Sample records for engineering developing nations

  1. Engineering education in Bangladesh - an indicator of economic development

    NASA Astrophysics Data System (ADS)

    Chowdhury, Harun; Alam, Firoz

    2012-05-01

    Developing nations including Bangladesh are significantly lagging behind the millennium development target due to the lack of science, technology and engineering education. Bangladesh as a least developing country has only 44 engineers per million people. Its technological education and gross domestic product growth are not collinear. Although limited progress was made in humanities, basic sciences, agriculture and medical sciences, a vast gap is left in technical and engineering education. This paper describes the present condition of engineering education in the country and explores ways to improve engineering education in order to meet the national as well as global skills demand.

  2. Thrust Area Report, Engineering Research, Development and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Programmore » has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.« less

  3. Developing Leadership Skills of Undergraduate Engineering Students: Perspectives from Engineering Faculty

    ERIC Educational Resources Information Center

    Cox, Monica F.; Cekic, Osman; Adams, Stephanie G.

    2010-01-01

    The engineering education community (motivated by internal and external factors) has begun to focus on leadership abilities of college students in engineering fields via reports from ABET, the National Academy of Engineering, and the National Research Council. These reports have directed criticism toward higher education institutions for their…

  4. Engineering Curriculum Development: Balancing Employer Needs and National Interest--A Case Study.

    ERIC Educational Resources Information Center

    Buniyamin, Norlida; Mohamad, Zainuddin

    The Faculty of Mechanical Engineering at the University Teknologi MARA, Malaysia, developed an undergraduate-level engineering curriculum that balances national interests with those of employers and academics. The curriculum was based on materials posted at the Internet sites of universities in the United States, United Kingdom, and Malaysia…

  5. Mapping Engineering Concepts for Secondary Level Education. Final Report. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Daugherty, Jenny L.

    2011-01-01

    Much of the national attention on science, technology, engineering, and mathematics (STEM) education tends to concentrate on science and mathematics, with its emphasis on standardized test scores. However as the National Academy of Engineering Committee on K-12 Engineering Education stressed, engineering can contribute to the development of an…

  6. 2014 Abridged Technology and Engineering Literacy Framework for the 2014 National Assessment of Educational Progress

    ERIC Educational Resources Information Center

    National Assessment Governing Board, 2014

    2014-01-01

    Due to the growing importance of technology and engineering in the educational landscape, and to support America's ability to contribute to and compete in a global economy, the National Assessment Governing Board (NAGB) initiated development of the first NAEP Technology and Engineering Literacy (TEL) Assessment. Relating to national efforts in…

  7. FY10 Engineering Innovations, Research and Technology Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, M A; Aceves, S M; Paulson, C N

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&Dmore » 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.« less

  8. 78 FR 7464 - Large Scale Networking (LSN) ; Joint Engineering Team (JET)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... NATIONAL SCIENCE FOUNDATION Large Scale Networking (LSN) ; Joint Engineering Team (JET) AGENCY: The Networking and Information Technology Research and Development (NITRD) National Coordination...://www.nitrd.gov/nitrdgroups/index.php?title=Joint_Engineering_Team_ (JET)#title. SUMMARY: The JET...

  9. 77 FR 58415 - Large Scale Networking (LSN); Joint Engineering Team (JET)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NATIONAL SCIENCE FOUNDATION Large Scale Networking (LSN); Joint Engineering Team (JET) AGENCY: The Networking and Information Technology Research and Development (NITRD) National Coordination Office (NCO..._Engineering_Team_ (JET). SUMMARY: The JET, established in 1997, provides for information sharing among Federal...

  10. 78 FR 70076 - Large Scale Networking (LSN)-Joint Engineering Team (JET)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... NATIONAL SCIENCE FOUNDATION Large Scale Networking (LSN)--Joint Engineering Team (JET) AGENCY: The Networking and Information Technology Research and Development (NITRD) National Coordination Office (NCO..._Engineering_Team_ (JET)#title. SUMMARY: The JET, established in 1997, provides for information sharing among...

  11. National Aerospace Plane Engine Seals: High Temperature Seal Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1991-01-01

    The key to the successful development of the single stage to orbit National Aerospace Plane (NASP) is the successful development of combined cycle ramjet/scramjet engines that can propel the vehicle to 17,000 mph to reach low Earth orbit. To achieve engine performance over this speed range, movable engine panels are used to tailor engine flow that require low leakage, high temperature seals around their perimeter. NASA-Lewis is developing a family of new high temperature seals to form effective barriers against leakage of extremely hot (greater than 2000 F), high pressure (up to 100 psi) flow path gases containing hydrogen and oxygen. Preventing backside leakage of these explosive gas mixtures is paramount in preventing the potential loss of the engine or the entire vehicle. Seal technology development accomplishments are described in the three main areas of concept development, test, and evaluation and analytical development.

  12. Delivering Core Engineering Concepts to Secondary Level Students. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Merrill, Chris; Custer, Rodney L.; Daugherty, Jenny; Westrick, Martin; Zeng, Yong

    2007-01-01

    Within primary and secondary school technology education, engineering has been proposed as an avenue to bring about technological literacy. Different initiatives such as curriculum development projects (i.e., Project ProBase and Project Lead The Way) and National Science Foundation funded projects such as the National Center for Engineering and…

  13. The contribution of bacterial genome engineering to sustainable development.

    PubMed

    Reuß, Daniel R; Commichau, Fabian M; Stülke, Jörg

    2017-09-01

    The United Nations' Sustainable Development Goals define important challenges for the prosperous development of mankind. To reach several of these goals, among them the production of value-added compounds, improved economic and ecologic balance of production processes, prevention of climate change and protection of ecosystems, the use of engineered bacteria can make valuable contributions. We discuss the strategies for genome engineering and how they can be applied to meet the United Nations' goals for sustainable development. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. National Aeronautics Research, Development, Test and Evaluation (RDT&E) Infrastructure Plan

    DTIC Science & Technology

    2011-01-01

    addressed in the National Aeronautics R&D Plan, identi- fying unnecessary redundancy solely on the basis of infrastructure required to support H H13 ...near, mid, and far terms, and impact not only scramjet propulsion systems, but potential turbine-based combined cycle systems as well. Turbine Engine...Icing Test Facilities A greater understanding of the impact that icing conditions have on turbine engine opera- tions is needed to develop enhanced

  15. Engineering Education in Bangladesh--An Indicator of Economic Development

    ERIC Educational Resources Information Center

    Chowdhury, Harun; Alam, Firoz

    2012-01-01

    Developing nations including Bangladesh are significantly lagging behind the millennium development target due to the lack of science, technology and engineering education. Bangladesh as a least developing country has only 44 engineers per million people. Its technological education and gross domestic product growth are not collinear. Although…

  16. Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

  17. IDC Re-Engineering Phase 3 Development Plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, James M.; Burns, John F.; Pollock, David L.

    2017-01-01

    Sandia National Laboratories has prepared a project development plan that proposes how the parties interested in the IDC Re-Engineering system will coordinate its development, testing and transition to operations.

  18. Proceedings from the U.S. Army Corps of Engineers (USACE) and the National Oceanic and Atmospheric Administration (NOAA) Natural and Nature-Based Features Workshop

    DTIC Science & Technology

    2016-03-01

    ERDC-EL Research Biologist/Certified Facilitator Mintz Jennifer NOAA-OAR-OAP Regional Coordinator- Ocean Acidification Program/Facilitator Payne Dr...National Oceanic United States Army United States and Atmospheric Engineer Research Army Corps Administration and Development of Engineers (NOAA...and the National Oceanic and Atmospheric Administration (NOAA) Natural and Nature-Based Features Workshop March 1-3, 2016 Charleston, South

  19. Effects of Professional Development on Infusing Engineering Design into High School Science, Technology, Engineering, and Math (STEM) Curricula

    ERIC Educational Resources Information Center

    Avery, Zanj Kano

    2010-01-01

    The purpose of this study was to examine the effects of professional development (PD) on the infusion of engineering design into high school curricula. Four inservice teachers with backgrounds in physics, chemistry, industrial education, math, and electrical engineering participated in the 2006 National Center of Engineering and Technology…

  20. Biomedical engineering at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Zanner, Mary Ann

    1994-12-01

    The potential exists to reduce or control some aspects of the U.S. health care expenditure without compromising health care delivery by developing carefully selected technologies which impact favorably on the health care system. A focused effort to develop such technologies is underway at Sandia National Laboratories. As a DOE National Laboratory, Sandia possesses a wealth of engineering and scientific expertise that can be readily applied to this critical national need. Appropriate mechanisms currently exist to allow transfer of technology from the laboratory to the private sector. Sandia's Biomedical Engineering Initiative addresses the development of properly evaluated, cost-effective medical technologies through team collaborations with the medical community. Technology development is subjected to certain criteria including wide applicability, earlier diagnoses, increased efficiency, cost-effectiveness and dual-use. Examples of Sandia's medical technologies include a noninvasive blood glucose sensor, computer aided mammographic screening, noninvasive fetal oximetry and blood gas measurement, burn diagnostics and laser debridement, telerobotics and ultrasonic scanning for prosthetic devices. Sandia National Laboratories has the potential to aid in directing medical technology development efforts which emphasize health care needs, earlier diagnosis, cost containment and improvement of the quality of life.

  1. Developing Professional Skills in Undergraduate Engineering Students through Cocurricular Involvement

    ERIC Educational Resources Information Center

    Fisher, Dara R.; Bagiati, Aikaterini; Sarma, Sanjay

    2017-01-01

    As nations have sought to keep pace with rapid technological innovation, governments have renewed their focus on science, technology, engineering, and mathematics (STEM) education, with emphasis on developing both technical and non-technical skills in STEM students. This article examines which engineering-relevant skills may be developed by…

  2. Engineering Students for the 21st Century: Student Development through the Curriculum

    ERIC Educational Resources Information Center

    Cheville, Alan; Bunting, Chuck

    2011-01-01

    Through support of the National Science Foundation's Department Level Reform program, "Engineering Students for the 21st Century" (ES21C) has implemented a ten-course sequence designed to help students develop into engineers. Spread across the Electrical and Computer Engineering (ECE) curriculum at Oklahoma State University, these…

  3. FY2011 Engineering Innovations, Research, and Technology Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Kip; Martz, Harry E.; Poyneer, Lisa A.

    2012-04-24

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory’s Engineering Directorate for FY2011. These efforts exemplify Engineering’s nearly 60-year history of developing and applying the technology innovations needed for the Laboratory’s national security missions, and embody Engineering’s mission to “Enable program success today and ensure the Laboratory’s vitality tomorrow.

  4. The National Science Foundation Strategic Framework for Investments in Graduate Education. FY 2016-FY 2020. Revised

    ERIC Educational Resources Information Center

    National Science Foundation, 2016

    2016-01-01

    Graduate education plays a central role in advancing the Nation's science and engineering research enterprise. It is also increasingly the means by which the Nation develops a diverse and highly technical Science Technology Engineering and Mathematics (STEM) professional workforce. The view that graduate education in STEM disciplines is an…

  5. Liquid Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight. Test capability represents significant national investments in expertise and infrastructure. Historical experience underpins current test capabilities. Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors.

  6. Impacts of a Flat World on Engineering Education

    ERIC Educational Resources Information Center

    Chatziioanou, Alypios

    2006-01-01

    This paper discusses the changes to engineering education introduced through the accelerated engineering-related industrial growth in Asian and other developing countries. While the demand for engineering services is increasing, these nations educate a large number of engineers themselves and many are providing lower-cost alternatives for…

  7. Engineering Leadership Development Programs a Look at What Is Needed and What Is Being Done

    ERIC Educational Resources Information Center

    Crumpton-Young, Lesia; McCauley-Bush, Pamela; Rabelo, Luis; Meza, Katherine; Ferreras, Ana; Rodriguez, Betzaida; Millan, Angel; Miranda, David; Kelarestani, Misha

    2010-01-01

    "The Engineer of 2020: Visions of Engineering in the New Century," published by the National Academy of Engineering (NAE), discusses the importance of current and future engineering graduates possessing skills needed to solve business challenges. To ensure that future engineering graduates are adequately prepared, several universities and…

  8. Developing a Vision of Pre-College Engineering Education

    ERIC Educational Resources Information Center

    Marshall, Jill A.; Berland, Leema K.

    2012-01-01

    We report the results of a study focused on identifying and articulating an ''epistemic foundation'' underlying a pre-collegiate focus on engineering. We do so in the context of UTeach"Engineering" (UTE), a program supported in part by funding by the National Science Foundation and designed to develop a model approach to address the…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    The U.S. Department of Energy's (DOE) Co-Optimization of Fuels & Engines (Co-Optima) initiative is accelerating the introduction of affordable, scalable, and sustainable fuels and high-efficiency, low-emission engines with a first-of-its-kind effort to simultaneously tackle fuel and engine research and development (R&D). This report summarizes accomplishments in the first year of the project. Co-Optima is conducting concurrent research to identify the fuel properties and engine design characteristics needed to maximize vehicle performance and affordability, while deeply cutting emissions. Nine national laboratories - the National Renewable Energy Laboratory and Argonne, Idaho, Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific Northwest, andmore » Sandia National Laboratories - are collaborating with industry and academia on this groundbreaking research.« less

  10. Negotiating Cultural Humility: First-Year Engineering Students' Development in a Life-Long Journey

    ERIC Educational Resources Information Center

    Groll, Lorie

    2013-01-01

    One of the most sought after abilities in matriculating engineering students is the ability to negotiate cultural differences and build sustainable partnerships with others. This core attribute of the National Academy of Engineers' Engineer of 2020 is one of the least researched areas in engineering education literature. The ABET Engineering…

  11. Fluidized-Solid-Fuel Injection Process

    NASA Technical Reports Server (NTRS)

    Taylor, William

    1992-01-01

    Report proposes development of rocket engines burning small grains of solid fuel entrained in gas streams. Main technical discussion in report divided into three parts: established fluidization technology; variety of rockets and rocket engines used by nations around the world; and rocket-engine equation. Discusses significance of specific impulse and ratio between initial and final masses of rocket. Concludes by stating three important reasons to proceed with new development: proposed engines safer; fluidized-solid-fuel injection process increases variety of solid-fuel formulations used; and development of fluidized-solid-fuel injection process provides base of engineering knowledge.

  12. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, K.; Graf, P.; Scott, G.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems tomore » achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.« less

  13. TRU waste absorbent addition project at the Idaho National Engineering and Environmental Laboratory.

    PubMed

    Colson, R Griff; Auman, Laurence E

    2003-08-01

    ABSTRACT In order to meet a commitment to ship 3,100 m3 of transuranic waste to the Waste Isolation Pilot Plant (WIPP), the Idaho National Engineering and Environmental Laboratory (INEEL) developed a process to add absorbent to TRU waste drums that did not meet WIPP waste acceptance criteria. The development, implementation, and safe completion of this project contributed to the INEEL's success in meeting the commitment three months early.

  14. Curriculum: Integrating Health and Safety Into Engineering Curricula.

    ERIC Educational Resources Information Center

    Talty, John T.

    1985-01-01

    National Institute for Occupational Safety and Health instituted a project in 1980 to encourage engineering educators to focus on occupational safety and health issues in engineering curricula. Progress to date is outlined, considering specific results in curriculum development, engineering society interaction, and formation of a teaching…

  15. Development of American and Foreign-National Female Graduate Students in Engineering at Research Universities

    ERIC Educational Resources Information Center

    Morrison, Briana Marie Keafer

    2013-01-01

    Women continue to be underrepresented among engineering faculty despite decades of reform and intervention. To understand why more graduate women do not pursue careers in academia, this mixed methods study focuses on the experiences of women currently in graduate engineering programs, and how the graduate culture shapes their development and…

  16. Youth Exploring Science

    NASA Astrophysics Data System (ADS)

    Miller, Diane

    2008-04-01

    This session features Youth Exploring Science (YES), Saint Louis Science Center's nationally recognized work-based teen development program. In YES, underserved audiences develop interest and understanding in physics through design engineering projects. I will discuss breaking down barriers, helping youth develop skills, and partnering with community organizations, universities and engineering firms.

  17. Digital dissemination platform of transportation engineering education materials.

    DOT National Transportation Integrated Search

    2014-09-01

    National agencies have called for more widespread adoption of best practices in engineering education. To facilitate this sharing of practices we will develop a web-based system that will be used by transportation engineering educators to share curri...

  18. Curricular and Co-Curricular Leadership Learning for Engineering Students

    ERIC Educational Resources Information Center

    Reeve, Doug; Evans, Greg; Simpson, Annie; Sacks, Robin; Olivia-Fisher, Estelle; Rottmann, Cindy; Sheridan, Patricia

    2015-01-01

    In recent years engineering educators have been encouraged to blend technical and professional learning in their curricular and co-curricular programming (Engineers Canada, 2009; National Academy of Engineering [NAE], 2004). Our paper describes a multifaceted leadership learning program developed to achieve this goal by infusing reflective,…

  19. Sandia National Laboratories: Research: Research Foundations: Engineering

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New engineering transitions in advanced, highly critical systems by integrating theory development, experimental

  20. FY08 Engineering Research and Technology Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minichino, C; McNichols, D

    2009-02-24

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technologymore » development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.« less

  1. Activity Development for Intersection Operations The National Transportation Curriculum Project : Developing Activity-Based Learning Modules for the Introductory Transportation Engineering Course

    DOT National Transportation Integrated Search

    2012-05-01

    The goal of this work was to develop activity-based learning materials for the introductory transportation engineering course : with the purpose of increasing student understanding and concept retention. These materials were to cover intersection : o...

  2. 32 CFR 644.424 - Development of public port or industrial facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... industrial facilities upon the available land shall file a written application with the District Engineer... development of public port or industrial facilities, the District Engineer shall give notice of such... 32 National Defense 4 2011-07-01 2011-07-01 false Development of public port or industrial...

  3. 32 CFR 644.424 - Development of public port or industrial facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... industrial facilities upon the available land shall file a written application with the District Engineer... development of public port or industrial facilities, the District Engineer shall give notice of such... 32 National Defense 4 2010-07-01 2010-07-01 true Development of public port or industrial...

  4. Academic Research Equipment in the Physical and Computer Sciences and Engineering. An Analysis of Findings from Phase I of the National Science Foundation's National Survey of Academic Research Instruments and Instrumentation Needs.

    ERIC Educational Resources Information Center

    Burgdorf, Kenneth; White, Kristine

    This report presents information from phase I of a survey designed to develop quantitative indicators of the current national stock, cost/investment, condition, obsolescence, utilization, and need for major research instruments in academic settings. Data for phase I (which focused on the physical and computer sciences and engineering) were…

  5. Education for Professional Engineering Practice

    ERIC Educational Resources Information Center

    Bramhall, Mike D.; Short, Chris

    2014-01-01

    This paper reports on a funded collaborative large-scale curriculum innovation and enhancement project undertaken as part of a UK National Higher Education Science, Technology Engineering and Mathematics (STEM) programme. Its aim was to develop undergraduate curricula to teach appropriate skills for professional engineering practice more…

  6. Natural Environments Definition for Design

    NASA Technical Reports Server (NTRS)

    Justh, H. L.; Altino, K. M.; Decker, R. K.; Koehler, H. M.; Leahy, F. B.; Minow, J. I.; Roberts, B. C.; Suggs, R. M.; Suggs, R. J.; White, P. W.; hide

    2016-01-01

    Planning for future National Aeronautics and Space Administration (NASA) missions will encompass a variety of operational and engineering activities that involve a multitude of issues, constraints, and influences derived from the natural environment. This Technical Memorandum (TM) presents a definition of the natural environment, i.e., a description in engineering handbook format of models and data specifically selected to support the architecture development, engineering design, and technology development for NASA's Exploration Systems Development (ESD) initiatives.

  7. 78 FR 50144 - Rehabilitation Research and Development Service Scientific Merit Review Board; Notice of Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... Office. Research Career Scientists August 10, 2013....... * VA Central Office. Rehabilitation Engineering...: Subcommittee Date(s) Location Career Development Award Program.... August 6, 2013........ VHA National.... August 8, 2013........ VHA National Conference Center. Career Development Award Program.... August 8...

  8. Engineering Education for Agricultural and Rural Development in Africa

    ERIC Educational Resources Information Center

    Adewumi, B. A.

    2008-01-01

    Agricultural Engineering has transformed agricultural practices from subsistence level to medium and large-scale production via mechanisation in the developed nations. This has reduced the labour force requirements in agriculture; increased production levels and efficiency, product shelf life and product quality; and resulted into…

  9. Hypersonic engine seal development at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1994-01-01

    NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.

  10. Hypersonic engine seal development at NASA Lewis Research Center

    NASA Astrophysics Data System (ADS)

    Steinetz, Bruce M.

    1994-07-01

    NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.

  11. Information systems for engineering sustainable development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, R.S.

    1992-02-27

    The ability of a country to follow sustainable development paths is determined to a large extent by the capacity or capabilities of its people and its institutions. Specifically, capacity-building in the UNCED terminology encompasses the country's human, scientific, technological, organizational, institutional, and resource capabilities. A fundamental goal of capacity-building is to enhance the ability to pose, evaluate and address crucial questions related to policy choices and methods of implementation among development options. As a result the United Nations Conference on Environment and Development (UNCED) Agenda 21 planning process has identified the need for better methods by which information can bemore » transferred between industrialized nations and developing nations. The reasons for better methods of information transfer include facilitating decisions related to sustainable development and building the capacity of developing nations to better plan their future in both an economical and environmentally sound manner. This paper is a discussion on mechanisms for providing information and technologies available for presenting the information to a variety of cultures and levels of technical literacy. Consideration is given to access to information technology as well as to the cost to the user. One concept discussed includes an Engineering Partnership'' which brings together the talents and resources of private consulting engineers, corporations, non-profit professional organizations, government agencies and funding institution which work in partnership with each other and associates in developing countries. Concepts which are related to information technologies include a hypertext based, user configurable cultural translator and information navigator and the use of multi-media technologies to educate engineers about the concepts of sustainability, and the adaptation of the concept of metabolism to creating industrial systems.« less

  12. Information systems for engineering sustainable development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, R.S.

    1992-02-27

    The ability of a country to follow sustainable development paths is determined to a large extent by the capacity or capabilities of its people and its institutions. Specifically, capacity-building in the UNCED terminology encompasses the country`s human, scientific, technological, organizational, institutional, and resource capabilities. A fundamental goal of capacity-building is to enhance the ability to pose, evaluate and address crucial questions related to policy choices and methods of implementation among development options. As a result the United Nations Conference on Environment and Development (UNCED) Agenda 21 planning process has identified the need for better methods by which information can bemore » transferred between industrialized nations and developing nations. The reasons for better methods of information transfer include facilitating decisions related to sustainable development and building the capacity of developing nations to better plan their future in both an economical and environmentally sound manner. This paper is a discussion on mechanisms for providing information and technologies available for presenting the information to a variety of cultures and levels of technical literacy. Consideration is given to access to information technology as well as to the cost to the user. One concept discussed includes an ``Engineering Partnership`` which brings together the talents and resources of private consulting engineers, corporations, non-profit professional organizations, government agencies and funding institution which work in partnership with each other and associates in developing countries. Concepts which are related to information technologies include a hypertext based, user configurable cultural translator and information navigator and the use of multi-media technologies to educate engineers about the concepts of sustainability, and the adaptation of the concept of metabolism to creating industrial systems.« less

  13. Engineers, Development, and Engineering Education: From National to Sustainable Community Development

    ERIC Educational Resources Information Center

    Lucena, J.; Schneider, J.

    2008-01-01

    In October 2007, Norman Borlaug wrote in "Science" magazine that "more than 200 science journals throughout the world will simultaneously publish papers on global poverty and human development--a collaborative effort to increase awareness, interest, and research about these important issues of our time". Borlaug, Nobel Peace Prize laureate and…

  14. Engineering's Grand Challenges: Priorities and Integration Recommendations for Technology Education Curriculum Development

    ERIC Educational Resources Information Center

    Buelin, Jennifer; Clark, Aaron C.; Ernst, Jeremy V.

    2016-01-01

    In this study, the 14 Grand Challenges for Engineering in the 21st Century identified by the National Academy of Engineering were examined by a panel of experts in an effort to identify prospective curricular integration opportunities in the field of technology and engineering education. The study utilized a three-round modified Delphi methodology…

  15. High frequency data acquisition system for space shuttle main engine testing

    NASA Technical Reports Server (NTRS)

    Lewallen, Pat

    1987-01-01

    The high frequency data acquisition system developed for the Space Shuttle Main Engine (SSME) single engine test facility at the National Space Technology Laboratories is discussed. The real time system will provide engineering data for a complete set of SSME instrumentation (approx. 100 measurements) within 4 hours following engine cutoff, a decrease of over 48 hours from the previous analog tape based system.

  16. Engineering Research and Technology Development on the Space Station

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report identifies and assesses the kinds of engineering research and technology development applicable to national, NASA, and commercial needs that can appropriately be performed on the space station. It also identifies the types of instrumentation that should be included in the space station design to support engineering research. The report contains a preliminary assessment of the potential benefits to U.S. competitiveness of engineering research that might be conducted on a space station, reviews NASA's current approach to jointly funded or cooperative experiments, and suggests modifications that might facilitate university and industry participation in engineering research and technology development activities on the space station.

  17. National Wetland Plant List Indicator Rating Definitions

    DTIC Science & Technology

    2012-07-01

    ER D C/ CR RE L TN -1 2- 1 National Wetland Plant List Indicator Rating Definitions Co ld R eg io ns R es ea rc h an d En gi ne er in... Rating Definitions Robert W. Lichvar Cold Regions Research and Engineering Laboratory U.S. Army Engineer Research and Development Center 72 Lyme...status ratings in the United States. In 2012 the list, now called the National Wetland Plant List, was updated and approved for use for various

  18. Affordable Development and Qualification Strategy for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.; Doughty, Glen E.; Bhattacharyya, Samit K.

    2013-01-01

    Nuclear Thermal Propulsion (NTP) is a concept which uses a nuclear reactor to heat a propellant to high temperatures without combustion and can achieve significantly greater specific impulse than chemical engines. NTP has been considered many times for human and cargo missions beyond low earth orbit. A lot of development and technical maturation of NTP components took place during the Rover/NERVA program of the 60's and early 70's. Other NTP programs and studies followed attempting to further mature the NTP concept and identify a champion customer willing to devote the funds and support the development schedule to a demonstration mission. Budgetary constraints require the use of an affordable development and qualification strategy that takes into account all the previous work performed on NTP to construct an existing database, and include lessons learned and past guidelines followed. Current guidelines and standards NASA uses for human rating chemical rocket engines is referenced. The long lead items for NTP development involve the fuel elements of the reactor and ground testing the engine system, subsystem, and components. Other considerations which greatly impact the development plans includes the National Space Policy, National Environmental Policy Act, Presidential Directive/National Security Council Memorandum #25 (Scientific or Technological Experiments with Possible Large-Scale Adverse Environmental Effects and Launch of Nuclear Systems into Space), and Safeguards and Security. Ground testing will utilize non-nuclear test capabilities to help down select components and subsystems before testing in a nuclear environment to save time and cost. Existing test facilities with minor modifications will be considered to the maximum extent practical. New facilities will be designed to meet minimum requirements. Engine and test facility requirements are based on the driving mission requirements with added factors of safety for better assurance and reliability. Emphasis will be placed on small engines, since the smaller the NTP engine, the easier it is to transport, assemble/disassemble, and filter the exhaust during tests. A new ground test concept using underground bore holes (modeled after the underground nuclear test program) to filter the NTP engine exhaust is being considered. The NTP engine system design, development, test, and evaluation plan includes many engine components and subsystems, which are very similar to those used in chemical engines, and can be developed in conjunction with them Other less mature NTP engine components and subsystems (e.g., reactor) will be thoroughly analyzed and tested to acceptable levels recommended by the referenced standards and guidelines. The affordable development strategy also considers a prototype flight test, as a final step in the development process. Preliminary development schedule estimates show that an aggressive development schedule (without much margin) will be required to be flight ready for a 2033 human mission to Mars.

  19. Unemployment Rises Slightly for Chemists.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1982

    1982-01-01

    Results of a National Science Foundation survey indicate that developing shortages of science and engineering graduates in the current labor force for the most part do not apply to chemists and chemical engineers. (Author/JN)

  20. Reforms in Education: The Need for Re-Engineering Teacher Education for Sustainable Development

    ERIC Educational Resources Information Center

    Ofoego, O. C.; Ebebe, I. E.

    2016-01-01

    The paper is concerned with reforms in Education and the need for re-engineering Teacher education in Nigeria for better professionalism and National Development. In the process, key concepts like Teacher Education and professionalism were explained. A brief review of the state of Teacher Education and Development in Nigeria revealed the…

  1. National Research Council Dialogue to Assess Progress on NASA's Systems Engineering Cost/Risk Analysis Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria

    2005-01-01

    Contents include the following: General Background and Introduction of Capability. Roadmaps for Systems Engineering Cost/Risk Analysis. Agency Objectives. Strategic Planning Transformation. Review Capability Roadmaps and Schedule. Review Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  2. Foreign Experience in Training Future Engineering Educators for Modeling Technological Processes

    ERIC Educational Resources Information Center

    Bokhonko, Yevhen

    2017-01-01

    The article deals with the study of foreign experience in training engineering educators for modeling technological processes. It has been stated that engineering education is a field that is being dramatically developed taking into account the occurring changes in educational paradigms, global higher education space, national higher education…

  3. 78 FR 79363 - Hazardous Materials: Adoption of ASME Code Section XII and the National Board Inspection Code

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... Rulemaking Division, (202) 366-8553, or Stanley Staniszewski, Engineering and Research [[Page 79364... increased capacity to transport product. A review of previous research by PHMSA's Engineering and Research..., knowledge-sharing, and skill development across all engineering disciplines. ASME is recognized globally for...

  4. Diminishing Funding and Rising Expectations: Trends and Challenges for Public Research Universities. A Companion to Science and Engineering Indicators 2012. NSB-12-45

    ERIC Educational Resources Information Center

    National Science Foundation, 2012

    2012-01-01

    Research universities, both public and private alike, are the leading producers of science and engineering (S&E) bachelor's, master's, and doctoral degrees. They are contributors to economic development at the local, state, and national levels, performing over half of the Nation's total basic research in 2009, and they educate and train our…

  5. Technological and cross-border mixture value chain of science and engineering of multi-integrative mechatronics-integronics-adaptronics

    NASA Astrophysics Data System (ADS)

    Gheorghe, Gh. Ion; Popan, Gheorghe

    2013-10-01

    This scientific paper presents in national premiere and in original concept of the author, the scientific national and the author's original concept, the technological and cross-border mixture value chain of science and engineering of multi-integrative Mechatronics-Integronics-Adaptronics, as high-tech vector support development, for viability and sustainability of a new intelligent and competitive labour market.

  6. Nanotechnology Safety Self-Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grogin, Phillip W.

    2016-03-29

    Nanoparticles are near-atomic scale structures between 1 and 100 nanometers (one billionth of a meter). Engineered nanoparticles are intentionally created and are used in research and development at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL). This course, Nanotechnology Safety Self-Study, presents an overview of the hazards, controls, and uncertainties associated with the use of unbound engineered nanoscale particles (UNP) in a laboratory environment.

  7. 32 CFR 555.7 - Submission of technical proposals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... research and development laboratories are authorized to submit technical proposals directly to other... 32 National Defense 3 2010-07-01 2010-07-01 true Submission of technical proposals. 555.7 Section... AND NATIONAL CEMETERIES CORPS OF ENGINEERS, RESEARCH AND DEVELOPMENT, LABORATORY RESEARCH AND...

  8. ROBOTICS IN HAZARDOUS ENVIRONMENTS - REAL DEPLOYMENTS BY THE SAVANNAH RIVER NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriikku, E.; Tibrea, S.; Nance, T.

    The Research & Development Engineering (R&DE) section in the Savannah River National Laboratory (SRNL) engineers, integrates, tests, and supports deployment of custom robotics, systems, and tools for use in radioactive, hazardous, or inaccessible environments. Mechanical and electrical engineers, computer control professionals, specialists, machinists, welders, electricians, and mechanics adapt and integrate commercially available technology with in-house designs, to meet the needs of Savannah River Site (SRS), Department of Energy (DOE), and other governmental agency customers. This paper discusses five R&DE robotic and remote system projects.

  9. Information engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, D.N.

    1997-02-01

    The Information Engineering thrust area develops information technology to support the programmatic needs of Lawrence Livermore National Laboratory`s Engineering Directorate. Progress in five programmatic areas are described in separate reports contained herein. These are entitled Three-dimensional Object Creation, Manipulation, and Transport, Zephyr:A Secure Internet-Based Process to Streamline Engineering Procurements, Subcarrier Multiplexing: Optical Network Demonstrations, Parallel Optical Interconnect Technology Demonstration, and Intelligent Automation Architecture.

  10. Foundations for value education in engineering: the Indian experience.

    PubMed

    Gupta, Amitabha

    2015-04-01

    The objective of this paper is to discuss some of the foundational issues centering around the question of integrating education in human values with professional engineering education: its necessity and justification. The paper looks at the efforts in 'tuning' the technical education system in India to the national goals in the various phases of curriculum development. The contribution of the engineering profession in national development and India's self-sufficiency is crucially linked with the institutionalization of expertise and the role of morality and responsibility. This linkage can be created through a proper understanding of the social role of the profession-what motivates the professionals and what makes professional life meaningful. Value education facilitates the process of moral maturity and the development of a 'holistic' mindset. This paper deals with the need to create such a mindset, the human values associated with it and gives examples of efforts to impart such education through 'action-oriented' programmes introduced in some institutes of engineering in India.

  11. Dialogue on sustainable development as part of engineering education: the relevance of the Finnish case : commentary on "a national collaboration process: Finnish engineering education for the benefit of people and environment".

    PubMed

    Geerts, Robert

    2013-12-01

    Society invests in the education of engineers because it is expected that the works of engineers will bring good results for society. Because the work of engineers is not value free or neutral, it is important that engineers are educated in the important principles of the social sciences and humanities. This education is essential for the awareness and understanding of what is good for society. Therefore the concept of sustainable development should be part of an education in engineering but only when the social sciences are also a part of it.

  12. 32 CFR 555.4 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Policy. 555.4 Section 555.4 National Defense... OF ENGINEERS, RESEARCH AND DEVELOPMENT, LABORATORY RESEARCH AND DEVELOPMENT AND TESTS, WORK FOR OTHERS § 555.4 Policy. (a) The policies and procedures covered herein extend and supplement the...

  13. Developing a National STEM Workforce Strategy: A Workshop Summary

    ERIC Educational Resources Information Center

    Alper, Joe

    2016-01-01

    The future competitiveness of the United States in an increasingly interconnected global economy depends on the nation fostering a workforce with strong capabilities and skills in science, technology, engineering, and mathematics (STEM). STEM knowledge and skills enable both individual opportunity and national competitiveness, and the nation needs…

  14. Engines of Economic Development: The Origins and Evolution of Iowa's Comprehensive Community Colleges

    ERIC Educational Resources Information Center

    Friedel, Janice

    2010-01-01

    One of the most remarkable developments in American education in the past half century has been the creation and rapid growth of the nation's community colleges. Built on the curricular pillars of vocational education, transfer programs, and community education, community colleges today are considered the "engines of statewide economic…

  15. DIESEL ENGINE SYSTEMS. AGRICULTURAL MACHINERY--SERVICE OCCUPATIONS, MODULE NUMBER 15.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED TO HELP TEACHERS PREPARE POSTSECONDARY STUDENTS FOR AGRICULTURAL MACHINERY SERVICE OCCUPATIONS AS PARTS MEN, MECHANICS, MECHANIC'S HELPERS, AND SERVICE SUPERVISORS, THIS GUIDE AIMS TO DEVELOP STUDENT UNDERSTANDING OF THE CONSTRUCTION AND OPERATING PRINCIPLES OF DIESEL ENGINES. IT WAS DEVELOPED BY A NATIONAL TASK FORCE ON…

  16. Advancing Diagnostic Skills for Technology and Engineering Undergraduates: A Summary of the Validation Data

    ERIC Educational Resources Information Center

    Foster, W. Tad; Shahhosseini, A. Mehran; Maughan, George

    2016-01-01

    Facilitating student growth and development in diagnosing and solving technical problems remains a challenge for technology and engineering educators. With funding from the National Science Foundation, this team of researchers developed a self-guided, computer-based instructional program to experiment with conceptual mapping as a treatment to…

  17. 46 CFR 11.505 - National engineer officer endorsements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false National engineer officer endorsements. 11.505 Section... REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for National Engineer Officer Endorsements § 11.505 National engineer officer endorsements. Figure 11.505(a) illustrates the national engineering...

  18. Superhydrophobic engineered cementitious composites for highway applications : phase I.

    DOT National Transportation Integrated Search

    2013-05-01

    The strength and durability of highway bridges are two of the key components in maintaining a high level of freight transportation capacity on the nations highways. This research focused on developing new hybrid superhydrophobic engineered cementi...

  19. Mentoring Matters.

    ERIC Educational Resources Information Center

    Highsmith, Robert J.; Denes, Ronni; Pierre, Marie M.

    1998-01-01

    The National Action Council for Minorities in Engineering (NACME) mentors underrepresented students and encourages their significant achievements in science, mathematics, and engineering. NACME develops many of its mentoring strategies through its Corporate Scholars Program (CSP), a comprehensive scholarship program that links engineering…

  20. A layered approach to technology transfer of AVIRIS between Earth Search Sciences, Inc. and the Idaho National Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    Ferguson, James S.; Ferguson, Joanne E.; Peel, John, III; Vance, Larry

    1995-01-01

    Since initial contact between Earth Search Sciences, Inc. (ESSI) and the Idaho National Engineering Laboratory (INEL) in February, 1994, at least seven proposals have been submitted in response to a variety of solicitations to commercialize and improve the AVIRIS instrument. These proposals, matching ESSI's unique position with respect to agreements with the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) to utilize, miniaturize, and commercialize the AVIRIS instrument and platform, are combined with the applied engineering of the INEL. Teaming ESSI, NASA/JPL, and INEL with diverse industrial partners has strengthened the respective proposals. These efforts carefully structure the overall project plans to ensure the development, demonstration, and deployment of this concept to the national and international arenas. The objectives of these efforts include: (1) developing a miniaturized commercial, real-time, cost effective version of the AVIRIS instrument; (2) identifying multiple users for AVIRIS; (3) integrating the AVIRIS technology with other technologies; (4) gaining the confidence/acceptance of other government agencies and private industry in AVIRIS; and (5) increasing the technology base of U.S. industry.

  1. 1996 Laboratory directed research and development annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  2. Tissue engineering: confronting the transplantation crisis.

    PubMed

    Nerem, R M

    2000-01-01

    Tissue engineering is the development of biological substitutes and/or the fostering of tissue regeneration/remodelling. It is emerging as a technology which has the potential to confront the crisis in transplantation caused by the shortage of donor tissues and organs. With the development of this technology, ther is emerging a new industry which is at the interface of biotechnology and the traditional medical implant field. For this technology and the associated industry to realize their full potential, there are core, enabling technologies that need to be developed. This is the focus of the Georgia Tech/Emory Center for the Engineering of Living Tissues, newly established in the United States, with an Engineering Research Center Award from the National Science Foundation. With the development of these core technologies, tissue engineering will evolve from an art form to a technology based on science and engineering.

  3. Definition and documentation of engineering processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, G.W.

    1997-11-01

    This tutorial is an extract of a two-day workshop developed under the auspices of the Quality Engineering Department at Sandia National Laboratories. The presentation starts with basic definitions and addresses why processes should be defined and documented. It covers three primary topics: (1) process considerations and rationale, (2) approach to defining and documenting engineering processes, and (3) an IDEFO model of the process for defining engineering processes.

  4. Integrative Curriculum Development in Nuclear Education and Research Vertical Enhancement Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egarievwe, Stephen U.; Jow, Julius O.; Edwards, Matthew E.

    Using a vertical education enhancement model, a Nuclear Education and Research Vertical Enhancement (NERVE) program was developed. The NERVE program is aimed at developing nuclear engineering education and research to 1) enhance skilled workforce development in disciplines relevant to nuclear power, national security and medical physics, and 2) increase the number of students and faculty from underrepresented groups (women and minorities) in fields related to the nuclear industry. The program uses multi-track training activities that vertically cut across the several education domains: undergraduate degree programs, graduate schools, and post-doctoral training. In this paper, we present the results of an integrativemore » curriculum development in the NERVE program. The curriculum development began with nuclear content infusion into existing science, engineering and technology courses. The second step involved the development of nuclear engineering courses: 1) Introduction to Nuclear Engineering, 2) Nuclear Engineering I, and 2) Nuclear Engineering II. The third step is the establishment of nuclear engineering concentrations in two engineering degree programs: 1) electrical engineering, and 2) mechanical engineering. A major outcome of the NERVE program is a collaborative infrastructure that uses laboratory work, internships at nuclear facilities, on-campus research, and mentoring in collaboration with industry and government partners to provide hands-on training for students. The major activities of the research and education collaborations include: - One-week spring training workshop at Brookhaven National Laboratory: The one-week training and workshop is used to enhance research collaborations and train faculty and students on user facilities/equipment at Brookhaven National Laboratory, and for summer research internships. Participants included students, faculty members at Alabama A and M University and research collaborators at BNL. The activities include 1) tour and introduction to user facilities/equipment at BNL that are used for research in room-temperature semiconductor nuclear detectors, 2) presentations on advances on this project and on wide band-gap semiconductor nuclear detectors in general, and 3) graduate students' research presentations. - Invited speakers and lectures: This brings collaborating research scientist from BNL to give talks and lectures on topics directly related to the project. Attendance includes faculty members, researchers and students throughout the university. - Faculty-students team summer research at BNL: This DOE and National Science Foundation (NSF) program help train students and faculty members in research. Faculty members go on to establish research collaborations with scientists at BNL, develop and submit research proposals to funding agencies, transform research experience at BNL to establish and enhance reach capabilities at home institution, and integrate their research into teaching through class projects and hands-on training for students. The students go on to participate in research work at BNL and at home institution, co-author research papers for conferences and technical journals, and transform their experiences into developing senior and capstone projects. - Grant proposal development: Faculty members in the NERVE program collaborate with BNL scientists to develop proposals, which often help to get external funding needed to expand and sustain the continuity of research activities and supports for student's wages and scholarships (stipends, tuition and fees). - Faculty development and mentoring: The above collaboration activities help faculty professional development. The experiences, grants, joint publications in technical journals, and supervision of student's research, including thesis and dissertation research projects, contribute greatly to faculty development. Senior scientists at BNL and senior faculty members on campus jointly mentor junior faculty members to enhance their professional growth. - Graduate thesis and dissertation research: Brookhaven National Laboratory provides unique opportunities and outstanding research resources for the NERVE program graduate research. Scientists from BNL serve in master's degree thesis and PhD dissertation committees, where they play active roles in the supervision of the research. (authors)« less

  5. Development of a testlet generator in re-engineering the Indonesian physics national-exams

    NASA Astrophysics Data System (ADS)

    Mindyarto, Budi Naini; Mardapi, Djemari; Bastari

    2017-08-01

    The Indonesian Physics national-exams are end-of-course summative assessments that could be utilized to support the assessment for learning in physics educations. This paper discusses the development and evaluation of a testlet generator based on a re-engineering of Indonesian physics national exams. The exam problems were dissected and decomposed into testlets revealing the deeper understanding of the underlying physical concepts by inserting a qualitative question and its scientific reasoning question. A template-based generator was built to facilitate teachers in generating testlet variants that would be more conform to students' scientific attitude development than their original simple multiple-choice formats. The testlet generator was built using open source software technologies and was evaluated focusing on the black-box testing by exploring the generator's execution, inputs and outputs. The results showed the correctly-performed functionalities of the developed testlet generator in validating inputs, generating testlet variants, and accommodating polytomous item characteristics.

  6. EPA ETV Program for Vapor Intrusion

    EPA Science Inventory

    TITLE: EPA Environmental Technology Verification (ETV) Program Douglas W. Grosse Senior Environmental Engineer U.S. EPA, Office of Research and Development National Risk Management Research Laboratory National Risk Management Research Laboratory Environmental Technology A...

  7. Investigation into the impact of privatizing civil engineering operations in Louisiana DOTD.

    DOT National Transportation Integrated Search

    2013-06-01

    The purpose of this study is to investigate the impact of privatizing all civil engineering operations in : the Louisiana Department of Transportation and Development (DOTD). It was investigated by : conducting a national and international literature...

  8. Los Alamos National Security, LLC Request for Information from industrial entities that desire to commercialize Laboratory-developed Extremely Low Resource Optical Identifier (ELROI) tech

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Michael Charles

    Los Alamos National Security, LLC (LANS) is the manager and operator of the Los Alamos National Laboratory for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. LANS is a mission-centric Federally Funded Research and Development Center focused on solving the most critical national security challenges through science and engineering for both government and private customers.

  9. An overview of the ENEA activities in the field of coupled codes NPP simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parisi, C.; Negrenti, E.; Sepielli, M.

    2012-07-01

    In the framework of the nuclear research activities in the fields of safety, training and education, ENEA (the Italian National Agency for New Technologies, Energy and the Sustainable Development) is in charge of defining and pursuing all the necessary steps for the development of a NPP engineering simulator at the 'Casaccia' Research Center near Rome. A summary of the activities in the field of the nuclear power plants simulation by coupled codes is here presented with the long term strategy for the engineering simulator development. Specifically, results from the participation in international benchmarking activities like the OECD/NEA 'Kalinin-3' benchmark andmore » the 'AER-DYN-002' benchmark, together with simulations of relevant events like the Fukushima accident, are here reported. The ultimate goal of such activities performed using state-of-the-art technology is the re-establishment of top level competencies in the NPP simulation field in order to facilitate the development of Enhanced Engineering Simulators and to upgrade competencies for supporting national energy strategy decisions, the nuclear national safety authority, and the R and D activities on NPP designs. (authors)« less

  10. Minority Universities Systems Engineering (MUSE) Program at the University of Texas at El Paso

    NASA Technical Reports Server (NTRS)

    Robbins, Mary Clare; Usevitch, Bryan; Starks, Scott A.

    1997-01-01

    In 1995, The University of Texas at El Paso (UTEP) responded to the suggestion of NASA Jet Propulsion Laboratory (NASA JPL) to form a consortium comprised of California State University at Los Angeles (CSULA), North Carolina Agricultural and Technical University (NCAT), and UTEP from which developed the Minority Universities Systems Engineering (MUSE) Program. The mission of this consortium is to develop a unique position for minority universities in providing the nation's future system architects and engineers as well as enhance JPL's system design capability. The goals of this collaboration include the development of a system engineering curriculum which includes hands-on project engineering and design experiences. UTEP is in a unique position to take full advantage of this program since UTEP has been named a Model Institution for Excellence (MIE) by the National Science Foundation. The purpose of MIE is to produce leaders in Science, Math, and Engineering. Furthermore, UTEP has also been selected as the site for two new centers including the Pan American Center for Earth and Environmental Sciences (PACES) directed by Dr. Scott Starks and the FAST Center for Structural Integrity of Aerospace Systems directed by Dr. Roberto Osegueda. The UTEP MUSE Program operates under the auspices of the PACES Center.

  11. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irving, J.S.

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  12. ADJUSTMENT, MAINTENANCE, AND REPAIR OF SMALL GASOLINE ENGINES. AGRICULTURAL MACHINERY--SERVICE OCCUPATIONS, MODULE NUMBER 12.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED TO HELP TEACHERS PREPARE POSTSECONDARY STUDENTS FOR THE AGRICULTURAL MACHINERY SERVICE OCCUPATIONS AS PARTS MEN, MECHANICS, MECHANIC'S HELPERS, OR SERVICE SUPERVISORS, THIS GUIDE AIMS TO DEVELOP STUDENT COMPETENCY IN THE ADJUSTMENT, MAINTENANCE, AND REPAIR OF SMALL GASOLINE ENGINES. IT WAS DEVELOPED BY A NATIONAL TASK…

  13. Institute for Defense Analysis. Annual Report 1994

    DTIC Science & Technology

    1994-01-01

    activities with engineering and rines in submarine-unique roles. However, we manufacturing development into a single identified a number of other...development efforts. In addition, and mine-laying capabilities, with roughly 25 the panel proposed increasing both the number nations manufacturing ...the engineering concepts and design, and for implementing Synthetic Aperture Radar flexible manufacturing procedures for focal Reconnaissance

  14. Joint Engineering Leadership Development Program: Developing a Diverse Regional Engineering Talent Ecosystem. A BHEF Case Study

    ERIC Educational Resources Information Center

    Business-Higher Education Forum, 2017

    2017-01-01

    Through the collaboration of its business and academic partners, the Business-Higher Education Forum (BHEF) launched the National Higher Education and Workforce Initiative (HEWI) to support business-higher education partnerships that co-design innovative community college and university pathways to careers, as well as maximize work-based learning…

  15. Aerodynamic Characteristics of SC1095 and SC1094 R8 Airfoils

    DTIC Science & Technology

    2003-12-01

    Development, and Engineering Command Ames Research Center Moffett Field, California December 2003 National Aeronautics and Space Administration Ames...60A ROTOR BLADE AND AIRFOILS ................................................................................... 2 EVALUATION OF SECTION CHARACTERISTICS...Characteristics of SC1095 and SC1094 R8 Airfoils WILLIAM G. BOUSMAN Aeroflightdynamics Directorate U.S. Army Research, Development, and Engineering Command Ames

  16. Proceedings of National Symposium on the Role of Academia in National Competitiveness and Total Quality Management (1st) Held in Morgantown, West Virginia on 18-20 July 1990

    DTIC Science & Technology

    1990-07-20

    sciences: The engineering sciences have their roots in mathematics and basic sciences but carry knowledge further toward creative application. These studies...business, and government partnership to develop TQM as a process to improve national competitiveness. • Investigate and develop resources to implement...and develop TQM. 4 • Investigate and resolve TQM curriculum and accreditation issues. • Develop measurements to assess the effectiveness of TQM in the

  17. Discussion on the Development of Green Chemistry and Chemical Engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshen

    2017-11-01

    Chemical industry plays a vital role in the development process of national economy. However, in view of the special nature of the chemical industry, a large number of poisonous and harmful substances pose a great threat to the ecological environment and human health in the entire process of raw material acquisition, production, transportation, product manufacturing, and the final practical application. Therefore, it is a general trend to promote the development of chemistry and chemical engineering towards a greener environment. This article will focus on some basic problems occurred in the development process of green chemistry and chemical engineering.

  18. A Working Plan for Treating the Engineering Faculty Shortage Problem.

    ERIC Educational Resources Information Center

    Shoup, Terry E., Ed.

    In view of the consequences of the engineering faculty shortage problem on engineering capabilities in the future in the United States, a working plan which will serve as a national agenda for prompt action has been developed. This plan involves the three key groups (federal government, academic community, industry) who have the vision,…

  19. A Framework for Quality K-12 Engineering Education: Research and Development

    ERIC Educational Resources Information Center

    Moore, Tamara J.; Glancy, Aran W.; Tank, Kristina M.; Kersten, Jennifer A.; Smith, Karl A.; Stohlmann, Micah S.

    2014-01-01

    Recent U.S. national documents have laid the foundation for highlighting the connection between science, technology, engineering and mathematics at the K-12 level. However, there is not a clear definition or a well-established tradition of what constitutes a quality engineering education at the K-12 level. The purpose of the current work has been…

  20. Common Analysis Tool Being Developed for Aeropropulsion: The National Cycle Program Within the Numerical Propulsion System Simulation Environment

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.; Naiman, Cynthia G.

    1999-01-01

    The NASA Lewis Research Center is developing an environment for analyzing and designing aircraft engines-the Numerical Propulsion System Simulation (NPSS). NPSS will integrate multiple disciplines, such as aerodynamics, structure, and heat transfer, and will make use of numerical "zooming" on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS uses the latest computing and communication technologies to capture complex physical processes in a timely, cost-effective manner. The vision of NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Through the NASA/Industry Cooperative Effort agreement, NASA Lewis and industry partners are developing a new engine simulation called the National Cycle Program (NCP). NCP, which is the first step toward NPSS and is its initial framework, supports the aerothermodynamic system simulation process for the full life cycle of an engine. U.S. aircraft and airframe companies recognize NCP as the future industry standard common analysis tool for aeropropulsion system modeling. The estimated potential payoff for NCP is a $50 million/yr savings to industry through improved engineering productivity.

  1. Advanced Engineering Fibers.

    ERIC Educational Resources Information Center

    Edie, Dan D.; Dunham, Michael G.

    1987-01-01

    Describes Clemson University's Advanced Engineered Fibers Laboratory, which was established to provide national leadership and expertise in developing the processing equipment and advance fibers necessary for the chemical, fiber, and textile industries to enter the composite materials market. Discusses some of the laboratory's activities in…

  2. Wei Wang | NREL

    Science.gov Websites

    Research Interests Yeast strain development for production of hydrocarbon via metabolic engineering CBP Research Scientist, National Renewable Energy Laboratory, Bioscience Center, 2009-present Postdoctoral Research Fellow, Auburn University, Chemical Engineering Department, Y.Y. Lee's group Research Scientist

  3. Progress Toward National Aeronautics Goals

    NASA Technical Reports Server (NTRS)

    Russo, Carlo J.; Sehra, Arun K.

    1999-01-01

    NASA has made definitive progress towards achieving several bold U.S. goals in aeronautics related to air breathing engines. The advanced technologies developed towards these goals span applications from general aviation to large subsonic and supersonic aircraft. The proof of successful technology development is demonstrated through successful technology transfer to U.S. industry and projected fleet impact. Specific examples of progress are discussed that quantifies the achievement towards these goals. In addition, a more detailed vision for NASA aeronautics is defined and key strategic issues are explored which invite international and national debate and involvement especially in reduced environmental impact for subsonic and supersonic aircraft, dramatic new capabilities in general aviation engines, and reduced development cycle time and costs.

  4. The Plant Genetic Engineering Laboratory For Desert Adaptation

    NASA Astrophysics Data System (ADS)

    Kemp, John D.; Phillips, Gregory C.

    1985-11-01

    The Plant Genetic Engineering Laboratory for Desert Adaptation (PGEL) is one of five Centers of Technical Excellence established as a part of the state of New Mexico's Rio Grande Research Corridor (RGRC). The scientific mission of PGEL is to bring innovative advances in plant biotechnology to bear on agricultural productivity in arid and semi-arid regions. Research activities focus on molecular and cellular genetics technology development in model systems, but also include stress physiology investigations and development of desert plant resources. PGEL interacts with the Los Alamos National Laboratory (LANL), a national laboratory participating in the RGRC. PGEL also has an economic development mission, which is being pursued through technology transfer activities to private companies and public agencies.

  5. Developing Nations Face Problems in Water and Wastewater Management

    ERIC Educational Resources Information Center

    Larrick, Charles L.; Adams, Larry W.

    1978-01-01

    Reports past developments, present assessments, and future needs of wastewater management in developing countries. It is suggested that future engineers should be trained as managers and not scientists. (MA)

  6. 2016 KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrington, David Bradley; Waters, Jiajia

    Los Alamos National Laboratory and its collaborators are facilitating engine modeling by improving accuracy and robustness of the modeling, and improving the robustness of software. We also continue to improve the physical modeling methods. We are developing and implementing new mathematical algorithms, those that represent the physics within an engine. We provide software that others may use directly or that they may alter with various models e.g., sophisticated chemical kinetics, different turbulent closure methods or other fuel injection and spray systems.

  7. Development of Emissions Measurement Techniques for Afterburning Turbine Engines. Supplement 2. Afterburner Plume Computer Program User’s Manual.

    DTIC Science & Technology

    1975-10-01

    AO-AUHb b27 UNCLASSIFIED GENERAL ELECTRIC CO CINCINNATI OHIO AIRCRAFT ENGINE GROUP F/G 2l/5 DEVELOPMENT OF EMISSIONS MEASUREMENT TECHNIQUES FOR...Colley D.R. Ferguson M.A. Smith GENERAL ELECTRIC COMPANY Aircraft Engine Group Cincinnati, Ohio 45215 October 1975 Technical Report AFAPL-TR-7 5-52...Service (NTIS). At NTIS, it will be avail’ able to the general public, including foreign nations. This technical report has been reviewed and is

  8. Activities of the Institute for Mechanical Engineering

    NASA Astrophysics Data System (ADS)

    The Institute of Mechanical Engineering (IME) is part of Canada's National Research Council. Its mission is to undertake, support, promote, and disseminate research and development in the mechanical engineering aspects of three vital sectors of the Canadian economy: transportation, resource industries, and manufacturing. The IME achieves its mission by performing research and development in its own facilities; by developing, providing, and transferring expertise and knowledge; by making its research facilities available to collaborators and clients; and by participating in international liaison and collaborative research activities. Six research programs are conducted in the IME: Advanced Manufacturing Technology; Coastal Zone Engineering; Cold Regions Engineering; Combustion and Fluids Engineering; Ground Transportation Technology; and Machinery and Engine Technology. The rationale and major research thrusts of each program are described, and specific achievements in 1991-92 are reviewed. Lists of technical reports and papers presented by IME personnel are also included.

  9. LLNL: Science in the National Interest

    ScienceCinema

    George Miller

    2017-12-09

    This is Lawrence Livermore National Laboratory. located in the Livermore Valley about 50 miles east of San Francisco, the Lab is where the nations topmost science, engineering and technology come together. National security, counter-terrorism, medical technologies, energy, climate change our researchers are working to develop solutions to these challenges. For more than 50 years, we have been keeping America strong.

  10. The Development of a Conceptual Framework for New K-12 Science Education Standards (Invited)

    NASA Astrophysics Data System (ADS)

    Keller, T.

    2010-12-01

    The National Academy of Sciences has created a committee of 18 National Academy of Science and Engineering members, academic scientists, cognitive and learning scientists, and educators, educational policymakers and researchers to develop a framework to guide new K-12 science education standards. The committee began its work in January, 2010, released a draft of the framework in July, 2010, and intends to have the final framework in the first quarter of 2011. The committee was helped in early phases of the work by consultant design teams. The framework is designed to help realize a vision for science and engineering education in which all students actively engage in science and engineering practices in order to deepen their understanding of core ideas in science over multiple years of school. These three dimensions - core disciplinary ideas, science and engineering practices, and cross-cutting elements - must blend together to build an exciting, relevant, and forward looking science education. The framework will be used as a base for development of next generation K-12 science education standards.

  11. Development of an engineered cementitious composite to enhance bridge approach slab durability.

    DOT National Transportation Integrated Search

    2013-06-01

    The strength and durability of highway bridges are two of the key components in maintaining a : high level of freight transportation capacity on the nations highways. : The CFIRE project 04-09 demonstrated the feasibility of a new hybrid engineered...

  12. Evaluating the Efficacy of a Low-Impact Delivery System for In situ Treatment of Sediments Contaminated with Methylmercury and Other Hydrophobic Chemicals

    DTIC Science & Technology

    2016-02-01

    coefficient LCC Lower Canal Creek MeHg methylmercury MNR monitored natural recovery NIEHS National Institute of Environmental Health Services PAC... Health Command, Naval Facilities Engineering Command Atlantic Division (NAVFAC LANT), U.S. Air Force (USAF), Engineer Research and Development Center...Project ER-200835); (3) a PCB-contaminated tidal creek (Bailey Creek) at Fort Eustis in Virginia (National Institute of Environmental Health Services

  13. Gulf of Mexico Helicopter Offshore System Technologies Engineering Needs Assessment

    DOT National Transportation Integrated Search

    1999-05-01

    The National Aeronautics and Space Administration (NASA), in partnership with the Federal Aviation Administration (FAA), is conducting a research and development program to modernize the National Airspace System (NAS) . The mission of NASA's Advanced...

  14. The Effective Research-Based Characteristics of Professional Development of the National Science Foundation's GK-12 Program

    ERIC Educational Resources Information Center

    Cormas, Peter C.; Barufaldi, James P.

    2011-01-01

    This study investigates the effective research-based characteristics of professional development (ERBCPD) of the National Science Foundation's GK-12 Program--a program which partners institutions of higher education with local school districts and places science, technology, engineering, and mathematics graduates in the K-12 classroom with…

  15. Improving Technology Acceptance Modeling for Disadvantaged Communities Using a Systems Engineering Approach

    ERIC Educational Resources Information Center

    Fletcher, Jordan L.

    2013-01-01

    Developing nations are poised to spend billions on information and communication technology (ICT) innovation in 2020. A study of the historical adoption of ICT in developing nations has indicated that their adoption patterns do not follow typical technology innovation adoption models. This study addressed the weaknesses found in existing…

  16. The "Dynabook" Project: An Engineering Approach to Research and Development of an Educational Innovation

    ERIC Educational Resources Information Center

    Phillips, Michelle; St. John, Mark

    2013-01-01

    In 2009, the National Science Foundation funded the "Dynabook: A Digital Resource and Preservice Model for Developing TPCK" project through its Discovery Research K-12 program. Dynabook project leaders and the National Science Foundation (NSF) recognized that digital textbooks would soon be a primary instructional resource, and seized…

  17. Ceramic Technology for Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional researchmore » is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.« less

  18. Space Station Engineering and Technology Development: Proceedings of the Panel on In-Space Engineering Research and Technology Development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In 1984 the ad hoc committee on Space Station Engineering and Technology Development of the Aeronautics and Space Engineering Board (ASEB) conducted a review of the National Aeronautics and Space Administration's (NASA's) space station program planning. The review addressed the initial operating configuration (IOC) of the station. The ASEB has reconstituted the ad hoc committee which then established panels to address each specific related subject. The participants of the panels come from the committee, industry, and universities. The proceedings of the Panel on In Space Engineering Research and Technology Development are presented in this report. Activities, and plans for identifying and developing R&T programs to be conducted by the space station and related in space support needs including module requirements are addressed. Consideration is given to use of the station for R&T for other government agencies, universities, and industry.

  19. Algorithm Development for a Real-Time Military Noise Monitor

    DTIC Science & Technology

    2006-03-24

    Duration ESLM Enhanced Sound Level Meter ERDC-CERL Engineer Research and Development Center/Construction Engineering Research Laboratory FFT...Fast Fourier Transform FTIG Fort Indiantown Gap Kurt Kurtosis LD Larson Davis Leq Equivalent Sound Level L8eq 8-hr Equivalent...Sound Level Lpk Peak Sound Level m Spectral Slope MCBCL Marine Corps Base Camp Lejeune Neg Number of negative samples NI National

  20. Information Protection Engineering: Using Technology and Experience to Protect Assets

    DTIC Science & Technology

    2001-07-01

    SAIC’s highly experienced team has developed technology, techniques and expertise in protecting these information assets from electronic attack by...criminals, terrorists, hackers or nation states. INFORMATION PROTECTION ENGINEERING : Using Technology and Experience to Protect Assets William J. Marlow... Engineering : Using Technology and Experience to Protect Assets Contract or Grant Number Program Element Number Authors Marlow, William J. Project

  1. A national collaboration process: Finnish engineering education for the benefit of people and environment.

    PubMed

    Takala, A; Korhonen-Yrjänheikki, K

    2013-12-01

    The key stakeholders of the Finnish engineering education collaborated during 2006-09 to reform the system of education, to face the challenges of the changing business environment and to create a national strategy for the Finnish engineering education. The work process was carried out using participatory work methods. Impacts of sustainable development (SD) on engineering education were analysed in one of the subprojects. In addition to participatory workshops, the core part of the work on SD consisted of a research with more than 60 interviews and an extensive literature survey. This paper discusses the results of the research and the work process of the Collaboration Group in the subproject of SD. It is suggested that enhancing systematic dialogue among key stakeholders using participatory work methods is crucial in increasing motivation and commitment in incorporating SD in engineering education. Development of the context of learning is essential for improving skills of engineering graduates in some of the key abilities related to SD: systemic- and life-cycle thinking, ethical understanding, collaborative learning and critical reflection skills. This requires changing of the educational paradigm from teacher-centred to learner-centred applying problem- and project-oriented active learning methods.

  2. Education of Advanced Biotechnologists of Kitakyushu National College of Technology

    NASA Astrophysics Data System (ADS)

    Kawahara, Hiroharu

    The Cell Engineering Center was established in October, 2003 to research and develop manufacturing technologies and cell engineering technologies with human cell lines, which boost their uniqueness. The center serves as a base for advancing industrial development and creating new industries in Kitakyushu City area. One of the features in this center's activities is to promote technology exchanges between the students and researchers in private firms and to facilitate developed biotechnologies transferred to the private sectors. The Cell Engineering Center aims to train the advanced biotechnologists who have abilities for applying for patents, international communications, and leaderships. In this work, the educational and research activities in the Cell Engineering Center will be reported.

  3. National Cycle Program (NCP) Common Analysis Tool for Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Follen, G.; Naiman, C.; Evans, A.

    1999-01-01

    Through the NASA/Industry Cooperative Effort (NICE) agreement, NASA Lewis and industry partners are developing a new engine simulation, called the National Cycle Program (NCP), which is the initial framework of NPSS. NCP is the first phase toward achieving the goal of NPSS. This new software supports the aerothermodynamic system simulation process for the full life cycle of an engine. The National Cycle Program (NCP) was written following the Object Oriented Paradigm (C++, CORBA). The software development process used was also based on the Object Oriented paradigm. Software reviews, configuration management, test plans, requirements, design were all apart of the process used in developing NCP. Due to the many contributors to NCP, the stated software process was mandatory for building a common tool intended for use by so many organizations. The U.S. aircraft and airframe companies recognize NCP as the future industry standard for propulsion system modeling.

  4. Sanitary engineering and water economy in Europe

    PubMed Central

    Krul, W. F. J. M.

    1957-01-01

    The author deals with a wide variety of aspects of water economy and the development of water resources, relating them to the sanitary engineering problems they give rise to. Among those aspects are the balance between available resources and water needs for various purposes; accumulation and storage of surface and ground water, and methods of replenishing ground water supplies; pollution and purification; and organizational measures to deal with the urgent problems raised by the heavy demands on the world's water supply as a result of both increased population and the increased need for agricultural and industrial development. The author considers that at the national level over-all plans for developing the water economy of countries might well be drawn up by national water boards and that the economy of inter-State river basins should receive international study. In such work the United Nations and its specialized agencies might be of assistance. PMID:13472427

  5. An Italian Education: IEEE Pulse talks with Riccardo Pietrabissa, president of Italy's National Bioengineering Group, about Italian progress and challenges in biomedical engineering education.

    PubMed

    Pietrabissa, Riccardo; Reynolds, Pamela

    2015-01-01

    From Leonardo da Vinci's designs for ball bearings to the incredible engineering wizardry behind the Ferrari, the inventive, inquisitive, and ingenious spirit of the engineer has always lived--and thrived--in Italy. From education to research to product development, Italy has always been regarded as an engineering leader. But does this apply to biomedical engineering (BME)? Despite many successes, questions loom, as they do at engineering schools worldwide. Concerns such as whether BME programs are providing students with enough focused, practical, hands-on training remain at the forefront, as does the question of whether graduates will be able to find jobs in industry after university studies are over. Here, IEEE Pulse explores these topics with Riccardo Pietrabissa, president of the Gruppo Nazionale di Bioingegneria (National Bioengineering Group) and a full professor in the Department of Chemistry, Materials, and Chemical Engineering at Politecnico di Milano.

  6. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.

    2012-09-01

    Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S.more » Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).« less

  7. Integration of Engineering Education by High School Teachers to Meet Standards in the Physics Classroom

    NASA Astrophysics Data System (ADS)

    Kersten, Jennifer Anna

    In recent years there has been increasing interest in engineering education at the K-12 level, which has resulted in states adopting engineering standards as a part of their academic science standards. From a national perspective, the basis for research into engineering education at the K-12 level is the belief that it is of benefit to student learning, including to "improve student learning and achievement in science and mathematics; increase awareness of engineering and the work of engineers; boost youth interest in pursuing engineering as a career; and increase the technological literacy of all students" (National Research Council, 2009a, p. 1). The above has led to a need to understand how teachers are currently implementing engineering education in their classrooms. High school physics teachers have a history of implementing engineering design projects in their classrooms, thus providing an appropriate setting to look for evidence of quality engineering education at the high school level. Understanding the characteristics of quality engineering integration can inform curricular and professional development efforts for teachers asked to implement engineering in their classrooms. Thus, the question that guided this study is: How, and to what extent, do physics teachers represent quality engineering in a physics unit focused on engineering? A case study research design was implemented for this project. Three high school physics teachers were participants in this study focused on the integration of engineering education into the physics classroom. The data collected included observations, interviews, and classroom documents that were analyzed using the Framework for Quality K-12 Engineering Education (Moore, Glancy et al., 2013). The results provided information about the areas of the K-12 engineering framework addressed during these engineering design projects, and detailed the quality of these lesson components. The results indicate that all of the design projects contained components of the indicators central to engineering education, although with varied degrees of success. In addition, each design project contained aspects important to the development of students' understanding of engineering and that promote important professional skills used by engineers. The implications of this work are discussed at the teacher, school, professional development, and policy levels.

  8. Engineering and physical sciences in oncology: challenges and opportunities.

    PubMed

    Mitchell, Michael J; Jain, Rakesh K; Langer, Robert

    2017-11-01

    The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas.

  9. 4 Schools for WIE. Evaluation Report

    ERIC Educational Resources Information Center

    Erkut, Sumru; Marx, Fern

    2005-01-01

    With funding from the National Science Foundation, engineering schools at Northeastern University, Tufts University, Worcester Polytechnic Institute, and Boston University joined forces in an effort to increase the number of girls who develop an interest in science, technology, engineering, and mathematics (STEM) fields during the middle school…

  10. 77 FR 37658 - Procurement List; Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... Base Lewis-McChord, WA. Stryker National Logistics Center, Building 2701 C Street, SW., Auburn, WA. NPA..., Warren, MI. Service Type/Location: Mailroom Operations, Official Mail Distribution Center, 1 Rock Island... Service, U.S. Army Corps of Engineers, U.S. Army Engineer Research and Development Center (ERDC...

  11. Overview of free-piston Stirling technology at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1985-01-01

    An overview of the National Aeronautics and Space Administration (NASA) Lewis Research Center (Lewis) free-piston Stirling engine activities is presented. These activities include: (1) a generic free-piston Stirling technology project being conducted to develop technologies synergistic to both space power and terrestrial heat pump applications in a cooperative, cost-shared effort with the Department of Energy (DOE/Oak Ridge National Laboratory (ONRL)), and (2) a free-piston Stirling space-power technology demonstration project as part of the SP-100 program being conducted in support of the Department of Defense (DOD), DOE, and NASA/Lewis. The generic technology effort includes extensive parametric testing of a 1 kw free-piston Stirling engine (RE-1000), development and validation of a free-piston Stirling performance computer code, and fabrication and initial testing of an hydraulic output modification for the RE-1000 engine. The space power technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including early test results.

  12. NATIONAL ENVIRONMENTAL/ENERGY WORKFORCE ASSESSMENT. COMPOSITE: ENVIRONMENTAL ENGINEERING/TECHNOLOGY

    EPA Science Inventory

    Beginning with Phase II of the National Environmental/Energy Workforce Assessment project, which addressed the capabilities of the educational community to generate an environmental workforce, definitional problems developed as to the placing of programs into media specific areas...

  13. FY04 Engineering Technology Reports Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, R M

    2005-01-27

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2004, and exemplifies Engineering's more than 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investmentmore » in technologies is carried out through two programs, the ''Tech Base'' program and the LDRD program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply technologies to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2004, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the long-term science and technology investments for the Directorate. The Centers represent technologies that have been identified as critical for the present and future work of the Laboratory, and are chartered to develop their respective areas. Their LDRD projects are the key resources to attain this competency, and, as such, nearly all of Engineering's portfolio falls under one of the five Centers. The Centers and their Directors are: (1) Center for Computational Engineering: Robert M. Sharpe; (2) Center for Microtechnology and Nanotechnology: Raymond P. Mariella, Jr.; (3) Center for Nondestructive Characterization: Harry E. Martz, Jr.; (4) Center for Precision Engineering: Keith Carlisle; and (5) Center for Complex Distributed Systems: Gregory J. Suski, Acting Director.« less

  14. KIVA-hpFE. Predictive turbulent reactive and multiphase flow in engines - An Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrington, David Bradley

    2016-05-23

    Research and development of KIVA-hpFE for turbulent reactive and multiphase flow particularly as related to engine modeling program has relevance to National energy security and climate change. Climate change is a source problem, and energy national security is consumption of petroleum products problem. Accurately predicting engine processes leads to, lower greenhouse gas (GHG) emission, where engines in the transportation sector currently account for 26% of the U.S. GHG emissions. Less dependence on petroleum products leads to greater energy security. By Environmental Protection Agency standards, some vehicles are now reaching 42 to the 50 mpg mark. These are conventional gasoline engines.more » Continued investment and research into new technical innovations, the potential exists to save more than 4 million barrels of oil per day or approximately $200 to $400 million per day. This would be a significant decrease in emission and use of petroleum and a very large economic stimulus too! It is estimated with further advancements in combustion, the current emissions can be reduced up to 40%. Enabling better understanding of fuel injection and fuel-air mixing, thermodynamic combustion losses, and combustion/emission formation processes enhances our ability to help solve both problems. To provide adequate capability for accurately simulating these processes, minimize time and labor for development of engine technology, are the goals of our KIVA development program.« less

  15. Breakthrough: NETL's Simulation-Based Engineering User Center (SBEUC)

    ScienceCinema

    Guenther, Chris

    2018-05-23

    The National Energy Technology Laboratory relies on supercomputers to develop many novel ideas that become tomorrow's energy solutions. Supercomputers provide a cost-effective, efficient platform for research and usher technologies into widespread use faster to bring benefits to the nation. In 2013, Secretary of Energy Dr. Ernest Moniz dedicated NETL's new supercomputer, the Simulation Based Engineering User Center, or SBEUC. The SBEUC is dedicated to fossil energy research and is a collaborative tool for all of NETL and our regional university partners.

  16. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullock, M.

    1992-04-01

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

  17. Breakthrough: NETL's Simulation-Based Engineering User Center (SBEUC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenther, Chris

    The National Energy Technology Laboratory relies on supercomputers to develop many novel ideas that become tomorrow's energy solutions. Supercomputers provide a cost-effective, efficient platform for research and usher technologies into widespread use faster to bring benefits to the nation. In 2013, Secretary of Energy Dr. Ernest Moniz dedicated NETL's new supercomputer, the Simulation Based Engineering User Center, or SBEUC. The SBEUC is dedicated to fossil energy research and is a collaborative tool for all of NETL and our regional university partners.

  18. 46 CFR 11.502 - General requirements for national engineer endorsements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false General requirements for national engineer endorsements... AND SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for National Engineer Officer Endorsements § 11.502 General requirements for national engineer endorsements. (a) For all...

  19. Magnetohydrodynamics and the National Coal Science, Technology, and Engineering Development Acts

    NASA Astrophysics Data System (ADS)

    The organization of a national coal science program and the production of electricity from coal using magnetohydrodynamic processes were the topics of a hearing before the subcommittee on energy research and development. The analysis of commercial energy at electric power plants, with an emphasis on the protection of the environment, were the main issues discussed.

  20. Shrinking Your Class

    ERIC Educational Resources Information Center

    Herron-Thorpe, Farren L.; Olson, Jo Clay; Davis, Denny

    2010-01-01

    Toys in the classroom was the result of a National Science Foundation grant that brought two engineering graduate students to a middle school math class. The graduate students and teachers collaborated in an effort to enhance students' mathematical learning. An engineering context was theorized as a way to further develop students' understanding…

  1. IAPCS: A COMPUTER MODEL THAT EVALUATES POLLUTION CONTROL SYSTEMS FOR UTILITY BOILERS

    EPA Science Inventory

    The IAPCS model, developed by U.S. EPA`s Air and Energy Engineering Research Laboratory and made available to the public through the National Technical Information Service, can be used by utility companies, architectural and engineering companies, and regulatory agencies at all l...

  2. Analysis of the Challenges and Opportunities of Hydrokinetic Turbine Development Affecting the US Army Corps of Engineers

    DTIC Science & Technology

    2014-08-01

    Hydrokinetic Turbine Development Affecting the US Army Corps of Engineers by David L. Smith, John M. Nestler, Richard Styles, and Brian Tetreault BACKGROUND...attendant environmental impacts. One family of renewable energy technologies experiencing increased national interest is hydrokinetic turbines ...Hydrokinetic turbines include systems that convert waves, tides, and river flow (without impoundment) into electric energy. River hydrokinetic turbines

  3. Review of FY 2001 Development Work for Vitrification of Sodium Bearing Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Dean Dalton; Barnes, Charles Marshall

    2002-09-01

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrington, David Bradley; Waters, Jiajia

    Research and development of KIVA-hpFE for turbulent reactive and multiphase flow particularly as related to engine modeling program has relevance to National energy security and climate change. Climate change is a source problem, and energy national security is consumption of petroleum products problem. Accurately predicting engine processes leads to, lower greenhouse gas (GHG) emission, where engines in the transportation sector currently account for 26% of the U.S. GHG emissions. Less dependence on petroleum products leads to greater energy security. By Environmental Protection Agency standards, some vehicles are now reaching 42 to the 50 mpg mark. These are conventional gasoline engines.more » Continued investment and research into new technical innovations, the potential exists to save more than 4 million barrels of oil per day or approximately $200 to $400 million per day. This would be a significant decrease in emission and use of petroleum and a very large economic stimulus too! It is estimated with further advancements in combustion, the current emissions can be reduced up to 40%. Enabling better understanding of fuel injection and fuel-air mixing, thermodynamic combustion losses, and combustion/emission formation processes enhances our ability to help solve both problems. To provide adequate capability for accurately simulating these processes, minimize time and labor for development of engine technology, are the goals of our KIVA development program.« less

  5. A qualitative examination of the nature and impact of three California minority engineering programs

    NASA Astrophysics Data System (ADS)

    Christie, Barbara A.

    According to the National Action Council for Minorities in Engineering (NACME), the national retention rate of engineering students is 68% and the national retention rate for underrepresented minority engineering students (African American, Latino, Native American and Pacific Islanders) is 37%. In response to the severity of retention issues concerning underrepresented minority students, colleges and universities across the United States have developed special programs known as minority engineering programs (MEP). MEPs are designed to provide academic support, personal counseling, social networking, career counseling and professional development as a means to improve retention. In order to provide a detailed description of the MEPs, the research method selected is a case study. This case study is an examination of the nature and impact of three MEPs in California. This study is also an analysis of the lack of participation by freshmen and sophomore students who qualify for these programs. Methodology included extensive surveys and interviews of students, faculty and staff, site visits, and examination of documents. Over 500 students were surveyed during lower division engineering courses. The qualifying students who gave permission for further interviews were provided with questions about their participation or nonparticipation and the reasons for their behavior. Faculty members were interviews about their knowledge and personal involvement with the minority engineering program on their campuses. Program directors were interviewed to discuss program design and implementation. A categorical method was used to separate the different groups within the study. Of the 509 respondents, 132 were classified as qualifier/nonparticipant freshman and sophomore engineering students. The results demonstrated that a high percentage of the qualifier/nonparticipants are unaware of the programs and events on their campuses. During the interviews the students stated they are very interested in academic enrichment, social networking and professional development. The students also stated they feel the faculty should provide information on enrichment programs available on campus. Conversely, during the faculty interviews, they stated that it is not their responsibility to inform students and were unfamiliar with the minority engineering programs on their campuses. These results concurred with works of Raymond Landis and Elaine Seymour.

  6. 76 FR 22925 - Assumption Buster Workshop: Abnormal Behavior Detection Finds Malicious Actors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... Technology Research and Development (NITRD) Program, National Science Foundation. ACTION: Call for... NATIONAL SCIENCE FOUNDATION Assumption Buster Workshop: Abnormal Behavior Detection Finds...: The NCO, on behalf of the Special Cyber Operations Research and Engineering (SCORE) Committee, an...

  7. Assessing the Higher National Diploma Chemical Engineering programme in Ghana: students' perspective

    NASA Astrophysics Data System (ADS)

    Boateng, Cyril D.; Cudjoe Bensah, Edem; Ahiekpor, Julius C.

    2012-05-01

    Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering programme is being migrated from a subject-based to a competency-based curriculum. This paper evaluates the programme from the point of view of students. Data were drawn from a survey conducted in the department and were analysed using SPSS. The survey involved administering questionnaires to students at all levels in the department. Analysis of the responses indicated that the majority of the students had decided to pursue chemical engineering due to the career opportunities available. Their knowledge of the programme learning outcomes was, however, poor. The study revealed that none of the students was interested in developing indigenous industries.

  8. Development of property-transfer models for estimating the hydraulic properties of deep sediments at the Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Winfield, Kari A.

    2005-01-01

    Because characterizing the unsaturated hydraulic properties of sediments over large areas or depths is costly and time consuming, development of models that predict these properties from more easily measured bulk-physical properties is desirable. At the Idaho National Engineering and Environmental Laboratory, the unsaturated zone is composed of thick basalt flow sequences interbedded with thinner sedimentary layers. Determining the unsaturated hydraulic properties of sedimentary layers is one step in understanding water flow and solute transport processes through this complex unsaturated system. Multiple linear regression was used to construct simple property-transfer models for estimating the water-retention curve and saturated hydraulic conductivity of deep sediments at the Idaho National Engineering and Environmental Laboratory. The regression models were developed from 109 core sample subsets with laboratory measurements of hydraulic and bulk-physical properties. The core samples were collected at depths of 9 to 175 meters at two facilities within the southwestern portion of the Idaho National Engineering and Environmental Laboratory-the Radioactive Waste Management Complex, and the Vadose Zone Research Park southwest of the Idaho Nuclear Technology and Engineering Center. Four regression models were developed using bulk-physical property measurements (bulk density, particle density, and particle size) as the potential explanatory variables. Three representations of the particle-size distribution were compared: (1) textural-class percentages (gravel, sand, silt, and clay), (2) geometric statistics (mean and standard deviation), and (3) graphical statistics (median and uniformity coefficient). The four response variables, estimated from linear combinations of the bulk-physical properties, included saturated hydraulic conductivity and three parameters that define the water-retention curve. For each core sample,values of each water-retention parameter were estimated from the appropriate regression equation and used to calculate an estimated water-retention curve. The degree to which the estimated curve approximated the measured curve was quantified using a goodness-of-fit indicator, the root-mean-square error. Comparison of the root-mean-square-error distributions for each alternative particle-size model showed that the estimated water-retention curves were insensitive to the way the particle-size distribution was represented. Bulk density, the median particle diameter, and the uniformity coefficient were chosen as input parameters for the final models. The property-transfer models developed in this study allow easy determination of hydraulic properties without need for their direct measurement. Additionally, the models provide the basis for development of theoretical models that rely on physical relationships between the pore-size distribution and the bulk-physical properties of the media. With this adaptation, the property-transfer models should have greater application throughout the Idaho National Engineering and Environmental Laboratory and other geographic locations.

  9. Final Progress Report for Award DE-FG07-05ID14637.pdf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathy Dixon

    2012-03-09

    2004-2011 Final Report for AFCI University Fellowship Program. The goal of this effort was to be supportive of university students and university programs - particularly those students and programs that will help to strengthen the development of nuclear-related fields. The program also supported the stability of the nuclear infrastructure and developed research partnerships that are helping to enlarge the national nuclear science technology base. In this fellowship program, the U.S. Department of Energy sought master's degree students in nuclear, mechanical, or chemical engineering, engineering/applied physics, physics, chemistry, radiochemistry, or fields of science and engineering applicable to the AFCI/Gen IV/GNEP missionsmore » in order to meet future U.S. nuclear program needs. The fellowship program identified candidates and selected full time students of high-caliber who were taking nuclear courses as part of their degree programs. The DOE Academic Program Managers encouraged fellows to pursue summer internships at national laboratories and supported the students with appropriate information so that both the fellows and the nation's nuclear energy objectives were successful.« less

  10. 78 FR 21161 - Agency Information Collection Activities: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... Foundation Act of 1950, as amended, the National Center for Science and Engineering Statistics (NCSES) serves... objective data on science, engineering, technology, and research and development for use by [[Page 21162... individuals. Data are obtained via paper questionnaire or Web survey from each person earning a research...

  11. 77 FR 64314 - Advisory Committee on Earthquake Hazards Reduction Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... is to discuss engineering needs for existing buildings, to review the National Earthquake Hazards... Committee business. The final agenda will be posted on the NEHRP Web site at http://nehrp.gov/ . DATES: The... assesses: Trends and developments in the science and engineering of earthquake hazards reduction; The...

  12. Impact of Transportation on the Environment and Quality of Life.

    ERIC Educational Resources Information Center

    Schuster, James J.

    This paper discusses the changing role of civil engineers in developed nations. Transportation facilities generally follow a four phase approach before construction: long range systems planning, corridor location study, design location study, and final preparation of plans. Traditional engineering education emphasized the latter two phases but now…

  13. Setting the Stage for the Interactive Classroom of the 1980s.

    ERIC Educational Resources Information Center

    Hiraki, Joan; Garcia, Oscar N.

    1981-01-01

    Under a National Science Foundation CAUSE grant, the Department of Computer Science and Engineering at the University of South Florida, Tampa, is developing an interactive microcomputer/minicomputer/video disk learning system for engineering and science students. Journal availability: Educational Computer, P.O. Box 535, Cupertino, CA 95015.…

  14. The historical evolution of engineering degrees: competing stakeholders, contestation over ideas, and coherence across national borders

    NASA Astrophysics Data System (ADS)

    Case, Jennifer M.

    2017-11-01

    Recent times have seen significant realignment of engineering degrees globally, most notably in the Washington Accord, a system of mutual recognition of accreditation across much of the Anglophone world and beyond, and the Bologna Process, impacting significantly on the form of engineering degrees in Europe. This article, tracing the historical evolution of engineering degrees, argues that recent events can be seen to be part of an ongoing process of reworking the arrangements for formal engineering education, based on a long-standing contradiction between the different stakeholders that have an interest in curriculum: the state, engineering employers, and academics. This is reflected in a contestation over what was historically termed the 'shop culture' of the employers versus the 'school culture' of the academy. Furthermore, contemporary developments of mutual accreditation beyond national borders can be seen to have an earlier echo in the relative measure of global coherence that was achieved in the 1870s.

  15. A Technical Report To The Secretary Of Transportation On A National Approach To Augmented Gps Services

    DOT National Transportation Integrated Search

    1994-12-01

    THIS REPORT DOCUMENTS THE DEVELOPMENT OF RECOMMENDATIONS FOR A NATIONAL APPROACH TO AUGMENTED GLOBAL POSITIONING SYSTEM (GPS) SERVICES. THE INSTITUTE FOR TELECOMMUNICATION SCIENCES LED A STUDY TEAM THAT INCLUDED THE U.S. ARMY TOPOGRAPHIC ENGINEERING ...

  16. Engineering directorate technical facilities catalog

    NASA Technical Reports Server (NTRS)

    Maloy, Joseph E.

    1993-01-01

    The Engineering Directorate Technical Facilities Catalog is designed to provide an overview of the technical facilities available within the Engineering Directorate at the National Aeronautics and Space Administration (NASA), Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The combined capabilities of these engineering facilities are essential elements of overall JSC capabilities required to manage and perform major NASA engineering programs. The facilities are grouped in the text by chapter according to the JSC division responsible for operation of the facility. This catalog updates the facility descriptions for the JSC Engineering Directorate Technical Facilities Catalog, JSC 19295 (August 1989), and supersedes the Engineering Directorate, Principle test and Development Facilities, JSC, 19962 (November 1984).

  17. A model for international border management systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duggan, Ruth Ann

    2008-09-01

    To effectively manage the security or control of its borders, a country must understand its border management activities as a system. Using its systems engineering and security foundations as a Department of Energy National Security Laboratory, Sandia National Laboratories has developed such an approach to modeling and analyzing border management systems. This paper describes the basic model and its elements developed under Laboratory Directed Research and Development project 08-684.

  18. List of DOE radioisotope customers with summary of radioisotope shipments FY 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burlison, J.S.; Laidler, R.I.

    1979-05-01

    The purpose of the document is to list DOE's radioisotopes production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc.

  19. Segregation in Residential Areas: Papers on Racial and Socioeconomic Factors in Choice of Housing.

    ERIC Educational Resources Information Center

    Hawley, Amos H., Ed.; Rock, Vincent P., Ed.

    The papers included in this volume were originally prepared for the Social Science Panel brought together by the Division of Behavioral Sciences of the National Research Council at the request of the National Academy of Sciences--National Academy of Engineering's Advisory Committee to the Department of Housing and Urban Development. The task of…

  20. Effectiveness of Transformational Leadership Style in Secondary Schools in Nigeria

    ERIC Educational Resources Information Center

    Money, Veronica. O.

    2017-01-01

    Education is the engine of national growth. A population of well educated citizens increases national economic competitiveness. To survive and develop in any nation, the education industry must grow. Secondary schools in Nigeria are headed by Principal. They are regarded as the Chief Executive of the school and are held accountable for all that…

  1. [Progress in industrial bioprocess engineering in China].

    PubMed

    Zhuang, Yingping; Chen, Hongzhang; Xia, Jianye; Tang, Wenjun; Zhao, Zhimin

    2015-06-01

    The advances of industrial biotechnology highly depend on the development of industrial bioprocess researches. In China, we are facing several challenges because of a huge national industrial fermentation capacity. The industrial bioprocess development experienced several main stages. This work mainly reviews the development of the industrial bioprocess in China during the past 30 or 40 years: including the early stage kinetics model study derived from classical chemical engineering, researching method based on control theory, multiple-parameter analysis techniques of on-line measuring instruments and techniques, and multi-scale analysis theory, and also solid state fermentation techniques and fermenters. In addition, the cutting edge of bioprocess engineering was also addressed.

  2. Evaluation of the National Science Foundation's Integrative Graduate Education and Research Traineeship Program (IGERT): Follow-Up Study of IGERT Graduates. Final Report

    ERIC Educational Resources Information Center

    Carney, Jennifer; Martinez, Alina; Dreier, John; Neishi, Kristen; Parsad, Amanda

    2011-01-01

    The National Science Foundation's Integrative Graduate Education and Research Traineeship (IGERT) program supports students in science, technology, engineering, and mathematics (STEM) fields who participate in university-developed interdisciplinary graduate training experiences. Faculty members at each IGERT site develop a series of education…

  3. Ceramic technology for advanced heat engines project. Semiannual progress report, October 1985-March 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-08-01

    Significant accomplishments in fabricating cermaic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, additional research is needed in materials and processing development, design methodology, and data base and life prediction. An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotivemore » heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.« less

  4. Third Generation RLV Structural Seal Development Programs at NASA GRC

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2002-01-01

    NASA GRC's work on high temperature structural seal development began in the late 1980's and early 1990's under the NASP (National Aero-Space Plane) project. Bruce Steinetz led the in-house propulsion system seal development program and oversaw industry efforts for propulsion system and airframe seal development for this vehicle. a propulsion system seal location in the NASP engine is shown. The seals were located along the edge of a movable panel in the engine to seal the gap between the panel and adjacent engine sidewalls. More recently, we worked with Rocketdyne on high temperature seals for the linear aerospike engine ramps. In applications such as the former X-33 program, multiple aerospike engine modules would be installed side by side on the vehicle. Seals are required in between adjacent engine modules along the edges and base of the engines. The seals have to withstand the extreme temperatures produced byt he thrusters at the top of the ramps while accommodating large deflections between adjacent ramps. We came up with several promising seal concepts for this application and shared them with Rocketdyne.

  5. Multi-Organization Multi-Discipline Effort Developing a Mitigation Concept for Planetary Defense

    NASA Technical Reports Server (NTRS)

    Leung, Ronald Y.; Barbee, Brent W.; Seery, Bernard D.; Bambacus, Myra; Finewood, Lee; Greenaugh, Kevin C.; Lewis, Anthony; Dearborn, David; Miller, Paul L.; Weaver, Robert P.; hide

    2017-01-01

    There have been significant recent efforts in addressing mitigation approaches to neutralize Potentially Hazardous Asteroids (PHA). One such research effort was performed in 2015 by an integrated, inter-disciplinary team of asteroid scientists, energy deposition modeling scientists, payload engineers, orbital dynamist engineers, spacecraft discipline engineers, and systems architecture engineer from NASAs Goddard Space Flight Center (GSFC) and the Department of Energy (DoE) National Nuclear Security Administration (NNSA) laboratories (Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratories (LLNL) and Sandia National Laboratories). The study team collaborated with GSFCs Integrated Design Centers Mission Design Lab (MDL) which engaged a team of GSFC flight hardware discipline engineers to work with GSFC, LANL, and LLNL NEA-related subject matter experts during a one-week intensive concept formulation study in an integrated concurrent engineering environment. This team has analyzed the first of several distinct study cases for a multi-year NASA research grant. This Case 1 study references the Near-Earth Asteroid (NEA) named Bennu as the notional target due to the availability of a very detailed Design Reference Asteroid (DRA) model for its orbit and physical characteristics (courtesy of the Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) mission team). The research involved the formulation and optimization of spacecraft trajectories to intercept Bennu, overall mission and architecture concepts, and high-fidelity modeling of both kinetic impact (spacecraft collision to change a NEAs momentum and orbit) and nuclear detonation effects on Bennu, for purposes of deflecting Bennu.

  6. Engineering and physical sciences in oncology: challenges and opportunities

    PubMed Central

    Mitchell, Michael J.; Jain, Rakesh K.; Langer, Robert

    2017-01-01

    The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas. PMID:29026204

  7. Laboratory Directed Research and Development FY2010 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, K J

    2011-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader nationalmore » needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.« less

  8. US Rocket Propulsion Industrial Base Health Metrics

    NASA Technical Reports Server (NTRS)

    Doreswamy, Rajiv

    2013-01-01

    The number of active liquid rocket engine and solid rocket motor development programs has severely declined since the "space race" of the 1950s and 1960s center dot This downward trend has been exacerbated by the retirement of the Space Shuttle, transition from the Constellation Program to the Space launch System (SLS) and similar activity in DoD programs center dot In addition with consolidation in the industry, the rocket propulsion industrial base is under stress. To Improve the "health" of the RPIB, we need to understand - The current condition of the RPIB - How this compares to past history - The trend of RPIB health center dot This drives the need for a concise set of "metrics" - Analogous to the basic data a physician uses to determine the state of health of his patients - Easy to measure and collect - The trend is often more useful than the actual data point - Can be used to focus on problem areas and develop preventative measures The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector. The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector.

  9. Improving the Flow

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In early 1995, NASA s Glenn Research Center (then Lewis Research Center) formed an industry-government team with several jet engine companies to develop the National Combustion Code (NCC), which would help aerospace engineers solve complex aerodynamics and combustion problems in gas turbine, rocket, and hypersonic engines. The original development team consisted of Allison Engine Company (now Rolls-Royce Allison), CFD Research Corporation, GE Aircraft Engines, Pratt and Whitney, and NASA. After the baseline beta version was established in July 1998, the team focused its efforts on consolidation, streamlining, and integration, as well as enhancement, evaluation, validation, and application. These activities, mainly conducted at NASA Glenn, led to the completion of NCC version 1.0 in October 2000. NCC version 1.0 features high-fidelity representation of complex geometry, advanced models for two-phase turbulent combustion, and massively parallel computing. Researchers and engineers at Glenn have been using NCC to provide analysis and design support for various aerospace propulsion technology development projects. NASA transfers NCC technology to external customers using non- exclusive Space Act Agreements. Glenn researchers also communicate research and development results derived from NCC's further development through publications and special sessions at technical conferences.

  10. Engineering Institute

    Science.gov Websites

    Search Site submit National Security Education Center Los Alamos National LaboratoryEngineering Institute Addressing national needs by fostering specialized recruiting and strategic partnerships Los Alamos National LaboratoryEngineering Institute Menu NSEC Educational Programs Los Alamos Dynamics Summer

  11. FY 2014 LDRD Annual Report Project Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomchak, Dena

    The FY 2014 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support future DOE missions and national research priorities. LDRD is essential to INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enahnces technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  12. Coordinating Federal Science, Technology, Engineering, and Mathematics (STEM) Education Investments: Progress Report. A Report from the Federal Coordination in STEM Education Task Force Committee on STEM Education National Science and Technology Council: In Response to the Requirements of the America COMPETES Reauthorization Act of 2010

    ERIC Educational Resources Information Center

    Executive Office of the President, 2012

    2012-01-01

    The America COMPETES Reauthorization Act of 2013 directs the Office of Science and Technology Policy (OSTP) to create an interagency committee under the National Science and Technology Council (NSTC) to develop a 5-year Federal science, technology, engineering, and mathematics (STEM) education strategic plan that includes: (1) annual and long-term…

  13. Technical Papers Presented at the 1971 NAB Engineering Conference. First Edition.

    ERIC Educational Resources Information Center

    1971

    This collection of 25 papers and panels presented at the 1971 Engineering Conference of the National Association of Broadcasters surveys recent technical developments in the field. At least four of these papers are relevant to education. "Everything You Wanted to Know About Cartridge Machines--But Were Afraid to Ask" describes improvements in…

  14. Materials and Fabrication Methods I. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Lindberg, Andrew; And Others

    This study guide is part of a curriculum entitled Science and Engineering Technician (SET) Curriculum, a program of studies which integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The purpose of this national curriculum development project was to provide a framework for…

  15. The Benefits of Using Engineering as a Context for Science Lessons

    ERIC Educational Resources Information Center

    Taylor, Gemma

    2014-01-01

    "Real life" learning has often been suggested as a good method for engaging students in the science curriculum. In this article, an evidence-based rationale for the use of engineering as a context for "real life" science study is explained. This has been achieved through development work undertaken by the National Science…

  16. NASA Earth-to-Orbit Engineering Design Challenges: Thermal Protection Systems

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration (NASA), 2010

    2010-01-01

    National Aeronautics and Space Administration (NASA) Engineers at Marshall Space Flight Center, Dryden Flight Research Center, and their partners at other NASA centers and in private industry are currently developing X-33, a prototype to test technologies for the next generation of space transportation. This single-stage-to-orbit reusable launch…

  17. NASA Engineering Design Challenges: Spacecraft Structures. EP-2008-09-121-MSFC

    ERIC Educational Resources Information Center

    Haddad, Nick; McWilliams, Harold; Wagoner, Paul

    2007-01-01

    NASA (National Aeronautics and Space Administration) Engineers at Marshall Space Flight Center along with their partners at other NASA centers, and in private industry, are designing and beginning to develop the next generation of spacecraft to transport cargo, equipment, and human explorers to space. These vehicles are part of the Constellation…

  18. 78 FR 24786 - Notice of Funding Availability for the Department of Transportation's National Infrastructure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ..., engineering or design work and purchasing existing facilities or right-of-way. 3. Livability: Increasing... Feasibility: The technical feasibility of the project should be demonstrated by engineering and design studies and activities; the development of design criteria and/or a basis of design; the basis for the cost...

  19. Nuclear thermal source transfer unit, post-blast soil sample drying system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ralph S.; Valencia, Matthew J

    Los Alamos National Laboratory states that its mission is “To solve national security challenges through scientific excellence.” The Science Undergraduate Laboratory Internship (SULI) programs exists to engage undergraduate students in STEM work by providing opportunity to work at DOE facilities. As an undergraduate mechanical engineering intern under the SULI program at Los Alamos during the fall semester of 2016, I had the opportunity to contribute to the mission of the Laboratory while developing skills in a STEM discipline. I worked with Technology Applications, an engineering group that supports non-proliferation, counter terrorism, and emergency response missions. This group specializes in toolmore » design, weapons engineering, rapid prototyping, and mission training. I assisted with two major projects during my appointment Los Alamos. The first was a thermal source transportation unit, intended to safely contain a nuclear thermal source during transit. The second was a soil drying unit for use in nuclear postblast field sample collection. These projects have given me invaluable experience working alongside a team of professional engineers. Skills developed include modeling, simulation, group design, product and system design, and product testing.« less

  20. Role of National Laboratories in Science, Mathematics and Engineering Education. Hearing before the Subcommittee on Energy Research and Development of the Committee on Science, Space, and Technology. House of Representatives, One Hundred First Congress, First Session (May 15, 1989).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science, Space and Technology.

    The programs developed by the U.S. Department of Energy and the National Laboratories to lure an untapped well of students into scientific fields and to increase the number of qualified scientists coming into the research environment are described. The witnesses of this hearing are from the Department of Energy and the National Labs; the outside…

  1. Hot dynamic test rig for measuring hypersonic engine seal flow and durability

    NASA Technical Reports Server (NTRS)

    Miller, Jeffrey H.; Steinetz, Bruce M.; Sirocky, Paul J.; Kren, Lawrence A.

    1994-01-01

    A test fixture for measuring the dynamic performance of candidate high-temperature engine seal concepts was developed. The test fixture was developed to evaluate seal concepts under development for advanced hypersonic engines, such as those being considered for the National Aerospace Plane (NASP). The fixture can measure dynamic seal leakage performance from room temperature up to 840 C and air pressure differentials of to 0.7 MPa. Performance of the seals can be measured while sealing against flat or engine-simulated distorted walls. In the fixture, two seals are preloaded against the sides of a 0.3 m long saber that slides transverse to the axis of the seals, simulating the scrubbing motion anticipated in these engines. The capabilities of this text fixture along with preliminary data showing the dependence of seal leakage performance on high temperature cycling are covered.

  2. Laboratory Directed Research and Development FY-10 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  3. National Science Bowl | NREL

    Science.gov Websites

    and high school student teams on science and math topics. The National Science Bowl provides an opportunity for students to develop science, technology, engineering, and math (STEM) skills in a non tournament challenges students' knowledge of science. Student teams are questioned on life science, math

  4. Science& Technology Review September 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, D

    2003-09-01

    This September 2003 issue of ''Science and Technology Review'' covers the following articles: (1) ''The National Ignition Facility Is Born''; (2) ''The National Ignition Facility Comes to Life'' Over the last 15 years, thousands of Livermore engineers, scientists, and technicians as well as hundreds of industrial partners have worked to bring the National Ignition Facility into being. (3) ''Tracking the Activity of Bacteria Underground'' Using real-time polymerase chain reaction and liquid chromatography/tandem mass spectrometry, researchers at Livermore are gaining knowledge on how bacteria work underground to break down compounds of environmental concern. (4) ''When Every Second Counts--Pathogen Identification in Lessmore » Than a Minute'' Livermore has developed a system that can quickly identify airborne pathogens such as anthrax. (5) ''Portable Radiation Detector Provides Laboratory-Scale Precision in the Field'' A team of Livermore physicists and engineers has developed a handheld, mechanically cooled germanium detector designed to identify radioisotopes.« less

  5. Regency Centers Develops Leadership in Energy-Efficient Renovations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    Regency Centers (Regency) partnered with the Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% versus requirements set by Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  6. Effect of nickel silicide gettering on metal-induced crystallized polycrystalline-silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Lee, Yong Hee; Joo, Seung Ki

    2017-06-01

    Low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) fabricated via metal-induced crystallization (MIC) are attractive candidates for use in active-matrix flat-panel displays. However, these exhibit a large leakage current due to the nickel silicide being trapped at the grain boundaries of the poly-Si. We reduced the leakage current of the MIC poly-Si TFTs by developing a gettering method to remove the Ni impurities using a Si getter layer and natively-formed SiO2 as the etch stop interlayer. The Ni trap state density (Nt) in the MIC poly-Si film decreased after the Ni silicide gettering, and as a result, the leakage current of the MIC poly-Si TFTs decreased. Furthermore, the leakage current of MIC poly-Si TFTs gradually decreased with additional gettering. To explain the gettering effect on MIC poly-Si TFTs, we suggest an appropriate model. He received the B.S. degree in School of Advanced Materials Engineering from Kookmin University, Seoul, South Korea in 2012, and the M.S. degree in Department of Materials Science and Engineering from Seoul National University, Seoul, South Korea in 2014. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and top-gate polycrystalline-silicon thin-film transistors. He received the M.S. degree in innovation technology from Ecol Polytechnique, Palaiseau, France in 2013. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and copper-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He received the B.S. degree in metallurgical engineering from Seoul National University, Seoul, South Korea, in 1974, and the M.S. and Ph.D. degrees in material science and engineering from Stanford University, Stanford, CA, USA, in 1980 and 1983, respectively. He is currently a Professor with the Department of Materials Science and Engineering, Seoul National University, Seoul.

  7. Implanted component faults and their effects on gas turbine engine performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, J.D.; Taylor, V.; Laflamme, J.C.G.

    Under the sponsorship of the Canadian Department of National Defence, the Engine Laboratory of the National Research Council of Canada (NRCC) has established a program for the evaluation of component deterioration on gas turbine engine performance. The effect is aimed at investigating the effects of typical in-service faults on the performance characteristics of each individual engine component. The objective of the program is the development of a generalized fault library, which will be used with fault identification techniques in the field, to reduce unscheduled maintenance. To evaluate the effects of implanted faults on the performance of a single spool engine,more » such as an Allison T56 turboprop engine, a series of faulted parts were installed. For this paper the following faults were analyzed: (a) first-stage turbine nozzle erosion damage; (b) first-stage turbine rotor blade untwist; (c) compressor seal wear; (d) first and second-stage compressor blade tip clearance increase. This paper describes the project objectives, the experimental installation, and the results of the fault implantation on engine performance. Discussed are performance variations on both engine and component characteristics. As the performance changes were significant, a rigorous measurement uncertainty analysis is included.« less

  8. The National Technical Association: A Hallmark for Access and Success

    NASA Astrophysics Data System (ADS)

    Jearld, A., Jr.

    2017-12-01

    Minority Technical Organizations (MTO) are under-utilized as a valuable resource that can help develop the next generation of scientists and engineers. For over 90 years, the National Technical Association (NTA) (www.ntaonline.org) has been the premiere technical association for scientists, engineers, architects, technologist, educators, and technical business entrepreneurs for people of color, offering professional development, mentoring and awards recognition to technical professionals. NTA and its partners are developing a diverse workforce by emphasizing enhanced access opportunities to skills development for youth among underrepresented STEM populations. Established in 1925 by Charles Summer Duke, the first African American to receive an engineering degree from Harvard University, NTA served as the model organization for more than 40 other minority technical organizations that began forming in the 1970's. NTA has served as consultants to the US government on the status of African Americans in science and engineering. The first technical organization to establish community based technical mentoring programs targeting minorities, NTA shares information and assists institutions in identifying minority talent. Members developed the first science and engineering curriculum at Historically Black Colleges and Universities (HBCU's), and are working to produce more students with geoscience degrees to ensure greater career placement with increased minority participation in the geosciences. NTA addresses the lack of access, support, and the need for networking through the longest running annual conference for technical practitioners of color. A hallmark of NTA has been access and success through inter-organizational collaborations with communities of scholars, highly experienced professionals and students to discuss the definition of what is successful geoscience education, research, and employment.

  9. From Earth to Orbit: An assessment of transportation options

    NASA Technical Reports Server (NTRS)

    Gavin, Joseph G., Jr.; Blond, Edmund; Brill, Yvonne C.; Budiansky, Bernard; Cooper, Robert S.; Demisch, Wolfgang H.; Hawk, Clark W.; Kerrebrock, Jack L.; Lichtenberg, Byron K.; Mager, Artur

    1992-01-01

    The report assesses the requirements, benefits, technological feasibility, and roles of Earth-to-Orbit transportation systems and options that could be developed in support of future national space programs. Transportation requirements, including those for Mission-to-Planet Earth, Space Station Freedom assembly and operation, human exploration of space, space science missions, and other major civil space missions are examined. These requirements are compared with existing, planned, and potential launch capabilities, including expendable launch vehicles (ELV's), the Space Shuttle, the National Launch System (NLS), and new launch options. In addition, the report examines propulsion systems in the context of various launch vehicles. These include the Advanced Solid Rocket Motor (ASRM), the Redesigned Solid Rocket Motor (RSRM), the Solid Rocket Motor Upgrade (SRMU), the Space Shuttle Main Engine (SSME), the Space Transportation Main Engine (STME), existing expendable launch vehicle engines, and liquid-oxygen/hydrocarbon engines. Consideration is given to systems that have been proposed to accomplish the national interests in relatively cost effective ways, with the recognition that safety and reliability contribute to cost-effectiveness. Related resources, including technology, propulsion test facilities, and manufacturing capabilities are also discussed.

  10. Concept, Simulation, and Instrumentation for Radiometric Inflight Icing Detection

    NASA Technical Reports Server (NTRS)

    Ryerson, Charles; Koenig, George G.; Reehorst, Andrew L.; Scott, Forrest R.

    2009-01-01

    The multi-agency Flight in Icing Remote Sensing Team (FIRST), a consortium of the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), the National Center for Atmospheric Research (NCAR), the National Oceanographic and Atmospheric Administration (NOAA), and the Army Corps of Engineers (USACE), has developed technologies for remotely detecting hazardous inflight icing conditions. The USACE Cold Regions Research and Engineering Laboratory (CRREL) assessed the potential of onboard passive microwave radiometers for remotely detecting icing conditions ahead of aircraft. The dual wavelength system differences the brightness temperature of Space and clouds, with greater differences potentially indicating closer and higher magnitude cloud liquid water content (LWC). The Air Force RADiative TRANsfer model (RADTRAN) was enhanced to assess the flight track sensing concept, and a 'flying' RADTRAN was developed to simulate a radiometer system flying through simulated clouds. Neural network techniques were developed to invert brightness temperatures and obtain integrated cloud liquid water. In addition, a dual wavelength Direct-Detection Polarimeter Radiometer (DDPR) system was built for detecting hazardous drizzle drops. This paper reviews technology development to date and addresses initial polarimeter performance.

  11. Engines and Innovation: Lewis Laboratory and American Propulsion Technology

    NASA Technical Reports Server (NTRS)

    Dawson, Virginia Parker

    1991-01-01

    This book is an institutional history of the NASA Lewis Research Center, located in Cleveland, Ohio, from 1940, when Congress authorized funding for a third laboratory for the National Advisory Committee for Aeronautics, through the 1980s. The history of the laboratory is discussed in relation to the development of American propulsion technology, with particular focus on the transition in the 1940s from the use of piston engines in airplanes to jet propulsion and that from air-breathing engines to rocket technology when the National Aeronautics and Space Administration was established in 1958. The personalities and research philosophies of the people who shaped the history of the laboratory are discussed, as is the relationship of Lewis Research Center to the Case Institute of Technology.

  12. Engineering-Geological Data Model - The First Step to Build National Polish Standard for Multilevel Information Management

    NASA Astrophysics Data System (ADS)

    Ryżyński, Grzegorz; Nałęcz, Tomasz

    2016-10-01

    The efficient geological data management in Poland is necessary to support multilevel decision processes for government and local authorities in case of spatial planning, mineral resources and groundwater supply and the rational use of subsurface. Vast amount of geological information gathered in the digital archives and databases of Polish Geological Survey (PGS) is a basic resource for multi-scale national subsurface management. Data integration is the key factor to allow development of GIS and web tools for decision makers, however the main barrier for efficient geological information management is the heterogeneity of data in the resources of the Polish Geological Survey. Engineering-geological database is the first PGS thematic domain applied in the whole data integration plan. The solutions developed within this area will facilitate creation of procedures and standards for multilevel data management in PGS. Twenty years of experience in delivering digital engineering-geological mapping in 1:10 000 scale and archival geotechnical reports acquisition and digitisation allowed gathering of more than 300 thousands engineering-geological boreholes database as well as set of 10 thematic spatial layers (including foundation conditions map, depth to the first groundwater level, bedrock level, geohazards). Historically, the desktop approach was the source form of the geological-engineering data storage, resulting in multiple non-correlated interbase datasets. The need for creation of domain data model emerged and an object-oriented modelling (UML) scheme has been developed. The aim of the aforementioned development was to merge all datasets in one centralised Oracle server and prepare the unified spatial data structure for efficient web presentation and applications development. The presented approach will be the milestone toward creation of the Polish national standard for engineering-geological information management. The paper presents the approach and methodology of data unification, thematic vocabularies harmonisation, assumptions and results of data modelling as well as process of the integration of domain model with enterprise architecture implemented in PGS. Currently, there is no geological data standard in Poland. Lack of guidelines for borehole and spatial data management results in an increasing data dispersion as well as in growing barrier for multilevel data management and implementation of efficient decision support tools. Building the national geological data standard makes geotechnical information accessible to multiple institutions, universities, administration and research organisations and gather their data in the same, unified digital form according to the presented data model. Such approach is compliant with current digital trends and the idea of Spatial Data Infrastructure. Efficient geological data management is essential to support the sustainable development and the economic growth, as they allow implementation of geological information to assist the idea of Smart Cites, deliver information for Building Information Management (BIM) and support modern spatial planning. The engineering-geological domain data model presented in the paper is a scalable solution. Future implementation of developed procedures on other domains of PGS geological data is possible.

  13. Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Wey, Chown Chou (Compiler)

    1999-01-01

    In response to the National Research Council (NRC) recommendations, the Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines was organized by the NASA Lewis Research Center and held on July 29-30, 1997 at the Ohio Aerospace Institute in Cleveland, Ohio. The objective is to develop consensus among experts in the field of aerosols from gas turbine combustors and engines as to important issues and venues to be considered. Workshop participants' expertise included engine and aircraft design, combustion processes and kinetics, atmospheric science, fuels, and flight operations and instrumentation.

  14. The Design of Future Airbreathing Engine Systems within an Intelligent Synthesis Environment

    NASA Technical Reports Server (NTRS)

    Malone, J. B.; Housner, J. M.; Lytle, J. K.

    1999-01-01

    This paper describes a new Initiative proposed by the National Aeronautics and Space Administration (NASA). The purpose of this initiative is to develop a future design environment for engineering and science mission synthesis for use by NASA scientists and engineers. This new initiative is called the Intelligent Synthesis Environment (ISE). The paper describes the mission of NASA, future aerospace system characteristics, the current engineering design process, the ISE concept, and concludes with a description of possible ISE applications for the decision of air-breathing propulsion systems.

  15. Advanced Engineering Environment FY09/10 pilot project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamph, Jane Ann; Kiba, Grant W.; Pomplun, Alan R.

    2010-06-01

    The Advanced Engineering Environment (AEE) project identifies emerging engineering environment tools and assesses their value to Sandia National Laboratories and our partners in the Nuclear Security Enterprise (NSE) by testing them in our design environment. This project accomplished several pilot activities, including: the preliminary definition of an engineering bill of materials (BOM) based product structure in the Windchill PDMLink 9.0 application; an evaluation of Mentor Graphics Data Management System (DMS) application for electrical computer-aided design (ECAD) library administration; and implementation and documentation of a Windchill 9.1 application upgrade. The project also supported the migration of legacy data from existing corporatemore » product lifecycle management systems into new classified and unclassified Windchill PDMLink 9.0 systems. The project included two infrastructure modernization efforts: the replacement of two aging AEE development servers for reliable platforms for ongoing AEE project work; and the replacement of four critical application and license servers that support design and engineering work at the Sandia National Laboratories/California site.« less

  16. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II. Part 3; Material Model Development and Simulation of Experiments

    NASA Technical Reports Server (NTRS)

    Simmons, J.; Erlich, D.; Shockey, D.

    2009-01-01

    A team consisting of Arizona State University, Honeywell Engines, Systems & Services, the National Aeronautics and Space Administration Glenn Research Center, and SRI International collaborated to develop computational models and verification testing for designing and evaluating turbine engine fan blade fabric containment structures. This research was conducted under the Federal Aviation Administration Airworthiness Assurance Center of Excellence and was sponsored by the Aircraft Catastrophic Failure Prevention Program. The research was directed toward improving the modeling of a turbine engine fabric containment structure for an engine blade-out containment demonstration test required for certification of aircraft engines. The research conducted in Phase II began a new level of capability to design and develop fan blade containment systems for turbine engines. Significant progress was made in three areas: (1) further development of the ballistic fabric model to increase confidence and robustness in the material models for the Kevlar(TradeName) and Zylon(TradeName) material models developed in Phase I, (2) the capability was improved for finite element modeling of multiple layers of fabric using multiple layers of shell elements, and (3) large-scale simulations were performed. This report concentrates on the material model development and simulations of the impact tests.

  17. Diesel Technology: Engines. Second Edition. Teacher Edition [and] Student Edition.

    ERIC Educational Resources Information Center

    Barbieri, Dave; Miller, Roger; Kellum, Mary

    This diesel technology series offers secondary and postsecondary students an opportunity for learning required skills in the diesel industry. It aligns with the medium/heavy duty truck task list developed by the National Automotive Technicians Education Foundation and used by the National Institute for Automotive Service Excellence in…

  18. PNNL Development and Analysis of Material-Based Hydrogen Storage Systems for the Hydrogen Storage Engineering Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Alvine, Kyle J.; Johnson, Kenneth I.

    The Hydrogen Storage Engineering Center of Excellence is a team of universities, industrial corporations, and federal laboratories with the mandate to develop lower-pressure, materials-based, hydrogen storage systems for hydrogen fuel cell light-duty vehicles. Although not engaged in the development of new hydrogen storage materials themselves, it is an engineering center that addresses engineering challenges associated with the currently available hydrogen storage materials. Three material-based approaches to hydrogen storage are being researched: 1) chemical hydrogen storage materials 2) cryo-adsorbents, and 3) metal hydrides. As a member of this Center, Pacific Northwest National Laboratory (PNNL) has been involved in the design andmore » evaluation of systems developed with each of these three hydrogen storage materials. This report is a compilation of the work performed by PNNL for this Center.« less

  19. Comparison of free-piston Stirling engine model predictions with RE1000 engine test data

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.

    1984-01-01

    Predictions of a free-piston Stirling engine model are compared with RE1000 engine test data taken at NASA-Lewis Research Center. The model validation and the engine testing are being done under a joint interagency agreement between the Department of Energy's Oak Ridge National Laboratory and NASA-Lewis. A kinematic code developed at Lewis was upgraded to permit simulation of free-piston engine performance; it was further upgraded and modified at Lewis and is currently being validated. The model predicts engine performance by numerical integration of equations for each control volume in the working space. Piston motions are determined by numerical integration of the force balance on each piston or can be specified as Fourier series. In addition, the model Fourier analyzes the various piston forces to permit the construction of phasor force diagrams. The paper compares predicted and experimental values of power and efficiency and shows phasor force diagrams for the RE1000 engine displacer and piston. Further development plans for the model are also discussed.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitney, S.E.

    This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulationmore » for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.« less

  1. Using Astronomy to shape a country's science and technology landscape

    NASA Astrophysics Data System (ADS)

    Mokhele, Khotso

    2015-03-01

    There is data abundant to show a positive correlation between a nation's investment in science, engineering and technology and the economic prosperity of that nation. Yet, there remain many countries in the world, particularly in developing countries, where little, if any, serious investment in science, engineering and technology is evident. Even in these countries, policy documents speak positively about the positive correlation between investment in science, engineering and technology and national development and prosperity. Unfortunately these positive policy statements rarely get converted into real investment. When the National Research Foundation was founded in Post-Apartheid South Africa it set out to ``. . .contribute to the improvement of the quality of life of all people. . .'' and its inspiring vision was to achieve ``A prosperous South Africa and African continent steeped in a knowledge culture, free of widespread diseases and poverty, and proud contributors to the well-being of humanity." This organisation, with its altruistic vision, succeeded in convincing the emerging government to invest in and support the construction of the Southern African Large Telescope as one of its flagship projects. This decision was subsequently followed by a high level national decision to leverage South Africa's geographical advantage to host major global astronomy facilities such as the Square Kilometer Array. This presentation highlighted the reasons for such decisions and how we went about motivating government organs that investing in astronomy would contribute to addressing societal challenges by stimulating the science and technology landscape.

  2. VERIFI | Virtual Engine Research Institute and Fuels Initiative

    Science.gov Websites

    VERIFI Virtual Engine Research Institute and Fuels Initiative Argonne National Laboratory Skip to Virtual Engine Research Institute and Fuels Initiative (VERIFI) at Argonne National Laboratory is the Argonne National Laboratory in which to answer your complex engine questions, verify the uncertainties

  3. 40 CFR 91.1008 - National security exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91.1008 National security exemption. (a)(1) Any marine SI engine, otherwise subject to this part... request a national security exemption for any marine SI engine, otherwise subject to this part, which does...

  4. Integration of Research Into Grade Nine-Graduate Level Curricula

    NASA Astrophysics Data System (ADS)

    Bonner, J.; Callicott, K.; Page, C.

    2004-05-01

    Research on the Kolb Learning Cycle, engineering education, and recent cognitive learning research indicates that learning occurs through knowledge application. Moreover, experts in a given discipline will differ from novices with regard to their ability to transfer their knowledge by application to new contexts. We have developed a suite of educational opportunities to bridge the gap between research and the classroom, with activities spanning the educational spectrum from high school through graduate school. One mechanism for transferring of research into undergraduate/graduate curricula is through our National Science Foundation (NSF) funded Combined Research-Curriculum Development (CRCD) project ("Environmental Informatics in Coastal Margins"). This project modifies engineering curricula to provide the nation with the next generation of engineers who can utilize the latest environmental modeling tools. The project revises/creates three undergraduate courses forming the environmental informatics (EI) track of the civil engineering curriculum and two graduate courses integrating GIS and environmental measurements. Curriculum development efforts are guided by an expert team drawn from nearby campuses and both regional and national industry, and includes an expert in assessing the pedagogical value of the curriculum and developing suitable metrics to evaluate student learning experiences. Another NSF-funded project integrating research into an undergraduate educational setting is our Research Experience for Undergraduates (REU) project ("Undergraduate Research in Biodiversity and Ecological Processes in Fluctuating Environments"). Research includes overlapping topics in environmental engineering and life sciences. The summer research experience provides students an opportunity to integrate engineering and life science technologies and to the study of ecological processes associated with biodiversity and environmental quality. Students orally present their project and submit in-depth papers. Over twenty publications/proceedings papers have been generated thus far. A third project involves our collaborations with the ITS Center ("Information Technology in Science Center for Teaching and Learning") on the A&M campus. As an investment in "project team growing", the Center is collaborating with us to collect data on implementation of an engineering science and math enhancement module in Hearne Independent School District. The specific activity involves a CRCD engineering class and an educational psychology undergraduate class. The engineering students give group presentations, where each presentation addresses a scenario that focuses on an environmental topic presented in the class. The students present the technical material to the education students who serve as a non-technical lay audience, emulating a city council, for example. The education students adapt the material for presentation to high school students, working with mentor teachers to enhance content, relevance and hands on experience while learning to apply teaching pedagogy.

  5. Attitudes towards Science, Technology, Engineering and Mathematics (STEM) in a Project-Based Learning (PjBL) Environment

    ERIC Educational Resources Information Center

    Tseng, Kuo-Hung; Chang, Chi-Cheng; Lou, Shi-Jer; Chen, Wen-Ping

    2013-01-01

    Many scholars claimed the integration of science, technology, engineering and mathematics (STEM) education is beneficial to the national economy and teachers and institutes have been working to develop integrated education programs. This study examined a project-based learning (PjBL) activity that integrated STEM using survey and interview…

  6. Entry and Persistence of Women and Minorities in College Science and Engineering Education. Research and Development Report. NCES 2000-601

    ERIC Educational Resources Information Center

    Huang, Gary; Taddese, Nebiyu; Walter, Elizabeth

    2000-01-01

    This study examines the gaps related to gender and race/ethnicity in entrance, persistence, and attainment of postsecondary science and engineering (S&E) education. After reviewing selected prior research and examining potentially relevant variables in two National Center for Education Statistics (NCES) surveys, several variables were selected…

  7. NASA Engineering Design Challenges: Thermal Protection Systems. EP-2008-09-122-MSFC

    ERIC Educational Resources Information Center

    Haddad, Nick; McWilliams, Harold; Wagoner, Paul

    2007-01-01

    National Aeronautics and Space Administration (NASA) Engineers at Marshall Space Flight Center, and their partners at other NASA centers and in private industry, are designing and beginning to develop the next generation of spacecraft to transport cargo, equipment, and human explorers to space. These vehicles--the Ares I and Ares V launch…

  8. 76 FR 65749 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-TAI and Southwest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... tools research and development by organizing and implementing joint engineering and scientific research... components in the engineering and scientific areas of electronic systems, hardware design, packaging and... Civil Enforcement, Antitrust Division. [FR Doc. 2011-27114 Filed 10-21-11; 8:45 am] BILLING CODE 4410-11...

  9. Children Designing & Engineering: Contextual Learning Units in Primary Design and Technology

    ERIC Educational Resources Information Center

    Hutchinson, Patricia

    2002-01-01

    The Children Designing & Engineering (CD&E) Project at the College of New Jersey is a collaborative effort of the College's Center for Design and Technology and the New Jersey Chamber of Commerce. The Project, funded by the National Science Foundation (NSF), has been charged to develop instructional materials for grades K-5. The twelve…

  10. Enhancing Systems Engineering Education Through Case Study Writing

    NASA Technical Reports Server (NTRS)

    Stevens, Jennifer Stenger

    2016-01-01

    Developing and refining methods for teaching systems engineering is part of Systems Engineering grand challenges and agenda for research in the SE research community. Retention of systems engineering knowledge is a growing concern in the United States as the baby boom generation continues to retire and the faster pace of technology development does not allow for younger generations to gain experiential knowledge through years of practice. Government agencies, including the National Aeronautics and Space Administration (NASA), develop their own curricula and SE leadership development programs to "grow their own" systems engineers. Marshall Space Flight Center (MSFC) conducts its own Center-focused Marshall Systems Engineering Leadership Development Program (MSELDP), a competitive program consisting of coursework, a guest lecture series, and a rotational assignment into an unfamiliar organization engaged in systems engineering. Independently, MSFC developed two courses to address knowledge retention and sharing concerns: Real World Marshall Mission Success course and its Case Study Writers Workshop and Writers Experience. Teaching case study writing and leading students through a hands-on experience at writing a case study on an SE topic can enhance SE training and has the potential to accelerate the transfer of experiential knowledge. This paper is an overview of the pilot experiences with teaching case study writing, its application in case study-based learning, and identifies potential areas of research and application for case study writing in systems engineering education.

  11. Supercharger Research at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1944-01-21

    A researcher in the Supercharger Research Division at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory measures the blade thickness on a supercharger. Superchargers were developed at General Electric used to supply additional air to reciprocating engines. The extra air resulted in increased the engine’s performance, particularly at higher altitudes. The Aircraft Engine Research Laboratory had an entire division dedicated to superchargers during World War II. General Electric developed the supercharger in response to a 1917 request from the NACA to develop a device to enhance high-altitude flying. The supercharger pushed larger volumes of air into the engine manifold. The extra oxygen allowed the engine to operate at its optimal sea-level rating even when at high altitudes. Thus, the aircraft could maintain its climb rate, maneuverability and speed as it rose higher into the sky. NACA work on the supercharger ceased after World War II due to the arrival of the turbojet engine. The Supercharger Research Division was disbanded in October 1945 and reconstituted as the Compressor and Turbine Division.

  12. Science and Engineering Education and Manpower. Hearing before the Subcommittee on Science, Research and Technology of the Committee on Science and Technology. U. S. House of Representatives, Ninety-Seventh Congress, Second Session. [No. 93

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science and Technology.

    This document is a transcript of hearings held in Pittsburgh, Pennsylvania (February 11, 1982), which focused on the "National Engineering and Science Manpower Act of 1982," H.R. 5254. The bill, introduced into Congress by Doug Walgren and Don Fuqua, would establish a fund to develop United States technical, engineering, and scientific…

  13. Transboundary Water: Improving Methodologies and Developing Integrated Tools to Support Water Security

    NASA Technical Reports Server (NTRS)

    Hakimdavar, Raha; Wood, Danielle; Eylander, John; Peters-Lidard, Christa; Smith, Jane; Doorn, Brad; Green, David; Hummel, Corey; Moore, Thomas C.

    2018-01-01

    River basins for which transboundary coordination and governance is a factor are of concern to US national security, yet there is often a lack of sufficient data-driven information available at the needed time horizons to inform transboundary water decision-making for the intelligence, defense, and foreign policy communities. To address this need, a two-day workshop entitled Transboundary Water: Improving Methodologies and Developing Integrated Tools to Support Global Water Security was held in August 2017 in Maryland. The committee that organized and convened the workshop (the Organizing Committee) included representatives from the National Aeronautics and Space Administration (NASA), the US Army Corps of Engineers Engineer Research and Development Center (ERDC), and the US Air Force. The primary goal of the workshop was to advance knowledge on the current US Government and partners' technical information needs and gaps to support national security interests in relation to transboundary water. The workshop also aimed to identify avenues for greater communication and collaboration among the scientific, intelligence, defense, and foreign policy communities. The discussion around transboundary water was considered in the context of the greater global water challenges facing US national security.

  14. ESMD Risk Management Workshop: Systems Engineering and Integration Risks

    NASA Technical Reports Server (NTRS)

    Thomas, L. Dale

    2005-01-01

    This report has been developed by the National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate (ESMD) Risk Management team in close coordination with the Systems Engineering Team. This document provides a point-in-time, cumulative, summary of key lessons learned derived from the SE RFP Development process. Lessons learned invariably address challenges and risks and the way in which these areas have been addressed. Accordingly the risk management thread is woven throughout the document.

  15. Water Reuse and Soil Column Studies for Alternative Water Resource Development

    EPA Science Inventory

    The National Risk Management Research Laboratory (NRMRL) of the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development (ORD) has developed a holistic water research program in order to identify engineering and management options for safe and expanded use ...

  16. Bibliography on Biomass Feedstock Research: 1978-2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cushman, J.H.

    2003-05-01

    This report provides bibliographic citations for more than 1400 reports on biomass feedstock development published by Oak Ridge National Laboratory and its collaborators from 1978 through 2002. Oak Ridge National Laboratory is engaged in analysis of biomass resource supplies, research on the sustainability of feedstock resources, and research on feedstock engineering and infrastructure. From 1978 until 2002, Oak Ridge National Laboratory also provided technical leadership for the U.S. Department of Energy's Bioenergy Feedstock Development Program (BFDP), which supported research to identify and develop promising energy crops. This bibliography lists reports published by Oak Ridge National Laboratory and by its collaboratorsmore » in the BFDP, including graduate student theses and dissertations.« less

  17. Environmental aspects of engineering geological mapping in the United States

    USGS Publications Warehouse

    Radbruch-Hall, Dorothy H.

    1979-01-01

    Many engineering geological maps at different scales have been prepared for various engineering and environmental purposes in regions of diverse geological conditions in the United States. They include maps of individual geological hazards and maps showing the effect of land development on the environment. An approach to assessing the environmental impact of land development that is used increasingly in the United States is the study of a single area by scientists from several disciplines, including geology. A study of this type has been made for the National Petroleum Reserve in northern Alaska. In the San Francisco Bay area, a technique has been worked out for evaluating the cost of different types of construction and land development in terms of the cost of a number of kinds of earth science factors. ?? 1979 International Association of Engineering Geology.

  18. Surrogate Analysis and Index Developer (SAID) tool

    USGS Publications Warehouse

    Domanski, Marian M.; Straub, Timothy D.; Landers, Mark N.

    2015-10-01

    The regression models created in SAID can be used in utilities that have been developed to work with the USGS National Water Information System (NWIS) and for the USGS National Real-Time Water Quality (NRTWQ) Web site. The real-time dissemination of predicted SSC and prediction intervals for each time step has substantial potential to improve understanding of sediment-related water quality and associated engineering and ecological management decisions.

  19. Science and engineering research opportunities at the National Science Foundation.

    PubMed

    Demir, Semahat S

    2004-01-01

    Research at the interface of the physical sciences and life sciences has produced remarkable advances and understanding in biology and medicine over the past fifty years. These bases for many of these healthcare and research advances have been discoveries in the quantitative sciences and engineering approaches to applying them. The National Science Foundation supports research and development in the physical sciences which underpins multi-disciplinary approaches to addressing problems in biology and medicine. This presentation will cover research opportunities offered by the NSF and collaborative programs with the NIH to transfer the resulting advances and technologies.

  20. NASA Space Science Days: An Out of School Program Using National Partnerships to Further Influence Future Scientists and Engineers.

    NASA Technical Reports Server (NTRS)

    Galindo, Charles; Allen, Jaclyn; Garcia, Javier; Hrrera, Stephanie

    2012-01-01

    The National Math and Science Initiative states that American students are falling behind in the essential subjects of math and science, putting our position in the global economy at risk a foreboding statement that has caused the U.S. to re-evaluate how we view STEM education. Developing science and engineering related out of school programs that expose middle school students to math and science in a nontraditional university environment has the potential to motivate young students to look at the physical sciences in an exciting out of the norm environment.

  1. NSF Director to resign

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Edward A. Knapp, director of the National Science Foundation (NSF) since late 1982, will resign his post later this year to return to research at the Los Alamos National Laboratory. President Ronald Reagan has announced his intention to nominate Erich Bloch, vice president for technical personnel development at the IBM Corp., as Knapp's successor.Following formal nomination by President Reagan, the Senate must confirm Bloch as NSF director. If Bloch is confirmed, he is likely to bring to NSF the greater emphasis on engineering that the agency has sought in response to requests from Congress and the engineering community during the last year.

  2. United States Air Force Summer Research Program -- 1993. Volume 16. Arnold Engineering Development Center. Frank J. Seiler Research Laboratory. Wilford Hall Medical Center

    DTIC Science & Technology

    1993-12-01

    A I 7f t UNITED STATE AIR FORCE SUMMER RESEARCH PROGRAM -- 1993 SUMMER RESEARCH PROGRAM FINAL REPORTS VOLUME 16 ARNOLD ENGINEERING DEVELOPMENT CENTER...FRANK J. SELLER RESEARCH LABORATORY WILFORD HALL MEDICAL CENTER RESEARCH & DEVELOPMENT LABORATORIES 5800 Uplander Way Culver City, CA 90230-6608...National Rd. Vol-Page No: 15-44 Dist Tecumseh High School 8.4 New Carlisle, OH 45344-0000 Barber, Jason Laboratory: AL/CF 1000 10th St. Vol-Page No

  3. Experimental Evaluation of the Free Piston Engine - Linear Alternator (FPLA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leick, Michael T.; Moses, Ronald W.

    2015-03-01

    This report describes the experimental evaluation of a prototype free piston engine - linear alternator (FPLA) system developed at Sandia National Laboratories. The opposed piston design wa developed to investigate its potential for use in hybrid electric vehicles (HEVs). The system is mechanically simple with two - stroke uniflow scavenging for gas exchange and timed port fuel injection for fuel delivery, i.e. no complex valving. Electrical power is extracted from piston motion through linear alternators wh ich also provide a means for passive piston synchronization through electromagnetic coupling. In an HEV application, this electrical power would be used to chargemore » the batteries. The engine - alternator system was designed, assembled and operated over a 2 - year period at Sandia National Laboratories in Livermore, CA. This report primarily contains a description of the as - built system, modifications to the system to enable better performance, and experimental results from start - up, motoring, and hydrogen combus tion tests.« less

  4. Engineering research, development and technology FY99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R T

    The growth of computer power and connectivity, together with advances in wireless sensing and communication technologies, is transforming the field of complex distributed systems. The ability to deploy large numbers of sensors with a rapid, broadband communication system will enable high-fidelity, near real-time monitoring of complex systems. These technological developments will provide unprecedented insight into the actual performance of engineered and natural environment systems, enable the evolution of many new types of engineered systems for monitoring and detection, and enhance our ability to perform improved and validated large-scale simulations of complex systems. One of the challenges facing engineering is tomore » develop methodologies to exploit the emerging information technologies. Particularly important will be the ability to assimilate measured data into the simulation process in a way which is much more sophisticated than current, primarily ad hoc procedures. The reports contained in this section on the Center for Complex Distributed Systems describe activities related to the integrated engineering of large complex systems. The first three papers describe recent developments for each link of the integrated engineering process for large structural systems. These include (1) the development of model-based signal processing algorithms which will formalize the process of coupling measurements and simulation and provide a rigorous methodology for validation and update of computational models; (2) collaborative efforts with faculty at the University of California at Berkeley on the development of massive simulation models for the earth and large bridge structures; and (3) the development of wireless data acquisition systems which provide a practical means of monitoring large systems like the National Ignition Facility (NIF) optical support structures. These successful developments are coming to a confluence in the next year with applications to NIF structural characterizations and analysis of large bridge structures for the State of California. Initial feasibility investigations into the development of monitoring and detection systems are described in the papers on imaging of underground structures with ground-penetrating radar, and the use of live insects as sensor platforms. These efforts are establishing the basic performance characteristics essential to the decision process for future development of sensor arrays for information gathering related to national security.« less

  5. JSC engineers visit area schools for National Engineers Week

    NASA Image and Video Library

    1996-02-28

    Johnson Space Center (JSC) engineers visit Houston area schools for National Engineers Week. Students examine a machine that generates static electricity (4296-7). Students examine model rockets (4298).

  6. Human Factors Engineering Program Review Model

    DTIC Science & Technology

    2004-02-01

    Institute, 1993). ANSI HFS-100: American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (American National... American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (ANSI HFS-100-1988). Santa Monica, California

  7. Establishment of a National Wind Energy Center at University of Houston

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Su Su

    The DOE-supported project objectives are to: establish a national wind energy center (NWEC) at University of Houston and conduct research to address critical science and engineering issues for the development of future large MW-scale wind energy production systems, especially offshore wind turbines. The goals of the project are to: (1) establish a sound scientific/technical knowledge base of solutions to critical science and engineering issues for developing future MW-scale large wind energy production systems, (2) develop a state-of-the-art wind rotor blade research facility at the University of Houston, and (3) through multi-disciplinary research, introducing technology innovations on advanced wind-turbine materials, processing/manufacturingmore » technology, design and simulation, testing and reliability assessment methods related to future wind turbine systems for cost-effective production of offshore wind energy. To achieve the goals of the project, the following technical tasks were planned and executed during the period from April 15, 2010 to October 31, 2014 at the University of Houston: (1) Basic research on large offshore wind turbine systems (2) Applied research on innovative wind turbine rotors for large offshore wind energy systems (3) Integration of offshore wind-turbine design, advanced materials and manufacturing technologies (4) Integrity and reliability of large offshore wind turbine blades and scaled model testing (5) Education and training of graduate and undergraduate students and post- doctoral researchers (6) Development of a national offshore wind turbine blade research facility The research program addresses both basic science and engineering of current and future large wind turbine systems, especially offshore wind turbines, for MW-scale power generation. The results of the research advance current understanding of many important scientific issues and provide technical information for solving future large wind turbines with advanced design, composite materials, integrated manufacturing, and structural reliability and integrity. The educational program have trained many graduate and undergraduate students and post-doctoral level researchers to learn critical science and engineering of wind energy production systems through graduate-level courses and research, and participating in various projects in center’s large multi-disciplinary research. These students and researchers are now employed by the wind industry, national labs and universities to support the US and international wind energy industry. The national offshore wind turbine blade research facility developed in the project has been used to support the technical and training tasks planned in the program to accomplish their goals, and it is a national asset which is available for used by domestic and international researchers in the wind energy arena.« less

  8. National Launch System Space Transportation Main Engine

    NASA Technical Reports Server (NTRS)

    Hoodless, Ralph M., Jr.; Monk, Jan C.; Cikanek, Harry A., III

    1991-01-01

    The present liquid-oxygen/liquid-hydrogen engine is described as meeting the specific requirements of the National Launch System (NLS) Program including cost-effectiveness and robustness. An overview of the NLS and its objectives is given which indicates that the program aims to develop a flexible launch system to meet security, civil, and commercial needs. The Space Transportation Main Engine (STME) provides core and boost propulsion for the 1.5-stage vehicle and core propulsion for the solid booster vehicle. The design incorporates step-throttling, order-of-magnitude reductions in welds, and configuration targets designed to optimize robustness. The STME is designed to provide adaptable and dependable propulsion while minimizing recurring costs and is designed to meet the needs of NLS and other typical space-transportation programs currently being planned.

  9. Report to the President and Congress on the Third Assessment of the National Nanotechnology Initiative

    ERIC Educational Resources Information Center

    Alper, Joe; Amato, Ivan

    2010-01-01

    The National Nanotechnology Initiative (NNI) is the U.S. Government's crosscutting program that coordinates Federal research and development (R&D) activities in nanoscale science, engineering, technology, and related efforts among various participating agencies. The Federal Government launched the NNI in FY 2001 with an initial $500 million…

  10. Rising above the Gathering Storm: Developing Regional Innovation Environments--A Workshop Summary

    ERIC Educational Resources Information Center

    Arrison, Tom, Ed.; Olson, Steve, Ed.

    2012-01-01

    In October 2005, the National Academy of Sciences, National Academy of Engineering, and Institute of Medicine released a policy report that served as a call to action. The report, "Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future" observed that "the scientific and technological building blocks…

  11. Designing and Implementing a Personalized Remedial Learning System for Enhancing the Programming Learning

    ERIC Educational Resources Information Center

    Hsieh, Tung-Cheng; Lee, Ming-Che; Su, Chien-Yuan

    2013-01-01

    In recent years, the demand for computer programming professionals has increased rapidly. These computer engineers not only play a key role in the national development of the computing and software industries, they also have a significant influence on the broader national knowledge industry. Therefore, one of the objectives of information…

  12. Building a National Security Program at a Small School: Identifying Opportunities and Overcoming Challenges

    ERIC Educational Resources Information Center

    Grossman, Michael; Schortgen, Francis

    2016-01-01

    This article offers insights into the overall program development process and--institutional obstacles and constraints notwithstanding--successful introduction of a new national security program at a small liberal arts university at a time of growing institutional prioritization of science, technology, engineering, and mathematics (STEM) programs.…

  13. Genetic Engineering: A Possible Strategy for Protein-Energy Malnutrition Regulation.

    PubMed

    Guleria, Praveen; Kumar, Vineet; Guleria, Shiwani

    2017-12-01

    Protein-energy malnutrition (PEM) has adversely affected the generations of developing countries. It is a syndrome that in severity causes death. PEM generally affects infants of 1-5 age group. This manifestation is maintained till adulthood in the form of poor brain and body development. The developing nations are continuously making an effort to curb PEM. However, it is still a prime concern as it was in its early years of occurrence. Transgenic crops with high protein and enhanced nutrient content have been successfully developed. Present article reviews the studies documenting genetic engineering-mediated improvement in the pulses, cereals, legumes, fruits and other crop plants in terms of nutritional value, stress tolerance, longevity and productivity. Such genetically engineered crops can be used as a possible remedial tool to eradicate PEM.

  14. 23 CFR 650.309 - Qualifications of personnel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Safety Inspector under the National Society of Professional Engineer's program for National Certification in Engineering Technologies (NICET) and have successfully completed an FHWA approved comprehensive... Accreditation Board for Engineering and Technology; (ii) Successfully passed the National Council of Examiners...

  15. 23 CFR 650.309 - Qualifications of personnel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Safety Inspector under the National Society of Professional Engineer's program for National Certification in Engineering Technologies (NICET) and have successfully completed an FHWA approved comprehensive... Accreditation Board for Engineering and Technology; (ii) Successfully passed the National Council of Examiners...

  16. 46 CFR 11.516 - Service requirements for national endorsement as third assistant engineer of steam, motor, and/or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... assistant engineer of steam, motor, and/or gas turbine-propelled vessels. 11.516 Section 11.516 Shipping... OFFICER ENDORSEMENTS Professional Requirements for National Engineer Officer Endorsements § 11.516 Service requirements for national endorsement as third assistant engineer of steam, motor, and/or gas turbine-propelled...

  17. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Visitors crowd the NASA exhibits during the USA Science and Engineering Festival, Saturday, Oct. 23, 2010, on the National Mall in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  18. 40 CFR 1068.225 - What are the provisions for exempting engines/equipment for national security?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engines/equipment for national security? 1068.225 Section 1068.225 Protection of Environment ENVIRONMENTAL... security? (a) An engine/equipment is exempt without a request if it will be used or owned by an agency of...) Manufacturers may request a national security exemption for engines/equipment not meeting the conditions of...

  19. 47 CFR 24.237 - Interference protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... signal levels and other criteria as may be developed by the Electronics Industries Association (EIA), the Institute of Electrical and Electronics Engineers, Inc. (IEEE), the American National Standards Institute...

  20. Three Decades of Recombinant DNA.

    ERIC Educational Resources Information Center

    Palmer, Jackie

    1985-01-01

    Discusses highlights in the development of genetic engineering, examining techniques with recombinant DNA, legal and ethical issues, GenBank (a national database of nucleic acid sequences), and other topics. (JN)

  1. 47 CFR 24.237 - Interference protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... signal levels and other criteria as may be developed by the Electronics Industries Association (EIA), the Institute of Electrical and Electronics Engineers, Inc. (IEEE), the American National Standards Institute...

  2. 47 CFR 24.237 - Interference protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... signal levels and other criteria as may be developed by the Electronics Industries Association (EIA), the Institute of Electrical and Electronics Engineers, Inc. (IEEE), the American National Standards Institute...

  3. 47 CFR 24.237 - Interference protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... signal levels and other criteria as may be developed by the Electronics Industries Association (EIA), the Institute of Electrical and Electronics Engineers, Inc. (IEEE), the American National Standards Institute...

  4. 47 CFR 24.237 - Interference protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... signal levels and other criteria as may be developed by the Electronics Industries Association (EIA), the Institute of Electrical and Electronics Engineers, Inc. (IEEE), the American National Standards Institute...

  5. Epifaunal Community Development on Great Lakes Breakwaters: An Engineering with Nature Demonstration Project

    DTIC Science & Technology

    2014-08-01

    major taxonomic group and counted. The algae from each sample was captured on a preweighed paper filter and dried in an oven at 60-65° C for 24-48...Restoration Initiative managed by the Great Lakes National Program Office. BACKGROUND Engineering With Nature Approach. Engineering With Nature (EWN) is a ...person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number

  6. Development of Novel, Band-Gap Engineered Photorefractive Semiconductors CdMnTe:V For Real Time Optical Processing

    DTIC Science & Technology

    1998-06-01

    foreign nations. AFRL-SN-RS-TR-1998-104 has been reviewed and is approved for publication. APPROVED: GEORGE A. BROST Project Engineer FOR THE...REPORT NUMBER AFRL-SN-RS-TR-1998-104 11. SUPPLEMENTARY NOTES Project Engineer: George Brost , AFRL/SNDR, (315) 330-7669 12a. DISTRIBUTION...program was monitored by Dr. George Brost of Rome Laboratory, Griffiss Air Force Base. We thank Dr. Brost for his constant interest, support and

  7. Engineering and public health at CDC.

    PubMed

    Earnest, G Scott; Reed, Laurence D; Conover, D; Estill, C; Gjessing, C; Gressel, M; Hall, R; Hudock, S; Hudson, H; Kardous, C; Sheehy, J; Topmiller, J; Trout, D; Woebkenberg, M; Amendola, A; Hsiao, H; Keane, P; Weissman, D; Finfinger, G; Tadolini, S; Thimons, E; Cullen, E; Jenkins, M; McKibbin, R; Conway, G; Husberg, B; Lincoln, J; Rodenbeck, S; Lantagne, D; Cardarelli, J

    2006-12-22

    Engineering is the application of scientific and technical knowledge to solve human problems. Using imagination, judgment, and reasoning to apply science, technology, mathematics, and practical experience, engineers develop the design, production, and operation of useful objects or processes. During the 1940s, engineers dominated the ranks of CDC scientists. In fact, the first CDC director, Assistant Surgeon General Mark Hollis, was an engineer. CDC engineers were involved in malaria control through the elimination of standing water. Eventually the CDC mission expanded to include prevention and control of dengue, typhus, and other communicable diseases. The development of chlorination, water filtration, and sewage treatment were crucial to preventing waterborne illness. Beginning in the 1950s, CDC engineers began their work to improve public health while developing the fields of environmental health, industrial hygiene, and control of air pollution. Engineering disciplines represented at CDC today include biomedical, civil, chemical, electrical, industrial, mechanical, mining, and safety engineering. Most CDC engineers are located in the National Institute for Occupational Safety and Health (NIOSH) and the Agency for Toxic Substances and Disease Registry (ATSDR). Engineering research at CDC has a broad stakeholder base. With the cooperation of industry, labor, trade associations, and other stakeholders and partners, current work includes studies of air contaminants, mining, safety, physical agents, ergonomics, and environmental hazards. Engineering solutions remain a cornerstone of the traditional "hierarchy of controls" approach to reducing public health hazards.

  8. About the strategy for development of the Russian power engineering (after ten years)

    NASA Astrophysics Data System (ADS)

    Batenin, V. M.; Zeigarnik, Yu. A.; Maslennikov, V. M.

    2012-04-01

    The situation that arose in the Russian power industry after restructuring the RAO UES of Russia is briefly analyzed. Special emphasis is placed on the fact that it is almost impossible to introduce innovations. Insolvency of directly copying foreign trends in development of power engineering is demonstrated. Several particular proposals aimed at improving the existing situation are stated that suggest raising the role of the State in managing the energy sector of the national economy.

  9. Engineering Margin Factors Used in the Design of the VVER Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Lizorkin, M. P.; Shishkov, L. K.

    2017-12-01

    The article describes methods for determination of the engineering margin factors currently used to estimate the uncertainties of the VVER reactor design parameters calculated via the KASKAD software package developed at the National Research Center Kurchatov Institute. These margin factors ensure the meeting of the operating (design) limits and a number of other restrictions under normal operating conditions.

  10. Flex-Fuel Two-Stroke Snowmobile: Development of a Flex-Fuel, Two-Stroke, Direct-Injection Snowmobile for Use in the Clean Snowmobile Challenge and National Parks

    DOT National Transportation Integrated Search

    2009-09-01

    The University of Idaho's entry into the 2009 SAE Clean Snowmobile Challenge (CSC) was a semi-direct-injection (SDI) two-stroke powered REV-XP snowmobile modified to use flex fuel. The flex fuel engine produces stock engine power on any blend of etha...

  11. Understanding the Gender Gap in Science and Engineering: Evidence from the Chilean College Admissions Tests

    ERIC Educational Resources Information Center

    Gándara, Fernanda; Silva, Monica

    2016-01-01

    This study seeks to develop a better understanding of the underrepresentation of women in science and engineering by analyzing the gender gaps (a) in the interest in pursuing a science degree and (b) on science achievement. We use national-level college admissions data to examine gender differences and to explore the association between these…

  12. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert

    2005-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management andmore » software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.« less

  13. Visualizing Chemistry: The Progess and Promise of Advanced Chemical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Committee on Revealing Chemistry Through Advanced Chemical Imaging

    2006-09-01

    The field of chemical imaging can provide detailed structural, functional, and applicable information about chemistry and chemical engineering phenomena that have enormous impacts on medicine, materials, and technology. In recognizing the potential for more research development in the field of chemical imaging, the National Academies was asked by the National Science Foundation, Department of Energy, U.S. Army, and National Cancer Institute to complete a study that would review the current state of molecular imaging technology, point to promising future developments and their applications, and suggest a research and educational agenda to enable breakthrough improvements in the ability to image molecularmore » processes simultaneously in multiple physical dimensions as well as time. The study resulted in a consensus report that provides guidance for a focused research and development program in chemical imaging and identifies research needs and possible applications of imaging technologies that can provide the breakthrough knowledge in chemistry, materials science, biology, and engineering for which we should strive. Public release of this report is expected in early October.« less

  14. Transient dynamics capability at Sandia National Laboratories

    NASA Technical Reports Server (NTRS)

    Attaway, Steven W.; Biffle, Johnny H.; Sjaardema, G. D.; Heinstein, M. W.; Schoof, L. A.

    1993-01-01

    A brief overview of the transient dynamics capabilities at Sandia National Laboratories, with an emphasis on recent new developments and current research is presented. In addition, the Sandia National Laboratories (SNL) Engineering Analysis Code Access System (SEACAS), which is a collection of structural and thermal codes and utilities used by analysts at SNL, is described. The SEACAS system includes pre- and post-processing codes, analysis codes, database translation codes, support libraries, Unix shell scripts for execution, and an installation system. SEACAS is used at SNL on a daily basis as a production, research, and development system for the engineering analysts and code developers. Over the past year, approximately 190 days of CPU time were used by SEACAS codes on jobs running from a few seconds up to two and one-half days of CPU time. SEACAS is running on several different systems at SNL including Cray Unicos, Hewlett Packard PH-UX, Digital Equipment Ultrix, and Sun SunOS. An overview of SEACAS, including a short description of the codes in the system, are presented. Abstracts and references for the codes are listed at the end of the report.

  15. JANNAF "Test and Evaluation Guidelines for Liquid Rocket Engines": Status and Application

    NASA Technical Reports Server (NTRS)

    Parkinson, Douglas; VanLerberghe, Wayne M.; Rahman, Shamim A.

    2017-01-01

    For many decades, the U.S. rocket propulsion industrial base has performed remarkably in developing complex liquid rocket engines that can propel critical payloads into service for the nation, as well as transport people and hardware for missions that open the frontiers of space exploration for humanity. This has been possible only at considerable expense given the lack of detailed guidance that captures the essence of successful practices and knowledge accumulated over five decades of liquid rocket engine development. In an effort to provide benchmarks and guidance for the next generation of rocket engineers, the Joint Army Navy NASA Air Force (JANNAF) Interagency Propulsion Committee published a liquid rocket engine (LRE) test and evaluation (T&E) guideline document in 2012 focusing on the development challenges and test verification considerations for liquid rocket engine systems. This document has been well received and applied by many current LRE developers as a benchmark and guidance tool, both for government-driven applications as well as for fully commercial ventures. The USAF Space and Missile Systems Center (SMC) has taken an additional near-term step and is directing activity to adapt and augment the content from the JANNAF LRE T&E guideline into a standard for potential application to future USAF requests for proposals for LRE development initiatives and launch vehicles for national security missions. A draft of this standard was already sent out for review and comment, and is intended to be formally approved and released towards the end of 2017. The acceptance and use of the LRE T&E guideline is possible through broad government and industry participation in the JANNAF liquid propulsion committee and associated panels. The sponsoring JANNAF community is expanding upon this initial baseline version and delving into further critical development aspects of liquid rocket propulsion testing at the integrated stage level as well as engine component level, in order to advance the state of the practice. The full participation of the entire U.S. rocket propulsion industrial base is invited and expected at this opportune moment in the continuing advancement of spaceflight technology.

  16. Undergraduate Course and Curriculum Development Program and Calculus and the Bridge to Calculus Program: 1993 Awards.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA. Div. of Undergraduate Education.

    The Undergraduate Course and Curriculum Development Program of the National Science Foundation supports the development of courses in all disciplines to improve the quality of undergraduate courses and curricula in science, mathematics, engineering, and technology. The purpose of the program in Curriculum Development in Mathematics: Calculus and…

  17. Development of an Aviation Maintenance Curriculum in an Aerospace Engineering Department.

    ERIC Educational Resources Information Center

    Miau, Jiun-Jih; Chiu, Huei-Huang; Wu, Yuh-Yi; Lin, Chin-E; Choi, Siu-Tong; Yang, Shih-Ming; Jenq, Syh-Tsang

    This paper describes the motivation of developing the Aviation Maintenance Curriculum, at National Chang Kung University (seven elective courses) contents of the elective courses, and university-industry collaborations developed along with the Curriculum. The curriculum represents an effort to respond to the needs of manpower in the aviation…

  18. Combined Research and Curriculum Development of Nontraditional Manufacturing

    ERIC Educational Resources Information Center

    Yao, Y. Lawrence; Cheng, Gary J.; Rajurkar, K. P.; Kovacevic, Radovan; Feiner, Steve; Zhang, Wenwu

    2005-01-01

    Nontraditional manufacturing (NTM) is becoming increasingly important in modern engineering. Therefore, it is important to develop up-to-date pedagogic materials for the area. This paper reports collaborative efforts among three universities in such a development sponsored by National Science Foundation of USA. The features of the development…

  19. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Visitors to the USA Science and Engineering Festival look on at one of the many exhibits, Saturday, Oct. 23, 2010, on the National Mall in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  20. Nanoelectronics, Nanophotonics, and Nanomagnetics: Report of the National Nanotechnology Initiative Workshop February 11-13, 2004

    DTIC Science & Technology

    2004-02-01

    National Science and Technology Council Committee on Technology Subcommittee on Nanoscale Science, Engineering , and Technology National...18 About the Nanoscale Science, Engineering , and Technology Subcommittee The Nanoscale Science, Engineering , and Technology (NSET) Subcommittee is the...workshop was to examine trends and opportunities in nanoscale science and engineering as applied to electronic, photonic, and magnetic technologies

  1. Collection, processing and dissemination of data for the national solar demonstration program

    NASA Technical Reports Server (NTRS)

    Day, R. E.; Murphy, L. J.; Smok, J. T.

    1978-01-01

    A national solar data system developed for the DOE by IBM provides for automatic gathering, conversion, transfer, and analysis of demonstration site data. NASA requirements for this system include providing solar site hardware, engineering, data collection, and analysis. The specific tasks include: (1) solar energy system design/integration; (2) developing a site data acquisition subsystem; (3) developing a central data processing system; (4) operating the test facility at Marshall Space Flight Center; (5) collecting and analyzing data. The systematic analysis and evaluation of the data from the National Solar Data System is reflected in a monthly performance report and a solar energy system performance evaluation report.

  2. Ceramic Technology For Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less

  3. The rehabilitation engineering research center for the advancement of cognitive technologies.

    PubMed

    Heyn, Patricia Cristine; Cassidy, Joy Lucille; Bodine, Cathy

    2015-02-01

    Barring few exceptions, allied health professionals, engineers, manufacturers of assistive technologies (ATs), and consumer product manufacturers have developed few technologies for individuals with cognitive impairments (CIs). In 2004, the National Institute on Disability Rehabilitation Research (NIDRR) recognized the need to support research in this emergent field. They funded the first Rehabilitation Engineering Research Center for the Advancement of Cognitive Technologies (RERC-ACT). The RERC-ACT has since designed and evaluated existing and emerging technologies through rigorous research, improving upon existing AT devices, and creating new technologies for individuals with CIs. The RERC-ACT has contributed to the development and testing of AT products that assist persons with CIs to actively engage in tasks of daily living at home, school, work, and in the community. This article highlights the RERC-ACT's engineering development and research projects and discusses how current research may impact the quality of life for an aging population. © The Author(s) 2014.

  4. Tailoring Enterprise Systems Engineering Policy for Project Scale and Complexity

    NASA Technical Reports Server (NTRS)

    Cox, Renee I.; Thomas, L. Dale

    2014-01-01

    Space systems are characterized by varying degrees of scale and complexity. Accordingly, cost-effective implementation of systems engineering also varies depending on scale and complexity. Recognizing that systems engineering and integration happen everywhere and at all levels of a given system and that the life cycle is an integrated process necessary to mature a design, the National Aeronautic and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) has developed a suite of customized implementation approaches based on project scale and complexity. While it may be argued that a top-level system engineering process is common to and indeed desirable across an enterprise for all space systems, implementation of that top-level process and the associated products developed as a result differ from system to system. The implementation approaches used for developing a scientific instrument necessarily differ from those used for a space station. .

  5. Engineering approaches to energy balance and obesity: opportunities for novel collaborations and research: report of a joint national science foundation and national institutes of health workshop.

    PubMed

    Ershow, Abby G; Ortega, Alfonso; Timothy Baldwin, J; Hill, James O

    2007-01-01

    Energy balance disorders account for a large public health burden. The obesity epidemic in particular is one of the most rapidly evolving public health problems of our day. At present, two-thirds of American adults and one-sixth of American children and adolescents are considered either overweight or obese. Public health concern about obesity is high because of the increased risk and increased mortality of cardiovascular disease, Type 2 diabetes, many forms of cancer, gallbladder disease, and osteoarthritis. These risks increase with the severity of the obesity. Excess adipose tissue, representing fat storage, ultimately derives from an imbalance between energy intake and energy expenditure. Conversely, undesirable and inadvertent loss of body weight and muscle mass, as seen in aging and cachectic states of chronic diseases such as heart failure and cancer, have serious clinical and functional consequences without satisfactory clinical or behavioral solutions. Innovative engineering technologies could help to address unresolved problems in energy balance, intake, and expenditure. Novel sensors, devices, imaging technologies, nanotechnologies, biomaterials, technologies to detect biochemical markers of energy balance, mathematical modeling, systems biology, and other approaches could be developed, evaluated, and leveraged through multidisciplinary collaborations. Engineers, physical scientists, and mathematicians can work with scientists from other relevant disciplines who possess expertise in obesity and nutrition. Furthermore, the possibility of re-engineering the "built environment" to encourage higher levels of physical activity has been suggested as another promising and important approach to which engineers can contribute (see http://www.obesityresearch.nih.gov). Ultimately, systematic application of the "Engineering Approach" can help in developing the needed technologies and tools to facilitate research and eventually support therapeutic advances and behavioral change. This article summarizes important public health concerns related to disordered energy balance and describes research priorities identified at a recent National Science Foundation-National Institutes of Health workshop. Research funding opportunities are described as posted on the NIH Guide to Grants and Contracts (see http://www.nih.gov/grants/guide).

  6. Engineering Approaches to Energy Balance and Obesity: Opportunities for Novel Collaborations and Research: Report of a Joint National Science Foundation and National Institutes of Health Workshop

    PubMed Central

    Ershow, Abby G.; Ortega, Alfonso; Timothy Baldwin, J.; Hill, James O.

    2007-01-01

    Energy balance disorders account for a large public health burden. The obesity epidemic in particular is one of the most rapidly evolving public health problems of our day. At present, two-thirds of American adults and one-sixth of American children and adolescents are considered either overweight or obese. Public health concern about obesity is high because of the increased risk and increased mortality of cardiovascular disease, Type 2 diabetes, many forms of cancer, gallbladder disease, and osteoarthritis. These risks increase with the severity of the obesity. Excess adipose tissue, representing fat storage, ultimately derives from an imbalance between energy intake and energy expenditure. Conversely, undesirable and inadvertent loss of body weight and muscle mass, as seen in aging and cachectic states of chronic diseases such as heart failure and cancer, have serious clinical and functional consequences without satisfactory clinical or behavioral solutions. Innovative engineering technologies could help to address unresolved problems in energy balance, intake, and expenditure. Novel sensors, devices, imaging technologies, nanotechnologies, biomaterials, technologies to detect biochemical markers of energy balance, mathematical modeling, systems biology, and other approaches could be developed, evaluated, and leveraged through multidisciplinary collaborations. Engineers, physical scientists, and mathematicians can work with scientists from other relevant disciplines who possess expertise in obesity and nutrition. Furthermore, the possibility of re-engineering the “built environment” to encourage higher levels of physical activity has been suggested as another promising and important approach to which engineers can contribute (see http://www.obesityresearch.nih.gov). Ultimately, systematic application of the “Engineering Approach” can help in developing the needed technologies and tools to facilitate research and eventually support therapeutic advances and behavioral change. This article summarizes important public health concerns related to disordered energy balance and describes research priorities identified at a recent National Science Foundation-National Institutes of Health workshop. Research funding opportunities are described as posted on the NIH Guide to Grants and Contracts (see http://www.nih.gov/grants/guide). PMID:19888386

  7. Collection Development in a Maritime College Library

    ERIC Educational Resources Information Center

    Fitzpatrick, Jane Brodsky

    2004-01-01

    Collection development in the highly specialized area of the United States merchant marine, which includes navigation, marine engineering, shipping, naval architecture and shipbuilding, and seamanship, requires familiarity with the national and international organizations, governmental and other, which regulate and oversee the marine industry.…

  8. Federal Radionavigation Plan. Vol. IV. Radionavigation Research, Engineering and Development.

    DOT National Transportation Integrated Search

    1982-03-01

    The second edition of the Federal Radionavigation Plan (FRP) has been jointly developed by the U.S. Departments of Defense and Transportation to ensure efficient use of resources and full protection of national interests. The plan sets forth the Fede...

  9. Development of a Multidisciplinary Middle School Mathematics Infusion Model

    ERIC Educational Resources Information Center

    Russo, Maria; Hecht, Deborah; Burghardt, M. David; Hacker, Michael; Saxman, Laura

    2011-01-01

    The National Science Foundation (NSF) funded project "Mathematics, Science, and Technology Partnership" (MSTP) developed a multidisciplinary instructional model for connecting mathematics to science, technology and engineering content areas at the middle school level. Specifically, the model infused mathematics into middle school curriculum…

  10. Concurrent Engineering through Product Data Standards

    DTIC Science & Technology

    1991-05-01

    standards, represents the power of a new industrial revolution . The role of the NIST National PDES testbed, technical leadership and a testing-based foundation for the development of STEP, is described.

  11. Engineered Biological Pacemakers | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Institute on Aging's Cellular Biophysics Section is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize biological pacemakers.

  12. Preparing technicians for engineering materials technology

    NASA Technical Reports Server (NTRS)

    Jacobs, James A.; Metzloff, Carlton H.

    1990-01-01

    A long held principle is that for every engineer and scientist there is a need for ten technicians to maximize the efficiency of the technology team for meeting needs of industry and government. Developing an adequate supply of technicians to meet the requirements of the materials related industry will be a challenge and difficult to accomplish. A variety of agencies feel the need and wish to support development of engineering materials technology programs. In a joint effort among Battelle Laboratories, the Department of Energy (DOE) and Northwest College and University Association for Science (NORCUS), the development of an engineering materials technology program for vocational programs and community colleges for the Pacific Northwest Region was recently completed. This effort has implications for a national model. The model Associate of Applied Science degree in Engineering Materials Technology shown provides a general structure. It purposely has course titles which need delimiting while also including a core of courses necessary to develop cognitive, affective and psychomotor skills with the underlining principles of math, science and technology so students have job entry skills, and so that students can learn about and adapt to evolving technology.

  13. The Application of System Dynamics to the Integration of National Laboratory Research and K-12 Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, James Ignatius; Zounar Harbour, Elda D

    2001-08-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is dedicated to finding solutions to problems related to the environment, energy, economic competitiveness, and national security. In an effort to attract and retain the expertise needed to accomplish these challenges, the INEEL is developing a program of broad educational opportunities that makes continuing education readily available to all laboratory employees, beginning in the K–12 environment and progressing through post-graduate education and beyond. One of the most innovative educational approaches being implemented at the laboratory is the application of STELLA© dynamic learning environments, which facilitate captivating K–12 introductions to the complex energymore » and environmental challenges faced by global societies. These simulations are integrated into lesson plans developed by teachers in collaboration with INEEL scientists and engineers. This approach results in an enjoyable and involved learning experience, and an especially positive introduction to the application of science to emerging problems of great social and environmental consequence.« less

  14. Continuing Engineering Studies Series; Monograph No. 3.

    ERIC Educational Resources Information Center

    American Society for Engineering Education, Washington, DC.

    Interest in continuing engineering studies has been growing within the American Society for Engineering Education as well as among educational institutions, industrial organizations, professional association, and governmental agencies. Feeling a national need for uniformity, in 1968 the National Planning Conference authorized a National Task Force…

  15. 75 FR 9000 - Comment Request: National Science Foundation Proposal/Award Information-Grant Proposal Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... process; Programs to strengthen scientific and engineering research potential; Science and engineering..., authority to support applied research was added to the Organic Act. In 1980, The Science and Engineering... NATIONAL SCIENCE FOUNDATION Comment Request: National Science Foundation Proposal/Award...

  16. Next Generation Scientists, Next Opportunities: EPA's Science To Achieve Results (STAR) Program

    NASA Astrophysics Data System (ADS)

    Jones, M.

    2004-12-01

    Scientific research is one of the most powerful tools we have for understanding and protecting our environment. It provides the foundation for what we know about our planet, how it has changed, and how it could be altered in the future. The National Center for Environmental Research (NCER) in the U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) supports high-quality, extramural research by the nation's leading scientists and engineers to strengthen the basis for decisions about local and national environmental issues. NCER works with academia, state and local governments, other federal agencies, and scientists in EPA to increase human knowledge of how to protect our health and natural resources through its three major programs: · Science to Achieve Results (STAR) Grants · Small Business Innovative Research (SBIR) · Science to Achieve Results (STAR) Fellowships STAR, NCER's primary program, funds research grants and graduate fellowships in environmental science and engineering. Developing the next generation of environmental scientists and engineers is one of NCER's most important objectives. Each year, NCER helps between 80 and 160 students achieve Master's or Ph.D. degrees in environmental science and engineering through its STAR and Greater Research Opportunities (GRO) fellowships. Some of these students have moved on to careers in government while others are now full-time professors and researchers. Still others are working for state environmental agencies or furthering their studies through postdoctoral positions at universities. Since the inception of the NCER program, STAR fellowships (along with grants and SBIR projects) have been awarded in every state in the country. With the help of STAR, current and future scientists and engineers have been able to explore ways to preserve and protect human health and our precious resources.

  17. General Electric TG-100A Turboprop in the Altitude Wind Tunnel

    NASA Image and Video Library

    1946-12-21

    A General Electric TG-100A seen from the rear in the test section of the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory in Cleveland, Ohio. The Altitude Wind Tunnel was used to study almost every model of US turbojet that emerged in the 1940s, as well as some ramjets and turboprops. In the early 1940s the military was interested in an engine that would use less fuel than the early jets but would keep up with them performance-wise. Turboprops seemed like a plausible solution. They could move a large volume of air and thus required less engine speed and less fuel. Researchers at General Electric’s plant in Schenectady, New York worked on the turboprop for several years in the 1930s. They received an army contract in 1941 to design a turboprop engine using an axial-flow compressor. The result was the 14-stage TG-100, the nation's first turboprop aircraft engine. Development of the engine was slow, however, and the military asked NACA Lewis to analyze the engine’s performance. The TG-100A was tested in the Altitude Wind Tunnel and it was determined that the compressors, combustion chamber, and turbine were impervious to changes in altitude. The researchers also established the optimal engine speed and propeller angle at simulated altitudes up to 35,000 feet. Despite these findings, development of the TG-100 was cancelled in May 1947. Twenty-eight of the engines were produced, but they were never incorporated into production aircraft.

  18. Engineering Education in K-12 Schools

    NASA Astrophysics Data System (ADS)

    Spence, Anne

    2013-03-01

    Engineers rely on physicists as well as other scientists and mathematicians to explain the world in which we live. Engineers take this knowledge of the world and use it to create the world that never was. The teaching of physics and other sciences as well as mathematics is critical to maintaining our national workforce. Science and mathematics education are inherently different, however, from engineering education. Engineering educators seek to enable students to develop the habits of mind critical for innovation. Through understanding of the engineering design process and how it differs from the scientific method, students can apply problem and project based learning to solve the challenges facing society today. In this talk, I will discuss the elements critical to a solid K-12 engineering education that integrates science and mathematics to solve challenges throughout the world.

  19. National Patterns of R&D Resources, Funds & Manpower in the United States 1953-1977.

    ERIC Educational Resources Information Center

    Chirichiello, John R.; And Others

    Presented is an overview of the national investment in research and development (R&D) in terms of expenditures and the utilization of R&D scientists and engineers. Four sectors of the economy are included: government, industry, universities and colleges, and other non-profit institutions. The data presented are based primarily on a series…

  20. Sex Differences in Mathematics and Science Achievement: A Meta-Analysis of National Assessment of Educational Progress Assessments

    ERIC Educational Resources Information Center

    Reilly, David; Neumann, David L.; Andrews, Glenda

    2015-01-01

    Gender gaps in the development of mathematical and scientific literacy have important implications for the general public's understanding of scientific issues and for the underrepresentation of women in science, technology, engineering, and math. We subjected data from the National Assessment of Educational Progress to a meta-analysis to examine…

  1. Development and Application of an Integrated Approach toward NASA Airspace Systems Research

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Fong, Robert K.; Abramson, Paul D.; Koenke, Ed

    2008-01-01

    The National Aeronautics and Space Administration's (NASA) Airspace Systems Program is contributing air traffic management research in support of the 2025 Next Generation Air Transportation System (NextGen). Contributions support research and development needs provided by the interagency Joint Planning and Development Office (JPDO). These needs generally call for integrated technical solutions that improve system-level performance and work effectively across multiple domains and planning time horizons. In response, the Airspace Systems Program is pursuing an integrated research approach and has adapted systems engineering best practices for application in a research environment. Systems engineering methods aim to enable researchers to methodically compare different technical approaches, consider system-level performance, and develop compatible solutions. Systems engineering activities are performed iteratively as the research matures. Products of this approach include a demand and needs analysis, system-level descriptions focusing on NASA research contributions, system assessment and design studies, and common systemlevel metrics, scenarios, and assumptions. Results from the first systems engineering iteration include a preliminary demand and needs analysis; a functional modeling tool; and initial system-level metrics, scenario characteristics, and assumptions. Demand and needs analysis results suggest that several advanced concepts can mitigate demand/capacity imbalances for NextGen, but fall short of enabling three-times current-day capacity at the nation s busiest airports and airspace. Current activities are focusing on standardizing metrics, scenarios, and assumptions, conducting system-level performance assessments of integrated research solutions, and exploring key system design interfaces.

  2. The 1993 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N. (Compiler); Young, Deborah B. (Compiler)

    1993-01-01

    Since 1964, the National Aeronautics and Space Administration has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate and exchange ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objectives of the NASA center.

  3. 1994 NASA-HU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Spencer, John H. (Compiler); Young, Deborah B. (Compiler)

    1994-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; (4) To contribute to the research objectives of the NASA center.

  4. National Educators' Workshop: Update 2002 - Standard Experiments in Engineering, Materials Science, and Technology

    NASA Technical Reports Server (NTRS)

    Prior, Edwin J. (Compiler); Jacobs, James A. (Compiler); Chung, W. Richard (Compiler)

    2003-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 2002 held in San Jose, California, October 13-16,2002. This publication provides experiments and demonstrations that can serve as a valuable guide to faculty who are interested in useful activities for their students. The material was the result of years of research aimed at better methods of teaching technical subjects. The experiments developed by faculty, scientists, and engineers throughout the United States and abroad add to the collection from past workshops. They include a blend of experiments on new materials and traditional materials.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regnier, Cindy; Settlemyre, Kevin

    The University of South Carolina (USC), a public university in Columbia, South Carolina, partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to build a new, low-energy educational building. The new Darla Moore School of Business (DMSB) will consume at least 50% less energy than requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE's Commerical Building Partnerships (CBP) program. 4 Lawrence Berkeley National Laboratory (LBNL) provided technical expertise inmore » support of this DOE program.« less

  6. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment - April 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irving, J.S.

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  7. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irving, John S

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  8. 76 FR 4947 - Comment Request: National Science Foundation Proposal & Award Policies and Procedures Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... process; Programs to strengthen scientific and engineering research potential; Science and engineering..., authority to support applied research was added to the Organic Act. In 1980, The Science and Engineering... NATIONAL SCIENCE FOUNDATION Comment Request: National Science Foundation Proposal & Award Policies...

  9. Rehabilitation Engineering Center with Research in Controls and Interfaces for Severely Disabled People. Progress Report for Third Year Grant, September 30, 1980-September 29, 1981.

    ERIC Educational Resources Information Center

    LeBlanc, Maurice A.

    The Rehabilitation Engineering Center (Palo Alto, California) has developed a wide range of patient services which provide assistance to the disabled community in northern California and various research activities which have had impact on the disabled population nationally. The Center has three philosophical goals: to assist each child toward as…

  10. Millennials at Work: The Advice of Great Leaders

    DTIC Science & Technology

    2015-04-01

    Millennials at Work The Advice of Great Leaders Carol Axten Axten has more than 30 years of experience in Defense Department engineering, program...management, and policy development. She has graduate degrees in business , engineering, international relations, and national security resource strategy...million members of the millennial generation will enter the workforce and by 2030 will make up 75 percent of all working professionals. As managers in the

  11. A Case for the Nationwide Inclusion of Engineering in the K-12 Curriculum via Technology Education

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; Haynie, W. James, III

    2010-01-01

    This paper resulted from discussions between a technology teacher educator and a colleague who has served in various education outreach roles with NASA. The basis of the paper was developed by the NASA director and two engineers, one serving with NASA and the other with the National Institute of Aerospace. The technology teacher educator read the…

  12. SANITARY ENGINEERING TECHNOLOGY TRAINING, REPORT ON A PROGRAM DEVELOPED AT THE FAYETTEVILLE TECHNICAL INSTITUTE IN NORTH CAROLINA TO MEET A NATIONAL NEED.

    ERIC Educational Resources Information Center

    BOUDREAU, HOWARD E.; PURCELL, CHARLES A.

    THE FAYETTEVILLE TECHNICAL INSTITUTE IN NORTH CAROLINA ESTABLISHED ITS PROGRAM IN SANITARY ENGINEERING TECHNOLOGY IN 1964, WITH ITS FIRST GRADUATING CLASS PLANNED FOR SPRING 1966. IN COOPERATION WITH THE CURRICULUM LABORATORY AND THE STATE DEPARTMENT OF COMMUNITY COLLEGES, AN ADVISORY COMMITTEE WAS FORMED, MADE UP OF SPECIALISTS IN MANY AREAS OF…

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    The U.S. Army’s Fort Bragg partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  14. Evaluation of Online Teacher and Student Materials for the Framework for K-12 Science Education Science and Engineering Crosscutting Concepts

    ERIC Educational Resources Information Center

    Schwab, Patrick

    2013-01-01

    The National Research Council developed and published the "Framework for K-12 Science Education," a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in science…

  15. Telemetry Attributes Transfer Standard (TMATS) Handbook

    DTIC Science & Technology

    2017-01-01

    information regarding the project’s security classification guide and/or downgrading information should be provided as a comment. (G\\ COM ) G\\SC:U; The...96TH TEST WING 412TH TEST WING ARNOLD ENGINEERING DEVELOPMENT COMPLEX NATIONAL AERONAUTICS AND SPACE ADMINISTRATION This page intentionally...TMATS) Handbook, RCC Document 124-17, January 2017 v Figure 2-16. “Look and Feel” D-Group Engine Temperature Measurement Example XML

  16. The New Reality of International Telecommunications Strategy

    DTIC Science & Technology

    2006-01-01

    telecommunications system has accelerated the spread of knowledge . • The capability of competitive nations to develop “leapfrog technologies” in...Commerce. It is a collaborative meeting of engineers, scientists, and academics interested in the general promotion of technical knowledge and the...popular democracy strikes me as unfounded in Chinese history or culture. 7 • Education of Chinese engineers abroad, who then return with new knowledge

  17. Mobile robotics research at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morse, W.D.

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  18. Multi-University Southeast INIE Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayman Hawari; Nolan Hertel; Mohamed Al-Sheikhly

    2 Project Summary: The Multi-University Southeast INIE Consortium (MUSIC) was established in response to the US Department of Energy’s (DOE) Innovations in Nuclear Infrastructure and Education (INIE) program. MUSIC was established as a consortium composed of academic members and national laboratory partners. The members of MUSIC are the nuclear engineering programs and research reactors of Georgia Institute of Technology (GIT), North Carolina State University (NCSU), University of Maryland (UMD), University of South Carolina (USC), and University of Tennessee (UTK). The University of Florida (UF), and South Carolina State University (SCSU) were added to the MUSIC membership in the second year.more » In addition, to ensure proper coordination between the academic community and the nation’s premier research and development centers in the fields of nuclear science and engineering, MUSIC created strategic partnerships with Oak Ridge National Laboratory (ORNL) including the Spallation Neutron Source (SNS) project and the Joint Institute for Neutron Scattering (JINS), and the National Institute of Standards and Technology (NIST). A partnership was also created with the Armed Forces Radiobiology Research Institute (AFRRI) with the aim of utilizing their reactor in research if funding becomes available. Consequently, there are three university research reactors (URRs) within MUSIC, which are located at NCSU (1-MW PULSTAR), UMD (0.25-MW TRIGA) and UF (0.10-MW Argonaut), and the AFRRI reactor (1-MW TRIGA MARK F). The overall objectives of MUSIC are: a) Demonstrate that University Research Reactors (URR) can be used as modern and innovative instruments of research in the basic and applied sciences, which include applications in fundamental physics, materials science and engineering, nondestructive examination, elemental analysis, and contributions to research in the health and medical sciences, b) Establish a strong technical collaboration between the nuclear engineering faculty and the MUSIC URRs. This will be achieved by involving the faculty in the development of state-of-the-art research facilities at the URRs and subsequently, in the utilization of these facilities, c) Facilitate the use of the URRs by the science and engineering faculty within the individual institutions and by the general community of science and engineering, d) Develop a far-reaching educational component that is capable of addressing the needs of the nuclear science and engineering community. Specifically, the aim of this component will be to perform public outreach activities, contribute to the active recruitment of the next generation of nuclear professionals, strengthen the education of nuclear engineering students, and promote nuclear engineering education for minority students.« less

  19. Firing Room Remote Application Software Development

    NASA Technical Reports Server (NTRS)

    Liu, Kan

    2014-01-01

    The Engineering and Technology Directorate (NE) at National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) is designing a new command and control system for the checkout and launch of Space Launch System (SLS) and future rockets. The purposes of the semester long internship as a remote application software developer include the design, development, integration, and verification of the software and hardware in the firing rooms, in particular with the Mobile Launcher (ML) Launch Accessories subsystem. In addition, a Conversion Fusion project was created to show specific approved checkout and launch engineering data for public-friendly display purposes.

  20. The Federal Ocean Program.

    ERIC Educational Resources Information Center

    Executive Office of the President, Washington, DC.

    Prepared in accordance with the Marine Resources and Engineering Development Act of 1966, this annual report reviews the nation's efforts to comprehend, conserve, and use the sea. Protecting and enhancing the marine environment together with developing and managing marine resources are emphasized. It includes: (1) a comprehensive description of…

  1. National Hydroclimatic Change and Infrastructure Adaptation Assessment: Region-Specific Adaptation Factors

    EPA Science Inventory

    Climate change, land use and socioeconomic developments are principal variables that define the need and scope of adaptive engineering and management to sustain water resource and infrastructure development. As described in IPCC (2007), hydroclimatic changes in the next 30-50 ye...

  2. National Alliance for Advanced Biofuels and Bio-Products Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivares, Jose A.; Baxter, Ivan; Brown, Judith

    2014-09-30

    The main objective of NAABB was to combine science, technology, and engineering expertise from across the nation to break down critical technical barriers to commercialization of algae-based biofuels. The approach was to address technology development across the entire value chain of algal biofuels production, from selection of strains to cultivation, harvesting, extraction, fuel conversion, and agricultural coproduct production. Sustainable practices and financial feasibility assessments ununderscored the approach and drove the technology development.

  3. Development of national standards related to the integrated safety and security of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Voskresenskaya, Elena; Vorona-Slivinskaya, Lubov

    2018-03-01

    The article considers the issues of developing national standards for high-rise construction. The system of standards should provide industrial, operational, economic and terrorist safety of high-rise buildings and facilities. Modern standards of high-rise construction should set the rules for designing engineering systems of high-rise buildings, which will ensure the integrated security of buildings, increase their energy efficiency and reduce the consumption of resources in construction and operation.

  4. Illinois Accelerator Research Center

    DOE PAGES

    Kroc, Thomas K.; Cooper, Charlie A.

    2017-10-26

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  5. Illinois Accelerator Research Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  6. Illinois Accelerator Research Center

    NASA Astrophysics Data System (ADS)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  7. Educating and Inspiring Young People for the Next Generation of Exploration

    NASA Technical Reports Server (NTRS)

    Armstrong, Robert C., Jr.

    2007-01-01

    With the graying of the nation's scientific workforce and the decline in students pursuing science, technological, engineering, and math related-studies, real challenges lie ahead if America is to continue to sustain the Vision for Space Exploration in the foreseeable future. Likewise, challenges exist in the economic arena as the United States seeks to maintain its preeminence among the technological leaders of the world. Currently, less than 6 percent of high school seniors are pursuing engineering degrees, down from 36 percent a decade ago. Today, China produces six times as many engineers as does the United States and Japan, at half our population, develops twice as many engineers. Despite spending more per capita on public education than any other nation, except Switzerland, U.S. students of high school age are failing to compete with many foreign countries. These trends do not bode well for America's future competitiveness in space and other technically driven areas, such as defense.

  8. IPAD project overview

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1980-01-01

    To respond to national needs for improved productivity in engineering design and manufacturing, a NASA supported joint industry/government project is underway denoted Integrated Programs for Aerospace-Vehicle Design (IPAD). The objective is to improve engineering productivity through better use of computer technology. It focuses on development of technology and associated software for integrated company-wide management of engineering information. The project has been underway since 1976 under the guidance of an Industry Technical Advisory Board (ITAB) composed of representatives of major engineering and computer companies and in close collaboration with the Air Force Integrated Computer-Aided Manufacturing (ICAM) program. Results to date on the IPAD project include an in-depth documentation of a representative design process for a large engineering project, the definition and design of computer-aided design software needed to support that process, and the release of prototype software to integrate selected design functions. Ongoing work concentrates on development of prototype software to manage engineering information, and initial software is nearing release.

  9. High temperature dynamic engine seal technology development

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dellacorte, Christopher; Machinchick, Michael; Mutharasan, Rajakkannu; Du, Guang-Wu; Ko, Frank; Sirocky, Paul J.; Miller, Jeffrey H.

    1992-01-01

    Combined cycle ramjet/scramjet engines being designed for advanced hypersonic vehicles, including the National Aerospace Plane (NASP), require innovative high temperature dynamic seals to seal the sliding interfaces of the articulated engine panels. New seals are required that will operate hot (1200 to 2000 F), seal pressures ranging from 0 to 100 psi, remain flexible to accommodate significant sidewall distortions, and resist abrasion over the engine's operational life. This report reviews the recent high temperature durability screening assessments of a new braided rope seal concept, braided of emerging high temperature materials, that shows promise of meeting many of the seal demands of hypersonic engines. The paper presents durability data for: (1) the fundamental seal building blocks, a range of candidate ceramic fiber tows; and for (2) braided rope seal subelements scrubbed under engine simulated sliding, temperature, and preload conditions. Seal material/architecture attributes and limitations are identified through the investigations performed. The paper summarizes the current seal technology development status and presents areas in which future work will be performed.

  10. Annual report 1993 - Science and Engineering Alliance, Inc.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-04-01

    By combining their resources and with support from the US Department of Energy (DOE), Science and Engineering Alliance (SEA) has worked for the past three years to increase the participation of African-Americans in science, engineering, and related fields. At the core of the SEA is a combined population of over 33,000 African-American students, and a combined Historically Black Colleges and Universities research faculty and staff of nearly 400 individuals that specialize in several major areas of science and engineering. SEA views its approach as a constructive, long-term solution to increasing the nation`s technical manpower talent pool. For the faculty andmore » students, SEA develops new collaborative research opportunities, creates new summer research internships and coop programs, strengthens existing programs, provides students participation in technical conferences, workshops, and seminars, and grants scholarships and incentive awards to future scientists and engineers. SEA relies on the collective talents of its members to build partnerships with the Federal government and private industry that help create opportunities for African-American science and engineering students, and promote activities that advance this mission. As the number of science and engineering students graduating from SEA institutions continues to rise, SEA is pleased to report that the program is making a difference.« less

  11. Overview of the 1986 free-piston Stirling activities at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Alger, Donald L.

    1986-01-01

    An overview of the NASA Lewis Research Center's free-piston Stirling engine research is presented, including efforts to improve and advance its design for use in specific space power applications. These efforts are a part of the SP-100 program being conducted to support the Department of Defense (DOD), Department of Energy (DOE) and NASA. Such efforts include: (1) the testing and improvement of 25 kWe Stirling Space Power Demonstrator Engine (SPDE); (2) the preliminary design of 25 kWe single-cylinder Experimental stirling Space Engine (ESSE); and, (3) a study to determine the feasibility of scaling a single-cylinder free-piston Stirling engine/linear alternator to 150 kWe. Other NASA Lewis free-piston Stirling engine activities will be described, directed toward the advancement of general free-piston Stirling engine technology and its application in specific terrestrial applications. One such effort, supported by DOE/Oak Ridge National Laboratory (DRNL), is the development of a free-piston Stirling engine which produces hydraulic power. Finally, a terrestrial solar application involving a conceptual design of a 25 kWe Solar Advanced Stirling Conversion System (ASCS) capable of delivering power to an electric utility grid will be discussed. The latter work is supported by DOE/Sandia National Laboratory (SNLA).

  12. 48 CFR 6.202 - Establishing or maintaining alternative sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... emergency or industrial mobilization; (3) Be in the interest of national defense in establishing or maintaining an essential engineering, research, or development capability to be provided by an educational or...

  13. 48 CFR 6.202 - Establishing or maintaining alternative sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... emergency or industrial mobilization; (3) Be in the interest of national defense in establishing or maintaining an essential engineering, research, or development capability to be provided by an educational or...

  14. 48 CFR 6.202 - Establishing or maintaining alternative sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... emergency or industrial mobilization; (3) Be in the interest of national defense in establishing or maintaining an essential engineering, research, or development capability to be provided by an educational or...

  15. 48 CFR 6.202 - Establishing or maintaining alternative sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... emergency or industrial mobilization; (3) Be in the interest of national defense in establishing or maintaining an essential engineering, research, or development capability to be provided by an educational or...

  16. National Vehicle and Fuel Emissions Laboratory (NVFEL)

    EPA Pesticide Factsheets

    NVFEL is the primary EPA research laboratory used for fuel and emissions testing. The laboratory supports emission standards for motor vehicles, engines, and fuels, as well as the development of automotive technology.

  17. Computational electronics and electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C C

    The Computational Electronics and Electromagnetics thrust area serves as the focal point for Engineering R and D activities for developing computer-based design and analysis tools. Representative applications include design of particle accelerator cells and beamline components; design of transmission line components; engineering analysis and design of high-power (optical and microwave) components; photonics and optoelectronics circuit design; electromagnetic susceptibility analysis; and antenna synthesis. The FY-97 effort focuses on development and validation of (1) accelerator design codes; (2) 3-D massively parallel, time-dependent EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; andmore » (5) development of beam control algorithms coupled to beam transport physics codes. These efforts are in association with technology development in the power conversion, nondestructive evaluation, and microtechnology areas. The efforts complement technology development in Lawrence Livermore National programs.« less

  18. Services supporting collaborative alignment of engineering networks

    NASA Astrophysics Data System (ADS)

    Jansson, Kim; Uoti, Mikko; Karvonen, Iris

    2015-08-01

    Large-scale facilities such as power plants, process factories, ships and communication infrastructures are often engineered and delivered through geographically distributed operations. The competencies required are usually distributed across several contributing organisations. In these complicated projects, it is of key importance that all partners work coherently towards a common goal. VTT and a number of industrial organisations in the marine sector have participated in a national collaborative research programme addressing these needs. The main output of this programme was development of the Innovation and Engineering Maturity Model for Marine-Industry Networks. The recently completed European Union Framework Programme 7 project COIN developed innovative solutions and software services for enterprise collaboration and enterprise interoperability. One area of focus in that work was services for collaborative project management. This article first addresses a number of central underlying research themes and previous research results that have influenced the development work mentioned above. This article presents two approaches for the development of services that support distributed engineering work. Experience from use of the services is analysed, and potential for development is identified. This article concludes with a proposal for consolidation of the two above-mentioned methodologies. This article outlines the characteristics and requirements of future services supporting collaborative alignment of engineering networks.

  19. A Clinical Decision Support Engine Based on a National Medication Repository for the Detection of Potential Duplicate Medications: Design and Evaluation

    PubMed Central

    Yang, Cheng-Yi; Lo, Yu-Sheng; Chen, Ray-Jade

    2018-01-01

    Background A computerized physician order entry (CPOE) system combined with a clinical decision support system can reduce duplication of medications and thus adverse drug reactions. However, without infrastructure that supports patients’ integrated medication history across health care facilities nationwide, duplication of medication can still occur. In Taiwan, the National Health Insurance Administration has implemented a national medication repository and Web-based query system known as the PharmaCloud, which allows physicians to access their patients’ medication records prescribed by different health care facilities across Taiwan. Objective This study aimed to develop a scalable, flexible, and thematic design-based clinical decision support (CDS) engine, which integrates a national medication repository to support CPOE systems in the detection of potential duplication of medication across health care facilities, as well as to analyze its impact on clinical encounters. Methods A CDS engine was developed that can download patients’ up-to-date medication history from the PharmaCloud and support a CPOE system in the detection of potential duplicate medications. When prescribing a medication order using the CPOE system, a physician receives an alert if there is a potential duplicate medication. To investigate the impact of the CDS engine on clinical encounters in outpatient services, a clinical encounter log was created to collect information about time, prescribed drugs, and physicians’ responses to handling the alerts for each encounter. Results The CDS engine was installed in a teaching affiliate hospital, and the clinical encounter log collected information for 3 months, during which a total of 178,300 prescriptions were prescribed in the outpatient departments. In all, 43,844/178,300 (24.59%) patients signed the PharmaCloud consent form allowing their physicians to access their medication history in the PharmaCloud. The rate of duplicate medication was 5.83% (1843/31,614) of prescriptions. When prescribing using the CDS engine, the median encounter time was 4.3 (IQR 2.3-7.3) min, longer than that without using the CDS engine (median 3.6, IQR 2.0-6.3 min). From the physicians’ responses, we found that 42.06% (1908/4536) of the potential duplicate medications were recognized by the physicians and the medication orders were canceled. Conclusions The CDS engine could easily extend functions for detection of adverse drug reactions when more and more electronic health record systems are adopted. Moreover, the CDS engine can retrieve more updated and completed medication histories in the PharmaCloud, so it can have better performance for detection of duplicate medications. Although our CDS engine approach could enhance medication safety, it would make for a longer encounter time. This problem can be mitigated by careful evaluation of adopted solutions for implementation of the CDS engine. The successful key component of a CDS engine is the completeness of the patient’s medication history, thus further research to assess the factors in increasing the PharmaCloud consent rate is required. PMID:29351893

  20. Offering a Geoscience Professional Development Program to Promote Science Education and Provide Hands-on Experiences for K-12 Science Educators

    ERIC Educational Resources Information Center

    Fakayode, Sayo O.; Pollard, David A.; Snipes, Vincent T.; Atkinson, Alvin

    2014-01-01

    Development of an effective strategy for promoting science education and professional development of K-12 science educators is a national priority to strengthen the quality of science, technology, engineering, and mathematics (STEM) education. This article reports the outcomes of a Geoscience Professional Development Program (GPDP) workshop…

  1. 14 CFR 151.7 - Grants of funds: General policies.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Federal-aid Airport Program for airport planning and engineering or for airport development only if the... Development Landing Areas National Defense Program and the Development Civil Landing Areas Program. This requirement does not apply to assurances required under section 602 of the Civil Rights Act of 1964 (42 U.S.C...

  2. 14 CFR 151.7 - Grants of funds: General policies.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Federal-aid Airport Program for airport planning and engineering or for airport development only if the... Development Landing Areas National Defense Program and the Development Civil Landing Areas Program. This requirement does not apply to assurances required under section 602 of the Civil Rights Act of 1964 (42 U.S.C...

  3. 14 CFR 151.7 - Grants of funds: General policies.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Federal-aid Airport Program for airport planning and engineering or for airport development only if the... Development Landing Areas National Defense Program and the Development Civil Landing Areas Program. This requirement does not apply to assurances required under section 602 of the Civil Rights Act of 1964 (42 U.S.C...

  4. 14 CFR 151.7 - Grants of funds: General policies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Federal-aid Airport Program for airport planning and engineering or for airport development only if the... Development Landing Areas National Defense Program and the Development Civil Landing Areas Program. This requirement does not apply to assurances required under section 602 of the Civil Rights Act of 1964 (42 U.S.C...

  5. 14 CFR 151.7 - Grants of funds: General policies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Federal-aid Airport Program for airport planning and engineering or for airport development only if the... Development Landing Areas National Defense Program and the Development Civil Landing Areas Program. This requirement does not apply to assurances required under section 602 of the Civil Rights Act of 1964 (42 U.S.C...

  6. 2012 national state safety engineers and traffic engineers peer-to-peer workshop.

    DOT National Transportation Integrated Search

    2013-11-01

    The Illinois Department of Transportation (IDOT) and the Illinois Center for Transportation (ICT) sponsored and hosted the : 2012 National State Safety Engineers and Traffic Engineers Peer-to-Peer Workshop on November 14 and 15, 2012, at the : Hyatt ...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopper, Calvin Mitchell

    In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safetymore » engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National Laboratory (SNL) hands-on criticality experiments training, and the US DOE National Criticality Experiment Research Center (NCERC) hands-on criticality experiments training that is jointly supported by LLNL and LANL and located at the Nevada National Security Site (NNSS) This paper provides the description of the bases, content, and conduct of the piloted, and future US DOE NCSP Criticality Safety Engineer Training and Education Project.« less

  8. Testimony to the House Science Space and Technology Committee.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, Michael Kenton; Tannenbaum, Benn

    Chairman Smith, Ranking Member Johnson, and distinguished members of the Committee on Science, Space, and Technology, I thank you for the opportunity to testify today on the role of science, engineering, and research at Sandia National Laboratories, one of the nation’s premiere national labs and the nation’s largest Federally Funded Research and Development Center (FFRDC) laboratory. I am Dr. Susan Seestrom, Sandia’s Associate Laboratories Director for Advanced Science & Technology (AST) and Chief Research Officer (CRO). As CRO I am responsible for research strategy, Laboratory Directed Research & Development (LDRD), partnerships strategy, and technology transfer. As director and line managermore » for AST I manage capabilities and mission delivery across a variety of the physical and mathematical sciences and engineering disciplines, such as pulsed power, radiation effects, major environmental testing, high performance computing, and modeling and simulation.« less

  9. The Great Plains Wind Power Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, John

    2014-01-30

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texasmore » Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.« less

  10. Video conferencing made easy

    NASA Technical Reports Server (NTRS)

    Larsen, D. Gail; Schwieder, Paul R.

    1993-01-01

    Network video conferencing is advancing rapidly throughout the nation, and the Idaho National Engineering Laboratory (INEL), a Department of Energy (DOE) facility, is at the forefront of the development. Engineers at INEL/EG&G designed and installed a very unique DOE videoconferencing system, offering many outstanding features, that include true multipoint conferencing, user-friendly design and operation with no full-time operators required, and the potential for cost effective expansion of the system. One area where INEL/EG&G engineers made a significant contribution to video conferencing was in the development of effective, user-friendly, end station driven scheduling software. A PC at each user site is used to schedule conferences via a windows package. This software interface provides information to the users concerning conference availability, scheduling, initiation, and termination. The menus are 'mouse' controlled. Once a conference is scheduled, a workstation at the hubs monitors the network to initiate all scheduled conferences. No active operator participation is required once a user schedules a conference through the local PC; the workstation automatically initiates and terminates the conference as scheduled. As each conference is scheduled, hard copy notification is also printed at each participating site. Video conferencing is the wave of the future. The use of these user-friendly systems will save millions in lost productivity and travel cost throughout the nation. The ease of operation and conference scheduling will play a key role on the extent industry uses this new technology. The INEL/EG&G has developed a prototype scheduling system for both commercial and federal government use.

  11. Video conferencing made easy

    NASA Astrophysics Data System (ADS)

    Larsen, D. Gail; Schwieder, Paul R.

    1993-02-01

    Network video conferencing is advancing rapidly throughout the nation, and the Idaho National Engineering Laboratory (INEL), a Department of Energy (DOE) facility, is at the forefront of the development. Engineers at INEL/EG&G designed and installed a very unique DOE videoconferencing system, offering many outstanding features, that include true multipoint conferencing, user-friendly design and operation with no full-time operators required, and the potential for cost effective expansion of the system. One area where INEL/EG&G engineers made a significant contribution to video conferencing was in the development of effective, user-friendly, end station driven scheduling software. A PC at each user site is used to schedule conferences via a windows package. This software interface provides information to the users concerning conference availability, scheduling, initiation, and termination. The menus are 'mouse' controlled. Once a conference is scheduled, a workstation at the hubs monitors the network to initiate all scheduled conferences. No active operator participation is required once a user schedules a conference through the local PC; the workstation automatically initiates and terminates the conference as scheduled. As each conference is scheduled, hard copy notification is also printed at each participating site. Video conferencing is the wave of the future. The use of these user-friendly systems will save millions in lost productivity and travel cost throughout the nation. The ease of operation and conference scheduling will play a key role on the extent industry uses this new technology. The INEL/EG&G has developed a prototype scheduling system for both commercial and federal government use.

  12. Video conferencing made easy

    NASA Astrophysics Data System (ADS)

    Larsen, D. G.; Schwieder, P. R.

    Network video conferencing is advancing rapidly throughout the nation, and the Idaho National Engineering Laboratory (INEL), a Department of Energy (DOE) facility, is at the forefront of the development. Engineers at INEL/EG&G designed and installed a very unique DOE video conferencing system, offering many outstanding features, that include true multipoint conferencing, user-friendly design and operation with no full-time operators required, and the potential for cost effective expansion of the system. One area where INEL/EG&G engineers made a significant contribution to video conferencing was in the development of effective, user-friendly, end station driven scheduling software. A PC at each user site is used to schedule conferences via a windows package. This software interface provides information to the users concerning conference availability, scheduling, initiation, and termination. The menus are 'mouse' controlled. Once a conference is scheduled, a workstation at the hub monitors the network to initiate all scheduled conferences. No active operator participation is required once a user schedules a conference through the local PC; the workstation automatically initiates and terminates the conference as scheduled. As each conference is scheduled, hard copy notification is also printed at each participating site. Video conferencing is the wave of the future. The use of these user-friendly systems will save millions in lost productivity and travel costs throughout the nation. The ease of operation and conference scheduling will play a key role on the extent industry uses this new technology. The INEL/EG&G has developed a prototype scheduling system for both commercial and federal government use.

  13. Technical note: stress analysis of cellulosic-manure composites

    Treesearch

    Y.H. Ro; J.F. Hunt; R.E. Rowlands

    2017-01-01

    Ability to determine stresses in loaded, perforated cellulosic-manure composites from recorded temperature information was demonstrated. Being able to stress analyze such green materials addresses several societal issues. These include providing engineering members fabricated from materials that are suitable for developed and developing nations, relieving a troubling...

  14. Test Stand at the Rocket Engine Test Facility

    NASA Image and Video Library

    1973-02-21

    The thrust stand in the Rocket Engine Test Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The Rocket Engine Test Facility was constructed in the mid-1950s to expand upon the smaller test cells built a decade before at the Rocket Laboratory. The $2.5-million Rocket Engine Test Facility could test larger hydrogen-fluorine and hydrogen-oxygen rocket thrust chambers with thrust levels up to 20,000 pounds. Test Stand A, seen in this photograph, was designed to fire vertically mounted rocket engines downward. The exhaust passed through an exhaust gas scrubber and muffler before being vented into the atmosphere. Lewis researchers in the early 1970s used the Rocket Engine Test Facility to perform basic research that could be utilized by designers of the Space Shuttle Main Engines. A new electronic ignition system and timer were installed at the facility for these tests. Lewis researchers demonstrated the benefits of ceramic thermal coatings for the engine’s thrust chamber and determined the optimal composite material for the coatings. They compared the thermal-coated thrust chamber to traditional unlined high-temperature thrust chambers. There were more than 17,000 different configurations tested on this stand between 1973 and 1976. The Rocket Engine Test Facility was later designated a National Historic Landmark for its role in the development of liquid hydrogen as a propellant.

  15. Knowledge Discovery, Integration and Communication for Extreme Weather and Flood Resilience Using Artificial Intelligence: Flood AI Alpha

    NASA Astrophysics Data System (ADS)

    Demir, I.; Sermet, M. Y.

    2016-12-01

    Nobody is immune from extreme events or natural hazards that can lead to large-scale consequences for the nation and public. One of the solutions to reduce the impacts of extreme events is to invest in improving resilience with the ability to better prepare, plan, recover, and adapt to disasters. The National Research Council (NRC) report discusses the topic of how to increase resilience to extreme events through a vision of resilient nation in the year 2030. The report highlights the importance of data, information, gaps and knowledge challenges that needs to be addressed, and suggests every individual to access the risk and vulnerability information to make their communities more resilient. This abstracts presents our project on developing a resilience framework for flooding to improve societal preparedness with objectives; (a) develop a generalized ontology for extreme events with primary focus on flooding; (b) develop a knowledge engine with voice recognition, artificial intelligence, natural language processing, and inference engine. The knowledge engine will utilize the flood ontology and concepts to connect user input to relevant knowledge discovery outputs on flooding; (c) develop a data acquisition and processing framework from existing environmental observations, forecast models, and social networks. The system will utilize the framework, capabilities and user base of the Iowa Flood Information System (IFIS) to populate and test the system; (d) develop a communication framework to support user interaction and delivery of information to users. The interaction and delivery channels will include voice and text input via web-based system (e.g. IFIS), agent-based bots (e.g. Microsoft Skype, Facebook Messenger), smartphone and augmented reality applications (e.g. smart assistant), and automated web workflows (e.g. IFTTT, CloudWork) to open the knowledge discovery for flooding to thousands of community extensible web workflows.

  16. Draftsmen Create a Blade Template in the Materials and Stresses Building

    NASA Image and Video Library

    1953-04-21

    Draftsmen in the Materials and Stresses Building at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory create a template for a compressor using actual compressor blades. The Compressor and Turbine Division contained four sections of researchers dedicated to creating better engine components. The Materials and Thermodynamics Division studied the strength, durability, heat transfer characteristics, and physical composition of various materials. The two divisions were important to the research and development of new aircraft engines. The constant battle to increase the engine’s thrust while decreasing its overall weight resulted in additional stress on jet engine components, particularly compressors. As speed and maneuverability were enhanced, the strain on the engines and inlets grew. For decades NACA Lewis researchers continually sought to improve compressor blade design, develop stronger composite materials, and minimize flutter and inlet distortions.

  17. Present Circumstances and its Effect of Participation in NHK Robocon/RoboCup Competition for Engineering Education in College of Technology

    NASA Astrophysics Data System (ADS)

    Sugiura, Touko; Ito, Kazuaki; Watanabe, Masato

    The engineering education through making robots which needs various techniques such as construction of mechanism and electric circuit design are very useful for training of the students' creativity and developing the students' personality. Toyota National College of Technology has participate in NHK Robocon competition for sixteen years and Robocup competition for four years as a part of engineering education getting spectacular results in those competitions. This paper discusses the present circumstances and its effect of participation in Robocon/RoboCup competition for the engineering education, based on the students' questionnaire survey. It is described to participate in NHK Robocon competition is very important for enhancing the students' knowledge and experience. Furthermore, the participation in Robocup competition brings better results for student' personality development as compared with participation in only Robocon competition.

  18. 75 FR 80761 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... March 3, 2010, final national emission standards for hazardous air pollutants for reciprocating internal... engines to allow emergency engines to operate for up to 15 hours per year as part of an emergency demand...

  19. TRADE ALARA for design and operations engineers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-04-01

    This product has been developed by the Training Resources and Data Exchange (TRADE) network for use at Department of Energy (DOE) and DOE contractor facilities. The TRADE network encourages and facilitates the exchange of ideas, techniques, and resources for improving training and development and serves as a forum for the discussion of issues of interest to the DOE community. This TRADE product has been developed for DOE contractor employees who are asked to deliver training to Design and Operations Engineers on the concept of As Low As Reasonably Achievable (ALARA). The ALARA concept is an approach to radiation protection tomore » control or manage exposures as low as social, technical, economic, practical, public policy, and other considerations permit. Worldwide panels of radiation experts have concluded that it is conservative to assume that a proportional relationship exists between radiation dose (exposure) and the biological effects resulting from it. This assumption implies that every dose received, no matter how small, carries some risk: the higher the dose, the higher the risk. The federal government, including agencies such as DOE, subscribes to the concept of ALARA and requires its facilities to subscribe to it as well. This course was developed to introduce engineers to the fundamentals of radiation and contamination reduction that they will use when designing or modifying plant facilities. The course was developed by the ALARA Program group and the Radiation Protection Monitoring/Training Group of Martin Marietta Energy Systems, Inc. at Oak Ridge National Laboratory. We wish to express our appreciation to Emily Copenhaver, Scott Taylor, and Janet Westbrook at Oak Ridge National Laboratory for their willingness to share their labors with the rest of the DOE community and for technical support during the development of the TRADE ALARA for Design and Operations Engineers Course Manual.« less

  20. Large River Sediment Transport and Deposition: An Annotated Bibliography.

    DTIC Science & Technology

    1998-04-01

    Guttenberg, Iowa, to Cairo, Illinois. Maps are developed by using 1:24,000 color infrared aerial photography flown in mid-August 1975. Aquatic, marsh...National Technical Information Service, Springfield, Virginia. Technical Report M-76-6. 56 pp. Sequential color- infrared aerial photos and corresponding...Journal of Waterways, Harbors, and Coastlines (Engineering Division) 102( WW2 ): 189-202. The Potamology Section of the U.S. Army Corps of Engineers

  1. Higher Education Pushes for Energy Education: GVSU Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2013-03-01

    Grand Valley State University (GVSU) partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP).

  2. The Home Depot Upgrades its Corporate Building Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2013-03-01

    The Home Depot partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  3. 1995 Laboratory-Directed Research and Development Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  4. Energy Storage Systems Program Report for FY99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOYES,JOHN D.

    2000-06-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy's Office of Power Technologies. The goal of this program is to develop cost-effective electric energy storage systems for many high-value stationary applications in collaboration with academia and industry. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1999.

  5. Onboard Plasmatron Hydrogen Production for Improved Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

    2005-12-31

    A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperaturemore » electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and biofuels. This included the reduction of NOx and particulate matter emissions from diesel engines using plasmatron reformer generated hydrogen-rich gas, conversion of ethanol and bio-oils into hydrogen rich gas, and the development of new concepts for the use of plasmatron fuel reformers for enablement of HCCI engines.« less

  6. Key Future Engineering Capabilities for Human Capital Retention

    NASA Astrophysics Data System (ADS)

    Sivich, Lorrie

    Projected record retirements of Baby Boomer generation engineers have been predicted to result in significant losses of mission-critical knowledge in space, national security, and future scientific ventures vital to high-technology corporations. No comprehensive review or analysis of engineering capabilities has been performed to identify threats related to the specific loss of mission-critical knowledge posed by the increasing retirement of tenured engineers. Archival data from a single diversified Fortune 500 aerospace manufacturing engineering company's engineering career database were analyzed to ascertain whether relationships linking future engineering capabilities, engineering disciplines, and years of engineering experience could be identified to define critical knowledge transfer models. Chi square, logistic, and linear regression analyses were used to map patterns of discipline-specific, mission-critical knowledge using archival data of engineers' perceptions of engineering capabilities, key developmental experiences, and knowledge learned from their engineering careers. The results from the study were used to document key engineering future capabilities. The results were then used to develop a proposed human capital retention plan to address specific key knowledge gaps of younger engineers as veteran engineers retire. The potential for social change from this study involves informing leaders of aerospace engineering corporations on how to build better quality mentoring or succession plans to fill the void of lost knowledge from retiring engineers. This plan can secure mission-critical knowledge for younger engineers for current and future product development and increased global competitiveness in the technology market.

  7. NASA Researchers Examine a Pratt and Whitney RL-10 Rocket Engine

    NASA Image and Video Library

    1962-04-21

    Lead Test Engineer John Kobak (right) and a technician use an oscilloscope to test the installation of a Pratt and Whitney RL-10 engine in the Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. In 1955 the military asked Pratt and Whitney to develop hydrogen engines specifically for aircraft. The program was canceled in 1958, but Pratt and Whitney decided to use the experience to develop a liquid-hydrogen rocket engine, the RL-10. Two of the 15,000-pound-thrust RL-10 engines were used to power the new Centaur second-stage rocket. Centaur was designed to carry the Surveyor spacecraft on its mission to soft-land on the Moon. Pratt and Whitney ran into problems while testing the RL-10 at their facilities. NASA Headquarters assigned Lewis the responsibility for investigating the RL-10 problems because of the center’s long history of liquid-hydrogen development. Lewis’ Chemical Rocket Division began a series of tests to study the RL-10 at its Propulsion Systems Laboratory in March 1960. The facility contained two test chambers that could study powerful engines in simulated altitude conditions. The first series of RL-10 tests in early 1961 involved gimballing the engine as it fired. Lewis researchers were able to yaw and pitch the engine to simulate its behavior during a real flight.

  8. In situ vitrification application to buried waste: Final report of intermediate field tests at Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callow, R.A.; Weidner, J.R.; Loehr, C.A.

    This report describes two in situ vitrification field tests conducted on simulated buried waste pits during June and July 1990 at the Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to access the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National Engineering Laboratory. In particular, these tests, as part of a treatability study, were designedmore » to provide essential information on the field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste. Test results indicate the process is a feasible technology for application to buried waste. 33 refs., 109 figs., 39 tabs.« less

  9. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia

    2009-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and themore » software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.« less

  10. Novel Threat-risk Index Using Probabilistic Risk Assessment and Human Reliability Analysis - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George A. Beitel

    2004-02-01

    In support of a national need to improve the current state-of-the-art in alerting decision makers to the risk of terrorist attack, a quantitative approach employing scientific and engineering concepts to develop a threat-risk index was undertaken at the Idaho National Engineering and Environmental Laboratory (INEEL). As a result of this effort, a set of models has been successfully integrated into a single comprehensive model known as Quantitative Threat-Risk Index Model (QTRIM), with the capability of computing a quantitative threat-risk index on a system level, as well as for the major components of the system. Such a threat-risk index could providemore » a quantitative variant or basis for either prioritizing security upgrades or updating the current qualitative national color-coded terrorist threat alert.« less

  11. Laboratory directed research and development program FY 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less

  12. The McBride Honors Program in Public Affairs for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Harrison, W. J.; Miller, R. L.; Olds, B. M.; Sacks, A. B.

    2006-12-01

    The McBride Honors Program in Public Affairs at The Colorado School of Mines (CSM), instituted in 1978, is an award-winning exemplar in the liberal arts which provides a select number of CSM engineering students an opportunity to cross the boundaries of their technical expertise in engineering and applied science, and to gain the understanding and appreciation of the contexts in which engineering and applied science and all human systems reside, and specifically to explore and integrate the social, cultural, ethical and environmental implications of their future professional judgments and their roles as citizens in varied and complex settings. The 27 semester-hour program of seminars, courses, and off-campus activities features small seminars; a cross-disciplinary approach; and opportunities for one-on-one faculty tutorials, instruction and practice in oral and written communication, a Washington, D.C. public policy seminar, a practicum experience (internship or foreign study). Circumstances external to the McBride Program itself, which include the development and growth of the field of Public Affairs nationally and the persistence of legacy courses, have created the need to revitalize and refocus the historically cross-departmental Program. A recent curriculum reform effort has achieved a more thoroughly interdisciplinary learning experience to educate engineers and scientists who, as called for in the National Academy of Engineering's The Engineer of 2020 "will assume leadership positions from which they can serve as positive influences in the making of public policy and in the administration of government and industry". In this presentation we showcase best practices in curriculum reform, exemplified by a seminar in National policy analysis where students and faculty have recently investigated federal science funding decisions in support of natural hazards including earthquakes, tsunamis, wildland fires, and pandemic disease.

  13. NASA Engineer Examines the Design of a Regeneratively-Cooled Rocket Engine

    NASA Image and Video Library

    1958-12-21

    An engineer at the National Aeronautics and Space Administration (NASA) Lewis Research Center examines a drawing showing the assembly and details of a 20,000-pound thrust regeneratively cooled rocket engine. The engine was being designed for testing in Lewis’ new Rocket Engine Test Facility, which began operating in the fall of 1957. The facility was the largest high-energy test facility in the country that was capable of handling liquid hydrogen and other liquid chemical fuels. The facility’s use of subscale engines up to 20,000 pounds of thrust permitted a cost-effective method of testing engines under various conditions. The Rocket Engine Test Facility was critical to the development of the technology that led to the use of hydrogen as a rocket fuel and the development of lightweight, regeneratively-cooled, hydrogen-fueled rocket engines. Regeneratively-cooled engines use the cryogenic liquid hydrogen as both the propellant and the coolant to prevent the engine from burning up. The fuel was fed through rows of narrow tubes that surrounded the combustion chamber and nozzle before being ignited inside the combustion chamber. The tubes are visible in the liner sitting on the desk. At the time, Pratt and Whitney was designing a 20,000-pound thrust liquid-hydrogen rocket engine, the RL-10. Two RL-10s would be used to power the Centaur second-stage rocket in the 1960s. The successful development of the Centaur rocket and the upper stages of the Saturn V were largely credited to the work carried out Lewis.

  14. Introduction to NEPA and mitigation for TxDOT PDP : workshop material.

    DOT National Transportation Integrated Search

    2014-10-01

    The purpose of this workshop is to provide transportation planners, engineers, : environmental practitioners, and local officials with an introduction to National : Environemntal policy Act (EPA), mitigation, and the project development : process (PD...

  15. Development of Hybrid Courses Utilizing Modules as an Objective in ATE Projects

    ERIC Educational Resources Information Center

    Payne, James E.; Murphy, Richard M.; Payne, Linda L.

    2017-01-01

    Orangeburg-Calhoun Technical College (OCtech) has been awarded two National Science Foundation Advanced Technological Education (NSF-ATE) grants since 2011 that have the development of module-based hybrid courses in Engineering Technology and Mechatronics as objectives. In this article, the advantages and challenges associated with module-based…

  16. Development of an Interdisciplinary Undergraduate Bioengineering Program at Lehigh University

    ERIC Educational Resources Information Center

    Herz, Lori; Russo, M. Jean; Ou-Yang, H. Daniel; El-Aasser, Mohamed; Jagota, Anand; Tatic-Lucic, Svetlana; Ochs, John

    2011-01-01

    The undergraduate Bioengineering Program at Lehigh University was established as part of the university's Bioscience and Biotechnology Initiative with support from the National Science Foundation through a grant from its Division of Engineering Education and Centers (EEC). The objective here is to describe the program development and…

  17. Commission on Policy Development in Public Education Annual Report.

    ERIC Educational Resources Information Center

    National Alliance of Black School Educators, Inc., Washington, DC.

    This annual report of the National Alliance of Black School Educators (NABSE) Commission on Policy Development in Public Education presents six position papers by NABSE and guest authors. The papers, and their authors, are (1) "The Quest for Excellence/Pupil Self-Esteem" (Carole Hardeman); (2) "Engineering Education for Minority…

  18. Improving Conceptual Understanding and Representation Skills through Excel-Based Modeling

    ERIC Educational Resources Information Center

    Malone, Kathy L.; Schunn, Christian D.; Schuchardt, Anita M.

    2018-01-01

    The National Research Council framework for science education and the Next Generation Science Standards have developed a need for additional research and development of curricula that is both technologically model-based and includes engineering practices. This is especially the case for biology education. This paper describes a quasi-experimental…

  19. Working with Families to Inspire Children's Persistence in STEM

    ERIC Educational Resources Information Center

    Kumar, Rashmi

    2016-01-01

    Policymakers and educators emphasize science, technology, engineering, and mathematics (STEM) instruction as key to individuals' and nations' future economic prosperity. It can be considered to be of particular value to students in developing countries and for disadvantaged students in developed countries. As families play a critical role in a…

  20. Common Guidelines for Education Research and Development

    ERIC Educational Resources Information Center

    Institute of Education Sciences, 2013

    2013-01-01

    In January 2011, a Joint Committee of representatives from the U.S. Department of Education (ED) and the U.S. National Science Foundation (NSF) began work to establish cross-agency guidelines for improving the quality, coherence, and pace of knowledge development in science, technology, engineering and mathematics (STEM) education. Although the…

  1. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1992

    NASA Technical Reports Server (NTRS)

    Spencer, John H. (Compiler)

    1992-01-01

    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives of the program are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA center.

  2. Fostering Innovation in the Manufacturing Sector through R&D Consortia

    NASA Astrophysics Data System (ADS)

    McKittrick, M.

    2017-12-01

    In the U.S. Department of Energy, the Advanced Manufacturing Office (AMO) has the mission to catalyze research, development and adoption of energy-related advanced manufacturing technologies and practices to drive U.S. economic competitiveness and energy productivity. Within strategic areas of manufacturing, AMO brings together manufacturers, suppliers, institutes of higher education, national laboratories, and state and local governments in public-private R&D consortia to accelerate technology innovation. One such R&D Consortia is the Critical Materials Institute (CMI), established in 2013 and led by Ames Laboratory. CMI is a sustained, multidisciplinary effort to develop solutions across the materials lifecycle of materials essential to clean energy technologies and manufacturing, as well as reduce the impact of supply chain disruptions associated with these valuable resources. By bringing together scientists and engineers from diverse disciplines, CMI is addressing challenges in critical materials, including mineral processing, manufacture, substitution, efficient use, and end-of-life recycling; integrating scientific research, engineering innovation, manufacturing and process improvements; and developing a holistic solution to the materials challenges facing the nation. It includes expertise from four national laboratories, seven universities, and ten industry partners to minimize materials criticality as an impediment to the commercialization of clean energy technologies.

  3. Advanced degrees in astronautical engineering for the space industry

    NASA Astrophysics Data System (ADS)

    Gruntman, Mike

    2014-10-01

    Ten years ago in the summer of 2004, the University of Southern California established a new unique academic unit focused on space engineering. Initially known as the Astronautics and Space Technology Division, the unit operated from day one as an independent academic department, successfully introduced the full set of degrees in Astronautical Engineering, and was formally renamed the Department of Astronautical Engineering in 2010. The largest component of Department's educational programs has been and continues to be its flagship Master of Science program, specifically focused on meeting engineering workforce development needs of the space industry and government space research and development centers. The program successfully grew from a specialization in astronautics developed in mid-1990s and expanded into a large nationally-visible program. In addition to on-campus full-time students, it reaches many working students on-line through distance education. This article reviews the origins of the Master's degree program and its current status and accomplishments; outlines the program structure, academic focus, student composition, and enrollment dynamics; and discusses lessons learned and future challenges.

  4. A Model for Assessment of Dynamic Interaction Between Magnetically Levitated Vehicles and Their Supporting Guideways

    DTIC Science & Technology

    1994-07-01

    Public Release; Distribution Is Unlimited DTXC QtTAu r V94 8 Prepared for Headquarters, U.S. Army Corps of Engineers National Maglev Initiative and U.S...for public release; distribution is unlimited Prepared for Headquarters, U.S. Army Corps of Engineers Washington, DC 20314-1000 National Maglev ...Corps of Engineers, National Maglev Initiative, and U.S. Army Engineer Division, Huntsville. 73 p. : ill. ; 28 cm. - (Technical report ; SL-94-1 5

  5. Design, development, and evaluation of a second generation interactive Simulator for Engineering Ethics Education (SEEE2).

    PubMed

    Alfred, Michael; Chung, Christopher A

    2012-12-01

    This paper describes a second generation Simulator for Engineering Ethics Education. Details describing the first generation activities of this overall effort are published in Chung and Alfred (Sci Eng Ethics 15:189-199, 2009). The second generation research effort represents a major development in the interactive simulator educational approach. As with the first generation effort, the simulator places students in first person perspective scenarios involving different types of ethical situations. Students must still gather data, assess the situation, and make decisions. The approach still requires students to develop their own ability to identify and respond to ethical engineering situations. However, were as, the generation one effort involved the use of a dogmatic model based on National Society of Professional Engineers' Code of Ethics, the new generation two model is based on a mathematical model of the actual experiences of engineers involved in ethical situations. This approach also allows the use of feedback in the form of decision effectiveness and professional career impact. Statistical comparisons indicate a 59 percent increase in overall knowledge and a 19 percent improvement in teaching effectiveness over an Internet Engineering Ethics resource based approach.

  6. A National Study of Mathematics Requirements for Scientists and Engineers. Final Report.

    ERIC Educational Resources Information Center

    Miller, G. H.

    The National Study of Mathematics Requirements for Scientists and Engineers is concerned with establishing the mathematics experiences desired for the many specializations in science and engineering, such as microbiology, organic chemistry, electrical engineering, and molecular physics. An instruction and course content sheet and a course…

  7. 75 FR 62591 - Committee on Equal Opportunities in Science and Engineering (CEOSE); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering (CEOSE... Equal Opportunities in Science and Engineering (1173). Dates/Time: October 25, 2010, 8:30 a.m.-5:30 p.m... the National Science Foundation (NSF) concerning broadening participation in science and engineering...

  8. 78 FR 60918 - Committee on Equal Opportunities in Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering; Notice of... Engineering (1173). Dates/Time: October 30, 2013, 10:00 a.m.-3:30 p.m. Place: National Science Foundation... advice and recommendations concerning broadening participation in science and engineering. Agenda...

  9. 32 CFR 536.11 - Chief of Engineers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Chief of Engineers. 536.11 Section 536.11 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY CLAIMS AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.11 Chief of Engineers. The Chief of Engineers...

  10. 32 CFR 536.11 - Chief of Engineers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Chief of Engineers. 536.11 Section 536.11 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY CLAIMS AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.11 Chief of Engineers. The Chief of Engineers...

  11. 32 CFR 536.11 - Chief of Engineers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Chief of Engineers. 536.11 Section 536.11 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY CLAIMS AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.11 Chief of Engineers. The Chief of Engineers...

  12. 32 CFR 536.11 - Chief of Engineers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Chief of Engineers. 536.11 Section 536.11 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY CLAIMS AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.11 Chief of Engineers. The Chief of Engineers...

  13. 32 CFR 536.11 - Chief of Engineers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Chief of Engineers. 536.11 Section 536.11 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY CLAIMS AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES The Army Claims System § 536.11 Chief of Engineers. The Chief of Engineers...

  14. Development and Testing of Carbon-Carbon Nozzle Extensions for Upper Stage Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Gradl, Paul R.; Greene, Sandra E.

    2017-01-01

    Carbon-carbon (C-C) composite nozzle extensions are of interest for use on a variety of launch vehicle upper stage engines and in-space propulsion systems. The C-C nozzle extension technology and test capabilities being developed are intended to support National Aeronautics and Space Administration (NASA) and Department of Defense (DOD) requirements, as well as those of the broader Commercial Space industry. For NASA, C-C nozzle extension technology development primarily supports the NASA Space Launch System (SLS) and NASA's Commercial Space partners. Marshall Space Flight Center (MSFC) efforts are aimed at both (a) further developing the technology and databases needed to enable the use of composite nozzle extensions on cryogenic upper stage engines, and (b) developing and demonstrating low-cost capabilities for testing and qualifying composite nozzle extensions. Recent, on-going, and potential future work supporting NASA, DOD, and Commercial Space needs will be discussed. Information to be presented will include (a) recent and on-going mechanical, thermal, and hot-fire testing, as well as (b) potential future efforts to further develop and qualify domestic C-C nozzle extension solutions for the various upper stage engines under development.

  15. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along withmore » summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.« less

  16. A Review on Liquid Spray Models for Diesel Engine Computational Analysis

    DTIC Science & Technology

    2014-05-01

    developed by Los Alamos National Laboratories, USA (15); OpenFoam developed by OpenCFD, U.K.; and AVBP developed by Centre Européen de Recherche et de...Validating Non-Reacting Spray Cases With KIVA-3V and OpenFoam , SAE technical paper 2013-01-1595, 2013. 17. Senecal, P.; Pomraning, E.; Richards, K

  17. Project Robot: A Software Simulation for Systems Engineering Education

    ERIC Educational Resources Information Center

    Arnold, Ross D.; Wade, Jon P.

    2017-01-01

    The U.S. defense industry spends billions of dollars each year developing defense systems to keep the nation and allies secure. However, the failure rate of system development is notoriously high. Even when development efforts do succeed, they often do so with cost overruns and compromises in system performance. As a result, large amounts of money…

  18. Biotechnology and the Third World: Panacea or Recipe for Social Disaster? Academy for Educational Development 25th Anniversary Series.

    ERIC Educational Resources Information Center

    Morehouse, Ward

    Asserting that developmental growth is easier to attain in developing countries than social change, this paper assesses the prospective impact of biotechnology on the developing nations. Biotechnology is defined as the integrated use of biochemistry, microbiology, and chemical engineering to achieve the industrial processes of fermentation, enzyme…

  19. 23 CFR 650.309 - Qualifications of personnel.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS... Safety Inspector under the National Society of Professional Engineer's program for National Certification in Engineering Technologies (NICET) and have successfully completed an FHWA approved comprehensive...

  20. 23 CFR 650.309 - Qualifications of personnel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS... Safety Inspector under the National Society of Professional Engineer's program for National Certification in Engineering Technologies (NICET) and have successfully completed an FHWA approved comprehensive...

  1. 23 CFR 650.309 - Qualifications of personnel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS... Safety Inspector under the National Society of Professional Engineer's program for National Certification in Engineering Technologies (NICET) and have successfully completed an FHWA approved comprehensive...

  2. Sandia technology engineering and science accomplishments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-01

    Sandia is a DOE multiprogram engineering and science laboratory with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. We have major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. Our principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. Selected unclassified technical activities and accomplishments are reported here. Topics include advanced manufacturing technologies, intelligent machines, computationalmore » simulation, sensors and instrumentation, information management, energy and environment, and weapons technology.« less

  3. Requirements model for an e-Health awareness portal

    NASA Astrophysics Data System (ADS)

    Hussain, Azham; Mkpojiogu, Emmanuel O. C.; Nawi, Mohd Nasrun M.

    2016-08-01

    Requirements engineering is at the heart and foundation of software engineering process. Poor quality requirements inevitably lead to poor quality software solutions. Also, poor requirement modeling is tantamount to designing a poor quality product. So, quality assured requirements development collaborates fine with usable products in giving the software product the needed quality it demands. In the light of the foregoing, the requirements for an e-Ebola Awareness Portal were modeled with a good attention given to these software engineering concerns. The requirements for the e-Health Awareness Portal are modeled as a contribution to the fight against Ebola and helps in the fulfillment of the United Nation's Millennium Development Goal No. 6. In this study requirements were modeled using UML 2.0 modeling technique.

  4. National meeting to review IPAD status and goals. [Integrated Programs for Aerospace-vehicle Design

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1980-01-01

    A joint NASA/industry project called Integrated Programs for Aerospace-vehicle Design (IPAD) is described, which has the goal of raising aerospace-industry productivity through the application of computers to integrate company-wide management of engineering data. Basically a general-purpose interactive computing system developed to support engineering design processes, the IPAD design is composed of three major software components: the executive, data management, and geometry and graphics software. Results of IPAD activities include a comprehensive description of a future representative aerospace vehicle design process and its interface to manufacturing, and requirements and preliminary design of a future IPAD software system to integrate engineering activities of an aerospace company having several products under simultaneous development.

  5. Highly Integrated Quality Assurance – An Empirical Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake Kirkham; Amy Powell; Lucas Rich

    2011-02-01

    Highly Integrated Quality Assurance – An Empirical Case Drake Kirkham1, Amy Powell2, Lucas Rich3 1Quality Manager, Radioisotope Power Systems (RPS) Program, Idaho National Laboratory, P.O. Box 1625 M/S 6122, Idaho Falls, ID 83415-6122 2Quality Engineer, RPS Program, Idaho National Laboratory 3Quality Engineer, RPS Program, Idaho National Laboratory Contact: Voice: (208) 533-7550 Email: Drake.Kirkham@inl.gov Abstract. The Radioisotope Power Systems Program of the Idaho National Laboratory makes an empirical case for a highly integrated Quality Assurance function pertaining to the preparation, assembly, testing, storage and transportation of 238Pu fueled radioisotope thermoelectric generators. Case data represents multiple campaigns including the Pluto/New Horizons mission,more » the Mars Science Laboratory mission in progress, and other related projects. Traditional Quality Assurance models would attempt to reduce cost by minimizing the role of dedicated Quality Assurance personnel in favor of either functional tasking or peer-based implementations. Highly integrated Quality Assurance adds value by placing trained quality inspectors on the production floor side-by-side with nuclear facility operators to enhance team dynamics, reduce inspection wait time, and provide for immediate, independent feedback. Value is also added by maintaining dedicated Quality Engineers to provide for rapid identification and resolution of corrective action, enhanced and expedited supply chain interfaces, improved bonded storage capabilities, and technical resources for requirements management including data package development and Certificates of Inspection. A broad examination of cost-benefit indicates highly integrated Quality Assurance can reduce cost through the mitigation of risk and reducing administrative burden thereby allowing engineers to be engineers, nuclear operators to be nuclear operators, and the cross-functional team to operate more efficiently. Applicability of this case extends to any high-value, long-term project where traceability and accountability are determining factors.« less

  6. Estimated Emissions from the Prime-Movers of Unconventional Natural Gas Well Development Using Recently Collected In-Use Data in the United States.

    PubMed

    Johnson, Derek; Heltzel, Robert; Nix, Andrew; Darzi, Mahdi; Oliver, Dakota

    2018-05-01

    Natural gas from shale plays dominates new production and growth. However, unconventional well development is an energy intensive process. The prime movers, which include over-the-road service trucks, horizontal drilling rigs, and hydraulic fracturing pumps, are predominately powered by diesel engines that impact air quality. Instead of relying on certification data or outdated emission factors, this model uses new in-use emissions and activity data combined with historical literature to develop a national emissions inventory. For the diesel only case, hydraulic fracturing engines produced the most NO x emissions, while drilling engines produced the most CO emissions, and truck engines produced the most THC emissions. By implementing dual-fuel and dedicated natural gas engines, total fuel energy consumed, CO 2 , CO, THC, and CH 4 emissions would increase, while NO x emissions, diesel fuel consumption, and fuel costs would decrease. Dedicated natural gas engines offered significant reductions in NO x emissions. Additional scenarios examined extreme cases of full fleet conversions. While deep market penetrations could reduce fuel costs, both technologies could significantly increase CH 4 emissions. While this model is based on a small sample size of engine configurations, data were collected during real in-use activity and is representative of real world activity.

  7. 100-Lb(f) LO2/LCH4 Reaction Control Engine Technology Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Veith, Eric M.; Hurlbert, Eric A.; Jimenez, Rafael; Smith, Timothy D.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass.

  8. 100-LBF LO2/LCH4 - Reaction Control Engine Technology Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Veith, Eric M.; Hurlbert, Eric A.; Jimenez, Rafael; Smith, Timothy D.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass.

  9. Laboratory Directed Research and Development Program FY 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview ofmore » the research and development program, program management, program funding, and Fiscal Year 1997 projects.« less

  11. Model building techniques for analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walther, Howard P.; McDaniel, Karen Lynn; Keener, Donald

    2009-09-01

    The practice of mechanical engineering for product development has evolved into a complex activity that requires a team of specialists for success. Sandia National Laboratories (SNL) has product engineers, mechanical designers, design engineers, manufacturing engineers, mechanical analysts and experimentalists, qualification engineers, and others that contribute through product realization teams to develop new mechanical hardware. The goal of SNL's Design Group is to change product development by enabling design teams to collaborate within a virtual model-based environment whereby analysis is used to guide design decisions. Computer-aided design (CAD) models using PTC's Pro/ENGINEER software tools are heavily relied upon in the productmore » definition stage of parts and assemblies at SNL. The three-dimensional CAD solid model acts as the design solid model that is filled with all of the detailed design definition needed to manufacture the parts. Analysis is an important part of the product development process. The CAD design solid model (DSM) is the foundation for the creation of the analysis solid model (ASM). Creating an ASM from the DSM currently is a time-consuming effort; the turnaround time for results of a design needs to be decreased to have an impact on the overall product development. This effort can be decreased immensely through simple Pro/ENGINEER modeling techniques that summarize to the method features are created in a part model. This document contains recommended modeling techniques that increase the efficiency of the creation of the ASM from the DSM.« less

  12. Engineering Research and Development and Technology thrust area report FY92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, theymore » are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pendse, Hemant P.

    Maine and its industries identified more efficient utilization of biomass as a critical economic development issue. In Phase I of this implementation project, a research team was assembled, research equipment was implemented and expertise was demonstrated in pyrolysis, hydrodeoxygenation of pyrolysis oils, catalyst synthesis and characterization, and reaction engineering. Phase II built upon the infrastructure to innovate reaction pathways and process engineering, and integrate new approaches for fuels and chemical production within pulp and paper and other industries within the state. This research cluster brought together chemists, engineers, physicists and students from the University of Maine, Bates College, and Bowdoinmore » College. The project developed collaborations with Oak Ridge National Laboratory and Brookhaven National Laboratory. The specific research projects within this proposal were of critical interest to the DoE - in particular the biomass program within EERE and the catalysis/chemical transformations program within BES. Scientific and Technical Merit highlights of this project included: (1) synthesis and physical characterization of novel size-selective catalyst/supports using engineered mesoporous (1-10 nm diameter pores) materials, (2) advances in fundamental knowledge of novel support/ metal catalyst systems tailored for pyrolysis oil upgrading, (3) a microcalorimetric sensing technique, (4) improved methods for pyrolysis oil characterization, (5) production and characterization of woody biomass-derived pyrolysis oils, (6) development of two new patented bio oil pathways: thermal deoxygenation (TDO) and formate assisted pyrolysis (FASP), and (7) technoeconomics of pyrolysis of Maine forest biomass. This research cluster has provided fundamental knowledge to enable and assess pathways to thermally convert biomass to hydrocarbon fuels and chemicals.« less

  14. Advances in engineering nanometrology at the National Physical Laboratory

    NASA Astrophysics Data System (ADS)

    Leach, Richard K.; Claverley, James; Giusca, Claudiu; Jones, Christopher W.; Nimishakavi, Lakshmi; Sun, Wenjuan; Tedaldi, Matthew; Yacoot, Andrew

    2012-07-01

    The National Physical Laboratory, UK, has been active in the field of engineering nanometrology for a number of years. A summary of progress over the last five years is presented in this paper and the following research projects discussed in detail. (1) Development of an infrastructure for the calibration of instruments for measuring areal surface topography, along with the development of areal software measurement standards. This work comprises the use of the optical transfer function and a technique for the simultaneous measurement of topography and the phase change on reflection, allowing composite materials to be measured. (2) Development of a vibrating micro-CMM probe with isotropic probing reaction and the ability to operate in a non-contact mode. (3) A review of x-ray computed tomography and its use in dimensional metrology. (4) The further development of a metrology infrastructure for atomic force microscopy and the development of an instrument for the measurement of the effect of the probe-surface interaction. (5) Traceable measurement of displacement using optical and x-ray interferometry to picometre accuracy. (6) Development of an infrastructure for low-force metrology, including the development of appropriate transfer artefacts.

  15. Assessing the Environmental Safety of Engineered Nanomaterials

    EPA Science Inventory

    Nanotechnology research in the United States is coordinated under the National Nano-technology Initiative with the goal of fostering development and implementation of nanomaterials and products that incorporate them and assuring that they are environmentally safe. The environmen...

  16. Development of Automated Testing Tools for Traffic Control Signals and Devices

    DOT National Transportation Integrated Search

    2012-01-30

    Through a coordinated effort among the electrical engineering research team of the Florida State University (FSU) and key Florida Department of Transportation (FDOT) personnel, an automated testing system for National Electrical Manufacturers Associa...

  17. 33 CFR 236.4 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RESOURCE POLICIES AND AUTHORITIES: CORPS OF ENGINEERS PARTICIPATION IN IMPROVEMENTS FOR ENVIRONMENTAL... land resources has gradually broadened over the past century. Starting with the development of..., water quality, fish and wildlife and low-flow augmentation. Laws, executive orders, and national...

  18. 33 CFR 236.4 - Background.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... RESOURCE POLICIES AND AUTHORITIES: CORPS OF ENGINEERS PARTICIPATION IN IMPROVEMENTS FOR ENVIRONMENTAL... land resources has gradually broadened over the past century. Starting with the development of..., water quality, fish and wildlife and low-flow augmentation. Laws, executive orders, and national...

  19. 33 CFR 236.4 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... RESOURCE POLICIES AND AUTHORITIES: CORPS OF ENGINEERS PARTICIPATION IN IMPROVEMENTS FOR ENVIRONMENTAL... land resources has gradually broadened over the past century. Starting with the development of..., water quality, fish and wildlife and low-flow augmentation. Laws, executive orders, and national...

  20. National Geothermal Academy. Geo-Heat Center Quarterly Bulletin, Vol. 31 No. 2 (Complete Bulletin). A Quarterly Progress and Development Report on the Direct Utilization of Geothermal Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Tonya; Maddi, Phillip

    2012-08-01

    The National Geothermal Academy (NGA) is an intensive 8-week overview of the different aspects involved in developing a geothermal project, hosted at University of Nevada, Reno. The class of 2012 was the second graduating class from the academy and included 21 students from nine states, as well as Saudi Arabia, Dominica, India, Trinidad, Mexico. The class consisted of people from a wide range of scholastic abilities from students pursuing a Bachelor’s or Master’s degrees, to entrepreneurs and professionals looking to improve their knowledge in the geothermal field. Students earned 6 credits, either undergraduate or graduate, in engineering or geology. Overall,more » the students of the NGA, although having diverse backgrounds in engineering, geology, finance, and other sciences, came together with a common passion to learn more about geothermal.« less

  1. HCCI Combustion Engines Final Report CRADA No. TC02032.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aceves, S.; Lyford-Pike, E.

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and Cummins Engine Company (Cwnmins), to advance the state of the art on HomogeneousCharge Compression-Ignition (HCCI) engines, resulting in a clean, high-efficiency alternative to diesel engines.

  2. 76 FR 4138 - Committee on Equal Opportunities in Science and Engineering (CEOSE); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering (CEOSE... Opportunities in Science and Engineering (1173). Dates/Time: February 8, 2011, 9 a.m.-5:30 p.m. February 9, 2011... National Science Foundation (NSF) concerning broadening participation in science and engineering. Agenda...

  3. 78 FR 13384 - Advisory Committee for International Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for International Science and Engineering; Notice... Science and Engineering (25104). Date/Time: March 14, 2013 9:30 a.m.-5:00 p.m. March 15, 2013 8:30 a.m.-12... of International Science and Engineering, National Science Foundation, 4201 Wilson Blvd., Arlington...

  4. Developing International Research Collaborations among Postdoctoral Fellows: Key Findings from the Evaluation of NSF's International Research Fellowship Program. GS-10F-0086K

    ERIC Educational Resources Information Center

    Martinez, Alina; Epstein, Carter; Parsad, Amanda; Whittaker, Karla

    2012-01-01

    Over a decade ago, the National Science Board (NSB) highlighted the importance of international collaboration in its call for increased government commitment to promoting international science and engineering (S&E) research and education. The NSB also identified the National Science Foundation (NSF) as having an important leadership role in…

  5. Spectroscopic and radiation-resistant properties of Er,Pr:GYSGG laser crystal operated at 2.79 μm

    NASA Astrophysics Data System (ADS)

    Zhao, Xu-Yao; Sun, Dun-Lu; Luo, Jian-Qiao; Zhang, Hui-Li; Fang, Zhong-Qing; Quan, Cong; Li, Xiu-Li; Cheng, Mao-Jie; Zhang, Qing-Li; Yin, Shao-Tang

    2017-06-01

    Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB1102301), the National Natural Science Foundation of China (Grant Nos. 51272254, 61405206, and 51502292), and the Open Research Fund of the State Key Laboratory of Pulsed Power Laser Technology, Electronic Engineering Institute, China (Grant No. SKL2015KF01).

  6. Status report on the activities of National Balloon Facility at Hyderabad

    NASA Astrophysics Data System (ADS)

    Shankarnarayan, Sreenivasan; S, Sreenivasan; Shankarnarayan, Sreenivasan; Manchanda, R. K.; Subba Rao Jonnalagadda, Venkata; Buduru, Suneelkumar

    National balloon facility at Hyderabad has been mandated to provide launch support for Indian and International scientific balloon experiments and also perform the necessary research and development in the design and fabrication of plastic balloons. In the last 4 years, since our last report, NBF has launched many successful balloon flights for the astronomy payloads and a large number of high altitude GPS Sonde flights at different places in the country. We have also continued our efforts on qualification of raw materials for zero-failure performance of our balloons and major focus on upgrading of various facilities and load-line instrumentation for launching from remote sites. We foresee a surge of balloon based experimental activity for in-situ measurements in atmospheric sciences and concept validation payloads for future space based instruments. A new centre for research in Environmental Sciences and Payload Engineering (ESPE) has also been set up at the National Balloon Facility campus to develop and conduct research in various aspects of Environmental sciences in collaboration with other groups, with a specific goal to identify, development of advanced technologies leading to an improved understanding of the earth system. The Payload Engineering facility is geared to the Design and Fabrication of Micro and Nano Satellites and will act as Inter -University Centre for payload fabrication. In this paper we present an overview of the present and planned activities in scientific ballooning at National Balloon Facility Hyderabad.

  7. Optimizing Performance of a Microwave Salinity Mapper: STARRS L-Band Radiometer Enhancements

    DTIC Science & Technology

    2007-05-04

    Contribution Number NRL/JA/ setts at Amherst, along with Quadrant Engineering Inc. 7330-05-5313. (now ProSensing Inc.) and funding from the National...Thus, sampling schemes development of STARRS by Quadrant Engineering can be optimized for particular applications. STARRS began under Naval Research...performance to be optimized. As we show later, a draw- ture, computed as the mean temperature from four back of this approach not found in analog

  8. Natural Resources Research Program. An Assessment of the National Economic Effects of the U.S. Army Corps of Engineers Recreation Program

    DTIC Science & Technology

    1994-06-01

    Propst Michigan State University Qý-94-25006IH~IIUAlAE ’TIC Z-"’,". JAUG 7 IE 94 Approved For Public Release; Distribution Is Unlimited ’MC QtYU"y fI’jc...Vicksburg, MS. V 1 Introduction The U.S. Army Corps of Engineers (CE) manages over 460 water resomrce development projects throughout the United

  9. Afghan National Engineer Brigade: Despite U.S. Training Efforts, the Brigade is Incapable of Operating Independently

    DTIC Science & Technology

    2016-01-01

    carpentry, masonry , and the operation of heavy equipment. Plans called for the NEB to receive at least $29 million in engineering equipment and...JTF Sapper, NMCB 25, and NMCB 28, had responsibility for training the NEB in such areas as plumbing, electrical work, carpentry, masonry , and...measurement tool consisted of five possible ratings: fully capable, capable, partially capable, developing, and established. USFOR-A used these

  10. The Need for Understanding and Engaging the Patient as Consumer of Products Developed by Neural Engineering.

    PubMed

    French, Jennifer; Lujan, J Luis; Bardot, Dawn; Graczyk, Emily Lauren; Hess-Dunning, Allison; Triolo, Ronald J; Moynahan, Megan; Tan, Winny; Zbrzeski, Adeline

    2018-05-21

    Neural Engineering is a discipline at the intersection of neuroscience, engineering, and clinical care. Recent major efforts by government and industry aimed at bringing forth personalized therapies, increasing the potential of the neural engineering industry for future growth, eg. the National Institutes of Health (NIH) Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative and Stimulating Peripheral Activity to Relieve Conditions (SPARC) Common Fund Program, the Defense Advanced Research Projects Agency (DARPA) Electrical Prescriptions (ElectRx) and Systems-Based Neurotechnology for Emerging Therapies (SUBNETS) Programs, and the GlaxoSmithKline Bioelectric Medicines Initiative. However, the incremental development of neural technologies can easily become a case of advancing technology for its own sake. This mindset can lead to a solution looking for a problem, without taking into consideration the patient/consumer point of view. Creative Commons Attribution license.

  11. Application of information technology to the National Launch System

    NASA Technical Reports Server (NTRS)

    Mauldin, W. T.; Smith, Carolyn L.; Monk, Jan C.; Davis, Steve; Smith, Marty E.

    1992-01-01

    The approach to the development of the Unified Information System (UNIS) to provide in a timely manner all the information required to manage, design, manufacture, integrate, test, launch, operate, and support the Advanced Launch System (NLS), as well as the current and planned capabilities are described. STESYM, the Space Transportation Main Engine (STME) development program, is comprised of a collection of data models which can be grouped into two primary models: the Engine Infrastructure Model (ENGIM) and the Engine Integrated Cast Model (ENGICOM). ENGIM is an end-to-end model of the infrastructure needed to perform the fabrication, assembly, and testing of the STEM program and its components. Together, UNIS and STESYM are to provide NLS managers and engineers with the ability to access various types and files of data quickly and use that data to assess the capabilities of the STEM program.

  12. Image Engine: an object-oriented multimedia database for storing, retrieving and sharing medical images and text.

    PubMed Central

    Lowe, H. J.

    1993-01-01

    This paper describes Image Engine, an object-oriented, microcomputer-based, multimedia database designed to facilitate the storage and retrieval of digitized biomedical still images, video, and text using inexpensive desktop computers. The current prototype runs on Apple Macintosh computers and allows network database access via peer to peer file sharing protocols. Image Engine supports both free text and controlled vocabulary indexing of multimedia objects. The latter is implemented using the TView thesaurus model developed by the author. The current prototype of Image Engine uses the National Library of Medicine's Medical Subject Headings (MeSH) vocabulary (with UMLS Meta-1 extensions) as its indexing thesaurus. PMID:8130596

  13. Aeronautical engineering: A continuing bibliography with indexes (supplement 294)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This issue of Aeronautical Engineering - A Continuing Bibliography with Indexes lists 590 reports, journal articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspect of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number.

  14. Consequence-driven cyber-informed engineering (CCE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Sarah G.; St Michel, Curtis; Smith, Robert

    The Idaho National Lab (INL) is leading a high-impact, national security-level initiative to reprioritize the way the nation looks at high-consequence risk within the industrial control systems (ICS) environment of the country’s most critical infrastructure and other national assets. The Consequence-driven Cyber-informed Engineering (CCE) effort provides both private and public organizations with the steps required to examine their own environments for high-impact events/risks; identify implementation of key devices and components that facilitate that risk; illuminate specific, plausible cyber attack paths to manipulate these devices; and develop concrete mitigations, protections, and tripwires to address the high-consequence risk. The ultimate goal ofmore » the CCE effort is to help organizations take the steps necessary to thwart cyber attacks from even top-tier, highly resourced adversaries that would result in a catastrophic physical effect. CCE participants are encouraged to work collaboratively with each other and with key U.S. Government (USG) contributors to establish a coalition, maximizing the positive effect of lessons-learned and further contributing to the protection of critical infrastructure and other national assets.« less

  15. A Clinical Decision Support Engine Based on a National Medication Repository for the Detection of Potential Duplicate Medications: Design and Evaluation.

    PubMed

    Yang, Cheng-Yi; Lo, Yu-Sheng; Chen, Ray-Jade; Liu, Chien-Tsai

    2018-01-19

    A computerized physician order entry (CPOE) system combined with a clinical decision support system can reduce duplication of medications and thus adverse drug reactions. However, without infrastructure that supports patients' integrated medication history across health care facilities nationwide, duplication of medication can still occur. In Taiwan, the National Health Insurance Administration has implemented a national medication repository and Web-based query system known as the PharmaCloud, which allows physicians to access their patients' medication records prescribed by different health care facilities across Taiwan. This study aimed to develop a scalable, flexible, and thematic design-based clinical decision support (CDS) engine, which integrates a national medication repository to support CPOE systems in the detection of potential duplication of medication across health care facilities, as well as to analyze its impact on clinical encounters. A CDS engine was developed that can download patients' up-to-date medication history from the PharmaCloud and support a CPOE system in the detection of potential duplicate medications. When prescribing a medication order using the CPOE system, a physician receives an alert if there is a potential duplicate medication. To investigate the impact of the CDS engine on clinical encounters in outpatient services, a clinical encounter log was created to collect information about time, prescribed drugs, and physicians' responses to handling the alerts for each encounter. The CDS engine was installed in a teaching affiliate hospital, and the clinical encounter log collected information for 3 months, during which a total of 178,300 prescriptions were prescribed in the outpatient departments. In all, 43,844/178,300 (24.59%) patients signed the PharmaCloud consent form allowing their physicians to access their medication history in the PharmaCloud. The rate of duplicate medication was 5.83% (1843/31,614) of prescriptions. When prescribing using the CDS engine, the median encounter time was 4.3 (IQR 2.3-7.3) min, longer than that without using the CDS engine (median 3.6, IQR 2.0-6.3 min). From the physicians' responses, we found that 42.06% (1908/4536) of the potential duplicate medications were recognized by the physicians and the medication orders were canceled. The CDS engine could easily extend functions for detection of adverse drug reactions when more and more electronic health record systems are adopted. Moreover, the CDS engine can retrieve more updated and completed medication histories in the PharmaCloud, so it can have better performance for detection of duplicate medications. Although our CDS engine approach could enhance medication safety, it would make for a longer encounter time. This problem can be mitigated by careful evaluation of adopted solutions for implementation of the CDS engine. The successful key component of a CDS engine is the completeness of the patient's medication history, thus further research to assess the factors in increasing the PharmaCloud consent rate is required. ©Cheng-Yi Yang, Yu-Sheng Lo, Ray-Jade Chen, Chien-Tsai Liu. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 19.01.2018.

  16. Promoting peace in engineering education: modifying the ABET criteria.

    PubMed

    Catalano, George D

    2006-04-01

    Modifications to the ABET Criterion 3 are suggested in support of the effort to promote the pursuit of peace in engineering education. The proposed modifications are the result of integrating the United Nations' sponsored "Integral Model of Education for Peace, Democracy and Sustainable Development" into the modern engineering curriculum. The key elements of the model are being at peace with oneself, being at peace with others, and being at peace with the planet. In addition to proposing modifications, specific classroom activities are described and implemented, and students' reactions and the effectiveness of the various exercises are discussed.

  17. Advanced engineering environment collaboration project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weaponsmore » project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.« less

  18. Design and performance evaluations of a LO2/methane reaction control engine

    NASA Astrophysics Data System (ADS)

    Johnson, Aaron

    Liquid oxygen (LOX) and liquid methane (LCH4) are a propellant combination viewed as a potential enabling technology for spacecraft propulsion. Reasons why LOX/LCH4 is being used as an alternative propellant source include: it is less toxic than other propellants, it has the possibility to be harvested on extraterrestrial soil, LCH4 has a higher energy density than liquid hydrogen (LH2; commonly used on vehicle main engines), and LOX/LCH4 has comparable performance to other well-known propellant combinations. Through the continued partnership between the National Aeronautics and Space Administration (NASA) and the University of Texas at El Paso (UTEP) a LOX/LCH4 reaction control engine (RCE) was developed and researched. The RCE was developed for the purpose of being integrated into two UTEP LOX/LCH4 vehicles, Janus and Daedalus, and was designed based on previous engines tested both at NASA and the center for space exploration and technology research (cSETR) lab. This report details the design process and manufacturing of the engine, cold flow studies evaluating injector design, and preliminary hot fire tests to give insight into engine performance.

  19. The Art and Science of Systems Engineering

    NASA Technical Reports Server (NTRS)

    Singer, Christopher E.

    2009-01-01

    The National Aeronautics and Space Administration (NASA) was established in 1958, and its Marshall Space Flight Center was founded in 1960, as space-related work was transferred from the Army Ballistic Missile Agency at Redstone Arsenal, where Marshall is located. With this heritage, Marshall contributes almost 50 years of systems engineering experience with human-rated launch vehicles and scientific spacecraft to fulfill NASA's mission exploration and discovery. These complex, highly specialized systems have provided vital platforms for expanding the knowledge base about Earth, the solar system, and cosmos; developing new technologies that also benefit life on Earth; and opening new frontiers for America's strategic space goals. From Mercury and Gemini, to Apollo and the Space Shuttle, Marshall's systems engineering expertise is an unsurpassed foundational competency for NASA and the nation. Current assignments comprise managing Space Shuttle Propulsion systems; developing environmental control and life support systems and coordinating science operations on the International Space Station; and a number of exploration-related responsibilities. These include managing and performing science missions, such as the Lunar Crater Observation and Sensing Satellite and the Lunar Reconnaissance Orbiter slated to launch for the Moon in April 2009, to developing the Ares I crew launch vehicle upper stage and integrating the vehicle stack in house, as well as designing the Ares V cargo launch vehicle and contributing to the development of the Altair Lunar Lander and an International Lunar Network with communications nodes and other infrastructure.

  20. Multiscale Multiphysics Developments for Accident Tolerant Fuel Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, K. A.; Hales, J. D.; Yu, J.

    2015-09-01

    U 3Si 2 and iron-chromium-aluminum (Fe-Cr-Al) alloys are two of many proposed accident-tolerant fuel concepts for the fuel and cladding, respectively. The behavior of these materials under normal operating and accident reactor conditions is not well known. As part of the Department of Energy’s Accident Tolerant Fuel High Impact Problem program significant work has been conducted to investigate the U 3Si 2 and FeCrAl behavior under reactor conditions. This report presents the multiscale and multiphysics effort completed in fiscal year 2015. The report is split into four major categories including Density Functional Theory Developments, Molecular Dynamics Developments, Mesoscale Developments, andmore » Engineering Scale Developments. The work shown here is a compilation of a collaborative effort between Idaho National Laboratory, Los Alamos National Laboratory, Argonne National Laboratory and Anatech Corp.« less

  1. Student attraction to engineering through flexibility and breadth in the curriculum

    NASA Astrophysics Data System (ADS)

    Alpay, E.

    2013-03-01

    Several European universities provide entry to general engineering studies prior to degree specialisation. The potential advantages of such entry include the provision of a broader foundation in engineering fundamentals, the option for students to defer specialisation until a greater awareness of the different engineering disciplines and the preparation of students for a more versatile career. In this paper, the attractiveness of general engineering (specifically in the first year of study) is explored through a national (UK) survey on pre-university students. Attention is given to gauging student enthusiasm for flexibility in engineering specialisation, combined degree options and exposure to other non-technical courses. The findings indicate that a general engineering programme is highly attractive to students who are currently considering an engineering degree. The programme is also attractive to some students who had previously not considered engineering. For both sets of students, the desire for education on broader topics is indicated, specifically in areas of leadership, teamwork and business skills, and more generally self-awareness and personal development.

  2. Engineering education in 21st century

    NASA Astrophysics Data System (ADS)

    Alam, Firoz; Sarkar, Rashid; La Brooy, Roger; Chowdhury, Harun

    2016-07-01

    The internationalization of engineering curricula and engineering practices has begun in Europe, Anglosphere (English speaking) nations and Asian emerging economies through the Bologna Process and International Engineering Alliance (Washington Accord). Both the Bologna Process and the Washington Accord have introduced standardized outcome based engineering competencies and frameworks for the attainment of these competencies by restructuring existing and undertaking some new measures for an intelligent adaptation of the engineering curriculum and pedagogy. Thus graduates with such standardized outcome based curriculum can move freely as professional engineers with mutual recognition within member nations. Despite having similar or near similar curriculum, Bangladeshi engineering graduates currently cannot get mutual recognition in nations of Washington Accord and the Bologna Process due to the non-compliance of outcome based curriculum and pedagogy. This paper emphasizes the steps that are required to undertake by the engineering educational institutions and the professional body in Bangladesh to make the engineering competencies, curriculum and pedagogy compliant to the global engineering alliance. Achieving such compliance will usher in a new era for the global mobility and global engagement by Bangladesh trained engineering graduates.

  3. Propulsion Progress for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Lyles, Garry M.; Priskos, Alex S.; Kynard, Michael H.; Lavoie, Anthony R.

    2012-01-01

    Leaders from NASA's Space Launch System (SLS) will participate in a panel discussing the progress made on the program's propulsion systems. The SLS will be the nation's next human-rated heavy-lift vehicle for new missions beyond Earth's orbit. With a first launch slated for 2017, the SLS Program is turning plans into progress, with the initial rocket being built in the U.S.A. today, engaging the aerospace workforce and infrastructure. Starting with an overview of the SLS mission and programmatic status, the discussion will then delve into progress on each of the primary SLS propulsion elements, including the boosters, core stage engines, upper stage engines, and stage hardware. Included will be a discussion of the 5-segment solid rocket motors (ATK), which are derived from Space Shuttle and Ares developments, as well as the RS-25 core stage engines from the Space Shuttle inventory and the J- 2X upper stage engine now in testing (Pratt and Whitney Rocketdyne). The panel will respond to audience questions about this important national capability for human and scientific space exploration missions.

  4. Engineering Student's Ethical Awareness and Behavior: A New Motivational Model.

    PubMed

    Bairaktarova, Diana; Woodcock, Anna

    2017-08-01

    Professional communities are experiencing scandals involving unethical and illegal practices daily. Yet it should not take a national major structure failure to highlight the importance of ethical awareness and behavior, or the need for the development and practice of ethical behavior in engineering students. Development of ethical behavior skills in future engineers is a key competency for engineering schools as ethical behavior is a part of the professional identity and practice of engineers. While engineering educators have somewhat established instructional methods to teach engineering ethics, they still rely heavily on teaching ethical awareness, and pay little attention to how well ethical awareness predicts ethical behavior. However the ability to exercise ethical judgement does not mean that students are ethically educated or likely to behave in an ethical manner. This paper argues measuring ethical judgment is insufficient for evaluating the teaching of engineering ethics, because ethical awareness has not been demonstrated to translate into ethical behavior. The focus of this paper is to propose a model that correlates with both, ethical awareness and ethical behavior. This model integrates the theory of planned behavior, person and thing orientation, and spheres of control. Applying this model will allow educators to build confidence and trust in their students' ability to build a professional identity and be prepared for the engineering profession and practice.

  5. 40 CFR 80.1651 - Product transfer document requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., “This gasoline is for use in vehicles, engines, or equipment under an EPA-approved national security exemption only.” (2) For gasoline with a research, development, or testing exemption under § 80.1656, “This gasoline is for research, development, or testing purposes only.” (3) For gasoline for use in American...

  6. Public Sector Benefits From Aerospace Research and Development

    ERIC Educational Resources Information Center

    Hamilton, Jeffrey T.

    1973-01-01

    Many benefits from aerospace research have occurred: research on quiet aircraft engines, worldwide news coverage, contributions to the national economy, development of reliable fluid amplifiers and logic systems, attempts to control airport congestion, a low speed air sensor for use on a pulmonary flow meter and even as a flow meter in a large…

  7. Trace Research and Development Center: Report of Progress, 1987-94.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Trace Center.

    This report documents activities and projects from 1987 to 1994 of the Trace Research and Development Center (Wisconsin), which addresses the communication needs of nonvocal severely disabled children and adults. During this period the Center also served as a national Rehabilitation Engineering Research Center on the topic of Access to Computers…

  8. Building Links between Early Socioeconomic Status, Cognitive Ability, and Math and Science Achievement

    ERIC Educational Resources Information Center

    Blums, Angela; Belsky, Jay; Grimm, Kevin; Chen, Zhe

    2017-01-01

    The present study examined whether and how socioeconomic status (SES) predicts school achievement in science, technology, engineering, and math (STEM) using structural equation modeling and data from the National Institute of Child Health and Human Development Study of Child Care and Youth Development. The present inquiry addresses gaps in…

  9. Tailoring Systems Engineering Processes in a Conceptual Design Environment: A Case Study at NASA Marshall Spaceflight Center's ACO

    NASA Technical Reports Server (NTRS)

    Mulqueen, John; Maples, C. Dauphne; Fabisinski, Leo, III

    2012-01-01

    This paper provides an overview of Systems Engineering as it is applied in a conceptual design space systems department at the National Aeronautics and Space Administration (NASA) Marshall Spaceflight Center (MSFC) Advanced Concepts Office (ACO). Engineering work performed in the NASA MFSC's ACO is targeted toward the Exploratory Research and Concepts Development life cycle stages, as defined in the International Council on Systems Engineering (INCOSE) System Engineering Handbook. This paper addresses three ACO Systems Engineering tools that correspond to three INCOSE Technical Processes: Stakeholder Requirements Definition, Requirements Analysis, and Integration, as well as one Project Process Risk Management. These processes are used to facilitate, streamline, and manage systems engineering processes tailored for the earliest two life cycle stages, which is the environment in which ACO engineers work. The role of systems engineers and systems engineering as performed in ACO is explored in this paper. The need for tailoring Systems Engineering processes, tools, and products in the ever-changing engineering services ACO provides to its customers is addressed.

  10. Spaceport Command and Control System Automated Testing

    NASA Technical Reports Server (NTRS)

    Stein, Meriel

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administrations (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires high quality testing that will properly measure the capabilities of the system. Automating the test procedures would save the project time and money. Therefore, the Electrical Engineering Division at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.

  11. Spaceport Command and Control System Automation Testing

    NASA Technical Reports Server (NTRS)

    Hwang, Andrew

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administrations (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires high quality testing that will properly measure the capabilities of the system. Automating the test procedures would save the project time and money. Therefore, the Electrical Engineering Division at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.

  12. Suggested approach for establishing a rehabilitation engineering information service for the state of California

    NASA Technical Reports Server (NTRS)

    Christy, L. F.; Kelton-Fogg, G.; Lizak, R.; Vahlkamp, C.

    1978-01-01

    An ever expanding body of rehabilitation engineering technology is developing in this country, but it rarely reaches the people for whom it is intended. The increasing concern of state and federal departments of rehabilitation for this technology lag was the stimulus for a series of problem-solving workshops held in California during 1977. As a result of the workshops, the recommendation emerged that the California Department of Rehabilitation take the lead in the development of a coordinated delivery system that would eventually serve the entire state and be a model for similar systems across the nation.

  13. NASP - Waveriders in a hypersonic sky.

    NASA Astrophysics Data System (ADS)

    Baker, David

    1993-01-01

    A development history is presented for the hydrogen-fueled, airbreathing (scramjet) engine-propelled National Aerospace Plane (NASP), which will be able to cruise endoatmospherically at hypersopnic speeds or rise exoatmospherically, by converting to rocket power, to LEO. Attention is given to the technology-development and configuration-validation services that the X-30 project will render the far larger NASP vehicle; the configurational and propulsion system factors in question encompass the use of 'slush' hydrogen fuel, the integration of engine inlets into the aircraft forebody and exhaust nozzles into the afterbody, and the conversion from turbojet or rocket propulsion to scramjet mode and back.

  14. Development of naval diesel engine duty cycles for air exhaust emission environmental impact analysis. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markle, S.P.

    1994-05-01

    A strategy for testing naval diesel engines for exhaust emissions was developed. A survey of existing international and national standard diesel engine duty cycles was conducted. All were found to be inadequate for testing and certification of engine exhaust emissions from naval diesel powered ships. Naval ship data covering 11,500 hours of engine operation of four U.S. Navy LSD 41 Class amphibious ships was analyzed to develop a 27 point class operating profile. A procedure combining ship hull form characteristics, ship propulsion plant parameters, and ship operating profile was detailed to derive an 11-Mode duty cycle representative for testing LSDmore » 41 Class propulsion diesel engines. A similar procedure was followed for ship service diesel engines. Comparisons with industry accepted duty cycles were conducted using exhaust emission contour plots for the Colt-Pielstick PC-4B diesel engines. Results showed the 11-Mode LSD 41 Class Duty Cycle best predicted ship propulsion engine emissions compared to the 27 point operating profile propeller curve. The procedure was applied to T-AO 187 Class with similar results. The application of civilian industry standards to measure naval diesel ship propulsion engine exhaust emissions was found to be inadequate. Engine exhaust flow chemistry post turbocharger was investigated using the SANDIA Lab computer tool CHEMKIN. Results showed oxidation and reduction reactions within exhaust gases are quenched in the exhaust stack. Since the exhaust stream in the stack is unreactive, emission sampling may be performed where most convenient. A proposed emission measurement scheme for LSD 41 Class ships was presented.« less

  15. An overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Smith, T.H.; Chew, E.W.; Hedahl, T.G.; Mann, L.J.; Pointer, T.F.; Wiersma, G.B.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the U.S. Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological Environmental Sciences Laboratory (RESL), and the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG&G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities radiation is integrated with the overall INEL Site surveillance program. Air, warer, soil, biota, and environmental radiation are monitored or sampled routinely at INEL. Results to date indicate very small or no impacts from INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL.

  16. Engineering in-plane silicon nanowire springs for highly stretchable electronics

    NASA Astrophysics Data System (ADS)

    Xue, Zhaoguo; Dong, Taige; Zhu, Zhimin; Zhao, Yaolong; Sun, Ying; Yu, Linwei

    2018-01-01

    Crystalline silicon (c-Si) is unambiguously the most important semiconductor that underpins the development of modern microelectronics and optoelectronics, though the rigid and brittle nature of bulk c-Si makes it difficult to implement directly for stretchable applications. Fortunately, the one-dimensional (1D) geometry, or the line-shape, of Si nanowire (SiNW) can be engineered into elastic springs, which indicates an exciting opportunity to fabricate highly stretchable 1D c-Si channels. The implementation of such line-shape-engineering strategy demands both a tiny diameter of the SiNWs, in order to accommodate the strains under large stretching, and a precise growth location, orientation and path control to facilitate device integration. In this review, we will first introduce the recent progresses of an in-plane self-assembly growth of SiNW springs, via a new in-plane solid-liquid-solid (IPSLS) mechanism, where mono-like but elastic SiNW springs are produced by surface-running metal droplets that absorb amorphous Si thin film as precursor. Then, the critical growth control and engineering parameters, the mechanical properties of the SiNW springs and the prospects of developing c-Si based stretchable electronics, will be addressed. This efficient line-shape-engineering strategy of SiNW springs, accomplished via a low temperature batch-manufacturing, holds a strong promise to extend the legend of modern Si technology into the emerging stretchable electronic applications, where the high carrier mobility, excellent stability and established doping and passivation controls of c-Si can be well inherited. Project supported by the National Basic Research 973 Program (No. 2014CB921101), the National Natural Science Foundation of China (No. 61674075), the National Key Research and Development Program of China (No. 2017YFA0205003), the Jiangsu Excellent Young Scholar Program (No. BK20160020), the Scientific and Technological Support Program in Jiangsu Province (No. BE2014147-2), the Jiangsu Shuangchuang Team's Personal Program and the Fundamental Research Funds for the Central Universities, and the China Scholarship Council and the Postgraduate Program of Jiangsu Province (No. KYZZ160052).

  17. 46 CFR 11.522 - Service requirements for national endorsement as assistant engineer (limited) of steam, motor...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... assistant engineer (limited) of steam, motor, and/or gas turbine-propelled vessels. 11.522 Section 11.522... requirements for national endorsement as assistant engineer (limited) of steam, motor, and/or gas turbine... engineer (limited) of steam, motor, and/or gas turbine-propelled vessels is 3 years of service in the...

  18. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Visitors to the USA Science and Engineering Festival look over the many exhibits, Saturday, Oct. 23, 2010, at Freedom Plaza in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  19. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Participants look through telescopes to observe the Sun during the USA Science and Engineering Festival, Saturday, Oct. 23, 2010, at Freedom Plaza in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  20. Overview of the Integrated Programs for Aerospace Vehicle Design (IPAD) project

    NASA Technical Reports Server (NTRS)

    Venneri, S. L.

    1983-01-01

    To respond to national needs for improved productivity in engineering design and manufacturing, a NASA supported joint industry/government project is underway denoted Integrated Programs for Aerospace Vehicle Design (IPAD). The objective is to improve engineering productivity through better use of computer technology. It focuses on development of data base management technology and associated software for integrated company wide management of engineering and manufacturing information. Results to date on the IPAD project include an in depth documentation of a representative design process for a large engineering project, the definition and design of computer aided design software needed to support that process, and the release of prototype software to manage engineering information. This paper provides an overview of the IPAD project and summarizes progress to date and future plans.

  1. Costa - Introduction to 2015 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, James E.

    In parallel with Sandia National Laboratories having two major locations (NM and CA), along with a number of smaller facilities across the nation, so too is the distribution of scientific, engineering and computing resources. As a part of Sandia’s Institutional Computing Program, CA site-based Sandia computer scientists and engineers have been providing mission and research staff with local CA resident expertise on computing options while also focusing on two growing high performance computing research problems. The first is how to increase system resilience to failure, as machines grow larger, more complex and heterogeneous. The second is how to ensure thatmore » computer hardware and configurations are optimized for specialized data analytical mission needs within the overall Sandia computing environment, including the HPC subenvironment. All of these activities support the larger Sandia effort in accelerating development and integration of high performance computing into national security missions. Sandia continues to both promote national R&D objectives, including the recent Presidential Executive Order establishing the National Strategic Computing Initiative and work to ensure that the full range of computing services and capabilities are available for all mission responsibilities, from national security to energy to homeland defense.« less

  2. 78 FR 9071 - Comment Request: National Science Foundation Proposal/Award Information-Grant Proposal Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ... research potential; Science and engineering education programs at all levels and in all the various fields... science and engineering and enhancing the potential for research and education to contribute to the Nation... NATIONAL SCIENCE FOUNDATION Comment Request: National Science Foundation Proposal/Award...

  3. Affordable Development and Demonstration of a Small Nuclear Thermal Rocket (NTR) Engine and Stage: How Small Is Big Enough?

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Sefcik, Robert J.; Fittje, James E.; McCurdy, David R.; Qualls, Arthur L.; Schnitzler, Bruce G.; Werner, James E.; Weitzberg, Abraham; Joyner, Claude R.

    2016-01-01

    The Nuclear Thermal Rocket (NTR) derives its energy from fission of uranium-235 atoms contained within fuel elements that comprise the engine's reactor core. It generates high thrust and has a specific impulse potential of approximately 900 specific impulse - a 100 percent increase over today's best chemical rockets. The Nuclear Thermal Propulsion (NTP) project, funded by NASA's Advanced Exploration Systems (AES) program, includes five key task activities: (1) Recapture, demonstration, and validation of heritage graphite composite (GC) fuel (selected as the Lead Fuel option); (2) Engine Conceptual Design; (3) Operating Requirements Definition; (4) Identification of Affordable Options for Ground Testing; and (5) Formulation of an Affordable Development Strategy. During fiscal year (FY) 2014, a preliminary Design Development Test and Evaluation (DDT&E) plan and schedule for NTP development was outlined by the NASA Glenn Research Center (GRC), Department of Energy (DOE) and industry that involved significant system-level demonstration projects that included Ground Technology Demonstration (GTD) tests at the Nevada National Security Site (NNSS), followed by a Flight Technology Demonstration (FTD) mission. To reduce cost for the GTD tests and FTD mission, small NTR engines, in either the 7.5 or 16.5 kilopound-force thrust class, were considered. Both engine options used GC fuel and a common fuel element (FE) design. The small approximately 7.5 kilopound-force criticality-limited engine produces approximately157 thermal megawatts and its core is configured with parallel rows of hexagonal-shaped FEs and tie tubes (TTs) with a FE to TT ratio of approximately 1:1. The larger approximately 16.5 kilopound-force Small Nuclear Rocket Engine (SNRE), developed by Los Alamos National Laboratory (LANL) at the end of the Rover program, produces approximately 367 thermal megawatts and has a FE to TT ratio of approximately 2:1. Although both engines use a common 35-inch (approximately 89-centimeters) -long FE, the SNRE's larger diameter core contains approximately 300 more FEs needed to produce an additional 210 thermal megawatts of power. To reduce the cost of the FTD mission, a simple one-burn lunar flyby mission was considered to reduce the liquid hydrogen (LH2) propellant loading, the stage size and complexity. Use of existing and flight proven liquid rocket and stage hardware (e.g., from the RL10B-2 engine and Delta Cryogenic Second Stage) was also maximized to further aid affordability. This paper examines the pros and cons of using these two small engine options, including their potential to support future human exploration missions to the Moon, near Earth asteroids (NEA), and Mars, and recommends a preferred size. It also provides a preliminary assessment of the key activities, development options, and schedule required to affordably build, ground test and fly a small NTR engine and stage within a 10-year timeframe.

  4. Compression Ignition Engines – Revolutionary Technology That has Civilized Frontiers all Over the Globe from the Industrial Revolution into the Twenty-First Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciatti, Stephen A.

    The history, present and future of the compression ignition engine is a fascinating story that spans over 100 years, from the time of Rudolf Diesel to the highly regulated and computerized engines of the 21st Century. The development of these engines provided inexpensive, reliable and high power density machines to allow transportation, construction and farming to be more productive with less human effort than in any previous period of human history. The concept that fuels could be consumed efficiently and effectively with only the ignition of pressurized and heated air was a significant departure from the previous coal-burning architecture ofmore » the 1800s. Today, the compression ignition engine is undergoing yet another revolution. The equipment that provides transport, builds roads and infrastructure, and harvests the food we eat needs to meet more stringent requirements than ever before. How successfully 21st Century engineers are able to make compression ignition engine technology meet these demands will be of major influence in assisting developing nations (with over 50% of the world’s population) achieve the economic and environmental goals they seek.« less

  5. Monitoring Agents for Assisting NASA Engineers with Shuttle Ground Processing

    NASA Technical Reports Server (NTRS)

    Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Danil A.; Smith, Kevin E.; Boeloeni, Ladislau

    2005-01-01

    The Spaceport Processing Systems Branch at NASA Kennedy Space Center has designed, developed, and deployed a rule-based agent to monitor the Space Shuttle's ground processing telemetry stream. The NASA Engineering Shuttle Telemetry Agent increases situational awareness for system and hardware engineers during ground processing of the Shuttle's subsystems. The agent provides autonomous monitoring of the telemetry stream and automatically alerts system engineers when user defined conditions are satisfied. Efficiency and safety are improved through increased automation. Sandia National Labs' Java Expert System Shell is employed as the agent's rule engine. The shell's predicate logic lends itself well to capturing the heuristics and specifying the engineering rules within this domain. The declarative paradigm of the rule-based agent yields a highly modular and scalable design spanning multiple subsystems of the Shuttle. Several hundred monitoring rules have been written thus far with corresponding notifications sent to Shuttle engineers. This chapter discusses the rule-based telemetry agent used for Space Shuttle ground processing. We present the problem domain along with design and development considerations such as information modeling, knowledge capture, and the deployment of the product. We also present ongoing work with other condition monitoring agents.

  6. Incorporating service-learning within engineering and technology education in secondary schools

    NASA Astrophysics Data System (ADS)

    Smiley, Craig L.

    This study focuses the status of service-learning incorporated into the secondary engineering and technology classroom in the State of Indiana. Post-secondary engineering service-learning programs have been found to increase student interest in engineering to attract females into engineering (Coyle, Jamieson, & Oakes, 2005). Engineering, Design, and Development (EDD) is the capstone class of Project Lead The Way (PLTW) curriculum taught in many schools across Indiana, in which students design and develop a project that addresses an open-ended engineering problem. Of all the courses offered in the PLTW curriculum, this has the greatest potential for students to engage in a service-learning project, because the open-ended engineering problem could be used to help the community. A Likert-type survey was sent to the 62 secondary technology education teachers in Indiana who were certified to teach EDD during the 2011-2012 school year to identify the frequency at which the core components of service-learning, as identified by the National Service-Learning Clearinghouse (2006), were being implemented in the EDD curriculum. Fifteen teachers completed the survey by the end of the 2011-2012 academic calendar. Four of the 15 EDD teachers (27%) reported that a majority of their students' projects addressed a need in the community, and therefore were considered to be service-learning projects. The percentage of projects that were called service-learning projects by the respondents appeared to have a direct relationship with the total number of students enrolled in the PLTW program, and an inverse relationship with the number of years the teacher had been teaching technology education. Upon further study, only 2 of these EDD teachers (13%) were guiding students to collaborate with their community partner frequently enough to have an experience indicative of high quality service-learning according to the National Service-Learning Clearinghouse.

  7. Activities for the Promotion of Gender Equality in Japan—Japan Society of Applied Physics

    NASA Astrophysics Data System (ADS)

    Kodate, Kashiko; Tanaka, Kazuo

    2005-10-01

    Since 1946, the Japan Society of Applied Physics (JSAP) has strived to promote research and development in applied physics for benefits beyond national boundaries. Activities of JSAP involve multidisciplinary fields, from physics and engineering to life sciences. Of its 23,000 members, 48% are from industry, 29% from academia, and about 7% from semi-autonomous national research laboratories. Its large industrial membership is one of the distinctive features of JSAP. In preparation for the First IUPAP International Conference on Women in Physics (Paris, 2002), JSAP members took the first step under the strong leadership of then-JSAP President Toshio Goto, setting up the Committee for the Promotion Equal Participation of Men and Women in Science and Technology. Equality rather than women's advancement is highlighted to further development in science and technology. Attention is also paid to balancing the number of researchers from different age groups and affiliations. The committee has 22 members: 12 female and 10 male; 7 from corporations, 12 from universities, and 3 from semi-autonomous national research institutes. Its main activities are to organize symposia and meetings, conduct surveys among JSAP members, and provide child-care facilities at meetings and conferences. In 2002 the Japan Physics Society and the Chemical Society of Japan jointly created the Japan Inter-Society Liaison Association for the Promotion of Equal Participation of Men and Women in Science and Engineering. Membership has grown to 44 societies (of which 19 are observers) ranging from mathematics, information, and life sciences to civil engineering. Joint activities across sectors and empower the whole. The Gender Equality Bureau in the Cabinet Office recently launched a large-scale project called "Challenge Campaign" to encourage girls to major in natural science and engineering, which JSAP is co-sponsoring.

  8. 46 CFR 11.470 - National officer endorsements as offshore installation manager.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., mechanical supervisor, electrician, crane operator, ballast control operator, or equivalent supervisory... from a program in engineering or engineering technology which is accredited by the Accreditation Board for Engineering and Technology (ABET). The National Maritime Center will give consideration to...

  9. 77 FR 37361 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY: Environmental Protection... Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance...

  10. Development of Graduate Course Education by Industry Collaboration in Center for Engineering Education Development, CEED

    NASA Astrophysics Data System (ADS)

    Noguchi, Toru; Yoshikawa, Kozo; Nakamura, Masato; Kaneko, Katsuhiko

    New education programs for engineering graduate courses, and the achievements are described. Following the previous reports on overseas and domestic internship2) , 3) , this article states other common programs ; seminars on state of technologies in industries, practical English and internationalization programs, and a program to accept overseas internship students. E-learning system to assist off-campus students is also described. All these programs are developed and conducted by specialist professors invited from industries and national institutions, in collaboration with faculty professors. Students learn how the engineering science apply to the practical problems, acquire wider view and deeper understanding on industries, and gain abilities to act in global society including communication skill, those are not taught in classrooms and laboratories. Educational effects of these industry collaborated programs is significant to activate the graduate course education, although the comprehensive evaluation is the future subject.

  11. Computational electronics and electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C. C.

    The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domainmore » CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.« less

  12. Remote sensing, imaging, and signal engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J.M.

    1993-03-01

    This report discusses the Remote Sensing, Imaging, and Signal Engineering (RISE) trust area which has been very active in working to define new directions. Signal and image processing have always been important support for existing programs at Lawrence Livermore National Laboratory (LLNL), but now these technologies are becoming central to the formation of new programs. Exciting new applications such as high-resolution telescopes, radar remote sensing, and advanced medical imaging are allowing us to participate in the development of new programs.

  13. Selected results from combustion research at the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Jones, R. E.

    1981-01-01

    Combustion research at Lewis is organized to provide a balanced program responsive to national needs and the gas turbine industry. The results of this research is a technology base that assists the gas turbine engine manufacturers in developing new and improved combustion systems for advanced civil and military engines with significant improvements in performance, durability, fuel flexibility and control of exhaust emissions. Research efforts consist of fundamentals and modeling, and applied component and combustor research.

  14. Lunar Plant Growth Chamber: Human Exploration Project STS-118 Design Challenge. A Standards-Based High School Unit Guide. Engineering by Design: Advancing Technological Literacy. A Standards-Based Program Series. EP-2007-08-94-MSFC

    ERIC Educational Resources Information Center

    Caron, Daniel W.; Fuller, Jeremy; Watson, Janice; St. Hilaire, Katherine

    2007-01-01

    In May 2005, the International Technology Education Association (ITEA) was funded by the National Aeronautics and Space Administration (NASA) to develop curricular units for Grades K-12 on Space Exploration. The units focus on aspects of the themes that NASA Engineers and Scientists--as well as future generations of explorers--must consider, such…

  15. Development of the Automated AFAPL Engine Simulator Test for Lubricant Evaluation.

    DTIC Science & Technology

    1981-05-01

    including foreign nations. This technical report has been reviewed and is approved for publication. LEON 4JDEBROtUN R.D. DAYTO,*tighief Project Engineer...flow is jetted into the front and rear of the simulator gearbox to provide additional cooling to the gearbox. A heat exchanger is used to cool the oil...flow to the gearbox. Additional heat exchangers are used in the simulator and gearbox oil return lines to the external sump. The simulator test

  16. Spaceport Command and Control System User Interface Testing

    NASA Technical Reports Server (NTRS)

    Huesman, Jacob

    2016-01-01

    The Spaceport Command and Control System will be the National Aeronautics and Space Administration's newest system for launching commercial and government owned spacecraft. It's a large system with many parts all in need of testing. To improve upon testing already done by NASA engineers, the Engineering Directorate, Electrical Division (NE-E) of Kennedy Space Center has hired a group of interns each of the last few semesters to develop novel ways of improving the testing process.

  17. Grand Valley State University Checks Out Energy Savings at New Mary Idema Pew Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    Grand Valley State University (GVSU) partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  18. Fertility, immigration, and the fight against climate change.

    PubMed

    Earl, Jake; Hickey, Colin; Rieder, Travis N

    2017-10-01

    Several philosophers have recently argued that policies aimed at reducing human fertility are a practical and morally justifiable way to mitigate the risk of dangerous climate change. There is a powerful objection to such "population engineering" proposals: even if drastic fertility reductions are needed to prevent dangerous climate change, implementing those reductions would wreak havoc on the global economy, which would seriously undermine international antipoverty efforts. In this article, we articulate this economic objection to population engineering and show how it fails. We argue, first, that the economic objection paints an inaccurate picture of the complicated relationship between demographic change and economic growth, and second, that any untoward economic effects of fertility reduction can be mitigated with additional policies. Specifically, we argue that supplementing fertility reduction with policies that facilitate the emigration of younger people from developing nations to developed nations could allow for both global reductions in GHG emissions and continued economic stability. Further, we show that moral arguments against such unprecedented increases in immigration are unsuccessful. We conclude that population engineering is a practical and morally justifiable tool for addressing the twin evils of climate change and global poverty. © 2017 John Wiley & Sons Ltd.

  19. Direct Initiation Through Detonation Branching in a Pulsed Detonation Engine

    DTIC Science & Technology

    2008-03-01

    important features noted ................................. 33  Figure 20. GM Quad 4 engine head used as the PDE research engine with the detonation tube...Deflagration to Detonation Transition EF – Engine Frequency FF – Fill Fraction NPT – National Pipe Thread MPT – Male National Pipe Thread PDE – Pulsed... Detonation Engines ( PDE ) has increased greatly in recent years due in part to the potential for increased thermal efficiency derived from constant

  20. Development of the New Educational Content "small Uas in Civil Engineering Application Scenarios"

    NASA Astrophysics Data System (ADS)

    Levin, E.; Vach, K.; Shults, R.

    2017-12-01

    The key point of this paper is presentation of the main idea and some results of the project "Small UAS in civil engineering application scenarios" (SUAS-CAS). This project was proposed by newly established in 2016 ISPRS WG V/7: "Innovative Technologies in Training Civil Engineers and Architects". Here we are presenting our experience in using low-cost UAS in training architects at Kyiv National University of Construction and Architecture, which was chosen as basic for this project. In the first part of paper, the project outline is presented. Then the first and possible follow project outcomes were described. In some details is described the training module "Small UAS in architecture" which was developed and included as a part of the subject "Architectural photogrammetry".

  1. Experimental software engineering: Seventeen years of lessons in the SEL

    NASA Technical Reports Server (NTRS)

    Mcgarry, Frank E.

    1992-01-01

    Seven key principles developed by the Software Engineering Laboratory (SEL) at the Goddard Space Flight Center (GSFC) of the National Aeronautics and Space Administration (NASA) are described. For the past 17 years, the SEL has been experimentally analyzing the development of production software as varying techniques and methodologies are applied in this one environment. The SEL has collected, archived, and studied detailed measures from more than 100 flight dynamics projects, thereby gaining significant insight into the effectiveness of numerous software techniques, as well as extensive experience in the overall effectiveness of 'Experimental Software Engineering'. This experience has helped formulate follow-on studies in the SEL, and it has helped other software organizations better understand just what can be accomplished and what cannot be accomplished through experimentation.

  2. Development of a Course of Training Programs for Young Engineers at Work to Nurture the “Basic Competencies of Employees”

    NASA Astrophysics Data System (ADS)

    Itoh, Michiko; Jomura, Makoto; Hongo, Tetsuyuki; Chohji, Tetsuji

    According to our feasibility study in 2005, many of small and medium-sized companies in and around Toyama city asked their young engineers for originality and strong will to try and solve problems positively in their workplaces. These skills have a lot in common with “Basic Competencies of Employees” advocated by the Ministry of Economy, Trade and Industry, Japan. Since Toyama National College of Technology has an accumulated educational know-how to nurture “Basic Competencies of Employees” , we have applied this to develop a course of training programs for young engineers. Through four year‧s practice and improvement, we have established and evaluated this training course. We show the details of our course in this report.

  3. Addressing the Grand Challenge of atmospheric carbon dioxide: geologic sequestration vs. biological recycling

    PubMed Central

    2011-01-01

    On February 15, 2008, the National Academy of Engineering unveiled their list of 14 Grand Challenges for Engineering. Building off of tremendous advancements in the past century, these challenges were selected for their role in assuring a sustainable existence for the rapidly increasing global community. It is no accident that the first five Challenges on the list involve the development of sustainable energy sources and management of environmental resources. While the focus of this review is to address the single Grand Challenge of "develop carbon sequestration methods", is will soon be clear that several other Challenges are intrinsically tied to it through the principles of sustainability. How does the realm of biological engineering play a role in addressing these Grand Challenges? PMID:22047501

  4. Guide to Using Sierra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Ryan Phillip; Agelastos, Anthony Michael; Miller, Joel D.

    2015-03-01

    Sierra is an engineering mechanics simulation code suite supporting the Nation's Nuclear Weapons mission as well as other customers. It has explicit ties to Sandia National Labs' workfow, including geometry and meshing, design and optimization, and visualization. Dis- tinguishing strengths include "application aware" development, scalability, SQA and V&V, multiple scales, and multi-physics coupling. This document is intended to help new and existing users of Sierra as a user manual and troubleshooting guide.

  5. Guide to Using Sierra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Ryan Phillip; Agelastos, Anthony Michael; Miller, Joel D.

    2017-04-01

    Sierra is an engineering mechanics simulation code suite supporting the Nation's Nuclear Weapons mission as well as other customers. It has explicit ties to Sandia National Labs' workfow, including geometry and meshing, design and optimization, and visualization. Dis- tinguishing strengths include "application aware" development, scalability, SQA and V&V, multiple scales, and multi-physics coupling. This document is intended to help new and existing users of Sierra as a user manual and troubleshooting guide.

  6. A Novel Multi-Finger Gate Structure of AlGaN/GaN High Electron Mobility Transistor

    NASA Astrophysics Data System (ADS)

    Cui, Lei; Wang, Quan; Wang, Xiao-Liang; Xiao, Hong-Ling; Wang, Cui-Mei; Jiang, Li-Juan; Feng, Chun; Yin, Hai-Bo; Gong, Jia-Min; Li, Bai-Quan; Wang, Zhan-Guo

    2015-05-01

    Not Available Supported by the Knowledge Innovation Engineering of the Chinese Academy of Sciences under Grant No YYY-0701-02, the National Nature Science Foundation of China under Grant Nos 61106014, 61204017 and 61334002, the State Key Development Program for Basic Research of China under Grant No 2010CB327503, and the National Science and Technology Major Project of China.

  7. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2008 Symposium

    DTIC Science & Technology

    2009-07-07

    article, we review recent progress on a highly 61 ROLL PRINTING OF CRYSTALliNE NANOWIRES efficient, scalable approach for the ordered, unifonn...NATIONAL ACADEMIES Advisers to the Nation on Science, Engineering, and Medicine The National Academy of Sciences is a private, nonprofit, self...target delivery of a therapy to a particular physiological system, minimizing systemic side effects. Talks in the session provided an overview of

  8. Educating the engineers of 2020: An outcomes-based typology of engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Knight, David B.

    Members of government and industry have called for greater emphasis within U.S. colleges and universities on producing engineers who can enter and advance a more competitive, globally connected workforce. Looking toward this future, engineers will need to exhibit strong analytical skills as in the past, but they also will need to be proficient in a cadre of new abilities to compete. This study examines, in combination, an array of knowledge and skills aligned with the National Academy of Engineering's "engineer of 2020." The study has two major goals. The first is to develop a typology of engineering students based on the learning outcomes associated with the engineer of E2020. The second is to understand the educational experiences that distinguish these groups of students who resemble, more or less, the engineer of 2020. This approach acknowledges that engineering graduates need a complex skill set to succeed in the new global economy; it is the combination of skills associated with the engineer of 2020, not the individual skills in isolation, which will ensure graduates can respond to workforce needs of the future. To date, research on student outcomes has studied learning outcomes independent of one another rather than investigating student learning holistically. The study uses student data from the Prototype to production: Processes and conditions for preparing the Engineer of 2020 study, sponsored by the National Science Foundation (NSF EEC-0550608). Engineering students from a nationally representative sample of engineering programs in the United States answered a survey that collected information on their pre-college academic preparation and sociodemographic characteristics, their curricular and co-curricular experiences in their engineering programs, and their self-ratings of their engineering-related competencies. Only data on engineering students in their senior year (n=2,422) were utilized in analyses. Analyses were conducted in multiple phases for each of five engineering disciplines in the data set (biomedical/bioengineering, chemical, civil, electrical, and mechanical engineering). First, cluster analyses produced typologies (or groupings) of engineering seniors (one for each of five engineering disciplines studied and an "all engineering" analysis) based on nine self-reported learning outcomes, including fundamental skills, design skills, contextual awareness, interdisciplinary competence, and professional skills. Second, profiles of pre-college characteristics as well as student experiences in college were developed for each discipline and the five disciplines combined. Using analyses of variance, Chi-square analyses, and multinomial logistic regression, this phase also identified differences in student characteristics and college experiences between clusters of students reporting high proficiencies on the array of outcomes and students in other clusters. This second phase informed the third phase, which produced parsimonious models that used pre-college characteristics and student experience variables to predict cluster membership. As a whole, the findings demonstrate that analyses that include the full array of E2020 learning outcomes produce meaningful typologies that distinguish between groupings of students in different engineering fields. Findings demonstrate that a subset of students - the engineers of 2020 - report high skills and abilities on the full array of learning outcomes. These are the graduates sought by both the federal government and industry who most closely resemble the engineers of 2020. In addition, distinctive curricular and co-curricular experiences distinguish this E2020 group of students in each engineering discipline from other groupings of students in that same discipline. These findings have valuable implications for practice because they identify an array of discipline-specific, in- and out-of-class learning experiences that appear to promote the development of this multi-dimensional set of outcomes. Overall, however, greater curricular emphases on broad and systems perspectives in the engineering curriculum most consistently set apart the students who report high proficiencies on the E2020 outcomes. The findings also indicate that strategies for improving undergraduate engineering outcomes should be tailored by engineering discipline. The study contributes to both practice and research by developing a technique that can be used to create an outcomes-based typology that can be applied to any set of learning outcomes. Graphical representations of results consolidate large quantities of information into an easily accessible format so that findings can guide both practitioners and policymakers who seek to improve this multi-dimensional set of undergraduate engineering learning outcomes. Future directions for research, including operationalizing organizational contexts influencing E2020 learning outcomes as well as anticipated career trajectories of students across the typology, are also discussed.

  9. Engineering and Technology: The Public's Perspective--Part 2: A Qualitative Analysis for the National Academy of Engineering.

    ERIC Educational Resources Information Center

    Doble, John; Komarnicki, Mary

    This report for the National Academy of Engineering's Office of Public Awareness represents the second phase of an examination of public opinion about engineering and technology. This document presents an analysis of six qualitative, focused group discussions or focus groups. Five of these groups were college educated Americans and one was…

  10. 46 CFR 11.514 - Service requirements for national endorsement as second assistant engineer of steam, motor, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... assistant engineer of steam, motor, and/or gas turbine-propelled vessels. 11.514 Section 11.514 Shipping... requirements for national endorsement as second assistant engineer of steam, motor, and/or gas turbine... assistant engineer of steam, motor, and/or gas turbine-propelled vessels is— (1) One year of service as an...

  11. 46 CFR 11.512 - Service requirements for national endorsement as first assistant engineer of steam, motor, and/or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... assistant engineer of steam, motor, and/or gas turbine-propelled vessels. 11.512 Section 11.512 Shipping... requirements for national endorsement as first assistant engineer of steam, motor, and/or gas turbine-propelled... engineer of steam, motor, and/or gas turbine-propelled vessels is— (1) One year of service as an assistant...

  12. Introducing a Girl to Engineering Day

    NASA Image and Video Library

    2018-02-22

    NASA engineer Krista Shaffer, left, speaks to Rachel Power of NASA’s Digital Expansion to Engage the Public (DEEP) Network inside Kennedy Space Center’s Vehicle Assembly Building during Introduce a Girl to Engineering Day. Held in conjunction with National Engineers Week and Girl Day, the event allowed students from throughout the nation to speak with female NASA scientists and technical experts.

  13. Introducing a Girl to Engineering Day

    NASA Image and Video Library

    2018-02-22

    NASA engineer Krista Shaffer, right, is interviewed by Rachel Power of NASA’s Digital Expansion to Engage the Public (DEEP) Network inside Kennedy Space Center’s Vehicle Assembly Building during Introduce a Girl to Engineering Day. Held in conjunction with National Engineers Week and Girl Day, the event allowed students from throughout the nation to speak with female NASA scientists and technical experts.

  14. Introducing a Girl to Engineering Day

    NASA Image and Video Library

    2018-02-22

    Inside Kennedy Space Center’s Vehicle Assembly Building, Bethanne’ Hull, left, of NASA Outreach, and engineer Krista Shaffer, right, participate in Introduce a Girl to Engineering Day on NASA’s Digital Expansion to Engage the Public (DEEP) Network. Held in conjunction with National Engineers Week and Girl Day, the event allowed students from throughout the nation to speak with female NASA scientists and technical experts.

  15. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Children react as a tiny Mars Rover rolls over their backs at the USA Science and Engineering Festival, Saturday, Oct. 23, 2010, at Freedom Plaza in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  16. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Directmore » Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.« less

  17. Spaceport Command and Control System Software Development

    NASA Technical Reports Server (NTRS)

    Glasser, Abraham

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administration's (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires a large amount of intensive testing that will properly measure the capabilities of the system. Automating the test procedures would save the project money from human labor costs, as well as making the testing process more efficient. Therefore, the Exploration Systems Division (formerly the Electrical Engineering Division) at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.

  18. Systems metabolic engineering as an enabling technology in accomplishing sustainable development goals.

    PubMed

    Yang, Dongsoo; Cho, Jae Sung; Choi, Kyeong Rok; Kim, Hyun Uk; Lee, Sang Yup

    2017-09-01

    With pressing issues arising in recent years, the United Nations proposed 17 Sustainable Development Goals (SDGs) as an agenda urging international cooperations for sustainable development. In this perspective, we examine the roles of systems metabolic engineering (SysME) and its contribution to improving the quality of life and protecting our environment, presenting how this field of study offers resolutions to the SDGs with relevant examples. We conclude with offering our opinion on the current state of SysME and the direction it should move forward in the generations to come, explicitly focusing on addressing the SDGs. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. 77 FR 13159 - Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology, National Science and Technology Council Workshop ACTION: Notice of... Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National...

  20. 23 CFR 660.101 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., 203, and 204, the program, developed in cooperation with State and local agencies, provides safe and... HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS SPECIAL PROGRAMS... Highway (FH) Program which enhances local, regional, and national benefits of FHs funded under the public...

  1. 23 CFR 660.101 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., 203, and 204, the program, developed in cooperation with State and local agencies, provides safe and... HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS SPECIAL PROGRAMS... Highway (FH) Program which enhances local, regional, and national benefits of FHs funded under the public...

  2. Green Infrastructure Research at NRMRL’s Urban Watershed Research Facility

    EPA Science Inventory

    USEPA’s National Risk Management Research Laboratory (NRMRL) examined several options for completing water quality research supporting the Clean Water Act and the Safe Drinking Water Act. NRMRL concluded that developing and understanding the engineering unit processes within gre...

  3. The Learning Portal

    ERIC Educational Resources Information Center

    Staudt, Carolyn; Hanzlick-Burton, Camden; Williamson, Carol; McIntyre, Cynthia

    2015-01-01

    The Innovative Technology in Science Inquiry (ITSI) project is a learning portal with hundreds of free, customizable science, math, and engineering activities funded by the National Science Foundation at the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The project…

  4. 77 FR 36292 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Border Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... research, development, engineering and production of border security-related systems; and (iii) to insert.... Patricia A. Brink, Director of Civil Enforcement, Antitrust Division. [FR Doc. 2012-14766 Filed 6-15-12; 8...

  5. Developing traffic signal control systems using the national ITS architecture

    DOT National Transportation Integrated Search

    1998-02-01

    This is one of a series of documents providing support for deploying Intelligent Transportation Systems (ITS). This document focuses on traffic signal control, a component of ITS. It aims to provide practical help for the traffic engineering communit...

  6. Developing Traffic Signal Control Systems using the National ITS Architecture

    DOT National Transportation Integrated Search

    1998-02-01

    This is one of a series of documents providing support for deploying Intelligent Transportation Systems (ITS). This document focuses on traffic signal control, a component of ITS. It aims to provide practical help for the traffic engineering communit...

  7. Tribology of Ceramics. Report of the Committee on Tribology of Ceramics.

    DTIC Science & Technology

    1988-01-01

    lt, Mat Iri t I S ,ne,i’-ch So ijet, and a Fe 1 low of the Ai’ h’ c P "lc; i". ...oi .... It S H 1- .S deHt11e in chemical engineering is from Vi...Committee on Tribology of Ceramics NATIONAL MATERIALS ADVISORY BOARD Commission on Engineering and Technical Systems National Research Council DTIC...the councils ot he National Academy of Sciences, the National Academy of Engineering , and the Institute Medicine. The members of the committee

  8. Metallized Coatings for Corrosion Control of Naval Ship Structures and Components.

    DTIC Science & Technology

    1983-02-01

    163A. N0A 1 NA LCIIO4 NATIONAL RESEARCH COUNCIL COMMISSION ON ENGINEERING AND TECHNICAL SYSTEMS 1 NATIONAL MATERIALS ADVISORY BOARD I he purpose of...the National Materials Ad’ isor5’ Board is the advart,itmnt Of niateriais science dnd engineering in the national interest. CHAIRMAN PAST C HA IRMA N DT...Materials Science and Engineering D~i\\isioti 2ix (lieto Street D~r. Ramntd F. Mlikesell Bell L-aboratories Johnt Hatncoc k losser. 43rd Fl. ’or W I

  9. Evaluation of the 1997 Joint National Conference, Women in Engineering Program Advocates Network (WEPAN) and National Association of Minority Engineering Program Administrators (NAMEPA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brainard, Suzanne G.

    1997-07-01

    The primary goal of the 1997 Joint National Conference was to unite NAMEPA and WEPAN in a unique collaborative effort to further the cause of increasing the participation of women and minorities in science and engineering. The specific objectives were to: (1) conduct technical and programmatic seminars for institutions desiring to initiate, replicate, or expand women and minorities in engineering program; (2) provide assistance in fundraising and grant writing; (3) profile women in engineering programs of excellence; (4) sponsor inspiring knowledgeable and motivational keynote speakers; and (5) offer a series of workshops focused on a multitude of topics.

  10. Offshore Wind Energy Systems Engineering Curriculum Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Jon G.; Manwell, James F.; Lackner, Matthew A.

    2012-12-31

    Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This coursemore » was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.« less

  11. The Space Weather Monitor Project: Bringing Hands-on Science to Students of the Developing World for the IHY2007

    NASA Astrophysics Data System (ADS)

    Scherrer, D. K.; Rabello-Soares, M. C.; Morrow, C.

    2006-08-01

    Stanford's Solar Center, Electrical Engineering Department, and local educators have developed inexpensive Space Weather Monitors that students around the world can use to track solar-induced changes to the Earth's ionosphere. Through the United Nations Basic Space Science Initiative (UNBSSI) and the IHY Education and Public Outreach Program, our Monitors are being deployed to 191 countries for the International Heliophysical Year, 2007. In partnership with Chabot Space and Science Center, we are designing and developing classroom and educator support materials to accompany the distribution. Materials will be culturally sensitive and will be translated into the six official languages of the United Nations (Arabic, Chinese, English, French, Russian, and Spanish). Monitors will be provided free of charge to developing nations and can be set up anywhere there is access to power.

  12. Dearth of American Engineering Graduate Students Concerns Academicians.

    ERIC Educational Resources Information Center

    Farrell, Charles S.

    1989-01-01

    A shortage of American engineering graduate students, particularly minorities and women, has resulted in the increasing award of research and graduate assistantships to foreign students. The National Consortium for Graduate Degrees for Minorities in Engineering (GEM) and the National Science Foundation (NSF) are offering financial encouragement…

  13. Plans for crash-tested bridge railings for longitudinal wood decks on low-volume roads

    Treesearch

    Michael A. Ritter; Ronald K. Faller; Steve Bunnell; Paula D. Hilbrich Lee; Barry T. Rosson

    1998-01-01

    The plans for crashworthy bridge railings for low-volume roads were developed through a cooperative research program involving the USDA Forest Service, Forest Products Laboratory (FPL); the Midwest Roadside Safety Facility, University of Nebraska-Lincoln (MwRSF); and the Forest Service, National Forest System, Engineering. Three railings were developed and successfully...

  14. The Long-Term Impact of Technology on Employment and Unemployment. A National Academy of Engineering Symposium (June 30, 1983).

    ERIC Educational Resources Information Center

    National Academy of Engineering, Washington, DC.

    Although technological change profoundly affects the types, amounts, and conditions of work in both public and private sectors, there is no agreement among economists, technologists, or labor representatives on the impact of developments of new high-technology industries upon employment. Because the implications of these developments are neither…

  15. Hyd-Mech FB7 short rotation hardwood feller-buncher test

    Treesearch

    Dennis Curtin; Bryce Stokes; Doug Fredericks

    1985-01-01

    The FB7 is a first-generation prototype continuous feller-buncher manufactured by Hyd-Mech Engineering, Ltd. of Woodstock, Ontario. It was developed and funded by the National Research Council of Canada to harvest short-rotational bioenergy plantations of hybrid poplar. The development specifications were for stumps with diameters of up to eight inches and with a...

  16. National Research Council Dialogue to Assess Progress on NASA's Advanced Modeling, Simulation and Analysis Capability and Systems Engineering Capability Roadmap Development

    NASA Technical Reports Server (NTRS)

    Aikins, Jan

    2005-01-01

    Contents include the following: General Background and Introduction of Capability Roadmaps. Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  17. Civilian First Responder Decontamination Equipment Characteristics Survey Results

    DTIC Science & Technology

    2010-01-01

    EQUIPMENT CHARACTERISTICS SURVEY RESULTS Scott Kooistra Shawn Bowen John Walther PROGRAM INTEGRATION DIRECTORATE Michael B. DeZearn ENGINEERING...COVERED (From - To) Mar 2007-Feb 2008 4. TITLE AND SUBTITLE Civilian First Responder Decontamination Equipment Characteristics Survey Results 5a...Department of Homeland Security/National Institute of Standards and Technology (DHS/NIST) Standards Development Team to develop a survey to

  18. Space education: Deriving benefits from industrial consortia

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Page, John R.

    1993-01-01

    As the number of spacefaring nations of the world increases, so does the difficulty of competing in a global economy. The development of high technology products and services for space programs, and the economic exploitation of these technologies for national economic growth, requires professionals versed in both technical and commercial aspects of space. Meeting this requirement academically presents two challenges. On the technical side, enrollment in science and engineering is decreasing in some of the spacefaring nations. From the commerce perspective, very few colleges and universities offer specific courses in space business.

  19. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of The Director)

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selectedmore » from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.« less

  20. BISON and MARMOT Development for Modeling Fast Reactor Fuel Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, Kyle Allan Lawrence; Williamson, Richard L.; Schwen, Daniel

    2015-09-01

    BISON and MARMOT are two codes under development at the Idaho National Laboratory for engineering scale and lower length scale fuel performance modeling. It is desired to add capabilities for fast reactor applications to these codes. The fast reactor fuel types under consideration are metal (U-Pu-Zr) and oxide (MOX). The cladding types of interest include 316SS, D9, and HT9. The purpose of this report is to outline the proposed plans for code development and provide an overview of the models added to the BISON and MARMOT codes for fast reactor fuel behavior. A brief overview of preliminary discussions on themore » formation of a bilateral agreement between the Idaho National Laboratory and the National Nuclear Laboratory in the United Kingdom is presented.« less

Top