Technical Reports Server (NTRS)

    Stoner, Barry L.

    2006-01-01

    Engine external components include all the fluid carrying, electron carrying, and support devices that are needed to operate the propulsion system. These components are varied and include: pumps, valves, actuators, solenoids, sensors, switches, heat exchangers, electrical generators, electrical harnesses, tubes, ducts, clamps and brackets. The failure of any component to perform its intended function will result in a maintenance action, a dispatch delay, or an engine in flight shutdown. The life of each component, in addition to its basic functional design, is closely tied to its thermal and dynamic environment .Therefore, to reach a mature design life, the component's thermal and dynamic environment must be understood and controlled, which can only be accomplished by attention to design analysis and testing. The purpose of this paper is to review analysis and test techniques toward achieving good component health.

  9. System safety in Stirling engine development

    NASA Technical Reports Server (NTRS)

    Bankaitis, H.

    1981-01-01

    The DOE/NASA Stirling Engine Project Office has required that contractors make safety considerations an integral part of all phases of the Stirling engine development program. As an integral part of each engine design subtask, analyses are evolved to determine possible modes of failure. The accepted system safety analysis techniques (Fault Tree, FMEA, Hazards Analysis, etc.) are applied in various degrees of extent at the system, subsystem and component levels. The primary objectives are to identify critical failure areas, to enable removal of susceptibility to such failures or their effects from the system and to minimize risk.

  10. Graduate engineering research participation in aeronautics

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.

    1986-01-01

    The Aeronautics Graduate Research Program commenced in 1971, with the primary goal of engaging students who qualified for regular admission to the Graduate School of Engineering at Old Dominion University in a graduate engineering research and study program in collaboration with NASA Langley Research Center, Hampton, Virginia. The format and purposes of this program are discussed. Student selection and program statistics are summarized. Abstracts are presented in the folowing areas: aircraft design, aerodynamics, lift/drag characteristics; avionics; fluid mechanics; solid mechanics; instrumentation and measurement techniques; thermophysical properties experiments; large space structures; earth orbital dynamics; and environmental engineering.

  11. Design and evaluation of combustors for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Grobman, J.

    1973-01-01

    Various techniques and test results are briefly described and referenced for detail. The effort arises from the increasing concern for the measurement and control of emissions from gas turbine engines. The greater part of this research is focused on reducing the oxides of nitrogen formed during takeoff and cruise in both advanced CTOL, high pressure ratio engines, and advanced supersonic aircraft engines. The experimental approaches taken to reduce oxides of nitrogen emissions include the use of: multizone combustors incorporating reduced dwell time, fuel-air premixing, air atomization, fuel prevaporization, water injection, and gaseous fuels. In the experiments conducted to date, some of these techniques were more successful than others in reducing oxides of nitrogen emissions. Tests are being conducted on full-annular combustors at pressures up to 6 atmospheres and on combustor segments at pressures up to 30 atmospheres.

  12. Simulation/Emulation Techniques: Compressing Schedules With Parallel (HW/SW) Development

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark L.; Hoang, June

    2014-01-01

    NASA has always been in the business of balancing new technologies and techniques to achieve human space travel objectives. NASA's Kedalion engineering analysis lab has been validating and using many contemporary avionics HW/SW development and integration techniques, which represent new paradigms to NASA's heritage culture. Kedalion has validated many of the Orion HW/SW engineering techniques borrowed from the adjacent commercial aircraft avionics solution space, inserting new techniques and skills into the Multi - Purpose Crew Vehicle (MPCV) Orion program. Using contemporary agile techniques, Commercial-off-the-shelf (COTS) products, early rapid prototyping, in-house expertise and tools, and extensive use of simulators and emulators, NASA has achieved cost effective paradigms that are currently serving the Orion program effectively. Elements of long lead custom hardware on the Orion program have necessitated early use of simulators and emulators in advance of deliverable hardware to achieve parallel design and development on a compressed schedule.

  13. Phase change materials handbook

    NASA Technical Reports Server (NTRS)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1971-01-01

    This handbook is intended to provide theory and data needed by the thermal design engineer to bridge the gap between research achievements and actual flight systems, within the limits of the current state of the art of phase change materials (PCM) technology. The relationship between PCM and more conventional thermal control techniques is described and numerous space and terrestrial applications of PCM are discussed. Material properties of the most promising PCMs are provided; the purposes and use of metallic filler materials in PCM composites are presented; and material compatibility considerations relevant to PCM design are included. The engineering considerations of PCM design are described, especially those pertaining to the thermodynamic and heat transfer phenomena peculiar to PCM design. Methods of obtaining data not currently available are presented. The special problems encountered in the space environment are described. Computational tools useful to the designer are discussed. In summary, each aspect of the PCM problem important to the design engineer is covered to the extent allowed by the scope of this effort and the state of the art.

  14. Information technology aided exploration of system design spaces

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Kiper, James D.; Kalafat, Selcuk

    2004-01-01

    We report on a practical application of information technology techniques to aid system engineers effectively explore large design spaces. We make use of heuristic search, visualization and data mining, the combination of which we have implemented wtihin a risk management tool in use at JPL and NASA.

  15. Design criteria monograph for high-load high-speed rolling-contact bearings

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Monograph was published which summarizes and systematically orders large body of successful techniques and practices developed for design of liquid rocket engine turbopump bearings. Document was written to organize and present significant experience and knowledge accumulated by NASA in development and operational programs.

  16. Development of a Graduate Course in Computer-Aided Geometric Design.

    ERIC Educational Resources Information Center

    Ault, Holly K.

    1991-01-01

    Described is a course that focuses on theory and techniques for ideation and refinement of geometric models used in mechanical engineering design applications. The course objectives, course outline, a description of the facilities, sample exercises, and a discussion of final projects are included. (KR)

  17. Design of a TDOA location engine and development of a location system based on chirp spread spectrum.

    PubMed

    Wang, Rui-Rong; Yu, Xiao-Qing; Zheng, Shu-Wang; Ye, Yang

    2016-01-01

    Location based services (LBS) provided by wireless sensor networks have garnered a great deal of attention from researchers and developers in recent years. Chirp spread spectrum (CSS) signaling formatting with time difference of arrival (TDOA) ranging technology is an effective LBS technique in regards to positioning accuracy, cost, and power consumption. The design and implementation of the location engine and location management based on TDOA location algorithms were the focus of this study; as the core of the system, the location engine was designed as a series of location algorithms and smoothing algorithms. To enhance the location accuracy, a Kalman filter algorithm and moving weighted average technique were respectively applied to smooth the TDOA range measurements and location results, which are calculated by the cooperation of a Kalman TDOA algorithm and a Taylor TDOA algorithm. The location management server, the information center of the system, was designed with Data Server and Mclient. To evaluate the performance of the location algorithms and the stability of the system software, we used a Nanotron nanoLOC Development Kit 3.0 to conduct indoor and outdoor location experiments. The results indicated that the location system runs stably with high accuracy at absolute error below 0.6 m.

  18. Applying Laser Cutting Techniques through Horology for Teaching Effective STEM in Design and Technology

    ERIC Educational Resources Information Center

    Jones, Lewis C. R.; Tyrer, John R.; Zanker, Nigel P.

    2013-01-01

    This paper explores the pedagogy underpinning the use of laser manufacturing methods for the teaching of science, technology, engineering and mathematics (STEM) at key stage 3 design and technology. Clock making (horology) has been a popular project in design and technology (D&T) found in many schools, typically it focuses on aesthetical…

  19. An Optimized Integrator Windup Protection Technique Applied to a Turbofan Engine Control

    NASA Technical Reports Server (NTRS)

    Watts, Stephen R.; Garg, Sanjay

    1995-01-01

    This paper introduces a new technique for providing memoryless integrator windup protection which utilizes readily available optimization software tools. This integrator windup protection synthesis provides a concise methodology for creating integrator windup protection for each actuation system loop independently while assuring both controller and closed loop system stability. The individual actuation system loops' integrator windup protection can then be combined to provide integrator windup protection for the entire system. This technique is applied to an H(exp infinity) based multivariable control designed for a linear model of an advanced afterburning turbofan engine. The resulting transient characteristics are examined for the integrated system while encountering single and multiple actuation limits.

  20. Designing and Building to ``Impossible'' Tolerances for Vibration Sensitive Equipment

    NASA Astrophysics Data System (ADS)

    Hertlein, Bernard H.

    2003-03-01

    As the precision and production capabilities of modern machines and factories increase, our expectations of them rise commensurately. Facility designers and engineers find themselves increasingly involved with measurement needs and design tolerances that were almost unthinkable a few years ago. An area of expertise that demonstrates this very clearly is the field of vibration measurement and control. Magnetic Resonance Imaging, Semiconductor manufacturing, micro-machining, surgical microscopes — These are just a few examples of equipment or techniques that need an extremely stable vibration environment. The challenge to architects, engineers and contractors is to provide that level of stability without undue cost or sacrificing the aesthetics and practicality of a structure. In addition, many facilities have run out of expansion room, so the design is often hampered by the need to reuse all or part of an existing structure, or to site vibration-sensitive equipment close to an existing vibration source. High resolution measurements and nondestructive testing techniques have proven to be invaluable additions to the engineer's toolbox in meeting these challenges. The author summarizes developments in this field over the last fifteen years or so, and lists some common errors of design and construction that can cost a lot of money in retrofit if missed, but can easily be avoided with a little foresight, an appropriate testing program and a carefully thought out checklist.

  1. User interface design principles for the SSM/PMAD automated power system

    NASA Technical Reports Server (NTRS)

    Jakstas, Laura M.; Myers, Chris J.

    1991-01-01

    Martin Marietta has developed a user interface for the space station module power management and distribution (SSM/PMAD) automated power system testbed which provides human access to the functionality of the power system, as well as exemplifying current techniques in user interface design. The testbed user interface was designed to enable an engineer to operate the system easily without having significant knowledge of computer systems, as well as provide an environment in which the engineer can monitor and interact with the SSM/PMAD system hardware. The design of the interface supports a global view of the most important data from the various hardware and software components, as well as enabling the user to obtain additional or more detailed data when needed. The components and representations of the SSM/PMAD testbed user interface are examined. An engineer's interactions with the system are also described.

  2. Energy efficient engine combustor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Zeisser, M. H.; Greene, W.; Dubiel, D. J.

    1982-01-01

    The combustor for the Energy Efficient Engine is an annular, two-zone component. As designed, it either meets or exceeds all program goals for performance, safety, durability, and emissions, with the exception of oxides of nitrogen. When compared to the configuration investigated under the NASA-sponsored Experimental Clean Combustor Program, which was used as a basis for design, the Energy Efficient Engine combustor component has several technology advancements. The prediffuser section is designed with short, strutless, curved-walls to provide a uniform inlet airflow profile. Emissions control is achieved by a two-zone combustor that utilizes two types of fuel injectors to improve fuel atomization for more complete combustion. The combustor liners are a segmented configuration to meet the durability requirements at the high combustor operating pressures and temperatures. Liner cooling is accomplished with a counter-parallel FINWALL technique, which provides more effective heat transfer with less coolant.

  3. CAD tools for detector design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Womersley, J.; DiGiacomo, N.; Killian, K.

    1990-04-01

    Detailed detector design has traditionally been divided between engineering optimization for structural integrity and subsequent physicist evaluation. The availability of CAD systems for engineering design enables the tasks to be integrated by providing tools for particle simulation within the CAD system. We believe this will speed up detector design and avoid problems due to the late discovery of shortcomings in the detector. This could occur because of the slowness of traditional verification techniques (such as detailed simulation with GEANT). One such new particle simulation tool is described. It is being used with the I-DEAS CAD package for SSC detector designmore » at Martin-Marietta Astronautics and is to be released through the SSC Laboratory.« less

  4. Establishment of Kansei Database and Application to Design for Consensus Building

    NASA Astrophysics Data System (ADS)

    Yasuda, Keiichi; Shiraki, Wataru

    Reflecting the recent social background where the importance of bridge landscape design is recognized and the new business style of citizen-involved infrastructure development has started, there has been a growing need of design where aesthetic feeling of actual users is reflected. In this research, a focus has been placed on the Kansei engineering technique where users' needs are reflected on product development. A questionnaire survey has been conducted for bridge engineers who are most intensively involved in design work and students as actual users. The result was analyzed by factor analysis and the Hayashi's quantification methods (category I). A tool required at consensus-building occasions has been created to change design elements and display accompanying evaluation difference while using the Kansei database.

  5. Factors promoting increased rate of tissue regeneration: the zebrafish fin as a tool for examining tissue engineering design concepts.

    PubMed

    Boominathan, Vijay P; Ferreira, Tracie L

    2012-12-01

    Student interest in topics of tissue engineering is increasing exponentially as the number of universities offering programs in bioengineering are on the rise. Bioengineering encompasses all of the STEM categories: Science, Technology, Engineering, and Math. Inquiry-based learning is one of the most effective techniques for promoting student learning and has been demonstrated to have a high impact on learning outcomes. We have designed program outcomes for our bioengineering program that require tiered activities to develop problem solving skills, peer evaluation techniques, and promote team work. While it is ideal to allow students to ask unique questions and design their own experiments, this can be difficult for instructors to have reagents and supplies available for a variety of activities. Zebrafish can be easily housed, and multiple variables can be tested on a large enough group to provide statistical value, lending them well to inquiry-based learning modules. We have designed a laboratory activity that takes observation of fin regeneration to the next level: analyzing conditions that may impact regeneration. Tissue engineers seek to define the optimum conditions to grow tissue for replacement parts. The field of tissue engineering is likely to benefit from understanding natural mechanisms of regeneration and the factors that influence the rate of regeneration. We have outlined the results of varying temperature on fin regeneration and propose other inquiry modules such as the role of pH in fin regeneration. Furthermore, we have provided useful tools for developing critical thinking and peer review of research ideas, assessment guidelines, and grading rubrics for the activities associated with this exercise.

  6. Photo-irradiation paradigm: Mapping a remarkable facile technique used for advanced drug, gene and cell delivery.

    PubMed

    Shaker, Mohamed A; Younes, Husam M

    2015-11-10

    Undoubtedly, the progression of photo-irradiation technique has provided a smart engineering tool for the state-of-the-art biomaterials that guide the biomedical and therapeutic domains for promoting the modern pharmaceutical industry. Many investigators had exploited such a potential technique to create/ameliorate numerous pharmaceutical carriers. These carriers show promising applications that vary from small drug to therapeutic protein delivery and from gene to living cell encapsulation design. Harmony between the properties of precisely engineered precursors and the formed network structure broadens the investigator's intellect for both brilliant creations and effective applications. As well, controlling photo-curing at the formulation level, through manipulating the absorption of light stimuli, photoinitiator system and photo-responsive precursor, facilitates the exploration of novel distinctive biomaterials. Discussion of utilizing different photo-curing procedures in designing/formulation of different pharmaceutical carriers is the main emphasis of this review. In addition, recent applications of these intelligent techniques in targeted, controlled, and sustained drug delivery with understanding of photo-irradiation concept and mechanism are illustrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A First Look at the DGEN380 Engine Acoustic Data from a Core-Noise Perspective

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2015-01-01

    This work is a first look at acoustic data acquired in the NASA Glenn Research Center Aero-Acoustic Propulsion Laboratory using the Price Induction DGEN380 small turbofan engine, with particular emphasis on broadband combustor (core) noise. Combustor noise is detected by using a two-signal source separation technique employing one engine-internal sensor and one semi-far-field microphone. Combustor noise is an important core-noise component and is likely to become a more prominent contributor to overall airport community noise due to turbofan design trends, expected aircraft configuration changes, and advances in fan-noise-mitigation techniques. This work was carried out under the NASA Fundamental Aeronautics Program, Fixed Wing Project, Quiet Performance Subproject

  8. Advanced Vibration Analysis Tool Developed for Robust Engine Rotor Designs

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2005-01-01

    The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo- Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using natural-frequency curve veerings to identify ranges of operating conditions (rotational speeds and engine orders) in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued.

  9. An experimental investigation of the aerodynamics and cooling of a horizontally-opposed air-cooled aircraft engine installation

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Cross, E. J., Jr.; Owens, J. K.; Lawrence, D. L.

    1981-01-01

    A flight-test based research program was performed to investigate the aerodynamics and cooling of a horizontally-opposed engine installation. Specific areas investigated were the internal aerodynamics and cooling mechanics of the installation, inlet aerodynamics, and exit aerodynamics. The applicable theory and current state of the art are discussed for each area. Flight-test and ground-test techniques for the development of the cooling installation and the solution of cooling problems are presented. The results show that much of the internal aerodynamics and cooling technology developed for radial engines are applicable to horizontally opposed engines. Correlation is established between engine manufacturer's cooling design data and flight measurements of the particular installation. Also, a flight-test method for the development of cooling requirements in terms of easily measurable parameters is presented. The impact of inlet and exit design on cooling and cooling drag is shown to be of major significance.

  10. Service Modeling for Service Engineering

    NASA Astrophysics Data System (ADS)

    Shimomura, Yoshiki; Tomiyama, Tetsuo

    Intensification of service and knowledge contents within product life cycles is considered crucial for dematerialization, in particular, to design optimal product-service systems from the viewpoint of environmentally conscious design and manufacturing in advanced post industrial societies. In addition to the environmental limitations, we are facing social limitations which include limitations of markets to accept increasing numbers of mass-produced artifacts and such environmental and social limitations are restraining economic growth. To attack and remove these problems, we need to reconsider the current mass production paradigm and to make products have more added values largely from knowledge and service contents to compensate volume reduction under the concept of dematerialization. Namely, dematerialization of products needs to enrich service contents. However, service was mainly discussed within marketing and has been mostly neglected within traditional engineering. Therefore, we need new engineering methods to look at services, rather than just functions, called "Service Engineering." To establish service engineering, this paper proposes a modeling technique of service.

  11. Holographic aids for internal combustion engine flow studies

    NASA Technical Reports Server (NTRS)

    Regan, C.

    1984-01-01

    Worldwide interest in improving the fuel efficiency of internal combustion (I.C.) engines has sparked research efforts designed to learn more about the flow processes of these engines. The flow fields must be understood prior to fuel injection in order to design efficient valves, piston geometries, and fuel injectors. Knowledge of the flow field is also necessary to determine the heat transfer to combustion chamber surfaces. Computational codes can predict velocity and turbulence patterns, but experimental verification is mandatory to justify their basic assumptions. Due to their nonintrusive nature, optical methods are ideally suited to provide the necessary velocity verification data. Optical sytems such as Schlieren photography, laser velocimetry, and illuminated particle visualization are used in I.C. engines, and now their versatility is improved by employing holography. These holographically enhanced optical techniques are described with emphasis on their applications in I.C. engines.

  12. Computer-aided dental prostheses construction using reverse engineering.

    PubMed

    Solaberrieta, E; Minguez, R; Barrenetxea, L; Sierra, E; Etxaniz, O

    2014-01-01

    The implementation of computer-aided design/computer-aided manufacturing (CAD/CAM) systems with virtual articulators, which take into account the kinematics, constitutes a breakthrough in the construction of customised dental prostheses. This paper presents a multidisciplinary protocol involving CAM techniques to produce dental prostheses. This protocol includes a step-by-step procedure using innovative reverse engineering technologies to transform completely virtual design processes into customised prostheses. A special emphasis is placed on a novel method that permits a virtual location of the models. The complete workflow includes the optical scanning of the patient, the use of reverse engineering software and, if necessary, the use of rapid prototyping to produce CAD temporary prostheses.

  13. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andy; Graham, Bart

    2016-01-01

    Dynetics has designed innovative structure assemblies; manufactured them using Friction Stir Welding (FSW) to leverage NASA investments in tools, facilities, and processes; conducted proof and burst testing, demonstrating viability of design/build processes Dynetics/AR has applied state-of-the-art manufacturing and processing techniques to the heritage F-1, reducing risk for engine development Dynetics/AR has also made progress on technology demonstrations for ORSC cycle engine, which offers affordability and performance for both NASA and other launch vehicles Full-scale integrated oxidizer-rich test article. Testing will evaluate performance and combustion stability characteristics. Contributes to technology maturation for ox-rich staged combustion engines.

  14. Computational protein design-the next generation tool to expand synthetic biology applications.

    PubMed

    Gainza-Cirauqui, Pablo; Correia, Bruno Emanuel

    2018-05-02

    One powerful approach to engineer synthetic biology pathways is the assembly of proteins sourced from one or more natural organisms. However, synthetic pathways often require custom functions or biophysical properties not displayed by natural proteins, limitations that could be overcome through modern protein engineering techniques. Structure-based computational protein design is a powerful tool to engineer new functional capabilities in proteins, and it is beginning to have a profound impact in synthetic biology. Here, we review efforts to increase the capabilities of synthetic biology using computational protein design. We focus primarily on computationally designed proteins not only validated in vitro, but also shown to modulate different activities in living cells. Efforts made to validate computational designs in cells can illustrate both the challenges and opportunities in the intersection of protein design and synthetic biology. We also highlight protein design approaches, which although not validated as conveyors of new cellular function in situ, may have rapid and innovative applications in synthetic biology. We foresee that in the near-future, computational protein design will vastly expand the functional capabilities of synthetic cells. Copyright © 2018. Published by Elsevier Ltd.

  15. Formalisms for user interface specification and design

    NASA Technical Reports Server (NTRS)

    Auernheimer, Brent J.

    1989-01-01

    The application of formal methods to the specification and design of human-computer interfaces is described. A broad outline of human-computer interface problems, a description of the field of cognitive engineering and two relevant research results, the appropriateness of formal specification techniques, and potential NASA application areas are described.

  16. Engineering Design Handbook: Maintenance Engineering Techniques

    DTIC Science & Technology

    1975-06-30

    resistance and lustrous appearance. Relatively expensive. Spec- ify hard chrome plate for exceptionally hard abrasion-resistant surface . Has low...36 Bearing Seals 3-36 Derating 3-37 Lubrication 3-37 Fixed Joints 3-37 Self-adjusting Components ." 3-38 Corrosion Aspects 3-38 Material...Troubleshooting Considerations by Army Command Category •■■ Fixed Plant/Defense Communications and USASA Equipment Army Aircraft Automotive and

  17. Differential reliability : probabilistic engineering applied to wood members in bending-tension

    Treesearch

    Stanley K. Suddarth; Frank E. Woeste; William L. Galligan

    1978-01-01

    Reliability analysis is a mathematical technique for appraising the design and materials of engineered structures to provide a quantitative estimate of probability of failure. Two or more cases which are similar in all respects but one may be analyzed by this method; the contrast between the probabilities of failure for these cases allows strong analytical focus on the...

  18. Nonlinear Stimulated Raman Exact Passage by Resonance-Locked Inverse Engineering

    NASA Astrophysics Data System (ADS)

    Dorier, V.; Gevorgyan, M.; Ishkhanyan, A.; Leroy, C.; Jauslin, H. R.; Guérin, S.

    2017-12-01

    We derive an exact and robust stimulated Raman process for nonlinear quantum systems driven by pulsed external fields. The external fields are designed with closed-form expressions from the inverse engineering of a given efficient and stable dynamics. This technique allows one to induce a controlled population inversion which surpasses the usual nonlinear stimulated Raman adiabatic passage efficiency.

  19. Multidisciplinary Analysis of a Hypersonic Engine

    NASA Technical Reports Server (NTRS)

    Stewart, M. E. M.; Suresh, A.; Liou, M. S.; Owen, A. K.; Messitt, D. G.

    2002-01-01

    This paper describes implementation of a technique used to obtain a high fidelity fluid-thermal-structural solution of a combined cycle engine at its scram design point. Single-discipline simulations are insufficient here since interactions from other disciplines are significant. Using off-the-shelf, validated solvers for the fluid, chemistry, thermal, and structural solutions, this approach couples together their results to obtain consistent solutions.

  20. [Vaccine application of recombinant herpesviruses].

    PubMed

    Yokoyama, N; Xuan, X; Mikami, T

    2000-04-01

    Recently, genetic engineering using recombinant DNA techniques has been applied to design new viral vaccines in order to reduce some problems which the present viral vaccines have. Up to now, many viruses have been investigated for development of recombinant attenuated vaccines or live viral vectors for delivery of foreign genes coding immunogenic antigens. In this article, we introduced the new vaccine strategy using genetically engineered herpesviruses.

  1. The making of the mechanical universe

    NASA Technical Reports Server (NTRS)

    Blinn, James

    1989-01-01

    The Mechanical Universe project required the production of over 550 different animated scenes, totaling about 7 and 1/2 hours of screen time. The project required the use of a wide range of techniques and motivated the development of several different software packages. A documentation is presented of many aspects of the project, encompassing artistic design issues, scientific simulations, software engineering, and video engineering.

  2. Development of a method of alignment between various SOLAR MAXIMUM MISSION experiments

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Results of an engineering study of the methods of alignment between various experiments for the solar maximum mission are described. The configuration studied consists of the instruments, mounts and instrument support platform located within the experiment module. Hardware design, fabrication methods and alignment techniques were studied with regard to optimizing the coalignment between the experiments and the fine sun sensor. The proposed hardware design was reviewed with regard to loads, stress, thermal distortion, alignment error budgets, fabrication techniques, alignment techniques and producibility. Methods of achieving comparable alignment accuracies on previous projects were also reviewed.

  3. A Modular Aerospike Engine Design Using Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Peugeot, John; Garcia, Chance; Burkhardt, Wendel

    2014-01-01

    A modular aerospike engine concept has been developed with the objective of demonstrating the viability of the aerospike design using additive manufacturing techniques. The aerospike system is a self-compensating design that allows for optimal performance over the entire flight regime and allows for the lowest possible mass vehicle designs. At low altitudes, improvements in Isp can be traded against chamber pressure, staging, and payload. In upper stage applications, expansion ratio and engine envelope can be traded against nozzle efficiency. These features provide flexibility to the System Designer optimizing a complete vehicle stage. The aerospike concept is a good example of a component that has demonstrated improved performance capability, but traditionally has manufacturing requirements that are too expensive and complex to use in a production vehicle. In recent years, additive manufacturing has emerged as a potential method for improving the speed and cost of building geometrically complex components in rocket engines. It offers a reduction in tooling overhead and significant improvements in the integration of the designer and manufacturing method. In addition, the modularity of the engine design provides the ability to perform full scale testing on the combustion devices outside of the full engine configuration. The proposed design uses a hydrocarbon based gas-generator cycle, with plans to take advantage of existing powerhead hardware while focusing DDT&E resources on manufacturing and sub-system testing of the combustion devices. The major risks for the modular aerospike concept lie in the performance of the propellant feed system, the structural integrity of the additive manufactured components, and the aerodynamic efficiency of the exhaust flow.

  4. Active Control of Inlet Noise on the JT15D Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Smith, Jerome P.; Hutcheson, Florence V.; Burdisso, Ricardo A.; Fuller, Chris R.

    1999-01-01

    This report presents the key results obtained by the Vibration and Acoustics Laboratories at Virginia Tech over the year from November 1997 to December 1998 on the Active Noise Control of Turbofan Engines research project funded by NASA Langley Research Center. The concept of implementing active noise control techniques with fuselage-mounted error sensors is investigated both analytically and experimentally. The analytical part of the project involves the continued development of an advanced modeling technique to provide prediction and design guidelines for application of active noise control techniques to large, realistic high bypass engines of the type on which active control methods are expected to be applied. Results from the advanced analytical model are presented that show the effectiveness of the control strategies, and the analytical results presented for fuselage error sensors show good agreement with the experimentally observed results and provide additional insight into the control phenomena. Additional analytical results are presented for active noise control used in conjunction with a wavenumber sensing technique. The experimental work is carried out on a running JT15D turbofan jet engine in a test stand at Virginia Tech. The control strategy used in these tests was the feedforward Filtered-X LMS algorithm. The control inputs were supplied by single and multiple circumferential arrays of acoustic sources equipped with neodymium iron cobalt magnets mounted upstream of the fan. The reference signal was obtained from an inlet mounted eddy current probe. The error signals were obtained from a number of pressure transducers flush-mounted in a simulated fuselage section mounted in the engine test cell. The active control methods are investigated when implemented with the control sources embedded within the acoustically absorptive material on a passively-lined inlet. The experimental results show that the combination of active control techniques with fuselage-mounted error sensors and passive control techniques is an effective means of reducing radiated noise from turbofan engines. Strategic selection of the location of the error transducers is shown to be effective for reducing the radiation towards particular directions in the farfield. An analytical model is used to predict the behavior of the control system and to guide the experimental design configurations, and the analytical results presented show good agreement with the experimentally observed results.

  5. Space Transportation Engine Program (STEP), phase B

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Space Transportation Engine Program (STEP) Phase 2 effort includes preliminary design and activities plan preparation that will allow smooth and time transition into a Prototype Phase and then into Phases 3, 4, and 5. A Concurrent Engineering approach using Total Quality Management (TQM) techniques, is being applied to define an oxygen-hydrogen engine. The baseline from Phase 1/1' studies was used as a point of departure for trade studies and analyses. Existing STME system models are being enhanced as more detailed module/component characteristics are determined. Preliminary designs for the open expander, closed expander, and gas generator cycles were prepared, and recommendations for cycle selection made at the Design Concept Review (DCR). As a result of July '90 DCR, and information subsequently supplied to the Technical Review Team, a gas generator cycle was selected. Results of the various Advanced Development Programs (ADP's) for the Advanced Launch Systems (ALS) were contributive to this effort. An active vehicle integration effort is supplying the NASA, Air Force, and vehicle contractors with engine parameters and data, and flowing down appropriate vehicle requirements. Engine design and analysis trade studies are being documented in a data base that was developed and is being used to organize information. To date, seventy four trade studies were input to the data base.

  6. Opportunities for research in aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.

    1983-01-01

    "Aerothermodynamics' involves the disciplines of chemistry, thermodynamics, fluid mechanics and heat transfer which have collaborative importance in propulsion systems. There are growing opportunities for the further application of these disciplines to improve the methodology for the design of advanced gas turbines; particularly, the combustor and turbine. Design procedures follow empirical or cut and try guidelines. The tremendous advances in computational analysis and in instrumentation techniques hold promise for research answers to complex physical processes that are currently not well understood. The transfer of basic research understanding to engineering design should result in shorter, less expensive development commitments for engines. The status and anticipated opportunities in research topics relevant to combustors and turbines is reviewed.

  7. Applications of Evolutionary Technology to Manufacturing and Logistics Systems : State-of-the Art Survey

    NASA Astrophysics Data System (ADS)

    Gen, Mitsuo; Lin, Lin

    Many combinatorial optimization problems from industrial engineering and operations research in real-world are very complex in nature and quite hard to solve them by conventional techniques. Since the 1960s, there has been an increasing interest in imitating living beings to solve such kinds of hard combinatorial optimization problems. Simulating the natural evolutionary process of human beings results in stochastic optimization techniques called evolutionary algorithms (EAs), which can often outperform conventional optimization methods when applied to difficult real-world problems. In this survey paper, we provide a comprehensive survey of the current state-of-the-art in the use of EA in manufacturing and logistics systems. In order to demonstrate the EAs which are powerful and broadly applicable stochastic search and optimization techniques, we deal with the following engineering design problems: transportation planning models, layout design models and two-stage logistics models in logistics systems; job-shop scheduling, resource constrained project scheduling in manufacturing system.

  8. User Selection Criteria of Airspace Designs in Flexible Airspace Management

    NASA Technical Reports Server (NTRS)

    Lee, Hwasoo E.; Lee, Paul U.; Jung, Jaewoo; Lai, Chok Fung

    2011-01-01

    A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.

  9. Quiet Clean Short-haul Experimental Engine (QCSEE) clean combustor test report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A component pressure test was conducted on a F101 PFRT combustor to evaluate the emissions levels of this combustor design at selected under the wing and over the wing operating conditions for the quiet clean short haul experimental engine (QCSEE). Emissions reduction techniques were evaluated which included compressor discharge bleed and sector burning in the combustor. The results of this test were utilized to compare the expected QCSEE emissions levels with the emission goals of the QCSEE engine program.

  10. Practical quality control tools for curves and surfaces

    NASA Technical Reports Server (NTRS)

    Small, Scott G.

    1992-01-01

    Curves (geometry) and surfaces created by Computer Aided Geometric Design systems in the engineering environment must satisfy two basic quality criteria: the geometric shape must have the desired engineering properties; and the objects must be parameterized in a way which does not cause computational difficulty for geometric processing and engineering analysis. Interactive techniques are described which are in use at Boeing to evaluate the quality of aircraft geometry prior to Computational Fluid Dynamic analysis, including newly developed methods for examining surface parameterization and its effects.

  11. Radio-controlled model design and testing techniques for stall/spin evaluation of general-aviation aircraft

    NASA Technical Reports Server (NTRS)

    Burk, S. M., Jr.; Wilson, C. F., Jr.

    1975-01-01

    A relatively inexpensive radio-controlled model stall/spin test technique was developed. Operational experiences using the technique are presented. A discussion of model construction techniques, spin-recovery parachute system, data recording system, and movie camera tracking system is included. Also discussed are a method of measuring moments of inertia, scaling of engine thrust, cost and time required to conduct a program, and examples of the results obtained from the flight tests.

  12. A Modified Particle Swarm Optimization Technique for Finding Optimal Designs for Mixture Models

    PubMed Central

    Wong, Weng Kee; Chen, Ray-Bing; Huang, Chien-Chih; Wang, Weichung

    2015-01-01

    Particle Swarm Optimization (PSO) is a meta-heuristic algorithm that has been shown to be successful in solving a wide variety of real and complicated optimization problems in engineering and computer science. This paper introduces a projection based PSO technique, named ProjPSO, to efficiently find different types of optimal designs, or nearly optimal designs, for mixture models with and without constraints on the components, and also for related models, like the log contrast models. We also compare the modified PSO performance with Fedorov's algorithm, a popular algorithm used to generate optimal designs, Cocktail algorithm, and the recent algorithm proposed by [1]. PMID:26091237

  13. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; Mcduffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-01-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive. Superseded by: NASA/SP-2007-6105 Rev 1 (20080008301).

  14. External fuel vaporization study, phase 1

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Chiappetta, L.

    1980-01-01

    A conceptual design study was conducted to devise and evaluate techniques for the external vaporization of fuel for use in an aircraft gas turbine with characteristics similar to the Energy Efficient Engine (E(3)). Three vaporizer concepts were selected and they were analyzed from the standpoint of fuel thermal stability, integration of the vaporizer system into the aircraft engine, engine and vaporizer dynamic response, startup and altitude restart, engine performance, control requirements, safety, and maintenance. One of the concepts was found to improve the performance of the baseline E(3) engine without seriously compromising engine startup and power change response. Increased maintenance is required because of the need for frequent pyrolytic cleaning of the surfaces in contact with hot fuel.

  15. Advanced main combustion chamber program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The topics presented are covered in viewgraph form and include the following: investment of low cost castings; usage of SSME program; usage of MSFC personnel for design effort; and usage of concurrent engineering techniques.

  16. Viewing the Reviewing: An Observational Study of the Use of an Interactive Digital Video To Help Teach the Concepts of Design Inspection Reviews.

    ERIC Educational Resources Information Center

    Love, Matthew

    "Design Inspection Reviews" are structured meetings in which participants follow certain rules of procedure and behavior when conducting detailed readings of design plans to identify errors and misunderstandings. The technique is widely used in the software engineering industry, where it is demonstrably more effective than testing at…

  17. Synchronisation Technique of Data Recorded on a Multichannel Tape Recorder,

    DTIC Science & Technology

    1984-01-01

    retrieval Synchronizers I 16. Abstract A portable, self-contained, electronic digital unit, termed Data Synchroniser was designed and developed by EDE...AD A139 570 SYNCHRONISATION TECHNIQUE OF DATA RECORDED ON A / OULl ICHANNEL TAPE RECORDER (U) ENGINEERING DEVELOPMENT ESTA B LISHMENT MARIBYRNONO...BGINEERING DEVELOPMEWIT ESTABUSHIMENT S[ SYNCHRONISATION TECHNIQUE OF DATA - i RECORDED ON A MULTICHANNEL TAPE RECORDER BY J.D. DICKENS .t T)TCi j.D. ~c .s

  18. Rocket Engine Health Management: Early Definition of Critical Flight Measurements

    NASA Technical Reports Server (NTRS)

    Christenson, Rick L.; Nelson, Michael A.; Butas, John P.

    2003-01-01

    The NASA led Space Launch Initiative (SLI) program has established key requirements related to safety, reliability, launch availability and operations cost to be met by the next generation of reusable launch vehicles. Key to meeting these requirements will be an integrated vehicle health management ( M) system that includes sensors, harnesses, software, memory, and processors. Such a system must be integrated across all the vehicle subsystems and meet component, subsystem, and system requirements relative to fault detection, fault isolation, and false alarm rate. The purpose of this activity is to evolve techniques for defining critical flight engine system measurements-early within the definition of an engine health management system (EHMS). Two approaches, performance-based and failure mode-based, are integrated to provide a proposed set of measurements to be collected. This integrated approach is applied to MSFC s MC-1 engine. Early identification of measurements supports early identification of candidate sensor systems whose design and impacts to the engine components must be considered in engine design.

  19. A study of interior noise levels, noise sources and transmission paths in light aircraft

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.; Murray, B. S.; Theobald, M. A.

    1983-01-01

    The interior noise levels and spectral characteristics of 18 single-and twin-engine propeller-driven light aircraft, and source-path diagnosis of a single-engine aircraft which was considered representative of a large part of the fleet were studied. The purpose of the flight surveys was to measure internal noise levels and identify principal noise sources and paths under a carefully controlled and standardized set of flight procedures. The diagnostic tests consisted of flights and ground tests in which various parts of the aircraft, such as engine mounts, the engine compartment, exhaust pipe, individual panels, and the wing strut were instrumented to determine source levels and transmission path strengths using the transfer function technique. Predominant source and path combinations are identified. Experimental techniques are described. Data, transfer function calculations to derive source-path contributions to the cabin acoustic environment, and implications of the findings for noise control design are analyzed.

  20. Advanced diesel electronic fuel injection and turbocharging

    NASA Astrophysics Data System (ADS)

    Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.

    1993-12-01

    The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.

  1. Formal and heuristic system decomposition methods in multidisciplinary synthesis. Ph.D. Thesis, 1991

    NASA Technical Reports Server (NTRS)

    Bloebaum, Christina L.

    1991-01-01

    The multidisciplinary interactions which exist in large scale engineering design problems provide a unique set of difficulties. These difficulties are associated primarily with unwieldy numbers of design variables and constraints, and with the interdependencies of the discipline analysis modules. Such obstacles require design techniques which account for the inherent disciplinary couplings in the analyses and optimizations. The objective of this work was to develop an efficient holistic design synthesis methodology that takes advantage of the synergistic nature of integrated design. A general decomposition approach for optimization of large engineering systems is presented. The method is particularly applicable for multidisciplinary design problems which are characterized by closely coupled interactions among discipline analyses. The advantage of subsystem modularity allows for implementation of specialized methods for analysis and optimization, computational efficiency, and the ability to incorporate human intervention and decision making in the form of an expert systems capability. The resulting approach is not a method applicable to only a specific situation, but rather, a methodology which can be used for a large class of engineering design problems in which the system is non-hierarchic in nature.

  2. Molecular Cloning Designer Simulator (MCDS): All-in-one molecular cloning and genetic engineering design, simulation and management software for complex synthetic biology and metabolic engineering projects.

    PubMed

    Shi, Zhenyu; Vickers, Claudia E

    2016-12-01

    Molecular Cloning Designer Simulator (MCDS) is a powerful new all-in-one cloning and genetic engineering design, simulation and management software platform developed for complex synthetic biology and metabolic engineering projects. In addition to standard functions, it has a number of features that are either unique, or are not found in combination in any one software package: (1) it has a novel interactive flow-chart user interface for complex multi-step processes, allowing an integrated overview of the whole project; (2) it can perform a user-defined workflow of cloning steps in a single execution of the software; (3) it can handle multiple types of genetic recombineering, a technique that is rapidly replacing classical cloning for many applications; (4) it includes experimental information to conveniently guide wet lab work; and (5) it can store results and comments to allow the tracking and management of the whole project in one platform. MCDS is freely available from https://mcds.codeplex.com.

  3. Space shuttle main engine controller

    NASA Technical Reports Server (NTRS)

    Mattox, R. M.; White, J. B.

    1981-01-01

    A technical description of the space shuttle main engine controller, which provides engine checkout prior to launch, engine control and monitoring during launch, and engine safety and monitoring in orbit, is presented. Each of the major controller subassemblies, the central processing unit, the computer interface electronics, the input electronics, the output electronics, and the power supplies are described and discussed in detail along with engine and orbiter interfaces and operational requirements. The controller represents a unique application of digital concepts, techniques, and technology in monitoring, managing, and controlling a high performance rocket engine propulsion system. The operational requirements placed on the controller, the extremely harsh operating environment to which it is exposed, and the reliability demanded, result in the most complex and rugged digital system ever designed, fabricated, and flown.

  4. Day one sustainability

    NASA Astrophysics Data System (ADS)

    Orr, John; Ibell, Timothy; Evernden, Mark; Darby, Antony

    2015-05-01

    Emissions reductions targets for the UK set out in the Climate Change Act for the period to 2050 will only be achieved with significant changes to the built environment, which is currently estimated to account for 50% of the UK's carbon emissions. The socio-technological nature of Civil Engineering means that this field is uniquely placed to lead the UK through such adaptations. This paper discusses the importance of interdisciplinary teaching to produce multi-faceted team approaches to sustainable design solutions. Methods for measuring success in education are often not fit for purpose, producing good students but poor engineers. Real-world failures to apply sustainable design present a serious, difficult to detect, and ultimately economically negative situation. Techniques to replace summative examinations are presented and discussed, with the aim of enhancing core technical skills alongside those required for sustainable design. Finally, the role of our future engineers in policy-making is discussed. In addition to carbon, the provision of water and food will heavily influence the work of civil engineers in the coming decades. Leadership from civil engineers with the technical knowledge and social awareness to tackle these issues will be required. This provides both opportunities and challenges for engineering education in the UK.

  5. Adaptive design lessons from professional architects

    NASA Astrophysics Data System (ADS)

    Geiger, Ray W.; Snell, J. T.

    1993-09-01

    Psychocybernetic systems engineering design conceptualization is mimicking the evolutionary path of habitable environmental design and the professional practice of building architecture, construction, and facilities management. In pursuing better ways to design cellular automata and qualification classifiers in a design process, we have found surprising success in exploring certain more esoteric approaches, e.g., the vision of interdisciplinary artistic discovery in and around creative problem solving. Our evaluation in research into vision and hybrid sensory systems associated with environmental design and human factors has led us to discover very specific connections between the human spirit and quality design. We would like to share those very qualitative and quantitative parameters of engineering design, particularly as it relates to multi-faceted and future oriented design practice. Discussion covers areas of case- based techniques of cognitive ergonomics, natural modeling sources, and an open architectural process of means/goal satisfaction, qualified by natural repetition, gradation, rhythm, contrast, balance, and integrity of process.

  6. Summer Work Experience: Determining Methane Combustion Mechanisms and Sub-Scale Diffuser Properties for Space Transporation System Engine Testing

    NASA Technical Reports Server (NTRS)

    Williams, Powtawche N.

    1998-01-01

    To assess engine performance during the testing of Space Shuttle Main Engines (SSMEs), the design of an optimal altitude diffuser is studied for future Space Transportation Systems (STS). For other Space Transportation Systems, rocket propellant using kerosene is also studied. Methane and dodecane have similar reaction schemes as kerosene, and are used to simulate kerosene combustion processes at various temperatures. The equations for the methane combustion mechanism at high temperature are given, and engine combustion is simulated on the General Aerodynamic Simulation Program (GASP). The successful design of an altitude diffuser depends on the study of a sub-scaled diffuser model tested through two-dimensional (2-D) flow-techniques. Subroutines given calculate the static temperature and pressure at each Mach number within the diffuser flow. Implementing these subroutines into program code for the properties of 2-D compressible fluid flow determines all fluid characteristics, and will be used in the development of an optimal diffuser design.

  7. Development Status of Reusable Rocket Engine

    NASA Astrophysics Data System (ADS)

    Yoshida, Makoto; Takada, Satoshi; Naruo, Yoshihiro; Niu, Kenichi

    A 30-kN rocket engine, a pilot engine, is being developed in Japan. Development of this pilot engine has been initiated in relation to a reusable sounding rocket, which is also being developed in Japan. This rocket takes off vertically, reaches an altitude of 100 km, lands vertically at the launch site, and is launched again within several days. Due to advantage of reusability, successful development of this rocket will mean that observation missions can be carried out more frequently and economically. In order to realize this rocket concept, the engines installed on the rocket should be characterized by reusability, long life, deep throttling and health monitoring, features which have not yet been established in Japanese rocket engines. To solve the engineering factors entitled by those features, a new design methodology, advanced engine simulations and engineering testing are being focused on in the pilot engine development stage. Especially in engineering testing, limit condition data is acquired to facilitate development of new diagnostic techniques, which can be applied by utilizing the mobility of small-size hardware. In this paper, the development status of the pilot engine is described, including fundamental design and engineering tests of the turbopump bearing and seal, turbine rig, injector and combustion chamber, and operation and maintenance concepts for one hundred flights by a reusable rocket are examined.

  8. Geophysical testing of rock and its relationships to physical properties

    DOT National Transportation Integrated Search

    2011-02-01

    Testing techniques were designed to characterize spatial variability in geotechnical engineering physical parameters of : rock formations. Standard methods using seismic waves, which are routinely used for shallow subsurface : investigation, have lim...

  9. Nutrient Control Seminars

    EPA Science Inventory

    These Nutrient Control Seminars will present an extensive state-of-the-technology review of the engineering design and operation of nitrogen and phosphorous control technologies and techniques applied at municipal wastewater treatment plants (WWTPs). These seminars will present ...

  10. Perspectives on knowledge in engineering design

    NASA Technical Reports Server (NTRS)

    Rasdorf, W. J.

    1985-01-01

    Various perspectives are given of the knowledge currently used in engineering design, specifically dealing with knowledge-based expert systems (KBES). Constructing an expert system often reveals inconsistencies in domain knowledge while formalizing it. The types of domain knowledge (facts, procedures, judgments, and control) differ from the classes of that knowledge (creative, innovative, and routine). The feasible tasks for expert systems can be determined based on these types and classes of knowledge. Interpretive tasks require reasoning about a task in light of the knowledge available, where generative tasks create potential solutions to be tested against constraints. Only after classifying the domain by type and level can the engineer select a knowledge-engineering tool for the domain being considered. The critical features to be weighed after classification are knowledge representation techniques, control strategies, interface requirements, compatibility with traditional systems, and economic considerations.

  11. Design of Sensors for Control of Closed Loop Life Support Systems

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A brief summary is presented of a Engineering Design sequence, a cooperation between NASA-Kennedy and the University of Florida on the Controlled Environmental Life Support System (CELSS) program. Part of the class was devoted to learning general principles and techniques of design. The next portion of the class was devoted to learning to design, actually fabricating and testing small components and subsystems of a CELSS.

  12. Integrating principles and multidisciplinary projects in design education

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.

    1992-01-01

    The critical need to improve engineering design education in the U.S. is presented and a number of actions to achieve that end are discussed. The importance of teaching undergraduates the latest methods and principles through the means of team design in multidisciplinary projects leading to a testable product is emphasized. Desirable training for design instructors is described and techniques for selecting and managing projects that teach effectively are discussed.

  13. Design Engineering of Biomaterials for Medical Devices

    NASA Astrophysics Data System (ADS)

    Hill, David

    1998-10-01

    Written by an exceptionally experienced author in the area of medical equipment product design, this text presents a comprehensive overview of such sound principles and state-of-the-art techniques covering a whole host of material types, biocompatability, the design process and future trends within this exciting field. An all-in-one reference text, concise and easy-to-read. Wide audience appeal, from industry professionals to students of design.

  14. Design approach of an aquaculture cage system for deployment in the constructed channel flow environments of a power plant

    PubMed Central

    Lee, Jihoon; Fredriksson, David W.; DeCew, Judson; Drach, Andrew; Yim, Solomon C.

    2018-01-01

    This study provides an engineering approach for designing an aquaculture cage system for use in constructed channel flow environments. As sustainable aquaculture has grown globally, many novel techniques have been introduced such as those implemented in the global Atlantic salmon industry. The advent of several highly sophisticated analysis software systems enables the development of such novel engineering techniques. These software systems commonly include three-dimensional (3D) drafting, computational fluid dynamics, and finite element analysis. In this study, a combination of these analysis tools is applied to evaluate a conceptual aquaculture system for potential deployment in a power plant effluent channel. The channel is supposedly clean; however, it includes elevated water temperatures and strong currents. The first portion of the analysis includes the design of a fish cage system with specific net solidities using 3D drafting techniques. Computational fluid dynamics is then applied to evaluate the flow reduction through the system from the previously generated solid models. Implementing the same solid models, a finite element analysis is performed on the critical components to assess the material stresses produced by the drag force loads that are calculated from the fluid velocities. PMID:29897954

  15. Proceedings, Seminar on Probabilistic Methods in Geotechnical Engineering

    NASA Astrophysics Data System (ADS)

    Hynes-Griffin, M. E.; Buege, L. L.

    1983-09-01

    Contents: Applications of Probabilistic Methods in Geotechnical Engineering; Probabilistic Seismic and Geotechnical Evaluation at a Dam Site; Probabilistic Slope Stability Methodology; Probability of Liquefaction in a 3-D Soil Deposit; Probabilistic Design of Flood Levees; Probabilistic and Statistical Methods for Determining Rock Mass Deformability Beneath Foundations: An Overview; Simple Statistical Methodology for Evaluating Rock Mechanics Exploration Data; New Developments in Statistical Techniques for Analyzing Rock Slope Stability.

  16. An overview of aerospace gas turbine technology of relevance to the development of the automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Evans, D. G.; Miller, T. J.

    1978-01-01

    Technology areas related to gas turbine propulsion systems with potential for application to the automotive gas turbine engine are discussed. Areas included are: system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.

  17. Systems Engineering for Distributed, Live, Virtual, and Constructive (LVC) Simulation

    DTIC Science & Technology

    2010-12-01

    programming languages like the Scala programming language (Wampler et al. 2009), provide tighter con- trol of syntax guidance and problem...Wampler, D. and A. Payne. 2009. Programming Scala . 1 st ed. O’Reilly Media 1510 Gallant and Gaughan AUTHOR BIOGRAPHIES SCOTT GALLANT is a Systems...subsequently linked to the technical design. Doing this within a data-driven systems engineering infrastructure allows generative programming techniques

  18. Alpha-canonical form representation of the open loop dynamics of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Duyar, Almet; Eldem, Vasfi; Merrill, Walter C.; Guo, Ten-Huei

    1991-01-01

    A parameter and structure estimation technique for multivariable systems is used to obtain a state space representation of open loop dynamics of the space shuttle main engine in alpha-canonical form. The parameterization being used is both minimal and unique. The simplified linear model may be used for fault detection studies and control system design and development.

  19. A design and implementation methodology for diagnostic systems

    NASA Technical Reports Server (NTRS)

    Williams, Linda J. F.

    1988-01-01

    A methodology for design and implementation of diagnostic systems is presented. Also discussed are the advantages of embedding a diagnostic system in a host system environment. The methodology utilizes an architecture for diagnostic system development that is hierarchical and makes use of object-oriented representation techniques. Additionally, qualitative models are used to describe the host system components and their behavior. The methodology architecture includes a diagnostic engine that utilizes a combination of heuristic knowledge to control the sequence of diagnostic reasoning. The methodology provides an integrated approach to development of diagnostic system requirements that is more rigorous than standard systems engineering techniques. The advantages of using this methodology during various life cycle phases of the host systems (e.g., National Aerospace Plane (NASP)) include: the capability to analyze diagnostic instrumentation requirements during the host system design phase, a ready software architecture for implementation of diagnostics in the host system, and the opportunity to analyze instrumentation for failure coverage in safety critical host system operations.

  20. Introduction to System Health Engineering and Management in Aerospace

    NASA Technical Reports Server (NTRS)

    Johnson, Stephen B.

    2005-01-01

    This paper provides a technical overview of Integrated System Health Engineering and Management (ISHEM). We define ISHEM as "the paper provides a techniques, and technologies used to design, analyze, build, verify, and operate a system to prevent faults and/or minimize their effects." This includes design and manufacturing techniques as well operational and managerial methods. ISHEM is not a "purely technical issue" as it also involves and must account for organizational, communicative, and cognitive f&ms of humans as social beings and as individuals. Thus the paper will discuss in more detail why all of these elements, h m the technical to the cognitive and social, are necessary to build dependable human-machine systems. The paper outlines a functional homework and architecture for ISHEM operations, describes the processes needed to implement ISHEM in the system life-cycle, and provides a theoretical framework to understand the relationship between the different aspects of the discipline. It then derives from these and the social and cognitive bases a set of design and operational principles for ISHEM.

  1. What Is the Function of a Figurine? Can the Repertory Grid Technique Tell?

    ERIC Educational Resources Information Center

    Persson, Helena Isakssson

    2016-01-01

    Teaching design and product development at upper secondary school level in Sweden is a matter of interdisciplinary considerations. Education in product development, at this level, prepares students for further studies and career in engineering or industrial design. Knowledge of artefacts is an important element in the education. In coherence with…

  2. The Design and Realization of Net Testing System on Campus Network

    ERIC Educational Resources Information Center

    Ren, Zhanying; Liu, Shijie

    2005-01-01

    According to the requirement of modern teaching theory and technology, based on software engineering, database theory, the technique of net information security and system integration, a net testing system on local network was designed and realized. The system benefits for dividing of testing & teaching and settles the problems of random…

  3. Design and fabrication of the NASA HL-20 full scale research model

    NASA Technical Reports Server (NTRS)

    Driver, K. Dean; Vess, Robert J.

    1991-01-01

    A full-scale engineering model of the HL-20 Personnel Launch System (PLS) was constructed for systems and human factors evaluation. Construction techniques were developed to enable the vehicle to be constructed with a minimum of time and cost. The design and construction of the vehicle are described.

  4. Design of Life Extending Controls Using Nonlinear Parameter Optimization

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok

    1998-01-01

    This report presents the conceptual development of a life extending control system where the objective is to achieve high performance and structural durability of the plant. A life extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel and oxidizer turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. This design approach makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life extending controller module to augment a conventional performance controller of a rocket engine. The nonlinear aspect of the design is achieved using nonlinear parameter optimization of a prescribed control structure.

  5. A hybrid nonlinear programming method for design optimization

    NASA Technical Reports Server (NTRS)

    Rajan, S. D.

    1986-01-01

    Solutions to engineering design problems formulated as nonlinear programming (NLP) problems usually require the use of more than one optimization technique. Moreover, the interaction between the user (analysis/synthesis) program and the NLP system can lead to interface, scaling, or convergence problems. An NLP solution system is presented that seeks to solve these problems by providing a programming system to ease the user-system interface. A simple set of rules is used to select an optimization technique or to switch from one technique to another in an attempt to detect, diagnose, and solve some potential problems. Numerical examples involving finite element based optimal design of space trusses and rotor bearing systems are used to illustrate the applicability of the proposed methodology.

  6. Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering.

    PubMed

    Cotten, Cameron; Reed, Jennifer L

    2013-05-01

    In recent years, a growing number of metabolic engineering strain design techniques have employed constraint-based modeling to determine metabolic and regulatory network changes which are needed to improve chemical production. These methods use systems-level analysis of metabolism to help guide experimental efforts by identifying deletions, additions, downregulations, and upregulations of metabolic genes that will increase biological production of a desired metabolic product. In this work, we propose a new strain design method with continuous modifications (CosMos) that provides strategies for deletions, downregulations, and upregulations of fluxes that will lead to the production of the desired products. The method is conceptually simple and easy to implement, and can provide additional strategies over current approaches. We found that the method was able to find strain design strategies that required fewer modifications and had larger predicted yields than strategies from previous methods in example and genome-scale networks. Using CosMos, we identified modification strategies for producing a variety of metabolic products, compared strategies derived from Escherichia coli and Saccharomyces cerevisiae metabolic models, and examined how imperfect implementation may affect experimental outcomes. This study gives a powerful and flexible technique for strain engineering and examines some of the unexpected outcomes that may arise when strategies are implemented experimentally. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A General-Purpose Optimization Engine for Multi-Disciplinary Design Applications

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Berke, Laszlo

    1996-01-01

    A general purpose optimization tool for multidisciplinary applications, which in the literature is known as COMETBOARDS, is being developed at NASA Lewis Research Center. The modular organization of COMETBOARDS includes several analyzers and state-of-the-art optimization algorithms along with their cascading strategy. The code structure allows quick integration of new analyzers and optimizers. The COMETBOARDS code reads input information from a number of data files, formulates a design as a set of multidisciplinary nonlinear programming problems, and then solves the resulting problems. COMETBOARDS can be used to solve a large problem which can be defined through multiple disciplines, each of which can be further broken down into several subproblems. Alternatively, a small portion of a large problem can be optimized in an effort to improve an existing system. Some of the other unique features of COMETBOARDS include design variable formulation, constraint formulation, subproblem coupling strategy, global scaling technique, analysis approximation, use of either sequential or parallel computational modes, and so forth. The special features and unique strengths of COMETBOARDS assist convergence and reduce the amount of CPU time used to solve the difficult optimization problems of aerospace industries. COMETBOARDS has been successfully used to solve a number of problems, including structural design of space station components, design of nozzle components of an air-breathing engine, configuration design of subsonic and supersonic aircraft, mixed flow turbofan engines, wave rotor topped engines, and so forth. This paper introduces the COMETBOARDS design tool and its versatility, which is illustrated by citing examples from structures, aircraft design, and air-breathing propulsion engine design.

  8. Preliminary Description of Stresses in Railroad Rail

    DOT National Transportation Integrated Search

    1976-11-01

    One portion of the Federal Railroad Administration's (FRA) Track Performance Improvement Program is the development of engineering and analytic techniques required for the design and maintenance of railroad track of increased integrity and safety. Un...

  9. Wind Turbine Blade CAD Models Used as Scaffolding Technique to Teach Design Engineers

    ERIC Educational Resources Information Center

    Irwin, John

    2013-01-01

    The Siemens PLM CAD software NX is commonly used for designing mechanical systems, and in complex systems such as the emerging area of wind power, the ability to have a model controlled by design parameters is a certain advantage. Formula driven expressions based on the amount of available wind in an area can drive the amount of effective surface…

  10. Application of computer graphics in the design of custom orthopedic implants.

    PubMed

    Bechtold, J E

    1986-10-01

    Implementation of newly developed computer modelling techniques and computer graphics displays and software have greatly aided the orthopedic design engineer and physician in creating a custom implant with good anatomic conformity in a short turnaround time. Further advances in computerized design and manufacturing will continue to simplify the development of custom prostheses and enlarge their niche in the joint replacement market.

  11. A modal parameter extraction procedure applicable to linear time-invariant dynamic systems

    NASA Technical Reports Server (NTRS)

    Kurdila, A. J.; Craig, R. R., Jr.

    1985-01-01

    Modal analysis has emerged as a valuable tool in many phases of the engineering design process. Complex vibration and acoustic problems in new designs can often be remedied through use of the method. Moreover, the technique has been used to enhance the conceptual understanding of structures by serving to verify analytical models. A new modal parameter estimation procedure is presented. The technique is applicable to linear, time-invariant systems and accommodates multiple input excitations. In order to provide a background for the derivation of the method, some modal parameter extraction procedures currently in use are described. Key features implemented in the new technique are elaborated upon.

  12. [Veneer computer aided design based on reverse engineering technology].

    PubMed

    Liu, Ming-li; Chen, Xiao-dong; Wang, Yong

    2012-03-01

    To explore the computer aided design (CAD) method of veneer restoration, and to assess if the solution can help prosthesis meet morphology esthetics standard. A volunteer's upper right central incisor needed to be restored with veneer. Super hard stone models of patient's dentition (before and after tooth preparation) were scanned with the three-dimensional laser scanner. The veneer margin was designed as butt-to-butt type. The veneer was constructed using reverse engineering (RE) software. The technique guideline of veneers CAD was explore based on RE software, and the veneers was smooth, continuous and symmetrical, which met esthetics construction needs. It was a feasible method to reconstruct veneer restoration based on RE technology.

  13. Propagation effects handbook for satellite systems design. A summary of propagation impairments on 10 to 100 GHz satellite links with techniques for system design

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.; Kaul, R. D.; Wallace, R. G.

    1983-01-01

    This Propagation Handbook provides satellite system engineers with a concise summary of the major propagation effects experienced on Earth-space paths in the 10 to 100 GHz frequency range. The dominant effect, attenuation due to rain, is dealt with in some detail, in terms of both experimental data from measurements made in the U.S. and Canada, and the mathematical and conceptual models devised to explain the data. In order to make the Handbook readily usable to many engineers, it has been arranged in two parts. Chapters 2-5 comprise the descriptive part. They deal in some detail with rain systems, rain and attenuation models, depolarization and experimental data. Chapters 6 and 7 make up the design part of the Handbook and may be used almost independently of the earlier chapters. In Chapter 6, the design techniques recommended for predicting propagation effects in Earth-space communications systems are presented. Chapter 7 addresses the questions of where in the system design process the effects of propagation should be considered, and what precautions should be taken when applying the propagation results.

  14. Cardiac tissue engineering: from matrix design to the engineering of bionic hearts.

    PubMed

    Fleischer, Sharon; Feiner, Ron; Dvir, Tal

    2017-04-01

    The field of cardiac tissue engineering aims at replacing the scar tissue created after a patient has suffered from a myocardial infarction. Various technologies have been developed toward fabricating a functional engineered tissue that closely resembles that of the native heart. While the field continues to grow and techniques for better tissue fabrication continue to emerge, several hurdles still remain to be overcome. In this review we will focus on several key advances and recent technologies developed in the field, including biomimicking the natural extracellular matrix structure and enhancing the transfer of the electrical signal. We will also discuss recent developments in the engineering of bionic cardiac tissues which integrate the fields of tissue engineering and electronics to monitor and control tissue performance.

  15. Duct flow nonuniformities study for space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Thoenes, J.

    1985-01-01

    To improve the Space Shuttle Main Engine (SSME) design and for future use in the development of generation rocket engines, a combined experimental/analytical study was undertaken with the goals of first, establishing an experimental data base for the flow conditions in the SSME high pressure fuel turbopump (HPFTP) hot gas manifold (HGM) and, second, setting up a computer model of the SSME HGM flow field. Using the test data to verify the computer model it should be possible in the future to computationally scan contemplated advanced design configurations and limit costly testing to the most promising design. The effort of establishing and using the computer model is detailed. The comparison of computational results and experimental data observed clearly demonstrate that computational fluid mechanics (CFD) techniques can be used successfully to predict the gross features of three dimensional fluid flow through configurations as intricate as the SSME turbopump hot gas manifold.

  16. Genomes by design

    PubMed Central

    Haimovich, Adrian D.; Muir, Paul; Isaacs, Farren J.

    2016-01-01

    Next-generation DNA sequencing has revealed the complete genome sequences of numerous organisms, establishing a fundamental and growing understanding of genetic variation and phenotypic diversity. Engineering at the gene, network and whole-genome scale aims to introduce targeted genetic changes both to explore emergent phenotypes and to introduce new functionalities. Expansion of these approaches into massively parallel platforms establishes the ability to generate targeted genome modifications, elucidating causal links between genotype and phenotype, as well as the ability to design and reprogramme organisms. In this Review, we explore techniques and applications in genome engineering, outlining key advances and defining challenges. PMID:26260262

  17. Issues with the Application of Thermographic Phosphors to Measure High Temperatures in a Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Khalid, A. H.; Kontis, K.

    2009-01-01

    The demand for more efficient engines is increasing as concerns over greenhouse gases continue to grow. Performance can be increased if higher turbine inlet temperatures are achieved. However, this increases the chance of material failure. Therefore, the optimum temperature is prescribed by the balance between the benefits of thermal efficiency and material life. To ensure safety and reliability, uncertainty in temperature measurement forces the engine to be operated below its thermal design limit. Accurate surface measurement offers the potential to increase engine performance by allowing them to operate closer to this limit. It can allow designers to better understand flow physics, and greatly facilitate the testing and development of newer thermal protection systems and concepts. The aim of this paper is to highlight the motivations of using phosphor thermometry in gas turbine environments as an alternative to current measurement methods such as discrete thermocouple measurements and pyrometry. Phosphor thermometry offers many advantages over conventional techniques. However, the harsh, high temperature and fast rotating environment presents some unique challenges and the paper further aims to discuss the issues that would arise in such environments. There will be increasing blackbody radiation, restrictions to optical access and time available to collect emissions. There will be imposed upper and lower temperature limits and other restrictions that will greatly influence the design of the measurement system, including the choice of phosphor, bonding technique, excitation and detection methodologies. A system would have to be bespoke to suit the end measurement goal.

  18. Deairing Techniques for Double-Ended Centrifugal Total Artificial Heart Implantation.

    PubMed

    Karimov, Jamshid H; Horvath, David J; Byram, Nicole; Sunagawa, Gengo; Grady, Patrick; Sinkewich, Martin; Moazami, Nader; Sale, Shiva; Golding, Leonard A R; Fukamachi, Kiyotaka

    2017-06-01

    The unique device architecture of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) requires dedicated and specific air-removal techniques during device implantation in vivo. These procedures comprise special surgical techniques and intraoperative manipulations, as well as engineering design changes and optimizations to the device itself. The current study evaluated the optimal air-removal techniques during the Cleveland Clinic double-ended centrifugal CFTAH in vivo implants (n = 17). Techniques and pump design iterations consisted of developing a priming method for the device and the use of built-in deairing ports in the early cases (n = 5). In the remaining cases (n = 12), deairing ports were not used. Dedicated air-removal ports were not considered an essential design requirement, and such ports may represent an additional risk for pump thrombosis. Careful passive deairing was found to be an effective measure with a centrifugal pump of this design. In this report, the techniques and design changes that were made during this CFTAH development program to enable effective residual air removal and prevention of air embolism during in vivo device implantation are explained. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. The role of optimization in the next generation of computer-based design tools

    NASA Technical Reports Server (NTRS)

    Rogan, J. Edward

    1989-01-01

    There is a close relationship between design optimization and the emerging new generation of computer-based tools for engineering design. With some notable exceptions, the development of these new tools has not taken full advantage of recent advances in numerical design optimization theory and practice. Recent work in the field of design process architecture has included an assessment of the impact of next-generation computer-based design tools on the design process. These results are summarized, and insights into the role of optimization in a design process based on these next-generation tools are presented. An example problem has been worked out to illustrate the application of this technique. The example problem - layout of an aircraft main landing gear - is one that is simple enough to be solved by many other techniques. Although the mathematical relationships describing the objective function and constraints for the landing gear layout problem can be written explicitly and are quite straightforward, an approximation technique has been used in the solution of this problem that can just as easily be applied to integrate supportability or producibility assessments using theory of measurement techniques into the design decision-making process.

  20. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1991-01-01

    Research aircraft have become increasingly dependent on advanced electronic control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objective. This integration is being accomplished through electronic control systems. Systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary object is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences are reviewed of three highly complex, integrated aircraft programs: the X-29 forward swept wing; the advanced fighter technology integration (AFTI) F-16; and the highly maneuverable aircraft technology (HiMAT) program. Significant operating technologies, and the design errors which cause them, is examined to help identify what functions a system design/informatin tool should provide to assist designers in avoiding errors.

  1. Assessment of intrinsic small signal parameters of submicron SiC MESFETs

    NASA Astrophysics Data System (ADS)

    Riaz, Mohammad; Ahmed, Muhammad Mansoor; Rafique, Umair; Ahmed, Umer Farooq

    2018-01-01

    In this paper, a technique has been developed to estimate intrinsic small signal parameters of submicron SiC MESFETs, designed for high power microwave applications. In the developed technique, small signal parameters are extracted by involving drain-to-source current, Ids instead of Schottky barrier depletion layer expression. It has been demonstrated that in SiC MESFETs, the depletion layer gets modified due to intense transverse electric field and/or self-heating effects, which are conventionally not taken into account. Thus, assessment of AC small signal parameters by employing depletion layer expression loses its accuracy for devices meant for high power applications. A set of expressions for AC small signal elements has been developed using Ids and its dependence on device biasing has been discussed. The validity of the proposed technique has been demonstrated using experimental data. Dr. Ahmed research interests are in Microelectronics, Microwave and RF Engineering and he has supervised numerous MS and PhD research projects. He authored over 100 research papers in the field of microelectronics. Dr. Ahmed is a fellow of the Institution of Engineering and Technology (IET), UK.; a Chartered Engineer (CEng) from the UK Engineering Council and holds the title of European Engineer (Eur Ing) from the European Federation of National Engineering Association (FEANI), Brussels. He is a life member of PEC (Pak); EDS & MTTS (USA).

  2. A study of power cycles using supercritical carbon dioxide as the working fluid

    NASA Astrophysics Data System (ADS)

    Schroder, Andrew Urban

    A real fluid heat engine power cycle analysis code has been developed for analyzing the zero dimensional performance of a general recuperated, recompression, precompression supercritical carbon dioxide power cycle with reheat and a unique shaft configuration. With the proposed shaft configuration, several smaller compressor-turbine pairs could be placed inside of a pressure vessel in order to avoid high speed, high pressure rotating seals. The small compressor-turbine pairs would share some resemblance with a turbocharger assembly. Variation in fluid properties within the heat exchangers is taken into account by discretizing zero dimensional heat exchangers. The cycle analysis code allows for multiple reheat stages, as well as an option for the main compressor to be powered by a dedicated turbine or an electrical motor. Variation in performance with respect to design heat exchanger pressure drops and minimum temperature differences, precompressor pressure ratio, main compressor pressure ratio, recompression mass fraction, main compressor inlet pressure, and low temperature recuperator mass fraction have been explored throughout a range of each design parameter. Turbomachinery isentropic efficiencies are implemented and the sensitivity of the cycle performance and the optimal design parameters is explored. Sensitivity of the cycle performance and optimal design parameters is studied with respect to the minimum heat rejection temperature and the maximum heat addition temperature. A hybrid stochastic and gradient based optimization technique has been used to optimize critical design parameters for maximum engine thermal efficiency. A parallel design exploration mode was also developed in order to rapidly conduct the parameter sweeps in this design space exploration. A cycle thermal efficiency of 49.6% is predicted with a 320K [47°C] minimum temperature and 923K [650°C] maximum temperature. The real fluid heat engine power cycle analysis code was expanded to study a theoretical recuperated Lenoir cycle using supercritical carbon dioxide as the working fluid. The real fluid cycle analysis code was also enhanced to study a combined cycle engine cascade. Two engine cascade configurations were studied. The first consisted of a traditional open loop gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 65.0% using a peak temperature of 1,890K [1,617°C]. The second configuration consisted of a hybrid natural gas powered solid oxide fuel cell and gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 73.1%. Both configurations had a minimum temperature of 306K [33°C]. The hybrid stochastic and gradient based optimization technique was used to optimize all engine design parameters for each engine in the cascade such that the entire engine cascade achieved the maximum thermal efficiency. The parallel design exploration mode was also utilized in order to understand the impact of different design parameters on the overall engine cascade thermal efficiency. Two dimensional conjugate heat transfer (CHT) numerical simulations of a straight, equal height channel heat exchanger using supercritical carbon dioxide were conducted at various Reynolds numbers and channel lengths.

  3. Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications

    NASA Technical Reports Server (NTRS)

    OKeefe, Matthew (Editor); Kerr, Christopher L. (Editor)

    1998-01-01

    This report contains the abstracts and technical papers from the Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications, held June 15-18, 1998, in Scottsdale, Arizona. The purpose of the workshop is to bring together software developers in meteorology and oceanography to discuss software engineering and code design issues for parallel architectures, including Massively Parallel Processors (MPP's), Parallel Vector Processors (PVP's), Symmetric Multi-Processors (SMP's), Distributed Shared Memory (DSM) multi-processors, and clusters. Issues to be discussed include: (1) code architectures for current parallel models, including basic data structures, storage allocation, variable naming conventions, coding rules and styles, i/o and pre/post-processing of data; (2) designing modular code; (3) load balancing and domain decomposition; (4) techniques that exploit parallelism efficiently yet hide the machine-related details from the programmer; (5) tools for making the programmer more productive; and (6) the proliferation of programming models (F--, OpenMP, MPI, and HPF).

  4. Stereoscopic applications for design visualization

    NASA Astrophysics Data System (ADS)

    Gilson, Kevin J.

    2007-02-01

    Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.

  5. Novel 3D Tissue Engineered Bone Model, Biomimetic Nanomaterials, and Cold Atmospheric Plasma Technique for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Wang, Mian

    This thesis research is consist of four chapters, including biomimetic three-dimensional tissue engineered nanostructured bone model for breast cancer bone metastasis study (Chapter one), cold atmospheric plasma for selectively ablating metastatic breast cancer (Chapter two), design of biomimetic and bioactive cold plasma modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow derived mesenchymal stem cells (Chapter three), and enhanced osteoblast and mesenchymal stem cell functions on titanium with hydrothermally treated nanocrystalline hydroxyapatite/magnetically treated carbon nanotubes for orthopedic applications (Chapter four). All the thesis research is focused on nanomaterials and the use of cold plasma technique for various biomedical applications.

  6. Analytical design of an advanced radial turbine. [automobile engines

    NASA Technical Reports Server (NTRS)

    Large, G. D.; Finger, D. G.; Linder, C. G.

    1981-01-01

    The aerodynamic and mechanical potential of a single stage ceramic radial inflow turbine was evaluated for a high temperature single stage automotive engine. The aerodynamic analysis utilizes a turbine system optimization technique to evaluate both radial and nonradial rotor blading. Selected turbine rotor configurations were evaluated mechanically with three dimensional finite element techniques. Results indicate that exceptionally high rotor tip speeds (2300 ft/sec) and performance potential are feasible with radial bladed rotors if the projected ceramic material properties are realized. Nonradial rotors reduced tip speed requirements (at constant turbine efficiency) but resulted in a lower cumulative probability of success due to higher blade and disk stresses.

  7. The Use of Mathematical Modelling for Improving the Tissue Engineering of Organs and Stem Cell Therapy.

    PubMed

    Lemon, Greg; Sjoqvist, Sebastian; Lim, Mei Ling; Feliu, Neus; Firsova, Alexandra B; Amin, Risul; Gustafsson, Ylva; Stuewer, Annika; Gubareva, Elena; Haag, Johannes; Jungebluth, Philipp; Macchiarini, Paolo

    2016-01-01

    Regenerative medicine is a multidisciplinary field where continued progress relies on the incorporation of a diverse set of technologies from a wide range of disciplines within medicine, science and engineering. This review describes how one such technique, mathematical modelling, can be utilised to improve the tissue engineering of organs and stem cell therapy. Several case studies, taken from research carried out by our group, ACTREM, demonstrate the utility of mechanistic mathematical models to help aid the design and optimisation of protocols in regenerative medicine.

  8. ERTS program of the US Army Corps of Engineers. [water resources

    NASA Technical Reports Server (NTRS)

    Jarman, J. W.

    1974-01-01

    The Army Corps of Engineers research and development efforts associated with the ERTS Program are confined to applications of investigation, design, construction, operation, and maintenance of water resource projects. Problems investigated covered: (1) resource inventory; (2) environmental impact; (3) pollution monitoring; (4) water circulation; (5) sediment transport; (6) data collection systems; (7) engineering; and (8) model verification. These problem areas were investigated in relation to bays, reservoirs, lakes, rivers, coasts, and regions. ERTS-1 imagery has been extremely valuable in developing techniques and is now being used in everyday applications.

  9. Application of reverse engineering in the medical industry.

    NASA Astrophysics Data System (ADS)

    Kaleev, A. A.; Kashapov, L. N.; Kashapov, N. F.; Kashapov, R. N.

    2017-09-01

    The purpose of this research is to develop on the basis of existing analogs new design of ophthalmologic microsurgical tweezers by using reverse engineering techniques. Virtual model was obtained by using a three-dimensional scanning system Solutionix Rexcan 450 MP. Geomagic Studio program was used to remove defects and inaccuracies of the obtained parametric model. A prototype of the finished model was made on the installation of laser stereolithography Projet 6000. Total time of the creation was 16 hours from the reverse engineering procedure to 3D-printing of the prototype.

  10. Introduction to Geostatistics

    NASA Astrophysics Data System (ADS)

    Kitanidis, P. K.

    1997-05-01

    Introduction to Geostatistics presents practical techniques for engineers and earth scientists who routinely encounter interpolation and estimation problems when analyzing data from field observations. Requiring no background in statistics, and with a unique approach that synthesizes classic and geostatistical methods, this book offers linear estimation methods for practitioners and advanced students. Well illustrated with exercises and worked examples, Introduction to Geostatistics is designed for graduate-level courses in earth sciences and environmental engineering.

  11. An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    imon, Donald L.; Armstrong, Jeffrey B.

    2012-01-01

    A Kalman filter-based approach for integrated on-line aircraft engine performance estimation and gas path fault diagnostics is presented. This technique is specifically designed for underdetermined estimation problems where there are more unknown system parameters representing deterioration and faults than available sensor measurements. A previously developed methodology is applied to optimally design a Kalman filter to estimate a vector of tuning parameters, appropriately sized to enable estimation. The estimated tuning parameters can then be transformed into a larger vector of health parameters representing system performance deterioration and fault effects. The results of this study show that basing fault isolation decisions solely on the estimated health parameter vector does not provide ideal results. Furthermore, expanding the number of the health parameters to address additional gas path faults causes a decrease in the estimation accuracy of those health parameters representative of turbomachinery performance deterioration. However, improved fault isolation performance is demonstrated through direct analysis of the estimated tuning parameters produced by the Kalman filter. This was found to provide equivalent or superior accuracy compared to the conventional fault isolation approach based on the analysis of sensed engine outputs, while simplifying online implementation requirements. Results from the application of these techniques to an aircraft engine simulation are presented and discussed.

  12. Optimization of thermoacoustic engine driven thermoacoustic refrigerator using response surface methodology

    NASA Astrophysics Data System (ADS)

    Desai, A. B.; Desai, K. P.; Naik, H. B.; Atrey, M. D.

    2017-02-01

    Thermoacoustic engines (TAEs) are devices which convert heat energy into useful acoustic work whereas thermoacoustic refrigerators (TARs) convert acoustic work into temperature gradient. These devices work without any moving component. Study presented here comprises of a combination system i.e. thermoacoustic engine driven thermoacoustic refrigerator (TADTAR). This system has no moving component and hence it is easy to fabricate but at the same time it is very challenging to design and construct optimized system with comparable performance. The work presented here aims to apply optimization technique to TADTAR in the form of response surface methodology (RSM). Significance of stack position and stack length for engine stack, stack position and stack length for refrigerator stack are investigated in current work. Results from RSM are compared with results from simulations using Design Environment for Low-amplitude Thermoacoustic Energy conversion (DeltaEC) for compliance.

  13. A paperless course on structural engineering programming: investing in educational technology in the times of the Greek financial recession

    NASA Astrophysics Data System (ADS)

    Sextos, Anastasios G.

    2014-01-01

    This paper presents the structure of an undergraduate course entitled 'programming techniques and the use of specialised software in structural engineering' which is offered to the fifth (final) year students of the Civil Engineering Department of Aristotle University Thessaloniki in Greece. The aim of this course is to demonstrate the use of new information technologies in the field of structural engineering and to teach modern programming and finite element simulation techniques that the students can in turn apply in both research and everyday design of structures. The course also focuses on the physical interpretation of structural engineering problems, in a way that the students become familiar with the concept of computational tools without losing perspective from the engineering problem studied. For this purpose, a wide variety of structural engineering problems are studied in class, involving structural statics, dynamics, earthquake engineering, design of reinforced concrete and steel structures as well as data and information management. The main novelty of the course is that it is taught and examined solely in the computer laboratory ensuring that each student can accomplish the prescribed 'hands-on' training on a dedicated computer, strictly on a 1:1 student over hardware ratio. Significant effort has also been put so that modern educational techniques and tools are utilised to offer the course in an essentially paperless mode. This involves electronic educational material, video tutorials, student information in real time and exams given and assessed electronically through an ad hoc developed, personalised, electronic system. The positive feedback received from the students reveals that the concept of a paperless course is not only applicable in real academic conditions but is also a promising approach that significantly increases student productivity and engagement. The question, however, is whether such an investment in educational technology is indeed timely during economic recession, where the academic priorities are rapidly changing. In the light of this unfavourable and unstable financial environment, a critical overview of the strengths, the weaknesses, the opportunities and the threats of this effort is presented herein, hopefully contributing to the discussion on the future of higher education in the time of crisis.

  14. Antenna coupled photonic wire lasers

    DOE PAGES

    Kao, Tsung-Kao; Cai, Xiaowei; Lee, Alan W. M.; ...

    2015-06-22

    Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (~450more » mW/A) in pulsed mode for DFB lasers at 4 THz and a ~4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements.« less

  15. The isentropic light piston annular cascade facil ity at RAE Pyestock

    NASA Astrophysics Data System (ADS)

    Brooks, A. J.; Colbourne, D. E.; Wedlake, E. T.; Jones, T. V.; Oldfield, M. L. G.; Schultz, D. L.; Loftus, P. J.

    1985-09-01

    An accurate assessment of heat transfer rates to turbine vanes and blades is an important aspect of efficient cooling system design and component life prediction in gas turbines. Techniques have been developed at Oxford University which permit such measurements to be obtained in test rigs which provide short duration steady flow through a turbine cascade. The temperature ratio between the gas stream and the turbine correctly models that found in an engine environment. Reynolds number and Mach numaber can be varied over a wide range to match engine conditions. The design, construction and operation of a new facility at Royal Aircraft Establishment (RAE) Pyestock, incorporating these techniques, is described. Heat transfer and aerodynamic measurements have been made on airfoil surfaces and endwalls of a fully annular cascade of nozzle guide vanes. These results are discussed and compared with those obtained from the same profile in 2-D cascade tests, and with computed 3-D flow predictions.

  16. A study for hypergolic vapor sensor development

    NASA Technical Reports Server (NTRS)

    Stetter, J. R.

    1977-01-01

    The use of an electrochemical technique for MMH and N02 measurement was investigated. Specific MMH and N02 electrochemical sensors were developed. Experimental techniques for preparation, handling, and analysis of hydrazine's vapor mixtures at ppb and ppm levels were developed. Two approaches to N02 instrument design were evaluated including specific adsorption and specific electrochemical reduction. Two approaches to hydrazines monitoring were evaluated including catalytic conversion to N0 with subsequent N0 detection and direct specific electrochemical oxidation. Two engineering prototype MMH/N02 monitors were designed and constructed.

  17. The Effect of Teacher Designed Multimedia on Student Comprehension and Retention Rates within Introductory College Science Courses

    ERIC Educational Resources Information Center

    Rhodes, Ashley E.

    2013-01-01

    Compared to other nations, fewer American students are pursuing and completing degrees within the science, technology, engineering, and mathematics (STEM) fields. For the United States to remain competitive, the development of novel instructional techniques designed to reach students who might otherwise be lost from these majors is imperative.…

  18. An application generator for rapid prototyping of Ada real-time control software

    NASA Technical Reports Server (NTRS)

    Johnson, Jim; Biglari, Haik; Lehman, Larry

    1990-01-01

    The need to increase engineering productivity and decrease software life cycle costs in real-time system development establishes a motivation for a method of rapid prototyping. The design by iterative rapid prototyping technique is described. A tool which facilitates such a design methodology for the generation of embedded control software is described.

  19. Comparisons of Rig and Engine Dynamic Events in the Compressor of an Axi-Centrifugal Turboshaft Engine

    NASA Technical Reports Server (NTRS)

    Owen, A. Karl; Mattern, Duane L.; Le, Dzu K.

    1996-01-01

    Steady state and dynamic data were acquired in a T55-L-712 compressor rig. In addition, a T55-L-12 engine was instrumented and similar data were acquired. Rig and engine stall/surge data were analyzed using modal techniques. This paper compares rig and engine preliminary results for the ground idle (approximately 60% of design speed) point. The results of these analyses indicate both rig and engine dynamic event are preceded by indications of traveling wave energy in front of the compressor face. For both rig and engine, the traveling wave energy contains broad band energy with some prominent narrow peaks and, while the events are similar in many ways, some noticeable differences exist between the results of the analyses of rig data and engine data.

  20. Use of software engineering techniques in the design of the ALEPH data acquisition system

    NASA Astrophysics Data System (ADS)

    Charity, T.; McClatchey, R.; Harvey, J.

    1987-08-01

    The SASD methodology is being used to provide a rigorous design framework for various components of the ALEPH data acquisition system. The Entity-Relationship data model is used to describe the layout and configuration of the control and acquisition systems and detector components. State Transition Diagrams are used to specify control applications such as run control and resource management and Data Flow Diagrams assist in decomposing software tasks and defining interfaces between processes. These techniques encourage rigorous software design leading to enhanced functionality and reliability. Improved documentation and communication ensures continuity over the system life-cycle and simplifies project management.

  1. Trajectory Design for a Cislunar Cubesat Leveraging Dynamical Systems Techniques: The Lunar Icecube Mission

    NASA Technical Reports Server (NTRS)

    Bosanac, Natasha; Cox, Andrew; Howell, Kathleen C.; Folta, David C.

    2017-01-01

    Lunar IceCube is a 6U CubeSat that is designed to detect and observe lunar volatiles from a highly inclined orbit. This spacecraft, equipped with a low-thrust engine, will be deployed from the upcoming Exploration Mission-1 vehicle in late 2018. However, significant uncertainty in the deployment conditions for secondary payloads impacts both the availability and geometry of transfers that deliver the spacecraft to the lunar vicinity. A framework that leverages dynamical systems techniques is applied to a recently updated set of deployment conditions and spacecraft parameter values for the Lunar IceCube mission, demonstrating the capability for rapid trajectory design.

  2. Trajectory design for a cislunar CubeSat leveraging dynamical systems techniques: The Lunar IceCube mission

    NASA Astrophysics Data System (ADS)

    Bosanac, Natasha; Cox, Andrew D.; Howell, Kathleen C.; Folta, David C.

    2018-03-01

    Lunar IceCube is a 6U CubeSat that is designed to detect and observe lunar volatiles from a highly inclined orbit. This spacecraft, equipped with a low-thrust engine, is expected to be deployed from the upcoming Exploration Mission-1 vehicle. However, significant uncertainty in the deployment conditions for secondary payloads impacts both the availability and geometry of transfers that deliver the spacecraft to the lunar vicinity. A framework that leverages dynamical systems techniques is applied to a recently updated set of deployment conditions and spacecraft parameter values for the Lunar IceCube mission, demonstrating the capability for rapid trajectory design.

  3. Biomechanical comparison of a novel engine-driven ridge spreader and conventional ridge splitting techniques.

    PubMed

    Jung, Gyu-Un; Kim, Jun Hwan; Lim, Nam Hun; Yoon, Gil Ho; Han, Ji-Young

    2017-06-01

    Ridge splitting techniques are used for horizontal ridge augmentation in implant dentistry. Recently, a novel engine-driven ridge splitting technique was introduced. This study compared the mechanical forces produced by conventional and engine-driven ridge splitting techniques in porcine mandibles. In 33 pigs, mandibular premolar areas were selected for the ridge splitting procedures, designed as a randomized split-mouth study. The conventional group underwent a chisel-and-mallet procedure (control group, n = 20), and percussive impulse (Newton second, Ns) was measured using a sensor attached to the mallet. In the engine-driven ridge spreader group (test group, n = 23), a load cell was used to measure torque values (Newton centimeter, Ncm). Horizontal acceleration generated during procedures (control group, n = 10 and test group, n = 10) was compared between the groups. After ridge splitting, the alveolar crest width was significantly increased both in the control (1.23 ± 0.45 mm) and test (0.98 ± 0.41 mm) groups with no significant differences between the groups. The average impulse of the control group was 4.74 ± 1.05 Ns. Torque generated by rotation in the test group was 9.07 ± 2.15 Ncm. Horizontal acceleration was significantly less in the test group (0.82 ± 1.05 g) than the control group (64.07 ± 42.62 g) (P < 0.001). Narrow edentulous ridges can be expanded by novel engine-driven ridge spreaders. Within the limits of this study, the results suggested that an engine-driven ridge splitting technique may be less traumatic and less invasive than a conventional ridge splitting technique. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Error-correction coding for digital communications

    NASA Astrophysics Data System (ADS)

    Clark, G. C., Jr.; Cain, J. B.

    This book is written for the design engineer who must build the coding and decoding equipment and for the communication system engineer who must incorporate this equipment into a system. It is also suitable as a senior-level or first-year graduate text for an introductory one-semester course in coding theory. Fundamental concepts of coding are discussed along with group codes, taking into account basic principles, practical constraints, performance computations, coding bounds, generalized parity check codes, polynomial codes, and important classes of group codes. Other topics explored are related to simple nonalgebraic decoding techniques for group codes, soft decision decoding of block codes, algebraic techniques for multiple error correction, the convolutional code structure and Viterbi decoding, syndrome decoding techniques, and sequential decoding techniques. System applications are also considered, giving attention to concatenated codes, coding for the white Gaussian noise channel, interleaver structures for coded systems, and coding for burst noise channels.

  5. Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering.

    PubMed

    Wang, Harris H; Church, George M

    2011-01-01

    Engineering at the scale of whole genomes requires fundamentally new molecular biology tools. Recent advances in recombineering using synthetic oligonucleotides enable the rapid generation of mutants at high efficiency and specificity and can be implemented at the genome scale. With these techniques, libraries of mutants can be generated, from which individuals with functionally useful phenotypes can be isolated. Furthermore, populations of cells can be evolved in situ by directed evolution using complex pools of oligonucleotides. Here, we discuss ways to utilize these multiplexed genome engineering methods, with special emphasis on experimental design and implementation. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Tissue engineering in endodontics.

    PubMed

    Saber, Shehab El-Din M

    2009-12-01

    Tissue engineering is the science of design and manufacture of new tissues to replace impaired or damaged ones. The key ingredients for tissue engineering are stem cells, the morphogens or growth factors that regulate their differentiation, and a scaffold of extracellular matrix that constitutes the microenvironment for their growth. Recently, there has been increasing interest in applying the concept of tissue engineering to endodontics. The aim of this study was to review the body of knowledge related to dental pulp stem cells, the most common growth factors, and the scaffolds used to control their differentiation, and a clinical technique for the management of immature non-vital teeth based on this novel concept.

  7. Teaching the Next Generation of Scientists and Engineers the NASA Design Process

    NASA Technical Reports Server (NTRS)

    Caruso, Pamela W.; Benfield, Michael P. J.; Justice, Stefanie H.

    2011-01-01

    The Integrated Product Team (IPT) program, led by The University of Alabama in Huntsville (UAH), is a multidisciplinary, multi-university, multi-level program whose goal is to provide opportunities for high school and undergraduate scientists and engineers to translate stakeholder needs and requirements into viable engineering design solutions via a distributed multidisciplinary team environment. The current program supports three projects. The core of the program is the two-semester senior design experience where science, engineering, and liberal arts undergraduate students from UAH, the College of Charleston, Southern University at Baton Rouge, and Ecole Suprieure des Techniques Aronautiques et de Construction Automobile (ESTACA) in Paris, France form multidisciplinary competitive teams to develop system concepts of interest to the local aerospace community. External review boards form to provide guidance and feedback throughout the semester and to ultimately choose a winner from the competing teams. The other two projects, the Innovative Student Project for the Increased Recruitment of Engineering and Science Students (InSPIRESS) Level I and Level II focus exclusively on high school students. InSPIRESS Level I allows high schools to develop a payload to be accommodated on the system being developed by senior design experience teams. InSPIRESS Level II provides local high school students first-hand experience in the senior design experience by allowing them to develop a subsystem or component of the UAH-led system over the two semesters. This program provides a model for NASA centers to engage the local community to become more involved in design projects.

  8. Frontiers in Chemical Sensors: Novel Principles and Techniques

    NASA Astrophysics Data System (ADS)

    Orellana, Guillermo; Moreno-Bondi, Maria Cruz

    This third volume of Springer Series on Chemical Sensors and Biosensors aims to enable the researcher or technologist to become acquainted with the latest principles and techniques that keep on enlarging the applications in this fascinating field. It deals with the novel luminescence lifetime-based techniques for interrogation of sensor arrays in high-throughput screening, cataluminescence, chemical sensing with hollow waveguides, new ways in sensor design and fabrication by means of either combinatorial methods or engineered indicator/support couples.

  9. Advanced Launch System advanced development oxidizer turbopump program: Technical implementation plan

    NASA Technical Reports Server (NTRS)

    Ferlita, F.

    1989-01-01

    The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.

  10. Launch vehicle systems design analysis

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Verderaime, V.

    1993-01-01

    Current launch vehicle design emphasis is on low life-cycle cost. This paper applies total quality management (TQM) principles to a conventional systems design analysis process to provide low-cost, high-reliability designs. Suggested TQM techniques include Steward's systems information flow matrix method, quality leverage principle, quality through robustness and function deployment, Pareto's principle, Pugh's selection and enhancement criteria, and other design process procedures. TQM quality performance at least-cost can be realized through competent concurrent engineering teams and brilliance of their technical leadership.

  11. Quality Assurance in the Presence of Variability

    NASA Astrophysics Data System (ADS)

    Lauenroth, Kim; Metzger, Andreas; Pohl, Klaus

    Software Product Line Engineering (SPLE) is a reuse-driven development paradigm that has been applied successfully in information system engineering and other domains. Quality assurance of the reusable artifacts of the product line (e.g. requirements, design, and code artifacts) is essential for successful product line engineering. As those artifacts are reused in several products, a defect in a reusable artifact can affect several products of the product line. A central challenge for quality assurance in product line engineering is how to consider product line variability. Since the reusable artifacts contain variability, quality assurance techniques from single-system engineering cannot directly be applied to those artifacts. Therefore, different strategies and techniques have been developed for quality assurance in the presence of variability. In this chapter, we describe those strategies and discuss in more detail one of those strategies, the so called comprehensive strategy. The comprehensive strategy aims at checking the quality of all possible products of the product line and thus offers the highest benefits, since it is able to uncover defects in all possible products of the product line. However, the central challenge for applying the comprehensive strategy is the complexity that results from the product line variability and the large number of potential products of a product line. In this chapter, we present one concrete technique that we have developed to implement the comprehensive strategy that addresses this challenge. The technique is based on model checking technology and allows for a comprehensive verification of domain artifacts against temporal logic properties.

  12. An Ada Object Oriented Missile Flight Simulation

    DTIC Science & Technology

    1991-09-01

    identify by block number) This thesis uses the Ada programming language in the design and development of an air-to-air missile flight simulation with...object oriented techniques and sound software engineering principles. The simulation is designed to be more understandable, modifiable, efficient and...Department of Computer Science ii ABSTRACT This thesis uses the Ada programming language in the design and development of an air-to-air missile flight

  13. Applications of fuzzy theories to multi-objective system optimization

    NASA Technical Reports Server (NTRS)

    Rao, S. S.; Dhingra, A. K.

    1991-01-01

    Most of the computer aided design techniques developed so far deal with the optimization of a single objective function over the feasible design space. However, there often exist several engineering design problems which require a simultaneous consideration of several objective functions. This work presents several techniques of multiobjective optimization. In addition, a new formulation, based on fuzzy theories, is also introduced for the solution of multiobjective system optimization problems. The fuzzy formulation is useful in dealing with systems which are described imprecisely using fuzzy terms such as, 'sufficiently large', 'very strong', or 'satisfactory'. The proposed theory translates the imprecise linguistic statements and multiple objectives into equivalent crisp mathematical statements using fuzzy logic. The effectiveness of all the methodologies and theories presented is illustrated by formulating and solving two different engineering design problems. The first one involves the flight trajectory optimization and the main rotor design of helicopters. The second one is concerned with the integrated kinematic-dynamic synthesis of planar mechanisms. The use and effectiveness of nonlinear membership functions in fuzzy formulation is also demonstrated. The numerical results indicate that the fuzzy formulation could yield results which are qualitatively different from those provided by the crisp formulation. It is felt that the fuzzy formulation will handle real life design problems on a more rational basis.

  14. An Object Model for a Rocket Engine Numerical Simulator

    NASA Technical Reports Server (NTRS)

    Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.

    1998-01-01

    Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.

  15. Application of Weibull analysis to SSME hardware

    NASA Technical Reports Server (NTRS)

    Gray, L. A. B.

    1986-01-01

    Generally, it has been documented that the wearing of engine parts forms a failure distribution which can be approximated by a function developed by Weibull. The purpose here is to examine to what extent the Weibull distribution approximates failure data for designated engine parts of the Space Shuttle Main Engine (SSME). The current testing certification requirements will be examined in order to establish confidence levels. An examination of the failure history of SSME parts/assemblies (turbine blades, main combustion chamber, or high pressure fuel pump first stage impellers) which are limited in usage by time or starts will be done by using updated Weibull techniques. Efforts will be made by the investigator to predict failure trends by using Weibull techniques for SSME parts (turbine temperature sensors, chamber pressure transducers, actuators, and controllers) which are not severely limited by time or starts.

  16. The Design-To-Cost Manifold

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1990-01-01

    Design-to-cost is a popular technique for controlling costs. Although qualitative techniques exist for implementing design to cost, quantitative methods are sparse. In the launch vehicle and spacecraft engineering process, the question whether to minimize mass is usually an issue. The lack of quantification in this issue leads to arguments on both sides. This paper presents a mathematical technique which both quantifies the design-to-cost process and the mass/complexity issue. Parametric cost analysis generates and applies mathematical formulas called cost estimating relationships. In their most common forms, they are continuous and differentiable. This property permits the application of the mathematics of differentiable manifolds. Although the terminology sounds formidable, the application of the techniques requires only a knowledge of linear algebra and ordinary differential equations, common subjects in undergraduate scientific and engineering curricula. When the cost c is expressed as a differentiable function of n system metrics, setting the cost c to be a constant generates an n-1 dimensional subspace of the space of system metrics such that any set of metric values in that space satisfies the constant design-to-cost criterion. This space is a differentiable manifold upon which all mathematical properties of a differentiable manifold may be applied. One important property is that an easily implemented system of ordinary differential equations exists which permits optimization of any function of the system metrics, mass for example, over the design-to-cost manifold. A dual set of equations defines the directions of maximum and minimum cost change. A simplified approximation of the PRICE H(TM) production-production cost is used to generate this set of differential equations over [mass, complexity] space. The equations are solved in closed form to obtain the one dimensional design-to-cost trade and design-for-cost spaces. Preliminary results indicate that cost is relatively insensitive to changes in mass and that the reduction of complexity, both in the manufacturing process and of the spacecraft, is dominant in reducing cost.

  17. The Design of Large-Scale Complex Engineered Systems: Present Challenges and Future Promise

    NASA Technical Reports Server (NTRS)

    Bloebaum, Christina L.; McGowan, Anna-Maria Rivas

    2012-01-01

    Model-Based Systems Engineering techniques are used in the SE community to address the need for managing the development of complex systems. A key feature of the MBSE approach is the use of a model to capture the requirements, architecture, behavior, operating environment and other key aspects of the system. The focus on the model differentiates MBSE from traditional SE techniques that may have a document centric approach. In an effort to assess the benefit of utilizing MBSE on its flight projects, NASA Langley has implemented a pilot program to apply MBSE techniques during the early phase of the Materials International Space Station Experiment-X (MISSE-X). MISSE-X is a Technology Demonstration Mission being developed by the NASA Office of the Chief Technologist i . Designed to be installed on the exterior of the International Space Station (ISS), MISSE-X will host experiments that advance the technology readiness of materials and devices needed for future space exploration. As a follow-on to the highly successful series of previous MISSE experiments on ISS, MISSE-X benefits from a significant interest by the

  18. Hydropower and Environmental Resource Assessment (HERA): a computational tool for the assessment of the hydropower potential of watersheds considering engineering and socio-environmental aspects.

    NASA Astrophysics Data System (ADS)

    Martins, T. M.; Kelman, R.; Metello, M.; Ciarlini, A.; Granville, A. C.; Hespanhol, P.; Castro, T. L.; Gottin, V. M.; Pereira, M. V. F.

    2015-12-01

    The hydroelectric potential of a river is proportional to its head and water flows. Selecting the best development alternative for Greenfield projects watersheds is a difficult task, since it must balance demands for infrastructure, especially in the developing world where a large potential remains unexplored, with environmental conservation. Discussions usually diverge into antagonistic views, as in recent projects in the Amazon forest, for example. This motivates the construction of a computational tool that will support a more qualified debate regarding development/conservation options. HERA provides the optimal head division partition of a river considering technical, economic and environmental aspects. HERA has three main components: (i) pre-processing GIS of topographic and hydrologic data; (ii) automatic engineering and equipment design and budget estimation for candidate projects; (iii) translation of division-partition problem into a mathematical programming model. By integrating an automatic calculation with geoprocessing tools, cloud computation and optimization techniques, HERA makes it possible countless head partition division alternatives to be intrinsically compared - a great advantage with respect to traditional field surveys followed by engineering design methods. Based on optimization techniques, HERA determines which hydro plants should be built, including location, design, technical data (e.g. water head, reservoir area and volume, engineering design (dam, spillways, etc.) and costs). The results can be visualized in the HERA interface, exported to GIS software, Google Earth or CAD systems. HERA has a global scope of application since the main input data area a Digital Terrain Model and water inflows at gauging stations. The objective is to contribute to an increased rationality of decisions by presenting to the stakeholders a clear and quantitative view of the alternatives, their opportunities and threats.

  19. Simulator design for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerald R.

    1992-01-01

    This simulation design task completion report documents the simulation techniques associated with the network models of both the Interim Service ISDN (integrated services digital network) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures. The ISIS network model design represents satellite systems like the Advanced Communication Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) program, moves all control and switching functions on-board the next generation ISDN communication satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete events simulation experiments will be performed with these models using various traffic scenarios, design parameters and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  20. Computer-aided design of biological circuits using TinkerCell

    PubMed Central

    Bergmann, Frank T; Sauro, Herbert M

    2010-01-01

    Synthetic biology is an engineering discipline that builds on modeling practices from systems biology and wet-lab techniques from genetic engineering. As synthetic biology advances, efficient procedures will be developed that will allow a synthetic biologist to design, analyze and build biological networks. In this idealized pipeline, computer-aided design (CAD) is a necessary component. The role of a CAD application would be to allow efficient transition from a general design to a final product. TinkerCell is a design tool for serving this purpose in synthetic biology. In TinkerCell, users build biological networks using biological parts and modules. The network can be analyzed using one of several functions provided by TinkerCell or custom programs from third-party sources. Since best practices for modeling and constructing synthetic biology networks have not yet been established, TinkerCell is designed as a flexible and extensible application that can adjust itself to changes in the field. PMID:21327060

  1. Enhancing the Human Factors Engineering Role in an Austere Fiscal Environment

    NASA Technical Reports Server (NTRS)

    Stokes, Jack W.

    2003-01-01

    An austere fiscal environment in the aerospace community creates pressures to reduce program costs, often minimizing or sometimes even deleting the human interface requirements from the design process. With an assumption that the flight crew can recover real time from a poorly human factored space vehicle design, the classical crew interface requirements have been either not included in the design or not properly funded, though carried as requirements. Cost cuts have also affected quality of retained human factors engineering personnel. In response to this concern, planning is ongoing to correct the acting issues. Herein are techniques for ensuring that human interface requirements are integrated into a flight design, from proposal through verification and launch activation. This includes human factors requirements refinement and consolidation across flight programs; keyword phrases in the proposals; closer ties with systems engineering and other classical disciplines; early planning for crew-interface verification; and an Agency integrated human factors verification program, under the One NASA theme. Importance is given to communication within the aerospace human factors discipline, and utilizing the strengths of all government, industry, and academic human factors organizations in an unified research and engineering approach. A list of recommendations and concerns are provided in closing.

  2. A Model-Based Systems Engineering Methodology for Employing Architecture In System Analysis: Developing Simulation Models Using Systems Modeling Language Products to Link Architecture and Analysis

    DTIC Science & Technology

    2016-06-01

    characteristics, experimental design techniques, and analysis methodologies that distinguish each phase of the MBSE MEASA. To ensure consistency... methodology . Experimental design selection, simulation analysis, and trade space analysis support the final two stages. Figure 27 segments the MBSE MEASA...rounding has the potential to increase the correlation between columns of the experimental design matrix. The design methodology presented in Vieira

  3. Human Factors Considerations in System Design

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M. (Editor); Vanbalen, P. M. (Editor); Moe, K. L. (Editor)

    1983-01-01

    Human factors considerations in systems design was examined. Human factors in automated command and control, in the efficiency of the human computer interface and system effectiveness are outlined. The following topics are discussed: human factors aspects of control room design; design of interactive systems; human computer dialogue, interaction tasks and techniques; guidelines on ergonomic aspects of control rooms and highly automated environments; system engineering for control by humans; conceptual models of information processing; information display and interaction in real time environments.

  4. Fitting Nonlinear Curves by use of Optimization Techniques

    NASA Technical Reports Server (NTRS)

    Hill, Scott A.

    2005-01-01

    MULTIVAR is a FORTRAN 77 computer program that fits one of the members of a set of six multivariable mathematical models (five of which are nonlinear) to a multivariable set of data. The inputs to MULTIVAR include the data for the independent and dependent variables plus the user s choice of one of the models, one of the three optimization engines, and convergence criteria. By use of the chosen optimization engine, MULTIVAR finds values for the parameters of the chosen model so as to minimize the sum of squares of the residuals. One of the optimization engines implements a routine, developed in 1982, that utilizes the Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable-metric method for unconstrained minimization in conjunction with a one-dimensional search technique that finds the minimum of an unconstrained function by polynomial interpolation and extrapolation without first finding bounds on the solution. The second optimization engine is a faster and more robust commercially available code, denoted Design Optimization Tool, that also uses the BFGS method. The third optimization engine is a robust and relatively fast routine that implements the Levenberg-Marquardt algorithm.

  5. Space Shuttle Main Engine Liquid Air Insulation Redesign Lessons Learned

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell; Carroll, Paul; Head, Kenneth; Fasheh, John; Stuart, Jessica

    2010-01-01

    The Space Shuttle Main Engine Liquid Air Insulation redesign was required to prevent the reoccurance of the STS-111 High Pressure Speed Sensor In-Flight Anomaly. The STS-111 In-Flight Anomaly Failure Investigation Team's initial redesign of the High Pressure Fuel Turbopump Pump End Ball Bearing Liquid Air Insulation failed the certification test by producing Liquid Air. The certification test failure indicated not only the High Pressure Fuel Turbopump Liquid Air Insulation, but all other Space Shuttle Main Engine Liquid Air Insulation. This paper will document the original Space Shuttle Main Engine Liquid Air STS-111 In-Flight Anomaly investigation, the heritage Space Shuttle Main Engine Insulation certification testing faults, the techniques and instrumentation used to accurately test the Liquid Air Insulation systems on the Stennis Space Center SSME test stand, the analysis techniques used to identify the Liquid Air Insulation problem areas and the analytical verification of the redesign before entering certification testing, Trade study down selected to three potential design solutions, the results of the development testing which down selected the final Liquid Air Redesign are also documented within this paper.

  6. Pulsed Acoustic Vortex Sensing System : Volume 2, Studies of Improved PAVSS Processing Techniques

    DOT National Transportation Integrated Search

    1977-06-01

    Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. This volume...

  7. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.

    PubMed

    Kennedy, Kelsey M; Bhaw-Luximon, Archana; Jhurry, Dhanjay

    2017-03-01

    Engineered scaffolds produced by electrospinning of biodegradable polymers offer a 3D, nanofibrous environment with controllable structural, chemical, and mechanical properties that mimic the extracellular matrix of native tissues and have shown promise for a number of tissue engineering applications. The microscale mechanical interactions between cells and electrospun matrices drive cell behaviors including migration and differentiation that are critical to promote tissue regeneration. Recent developments in understanding these mechanical interactions in electrospun environments are reviewed, with emphasis on how fiber geometry and polymer structure impact on the local mechanical properties of scaffolds, how altering the micromechanics cues cell behaviors, and how, in turn, cellular and extrinsic forces exerted on the matrix mechanically remodel an electrospun scaffold throughout tissue development. Techniques used to measure and visualize these mechanical interactions are described. We provide a critical outlook on technological gaps that must be overcome to advance the ability to design, assess, and manipulate the mechanical environment in electrospun scaffolds toward constructs that may be successfully applied in tissue engineering and regenerative medicine. Tissue engineering requires design of scaffolds that interact with cells to promote tissue development. Electrospinning is a promising technique for fabricating fibrous, biomimetic scaffolds. Effects of electrospun matrix microstructure and biochemical properties on cell behavior have been extensively reviewed previously; here, we consider cell-matrix interaction from a mechanical perspective. Micromechanical properties as a driver of cell behavior has been well established in planar substrates, but more recently, many studies have provided new insights into mechanical interaction in fibrillar, electrospun environments. This review provides readers with an overview of how electrospun scaffold mechanics and cell behavior work in a dynamic feedback loop to drive tissue development, and discusses opportunities for improved design of mechanical environments that are conducive to tissue development. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Mammalian designer cells: Engineering principles and biomedical applications.

    PubMed

    Xie, Mingqi; Fussenegger, Martin

    2015-07-01

    Biotechnology is a widely interdisciplinary field focusing on the use of living cells or organisms to solve established problems in medicine, food production and agriculture. Synthetic biology, the science of engineering complex biological systems that do not exist in nature, continues to provide the biotechnology industry with tools, technologies and intellectual property leading to improved cellular performance. One key aspect of synthetic biology is the engineering of deliberately reprogrammed designer cells whose behavior can be controlled over time and space. This review discusses the most commonly used techniques to engineer mammalian designer cells; while control elements acting on the transcriptional and translational levels of target gene expression determine the kinetic and dynamic profiles, coupling them to a variety of extracellular stimuli permits their remote control with user-defined trigger signals. Designer mammalian cells with novel or improved biological functions not only directly improve the production efficiency during biopharmaceutical manufacturing but also open the door for cell-based treatment strategies in molecular and translational medicine. In the future, the rational combination of multiple sets of designer cells could permit the construction and regulation of higher-order systems with increased complexity, thereby enabling the molecular reprogramming of tissues, organisms or even populations with highest precision. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Full-Scale Turbofan Engine Noise-Source Separation Using a Four-Signal Method

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Arechiga, Rene O.

    2016-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and expected advances in mitigation of other noise sources. During on-ground, static-engine acoustic tests, combustor noise is generally sub-dominant to other engine noise sources because of the absence of in-flight effects. Consequently, noise-source separation techniques are needed to extract combustor-noise information from the total noise signature in order to further progress. A novel four-signal source-separation method is applied to data from a static, full-scale engine test and compared to previous methods. The new method is, in a sense, a combination of two- and three-signal techniques and represents an attempt to alleviate some of the weaknesses of each of those approaches. This work is supported by the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject and the NASA Glenn Faculty Fellowship Program.

  10. Developing creativity and problem-solving skills of engineering students: a comparison of web- and pen-and-paper-based approaches

    NASA Astrophysics Data System (ADS)

    Valentine, Andrew; Belski, Iouri; Hamilton, Margaret

    2017-11-01

    Problem-solving is a key engineering skill, yet is an area in which engineering graduates underperform. This paper investigates the potential of using web-based tools to teach students problem-solving techniques without the need to make use of class time. An idea generation experiment involving 90 students was designed. Students were surveyed about their study habits and reported they use electronic-based materials more than paper-based materials while studying, suggesting students may engage with web-based tools. Students then generated solutions to a problem task using either a paper-based template or an equivalent web interface. Students who used the web-based approach performed as well as students who used the paper-based approach, suggesting the technique can be successfully adopted and taught online. Web-based tools may therefore be adopted as supplementary material in a range of engineering courses as a way to increase students' options for enhancing problem-solving skills.

  11. Analyzing system safety in lithium-ion grid energy storage

    NASA Astrophysics Data System (ADS)

    Rosewater, David; Williams, Adam

    2015-12-01

    As grid energy storage systems become more complex, it grows more difficult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to fill the gaps recognized in PRA for designing complex systems and hence be more effective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. We conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.

  12. Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications

    NASA Technical Reports Server (NTRS)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulations.Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulatns.

  13. ARDesigner: a web-based system for allosteric RNA design.

    PubMed

    Shu, Wenjie; Liu, Ming; Chen, Hebing; Bo, Xiaochen; Wang, Shengqi

    2010-12-01

    RNA molecules play vital informational, structural, and functional roles in molecular biology, making them ideal targets for synthetic biology. However, several challenges remain for engineering novel allosteric RNA molecules, and the development of efficient computational design techniques is vitally needed. Here we describe the development of Allosteric RNA Designer (ARDesigner), a user-friendly and freely available web-based system for allosteric RNA design that incorporates mutational robustness in the design process. The system output includes detailed design information in a graphical HTML format. We used ARDesigner to engineer a temperature-sensitive AR, and found that the resulting design satisfied the prescribed properties/input. ARDesigner provides a simple means for researchers to design allosteric RNAs with specific properties. With its versatile framework and possibilities for further enhancement, ARDesigner may serve as a useful tool for synthetic biologists and therapeutic design. ARDesigner and its executable version are freely available at http://biotech.bmi.ac.cn/ARDesigner. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  14. The art of spacecraft design: A multidisciplinary challenge

    NASA Technical Reports Server (NTRS)

    Abdi, F.; Ide, H.; Levine, M.; Austel, L.

    1989-01-01

    Actual design turn-around time has become shorter due to the use of optimization techniques which have been introduced into the design process. It seems that what, how and when to use these optimization techniques may be the key factor for future aircraft engineering operations. Another important aspect of this technique is that complex physical phenomena can be modeled by a simple mathematical equation. The new powerful multilevel methodology reduces time-consuming analysis significantly while maintaining the coupling effects. This simultaneous analysis method stems from the implicit function theorem and system sensitivity derivatives of input variables. Use of the Taylor's series expansion and finite differencing technique for sensitivity derivatives in each discipline makes this approach unique for screening dominant variables from nondominant variables. In this study, the current Computational Fluid Dynamics (CFD) aerodynamic and sensitivity derivative/optimization techniques are applied for a simple cone-type forebody of a high-speed vehicle configuration to understand basic aerodynamic/structure interaction in a hypersonic flight condition.

  15. Error Estimation and Uncertainty Propagation in Computational Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Zhu, J. Z.; He, Guowei; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Numerical simulation has now become an integral part of engineering design process. Critical design decisions are routinely made based on the simulation results and conclusions. Verification and validation of the reliability of the numerical simulation is therefore vitally important in the engineering design processes. We propose to develop theories and methodologies that can automatically provide quantitative information about the reliability of the numerical simulation by estimating numerical approximation error, computational model induced errors and the uncertainties contained in the mathematical models so that the reliability of the numerical simulation can be verified and validated. We also propose to develop and implement methodologies and techniques that can control the error and uncertainty during the numerical simulation so that the reliability of the numerical simulation can be improved.

  16. A High-Fidelity Simulation of a Generic Commercial Aircraft Engine and Controller

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Csank, Jeffrey; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei

    2010-01-01

    A new high-fidelity simulation of a generic 40,000 lb thrust class commercial turbofan engine with a representative controller, known as CMAPSS40k, has been developed. Based on dynamic flight test data of a highly instrumented engine and previous engine simulations developed at NASA Glenn Research Center, this non-proprietary simulation was created especially for use in the development of new engine control strategies. C-MAPSS40k is a highly detailed, component-level engine model written in MATLAB/Simulink (The MathWorks, Inc.). Because the model is built in Simulink, users have the ability to use any of the MATLAB tools for analysis and control system design. The engine components are modeled in C-code, which is then compiled to allow faster-than-real-time execution. The engine controller is based on common industry architecture and techniques to produce realistic closed-loop transient responses while ensuring that no safety or operability limits are violated. A significant feature not found in other non-proprietary models is the inclusion of transient stall margin debits. These debits provide an accurate accounting of the compressor surge margin, which is critical in the design of an engine controller. This paper discusses the development, characteristics, and capabilities of the C-MAPSS40k simulation

  17. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Riccardi, D. P.; Mitchell, J. C.

    1993-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.

  18. The adjustable intelligent atrium sunshade

    NASA Astrophysics Data System (ADS)

    Ni, Xin; Sun, Jianhua; Wang, Bo

    2017-05-01

    This article is focused on the specific design techniques of the adjustable atrium sunshade, on the basis of the engineering analyses and practices, it is expected to alter the conventional atrium sunshade design concepts; with its uniqueness and technical excellence, this innovative atrium sunshade system exhibits rich emotions and artistry, creates an inspiring and romantic atmosphere at the atrium area of the building.

  19. Designing to Support Command and Control in Urban Firefighting

    DTIC Science & Technology

    2008-06-01

    complex human- machine systems. Keywords: Command and control, firefighting, cognitive systems engineering, cognitive task analysis 1...Elm, W. (2000). Bootstrapping multiple converging cognitive task analysis techniques for system design. In J.M.C. Schraagen, S.F. Chipman, & V.L...Shalin, (Eds.), Cognitive Task Analysis . (pp. 317-340). Mahwah, NJ: Lawrence Erlbaum. Rasmussen, J., Pejtersen, A., Goodman, L. (1994). Cognitive

  20. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    ERIC Educational Resources Information Center

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  1. Engineering Encounters: No, David! but Yes, Design! Kindergarten Students Are Introduced to a Design Way of Thinking

    ERIC Educational Resources Information Center

    Douglass, Helen

    2016-01-01

    This column presents ideas and techniques to enhance science teaching. In today's classrooms, teachers face numerous challenges. They are preparing students for jobs and careers that are not even conceived of yet. Assessments are being used to address students' college and career readiness and to promote critical thinking and problem solving.…

  2. Self-conscious robotic system design process--from analysis to implementation.

    PubMed

    Chella, Antonio; Cossentino, Massimo; Seidita, Valeria

    2011-01-01

    Developing robotic systems endowed with self-conscious capabilities means realizing complex sub-systems needing ad-hoc software engineering techniques for their modelling, analysis and implementation. In this chapter the whole process (from analysis to implementation) to model the development of self-conscious robotic systems is presented and the new created design process, PASSIC, supporting each part of it, is fully illustrated.

  3. Is the linear modeling technique good enough for optimal form design? A comparison of quantitative analysis models.

    PubMed

    Lin, Yang-Cheng; Yeh, Chung-Hsing; Wang, Chen-Cheng; Wei, Chun-Chun

    2012-01-01

    How to design highly reputable and hot-selling products is an essential issue in product design. Whether consumers choose a product depends largely on their perception of the product image. A consumer-oriented design approach presented in this paper helps product designers incorporate consumers' perceptions of product forms in the design process. The consumer-oriented design approach uses quantification theory type I, grey prediction (the linear modeling technique), and neural networks (the nonlinear modeling technique) to determine the optimal form combination of product design for matching a given product image. An experimental study based on the concept of Kansei Engineering is conducted to collect numerical data for examining the relationship between consumers' perception of product image and product form elements of personal digital assistants (PDAs). The result of performance comparison shows that the QTTI model is good enough to help product designers determine the optimal form combination of product design. Although the PDA form design is used as a case study, the approach is applicable to other consumer products with various design elements and product images. The approach provides an effective mechanism for facilitating the consumer-oriented product design process.

  4. Is the Linear Modeling Technique Good Enough for Optimal Form Design? A Comparison of Quantitative Analysis Models

    PubMed Central

    Lin, Yang-Cheng; Yeh, Chung-Hsing; Wang, Chen-Cheng; Wei, Chun-Chun

    2012-01-01

    How to design highly reputable and hot-selling products is an essential issue in product design. Whether consumers choose a product depends largely on their perception of the product image. A consumer-oriented design approach presented in this paper helps product designers incorporate consumers' perceptions of product forms in the design process. The consumer-oriented design approach uses quantification theory type I, grey prediction (the linear modeling technique), and neural networks (the nonlinear modeling technique) to determine the optimal form combination of product design for matching a given product image. An experimental study based on the concept of Kansei Engineering is conducted to collect numerical data for examining the relationship between consumers' perception of product image and product form elements of personal digital assistants (PDAs). The result of performance comparison shows that the QTTI model is good enough to help product designers determine the optimal form combination of product design. Although the PDA form design is used as a case study, the approach is applicable to other consumer products with various design elements and product images. The approach provides an effective mechanism for facilitating the consumer-oriented product design process. PMID:23258961

  5. Liquid air cycle engines

    NASA Technical Reports Server (NTRS)

    Rosevear, Jerry

    1992-01-01

    Given here is a definition of Liquid Air Cycle Engines (LACE) and existing relevant technologies. Heat exchanger design and fabrication techniques, the handling of liquid hydrogen to achieve the greatest heat sink capabilities, and air decontamination to prevent heat exchanger fouling are discussed. It was concluded that technology needs to be extended in the areas of design and fabrication of heat exchangers to improve reliability along with weight and volume reductions. Catalysts need to be improved so that conversion can be achieved with lower quantities and lower volumes. Packaging studies need to be investigated both analytically and experimentally. Recycling with slush hydrogen needs further evaluation with experimental testing.

  6. Current developments in optical engineering and commercial optics; Proceedings of the Meeting, San Diego, CA, Aug. 7-11, 1989

    NASA Technical Reports Server (NTRS)

    Fischer, Robert E. (Editor); Pollicove, Harvey M. (Editor); Smith, Warren J. (Editor)

    1989-01-01

    Various papers on current developments in optical engineering and commercial optics are presented. Individual topics addressed include: large optics fabrication technology drivers and new manufacturing techniques, new technology for beryllium mirror production, design examples of hybrid refractive-diffractive lenses, optical sensor designs for detecting cracks in optical materials, retroreflector field-of-view properties for open and solid cube corners, correction of misalignment-dependent aberrations of the HST via phase retrieval, basic radiometry review for seeker test set, radiation effects on visible optical elements, and nonlinear simulation of efficiency for large-orbit nonwiggler FELs.

  7. Integration of technologies for hepatic tissue engineering.

    PubMed

    Nahmias, Yaakov; Berthiaume, Francois; Yarmush, Martin L

    2007-01-01

    The liver is the largest internal organ in the body, responsible for over 500 metabolic, regulatory, and immune functions. Loss of liver function leads to liver failure which causes over 25,000 deaths/year in the United States. Efforts in the field of hepatic tissue engineering include the design of bioartificial liver systems to prolong patient's lives during liver failure, for drug toxicity screening and for the study of liver regeneration, ischemia/reperfusion injury, fibrosis, viral infection, and inflammation. This chapter will overview the current state-of-the-art in hepatology including isolated perfused liver, culture of liver slices and tissue explants, hepatocyte culture on collagen "sandwich" and spheroids, coculture of hepatocytes with non-parenchymal cells, and the integration of these culture techniques with microfluidics and reactor design. This work will discuss the role of oxygen and medium composition in hepatocyte culture and present promising new technologies for hepatocyte proliferation and function. We will also discuss liver development, architecture, and function as they relate to these culture techniques. Finally, we will review current opportunities and major challenges in integrating cell culture, bioreactor design, and microtechnology to develop new systems for novel applications.

  8. Design optimum frac jobs using virtual intelligence techniques

    NASA Astrophysics Data System (ADS)

    Mohaghegh, Shahab; Popa, Andrei; Ameri, Sam

    2000-10-01

    Designing optimal frac jobs is a complex and time-consuming process. It usually involves the use of a two- or three-dimensional computer model. For the computer models to perform as intended, a wealth of input data is required. The input data includes wellbore configuration and reservoir characteristics such as porosity, permeability, stress and thickness profiles of the pay layers as well as the overburden layers. Among other essential information required for the design process is fracturing fluid type and volume, proppant type and volume, injection rate, proppant concentration and frac job schedule. Some of the parameters such as fluid and proppant types have discrete possible choices. Other parameters such as fluid and proppant volume, on the other hand, assume values from within a range of minimum and maximum values. A potential frac design for a particular pay zone is a combination of all of these parameters. Finding the optimum combination is not a trivial process. It usually requires an experienced engineer and a considerable amount of time to tune the parameters in order to achieve desirable outcome. This paper introduces a new methodology that integrates two virtual intelligence techniques, namely, artificial neural networks and genetic algorithms to automate and simplify the optimum frac job design process. This methodology requires little input from the engineer beyond the reservoir characterizations and wellbore configuration. The software tool that has been developed based on this methodology uses the reservoir characteristics and an optimization criteria indicated by the engineer, for example a certain propped frac length, and provides the detail of the optimum frac design that will result in the specified criteria. An ensemble of neural networks is trained to mimic the two- or three-dimensional frac simulator. Once successfully trained, these networks are capable of providing instantaneous results in response to any set of input parameters. These networks will be used as the fitness function for a genetic algorithm routine that will search for the best combination of the design parameters for the frac job. The genetic algorithm will search through the entire solution space and identify the optimal combination of parameters to be used in the design process. Considering the complexity of this task this methodology converges relatively fast, providing the engineer with several near-optimum scenarios for the frac job design. These scenarios, which can be achieved in just a minute or two, can be valuable initial points for the engineer to start his/her design job and save him/her hours of runs on the simulator.

  9. PREFACE: 1st International Conference on Mechanical Engineering Research 2011 (ICMER2011)

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Rosli

    2012-09-01

    The year 2010 represented a significant milestone in the history of the Mechanical Engineering community with the organization of the first and second national level conferences (National Conference in Mechanical Engineering for Research, 1st and 2nd NCMER) at Universiti Malaysia Pahang on 26-27 May and 3-4 December 2010. The conferences attracted a large number of delegates from different premier academic and research institutions in the country to participate and share their research experiences at the conference. The International Conference on Mechanical Engineering Research (ICMER 2011) followed on from the first and second conferences due to good support from researchers. The ICMER 2011 is a good platform for researchers and postgraduate students to present their latest finding in research. The conference covers a wide range of topics including the internal combustion engine, machining processes, heat and mass transfer, fuel, biomechanical analysis, aerodynamic analysis, thermal comfort, computational techniques, design and simulation, automotive transmission, optimization techniques, hybrid electric vehicles, engine vibration, heat exchangers, finite element analysis, computational fluid dynamics, green energy, vehicle dynamics renewable energy, combustion, design, product development, advanced experimentation techniques, to name but a few. The international conference has helped to bridge the gap between researchers working at different institutions and in different countries to share their knowledge and has helped to motivate young scientists with their research. This has also given some clear direction for further research from the deliberations of the conference. Several people have contributed in different ways to the success of the conference. We thank the keynote speakers and all authors of the contributed papers, for the cooperation rendered to us in the publication of the CD conference proceedings. In particular, we would like to place on record our thanks to the expert reviewers who have spared their time reviewing the papers. We also highly appreciate the assistance offered by many volunteers in the preparation of the conference proceedings. All papers in ICMER 2011 have the opportunity to be published in IOP Conference Series: Materials Science and Engineering, (indexed by Scopus, Ei Compendex, Inspec), International Journal of Automotive and Mechanical Engineering (IJAME) and Journal of Mechanical Engineering and Sciences (JMES). Professor Dr Hj Rosli Abu Bakar Chairman ICMER 2011

  10. Automated drafting system uses computer techniques

    NASA Technical Reports Server (NTRS)

    Millenson, D. H.

    1966-01-01

    Automated drafting system produces schematic and block diagrams from the design engineers freehand sketches. This system codes conventional drafting symbols and their coordinate locations on standard size drawings for entry on tapes that are used to drive a high speed photocomposition machine.

  11. The effect of load history on reinforced concrete bridge column behavior : [summary].

    DOT National Transportation Integrated Search

    2012-08-01

    To satisfy the aims of performance based design, levels of damage which interrupt the serviceability of the : structure or require more invasive repair techniques must be related to engineering criteria. In this report, the : influence of displacemen...

  12. The effect of load history on reinforced concrete bridge column behavior.

    DOT National Transportation Integrated Search

    2012-08-01

    To satisfy the aims of performance based design, levels of damage which interrupt the serviceability of the : structure or require more invasive repair techniques must be related to engineering criteria. In this report, the : influence of displacemen...

  13. Simulated Engineer Assessment of the Communications Zone Model (SEAC) (Documentation and Users Manual)

    DTIC Science & Technology

    1988-06-01

    became apparent. ESC originally planned to confect a dedicated model, i.e., one specifically designed to address Korea. However, it reconsidered the...s) and should not be construed as an official US Department of the Army position, policy, or decision unless so designated by other official...model based on object-oriented programming design techniques, and uses the process view of simulation to achieve its purpose. As a direct con

  14. Genome engineering for microbial natural product discovery.

    PubMed

    Choi, Si-Sun; Katsuyama, Yohei; Bai, Linquan; Deng, Zixin; Ohnishi, Yasuo; Kim, Eung-Soo

    2018-03-03

    The discovery and development of microbial natural products (MNPs) have played pivotal roles in the fields of human medicine and its related biotechnology sectors over the past several decades. The post-genomic era has witnessed the development of microbial genome mining approaches to isolate previously unsuspected MNP biosynthetic gene clusters (BGCs) hidden in the genome, followed by various BGC awakening techniques to visualize compound production. Additional microbial genome engineering techniques have allowed higher MNP production titers, which could complement a traditional culture-based MNP chasing approach. Here, we describe recent developments in the MNP research paradigm, including microbial genome mining, NP BGC activation, and NP overproducing cell factory design. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Evolving MEMS Resonator Designs for Fabrication

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.; Kraus, William F.; Lohn, Jason D.

    2008-01-01

    Because of their small size and high reliability, microelectromechanical (MEMS) devices have the potential to revolution many areas of engineering. As with conventionally-sized engineering design, there is likely to be a demand for the automated design of MEMS devices. This paper describes our current status as we progress toward our ultimate goal of using an evolutionary algorithm and a generative representation to produce designs of a MEMS device and successfully demonstrate its transfer to an actual chip. To produce designs that are likely to transfer to reality, we present two ways to modify evaluation of designs. The first is to add location noise, differences between the actual dimensions of the design and the design blueprint, which is a technique we have used for our work in evolving antennas and robots. The second method is to add prestress to model the warping that occurs during the extreme heat of fabrication. In future we expect to fabricate and test some MEMS resonators that are evolved in this way.

  16. Protein mechanics: from single molecules to functional biomaterials.

    PubMed

    Li, Hongbin; Cao, Yi

    2010-10-19

    Elastomeric proteins act as the essential functional units in a wide variety of biomechanical machinery and serve as the basic building blocks for biological materials that exhibit superb mechanical properties. These proteins provide the desired elasticity, mechanical strength, resilience, and toughness within these materials. Understanding the mechanical properties of elastomeric protein-based biomaterials is a multiscale problem spanning from the atomistic/molecular level to the macroscopic level. Uncovering the design principles of individual elastomeric building blocks is critical both for the scientific understanding of multiscale mechanics of biomaterials and for the rational engineering of novel biomaterials with desirable mechanical properties. The development of single-molecule force spectroscopy techniques has provided methods for characterizing mechanical properties of elastomeric proteins one molecule at a time. Single-molecule atomic force microscopy (AFM) is uniquely suited to this purpose. Molecular dynamic simulations, protein engineering techniques, and single-molecule AFM study have collectively revealed tremendous insights into the molecular design of single elastomeric proteins, which can guide the design and engineering of elastomeric proteins with tailored mechanical properties. Researchers are focusing experimental efforts toward engineering artificial elastomeric proteins with mechanical properties that mimic or even surpass those of natural elastomeric proteins. In this Account, we summarize our recent experimental efforts to engineer novel artificial elastomeric proteins and develop general and rational methodologies to tune the nanomechanical properties of elastomeric proteins at the single-molecule level. We focus on general design principles used for enhancing the mechanical stability of proteins. These principles include the development of metal-chelation-based general methodology, strategies to control the unfolding hierarchy of multidomain elastomeric proteins, and the design of novel elastomeric proteins that exhibit stimuli-responsive mechanical properties. Moving forward, we are now exploring the use of these artificial elastomeric proteins as building blocks of protein-based biomaterials. Ultimately, we would like to rationally tailor mechanical properties of elastomeric protein-based materials by programming the molecular sequence, and thus nanomechanical properties, of elastomeric proteins at the single-molecule level. This step would help bridge the gap between single protein mechanics and material biomechanics, revealing how the mechanical properties of individual elastomeric proteins are translated into the properties of macroscopic materials.

  17. Detection and Monitoring of Improvised Explosive Device Education Networks through the World Wide Web

    DTIC Science & Technology

    2009-06-01

    search engines are not up to this task, as they have been optimized to catalog information quickly and efficiently for user ease of access while promoting retail commerce at the same time. This thesis presents a performance analysis of a new search engine algorithm designed to help find IED education networks using the Nutch open-source search engine architecture. It reveals which web pages are more important via references from other web pages regardless of domain. In addition, this thesis discusses potential evaluation and monitoring techniques to be used in conjunction

  18. Biological materials by design.

    PubMed

    Qin, Zhao; Dimas, Leon; Adler, David; Bratzel, Graham; Buehler, Markus J

    2014-02-19

    In this topical review we discuss recent advances in the use of physical insight into the way biological materials function, to design novel engineered materials 'from scratch', or from the level of fundamental building blocks upwards and by using computational multiscale methods that link chemistry to material function. We present studies that connect advances in multiscale hierarchical material structuring with material synthesis and testing, review case studies of wood and other biological materials, and illustrate how engineered fiber composites and bulk materials are designed, modeled, and then synthesized and tested experimentally. The integration of experiment and simulation in multiscale design opens new avenues to explore the physics of materials from a fundamental perspective, and using complementary strengths from models and empirical techniques. Recent developments in this field illustrate a new paradigm by which complex material functionality is achieved through hierarchical structuring in spite of simple material constituents.

  19. Solid state electro-optic color filter and iris

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A pair of solid state electro-optic filters (SSEF) in a binocular holder were designed and fabricated for evaluation of field sequential stereo TV applications. The electronic circuitry for use with the stereo goggles was designed and fabricated, requiring only an external video input. A polarizing screen suitable for attachment to various size TV monitors for use in conjunction with the stereo goggles was designed and fabricated. An improved engineering model 2 filter was fabricated using the bonded holder technique developed previously and integrated to a GCTA color TV camera. An engineering model color filter was fabricated and assembled using PLZT control elements. In addition, a ruggedized holder assembly was designed, fabricated and tested. This assembly provides electrical contacts, high voltage protection, and support for the fragile PLZT disk, and also permits mounting and optical alignment of the associated polarizers.

  20. Light-energy conversion in engineered microorganisms.

    PubMed

    Johnson, Ethan T; Schmidt-Dannert, Claudia

    2008-12-01

    Increasing interest in renewable resources by the energy and chemical industries has spurred new technologies both to capture solar energy and to develop biologically derived chemical feedstocks and fuels. Advances in molecular biology and metabolic engineering have provided new insights and techniques for increasing biomass and biohydrogen production, and recent efforts in synthetic biology have demonstrated that complex regulatory and metabolic networks can be designed and engineered in microorganisms. Here, we explore how light-driven processes may be incorporated into nonphotosynthetic microbes to boost metabolic capacity for the production of industrial and fine chemicals. Progress towards the introduction of light-driven proton pumping or anoxygenic photosynthesis into Escherichia coli to increase the efficiency of metabolically-engineered biosynthetic pathways is highlighted.

  1. JPL Counterfeit Parts Avoidance

    NASA Technical Reports Server (NTRS)

    Risse, Lori

    2012-01-01

    SPACE ARCHITECTURE / ENGINEERING: It brings an extreme test bed for both technologies/concepts as well as procedures/processes. Design and construction (engineering) always go together, especially with complex systems. Requirements (objectives) are crucial. More important than the answers are the questions/Requirements/Tools-Techniques/Processes. Different environments force architects and engineering to think out of the box. For instance there might not be gravity forces. Architectural complex problems have common roots: in Space and on Earth. Let us bring Space down on Earth so we can keep sending Mankind to the stars from a better world. Have fun being architects and engineers...!!! This time is amazing and historical. We are changing the way we inhabit the solar systems!

  2. Novel technologies provide more engineering strategies for amino acid-producing microorganisms.

    PubMed

    Gu, Pengfei; Su, Tianyuan; Qi, Qingsheng

    2016-03-01

    Traditionally, amino acid-producing strains were obtained by random mutagenesis and subsequent selection. With the development of genetic and metabolic engineering techniques, various microorganisms with high amino acid production yields are now constructed by rational design of targeted biosynthetic pathways. Recently, novel technologies derived from systems and synthetic biology have emerged and open a new promising avenue towards the engineering of amino acid production microorganisms. In this review, these approaches, including rational engineering of rate-limiting enzymes, real-time sensing of end-products, pathway optimization on the chromosome, transcription factor-mediated strain improvement, and metabolic modeling and flux analysis, were summarized with regard to their application in microbial amino acid production.

  3. Risk Identification and Visualization in a Concurrent Engineering Team Environment

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus; Chattopadhyay, Debarati; Shishko, Robert

    2010-01-01

    Incorporating risk assessment into the dynamic environment of a concurrent engineering team requires rapid response and adaptation. Generating consistent risk lists with inputs from all the relevant subsystems and presenting the results clearly to the stakeholders in a concurrent engineering environment is difficult because of the speed with which decisions are made. In this paper we describe the various approaches and techniques that have been explored for the point designs of JPL's Team X and the Trade Space Studies of the Rapid Mission Architecture Team. The paper will also focus on the issues of the misuse of categorical and ordinal data that keep arising within current engineering risk approaches and also in the applied risk literature.

  4. Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.; Yoo, Seung Yeun

    2011-01-01

    Asymmetric engine thrust was implemented in a hybrid-wing-body non-linear simulation to reduce the amount of aerodynamic surface deflection required for yaw stability and control. Hybrid-wing-body aircraft are especially susceptible to yaw surface deflection due to their decreased bare airframe yaw stability resulting from the lack of a large vertical tail aft of the center of gravity. Reduced surface deflection, especially for trim during cruise flight, could reduce the fuel consumption of future aircraft. Designed as an add-on, optimal control allocation techniques were used to create a control law that tracks total thrust and yaw moment commands with an emphasis on not degrading the baseline system. Implementation of engine yaw augmentation is shown and feasibility is demonstrated in simulation with a potential drag reduction of 2 to 4 percent. Future flight tests are planned to demonstrate feasibility in a flight environment.

  5. Design and evaluation of combustors for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Grobman, J.

    1973-01-01

    Efforts in reducing exhaust emissions from turbine engines are reported. Various techniques employed and the results of testing are briefly described and referenced for detail. The experimental approaches taken to reduce oxides of nitrogen emissions include the use of: (1) multizone combustors incorporating reduced dwell times, (2) fuel-air premixing, (3) air atomization, (4) fuel prevaporization, and (5) gaseous fuel. Since emissions of unburned hydrocarbons and carbon monoxide are caused by poor combustion efficiency at engine idle, the studies of fuel staging in multizone combustors and air assist fuel nozzles have indicated that large reductions in these emissions can be achieved. Also, the effect of inlet-air humidity on oxides of nitrogen was studied as well as the very effective technique of direct water injection. The emission characteristics of natural gas and propane fuels were measured and compared with those of ASTM-Al kerosene fuel.

  6. Design and evaluation of combustors for reducing aircraft engine pollution.

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Grobman, J.

    1973-01-01

    This report summarizes some of the NASA Lewis Research Center's recent efforts in reducing exhaust emissions from turbine engines. Various techniques employed and the results of testing are briefly described and referenced for detail. The experimental approaches taken to reduce oxides of nitrogen emissions include the use of: multizone combustors incorporating reduced dwell time, fuel-air premixing, air atomization, fuel prevaporization and gaseous fuel. Since emissions of unburned hydrocarbons and carbon monoxide are caused by poor combustion efficiency at engine idle, the studies of fuel staging in multizone combustors and air assist fuel nozzles have indicated that large reductions in these emissions can be achieved. Also, the effect of inlet-air humidity on oxides of nitrogen was studied as well as the very effective technique of direct water injection. The emission characteristics of natural gas and propane fuels were measured and compared with those of ASTM-Al kerosene fuel.

  7. Survey of Analysis of Crime Detection Techniques Using Data Mining and Machine Learning

    NASA Astrophysics Data System (ADS)

    Prabakaran, S.; Mitra, Shilpa

    2018-04-01

    Data mining is the field containing procedures for finding designs or patterns in a huge dataset, it includes strategies at the convergence of machine learning and database framework. It can be applied to various fields like future healthcare, market basket analysis, education, manufacturing engineering, crime investigation etc. Among these, crime investigation is an interesting application to process crime characteristics to help the society for a better living. This paper survey various data mining techniques used in this domain. This study may be helpful in designing new strategies for crime prediction and analysis.

  8. Applying object-oriented software engineering at the BaBar collaboration

    NASA Astrophysics Data System (ADS)

    Jacobsen, Bob; BaBar Collaboration Reconstruction Software Group

    1997-02-01

    The BaBar experiment at SLAC will start taking data in 1999. We are attempting to build its reconstruction software using good software engineering practices, including the use of object-oriented technology. We summarize our experience to date with analysis and design activities, training, CASE and documentation tools, C++ programming practice and similar topics. The emphasis is on the practical issues of simultaneously introducing new techniques to a large collaboration while under a deadline for system delivery.

  9. Software engineering project management - A state-of-the-art report

    NASA Technical Reports Server (NTRS)

    Thayer, R. H.; Lehman, J. H.

    1977-01-01

    The management of software engineering projects in the aerospace industry was investigated. The survey assessed such features as contract type, specification preparation techniques, software documentation required by customers, planning and cost-estimating, quality control, the use of advanced program practices, software tools and test procedures, the education levels of project managers, programmers and analysts, work assignment, automatic software monitoring capabilities, design and coding reviews, production times, success rates, and organizational structure of the projects.

  10. Computer-aided design for metabolic engineering.

    PubMed

    Fernández-Castané, Alfred; Fehér, Tamás; Carbonell, Pablo; Pauthenier, Cyrille; Faulon, Jean-Loup

    2014-12-20

    The development and application of biotechnology-based strategies has had a great socio-economical impact and is likely to play a crucial role in the foundation of more sustainable and efficient industrial processes. Within biotechnology, metabolic engineering aims at the directed improvement of cellular properties, often with the goal of synthesizing a target chemical compound. The use of computer-aided design (CAD) tools, along with the continuously emerging advanced genetic engineering techniques have allowed metabolic engineering to broaden and streamline the process of heterologous compound-production. In this work, we review the CAD tools available for metabolic engineering with an emphasis, on retrosynthesis methodologies. Recent advances in genetic engineering strategies for pathway implementation and optimization are also reviewed as well as a range of bionalytical tools to validate in silico predictions. A case study applying retrosynthesis is presented as an experimental verification of the output from Retropath, the first complete automated computational pipeline applicable to metabolic engineering. Applying this CAD pipeline, together with genetic reassembly and optimization of culture conditions led to improved production of the plant flavonoid pinocembrin. Coupling CAD tools with advanced genetic engineering strategies and bioprocess optimization is crucial for enhanced product yields and will be of great value for the development of non-natural products through sustainable biotechnological processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Aircraft applications of fault detection and isolation techniques

    NASA Astrophysics Data System (ADS)

    Marcos Esteban, Andres

    In this thesis the problems of fault detection & isolation and fault tolerant systems are studied from the perspective of LTI frequency-domain, model-based techniques. Emphasis is placed on the applicability of these LTI techniques to nonlinear models, especially to aerospace systems. Two applications of Hinfinity LTI fault diagnosis are given using an open-loop (no controller) design approach: one for the longitudinal motion of a Boeing 747-100/200 aircraft, the other for a turbofan jet engine. An algorithm formalizing a robust identification approach based on model validation ideas is also given and applied to the previous jet engine. A general linear fractional transformation formulation is given in terms of the Youla and Dual Youla parameterizations for the integrated (control and diagnosis filter) approach. This formulation provides better insight into the trade-off between the control and the diagnosis objectives. It also provides the basic groundwork towards the development of nested schemes for the integrated approach. These nested structures allow iterative improvements on the control/filter Youla parameters based on successive identification of the system uncertainty (as given by the Dual Youla parameter). The thesis concludes with an application of Hinfinity LTI techniques to the integrated design for the longitudinal motion of the previous Boeing 747-100/200 model.

  12. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders.

  13. Optimization techniques applied to passive measures for in-orbit spacecraft survivability

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.; Price, D. Marvin

    1991-01-01

    Spacecraft designers have always been concerned about the effects of meteoroid impacts on mission safety. The engineering solution to this problem has generally been to erect a bumper or shield placed outboard from the spacecraft wall to disrupt/deflect the incoming projectiles. Spacecraft designers have a number of tools at their disposal to aid in the design process. These include hypervelocity impact testing, analytic impact predictors, and hydrodynamic codes. Analytic impact predictors generally provide the best quick-look estimate of design tradeoffs. The most complete way to determine the characteristics of an analytic impact predictor is through optimization of the protective structures design problem formulated with the predictor of interest. Space Station Freedom protective structures design insight is provided through the coupling of design/material requirements, hypervelocity impact phenomenology, meteoroid and space debris environment sensitivities, optimization techniques and operations research strategies, and mission scenarios. Major results are presented.

  14. Study of Periodical Flow Heat Transfer in an Internal Combustion Engine

    NASA Astrophysics Data System (ADS)

    Luo, Xi

    In-cylinder heat transfer is one of the most critical physical behaviors which has a direct influence on engine out emission and thermal efficiency for IC engine. In-cylinder wall temperature has to be precisely controlled to achieve high efficiency and low emission. However, this cannot be done without knowing gas-to-wall heat flux. This study reports on the development of a technique suitable for engine in-cylinder surface temperature measurement, as the traditional method is "hard to reach." A laser induced phosphorescence technique was used to study in-cylinder wall temperature effects on engine out unburned hydrocarbons during the engine transitional period (warm up). A linear correlation was found between the cylinder wall surface temperature and the unburned hydrocarbons at mediate and high charge densities. At low charge density, no clear correlation was observed because of miss-fire events. A new auto background correction infrared (IR) diagnostic was developed to measure the instantaneous in-cylinder surface temperature at 0.1 CAD resolution. A numerical mechanism was designed to suppress relatively low-frequency background noise and provide an accurate in-cylinder surface temperature measurements with an error of less than 1.4% inside the IC engine. In addition, a proposed optical coating reduced time delay errors by 50% compared to more conventional thermocouple techniques. A new cycle-averaged Res number was developed for an IC engine to capture the characteristics of engine flow. Comparison and scaling between different engine flow parameters are available by matching the averaged Res number. From experimental results, the engine flow motion was classified as intermittently turbulent, and it is different from the original fully developed turbulent assumption, which has previously been used in almost all engine simulations. The intermittent turbulence could have a great impact on engine heat transfer because of the transitional turbulence effect. Engine 3D CFD model further proves the existence of transitional turbulence flow. A new multi zone heat transfer model is proposed for IC engines only. The model includes pressure work effects and improved heat transfer prediction compared to the standard Law of the wall model.

  15. PRODUCTION AND MANAGEMENT OF LEACHATE FROM MUNICIPAL LANDFILLS: SUMMARY AND ASSESSMENT

    EPA Science Inventory

    An assessment was made to evaluate production and management of leachate from municipal landfills for purposes of identifying practical information and techniques which may be useful to design engineers and site operators. Also assessed were: advantages, limitations, and comparat...

  16. Reflection on Molecular Approaches Influencing State-of-the-Art Bioremediation Design: Culturing to Microbial Community Fingerprinting to Omics

    PubMed Central

    Czaplicki, Lauren M.; Gunsch, Claudia K.

    2017-01-01

    Bioremediation is generally viewed as a cost effective and sustainable technology because it relies on microbes to transform pollutants into benign compounds. Advances in molecular biological analyses allow unprecedented microbial detection and are increasingly incorporated into bioremediation. Throughout history, state-of-the-art techniques have informed bioremediation strategies. However, the insights those techniques provided were not as in depth as those provided by recently developed omics tools. Advances in next generation sequencing (NGS) have now placed metagenomics and metatranscriptomics within reach of environmental engineers. As NGS costs decrease, metagenomics and metatranscriptomics have become increasingly feasible options to rapidly scan sites for specific degradative functions and identify microorganisms important in pollutant degradation. These omic techniques are capable of revolutionizing biological treatment in environmental engineering by allowing highly sensitive characterization of previously uncultured microorganisms. Omics enables the discovery of novel microorganisms for use in bioaugmentation and supports systematic optimization of biostimulation strategies. This review describes the omics journey from roots in biology and medicine to its current status in environmental engineering including potential future directions in commercial application. PMID:28348455

  17. Systematic Propulsion Optimization Tools (SPOT)

    NASA Technical Reports Server (NTRS)

    Bower, Mark; Celestian, John

    1992-01-01

    This paper describes a computer program written by senior-level Mechanical Engineering students at the University of Alabama in Huntsville which is capable of optimizing user-defined delivery systems for carrying payloads into orbit. The custom propulsion system is designed by the user through the input of configuration, payload, and orbital parameters. The primary advantages of the software, called Systematic Propulsion Optimization Tools (SPOT), are a user-friendly interface and a modular FORTRAN 77 code designed for ease of modification. The optimization of variables in an orbital delivery system is of critical concern in the propulsion environment. The mass of the overall system must be minimized within the maximum stress, force, and pressure constraints. SPOT utilizes the Design Optimization Tools (DOT) program for the optimization techniques. The SPOT program is divided into a main program and five modules: aerodynamic losses, orbital parameters, liquid engines, solid engines, and nozzles. The program is designed to be upgraded easily and expanded to meet specific user needs. A user's manual and a programmer's manual are currently being developed to facilitate implementation and modification.

  18. Stereoscopic display of 3D models for design visualization

    NASA Astrophysics Data System (ADS)

    Gilson, Kevin J.

    2006-02-01

    Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.

  19. Vortex generator design for aircraft inlet distortion as a numerical optimization problem

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Levy, Ralph

    1991-01-01

    Aerodynamic compatibility of aircraft/inlet/engine systems is a difficult design problem for aircraft that must operate in many different flight regimes. Takeoff, subsonic cruise, supersonic cruise, transonic maneuvering, and high altitude loiter each place different constraints on inlet design. Vortex generators, small wing like sections mounted on the inside surfaces of the inlet duct, are used to control flow separation and engine face distortion. The design of vortex generator installations in an inlet is defined as a problem addressable by numerical optimization techniques. A performance parameter is suggested to account for both inlet distortion and total pressure loss at a series of design flight conditions. The resulting optimization problem is difficult since some of the design parameters take on integer values. If numerical procedures could be used to reduce multimillion dollar development test programs to a small set of verification tests, numerical optimization could have a significant impact on both cost and elapsed time to design new aircraft.

  20. Additive manufacturing: Toward holistic design

    DOE PAGES

    Jared, Bradley H.; Aguilo, Miguel A.; Beghini, Lauren L.; ...

    2017-03-18

    Here, additive manufacturing offers unprecedented opportunities to design complex structures optimized for performance envelopes inaccessible under conventional manufacturing constraints. Additive processes also promote realization of engineered materials with microstructures and properties that are impossible via traditional synthesis techniques. Enthused by these capabilities, optimization design tools have experienced a recent revival. The current capabilities of additive processes and optimization tools are summarized briefly, while an emerging opportunity is discussed to achieve a holistic design paradigm whereby computational tools are integrated with stochastic process and material awareness to enable the concurrent optimization of design topologies, material constructs and fabrication processes.

Top