Automotive Stirling engine development program
NASA Technical Reports Server (NTRS)
Farrell, R.; Hindes, C.; Battista, R.; Connelly, M.; Cronin, M.; Howarth, R.; Donahue, A.; Slate, E.; Stotts, R.; Lacy, R.
1988-01-01
The study of high power kinematic Stirling engines for transportation use, testing of Mod I and Mod II Stirling engines, and component development activities are summarized. Mod II development testing was performed to complete the development of the basic engine and begin characterization of performance. Mod I engines were used for Mod II component development and to obtain independent party (U.S. Air Force) evaluation of Stirling engine vehicle performance.
NASA Technical Reports Server (NTRS)
1989-01-01
The objective of the Space Transportation Booster Engine Configuration Study is to contribute to the ALS development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were: (1) to identify engine development configurations which enhance vehicle performance and provide operational flexibility at low cost; and (2) to explore innovative approaches to the follow-on Full-Scale Development (FSD) phase for the STBE.
NASA Technical Reports Server (NTRS)
1981-01-01
The objective of the study was to generate the system design of a performance-optimized, advanced LOX/hydrogen expander cycle space engine. The engine requirements are summarized, and the development and operational experience with the expander cycle RL10 engine were reviewed. The engine development program is outlined.
ERIC Educational Resources Information Center
Sun, Yan; Strobel, Johannes
2014-01-01
The present study sought to reveal how elementary teachers develop their engineering pedagogical content knowledge (PCK) after leaving professional development programs to practice engineering teaching in real classroom settings. Participants of this study were the elementary teachers who received one-week training of engineering education…
ERIC Educational Resources Information Center
Perez-Foguet, A.; Oliete-Josa, S.; Saz-Carranza, A.
2005-01-01
Purpose: To show the key points of a development education program for engineering studies fitted within the framework of the human development paradigm. Design/methodology/approach: The bases of the concept of technology for human development are presented, and the relationship with development education analysed. Special attention is dedicated…
NASA Astrophysics Data System (ADS)
Berry, Ayora
The purpose of this study was to investigate the effects of a curriculum design-based (CDB) professional development model on K-12 teachers' capacity to integrate engineering education in the classroom. This teacher professional development approach differs from other training programs where teachers learn how to use a standard curriculum and adopt it in their classrooms. In a CDB professional development model teachers actively design lessons, student resources, and assessments for their classroom instruction. In other science, technology, engineering and mathematics (STEM) disciplines, CDB professional development has been reported to (a) position teachers as architects of change, (b) provide a professional learning vehicle for educators to reflect on instructional practices and develop content knowledge, (c) inspire a sense of ownership in curriculum decision-making among teachers, and (d) use an instructional approach that is coherent with teachers' interests and professional goals. The CDB professional development program in this study used the Explore-Create-Share (ECS) framework as an instructional model to support teacher-led curriculum design and implementation. To evaluate the impact of the CDB professional development and associated ECS instructional model, three research studies were conducted. In each study, the participants completed a six-month CDB professional development program, the PTC STEM Certificate Program, that included sixty-two instructional contact hours. Participants learned about industry and education engineering concepts, tested engineering curricula, collaborated with K-12 educators and industry professionals, and developed project-based engineering curricula using the ECS framework. The first study evaluated the impact of the CDB professional development program on teachers' engineering knowledge, self-efficacy in designing engineering curriculum, and instructional practice in developing project-based engineering units. The study included twenty-six teachers and data was collected pre-, mid-, and post-program using teacher surveys and a curriculum analysis instrument. The second study evaluated teachers' perceptions of the ECS model as a curriculum authoring tool and the quality of the curriculum units they developed. The study included sixty-two participants and data was collected post-program using teacher surveys and a curriculum analysis instrument. The third study evaluated teachers' experiences implementing ECS units in the classroom with a focus on identifying the benefits, challenges and solutions associated with project-based engineering in the classroom. The study included thirty-one participants and data was collected using an open-ended survey instrument after teachers completed implementation of the ECS curriculum unit. Results of these three studies indicate that teachers can be prepared to integrate engineering in the classroom using a CDB professional development model. Teachers reported an increase in engineering content knowledge, improved their self-efficacy in curriculum planning, and developed high quality instructional units that were aligned to engineering design practices and STEM educational standards. The ECS instructional model was acknowledged as a valuable tool for developing and implementing engineering education in the classroom. Teachers reported that ECS curriculum design aligned with their teaching goals, provided a framework to integrate engineering with other subject-area concepts, and incorporated innovative teaching strategies. After implementing ECS units in the classroom, teachers reported that the ECS model engaged students in engineering design challenges that were situated in a real world context and required the application of interdisciplinary content knowledge and skills. Teachers also reported a number of challenges related to scheduling, content alignment, and access to resources. In the face of these obstacles, teachers presented a number of solutions that included optimization of one's teaching practice, being resource savvy, and adopting a growth mindset.
Space transportation booster engine configuration study. Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
1989-01-01
The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and to explore innovative approaches to the follow-on full-scale development (FSD) phase for the STBE.
NASA Astrophysics Data System (ADS)
Morelock, John R.
2017-11-01
Studies exploring what it means to be an engineer professionally have been conducted for decades, but have boomed in recent years. This systematic literature review aims to organise extant studies on engineering identity by coding around four key variables: (a) definitions of engineering identity, (b) factors affecting engineering identity development, (c) interventions affecting engineering identity development, and (d) means of measuring identity. In doing so, this review provides strategies for future research and educational interventions to advance work related to engineering identity. Publications were selected for inclusion by screening and appraising results obtained from databases and keywords refined through a scoping study. Derived from key findings, suggestions for future research include bridging disparate strands of engineering identity literature and incorporating more varied methodological approaches. Also from key findings, suggestions for future practice involve better connecting existing definitions of engineering identity and factors known to affect identity development with identity-related interventions.
Development of Supersonic Vehicle for Demonstration of a Precooled Turbojet Engine
NASA Astrophysics Data System (ADS)
Sawai, Shujiro; Fujita, Kazuhisa; Kobayashi, Hiroaki; Sakai, Shin'ichiro; Bando, Nobutaka; Kadooka, Shouhei; Tsuboi, Nobuyuki; Miyaji, Koji; Uchiyama, Taku; Hashimoto, Tatsuaki
JAXA is developing Mach 5 hypersonic turbojet engine technology that can be applied in a future hypersonic transport. Now, Jet Engine Technology Research Center of JAXA conducts the experimental study using a 1 / 10 scale-model engine. In parallel to engine development activities, a new supersonic flight-testing vehicle for the hypersonic turbojet engine is under development since 2004. In this paper, the system configuration of the flight-testing vehicle is outlined and development status is reported.
Enhancing Systems Engineering Education Through Case Study Writing
NASA Technical Reports Server (NTRS)
Stevens, Jennifer Stenger
2016-01-01
Developing and refining methods for teaching systems engineering is part of Systems Engineering grand challenges and agenda for research in the SE research community. Retention of systems engineering knowledge is a growing concern in the United States as the baby boom generation continues to retire and the faster pace of technology development does not allow for younger generations to gain experiential knowledge through years of practice. Government agencies, including the National Aeronautics and Space Administration (NASA), develop their own curricula and SE leadership development programs to "grow their own" systems engineers. Marshall Space Flight Center (MSFC) conducts its own Center-focused Marshall Systems Engineering Leadership Development Program (MSELDP), a competitive program consisting of coursework, a guest lecture series, and a rotational assignment into an unfamiliar organization engaged in systems engineering. Independently, MSFC developed two courses to address knowledge retention and sharing concerns: Real World Marshall Mission Success course and its Case Study Writers Workshop and Writers Experience. Teaching case study writing and leading students through a hands-on experience at writing a case study on an SE topic can enhance SE training and has the potential to accelerate the transfer of experiential knowledge. This paper is an overview of the pilot experiences with teaching case study writing, its application in case study-based learning, and identifies potential areas of research and application for case study writing in systems engineering education.
NASA Technical Reports Server (NTRS)
Levack, Daniel J. H.
2000-01-01
The Alternate Propulsion Subsystem Concepts contract had seven tasks defined that are reported under this contract deliverable. The tasks were: FAA Restart Study, J-2S Restart Study, Propulsion Database Development. SSME Upper Stage Use. CERs for Liquid Propellant Rocket Engines. Advanced Low Cost Engines, and Tripropellant Comparison Study. The two restart studies, F-1A and J-2S, generated program plans for restarting production of each engine. Special emphasis was placed on determining changes to individual parts due to obsolete materials, changes in OSHA and environmental concerns, new processes available, and any configuration changes to the engines. The Propulsion Database Development task developed a database structure and format which is easy to use and modify while also being comprehensive in the level of detail available. The database structure included extensive engine information and allows for parametric data generation for conceptual engine concepts. The SSME Upper Stage Use task examined the changes needed or desirable to use the SSME as an upper stage engine both in a second stage and in a translunar injection stage. The CERs for Liquid Engines task developed qualitative parametric cost estimating relationships at the engine and major subassembly level for estimating development and production costs of chemical propulsion liquid rocket engines. The Advanced Low Cost Engines task examined propulsion systems for SSTO applications including engine concept definition, mission analysis. trade studies. operating point selection, turbomachinery alternatives, life cycle cost, weight definition. and point design conceptual drawings and component design. The task concentrated on bipropellant engines, but also examined tripropellant engines. The Tripropellant Comparison Study task provided an unambiguous comparison among various tripropellant implementation approaches and cycle choices, and then compared them to similarly designed bipropellant engines in the SSTO mission This volume overviews each of the tasks giving its objectives, main results. and conclusions. More detailed Final Task Reports are available on each individual task.
Test Planning Approach and Lessons
NASA Technical Reports Server (NTRS)
Parkinson, Douglas A.; Brown, Kendall K.
2004-01-01
As NASA began technology risk reduction activities and planning for the next generation launch vehicle under the Space Launch Initiative (SLI), now the Next Generation Launch Technology (NGLT) Program, a review of past large liquid rocket engine development programs was performed. The intent of the review was to identify any significant lessons from the development testing programs that could be applied to current and future engine development programs. Because the primary prototype engine in design at the time of this study was the Boeing-Rocketdyne RS-84, the study was slightly biased towards LOX/RP-1 liquid propellant engines. However, the significant lessons identified are universal. It is anticipated that these lessons will serve as a reference for test planning in the Engine Systems Group at Marshall Space Flight Center (MSFC). Towards the end of F-1 and J-2 engine development testing, NASA/MSFC asked Rocketdyne to review those test programs. The result was a document titled, Study to Accelerate Development by Test of a Rocket Engine (R-8099). The "intent (of this study) is to apply this thinking and learning to more efficiently develop rocket engines to high reliability with improved cost effectivenes" Additionally, several other engine programs were reviewed - such as SSME, NSTS, STME, MC-1, and RS-83- to support or refute the R-8099. R-8099 revealed two primary lessons for test planning, which were supported by the other engine development programs. First, engine development programs can benefit from arranging the test program for engine system testing as early as feasible. The best test for determining environments is at the system level, the closest to the operational flight environment. Secondly, the component testing, which tends to be elaborate, should instead be geared towards reducing risk to enable system test. Technical risk can be reduced at the component level, but the design can only be truly verified and validated after engine system testing.
Orbit transfer rocket engine technology program. Phase 2: Advanced engine study
NASA Technical Reports Server (NTRS)
Erickson, C.; Martinez, A.; Hines, B.
1987-01-01
In Phase 2 of the Advanced Engine Study, the Failure Modes and Effects Analysis (FMEA) maintenance-driven engine design, preliminary maintenance plan, and concept for space operable disconnects generated in Phase 1 were further developed. Based on the results of the vehicle contractors Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Phase A studies, minor revisions to the engine design were made. Additional refinements in the engine design were identified through further engine concept studies. These included an updated engine balance incorporating experimental heat transfer data from the Enhanced Heat Load Thrust Chamber Study and a Rao optimum nozzle contour. The preliminary maintenance plan of Phase 1 was further developed through additional studies. These included a compilation of critical component lives and life limiters and a review of the Space Shuttle Main Engine (SSME) operations and maintenance manual in order to begin outlining the overall maintenance procedures for the Orbit Transfer Vehicle Engine and identifying technology requirements for streamlining space-based operations. Phase 2 efforts also provided further definition to the advanced fluid coupling devices including the selection and preliminary design of a preferred concept and a preliminary test plan for its further development.
NASA Technical Reports Server (NTRS)
1989-01-01
The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the space Transportation Booster Engine (STBE) Configuration Study were: (1) to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and (2) to explore innovative approaches to the follow-on Full-Scale Development (FSD) phase for the STBE.
Case Study: Developing Graduate Engineers at Kentz Engineers & Constructors
ERIC Educational Resources Information Center
O'Donnell, Hugh; Karallis, Takis; Sandelands, Eric; Cassin, James; O'Neill, Donal
2008-01-01
Purpose: The aim of this paper is to outline the approach and process in place within Kentz Engineers & Constructors to develop graduate engineers on an international basis. Design/methodology/approach: The approach adopted is that of a case study which describes activities and processes within the organization and the rationale behind them,…
Propulsion Study for Small Transport Aircraft Technology (STAT)
NASA Technical Reports Server (NTRS)
Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.
1980-01-01
Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.
Rotorcraft convertible engine study
NASA Technical Reports Server (NTRS)
Gill, J. C.; Earle, R. V.; Mar, H. M.
1982-01-01
The objective of the Rotorcraft Convertible Engine Study was to define future research and technology effort required for commercial development by 1988 of convertible fan/shaft gas turbine engines for unconventional rotorcraft transports. Two rotorcraft and their respective missions were defined: a Fold Tilt Rotor aircraft and an Advancing Blade Concept (ABC) rotorcraft. Sensitivity studies were conducted with these rotorcraft to determine parametrically the influence of propulsion characteristics on aircraft size, mission fuel requirements, and direct operating costs (DOC). The two rotorcraft were flown with conventional propulsion systems (separate lift/cruise engines) and with convertible propulsion systems to determine the benefits to be derived from convertible engines. Trade-off studies were conducted to determine the optimum engine cycle and staging arrangement for a convertible engine. Advanced technology options applicable to convertible engines were studied. Research and technology programs were identified which would ensure technology readiness for commercial development of convertible engines by 1988.
Two-stroke engine diagnostics and design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
This paper focuses on research and development efforts on two-stroke cycle engines for automotive applications. Partial contents include: Velocity Field Characteristics in Motored Two-Stroke Ported Engines; Flow Vector Measurements at the Scavenging Ports in a Fired Two-Stroke Engine; A Study on Exhaust Dynamic Effect of Two-Stroke Motorcycle Petrol Engine; Characterization of Ignition and Parametric Study of a Two-Stroke-Cycle Direct-Injected Gasoline Engine; LDV Measurements of Intake Port Flow in a Two-Stroke Engine with and without Combustion; Appraisal of Regenerative Blowers for Scavenging of Small 2T S.I. Powerplants; and Development Experience of a Poppet-Valved Two-Stroke Flagship Engine.
Automotive Stirling engine development program
NASA Technical Reports Server (NTRS)
Ernst, W.; Piller, S.; Richey, A.; Simetkosky, M.; Antonelli, M. (Editor)
1982-01-01
Activities performed on Mod I engine testing and test results, progress in manufacturing, assembling and testing of a Mod I engine in the United States, P40 Stirling engine dynamometer and multifuels testing, analog/digital controls system testing, Stirling reference engine manufacturing and reduced size studies, components and subsystems, and computer code development are summarized.
Heat engine development for solar thermal power systems
NASA Astrophysics Data System (ADS)
Pham, H. Q.; Jaffe, L. D.
The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.
Developing Elementary Math and Science Process Skills Through Engineering Design Instruction
NASA Astrophysics Data System (ADS)
Strong, Matthew G.
This paper examines how elementary students can develop math and science process skills through an engineering design approach to instruction. The performance and development of individual process skills overall and by gender were also examined. The study, preceded by a pilot, took place in a grade four extracurricular engineering design program in a public, suburban school district. Students worked in pairs and small groups to design and construct airplane models from styrofoam, paper clips, and toothpicks. The development and performance of process skills were assessed through a student survey of learning gains, an engineering design packet rubric (student work), observation field notes, and focus group notes. The results indicate that students can significantly develop process skills, that female students may develop process skills through engineering design better than male students, and that engineering design is most helpful for developing the measuring, suggesting improvements, and observing process skills. The study suggests that a more regular engineering design program or curriculum could be beneficial for students' math and science abilities both in this school and for the elementary field as a whole.
General Aviation Turbine Engine (GATE) study
NASA Technical Reports Server (NTRS)
Baerst, C. F.; Furst, D. G.
1979-01-01
The feasibility of turbine engines for the smaller general aviation aircraft was investigated and a technology program for developing the necessary technology was identified. Major results included the definition of the 1988 general aviation market, the identification of turboprop and turboshaft engines that meet the requirements of the aircraft studies, a benefit analysis showing the superiority of gas turbine engines for portions of the market studied, and detailed plans for the development of the necessary technology.
NASA Astrophysics Data System (ADS)
Hussain, Azham; Mkpojiogu, Emmanuel O. C.; Abdullah, Inam
2016-08-01
Requirements Engineering (RE) is a systemic and integrated process of eliciting, elaborating, negotiating, validating and managing of the requirements of a system in a software development project. UUM has been supported by various systems developed and maintained by the UUM Information Technology (UUMIT) Centre. The aim of this study was to assess the current requirements engineering practices at UUMIT. The main problem that prompted this research is the lack of studies that support software development activities at the UUMIT. The study is geared at helping UUMIT produce quality but time and cost saving software products by implementing cutting edge and state of the art requirements engineering practices. Also, the study contributes to UUM by identifying the activities needed for software development so that the management will be able to allocate budget to provide adequate and precise training for the software developers. Three variables were investigated: Requirement Description, Requirements Development (comprising: Requirements Elicitation, Requirements Analysis and Negotiation, Requirements Validation), and Requirement Management. The results from the study showed that the current practice of requirement engineering in UUMIT is encouraging, but still need further development and improvement because a few RE practices were seldom practiced.
ERIC Educational Resources Information Center
Avery, Zanj Kano
2010-01-01
The purpose of this study was to examine the effects of professional development (PD) on the infusion of engineering design into high school curricula. Four inservice teachers with backgrounds in physics, chemistry, industrial education, math, and electrical engineering participated in the 2006 National Center of Engineering and Technology…
Engine dynamic analysis with general nonlinear finite element codes
NASA Technical Reports Server (NTRS)
Adams, M. L.; Padovan, J.; Fertis, D. G.
1991-01-01
A general engine dynamic analysis as a standard design study computational tool is described for the prediction and understanding of complex engine dynamic behavior. Improved definition of engine dynamic response provides valuable information and insights leading to reduced maintenance and overhaul costs on existing engine configurations. Application of advanced engine dynamic simulation methods provides a considerable cost reduction in the development of new engine designs by eliminating some of the trial and error process done with engine hardware development.
NASA Technical Reports Server (NTRS)
Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.
1999-01-01
In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.
Improving System Engineering Excellence at NASA's Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Takada, Pamela Wallace; Newton, Steve; Gholston, Sampson; Thomas, Dale (Technical Monitor)
2001-01-01
NASA's Marshall Space Flight Center (MSFC) management feels that sound system engineering practices are essential for successful project management, NASA studies have concluded that recent project failures could be attributed in part to inadequate systems engineering. A recent survey of MSFC project managers and system engineers' resulted in the recognition of a need for training in Systems Engineering Practices, particularly as they relate to MSFC projects. In response to this survey, an internal pilot short-course was developed to reinforce accepted practices for system engineering at MSFC. The desire of the MSFC management is to begin with in-house training and offer additional educational opportunities to reinforce sound system engineering principles to the more than 800 professionals who are involved with system engineering and project management. A Systems Engineering Development Plan (SEDP) has been developed to address the longer-term systems engineering development needs of MSFC. This paper describes the survey conducted and the training course that was developed in response to that survey.
NASA Astrophysics Data System (ADS)
Fincher, Bridgette Ann
The purpose of this study was to describe the perceptions and approaches of 14 third-through-fifth grade Arkansan elementary teachers towards integrative engineering and engineering practices during 80 hours of integrated STEM professional development training in the summer and fall of 2014. This training was known as Project Flight. The purpose of the professional development was to learn integrated STEM content related to aviation and to write grade level curriculum units using Wiggins and McTighe's Understanding by Design curriculum framework. The current study builds upon on the original research. Using a mixed method exploratory, embedded QUAL[quan] case study design and a non-experimental convenience sample derived from original 20 participants of Project Flight, this research sought to answer the following question: Does professional development influence elementary teachers' perceptions of the curriculum and instruction of integrated STEM engineering and engineering practices in a 3-to-5 grade level setting? A series of six qualitative and one quantitative sub-questions informed the research of the mixed method question. Hermeneutic content analysis was applied to archival and current qualitative data sets while descriptive statistics, independent t-tests, and repeated measures ANOVA tests were performed on the quantitative data. Broad themes in the teachers' perceptions and understanding of the nature of integrated engineering and engineering practices emerged through triangulation. After the professional development and the teaching of the integrated STEM units, all 14 teachers sustained higher perceptions of personal self-efficacy in their understanding of Next Generation Science Standards (NGSS). The teachers gained understanding of engineering and engineering practices, excluding engineering habits of mind, throughout the professional development training and unit teaching. The research resulted in four major findings specific to elementary engineering, which included engineering as student social agency and empowerment and the emergence of the engineering design loop as a new heuristic, and three more general non-engineering specific findings. All seven, however, have implications for future elementary engineering professional development as teachers in adopting states start to transition into using the NGSS standards.
Oregon Pre-Engineering Learning Outcomes Study: Final Report
ERIC Educational Resources Information Center
Conley, David T.; Langan, Holly; Veach, Darya; Farkas, Virginia
2007-01-01
The Oregon Pre-engineering Learning Outcomes Project was conducted by the Educational Policy Improvement Center (EPIC) with grant funding from the Engineering and Technology Industry Council (ETIC). The study sought to improve student preparation and success in pre-engineering programs through the development of the Oregon Pre-engineering Learning…
ERIC Educational Resources Information Center
Nikoonezhad, Sepideh; Nili, Mohammadreza; Esfahani, Ahmadreza Nasr
2015-01-01
The present study aims at investigating barriers upon development of virtual education in engineering majors at the University of Isfahan. The study has applied a mixed method (qualitative and quantitative) and its population consists all of the department members of the technical and engineering majors at the University of Isfahan including 125…
Stirling engine alternatives for the terrestrial solar application
NASA Technical Reports Server (NTRS)
Stearns, J.
1985-01-01
The first phase of the present study of Stirling engine alternatives for solar thermal-electric generation has been completed. Development risk levels are considered to be high for all engines evaluated. Free-piston type and Ringbom-type Stirling engine-alternators are not yet developed for the 25 to 50-kW electrical power range, although smaller machines have demonstrated the inherent robustness of the machines. Kinematic-type Stirling engines are presently achieving a 3500 hr lifetime or longer on critical components, and lifetime must still be further extended for the solar application. Operational and technical characteristics of all types of Stirling engines have been reviewed with engine developers. Technical work of merit in progress in each engine development organization should be recognized and supported in an appropriate manner.
ERIC Educational Resources Information Center
Klein, Stacy S.; Sherwood, Robert D.
2005-01-01
This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…
Seeing through the lens of social justice: A threshold for engineering
NASA Astrophysics Data System (ADS)
Kabo, Jens David
In recent times the need for educational research dedicated to engineering education has been recognised. This PhD project is a contribution to the development of engineering education scholarship and the growing body of engineering education research. In this project it was recognised that problem solving is a central activity to engineering. However, it was also recognised that the conditions for doing engineering are changing, especially in light of pressing issues of poverty and environmental sustainability that humanity currently faces, and as a consequence, engineering education needs to emphasise problem definition to a greater extent. One mechanism for achieving this, which has been adopted by some engineering educators in recent years, is through courses that explicitly relate engineering to social justice. However, creating this relationship requires critical interdisciplinary thinking that is alien to most engineering students. In this dissertation it is suggested that for engineering students, and more generally, engineers, looking at their practice and profession through a social justice lens might be seen as a threshold that needs to be crossed. By studying the variation present among students in three different courses at three different North American universities, the intention was to understand how students approach and internalise social justice as a perspective on engineering and/or develop their abilities to think critically. A conceptual model to frame the study was developed by combining elements of threshold concept theory and the educational research methodology, phenomenographic variation theory. All three of the courses studied operated on a similar basic pedagogical model, however, the courses were framed differently, with social justice in the foreground or in the background with the focus on, in one case, ethics and in the other, sustainability. All courses studied appeared to be successful in encouraging engineering students to engage in critical thinking and a similar general trend in the development of students' conceptions of social justice was observed in each of the three courses. However, it does appear that if one is interested in developing an articulated understanding of social justice, with respect to engineering, that an explicit focus on social justice is preferable.
NASA Astrophysics Data System (ADS)
Erickson, Robert R.
Wave engines are a class of unsteady, air-breathing propulsion devices that use an intermittent combustion process to generate thrust. The inherently simple mechanical design of the wave engine allows for a relatively low cost per unit propulsion system, yet unsatisfactory overall performance has severely limited the development of commercially successful wave engines. The primary objective of this investigation was to develop a more detailed physical understanding of the influence of gas dynamic nonlinearities, unsteady combustion processes, and engine shape on overall wave engine performance. Within this study, several numerical models were developed and applied to wave engines and related applications. The first portion of this investigation examined the influence of duct shape on driven oscillations in acoustic compression devices, which represent a simplified physical system closely related in several ways to the wave engine. A numerical model based on an application of the Galerkin method was developed to simulate large amplitude, one-dimensional acoustic waves driven in closed ducts. Results from this portion of the investigation showed that gas-dynamic nonlinearities significantly influence the properties of driven oscillations by transferring acoustic energy from the fundamental driven mode into higher harmonic modes. The second portion of this investigation presented and analyzed results from a numerical model of wave engine dynamics based on the quasi one-dimensional conservation equations in addition to separate sub-models for mixing and heat release. This model was then used to perform parametric studies of the characteristics of mixing and engine shape. The objectives of these studies were to determine the influence of mixing characteristics and engine shape on overall wave engine performance and to develop insight into the physical processes controlling overall performance trends. Results from this model showed that wave engine performance was strongly dependent on the coupling between the unsteady heat release that drives oscillations in the engine and the characteristics that determine the acoustic properties of the engine such as engine shape and mean property gradients. Simulation results showed that average thrust generation decreased dramatically when the natural acoustic mode frequencies of the engine and the frequency content of the unsteady heat release were not aligned.
Automotive Stirling Engine Development Program
NASA Technical Reports Server (NTRS)
Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Antonelli, M. (Editor)
1982-01-01
Activities performed on Mod I engine testing and test results; the manufacture, assembly, and test of a Mod I engine in the United States; design initiation of the Mod I-A engine system; transient performance testing; Stirling reference engine manufacturing and reduced size studies; components and subsystems; and the study and test of low cost alloys are summarized.
ERIC Educational Resources Information Center
Tough, David T.
2009-01-01
The purpose of this online study was to create a ranking of essential core competencies and technologies required by AET (audio engineering technology) programs 10 years in the future. The study was designed to facilitate curriculum development and improvement in the rapidly expanding number of small to medium sized audio engineering technology…
NASA Astrophysics Data System (ADS)
Howell Smith, Michelle C.
Given the increasing complexity of technology in our society, the United States has a growing demand for a more highly educated technical workforce. Unfortunately, the proportion of United States citizens earning a PhD in engineering has been declining and there is concern about meeting the economic, national security and quality of life needs of our country. This mixed methods sequential exploratory instrument design study identified factors that facilitate or inhibit interest in engineering PhD programs among domestic engineering undergraduate students in the United States. This study developed a testable theory for how domestic students become interested in engineering PhD programs and a measure of that process, the Exploring Engineering Interest Inventory (EEII). The study was conducted in four phases. The first phase of the study was a qualitative grounded theory exploration of interest in the engineering PhD. Qualitative data were collected from domestic engineering students, engineering faculty and industry professional who had earned a PhD in engineering. The second phase, instrument development, developed the Exploring Engineering Interest Inventory (EEII), a measurement instrument designed with good psychometric properties to test a series of preliminary hypotheses related to the theory generated in the qualitative phase. In the third phase of the study, the EEII was used to collect data from a larger sample of junior and senior engineering majors. The fourth phase integrated the findings from the qualitative and quantitative phases. Four factors were identified as being significant influences of interest in the engineering PhD: Personal characteristics, educational environment, misperceptions of the economic and personal costs, and misperceptions of engineering work. Recommendations include increasing faculty encouragement of students to pursue an engineering PhD and programming to correct the misperceptions of the costs of the engineering PhD and the nature of the work that PhD engineers do. The tested model provides engineering educators with information to help them prioritize their efforts to increase interest in the engineering PhD among domestic students.
ERIC Educational Resources Information Center
Stricker, David R.
2010-01-01
This study was conducted to describe a teacher developed high school engineering course, to identify teaching strategies used in the process of delivering math and science literacy through this course, to identify challenges and constraints that occurred during its development and delivery, and to describe the strategies that were used to overcome…
Study and development of acoustic treatment for jet engine tailpipes
NASA Technical Reports Server (NTRS)
Nelson, M. D.; Linscheid, L. L.; Dinwiddie, B. A., III; Hall, O. J., Jr.
1971-01-01
A study and development program was accomplished to attenuate turbine noise generated in the JT3D turbofan engine. Analytical studies were used to design an acoustic liner for the tailpipe. Engine ground tests defined the tailpipe environmental factors and laboratory tests were used to support the analytical studies. Furnace-brazed, stainless steel, perforated sheet acoustic liners were designed, fabricated, installed, and ground tested in the tailpipe of a JT3D engine. Test results showed the turbine tones were suppressed below the level of the jet exhaust for most far field polar angles.
Developing an Engineering Design Process Assessment using Mixed Methods.
Wind, Stefanie A; Alemdar, Meltem; Lingle, Jeremy A; Gale, Jessica D; Moore, Roxanne A
Recent reforms in science education worldwide include an emphasis on engineering design as a key component of student proficiency in the Science, Technology, Engineering, and Mathematics disciplines. However, relatively little attention has been directed to the development of psychometrically sound assessments for engineering. This study demonstrates the use of mixed methods to guide the development and revision of K-12 Engineering Design Process (EDP) assessment items. Using results from a middle-school EDP assessment, this study illustrates the combination of quantitative and qualitative techniques to inform item development and revisions. Overall conclusions suggest that the combination of quantitative and qualitative evidence provides an in-depth picture of item quality that can be used to inform the revision and development of EDP assessment items. Researchers and practitioners can use the methods illustrated here to gather validity evidence to support the interpretation and use of new and existing assessments.
Advanced rotary engine studies
NASA Technical Reports Server (NTRS)
Jones, C.
1980-01-01
A review of rotary engine developments relevant to a stratified charge rotary aircraft engine is presented. Advantages in module size and weight, fuel efficiency, reliability, and multi-fuel capability are discussed along with developments in turbocharging, increased mean effective pressure, improved apex seal/trochoid wear surfacing materials, and high strength and temperature aluminum casting alloys. A carbureted prototype aircraft engine is also described.
The MSFC Collaborative Engineering Process for Preliminary Design and Concept Definition Studies
NASA Technical Reports Server (NTRS)
Mulqueen, Jack; Jones, David; Hopkins, Randy
2011-01-01
This paper describes a collaborative engineering process developed by the Marshall Space Flight Center's Advanced Concepts Office for performing rapid preliminary design and mission concept definition studies for potential future NASA missions. The process has been developed and demonstrated for a broad range of mission studies including human space exploration missions, space transportation system studies and in-space science missions. The paper will describe the design team structure and specialized analytical tools that have been developed to enable a unique rapid design process. The collaborative engineering process consists of integrated analysis approach for mission definition, vehicle definition and system engineering. The relevance of the collaborative process elements to the standard NASA NPR 7120.1 system engineering process will be demonstrated. The study definition process flow for each study discipline will be will be outlined beginning with the study planning process, followed by definition of ground rules and assumptions, definition of study trades, mission analysis and subsystem analyses leading to a standardized set of mission concept study products. The flexibility of the collaborative engineering design process to accommodate a wide range of study objectives from technology definition and requirements definition to preliminary design studies will be addressed. The paper will also describe the applicability of the collaborative engineering process to include an integrated systems analysis approach for evaluating the functional requirements of evolving system technologies and capabilities needed to meet the needs of future NASA programs.
Development of Health Information Search Engine Based on Metadata and Ontology
Song, Tae-Min; Jin, Dal-Lae
2014-01-01
Objectives The aim of the study was to develop a metadata and ontology-based health information search engine ensuring semantic interoperability to collect and provide health information using different application programs. Methods Health information metadata ontology was developed using a distributed semantic Web content publishing model based on vocabularies used to index the contents generated by the information producers as well as those used to search the contents by the users. Vocabulary for health information ontology was mapped to the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), and a list of about 1,500 terms was proposed. The metadata schema used in this study was developed by adding an element describing the target audience to the Dublin Core Metadata Element Set. Results A metadata schema and an ontology ensuring interoperability of health information available on the internet were developed. The metadata and ontology-based health information search engine developed in this study produced a better search result compared to existing search engines. Conclusions Health information search engine based on metadata and ontology will provide reliable health information to both information producer and information consumers. PMID:24872907
Development of health information search engine based on metadata and ontology.
Song, Tae-Min; Park, Hyeoun-Ae; Jin, Dal-Lae
2014-04-01
The aim of the study was to develop a metadata and ontology-based health information search engine ensuring semantic interoperability to collect and provide health information using different application programs. Health information metadata ontology was developed using a distributed semantic Web content publishing model based on vocabularies used to index the contents generated by the information producers as well as those used to search the contents by the users. Vocabulary for health information ontology was mapped to the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), and a list of about 1,500 terms was proposed. The metadata schema used in this study was developed by adding an element describing the target audience to the Dublin Core Metadata Element Set. A metadata schema and an ontology ensuring interoperability of health information available on the internet were developed. The metadata and ontology-based health information search engine developed in this study produced a better search result compared to existing search engines. Health information search engine based on metadata and ontology will provide reliable health information to both information producer and information consumers.
Automotive Stirling Engine Development Program
NASA Technical Reports Server (NTRS)
Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Antonelli, M. (Editor)
1983-01-01
Mod I engine testing and test results, the test of a Mod I engine in the United States, Mod I engine characterization and analysis, Mod I Transient Test Bed fuel economy, Mod I-A engine performance are discussed. Stirling engine reference engine manufacturing and reduced size studies, components and subsystems, and the study and test of low-cost casting alloys are also covered. The overall program philosophy is outlined, and data and results are presented.
ERIC Educational Resources Information Center
Morelock, John R.
2017-01-01
Studies exploring what it means to be an engineer professionally have been conducted for decades, but have boomed in recent years. This systematic literature review aims to organise extant studies on engineering identity by coding around four key variables: (a) definitions of engineering identity, (b) factors affecting engineering identity…
Structural Optimization Methodology for Rotating Disks of Aircraft Engines
NASA Technical Reports Server (NTRS)
Armand, Sasan C.
1995-01-01
In support of the preliminary evaluation of various engine technologies, a methodology has been developed for structurally designing the rotating disks of an aircraft engine. The structural design methodology, along with a previously derived methodology for predicting low-cycle fatigue life, was implemented in a computer program. An interface computer program was also developed that gathers the required data from a flowpath analysis program (WATE) being used at NASA Lewis. The computer program developed for this study requires minimum interaction with the user, thus allowing engineers with varying backgrounds in aeropropulsion to successfully execute it. The stress analysis portion of the methodology and the computer program were verified by employing the finite element analysis method. The 10th- stage, high-pressure-compressor disk of the Energy Efficient Engine Program (E3) engine was used to verify the stress analysis; the differences between the stresses and displacements obtained from the computer program developed for this study and from the finite element analysis were all below 3 percent for the problem solved. The computer program developed for this study was employed to structurally optimize the rotating disks of the E3 high-pressure compressor. The rotating disks designed by the computer program in this study were approximately 26 percent lighter than calculated from the E3 drawings. The methodology is presented herein.
Automotive Stirling engine development program
NASA Technical Reports Server (NTRS)
Ernst, W.; Richey, A.; Farrell, R.; Riecke, G.; Smith, G.; Howarth, R.; Cronin, M.; Simetkosky, M.; Meacher, J.
1986-01-01
This is the ninth Semiannual Technical Progress Report prepared under the Automotive Stirling Engine Development Program. It covers the twenty-eighth and twenty-ninth quarters of activity after award of the contract. Quarterly Technical Progress Reports related program activities from the first through the thirteenth quarters; thereafter, reporting was changed to a Semiannual format. This report summarizes the study of higher-power kinematic Stirling engines for transportation use, development testing of Mod I Stirling engines, and component development activities. Component development testing included successful conical fuel nozzle testing and functional checkout of Mod II controls and auxiliaries on Mod I engine test beds. Overall program philosophy is outlined and data and test results are presented.
ERIC Educational Resources Information Center
Medina-Dominguez, Fuensanta; Sanchez-Segura, Maria-Isabel; Mora-Soto, Arturo; Amescua, Antonio
2010-01-01
The development of collaborative Web applications does not follow a software engineering methodology. This is because when university students study Web applications in general, and collaborative Web portals in particular, they are not being trained in the use of software engineering techniques to develop collaborative Web portals. This paper…
Students' perceptions of the relevance of mathematics in engineering
NASA Astrophysics Data System (ADS)
Flegg, Jennifer; Mallet, Dann; Lupton, Mandy
2012-09-01
In this article, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society [M. Kirschenman and B. Brenner, Education for Civil Engineering: A Profession of Practice, Leader. Manag. Eng. 10 (2010), p. 54]. Qualitative and quantitative data on students' views of the relevance of their mathematics study to their engineering studies and future careers in engineering was collected. The students described using a range of mathematics techniques (mathematics skills developed, mathematics concepts applied to engineering and skills developed relevant for engineering) for various usages (as a subject of study, a tool for other subjects or a tool for real world problems). We found a number of themes relating to the design of engineering mathematics curriculum emerged from the data. These included the relevance of mathematics within different engineering majors, the relevance of mathematics to future studies, the relevance of learning mathematical rigour and the effectiveness of problem-solving tasks in conveying the relevance of mathematics more effectively than other forms of assessment. We make recommendations for the design of engineering mathematics curriculum based on our findings.
NASA Astrophysics Data System (ADS)
Danos, Xenia; Barr, Ronald; Górska, Renata; Norman, Eddie
2014-11-01
Curriculum planning for the development of graphicacy capability has not been systematically included in general education to coincide with the graphicacy needs of human society. In higher education, graphicacy curricula have been developed to meet the needs of certain disciplines, for example medical and teacher training and engineering, among others. A framework for graphicacy curricula, anticipating the graphicacy needs in higher education, has yet to be strategically planned for general education. This is partly a result of lack of research effort in this area, but also a result of lack of systematic curriculum planning in general. This paper discusses these issues in the context of graphicacy curricula for engineering. The paper presents three broad individual case studies spanning Europe and the USA, brought together by the common denominator, graphicacy. The case studies are based on: an analysis of graphicacy within general education curricula, an analysis of graphicacy for engineering education in Europe and an analysis of graphicacy for engineering education in the USA. These three papers were originally presented in a plenary session at the American Society for Engineering Education, Engineering Design Graphics Division at the University of Limerick in November 2012. The case studies demonstrate the potential for strategic curriculum planning in regard to the development of graphicacy in general education and an overview of a methodology to achieve that. It also offers further evidence towards the importance of the systematic classification of graphics capabilities in Engineering and how the lack of a developed theoretical framework in this area undermines the case for the importance of graphics within engineering education.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirschkron, R.; Davis, R.H.; Warren, R.E.
1979-04-30
This study developed data on General Electric common core derivative engines for use in Maritime Patrol Aircraft (MPA) concept formulation studies. The study included the screening of potential General Electric turbofan and turboprop/turboshaft engines and the preparation of technical and planning information on three of the most promising engine candidates. Screening of General Electric derivative candidates was performed utilizing an analytical MPA model using synthesized mission profiles to rank the candidates in terms of fuel consumption, weight, cost and complexity. The three turboprop engines selected for further study were as follows: TF34 growth derivative version with boost and new LPTmore » (TF34/T7 Study A1), F404 derivative with booster stages and new LPT (F404/T1 Study A1), and GE27 scaled and boosted study engine (GE27/T3 Study A1). Volume I summarizes the screening analysis and contains technical, planning, installation, cost and development data for the three selected turboprop engines. Volumes II, III and IV of this report contain the detailed performance data estimates for the GE27/T3 Study A1, TF34/T7 Study A1 and F404/T1 Study A1 turboprop engines, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirschkron, R.; Davis, R.H.; Warren, R.E.
1979-04-30
This study developed data on General Electric common core derivative engines for use in Maritime Patrol Aircraft (MPA) concept formulation studies. The study included the screening of potential General Electric turbofan and turboprop/turboshaft engines and the preparation of technical and planning information on three of the most promising engine candidates. Screening of General Electric derivative candidates was performed utilizing an analytical MPA model using synthesized mission profiles to rank the candidates in terms of fuel consumption, weight, cost and complexity. The three turboprop engines selected for further study were as follows: TF34 growth derivative version with boost and new LPTmore » (TF34/T7 Study A1), F404 derivative with booster stages and new LPT (F404/T1 Study A1), and GE27 scaled and boosted study engine (GE27/T3 Study A1). Volume I summarizes the screening analysis and contains technical, planning, installation, cost and development data for the three selected turboprop engines. Volumes II, III and IV of this report contain the detailed performance data estimates for the GE27/T3 Study A1, TF34/T7 Study A1 and F404/T1 Study A1 turboprop engines, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirschkron, R.; Davis, R.H.; Warren, R.E.
1979-04-30
This study developed data on General Electric common core derivative engines for use in Maritime Patrol Aircraft (MPA) concept formulation studies. The study included the screening of potential General Electric turbofan and turboprop/turboshaft engines and the preparation of technical and planning information on three of the most promising engine candidates. Screening of General Electric derivative candidates was performed utilizing an analytical MPA model using synthesized mission profiles to rank the candidates in terms of fuel consumption, weight, cost and complexity. The three turboprop engines selected for further study were as follows: TF34 growth derivative version with boost and new LPTmore » (TF34/T7 Study A1), F404 derivative with booster stages and new LPT (F404/T1 Study A1), and GE27 scaled and boosted study engine (GE27/T3 Study A1). Volume I summarizes the screening analysis and contains technical, planning, installation, cost and development data for the three selected turboprop engines. Volumes II, III and IV of this report contain the detailed performance data estimates for the GE27/T3 Study A1, TF34/T7 Study A1 and F404/T1 Study A1 turboprop engines, respectively.« less
NASA Applications and Lessons Learned in Reliability Engineering
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.; Fuller, Raymond P.
2011-01-01
Since the Shuttle Challenger accident in 1986, communities across NASA have been developing and extensively using quantitative reliability and risk assessment methods in their decision making process. This paper discusses several reliability engineering applications that NASA has used over the year to support the design, development, and operation of critical space flight hardware. Specifically, the paper discusses several reliability engineering applications used by NASA in areas such as risk management, inspection policies, components upgrades, reliability growth, integrated failure analysis, and physics based probabilistic engineering analysis. In each of these areas, the paper provides a brief discussion of a case study to demonstrate the value added and the criticality of reliability engineering in supporting NASA project and program decisions to fly safely. Examples of these case studies discussed are reliability based life limit extension of Shuttle Space Main Engine (SSME) hardware, Reliability based inspection policies for Auxiliary Power Unit (APU) turbine disc, probabilistic structural engineering analysis for reliability prediction of the SSME alternate turbo-pump development, impact of ET foam reliability on the Space Shuttle System risk, and reliability based Space Shuttle upgrade for safety. Special attention is given in this paper to the physics based probabilistic engineering analysis applications and their critical role in evaluating the reliability of NASA development hardware including their potential use in a research and technology development environment.
ERIC Educational Resources Information Center
Goldman, Daphne; Assaraf, Orit Ben-Zvi; Shemesh, Julia
2014-01-01
While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was…
A 150 and 300 kW lightweight diesel aircraft engine design study
NASA Technical Reports Server (NTRS)
Brouwers, A. P.
1980-01-01
The diesel engine was reinvestigated as an aircraft powerplant through design study conducted to arrive at engine configurations and applicable advanced technologies. Two engines are discussed, a 300 kW six-cylinder engine for twin engine general aviation aircraft and a 150 kW four-cylinder engine for single engine aircraft. Descriptions of each engine include concept drawings, a performance analysis, stress and weight data, and a cost study. This information was used to develop two airplane concepts, a six-place twin and a four-place single engine aircraft. The aircraft study consists of installation drawings, computer generated performance data, aircraft operating costs, and drawings of the resulting airplanes. The performance data show a vast improvement over current gasoline-powered aircraft.
Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3
NASA Technical Reports Server (NTRS)
Martinez, A.; Erickson, C.; Hines, B.
1986-01-01
Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.
Engineering studies in support of the development of high-speed track geometry specifications
DOT National Transportation Integrated Search
1997-03-01
The Federal Railroad Administration has been directing engineering studies to support the development of high speed track geometry standards. These standards are intended to cover train operating speeds from 110 mph to 200 mph. The studies conducted ...
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria R.; Daly, Shanna; Baker, Wayne; Papalambros, panos; Seifert, Colleen
2013-01-01
This study investigates interdisciplinary interactions that take place during the research, development, and early conceptual design phases in the design of large-scale complex engineered systems (LaCES) such as aerospace vehicles. These interactions, that take place throughout a large engineering development organization, become the initial conditions of the systems engineering process that ultimately leads to the development of a viable system. This paper summarizes some of the challenges and opportunities regarding social and organizational issues that emerged from a qualitative study using ethnographic and survey data. The analysis reveals several socio-technical couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their benefits to the engineered system as well as substantial challenges in interdisciplinary interactions. Noted benefits included enhanced knowledge and problem mitigation and noted obstacles centered on organizational and human dynamics. Findings suggest that addressing the social challenges may be a critical need in enabling interdisciplinary interactions
LST CGM Generator and Viewer Final Report CRADA No. TSB-1558-98
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vickers, Don; Larson, Don
The purpose of this project was to jointly develop and test a software plug-in that would convert native Pro /ENGINEER digital engineering drawings to Computer Graphics Metafile (CGM) format. If it was not feasible to convert the Pro/ENGINEER files, we planned to develop and test a similar conversion of native AutoCAD engineering drawings to CGM. CGM viewer plug-ins were developed as needed. There were four main tasks in this project: 1. Requirements for CGM Plug-in 2. Product Evaluation 3. Product Development Feasibility Study 4. Developing a "Plug-In" Application.
Automotive Stirling engine development program
NASA Technical Reports Server (NTRS)
Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Rohdenburg, C.; Vatsky, A.; Antonelli, M. (Editor)
1983-01-01
Activities performed on Mod I engine testing and test results, testing of the Mod I engine in the United States, Mod I engine characterization and analyses, Mod I Transient Test Bed fuel economy, upgraded Mod I performance and testing, Stirling engine reference engine manufacturing and reduced size studied, components and subsystems, and the study and test of low cost casting alloys are summarized. The overall program philosophy is outlined, and data and results are presented.
Graziotin, Daniel; Wang, Xiaofeng; Abrahamsson, Pekka
2014-01-01
For more than thirty years, it has been claimed that a way to improve software developers' productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states-emotions and moods-deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint.
Tactical Unmanned Ground Vehicle Related Research References (BTA Study)
1993-03-01
draw bar pull - 4,297 lbs; Engine - 65 hp air cooled diesel engine ; dual electrical motors, hydrostatic drive; Observation - three closed-circuit...8217 Munitions and Chemical Command. Commander, U. S. Army Chemical Research, Development, and Engineering Center. 40..... "Unmanned Air Vehicles Payloads...8217 Larry Brantley Advanced Systems Concepts Office Research, Development, and Engineering Center MARCH 1993 edetone qArs nal, Alabama 35898-5000
The Technology of Forming of Innovative Content for Engineering Education
ERIC Educational Resources Information Center
Kayumova, Lilija A.; Savva, Lubov I.; Soldatchenko, Aleksandr L.; Sirazetdinov, Rustem M.; Akhmetov, Linar G.
2016-01-01
The relevance of the study is conditioned by the modernization of engineering education aimed at specialists' training to solve engineering and economic problems effectively. The goal of the paper is to develop the technology of the innovative content's formation for engineering education. The leading method to the study of this problem is a…
Women Studies in Engineering Education: Content Analysis in Three Referred Journals
ERIC Educational Resources Information Center
Chou, Pao-Nan
2013-01-01
Little is known about the research characteristics of past women studies in engineering education. In order to add knowledge base about the advanced development of women studies in current engineering education research, the purpose of the study is to investigate research characteristics of past women studies published in three referred…
Evaluation of Game Engines for Cross-Platform Development of Mobile Serious Games for Health.
Kleinschmidt, Carina; Haag, Martin
2016-01-01
Studies have shown that serious games for health can improve patient compliance and help to increase the quality of medical education. Due to a growing availability of mobile devices, especially the development of cross-platform mobile apps is helpful for improving healthcare. As the development can be highly time-consuming and expensive, an alternative development process is needed. Game engines are expected to simplify this process. Therefore, this article examines the question whether using game engines for cross-platform serious games for health can simplify the development compared to the development of a plain HTML5 app. At first, a systematic review of the literature was conducted in different databases (MEDLINE, ACM and IEEE). Afterwards three different game engines were chosen, evaluated in different categories and compared to the development of a HTML5 app. This was realized by implementing a prototypical application in the different engines and conducting a utility analysis. The evaluation shows that the Marmalade engine is the best choice for development in this scenario. Furthermore, it is obvious that the game engines have great benefits against plain HTML5 development as they provide components for graphics, physics, sounds, etc. The authors recommend to use the Marmalade Engine for a cross-platform mobile Serious Game for Health.
Multi-fuel rotary engine for general aviation aircraft
NASA Technical Reports Server (NTRS)
Jones, C.; Ellis, D. R.; Meng, P. R.
1983-01-01
Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.
Developing Teaching of Mathematics to First Year Engineering Students
ERIC Educational Resources Information Center
Jaworski, Barbara; Matthews, Janette
2011-01-01
Engineering Students Understanding Mathematics (ESUM) is a developmental research project at a UK university. The motivating aim is that engineering students should develop a more conceptual understanding of mathematics through their participation in an innovation in teaching. A small research team has both studied and contributed to innovation,…
Orbital Transfer Vehicle (OTV) engine study. Phase A: Extension
NASA Technical Reports Server (NTRS)
Sobin, A. J.
1980-01-01
The current Phase A-Extension of the OTV engine study program aims to provide additional expander and staged combustion cycle data that will lead to design definition of the OTV engine. The proposed program effort seeks to optimize the expander cycle engine concept (consistent with identified OTV engine requirements), investigate the feasibility of kitting the staged combustion cycle engine to provide extended thrust operation, and conduct in-depth analysis of development risk, crew safety, and reliability for both cycles. Additional tasks address the costing of a 10/K thrust expander cycle engine and support of OTV systems study contractors.
Developing the Next Generation of Science Data System Engineers
NASA Technical Reports Server (NTRS)
Moses, John F.; Behnke, Jeanne; Durachka, Christopher D.
2016-01-01
At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects.The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peermentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breadth of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multidiscipline science and practitioner communities expect to have access to all types of observational data.This paper describes an approach to defining career-path guidance for college-bound high school and undergraduate engineering students, junior and senior engineers from various disciplines.
Developing the Next Generation of Science Data System Engineers
NASA Astrophysics Data System (ADS)
Moses, J. F.; Durachka, C. D.; Behnke, J.
2015-12-01
At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects. The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peer mentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breath of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multi-discipline science and practitioner communities expect to have access to all types of observational data. This paper describes an approach to defining career-path guidance for college-bound high school and undergraduate engineering students, junior and senior engineers from various disciplines.
Wang, Xiaofeng; Abrahamsson, Pekka
2014-01-01
For more than thirty years, it has been claimed that a way to improve software developers’ productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states—emotions and moods—deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint. PMID:24688866
Introduction to tissue engineering and application for cartilage engineering.
de Isla, N; Huseltein, C; Jessel, N; Pinzano, A; Decot, V; Magdalou, J; Bensoussan, D; Stoltz, J-F
2010-01-01
Tissue engineering is a multidisciplinary field that applies the principles of engineering, life sciences, cell and molecular biology toward the development of biological substitutes that restore, maintain, and improve tissue function. In Western Countries, tissues or cells management for clinical uses is a medical activity governed by different laws. Three general components are involved in tissue engineering: (1) reparative cells that can form a functional matrix; (2) an appropriate scaffold for transplantation and support; and (3) bioreactive molecules, such as cytokines and growth factors that will support and choreograph formation of the desired tissue. These three components may be used individually or in combination to regenerate organs or tissues. Thus the growing development of tissue engineering needs to solve four main problems: cells, engineering development, grafting and safety studies.
NASA Astrophysics Data System (ADS)
Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan
A relevant initiative from the software engineering community called Model Driven Engineering (MDE) is being developed in parallel with the Semantic Web (Mellor et al. 2003a). The MDE approach to software development suggests that one should first develop a model of the system under study, which is then transformed into the real thing (i.e., an executable software entity). The most important research initiative in this area is the Model Driven Architecture (MDA), which is Model Driven Architecture being developed under the umbrella of the Object Management Group (OMG). This chapter describes the basic concepts of this software engineering effort.
X-33/RLV Program Aerospike Engines
NASA Technical Reports Server (NTRS)
1999-01-01
Substantial progress was made during the past year in support of the X-33/RLV program. X-33 activity was directed towards completing the remaining design work and building hardware to support test activities. RLV work focused on the nozzle ramp and powerpack technology tasks and on supporting vehicle configuration studies. On X-33, the design activity was completed to the detail level and the remainder of the drawings were released. Component fabrication and engine assembly activity was initiated, and the first two powerpacks and the GSE and STE needed to support powerpack testing were completed. Components fabrication is on track to support the first engine assembly schedule. Testing activity included powerpack testing and component development tests consisting of thrust cell single cell testing, CWI system spider testing, and EMA valve flow and vibration testing. Work performed for RLV was divided between engine system and technology development tasks. Engine system activity focused on developing the engine system configuration and supporting vehicle configuration studies. Also, engine requirements were developed, and engine performance analyses were conducted. In addition, processes were developed for implementing reliability, mass properties, and cost controls during design. Technology development efforts were divided between powerpack and nozzle ramp technology tasks. Powerpack technology activities were directed towards the development of a prototype powerpack and a ceramic turbine technology demonstrator (CTTD) test article which will allow testing of ceramic turbines and a close-coupled gas generator design. Nozzle technology efforts were focused on the selection of a composite nozzle supplier and on the fabrication and test of composite nozzle coupons.
ERIC Educational Resources Information Center
Buelin, Jennifer; Clark, Aaron C.; Ernst, Jeremy V.
2016-01-01
In this study, the 14 Grand Challenges for Engineering in the 21st Century identified by the National Academy of Engineering were examined by a panel of experts in an effort to identify prospective curricular integration opportunities in the field of technology and engineering education. The study utilized a three-round modified Delphi methodology…
High Schools That Work Presents a Pre-Engineering Program of Study.
ERIC Educational Resources Information Center
Southern Regional Education Board, Atlanta, GA.
The Southern Regional Education Board partnered with the not-for-profit organization Project Lead the Way (PLTW) to develop a program connecting challenging academic courses with a pre-engineering program of study. The programs goal is to increase the number and quality of engineers and engineering technologists by providing the following items:…
Providing Co-Curricular Support: A Multi-Case Study of Engineering Student Support Centers
ERIC Educational Resources Information Center
Lee, Walter C., Jr.
2015-01-01
In response to the student retention and diversity issues that have been persistent in undergraduate engineering education, many colleges have developed Engineering Student Support Centers (ESSCs) such as Minority Engineering Programs (MEPs) and Women in Engineering Programs (WEPs). ESSCs provide underrepresented students with co-curricular…
Engineering Curriculum Development: Balancing Employer Needs and National Interest--A Case Study.
ERIC Educational Resources Information Center
Buniyamin, Norlida; Mohamad, Zainuddin
The Faculty of Mechanical Engineering at the University Teknologi MARA, Malaysia, developed an undergraduate-level engineering curriculum that balances national interests with those of employers and academics. The curriculum was based on materials posted at the Internet sites of universities in the United States, United Kingdom, and Malaysia…
Engineering Professional Development Design for Secondary School Teachers: A Multiple Case Study
ERIC Educational Resources Information Center
Daugherty, Jenny Lynn
2009-01-01
The complexity of engineering and its integration into K-12 education have resulted in a variety of issues requiring sustained empirical research (Johnson, Burghardt, & Daugherty, 2008). One particular area of need, given the emphasis on teacher effects on student learning, is to research engineering-oriented teacher professional development. A…
What Do Final Year Engineering Students Know about Sustainable Development?
ERIC Educational Resources Information Center
Nicolaou, I.; Conlon, E.
2012-01-01
This paper presents data from a project that aims to determine the level of knowledge and understanding of engineering students about sustainable development (SD). The data derive from a survey completed by final year engineering students in three Irish Higher Education Institutions. This paper is part of a larger study that examines the…
An Exploration of the Professional Competencies Required in Engineering Asset Management
ERIC Educational Resources Information Center
Bish, Adelle J.; Newton, Cameron J.; Browning, Vicky; O'Connor, Peter; Anibaldi, Renata
2014-01-01
Engineering asset management (EAM) is a rapidly growing and developing field. However, efforts to select and develop engineers in this area are complicated by our lack of understanding of the full range of competencies required to perform. This exploratory study sought to clarify and categorise the professional competencies required of individuals…
Science and Engineering Technician Curriculum Development Project. Final Report.
ERIC Educational Resources Information Center
Mowery, Donald R.; Wolf, Lawrence J.
Project SET (Science and Engineering for Technicians) developed a series of study guides designed to teach generic science and engineering skills to students interested in becoming technicians. An entire 2-year curriculum is encompassed by these guides, geared for 2-year college students. Described in this final report are the project's rationale,…
Developing a Vision of Pre-College Engineering Education
ERIC Educational Resources Information Center
Marshall, Jill A.; Berland, Leema K.
2012-01-01
We report the results of a study focused on identifying and articulating an ''epistemic foundation'' underlying a pre-collegiate focus on engineering. We do so in the context of UTeach"Engineering" (UTE), a program supported in part by funding by the National Science Foundation and designed to develop a model approach to address the…
Standards for K-12 Engineering Education?
ERIC Educational Resources Information Center
National Academies Press, 2010
2010-01-01
The goal of this study was to assess the value and feasibility of developing and implementing content standards for engineering education at the K-12 level. Content standards have been developed for three disciplines in STEM education--science, technology, and mathematic--but not for engineering. To date, a small but growing number of K-12…
A simplified dynamic model of the T700 turboshaft engine
NASA Technical Reports Server (NTRS)
Duyar, Ahmet; Gu, Zhen; Litt, Jonathan S.
1992-01-01
A simplified open-loop dynamic model of the T700 turboshaft engine, valid within the normal operating range of the engine, is developed. This model is obtained by linking linear state space models obtained at different engine operating points. Each linear model is developed from a detailed nonlinear engine simulation using a multivariable system identification and realization method. The simplified model may be used with a model-based real time diagnostic scheme for fault detection and diagnostics, as well as for open loop engine dynamics studies and closed loop control analysis utilizing a user generated control law.
Study of Periodical Flow Heat Transfer in an Internal Combustion Engine
NASA Astrophysics Data System (ADS)
Luo, Xi
In-cylinder heat transfer is one of the most critical physical behaviors which has a direct influence on engine out emission and thermal efficiency for IC engine. In-cylinder wall temperature has to be precisely controlled to achieve high efficiency and low emission. However, this cannot be done without knowing gas-to-wall heat flux. This study reports on the development of a technique suitable for engine in-cylinder surface temperature measurement, as the traditional method is "hard to reach." A laser induced phosphorescence technique was used to study in-cylinder wall temperature effects on engine out unburned hydrocarbons during the engine transitional period (warm up). A linear correlation was found between the cylinder wall surface temperature and the unburned hydrocarbons at mediate and high charge densities. At low charge density, no clear correlation was observed because of miss-fire events. A new auto background correction infrared (IR) diagnostic was developed to measure the instantaneous in-cylinder surface temperature at 0.1 CAD resolution. A numerical mechanism was designed to suppress relatively low-frequency background noise and provide an accurate in-cylinder surface temperature measurements with an error of less than 1.4% inside the IC engine. In addition, a proposed optical coating reduced time delay errors by 50% compared to more conventional thermocouple techniques. A new cycle-averaged Res number was developed for an IC engine to capture the characteristics of engine flow. Comparison and scaling between different engine flow parameters are available by matching the averaged Res number. From experimental results, the engine flow motion was classified as intermittently turbulent, and it is different from the original fully developed turbulent assumption, which has previously been used in almost all engine simulations. The intermittent turbulence could have a great impact on engine heat transfer because of the transitional turbulence effect. Engine 3D CFD model further proves the existence of transitional turbulence flow. A new multi zone heat transfer model is proposed for IC engines only. The model includes pressure work effects and improved heat transfer prediction compared to the standard Law of the wall model.
NASA Astrophysics Data System (ADS)
Kersten, Jennifer Anna
In recent years there has been increasing interest in engineering education at the K-12 level, which has resulted in states adopting engineering standards as a part of their academic science standards. From a national perspective, the basis for research into engineering education at the K-12 level is the belief that it is of benefit to student learning, including to "improve student learning and achievement in science and mathematics; increase awareness of engineering and the work of engineers; boost youth interest in pursuing engineering as a career; and increase the technological literacy of all students" (National Research Council, 2009a, p. 1). The above has led to a need to understand how teachers are currently implementing engineering education in their classrooms. High school physics teachers have a history of implementing engineering design projects in their classrooms, thus providing an appropriate setting to look for evidence of quality engineering education at the high school level. Understanding the characteristics of quality engineering integration can inform curricular and professional development efforts for teachers asked to implement engineering in their classrooms. Thus, the question that guided this study is: How, and to what extent, do physics teachers represent quality engineering in a physics unit focused on engineering? A case study research design was implemented for this project. Three high school physics teachers were participants in this study focused on the integration of engineering education into the physics classroom. The data collected included observations, interviews, and classroom documents that were analyzed using the Framework for Quality K-12 Engineering Education (Moore, Glancy et al., 2013). The results provided information about the areas of the K-12 engineering framework addressed during these engineering design projects, and detailed the quality of these lesson components. The results indicate that all of the design projects contained components of the indicators central to engineering education, although with varied degrees of success. In addition, each design project contained aspects important to the development of students' understanding of engineering and that promote important professional skills used by engineers. The implications of this work are discussed at the teacher, school, professional development, and policy levels.
NASA Astrophysics Data System (ADS)
Dettinger, Karen Marie
This study used grounded theory in a case study at a large public research university to develop a theory about how the culture in engineering education affects students with varying interests and backgrounds. According to Career Preference Theory, the engineering education system has evolved to meet the needs of one type of student, the Physical Scientist. While this educational process serves to develop the next generation of engineering faculty members, the majority of engineering undergraduates go on to work as practicing engineers, and are far removed from working as physical scientists. According to Career Preference Theory, students with a history of success in mathematics and sciences, and a focus on career, enter engineering. These students, who actually have a wide range of interests and values, each begin seeking an identity as a practicing engineer. Career Preference Theory is developed around a concept, Career Identity Type, that describes five different types of engineering students: Pragmatic, Physical Scientist, "Social" Scientist, Designer, and Educator. According to the theory, each student must develop an identity within the engineering education system if they are to persist in engineering. However, the current undergraduate engineering education system has evolved in such a way that it meets only the needs of the Physical Scientist. Pragmatic students are also likely to succeed because they tend to be extremely goal-focused and maintain a focus on the rewards they will receive once they graduate with an engineering degree. However, "Social" Scientists, who value interpersonal relationships and giving back to society; Designers, who value integrating ideas across disciplines to create aesthetically pleasing and useful products; and Educators, who have a strong desire to give back to society by working with young people, must make some connection between these values and a future engineering career if they are to persist in engineering. According to Career Preference Theory, "Social" Scientists, Designers, and Educators are likely to leave engineering, while Pragmatics and Physical Scientists are likely to persist.
Hands-on curriculum teaches biomedical engineering concepts to home-schooled students.
Sagstetter, Ann M; Nimunkar, Amit J; Tompkins, Willis J
2009-01-01
University level outreach has increased over the last decade to stimulate K-12 student interest in engineering related fields. Home schooling students are one of the groups that are valued for engineering admissions due to diligent study habits and high achievement scores. However, home schooled students have inadequate access to science, math, and engineering related resources, which precludes the development of interdisciplinary teaching methods. To address this problem, we have developed a hands-on, STEM based curriculum as a safe and comprehensive supplement to current home schooling curricula. The ultimate goal is to stimulate university-student relations and subsequently increase engineering recruitment opportunities. Our pre and post workshop survey comparisons demonstrate that integrating disciplines, via the manner presented in this study, provides a K-12 student-friendly engineering learning method.
Review of alternate automotive engine fuel economy. Final report January-October 78
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, D.; Bolt, J.A.; Huber, P.
This study assessed the potential of alternate automotive engines to meet the fuel economy goals and emission levels of the 1980-1990 period. As part of NHTSA's continuing research in support of the Department of Transportation fuel economy activities, this study reviewed those developments offering viable substitutes for the current spark ignition engine systems. Categories assessed included stratified charge, diesels, turbo charging, rotary/Wankel engines, and the developmental gas turbine and Stirling cycle engines. Results of past and on-going research through 1978 were reviewed along with the development and production status of various alternate engine technologies proposed for automobiles and light trucksmore » through the 1980s. Assessment was then made of the potential fuel economy improvement as a percentage of 1978 baseline data.« less
Development Status of the CECE Cryogenic Deep Throttling Demonstrator Engine
NASA Technical Reports Server (NTRS)
2008-01-01
As one of the first technology development programs awarded by NASA under the U.S. Space Exploration Policy (USSEP), the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA's Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RLI0, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Two series of demonstrator engine tests, the first in April-May 2006 and the second in March-April 2007, have demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. Both test series have explored a combustion instability ("chug") environment at low throttled power levels. These tests have provided an early demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for future CECE Demonstrator engine tests.
ERIC Educational Resources Information Center
National Academy of Sciences, Washington, DC.
The joint study group was established to identify the most urgent research and training needs in agricultural engineering in Brazil and to recommend how best to meet those needs. Specific recommendations are given for a long-term program to establish quality programs in education and research in agricultural engineering in Brazil and means to gain…
ERIC Educational Resources Information Center
Husgafvel, Roope; Martikka, Mikko; Egas, Andrade; Ribiero, Natasha; Dahl, Olli
2017-01-01
Addressing the sustainability challenges in the forest sector in Mozambique requires capacity building for higher education and training of new skilled expert and future decision-makers. Our approach was to develop a study module on and pedagogical approaches to industrial environmental engineering and sustainability. The idea was to develop a…
Multi-fuel rotary engine for general aviation aircraft
NASA Technical Reports Server (NTRS)
Jones, C.; Ellis, D. R.; Meng, P. R.
1983-01-01
Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, an advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25,000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed. Previously announced in STAR as N83-18910
Performance of a Turboprop Engine with Heat Recovery in Off-Design Conditions
NASA Astrophysics Data System (ADS)
Andriani, Roberto; Ghezzi, Umberto; Gamma, Fausto; Ingenito, Antonella; Agresta, Antonio
2013-09-01
The research for fuel consumption and pollution reduction in new generation aero engines has indicated intercooling and regeneration as very effective methods for this purpose. Hence, different countries have joined their efforts in common research programs, to develop new gas turbine engines able to reduce considerably the fuel consumption and the ambient impact by means of these two techniques. To study their effects on the engine performance and characteristics, a thermodynamic numerical program that simulates the behavior of a turboprop engine with intercooling and regeneration in different operating conditions has been developed. After the parametric study, and the definition of the design conditions, the off-design analysis is carried on, comparing the main characteristics of the intercooled-regenerated turboprop with those of a conventional engine. Then, once a particular mission profile was fixed, the engine performance, in particular the equivalent power, the fuel consumption and the heat exchanger weight were discussed.
Selling Technical Sales to Engineering Learners
ERIC Educational Resources Information Center
Bumblauskas, Daniel P.; Carberry, Adam R.; Sly, David P.
2017-01-01
Sales engineering or technical sales programs bridge engineering and business to educate engineering students in sales specific to their discipline. Students develop business awareness through such programs, providing the sales workforce with technically knowledgeable salespeople. The following study analyzed cohorts of students enrolled in a…
ERIC Educational Resources Information Center
Hohn, Keith L.
2007-01-01
A hands-on project was developed to educate new chemical engineering students about the types of problems chemical engineers solve and to improve student enthusiasm for studying chemical engineering. In this project, students studied the phenomenon of carbonated beverages going flat. The project was implemented in 2003 and 2004 at Kansas State…
A Study of the Relationship Between the Practice of Civil Engineering and Student Courses: Volume 1.
ERIC Educational Resources Information Center
Bull, A. J. U.; Richardson, E.
Australian civil engineers were surveyed for a study intended to establish a model for development based on a list of the basic stock of knowledge and techniques that need to be mastered by the graduate civil engineer. Following a brief introduction and summary, chapters 3-7 review the survey objectives, civil engineering definitions and…
Orbit transfer vehicle engine study, phase A extension. Volume 2A: Study results
NASA Technical Reports Server (NTRS)
1980-01-01
Engine trade studies and systems analyses leading to a baseline engine selection for advanced expander cycle engine are discussed with emphasis on: (1) performance optimization of advanced expander cycle engines in the 10 to 20K pound thrust range; (2) selection of a recommended advanced expander engine configuration based on maximized performance and minimized mission risk, and definition of the components for this configuration; (3) characterization of the low thrust adaptation requirements and performance for the staged combustion engine; (4) generation of a suggested safety and reliability approach for OTV engines independent of engine cycle; (5) definition of program risk relationships between expander and staged combustion cycle engines; and (6) development of schedules and costs for the DDT&E, production, and operation phases of the 10K pound thrust expander engine program.
Tissue engineering in urethral reconstruction—an update
Mangera, Altaf; Chapple, Christopher R
2013-01-01
The field of tissue engineering is rapidly progressing. Much work has gone into developing a tissue engineered urethral graft. Current grafts, when long, can create initial donor site morbidity. In this article, we evaluate the progress made in finding a tissue engineered substitute for the human urethra. Researchers have investigated cell-free and cell-seeded grafts. We discuss different approaches to developing these grafts and review their reported successes in human studies. With further work, tissue engineered grafts may facilitate the management of lengthy urethral strictures requiring oral mucosa substitution urethroplasty. PMID:23042444
Developing Tomorrows Engineers: A Case Study in Instrument Engineering
ERIC Educational Resources Information Center
McDonnell, Liam; O'Neill, Donal
2009-01-01
Purpose: The purpose of this case study is to outline the challenges facing industry and educational institutions in educating and training instrument engineers against a backdrop of declining interest by secondary school students in mathematics and physics. This case study cites the experience and strategies of the Kentz Group and Cork Institute…
Developing Engineering and Science Process Skills Using Design Software in an Elementary Education
NASA Astrophysics Data System (ADS)
Fusco, Christopher
This paper examines the development of process skills through an engineering design approach to instruction in an elementary lesson that combines Science, Technology, Engineering, and Math (STEM). The study took place with 25 fifth graders in a public, suburban school district. Students worked in groups of five to design and construct model bridges based on research involving bridge building design software. The assessment was framed around individual student success as well as overall group processing skills. These skills were assessed through an engineering design packet rubric (student work), student surveys of learning gains, observation field notes, and pre- and post-assessment data. The results indicate that students can successfully utilize design software to inform constructions of model bridges, develop science process skills through problem based learning, and understand academic concepts through a design project. The final result of this study shows that design engineering is effective for developing cooperative learning skills. The study suggests that an engineering program offered as an elective or as part of the mandatory curriculum could be beneficial for developing students' critical thinking, inter- and intra-personal skills, along with an increased their understanding and awareness for scientific phenomena. In conclusion, combining a design approach to instruction with STEM can increase efficiency in these areas, generate meaningful learning, and influence student attitudes throughout their education.
Systems engineering real estate development projects
NASA Astrophysics Data System (ADS)
Gusakova, Elena; Titarenko, Boris; Stepanov, Vitaliy
2017-10-01
In recent years, real estate development has accumulated a wealth of experience in implementing major projects, which requires comprehension and systematization. The scientific instrument of system engineering is studied in the article and is substantively interpreted with reference to real estate development projects. The most perspective approaches and models are substantiated, allowing strategically to plan the life cycle of the project as a whole, and also to solve the engineering butt problems of the project. The relevance of further scientific studies of regularities and specifics of the life cycle of real estate development projects conducted at the Moscow State University of Economics and Management at the ISTA department is shown.
The NASA hypersonic research engine program
NASA Technical Reports Server (NTRS)
Rubert, Kennedy F.; Lopez, Henry J.
1992-01-01
An overview is provided of the NASA Hypersonic Research Engine Program. The engine concept is described which was evolved, and the accomplishments of the program are summarized. The program was undertaken as an in-depth program of hypersonic airbreathing propulsion research to provide essential inputs to future prototype engine development and decision making. An airbreathing liquid hydrogen fueled research oriented scramjet was to be developed to certain performance goals. The work was many faceted, required aerodynamic design evaluation, structures development, and development of flight systems such as the fuel and control system, but the main objective was the study of the internal aerothermodynamics of the propulsion system.
ERIC Educational Resources Information Center
Nathan, Mitchell J.; Atwood, Amy K.; Prevost, Amy; Phelps, L. Allen; Tran, Natalie A.
2011-01-01
This quasi-experimental study measured the impact of Project Lead the Way (PLTW) instruction and professional development training on the views and expectations regarding engineering learning, instruction and career success of nascent pre college engineering teachers. PLTW teachers' initial and changing views were compared to the views exhibited…
ERIC Educational Resources Information Center
Morrison, Briana Marie Keafer
2013-01-01
Women continue to be underrepresented among engineering faculty despite decades of reform and intervention. To understand why more graduate women do not pursue careers in academia, this mixed methods study focuses on the experiences of women currently in graduate engineering programs, and how the graduate culture shapes their development and…
Implementation of a Multidisciplinary Professional Skills Course at an Electrical Engineering School
ERIC Educational Resources Information Center
Gider, F.; Likar, B.; Kern, T.; Miklavcic, D.
2012-01-01
This paper describes a case study of an innovative approach to teaching at an engineering school. The postgraduate course "Project Work and Communication in Research and Development (R&D)" was developed at the Faculty of Electrical Engineering of the University of Ljubljana, Ljubljana, Slovenia. The main aim of the course was to make…
Engineering for Sustainable Energy Education within Suburban, Urban and Developing Secondary Schools
ERIC Educational Resources Information Center
Kaikai, Moijue; Baker, Erin
2016-01-01
It is crucial that the younger generation be included in the conversation of sustainable development, given the urgent need of a global transition to cleaner energy solutions. Sustainable energy engineering (SEE) taught as early as secondary school can not only increase the number of students that will potentially study engineering to solve global…
78 FR 22527 - Army Science Board Request for Information on Technology and Core Competencies
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-16
...); Edgewood Chemical Biological Command (ECBC); Natick Soldier Research, Development & Engineering Center...; C4ISR; Night Vision; Chemical/Biological Warfare; and Soldier Systems. The study will focus on...); Armament Research, Development & Engineering Center (ARDEC); Aviation & Missile Research, Development...
On the leading edge; Combining maturity and advanced technology on the F404 turbofan engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powel, S.F. IV
1991-01-01
In this paper the overall design concept of the F404 afterburning turbofan engine is reviewed together with some of the lessons learned from over 2 million flight hours in service. GE Aircraft Engines' derivative and growth plans for the F404 family are then reviewed including the Building Block component development approach. Examples of advanced technologies under development for introduction into new F404 derivative engine models are presented in the areas of materials, digital and fiber optic controls systems, and vectoring exhaust nozzles. The design concept and details of the F404-GE-402, F412-GE-400, and other derivative engines under full-scale development are described.more » Studies for future growth variants and the benefits of the F404 derivative approach to development of afterburning engines in the 18,000-24,000 lb (80--107 kN) thrust class and non- afterburning engines in the 12,000--19,000 lb (53--85 kN) class are discussed.« less
NASA Astrophysics Data System (ADS)
Tang, Xiaofeng
Educators have recommended the integration of engineering and the liberal arts as a promising educational model to prepare young engineers for global economic, environmental, sociotechnical, and ethical challenges. Drawing upon philosophy of technology, engineering studies, and educational psychology, this dissertation examines diverse visions and strategies for integrating engineering and liberal education and explores their impacts on students' intellectual and moral development. Based on archival research, interviews, and participant observation, the dissertation presents in-depth case studies of three educational initiatives that seek to blend engineering with the humanities, social sciences, and arts: Harvey Mudd College, the Picker Engineering Program at Smith College, and the Programs in Design and Innovation at Rensselaer Polytechnic Institute. The research finds that learning engineering in a liberal arts context increases students' sense of "owning" their education and contributes to their communication, teamwork, and other non-technical professional skills. In addition, opportunities for extensive liberal arts learning in the three cases encourage some students to pursue alternative, less technocentric approaches to engineering. Nevertheless, the case studies suggest that the epistemological differences between the engineering and liberal arts instructors help maintain a technical/social dualism among most students. Furthermore, the dissertation argues a "hidden curriculum," which reinforces the dominant ideology in the engineering profession, persists in the integrated programs and prevents the students from reflecting on the broad social context of engineering and critically examining the assumptions upheld in the engineering profession.
ENGINEERING MANPOWER BULLETIN NUMBER 9.
ERIC Educational Resources Information Center
ALDEN, JOHN D.
DESIGNED TO INFORM LEADERS IN INDUSTRY, GOVERNMENT, AND EDUCATION, WHOSE RESPONSIBILITY INCLUDES AWARENESS OF ENGINEERING MANPOWER DEVELOPMENTS, THIS BULLETIN REPORTS A STUDY CONDUCTED BY THE ENGINEERING MANPOWER COMMISSION OF ENGINEERS IN THE ARMED SERVICES. THE WORK OF THE COMMISSION IS TO ASSURE THE MOST EFFECTIVE UTILIZATION OF ENGINEERING…
Space Transportation Booster Engine (STBE) configuration study
NASA Technical Reports Server (NTRS)
1986-01-01
The overall objective of this Space Transportation Booster Engine (STBE) study is to identify candidate engine configurations which enhance vehicle performance and provide operational flexibility at low cost. The specific objectives are as follows: (1) to identify and evaluate candidate LOX/HC engine configurations for the Advanced Space Transportation System for an early 1995 IOC and a late 2000 IOC; (2) to select one optimum engine for each time period; 3) to prepare a conceptual design for each configuration; (4) to develop a technology plan for the 2000 IOC engine; and, (5) to prepare preliminary programmatic planning and analysis for the 1995 IOC engine.
CMC Technology Advancements for Gas Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2013-01-01
CMC research at NASA Glenn is focused on aircraft propulsion applications. The objective is to enable reduced engine emissions and fuel consumption for more environmentally friendly aircraft. Engine system studies show that incorporation of ceramic composites into turbine engines will enable significant reductions in emissions and fuel burn due to increased engine efficiency resulting from reduced cooling requirements for hot section components. This presentation will describe recent progress and challenges in developing fiber and matrix constituents for 2700 F CMC turbine applications. In addition, ongoing research in the development of durable environmental barrier coatings, ceramic joining integration technologies and life prediction methods for CMC engine components will be reviewed.
Engineered Nanomaterials Elicit Cellular Stress Responses
Engineered nanomaterials are being developed continuously and incorporated into consumer products, resulting in increased human exposures. The study of engineered nanomaterials has focused largely on toxicity endpoints without further investigating potential mechanisms or pathway...
Evaluating Risk Awareness in Undergraduate Students Studying Mechanical Engineering
ERIC Educational Resources Information Center
Langdon, G. S.; Balchin, K.; Mufamadi, P.
2010-01-01
This paper examines the development of risk awareness among undergraduate students studying mechanical engineering at a South African university. A questionnaire developed at the University of Liverpool was modified and used on students from the first, second and third year cohorts to assess their awareness in the areas of professional…
Study Programmes for Engineers from Developing Countries at the Norwegian Institute of Technology.
ERIC Educational Resources Information Center
Lasson, Axel; Hermansen, John
1989-01-01
Describes the background of the study and fellowship programs for graduates from the developing countries at the Norwegian Institute of Technology. Discusses some experiences with the programs. Includes a brief description of five courses: (1) "Pulp and Paper Technology"; (2) "Marine Civil Engineering"; (3) "Hydropower…
Women and the Engineering Profession: the Stereotypical Engineer
NASA Astrophysics Data System (ADS)
Cory, Suzanne N.; Rezaie, Bahman
The paucity of female engineers has been a problem for years, and most universities suffer from a lack of women majoring in engineering. It is possible that the stereotypical image or perceived gender of engineers may deter young women from considering a career in the field. In order to determine whether 1st-year college students held perceptions regarding personality traits and probable gender of an engineer, a survey was developed based on the Personality Factor (PF) questionnaire originally developed by Cattell (1943). Results indicate that personality traits most often associated with engineers were primarily masculine. Also, engineers were most often expected to be male, especially by the females in this study. Perceived personality traits and the probable gender of engineers were compared to those of 5 other professions: accountants, lawyers, physicians, insurance broker/agents, and computer and information systems specialists. Several differences in perceived personality traits were found. In addition, engineers were perceived as more likely to be male than members of all of the other occupations studied except computer and information systems specialists. Possible approaches to begin altering young women's perceptions of personality traits and the probably gender of a stereotypical engineer are discussed.
NASA Astrophysics Data System (ADS)
McMahon, Ann P.
Educating K-12 students in the processes of design engineering is gaining popularity in public schools. Several states have adopted standards for engineering design despite the fact that no common agreement exists on what should be included in the K-12 engineering design process. Furthermore, little pre-service and in-service professional development exists that will prepare teachers to teach a design process that is fundamentally different from the science teaching process found in typical public schools. This study provides a glimpse into what teachers think happens in engineering design compared to articulated best practices in engineering design. Wenger's communities of practice work and van Dijk's multidisciplinary theory of mental models provide the theoretical bases for comparing the mental models of two groups of elementary teachers (one group that teaches engineering and one that does not) to the mental models of design engineers (including this engineer/researcher/educator and professionals described elsewhere). The elementary school teachers and this engineer/researcher/educator observed the design engineering process enacted by professionals, then answered questions designed to elicit their mental models of the process they saw in terms of how they would teach it to elementary students. The key finding is this: Both groups of teachers embedded the cognitive steps of the design process into the matrix of the social and emotional roles and skills of students. Conversely, the engineers embedded the social and emotional aspects of the design process into the matrix of the cognitive steps of the design process. In other words, teachers' mental models show that they perceive that students' social and emotional communicative roles and skills in the classroom drive their cognitive understandings of the engineering process, while the mental models of this engineer/researcher/educator and the engineers in the video show that we perceive that cognitive understandings of the engineering process drive the social and emotional roles and skills used in that process. This comparison of mental models with the process that professional designers use defines a problem space for future studies that investigate how to incorporate engineering practices into elementary classrooms. Recommendations for engineering curriculum development and teacher professional development based on this study are presented.
Design approaches to more energy efficient engines
NASA Technical Reports Server (NTRS)
Saunders, N. T.; Colladay, R. S.; Macioce, L. E.
1978-01-01
The status of NASA's Energy Efficient Engine Project, a comparative government-industry effort aimed at advancing the technology base for the next generation of large turbofan engines for civil aircraft transports is summarized. Results of recently completed studies are reviewed. These studies involved selection of engine cycles and configurations that offer potential for at least 12% lower fuel consumption than current engines and also are economically attractive and environmentally acceptable. Emphasis is on the advancements required in component technologies and systems design concepts to permit future development of these more energy efficient engines.
Definition study for variable cycle engine testbed engine and associated test program
NASA Technical Reports Server (NTRS)
Vdoviak, J. W.
1978-01-01
The product/study double bypass variable cycle engine (VCE) was updated to incorporate recent improvements. The effect of these improvements on mission range and noise levels was determined. This engine design was then compared with current existing high-technology core engines in order to define a subscale testbed configuration that simulated many of the critical technology features of the product/study VCE. Detailed preliminary program plans were then developed for the design, fabrication, and static test of the selected testbed engine configuration. These plans included estimated costs and schedules for the detail design, fabrication and test of the testbed engine and the definition of a test program, test plan, schedule, instrumentation, and test stand requirements.
Levi, Benjamin; Brugman, Samantha; Wong, Victor W; Grova, Monica; Longaker, Michael T
2011-01-01
Cleft palate represents the second most common birth defect and carries substantial physiologic and social challenges for affected patients, as they often require multiple surgical interventions during their lifetime. A number of genes have been identified to be associated with the cleft palate phenotype, but etiology in the majority of cases remains elusive. In order to better understand cleft palate and both surgical and potential tissue engineering approaches for repair, we have performed an in-depth literature review into cleft palate development in humans and mice, as well as into molecular pathways underlying these pathologic developments. We summarize the multitude of pathways underlying cleft palate development, with the transforming growth factor β superfamily being the most commonly studied. Furthermore, while the majority of cleft palate studies are performed using a mouse model, studies focusing on tissue engineering have also focused heavily on mouse models. A paucity of human randomized controlled studies exists for cleft palate repair, and so far, tissue engineering approaches are limited. In this review, we discuss the development of the palate, explain the basic science behind normal and pathologic palate development in humans as well as mouse models and elaborate on how these studies may lead to future advances in palatal tissue engineering and cleft palate treatments. PMID:21964245
ERIC Educational Resources Information Center
Chikuvadze, Pinias; Matswetu, Vimbai Sharon; Mugijima, Samuel
2015-01-01
This study sought to explore female lecturers' participation in civil engineering research and development activities at one polytechnic in Zimbabwe. Case study design was chosen for this study to make predictions, narration of events, comparisons and drawing of conclusions. The female lecturers were purposively sampled to participate in the…
A Basic Engineering English Word List for Less Proficient Foundation Engineering Undergraduates
ERIC Educational Resources Information Center
Ward, Jeremy
2009-01-01
This paper concerns the teaching of English to learners who are studying, or will soon study, engineering and who are expected to do at least part of their studying through textbooks written in English. Such students, especially in universities in developing countries, often find themselves very poorly equipped by their secondary education for…
ERIC Educational Resources Information Center
Craig, Jerry; Stapleton, Jerry
This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum was developed for the purpose of training technicians in the use of electronic instruments and their applications. It integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology,…
NASA Technical Reports Server (NTRS)
Borowski, S. K.; Sefcik, R. J.; Fittje, J. E.; McCurdy, D. R.; Qualls, A. L.; Schnitzler, B. G; Werner, J.; Weitzberg, A.; Joyner, C. R.
2015-01-01
In FY'11, Nuclear Thermal Propulsion (NTP) was identified as a key propulsion option under the Advanced In-Space Propulsion (AISP) component of NASA's Exploration Technology Development and Demonstration (ETDD) program A strategy was outlined by GRC and NASA HQ that included 2 key elements -"Foundational Technology Development" followed by specific "Technology Demonstration" projects. The "Technology Demonstration "element proposed ground technology demonstration (GTD) testing in the early 2020's, followed by a flight technology demonstration (FTD) mission by approx. 2025. In order to reduce development costs, the demonstration projects would focus on developing a small, low thrust (approx. 7.5 -16.5 klb(f)) engine that utilizes a "common" fuel element design scalable to the higher thrust (approx. 25 klb(f)) engines used in NASA's Mars DRA 5.0 study(NASA-SP-2009-566). Besides reducing development costs and allowing utilization of existing, flight proven engine hard-ware (e.g., hydrogen pumps and nozzles), small, lower thrust ground and flight demonstration engines can validate the technology and offer improved capability -increased payloads and decreased transit times -valued for robotic science missions identified in NASA's Decadal Study.
ERIC Educational Resources Information Center
Mwaanga, Oscar; Prince, Samantha
2016-01-01
Labelled as an alternative and more representative engine for development [Levermore, R. (2008). "Sport: A new engine of development?" "Progress in Development Studies," 8(2), 183-190. doi: 10.1177/146499340700800204], the international sport development and peace (SDP) movement is under pressure to enhance its credibility and…
Key Future Engineering Capabilities for Human Capital Retention
NASA Astrophysics Data System (ADS)
Sivich, Lorrie
Projected record retirements of Baby Boomer generation engineers have been predicted to result in significant losses of mission-critical knowledge in space, national security, and future scientific ventures vital to high-technology corporations. No comprehensive review or analysis of engineering capabilities has been performed to identify threats related to the specific loss of mission-critical knowledge posed by the increasing retirement of tenured engineers. Archival data from a single diversified Fortune 500 aerospace manufacturing engineering company's engineering career database were analyzed to ascertain whether relationships linking future engineering capabilities, engineering disciplines, and years of engineering experience could be identified to define critical knowledge transfer models. Chi square, logistic, and linear regression analyses were used to map patterns of discipline-specific, mission-critical knowledge using archival data of engineers' perceptions of engineering capabilities, key developmental experiences, and knowledge learned from their engineering careers. The results from the study were used to document key engineering future capabilities. The results were then used to develop a proposed human capital retention plan to address specific key knowledge gaps of younger engineers as veteran engineers retire. The potential for social change from this study involves informing leaders of aerospace engineering corporations on how to build better quality mentoring or succession plans to fill the void of lost knowledge from retiring engineers. This plan can secure mission-critical knowledge for younger engineers for current and future product development and increased global competitiveness in the technology market.
Advanced control for airbreathing engines, volume 2: General Electric aircraft engines
NASA Technical Reports Server (NTRS)
Bansal, Indar
1993-01-01
The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.
Problems of Accreditation and Quality Assurance of Engineering Education in Developing Countries.
ERIC Educational Resources Information Center
Bordia, Surek
2001-01-01
Discusses the relationship between funding, management, and quality assurance in engineering education in developing countries. Presents a few case studies on problems of accreditation and quality assessment in larger developing countries such as India and the Philippines, and also in very small developing countries such as Papua New Guinea, Fiji,…
A Case Study of Coaching in Science, Technology, Engineering, and Math Professional Development
ERIC Educational Resources Information Center
DeChenne, Sue Ellen; Nugent, Gwen; Kunz, Gina; Luo, Linlin; Berry, Brandi; Craven, Katherine; Riggs, April
2012-01-01
A professional development experience for science and mathematics teachers that included coaches was provided for ten science and math teachers. This professional development experience had the teachers develop a lesson that utilized the engineering context to teach a science or mathematics concept through guided inquiry as an instructional…
Design and test of aircraft engine isolators for reduced interior noise
NASA Technical Reports Server (NTRS)
Unruh, J. F.; Scheidt, D. C.
1982-01-01
Improved engine vibration isolation was proposed to be the most weight and cost efficient retrofit structure-borne noise control measure for single engine general aviation aircraft. A study was carried out the objectives: (1) to develop an engine isolator design specification for reduced interior noise transmission, (2) select/design candidate isolators to meet a 15 dB noise reduction design goal, and (3) carry out a proof of concept evaluation test. Analytical model of the engine, vibration isolators and engine mount structure were coupled to an empirical model of the fuselage for noise transmission evaluation. The model was used to develop engine isolator dynamic properties design specification for reduced noise transmission. Candidate isolators ere chosen from available product literature and retrofit to a test aircraft. A laboratory based test procedure was then developed to simulate engine induced noise transmission in the aircraft for a proof of concept evaluation test. Three candidate isolator configurations were evaluated for reduced structure-borne noise transmission relative to the original equipment isolators.
Examining elementary students' perceptions of engineers
NASA Astrophysics Data System (ADS)
Oware, Euridice A.
There has been a national focus on improving K-12 Science, Technology, Engineering, and Mathematics (STEM) education. The integration of engineering education from kindergarten through high school (K-12) has been identified as key to sustaining the U.S. economy and standard of living. Misconceptions about the nature of engineering may deter children from even considering this profession. Currently, there are few research studies on young children's perceptions of engineers, and such research can be used to support children along STEM pathways. The purpose of this research was to investigate elementary students' perceptions of engineers for children enrolled in a gifted and talented outreach program. Participants included students enrolled in two structural engineering classes: one for 3rd and 4th graders and another for 5th and 6th grade students. Participants represented an age group that is not typically exposed to engineering. This research was framed within a constructivist theoretical framework, and qualitative research methods were utilized to develop a rich understanding of the perspectives of students enrolled in the engineering classes. Data collection included student pre- and post-questionnaires, Draw-an-Engineer tasks, and semi-structured interviews. Data analysis entailed the use of open and axial coding. Trustworthiness of data was determined through triangulation of multiple data sources. Results demonstrated how children describe the work of engineers, objects associated with engineering, tools used or created by engineers, and professional characteristics of engineers. In addition, images of engineers were discussed and influences on students' perceptions of engineers were identified. The findings of this study have implications for the development of formal and informal K-12 curricula and programs that focus on improving students' understanding and engagement in engineering. Implications for researchers interested in studying children's perceptions were also discussed.
Reusable Rocket Engine Maintenance Study
NASA Technical Reports Server (NTRS)
Macgregor, C. A.
1982-01-01
Approximately 85,000 liquid rocket engine failure reports, obtained from 30 years of developing and delivering major pump feed engines, were reviewed and screened and reduced to 1771. These were categorized into 16 different failure modes. Failure propagation diagrams were established. The state of the art of engine condition monitoring for in-flight sensors and between flight inspection technology was determined. For the 16 failure modes, the potential measurands and diagnostic requirements were identified, assessed and ranked. Eight areas are identified requiring advanced technology development.
Popularizing Geological Education among Civil Engineering Students
ERIC Educational Resources Information Center
Chen, Xiang-jun; Zhou, Ying
2012-01-01
The sustainable development of an economy and a society cannot be realized without the help of modern geoscience. Engineering geology knowledge is necessary on a civil engineering construction site to ensure the construction work goes smoothly. This paper first discusses the importance of geoscience, especially the study of engineering geology.…
A perspective on the potential development of environmentally acceptable light-duty diesel vehicles.
Hammerle, R; Schuetzle, D; Adams, W
1994-01-01
Between 1979 and 1985, an international technical focus was placed upon potential human health effects associated with exposure to diesel emissions. A substantial data base was developed on the composition of diesel emissions; the fate of these emissions in the atmosphere; and the effects of whole particles and their chemical constituents on microorganisms, cells, and animals. Since that time, a number of significant developments have been made in diesel engine technology that require a new look at the future acceptability of introducing significant numbers of light-duty diesel automobiles into the European and American markets. Significant engineering improvements have been made in engine design, catalysts, and traps. As a result, particle emissions and particle associated organic emissions have been reduced by about 10 and 30 times, respectively, during the past 10 years. Research studies to help assess the environmental acceptability of these fuel-efficient engines include the development of an emissions data base for current and advanced diesel engines, the effect of diesel emissions on urban ozone formation and atmospheric particle concentrations, the effect of fuel composition, e.g., lower sulfur and additives on emissions, animal inhalation toxicology studies, and fundamental molecular biology studies. PMID:7529704
NASA Astrophysics Data System (ADS)
Manik, Yosef; Sinaga, Rizal; Saragi, Hadi
2018-02-01
Undergraduate Engineering Management Study Program of Institut Teknologi Del is one of the pioneers for its field in Indonesia. Located in Lake Toba Area, this study program has a mission to provide high quality Engineering Management education that produces globally competitive graduates who in turn will contribute to local development. Framing the Energy Technology course—one of the core subjects in Engineering Management Body of Knowledge—in the context of sustainable development of Lake Toba Area is very essential. Thus, one particular focus in this course is sustainable energy systems in local development context that incorporates identification and analysis of locally available energy resources. In this paper we present our experience in designing such course. In this work, we introduce the domains that shape the Engineering Management Body of Knowledge. Then, we explain the results of our evaluation on the key considerations to meet the rapidly changing needs of society in local context. Later, we present the framework of the learning outcomes and the syllabus as a result of mapping the road map with the requirement. At the end, the summary from the first two semesters of delivering this course in academic year 2015/2016 and 2016/2017 are reported.
Development of a construction engineering manpower system for Georgia DOT.
DOT National Transportation Integrated Search
1994-07-01
The objective of this special research study was to develop a construction engineering manpower management system based primarily on construction dollars and to determine if this type of system will be adequate for the GDOT.
Shuttle Case Study Collection Website Development
NASA Technical Reports Server (NTRS)
Ransom, Khadijah S.; Johnson, Grace K.
2012-01-01
As a continuation from summer 2012, the Shuttle Case Study Collection has been developed using lessons learned documented by NASA engineers, analysts, and contractors. Decades of information related to processing and launching the Space Shuttle is gathered into a single database to provide educators with an alternative means to teach real-world engineering processes. The goal is to provide additional engineering materials that enhance critical thinking, decision making, and problem solving skills. During this second phase of the project, the Shuttle Case Study Collection website was developed. Extensive HTML coding to link downloadable documents, videos, and images was required, as was training to learn NASA's Content Management System (CMS) for website design. As the final stage of the collection development, the website is designed to allow for distribution of information to the public as well as for case study report submissions from other educators online.
Tzatzalos, Evangeline; Abilez, Oscar J; Shukla, Praveen; Wu, Joseph C
2016-01-15
Engineered heart tissue has emerged as a personalized platform for drug screening. With the advent of induced pluripotent stem cell (iPSC) technology, patient-specific stem cells can be developed and expanded into an indefinite source of cells. Subsequent developments in cardiovascular biology have led to efficient differentiation of cardiomyocytes, the force-producing cells of the heart. iPSC-derived cardiomyocytes (iPSC-CMs) have provided potentially limitless quantities of well-characterized, healthy, and disease-specific CMs, which in turn has enabled and driven the generation and scale-up of human physiological and disease-relevant engineered heart tissues. The combined technologies of engineered heart tissue and iPSC-CMs are being used to study diseases and to test drugs, and in the process, have advanced the field of cardiovascular tissue engineering into the field of precision medicine. In this review, we will discuss current developments in engineered heart tissue, including iPSC-CMs as a novel cell source. We examine new research directions that have improved the function of engineered heart tissue by using mechanical or electrical conditioning or the incorporation of non-cardiomyocyte stromal cells. Finally, we discuss how engineered heart tissue can evolve into a powerful tool for therapeutic drug testing. Copyright © 2015 Elsevier B.V. All rights reserved.
Sixth-Grade Students' Views of the Nature of Engineering and Images of Engineers
ERIC Educational Resources Information Center
Karatas, Faik O.; Micklos, Amy; Bodner, George M.
2011-01-01
This study investigated the views of the nature of engineering held by 6th-grade students to provide a baseline upon which activities or curriculum materials might be developed to introduce middle-school students to the work of engineers and the process of engineering design. A phenomenographic framework was used to guide the analysis of data…
Case Study: Use of Problem-Based Learning to Develop Students' Technical and Professional Skills
ERIC Educational Resources Information Center
Warnock, James N.; Mohammadi-Aragh, M. Jean
2016-01-01
Problem-based learning (PBL) is a pedagogy that has attracted attention for many biomedical engineering curricula. The aim of the current study was to address the research question, "Does PBL enable students to develop desirable professional engineering skills?" The desirable skills identified were communication, teamwork, problem…
A forecast of bridge engineering, 1980-2000.
DOT National Transportation Integrated Search
1979-01-01
A three-pronged study was undertaken to forecast the nature of bridge engineering and construction for the years 1980 to 2000. First, the history of bridge engineering was explored to extrapolate likely future developments. Second, a detailed questio...
Flex Fuel Optimized SI and HCCI Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guoming; Schock, Harold; Yang, Xiaojian
The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight enginemore » cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for the electrical variable valve timing (VVT) actuating system and satisfactory electrical VVT responses were obtained. Target engine control system was designed and fabricated at MSU for both single-cylinder optical and multi-cylinder metal engines. Finally, the developed control-oriented engine model was successfully implemented into the HIL simulation environment. The Chrysler 2.0L I4 DI engine was modified to fit the two-step vale with electrical variable valve timing actuating system. A used prototype engine was used as the base engine and the cylinder head was modified for the two-step valve with electrical VVT actuating system. Engine validation tests indicated that cylinder #3 has very high blow-by and it cannot be reduced with new pistons and rings. Due to the time constraint, it was decided to convert the four-cylinder engine into a single cylinder engine by blocking both intake and exhaust ports of the unused cylinders. The model-based combustion mode transition control algorithm was developed in the MSU HIL simulation environment and the Simulink based control strategy was implemented into the target engine controller. With both single-cylinder metal engine and control strategy ready, stable HCCI combustion was achived with COV of 2.1% Motoring tests were conducted to validate the actuator transient operations including valve lift, electrical variable valve timing, electronic throttle, multiple spark and injection controls. After the actuator operations were confirmed, 15-cycle smooth combustion mode transition from SI to HCCI combustion was achieved; and fast 8-cycle smooth combustion mode transition followed. With a fast electrical variable valve timing actuator, the number of engine cycles required for mode transition can be reduced down to five. It was also found that the combustion mode transition is sensitive to the charge air and engine coolant temperatures and regulating the corresponding temperatures to the target levels during the combustion mode transition is the key for a smooth combustion mode transition. As a summary, the proposed combustion mode transition strategy using the hybrid combustion mode that starts with the SI combustion and ends with the HCCI combustion was experimentally validated on a metal engine. The proposed model-based control approach made it possible to complete the SI-HCCI combustion mode transition within eight engine cycles utilizing the well controlled hybrid combustion mode. Without intensive control-oriented engine modeling and HIL simulation study of using the hybrid combustion mode during the mode transition, it would be impossible to validate the proposed combustion mode transition strategy in a very short period.« less
Real-time Simulation of Turboprop Engine Control System
NASA Astrophysics Data System (ADS)
Sheng, Hanlin; Zhang, Tianhong; Zhang, Yi
2017-05-01
On account of the complexity of turboprop engine control system, real-time simulation is the technology, under the prerequisite of maintaining real-time, to effectively reduce development cost, shorten development cycle and avert testing risks. The paper takes RT-LAB as a platform and studies the real-time digital simulation of turboprop engine control system. The architecture, work principles and external interfaces of RT-LAB real-time simulation platform are introduced firstly. Then based on a turboprop engine model, the control laws of propeller control loop and fuel control loop are studied. From that and on the basis of Matlab/Simulink, an integrated controller is designed which can realize the entire process control of the engine from start-up to maximum power till stop. At the end, on the basis of RT-LAB platform, the real-time digital simulation of the designed control system is studied, different regulating plans are tried and more ideal control effects have been obtained.
Harnessing biomechanics to develop cartilage regeneration strategies.
Athanasiou, Kyriacos A; Responte, Donald J; Brown, Wendy E; Hu, Jerry C
2015-02-01
As this review was prepared specifically for the American Society of Mechanical Engineers H.R. Lissner Medal, it primarily discusses work toward cartilage regeneration performed in Dr. Kyriacos A. Athanasiou's laboratory over the past 25 years. The prevalence and severity of degeneration of articular cartilage, a tissue whose main function is largely biomechanical, have motivated the development of cartilage tissue engineering approaches informed by biomechanics. This article provides a review of important steps toward regeneration of articular cartilage with suitable biomechanical properties. As a first step, biomechanical and biochemical characterization studies at the tissue level were used to provide design criteria for engineering neotissues. Extending this work to the single cell and subcellular levels has helped to develop biochemical and mechanical stimuli for tissue engineering studies. This strong mechanobiological foundation guided studies on regenerating hyaline articular cartilage, the knee meniscus, and temporomandibular joint (TMJ) fibrocartilage. Initial tissue engineering efforts centered on developing biodegradable scaffolds for cartilage regeneration. After many years of studying scaffold-based cartilage engineering, scaffoldless approaches were developed to address deficiencies of scaffold-based systems, resulting in the self-assembling process. This process was further improved by employing exogenous stimuli, such as hydrostatic pressure, growth factors, and matrix-modifying and catabolic agents, both singly and in synergistic combination to enhance neocartilage functional properties. Due to the high cell needs for tissue engineering and the limited supply of native articular chondrocytes, costochondral cells are emerging as a suitable cell source. Looking forward, additional cell sources are investigated to render these technologies more translatable. For example, dermis isolated adult stem (DIAS) cells show potential as a source of chondrogenic cells. The challenging problem of enhanced integration of engineered cartilage with native cartilage is approached with both familiar and novel methods, such as lysyl oxidase (LOX). These diverse tissue engineering strategies all aim to build upon thorough biomechanical characterizations to produce functional neotissue that ultimately will help combat the pressing problem of cartilage degeneration. As our prior research is reviewed, we look to establish new pathways to comprehensively and effectively address the complex problems of musculoskeletal cartilage regeneration.
NASA Astrophysics Data System (ADS)
Bowles, C.
2013-12-01
Ecological engineering, or eco engineering, is an emerging field in the study of integrating ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. According to Mitsch (1996) 'the design of sustainable ecosystems intends to integrate human society with its natural environment for the benefit of both'. Eco engineering emerged as a new idea in the early 1960s, and the concept has seen refinement since then. As a commonly practiced field of engineering it is relatively novel. Howard Odum (1963) and others first introduced it as 'utilizing natural energy sources as the predominant input to manipulate and control environmental systems'. Mtisch and Jorgensen (1989) were the first to define eco engineering, to provide eco engineering principles and conceptual eco engineering models. Later they refined the definition and increased the number of principles. They suggested that the goals of eco engineering are: a) the restoration of ecosystems that have been substantially disturbed by human activities such as environmental pollution or land disturbance, and b) the development of new sustainable ecosystems that have both human and ecological values. Here a more detailed overview of eco engineering is provided, particularly with regard to how engineers and ecologists are utilizing multi-dimensional computational models to link ecology and engineering, resulting in increasingly successful project implementation. Descriptions are provided pertaining to 1-, 2- and 3-dimensional hydrodynamic models and their use at small- and large-scale applications. A range of conceptual models that have been developed to aid the in the creation of linkages between ecology and engineering are discussed. Finally, several case studies that link ecology and engineering via computational modeling are provided. These studies include localized stream rehabilitation, spawning gravel enhancement on a large river system, and watershed-wide floodplain modeling of the Sacramento River Valley.
NASA Researchers Examine a Pratt and Whitney RL-10 Rocket Engine
1962-04-21
Lead Test Engineer John Kobak (right) and a technician use an oscilloscope to test the installation of a Pratt and Whitney RL-10 engine in the Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. In 1955 the military asked Pratt and Whitney to develop hydrogen engines specifically for aircraft. The program was canceled in 1958, but Pratt and Whitney decided to use the experience to develop a liquid-hydrogen rocket engine, the RL-10. Two of the 15,000-pound-thrust RL-10 engines were used to power the new Centaur second-stage rocket. Centaur was designed to carry the Surveyor spacecraft on its mission to soft-land on the Moon. Pratt and Whitney ran into problems while testing the RL-10 at their facilities. NASA Headquarters assigned Lewis the responsibility for investigating the RL-10 problems because of the center’s long history of liquid-hydrogen development. Lewis’ Chemical Rocket Division began a series of tests to study the RL-10 at its Propulsion Systems Laboratory in March 1960. The facility contained two test chambers that could study powerful engines in simulated altitude conditions. The first series of RL-10 tests in early 1961 involved gimballing the engine as it fired. Lewis researchers were able to yaw and pitch the engine to simulate its behavior during a real flight.
Systems Engineering Education Development(SEED)Case Study
NASA Technical Reports Server (NTRS)
Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.
2003-01-01
The Systems Engineering Development Program (SEED) was initiated to help Goddard resolve a Systems Engineering skill shortage. The chronology of events and the experiences of the pilot program are outlined to describe the development of the present program. The program goals are included in order to give a focus on what the developers saw as the program drivers. Lessons learned from a pilot program were incorporated into the present program. This program is constantly learning from its past efforts and looks for continuous improvement. We list several future ideas for improvement and change.
Engineering Education through the Latina Lens
ERIC Educational Resources Information Center
Villa, Elsa Q.; Wandermurem, Luciene; Hampton, Elaine M.; Esquinca, Alberto
2016-01-01
Less than 20% of undergraduates earning a degree in engineering are women, and even more alarming is minority women earn a mere 3.1% of those degrees. This paper reports on a qualitative study examining Latinas' identity development toward and in undergraduate engineering and computer science studies using a sociocultural theory of learning. Three…
Understanding the Leaky Engineering Pipeline: Motivation and Job Adaptability of Female Engineers
ERIC Educational Resources Information Center
Saraswathiamma, Manjusha Thekkedathu
2010-01-01
This dissertation is a mixed-method study conducted using qualitative grounded theory and quantitative survey and correlation approaches. This study aims to explore the motivation and adaptability of females in the engineering profession and to develop a theoretical framework for both motivation and adaptability issues. As a result, this study…
NASA Technical Reports Server (NTRS)
Spears, L. T.; Kramer, R. D.
1990-01-01
The objectives were to examine launch vehicle applications and propulsion requirements for potential future manned space transportation systems and to support planning toward the evolution of Space Shuttle Main Engine (SSME) and Space Transportation Main Engine (STME) engines beyond their current or initial launch vehicle applications. As a basis for examinations of potential future manned launch vehicle applications, we used three classes of manned space transportation concepts currently under study: Space Transportation System Evolution, Personal Launch System (PLS), and Advanced Manned Launch System (AMLS). Tasks included studies of launch vehicle applications and requirements for hydrogen-oxygen rocket engines; the development of suggestions for STME engine evolution beyond the mid-1990's; the development of suggestions for STME evolution beyond the Advanced Launch System (ALS) application; the study of booster propulsion options, including LOX-Hydrocarbon options; the analysis of the prospects and requirements for utilization of a single engine configuration over the full range of vehicle applications, including manned vehicles plus ALS and Shuttle C; and a brief review of on-going and planned LOX-Hydrogen propulsion technology activities.
Generation of genetically-engineered animals using engineered endonucleases.
Lee, Jong Geol; Sung, Young Hoon; Baek, In-Jeoung
2018-05-17
The key to successful drug discovery and development is to find the most suitable animal model of human diseases for the preclinical studies. The recent emergence of engineered endonucleases is allowing for efficient and precise genome editing, which can be used to develop potentially useful animal models for human diseases. In particular, zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeat systems are revolutionizing the generation of diverse genetically-engineered experimental animals including mice, rats, rabbits, dogs, pigs, and even non-human primates that are commonly used for preclinical studies of the drug discovery. Here, we describe recent advances in engineered endonucleases and their application in various laboratory animals. We also discuss the importance of genome editing in animal models for more closely mimicking human diseases.
NASA Astrophysics Data System (ADS)
Goldman, Daphne; Ben-Zvi Assaraf, Orit; Shemesh, Julia
2014-05-01
While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was conducted with 247 3rd-4th year chemical engineering students in Israeli Universities. It employed the New Ecological Paradigm (NEP)-questionnaire to which students added written explanations. Quantitative analysis of NEP-scale results shows that the students demonstrated moderately ecocentric orientation. Explanations to the NEP-items reveal diverse, ambivalent ideas regarding the notions embodied in the NEP, strong scientific orientation and reliance on technology for addressing environmental challenges. Endorsing sustainability implies that today's engineers be equipped with an ecological perspective. The capacity of Higher Education to enable engineers to develop dispositions about human-nature interrelationships requires adaptation of curricula towards multidisciplinary, integrative learning addressing social-political-economic-ethical perspectives, and implementing critical-thinking within the socio-scientific issues pedagogical approach.
Systems engineering: A formal approach. Part 1: System concepts
NASA Astrophysics Data System (ADS)
Vanhee, K. M.
1993-03-01
Engineering is the scientific discipline focused on the creation of new artifacts that are supposed to be of some use to our society. Different types of artifacts require different engineering approaches. However, in all these disciplines the development of a new artifact is divided into stages. Three stages can always be recognized: Analysis, Design, and Realization. The book considers only the first two stages of the development process. It focuses on a specific type of artifacts, called discrete dynamic systems. These systems consist of active components of actors that consume and produce passive components or tokens. Three subtypes are studied in more detail: business systems (like a factory or restaurant), information systems (whether automated or not), and automated systems (systems that are controlled by an automated information system). The first subtype is studied by industrial engineers, the last by software engineers and electrical engineers, whereas the second is a battlefield for all three disciplines. The union of these disciplines is called systems engineering.
Advanced Propulsion Systems Study for General Aviation Aircraft
NASA Technical Reports Server (NTRS)
Mount, R.
2003-01-01
This study defines a family of advanced technology Stratified Charge Rotary Engines (SCRE) appropriate for the enablement of the development of a new generation of general aviation aircraft. High commonality, affordability, and environmental compatibility are considerations influencing the family composition and ratings. The SCRE family is comprised of three engines in the 70 Series (40 cu in. displacement per rotor), i.e. one, two, and four rotor and two engines in the 170 Series (105 cu in. displacement per rotor), i.e., two and four rotor. The two rotor engines are considered the primary engines in each series. A wide power range is considered covering 125 to 2500 HP through growth and compounding/dual pac considerations. Mission requirements, TBO, FAA Certification, engine development cycles, and costs are examined. Comparisons to current and projected reciprocating and turbine engine configurations in the 125 to 1000 HP class are provided. Market impact, estimated sales, and U.S. job creation (R&D, manufacturing and infractures) are examined.
Multi-Fuel Rotary Engine for General Aviation Aircraft
NASA Technical Reports Server (NTRS)
Jones, C.; Ellis, D. R.; Meng, P. R.
1983-01-01
Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.
Energy Efficient Engine combustor test hardware detailed design report
NASA Technical Reports Server (NTRS)
Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.
1984-01-01
The Energy Efficient Engine (E3) Combustor Development effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent was to evolve a design which meets the stringent emissions and life goals of the E3 as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this development effort will be incorporated into the engine combustion system hardware design. This advanced engine combustion system will then be evaluated in component testing to verify the design intent. What is evolving from this development effort is an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3. Fuel nozzle, diffuser, starting, and emissions design studies are discussed.
Environmental risk assessment of a genetically-engineered microorganism: Erwinia carotovora
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orvos, D.R.
1989-01-01
Environmental use of genetically-engineered microorganisms (GEMs) has raised concerns over potential ecological impact. Development of microcosm systems useful in preliminary testing for risk assessment will provide useful information for predicting potential structural, functional, and genetic effects of GEM release. This study was executed to develop techniques that may be useful in risk assessment and microbial ecology, to ascertain which parameters are useful in determining risk and to predict risk from releasing an engineered strain of Erwinia carotovora. A terrestrial microcosm system for use in GEM risk assessment studies was developed for use in assessing alterations of microbial structure and functionmore » that may be caused by introducing the engineered strain of E. carotovora. This strain is being developed for use as a biological control agent for plant soft rot. Parameters that were monitored included survival and intraspecific competition of E. carotovora, structural effects upon both total bacterial populations and numbers of selected bacterial genera, effects upon activities of dehydrogenase and alkaline phosphatase, effects upon soil nutrients, and potential for gene transfer into or out of the engineered strain.« less
ERIC Educational Resources Information Center
Kardanova, Elena; Loyalka, Prashant; Chirikov, Igor; Liu, Lydia; Li, Guirong; Wang, Huan; Enchikova, Ekaterina; Shi, Henry; Johnson, Natalie
2016-01-01
Relatively little is known about differences in the quality of engineering education within and across countries because of the lack of valid instruments that allow for the assessment and comparison of engineering students' skill gains. The purpose of our study is to develop and validate instruments that can be used to compare student skill gains…
Advanced expander test bed engine
NASA Technical Reports Server (NTRS)
Mitchell, J. P.
1992-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
ERIC Educational Resources Information Center
Chen, Kan; And Others
This report centers around a plant-level study of the development and utilization of human resources in the context of technological change and industrial restructuring in the crankshaft production area of Ford Motor Company's Dearborn Engine Plant (DEP). The introductory chapter describes how the study was conducted, provides an introduction to…
ERIC Educational Resources Information Center
Xinqiang, Wei
2012-01-01
This paper gives a brief analysis on the educational advantages and objects of NCWU. It believes that the educational philosophy and development direction of foreign school in engineering colleges must be set up on the basis of need of China and talents need, moreover, the development of the School of Foreign Studies must be analyzed by…
Effects of unique biomedical education programs for engineers: REDEEM and ESTEEM projects.
Matsuki, Noriaki; Takeda, Motohiro; Yamano, Masahiro; Imai, Yohsuke; Ishikawa, Takuji; Yamaguchi, Takami
2009-06-01
Current engineering applications in the medical arena are extremely progressive. However, it is rather difficult for medical doctors and engineers to discuss issues because they do not always understand one another's jargon or ways of thinking. Ideally, medical engineers should become acquainted with medicine, and engineers should be able to understand how medical doctors think. Tohoku University in Japan has managed a number of unique reeducation programs for working engineers. Recurrent Education for the Development of Engineering Enhanced Medicine has been offered as a basic learning course since 2004, and Education through Synergetic Training for Engineering Enhanced Medicine has been offered as an advanced learning course since 2006. These programs, which were developed especially for engineers, consist of interactive, modular, and disease-based lectures (case studies) and substantial laboratory work. As a result of taking these courses, all students obtained better objective outcomes, on tests, and subjective outcomes, through student satisfaction. In this article, we report on our unique biomedical education programs for engineers and their effects on working engineers.
NASA Astrophysics Data System (ADS)
Inozemtsev, A. A.; Sazhenkov, A. N.; Tsatiashvili, V. V.; Abramchuk, T. V.; Shipigusev, V. A.; Andreeva, T. P.; Gumerov, A. R.; Ilyin, A. N.; Gubaidullin, I. T.
2015-05-01
The paper formulates the issue of development of experimental base with noninvasive optical-electronic tools for control of combustion in a combustion chamber of gas turbine engine. The design and specifications of a pilot sample of optronic system are explained; this noninvasive system was created in the framework of project of development of main critical technologies for designing of aviation gas turbine engine PD-14. The testbench run data are presented.
A Survey On Management Of Software Engineering In Japan
NASA Astrophysics Data System (ADS)
Kadono, Yasuo; Tsubaki, Hiroe; Tsuruho, Seishiro
2008-05-01
The purpose of this study is to clarity the mechanism of how software engineering capabilities relate to the business performance of IT vendors in Japan. To do this, we developed a structural model using factors related to software engineering, business performance and competitive environment. By analyzing the data collected from 78 major IT vendors in Japan, we found that superior deliverables and business performance were correlated with the effort expended particularly on human resource development, quality assurance, research and development and process improvement.
Automotive Engines; Automotive Mechanics I: 9043.03.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This automotive engines course studies and demonstrates the theory and principles of operation of the automotive four stroke cycle engine. The student will develop an understanding of the systems necessary to make the engine perform as designed, such as cooling, fuel, ignition and lubrication. This is a one or two quinmester credit course of 45…
ERIC Educational Resources Information Center
Ricks, Kenneth G.; Richardson, James A.; Stern, Harold P.; Taylor, Robert P.; Taylor, Ryan A.
2014-01-01
Retention and graduation rates for engineering disciplines are significantly lower than desired, and research literature offers many possible causes. Engineering learning communities provide the opportunity to study relationships among specific causes and to develop and evaluate activities designed to lessen their impact. This paper details an…
ERIC Educational Resources Information Center
Henkel, Marius; Zwick, Michaela; Beuker, Janina; Willenbacher, Judit; Baumann, Sandra; Oswald, Florian; Neumann, Anke; Siemann-Herzberg, Martin; Syldatk, Christoph; Hausmann, Rudolf
2015-01-01
Bioprocess engineering is a highly interdisciplinary field of study which is strongly benefited by practical courses where students can actively experience the interconnection between biology, engineering, and physical sciences. This work describes a lab course developed for 2nd year undergraduate students of bioprocess engineering and related…
NASA Astrophysics Data System (ADS)
Yamano, Masahiro; Matsuki, Noriaki; Numayama, Keiko; Takeda, Motohiro; Hayasaka, Tomoaki; Ishikawa, Takuji; Yamaguchi, Takami
We developed new bio-medical engineering curriculum for industrial engineers, and we confirmed that the engineer's needs and the educative effects by holding a trail program. This study in Tohoku University was supported by the Ministry of Economy, Trade and Industry (METI) . We named the curriculum as “ESTEEM” which is acronym of project title “Education through the Synergetic Training for the Engineering Enhanced Medicine” . In Tohoku University, the “REDEEM” curriculum which is an entry level course of bio-medical engineering for engineers has been already held. The positioning of “ESTEEM” program is an advanced course to enhance knowledge and experience in clinical point of view. The program is consisted of the problem based learning (PBL) style lectures, practical training, and observation learning in hospital. It is a unique opportunity to have instruction by doctors, from diagnosis to surgical operation, from traditional technique to front-line medical equipment. In this paper, we report and discuss on the progress of the new bio-medical engineering curriculum.
Testing for the J-2X Upper Stage Engine
NASA Technical Reports Server (NTRS)
Buzzell, James C.
2010-01-01
NASA selected the J-2X Upper Stage Engine in 2006 to power the upper stages of the Ares I crew launch vehicle and the Ares V cargo launch vehicle. Based on the proven Saturn J-2 engine, this new engine will provide 294,000 pounds of thrust and a specific impulse of 448 seconds, making it the most efficient gas generator cycle engine in history. The engine's guiding philosophy emerged from the Exploration Systems Architecture Study (ESAS) in 2005. Goals established then called for vehicles and components based, where feasible, on proven hardware from the Space Shuttle, commercial, and other programs, to perform the mission and provide an order of magnitude greater safety. Since that time, the team has made unprecedented progress. Ahead of the other elements of the Constellation Program architecture, the team has progressed through System Requirements Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and Critical Design Review (CDR). As of February 2010, more than 100,000 development engine parts have been ordered and more than 18,000 delivered. Approximately 1,300 of more than 1,600 engine drawings were released for manufacturing. A major factor in the J-2X development approach to this point is testing operations of heritage J-2 engine hardware and new J-2X components to understand heritage performance, validate computer modeling of development components, mitigate risk early in development, and inform design trades. This testing has been performed both by NASA and its J-2X prime contractor, Pratt & Whitney Rocketdyne (PWR). This body of work increases the likelihood of success as the team prepares for testing the J-2X powerpack and first development engine in calendar 2011. This paper will provide highlights of J-2X testing operations, engine test facilities, development hardware, and plans.
Model-Based Engineering Design for Trade Space Exploration throughout the Design Cycle
NASA Technical Reports Server (NTRS)
Lamassoure, Elisabeth S.; Wall, Stephen D.; Easter, Robert W.
2004-01-01
This paper presents ongoing work to standardize model-based system engineering as a complement to point design development in the conceptual design phase of deep space missions. It summarizes two first steps towards practical application of this capability within the framework of concurrent engineering design teams and their customers. The first step is standard generation of system sensitivities models as the output of concurrent engineering design sessions, representing the local trade space around a point design. A review of the chosen model development process, and the results of three case study examples, demonstrate that a simple update to the concurrent engineering design process can easily capture sensitivities to key requirements. It can serve as a valuable tool to analyze design drivers and uncover breakpoints in the design. The second step is development of rough-order- of-magnitude, broad-range-of-validity design models for rapid exploration of the trade space, before selection of a point design. At least one case study demonstrated the feasibility to generate such models in a concurrent engineering session. The experiment indicated that such a capability could yield valid system-level conclusions for a trade space composed of understood elements. Ongoing efforts are assessing the practicality of developing end-to-end system-level design models for use before even convening the first concurrent engineering session, starting with modeling an end-to-end Mars architecture.
NASA Technical Reports Server (NTRS)
Peoples, J. A.
1975-01-01
Results are reported which were obtained from a mathematical model of a generalized piston steam engine configuration employing the uniflow principal. The model accounted for the effects of clearance volume, compression work, and release volume. A simple solution is presented which characterizes optimum performance of the steam engine, based on miles per gallon. Development of the mathematical model is presented. The relationship between efficiency and miles per gallon is developed. An approach to steam car analysis and design is presented which has purpose rather than lucky hopefulness. A practical engine design is proposed which correlates to the definition of the type engine used. This engine integrates several system components into the engine structure. All conclusions relate to the classical Rankine Cycle.
Performance and Weight Estimates for an Advanced Open Rotor Engine
NASA Technical Reports Server (NTRS)
Hendricks, Eric S.; Tong, Michael T.
2012-01-01
NASA s Environmentally Responsible Aviation Project and Subsonic Fixed Wing Project are focused on developing concepts and technologies which may enable dramatic reductions to the environmental impact of future generation subsonic aircraft. The open rotor concept (also historically referred to an unducted fan or advanced turboprop) may allow for the achievement of this objective by reducing engine fuel consumption. To evaluate the potential impact of open rotor engines, cycle modeling and engine weight estimation capabilities have been developed. The initial development of the cycle modeling capabilities in the Numerical Propulsion System Simulation (NPSS) tool was presented in a previous paper. Following that initial development, further advancements have been made to the cycle modeling and weight estimation capabilities for open rotor engines and are presented in this paper. The developed modeling capabilities are used to predict the performance of an advanced open rotor concept using modern counter-rotating propeller designs. Finally, performance and weight estimates for this engine are presented and compared to results from a previous NASA study of advanced geared and direct-drive turbofans.
NASA Astrophysics Data System (ADS)
Gold, Zachary Samuel
Engineering play is a new perspective on preschool education that views constructive play as an engineering design process that parallels the way engineers think and work when they develop engineered solutions to human problems (Bairaktarova, Evangelou, Bagiati, & Brophy, 2011). Early research from this perspective supports its use in framing play as a key learning context. However, no research to date has examined associations between engineering play and other factors linked with early school success, such as executive function, mathematical ability, and spatial ability. Additionally, more research is needed to further validate a new engineering play observational measure. This study had two main goals: (1) to gather early validity data on the engineering play measure as a potentially useful instrument for documenting the occurrence of children's engineering play behaviors in educational contexts, such as block play. This was done by testing the factor structure of the engineering play behaviors in this sample and their association with preschoolers' planning, a key aspect of the engineering design process; (2) to explore associations between preschoolers' engineering play and executive function, mathematical ability, and spatial ability. Participants included 110 preschoolers (62 girls; 48 boys; M = 58.47 months) from 10 classrooms in the Midwest United States coded for their frequency of engagement in each of the nine engineering play behaviors. A confirmatory factor analysis resulted in one engineering play factor including six of the engineering play behaviors. A series of marginal regression models revealed that the engineering play factor was significantly and positively associated with the spatial horizontal rotation transformation. However, engineering play was not significantly related to planning ability, executive function, informal mathematical abilities, or other spatial transformation skills. Follow-up analyses revealed significant positive associations between engineering play and planning, executive function, and geometry for only a subgroup of children (n = 27) who had individualized education program (IEP) status. This was the first of a series of studies planned to evaluate the potential of the engineering play perspective as a tool for understanding young children's development and learning across multiple developmental domains. Although most hypotheses regarding engineering play and cognitive skills were not supported, the study provided partial evidence for the reliability and validity of the engineering play observation measure. Future research should include larger sample sizes with more statistical power, continued refinement of the engineering play observation measure, examination of potential associations with specific early learning domains, including spatial ability and language, and more comparisons of engineering play between typically developing children and children with disabilities.
Environmental aspects of engineering geological mapping in the United States
Radbruch-Hall, Dorothy H.
1979-01-01
Many engineering geological maps at different scales have been prepared for various engineering and environmental purposes in regions of diverse geological conditions in the United States. They include maps of individual geological hazards and maps showing the effect of land development on the environment. An approach to assessing the environmental impact of land development that is used increasingly in the United States is the study of a single area by scientists from several disciplines, including geology. A study of this type has been made for the National Petroleum Reserve in northern Alaska. In the San Francisco Bay area, a technique has been worked out for evaluating the cost of different types of construction and land development in terms of the cost of a number of kinds of earth science factors. ?? 1979 International Association of Engineering Geology.
Development of the engineering design integration (EDIN) system: A computer aided design development
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Hirsch, G. N.
1977-01-01
The EDIN (Engineering Design Integration) System which provides a collection of hardware and software, enabling the engineer to perform man-in-the-loop interactive evaluation of aerospace vehicle concepts, was considered. Study efforts were concentrated in the following areas: (1) integration of hardware with the Univac Exec 8 System; (2) development of interactive software for the EDIN System; (3) upgrading of the EDIN technology module library to an interactive status; (4) verification of the soundness of the developing EDIN System; (5) support of NASA in design analysis studies using the EDIN System; (6) provide training and documentation in the use of the EDIN System; and (7) provide an implementation plan for the next phase of development and recommendations for meeting long range objectives.
Advanced controls for airbreathing engines, volume 3: Allison gas turbine
NASA Technical Reports Server (NTRS)
Bough, R. M.
1993-01-01
The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for airbreathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two-phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 3 of these reports describes the studies performed by the Allison Gas Turbine Division.
Advanced control for airbreathing engines, volume 1: Pratt and Whitney
NASA Technical Reports Server (NTRS)
Ralph, J. A.
1993-01-01
The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 1 of these reports describes the studies performed by Pratt & Whitney.
NASA Astrophysics Data System (ADS)
Friesen, Marcia R.
Immigration, economic, and regulatory trends in Canada have challenged all professions to examine the processes by which immigrant professionals (international graduates) achieve professional licensure and meaningful employment in Canada. The Internationally Educated Engineers Qualification Program (IEEQ) at the University of Manitoba was developed as an alternate pathway to integrate international engineering graduates into the engineering profession in Manitoba. However, universities have the neither mandate nor the historical practice to facilitate licensure for immigrant professionals and, thus, the knowledge base for program development and delivery is predominantly experiential. This study was developed to address the void in the knowledge base and support the program's ongoing development by conducting a critical, exploratory, participant-oriented evaluation of the IEEQ Program for both formative and summative purposes. The research questions focussed on how the IEEQ participants perceived and described their experiences in the IEEQ Program, and how the participants' outcomes in the IEEQ Program compared to international engineering graduates pursuing other licensing pathways. The study was built on an interpretivist theoretical approach that supported a primarily qualitative methodology with selected quantitative elements. Data collection was grounded in focus group interviews, written questionnaires, student reports, and program records for data collection, with inductive data analysis for qualitative data and descriptive statistics for quantitative data. The findings yielded rich understandings of participants' experiences in the IEEQ Program, their outcomes relative to international engineering graduates (IEGs) pursuing other licensing pathways, and their perceptions of their own adaptation to the Canadian engineering profession. Specifically, the study suggests that foreign credentials recognition processes have tended to focus on the recognition and translation of human and/or institutional capital. Yet, access to and acquisition of social and cultural capital need to receive equal attention. Further, the study suggested that, while it is reasonable that language fluency is a pre-requisite for successful professional integration, there is also a fundamental link between language and cognition in that international engineering graduates are challenged to understand and assimilate information for which they may not possess useful language or the underlying mental constructs. The findings have implications for our collective understanding of the scope of the professional engineering body of knowledge.
Advanced stratified charge rotary aircraft engine design study
NASA Technical Reports Server (NTRS)
Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.
1982-01-01
A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.
ERIC Educational Resources Information Center
Atai, Mahmood Reza; Shoja, Leila
2011-01-01
Even though English for Specific Academic Purposes (ESAP) courses constitute a significant part of the Iranian university curriculum, curriculum developers have generally developed the programs based on intuition. This study assessed the present and target situation academic language needs of undergraduate students of computer engineering. To this…
ERIC Educational Resources Information Center
Berry, Ayora
2017-01-01
The purpose of this study was to investigate the effects of a curriculum design-based (CDB) professional development model on K-12 teachers' capacity to integrate engineering education in the classroom. This teacher professional development approach differs from other training programs where teachers learn how to use a standard curriculum and…
ERIC Educational Resources Information Center
Cheng, Li
2016-01-01
The development of students' professional skills is an important issue in higher education in China. This research reports a 3-month study investigating engineering students' communication strategies (CSs) while they were interacting to do a 12-week mobile-assisted learning project, i.e., "Organizing and Attending a Model International…
ERIC Educational Resources Information Center
Gong, Yu
2017-01-01
This study investigates how students can use "interactive example models" in inquiry activities to develop their conceptual knowledge about an engineering phenomenon like electromagnetic fields and waves. An interactive model, for example a computational model, could be used to develop and teach principles of dynamic complex systems, and…
ERIC Educational Resources Information Center
Harwell, Michael; Moreno, Mario; Phillips, Alison; Guzey, S. Selcen; Moore, Tamara J.; Roehrig, Gillian H.
2015-01-01
The purpose of this study was to develop, scale, and validate assessments in engineering, science, and mathematics with grade appropriate items that were sensitive to the curriculum developed by teachers. The use of item response theory to assess item functioning was a focus of the study. The work is part of a larger project focused on increasing…
Tissue engineering strategies to study cartilage development, degeneration and regeneration.
Bhattacharjee, Maumita; Coburn, Jeannine; Centola, Matteo; Murab, Sumit; Barbero, Andrea; Kaplan, David L; Martin, Ivan; Ghosh, Sourabh
2015-04-01
Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm. Copyright © 2014 Elsevier B.V. All rights reserved.
Quality assurance and accreditation of engineering education in Jordan
NASA Astrophysics Data System (ADS)
Aqlan, Faisal; Al-Araidah, Omar; Al-Hawari, Tarek
2010-06-01
This paper provides a study of the quality assurance and accreditation in the Jordanian higher education sector and focuses mainly on engineering education. It presents engineering education, accreditation and quality assurance in Jordan and considers the Jordan University of Science and Technology (JUST) for a case study. The study highlights the efforts undertaken by the faculty of engineering at JUST concerning quality assurance and accreditation. Three engineering departments were accorded substantial equivalency status by the Accreditation Board of Engineering and Technology in 2009. Various measures of quality improvement, including curricula development, laboratories improvement, computer facilities, e-learning, and other supporting services are also discussed. Further assessment of the current situation is made through two surveys, targeting engineering instructors and students. Finally, the paper draws conclusions and proposes recommendations to enhance the quality of engineering education at JUST and other Jordanian educational institutions.
NASA Astrophysics Data System (ADS)
Han, Woojin M.; Heo, Su-Jin; Driscoll, Tristan P.; Delucca, John F.; McLeod, Claire M.; Smith, Lachlan J.; Duncan, Randall L.; Mauck, Robert L.; Elliott, Dawn M.
2016-04-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.
Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M
2016-04-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.
Advanced Computer Simulations of Military Incinerators
2004-12-01
Reaction Engineering International (REI) has developed advanced computer simulation tools for analyzing chemical demilitarization incinerators. The...Manager, 2003a: Summary of Engineering Design Study Projectile Washout System (PWS) Testing. Assembled Chemical Weapons Alternatives (ACWA), Final... Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot. O’Shea, L. et al, 2003: RIM 57 – Monitoring in
Introducing Engineering in Elementary Education: A 5-Year Study of Teachers and Students
ERIC Educational Resources Information Center
Diefes-Dux, Heidi A.
2015-01-01
Engineering, when integrated into K-12 education, may offer a number of potential student learning and future success benefits. In a 5-year study, four cohorts of elementary teachers of grades 2 to 4 in a single US school district were provided with teacher professional development with engineering education. Teachers were prepared to teach…
An exploration of the professional competencies required in engineering asset management
NASA Astrophysics Data System (ADS)
Bish, Adelle J.; Newton, Cameron J.; Browning, Vicky; O'Connor, Peter; Anibaldi, Renata
2014-07-01
Engineering asset management (EAM) is a rapidly growing and developing field. However, efforts to select and develop engineers in this area are complicated by our lack of understanding of the full range of competencies required to perform. This exploratory study sought to clarify and categorise the professional competencies required of individuals at different hierarchical levels within EAM. Data from 14 field interviews, 61 online surveys, and 10 expert panel interviews were used to develop an initial professional competency framework. Overall, nine competency clusters were identified. These clusters indicate that engineers working in this field need to be able to collaborate and influence others, complete objectives within organisational guidelines, and be able to manage themselves effectively. Limitations and potential uses of this framework in engineering education and research are discussed.
Structures, performance, benefit, cost study. [gas turbine engines
NASA Technical Reports Server (NTRS)
Feder, E.
1981-01-01
Aircraft engine structures were studied to identify the advanced structural technologies that would provide the most benefits to future aircraft operations. A series of studies identified engine systems with the greatest potential for improvements. Based on these studies, six advanced generic structural concepts were selected and conceptually designed. The benefits of each concept were quantitatively assessed in terms of thrust specific fuel consumption, weight, cost, maintenance cost, fuel burned and direct operating cost plus interest. The probability of success of each concept was also determined. The concepts were ranked and the three most promising were selected for further study which consisted of identifying and comprehensively outlining the advanced technologies required to develop these concepts for aircraft engine application. Analytic, fabrication, and test technology developments are required. The technology programs outlined emphasize the need to provide basic, fundamental understanding of technology to obtain the benefit goals.
THE DEVELOPMENT OF A STANDARDIZED ACHIEVEMENT TEST FOR SMALL GASOLINE ENGINE INSTRUCTION.
ERIC Educational Resources Information Center
EBBERT, J. MARVIN
THE PURPOSE OF THE STUDY WAS TO DEVELOP A STANDARDIZED, MULTIPLE-CHOICE ACHIEVEMENT TEST ON THE OPERATION, CARE, AND MAINTENANCE OF SMALL GASOLINE ENGINES. OBJECTIVES AND A UNIT OUTLINE WERE DEVELOPED WITH THE COOPERATION OF 75 INDIANA VOCATIONAL AGRICULTURE TEACHERS. A PANEL SUGGESTED MODIFICATIONS, AND THE REFINED OBJECTIVES AND OUTLINE WERE…
Development of Chemical Engineering Course Methods Using Action Research: Case Study
ERIC Educational Resources Information Center
Virkki-Hatakka, Terhi; Tuunila, Ritva; Nurkka, Niina
2013-01-01
This paper reports on the systematic development of a teaching methodology for two chemical engineering courses. The aim was to improve the quality of teaching to achieve expected learning outcomes more effectively. The development was carried out over a period of several years based on an action research methodology with data systematically…
Forecasting Climate-Induced Ecosystem Changes on Army Installations
2011-10-01
W. Hargrove Construction Engineering Research Laboratory (CERL) US Army Engineer Research and Development Center 2902 Newmark Dr. Champaign, IL...unless so designated by other authorized documents. DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. ERDC/CERL TR-11-36...35 ERDC/CERL TR-11-36 v Preface This study was conducted for Dr. Jeffrey Holland, Director of the Engineer Research and Development
Requirements for company-wide management
NASA Technical Reports Server (NTRS)
Southall, J. W.
1980-01-01
Computing system requirements were developed for company-wide management of information and computer programs in an engineering data processing environment. The requirements are essential to the successful implementation of a computer-based engineering data management system; they exceed the capabilities provided by the commercially available data base management systems. These requirements were derived from a study entitled The Design Process, which was prepared by design engineers experienced in development of aerospace products.
NASA Astrophysics Data System (ADS)
Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.
2015-04-01
The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about children's earliest identification with engineering. The purpose of this study was to examine the extent to which engineering identity differed among preadolescents across gender and grade, when exposing students to engineering design-based science learning activities. Five hundred fifty preadolescent participants completed the Engineering Identity Development Scale (EIDS), a recently developed measure with validity evidence that characterizes children's conceptions of engineering and potential career aspirations. Data analyses of variance among four factors (i.e., gender, grade, and group) indicated that elementary school students who engaged in the engineering design-based science learning activities demonstrated greater improvements on the EIDS subscales compared to those in the comparison group. Specifically, students in the lower grade levels showed substantial increases, while students in the higher grade levels showed decreases. Girls, regardless of grade level and participation in the engineering learning activities, showed higher scores in the academic subscale compared to boys. These findings suggest that the integration of engineering practices in the science classroom as early as grade one shows potential in fostering and sustaining student interest, participation, and self-concept in engineering and science.
Systems Metabolic Engineering of Escherichia coli.
Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup
2016-05-01
Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.
Systems Metabolic Engineering of Escherichia coli.
Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup
2017-03-01
Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.
Hadidi, Pasha; Cissell, Derek D; Hu, Jerry C; Athanasiou, Kyriacos A
2017-12-01
Advances in cartilage tissue engineering have led to constructs with mechanical integrity and biochemical composition increasingly resembling that of native tissues. In particular, collagen cross-linking with lysyl oxidase has been used to significantly enhance the mechanical properties of engineered neotissues. In this study, development of collagen cross-links over time, and correlations with tensile properties, were examined in self-assembling neotissues. Additionally, quantitative MRI metrics were examined in relation to construct mechanical properties as well as pyridinoline cross-link content and other engineered tissue components. Scaffold-free meniscus fibrocartilage was cultured in the presence of exogenous lysyl oxidase, and assessed at multiple time points over 8weeks starting from the first week of culture. Engineered constructs demonstrated a 9.9-fold increase in pyridinoline content, reaching 77% of native tissue values, after 8weeks of culture. Additionally, engineered tissues reached 66% of the Young's modulus in the radial direction of native tissues. Further, collagen cross-links were found to correlate with tensile properties, contributing 67% of the tensile strength of engineered neocartilages. Finally, examination of quantitative MRI metrics revealed several correlations with mechanical and biochemical properties of engineered constructs. This study displays the importance of culture duration for collagen cross-link formation, and demonstrates the potential of quantitative MRI in investigating properties of engineered cartilages. This is the first study to demonstrate near-native cross-link content in an engineered tissue, and the first study to quantify pyridinoline cross-link development over time in a self-assembling tissue. Additionally, this work shows the relative contributions of collagen and pyridinoline to the tensile properties of collagenous tissue for the first time. Furthermore, this is the first investigation to identify a relationship between qMRI metrics and the pyridinoline cross-link content of an engineered collagenous tissue. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Role of strategic planning in engineering management
NASA Technical Reports Server (NTRS)
Krishen, Kumar
1993-01-01
Today, more than ever before, engineers are faced with uncertain and sometimes chaotic environments in which to function. The traditional roles of an engineer to design, develop, and streamline a manufacturing process for a product are still valued and relevant. However, the need for an engineer to participate in the process of identifying the product to be developed, the schedule and resources required, and the goal of satisfying the customer, has become paramount to achieving the success of the enterprise. When we include these endeavors in the functions of an engineer, management of 'engineering' takes on a new dimension. In this paper, the ramifications of the changing and increased functions of an engineer and consequent impacts on engineering management are explored. The basic principles which should be invoked in order to embrace the new environment for engineering management are outlined. The ultimate finding of this study is that the enterprise strategic plan should be developed in such a way as to allow engineering management to encompass the full spectrum of the responsibilities of engineers. A consequence of this is that the fundamental elements of the strategic process can best be implemented through a project team or group approach. The paper thus concentrates on three areas: evolving environment, strategic plan, and ways to achieve enterprise success.
Samarium Cobalt (SmCo) Generator/Engine Integration Study
1980-04-01
110o1110 (Cole Ms -W~ Daiwa. to* J11 tuo.in Wfi wee -004"ni Aircraft Generator/starter Samarium Cobalt Turbine Engine , Feasibility Secondary Power...integration into the main rotor system of typical aircraft gas turbine engines . A major objective is the definition of the engine interface for such... Engine The F404 is a low bypass, augmented turbofan Pngine developed for application in advanced fighter aircraft (F-18). This type of engine benefits most
NASA Technical Reports Server (NTRS)
1973-01-01
Calculations, curves, and substantiating data which support the engine design characteristics of the RL-10 engines are presented. A description of the RL-10 ignition system is provided. The performance calculations of the RL-10 derivative engines and the performance results obtained are reported. The computer simulations used to establish the control system requirements and to define the engine transient characteristics are included.
Control Engineering as a Part of Undergraduate Curriculum for Mechanical Engineering in India
ERIC Educational Resources Information Center
Akhtar, Shagil; Iqbal, Syed Muneeb; Bajpai, Shrish
2016-01-01
In this present study we have traced the genesis of control engineering in the scope of mechanical engineering and then some analysis on its recent developments, their increasing need and how this particular subject has evolved machines functioning nowadays specifically its standard of education in India. We have probed this field right from its…
ERIC Educational Resources Information Center
Duncan-Wiles, Daphne S.
2012-01-01
With the recent addition of engineering to most K-12 testable state standards, efficient and comprehensive instruments are needed to assess changes in student knowledge and perceptions of engineering. In this study, I developed the Students' Awareness and Perceptions of Learning Engineering (STAPLE) instrument to quantitatively measure fourth…
ERIC Educational Resources Information Center
Shantha, S.; Mekala, S.
2017-01-01
The mastery of speaking skills in English has become a major requisite in engineering industry. Engineers are expected to possess speaking skills for executing their routine activities and career prospects. The article focuses on the experimental study conducted to improve English spoken proficiency of Indian engineering students using task-based…
ERIC Educational Resources Information Center
Selcen Guzey, S.; Harwell, Michael; Moreno, Mario; Peralta, Yadira; Moore, Tamara J.
2017-01-01
The new science education reform documents call for integration of engineering into K-12 science classes. Engineering design and practices are new to most science teachers, meaning that implementing effective engineering instruction is likely to be challenging. This quasi-experimental study explored the influence of teacher-developed, engineering…
Solid State Cooling with Advanced Oxide Materials
2014-06-03
Department of Materials Science and Engineering , Department of Mechanical Science and Engineering , and Department of Electrical and Computer... Engineering University of Illinois, Urbana-Champaign Program Overview The focus of this program was to probe electro-(magneto-)caloric materials for... engineering systems by developing theoretical and experimental approaches to study thermodynamic properties and effects in thin film systems. Despite
Are Earth System model software engineering practices fit for purpose? A case study.
NASA Astrophysics Data System (ADS)
Easterbrook, S. M.; Johns, T. C.
2009-04-01
We present some analysis and conclusions from a case study of the culture and practices of scientists at the Met Office and Hadley Centre working on the development of software for climate and Earth System models using the MetUM infrastructure. The study examined how scientists think about software correctness, prioritize their requirements in making changes, and develop a shared understanding of the resulting models. We conclude that highly customized techniques driven strongly by scientific research goals have evolved for verification and validation of such models. In a formal software engineering context these represents costly, but invaluable, software integration tests with considerable benefits. The software engineering practices seen also exhibit recognisable features of both agile and open source software development projects - self-organisation of teams consistent with a meritocracy rather than top-down organisation, extensive use of informal communication channels, and software developers who are generally also users and science domain experts. We draw some general conclusions on whether these practices work well, and what new software engineering challenges may lie ahead as Earth System models become ever more complex and petascale computing becomes the norm.
Engineering design: A cognitive process approach
NASA Astrophysics Data System (ADS)
Strimel, Greg Joseph
The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the research objectives of this study. Two independent coders then coded the video/audio recordings and the additional design data using Halfin's (1973) 17 mental processes for technological problem-solving. The results of this study indicated that the participants employed a wide array of mental processes when solving engineering design challenges. However, the findings provide a general analysis of the number of times participants employed each mental process, as well as the amount of time consumed employing the various mental processes through the different stages of the engineering design process. The results indicated many similarities between the students solving the problem, which may highlight voids in current technology and engineering education curricula. Additionally, the findings showed differences between the processes employed by participants that created the most successful solutions and the participants who developed the least effective solutions. Upon comparing and contrasting these processes, recommendations for instructional strategies to enhance a student's capability for solving engineering design problems were developed. The results also indicated that students, when left without teacher intervention, use a simplified and more natural process to solve design challenges than the 12-step engineering design process reported in much of the literature. Lastly, these data indicated that students followed two different approaches to solving the design problem. Some students employed a sequential and logical approach, while others employed a nebulous, solution centered trial-and-error approach to solving the problem. In this study the participants who were more sequential had better performing solutions. Examining these two approaches and the student cognition data enabled the researcher to generate a conceptual engineering design model for the improved teaching and development of engineering design problem solving.
NASA Technical Reports Server (NTRS)
Adams, A.
1973-01-01
The Interface Control Document contains engine information necessary for installation of the baseline RL10 Derivative engines in the Space Tug vehicle. The ICD presents a description of the baseline engines and their operating characteristics, mass and load characteristics, and environmental criteria. The document defines the engine/vehicle mechanical, electrical, fluid and pneumatic interface requirements.
ERIC Educational Resources Information Center
Male, Sally A.; Bush, Mark B.; Murray, Kevin
2009-01-01
Engineering education needs to develop the competencies required for engineering work, and attract and retain students from diverse backgrounds. This study investigated the possibility that the perceived importance of competencies is subconsciously influenced by gendered assumptions, and as a consequence, this lowers the status given to…
Understanding the leaky engineering pipeline: Motivation and job adaptability of female engineers
NASA Astrophysics Data System (ADS)
Saraswathiamma, Manjusha Thekkedathu
This dissertation is a mixed-method study conducted using qualitative grounded theory and quantitative survey and correlation approaches. This study aims to explore the motivation and adaptability of females in the engineering profession and to develop a theoretical framework for both motivation and adaptability issues. As a result, this study endeavors to design solutions for the low enrollment and attenuation of female engineers in the engineering profession, often referred to as the "leaky female engineering pipeline." Profiles of 123 female engineers were studied for the qualitative approach, and 98 completed survey responses were analyzed for the quantitative approach. The qualitative, grounded-theory approach applied the constant comparison method; open, axial, and selective coding was used to classify the information in categories, sub-categories, and themes for both motivation and adaptability. The emergent themes for decisions motivating female enrollment include cognitive, emotional, and environmental factors. The themes identified for adaptability include the seven job adaptability factors: job satisfaction, risk- taking attitude, career/skill development, family, gender stereotyping, interpersonal skills, and personal benefit, as well as the self-perceived job adaptability factor. Illeris' Three-dimensional Learning Theory was modified as a model for decisions motivating female enrollment. This study suggests a firsthand conceptual parallelism of McClusky's Theory of Margin for the adaptability of female engineers in the profession. Also, this study attempted to design a survey instrument to measure job adaptability of female engineers. The study identifies two factors that are significantly related to job adaptability: interpersonal skills (< p = 0.01) and family (< p = 0.05); gender stereotyping and personal benefit are other factors that are also significantly (< p = 0.1) related.
NASA Astrophysics Data System (ADS)
Santiago, Marisol Mercado
Culturally responsive teaching has been argued to be effective in the education of Indigenous youth. This approach emphasizes the legitimacy of a group's cultural heritage, helps to associate abstract academic knowledge with the group's sociocultural context, seeks to incorporate a variety of strategies to engage students who have different learning styles, and strives to integrate multicultural information in the educational contents, among other considerations. In this work, I explore the outcomes of a culturally responsive introductory engineering short course that I developed and taught to Tibetan students at Tibetan Children's Village of Selakui (in Uttarakhand, India). Based on my ethnographic research in Tibetan communities in northern India, I examine two research questions: (a) What are the processes to develop and implement a pre-college culturally responsive introductory engineering course? and (b) How do Tibetan culture and Buddhism influence the engineering design and teamwork of the pre-college Tibetan students who took the course? I designed then taught the course that featured elementary lectures on sustainability, introductory engineering design, energy alternatives, and manufacturing engineering. The course also included a pre-college engineering design project through which Tibetan high school students investigated a problem at the school and designed a possible solution to it. Drawing from postcolonial studies, engineering studies, engineering and social justice, Buddhist studies, and Tibetan studies, I provide an analysis of my findings. Based on my findings, I conclude that my culturally responsive approach of teaching was an effective method to help students feel that their cultural background was respected and included in a pre-college engineering course; however, some students felt resistance toward the teaching approach. In addition, the culturally relevant content that connected with their ways of living in their school, Tibetan communities, and surroundings helped the students to relate to abstract concepts in familiar settings. Lastly, they appreciated that I brought to the course relevant information about technology and society in India (their host country), engineers' work in industry, technologies used in other contexts as well, and projects that show how engineers can help to alleviate poverty. The findings of my research can inform (a) educators who are interested in integrating culturally responsive activities in their teaching methods, (b) researchers or teachers in ethnic minority schools abroad, (c) educators interested in developing engineering activities or courses for underrepresented ethnic minorities, ethnic diasporas or refugee youth in the United States, and (d) facilitators at multicultural engineering summer camps in the United States.
Orbit transfer rocket engine technology program
NASA Technical Reports Server (NTRS)
Gustafson, N. B.; Harmon, T. J.
1993-01-01
An advanced near term (1990's) space-based Orbit Transfer Vehicle Engine (OTVE) system was designed, and the technologies applicable to its construction, maintenance, and operations were developed under Tasks A through F of the Orbit Transfer Rocket Engine Technology Program. Task A was a reporting task. In Task B, promising OTV turbomachinery technologies were explored: two stage partial admission turbines, high velocity ratio diffusing crossovers, soft wear ring seals, advanced bearing concepts, and a rotordynamic analysis. In Task C, a ribbed combustor design was developed. Possible rib and channel geometries were chosen analytically. Rib candidates were hot air tested and laser velocimeter boundary layer analyses were conducted. A channel geometry was also chosen on the basis of laser velocimeter data. To verify the predicted heat enhancement effects, a ribbed calorimeter spool was hot fire tested. Under Task D, the optimum expander cycle engine thrust, performance and envelope were established for a set of OTV missions. Optimal nozzle contours and quick disconnects for modularity were developed. Failure Modes and Effects Analyses, maintenance and reliability studies and component study results were incorporated into the engine system. Parametric trades on engine thrust, mixture ratio, and area ratio were also generated. A control system and the health monitoring and maintenance operations necessary for a space-based engine were outlined in Task E. In addition, combustor wall thickness measuring devices and a fiberoptic shaft monitor were developed. These monitoring devices were incorporated into preflight engine readiness checkout procedures. In Task F, the Integrated Component Evaluator (I.C.E.) was used to demonstrate performance and operational characteristics of an advanced expander cycle engine system and its component technologies. Sub-system checkouts and a system blowdown were performed. Short transitions were then made into main combustor ignition and main stage operation.
NASA Technical Reports Server (NTRS)
DiBlasi, Angelo G.
1992-01-01
A preliminary development plan for an integrated propulsion module (IPM) is described. The IPM, similar to the Space Transportation Main engine (STME) engine, is applicable to the Advanced Launch System (ALS) baseline vehicle. The same STME development program ground rules and time schedule were assumed for the IPM. However, the unique advantages of testing an integrated engine element, in terms of reduced number of hardware and number of system and reliability tests, compared to single standalone engine and MPTA, are highlighted. The potential ability of the IPM to meet the ALS program goals for robustness, operability and reliability is emphasized.
Developments in REDES: The rocket engine design expert system
NASA Technical Reports Server (NTRS)
Davidian, Kenneth O.
1990-01-01
The Rocket Engine Design Expert System (REDES) is being developed at the NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP, a nozzle design program named RAO, a regenerative cooling channel performance evaluation code named RTE, and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES is built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.
Developments in REDES: The Rocket Engine Design Expert System
NASA Technical Reports Server (NTRS)
Davidian, Kenneth O.
1990-01-01
The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.
Formalization of the engineering science discipline - knowledge engineering
NASA Astrophysics Data System (ADS)
Peng, Xiao
Knowledge is the most precious ingredient facilitating aerospace engineering research and product development activities. Currently, the most common knowledge retention methods are paper-based documents, such as reports, books and journals. However, those media have innate weaknesses. For example, four generations of flying wing aircraft (Horten, Northrop XB-35/YB-49, Boeing BWB and many others) were mostly developed in isolation. The subsequent engineers were not aware of the previous developments, because these projects were documented such which prevented the next generation of engineers to benefit from the previous lessons learned. In this manner, inefficient knowledge retention methods have become a primary obstacle for knowledge transfer from the experienced to the next generation of engineers. In addition, the quality of knowledge itself is a vital criterion; thus, an accurate measure of the quality of 'knowledge' is required. Although qualitative knowledge evaluation criteria have been researched in other disciplines, such as the AAA criterion by Ernest Sosa stemming from the field of philosophy, a quantitative knowledge evaluation criterion needs to be developed which is capable to numerically determine the qualities of knowledge for aerospace engineering research and product development activities. To provide engineers with a high-quality knowledge management tool, the engineering science discipline Knowledge Engineering has been formalized to systematically address knowledge retention issues. This research undertaking formalizes Knowledge Engineering as follows: 1. Categorize knowledge according to its formats and representations for the first time, which serves as the foundation for the subsequent knowledge management function development. 2. Develop an efficiency evaluation criterion for knowledge management by analyzing the characteristics of both knowledge and the parties involved in the knowledge management processes. 3. Propose and develop an innovative Knowledge-Based System (KBS), AVD KBS, forming a systematic approach facilitating knowledge management. 4. Demonstrate the efficiency advantages of AVDKBS over traditional knowledge management methods via selected design case studies. This research formalizes, for the first time, Knowledge Engineering as a distinct discipline by delivering a robust and high-quality knowledge management and process tool, AVDKBS. Formalizing knowledge proves to significantly impact the effectiveness of aerospace knowledge retention and utilization.
NASA Astrophysics Data System (ADS)
Webb, Donna Louise
Currently, STEM (science, technology, engineering, and mathematics) is a popular buzz word in P-12 education as it represents a means to advance American competitiveness in the global economy. Proponents of the engineering component of STEM advocate additional benefits in teaching engineering, such as its capacity to engage students in collaboration, and to apply critical thinking, systems thinking, negotiation, and communication skills to solve real-life contextual problems. Establishing a strong foundation of engineering knowledge at a young age will provide students with internal motivation as it taps into their curiosity toward how things work, and it also prepares them for secondary science courses. Successful STEM education is often constrained by elementary teachers' low perception of self-efficacy to teach science and engineering. Elementary teachers with low self-efficacy in science are more likely to spend less instructional time teaching science, which suggests that teachers with little to no training in engineering might avoid teaching this topic. Therefore, the purpose of this study was twofold: (a) to examine the effects of engineering professional development on elementary (K-6) teachers' content and pedagogical content knowledge (PCK) and perceptions of self-efficacy to teach engineering, and (b) to identify and explain sources influencing self-efficacy. Professional development was conducted in a metropolitan area in the Pacific Northwest. Results revealed that after the engineering professional development, teachers experienced statistically significant gains in content, PCK, and self-efficacy to teach engineering. Increases in self-efficacy were mainly attributed to mastery experiences and cultivation of a growth mindset by embracing the engineering design process.
Special Gender Studies for Engineering?
ERIC Educational Resources Information Center
Ihsen, Susanne
2005-01-01
Today we are confronted with a new challenge in product development: "Diversity" needs to be implemented in the engineering design and development teams. Such diversity means to "mirror" within the teams the characteristics of different customer groups: the two genders, the different age groups, and the different cultural…
NASA Astrophysics Data System (ADS)
Phaneuf, Tiffany
The implementation of sustainable development in higher education is a global trend. Engineers, as gatekeepers of technological innovation, confront increasingly complex world issues ranging from economic and social to political and environmental. Recently, a multitude of government reports have argued that solving such complex problems requires changes in the pedagogy of engineering education, such as that prescribed by the Science, Technology, Society, and education (STS) movement that grew out of the environmental movement in the 70s. In STS students are engaged in the community by understanding that scientific progress is innately a sociopolitical process that involves dimensions of power, wealth and responsibility. United States accreditation criteria now demand "the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context" (ABET Engineering Accreditation Commission 2005). With such emphasis on STS education as necessary to address complex world issues, it is vital to assess the barriers in the traditional engineering curriculum that may inhibit the success of such educational reform. This study identifies barriers to STS goals and pedagogy in post secondary science education by using the Francis College of Engineering at UMASS Lowell as a single case study. The study draws on existing literature to develop a theoretical framework for assessing four hypothesized barriers to STS education in undergraduate engineering. Identification of barriers to STS education in engineering generates a critical reflection of post secondary science education and its role in preparing engineers to be active citizens in shaping a rapidly globalizing world. The study offers policy recommendations for enabling post secondary science education to incorporate STS education into its curriculum.
ERIC Educational Resources Information Center
Beddoes, Kacey
2014-01-01
This article presents a case study of the peer review process for a feminist article submitted to an engineering education journal. It demonstrates how an examination of peer review can be a useful approach to further understanding the development of feminist thought in education fields. Rather than opposition to feminist thought per se, my…
Engineering and public health at CDC.
Earnest, G Scott; Reed, Laurence D; Conover, D; Estill, C; Gjessing, C; Gressel, M; Hall, R; Hudock, S; Hudson, H; Kardous, C; Sheehy, J; Topmiller, J; Trout, D; Woebkenberg, M; Amendola, A; Hsiao, H; Keane, P; Weissman, D; Finfinger, G; Tadolini, S; Thimons, E; Cullen, E; Jenkins, M; McKibbin, R; Conway, G; Husberg, B; Lincoln, J; Rodenbeck, S; Lantagne, D; Cardarelli, J
2006-12-22
Engineering is the application of scientific and technical knowledge to solve human problems. Using imagination, judgment, and reasoning to apply science, technology, mathematics, and practical experience, engineers develop the design, production, and operation of useful objects or processes. During the 1940s, engineers dominated the ranks of CDC scientists. In fact, the first CDC director, Assistant Surgeon General Mark Hollis, was an engineer. CDC engineers were involved in malaria control through the elimination of standing water. Eventually the CDC mission expanded to include prevention and control of dengue, typhus, and other communicable diseases. The development of chlorination, water filtration, and sewage treatment were crucial to preventing waterborne illness. Beginning in the 1950s, CDC engineers began their work to improve public health while developing the fields of environmental health, industrial hygiene, and control of air pollution. Engineering disciplines represented at CDC today include biomedical, civil, chemical, electrical, industrial, mechanical, mining, and safety engineering. Most CDC engineers are located in the National Institute for Occupational Safety and Health (NIOSH) and the Agency for Toxic Substances and Disease Registry (ATSDR). Engineering research at CDC has a broad stakeholder base. With the cooperation of industry, labor, trade associations, and other stakeholders and partners, current work includes studies of air contaminants, mining, safety, physical agents, ergonomics, and environmental hazards. Engineering solutions remain a cornerstone of the traditional "hierarchy of controls" approach to reducing public health hazards.
ERIC Educational Resources Information Center
Kilgore, Deborah; Jocuns, Andrew; Yasuhara, Ken; Atman, Cynthia J.
2009-01-01
The Academic Pathways Study (APS) is a multi-institution, mixed-methods, longitudinal study which examines engineering students' learning and development as they move into, through, and beyond their undergraduate institutions (Atman et al., 2008; Sheppard et al., 2004). It is part of the Center for the Advancement of Engineering Education…
Software Engineering Laboratory Ada performance study: Results and implications
NASA Technical Reports Server (NTRS)
Booth, Eric W.; Stark, Michael E.
1992-01-01
The SEL is an organization sponsored by NASA/GSFC to investigate the effectiveness of software engineering technologies applied to the development of applications software. The SEL was created in 1977 and has three organizational members: NASA/GSFC, Systems Development Branch; The University of Maryland, Computer Sciences Department; and Computer Sciences Corporation, Systems Development Operation. The goals of the SEL are as follows: (1) to understand the software development process in the GSFC environments; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that include the Ada Performance Study Report. This paper describes the background of Ada in the Flight Dynamics Division (FDD), the objectives and scope of the Ada Performance Study, the measurement approach used, the performance tests performed, the major test results, and the implications for future FDD Ada development efforts.
Screening studies of advanced control concepts for airbreathing engines
NASA Technical Reports Server (NTRS)
Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.
1993-01-01
The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.
Assessing students' performance in software requirements engineering education using scoring rubrics
NASA Astrophysics Data System (ADS)
Mkpojiogu, Emmanuel O. C.; Hussain, Azham
2017-10-01
The study investigates how helpful the use of scoring rubrics is, in the performance assessment of software requirements engineering students and whether its use can lead to students' performance improvement in the development of software requirements artifacts and models. Scoring rubrics were used by two instructors to assess the cognitive performance of a student in the design and development of software requirements artifacts. The study results indicate that the use of scoring rubrics is very helpful in objectively assessing the performance of software requirements or software engineering students. Furthermore, the results revealed that the use of scoring rubrics can also produce a good achievement assessments direction showing whether a student is either improving or not in a repeated or iterative assessment. In a nutshell, its use leads to the performance improvement of students. The results provided some insights for further investigation and will be beneficial to researchers, requirements engineers, system designers, developers and project managers.
Eliciting and characterizing students' mental models within the context of engineering design
NASA Astrophysics Data System (ADS)
Dankenbring, Chelsey
Recently, science education reform documents have called for the incorporation of engineering principles and practices into the K-12 science standards and curriculum. One way this has been done is through the use of engineering design tasks as a way for students to apply their scientific understandings to real-world problems. However, minimal studies have documented students' conceptions within the context of engineering design. Thus, the first chapter of this thesis outlines the steps taken to develop a draw-and-explain item that elicited students' mental models regarding the cause of the four seasons after finishing an engineering design task. Students' mental models regarding the reason for the seasons are also described. The second chapter characterizes students' conceptions regarding sun-Earth relationships, specifically the amount of daylight hours throughout the year, for students who completed either an engineering design task or more traditional learning activities. Results from these studies indicate that draw-and-explain items are an effective way of obtaining students' mental models and that students harbor a variety of alternate conceptions on astronomy related concepts within various learning contexts. Implications from this study include the need for further research regarding how engineering design is used in the classroom and how engineering design facilitates science learning. Also, professional development that allows in-service teachers to gain experience teaching engineering design is needed, as are teacher preparation programs that expose pre-service teachers to engineering design.
Developing a Pre-Engineering Curriculum for 3D Printing Skills for High School Technology Education
ERIC Educational Resources Information Center
Chien, Yu-Hung
2017-01-01
This study developed an integrated-STEM CO[subscript 2] dragster design course using 3D printing technology. After developing a pre-engineering curriculum, we conducted a teaching experiment to assess students' differences in creativity, race forecast accuracy, and learning performance. We compared student performance in both 3D printing and…
Liquid lubricants for advanced aircraft engines
NASA Technical Reports Server (NTRS)
Loomis, William R.; Fusaro, Robert L.
1993-01-01
An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.
Liquid lubricants for advanced aircraft engines
NASA Technical Reports Server (NTRS)
Loomis, William R.; Fusaro, Robert L.
1992-01-01
An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.
Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.
Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul
2012-08-01
Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.
Mechanical Stretching for Tissue Engineering: Two-Dimensional and Three-Dimensional Constructs
Riehl, Brandon D.; Park, Jae-Hong; Kwon, Il Keun
2012-01-01
Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols. PMID:22335794
Relating MBSE to Spacecraft Development: A NASA Pathfinder
NASA Technical Reports Server (NTRS)
Othon, Bill
2016-01-01
The NASA Engineering and Safety Center (NESC) has sponsored a Pathfinder Study to investigate how Model Based Systems Engineering (MBSE) and Model Based Engineering (MBE) techniques can be applied by NASA spacecraft development projects. The objectives of this Pathfinder Study included analyzing both the products of the modeling activity, as well as the process and tool chain through which the spacecraft design activities are executed. Several aspects of MBSE methodology and process were explored. Adoption and consistent use of the MBSE methodology within an existing development environment can be difficult. The Pathfinder Team evaluated the possibility that an "MBSE Template" could be developed as both a teaching tool as well as a baseline from which future NASA projects could leverage. Elements of this template include spacecraft system component libraries, data dictionaries and ontology specifications, as well as software services that do work on the models themselves. The Pathfinder Study also evaluated the tool chain aspects of development. Two chains were considered: 1. The Development tool chain, through which SysML model development was performed and controlled, and 2. The Analysis tool chain, through which both static and dynamic system analysis is performed. Of particular interest was the ability to exchange data between SysML and other engineering tools such as CAD and Dynamic Simulation tools. For this study, the team selected a Mars Lander vehicle as the element to be designed. The paper will discuss what system models were developed, how data was captured and exchanged, and what analyses were conducted.
Development of hypersonic engine seals: Flow effects of preload and engine pressures
NASA Technical Reports Server (NTRS)
Cai, Zhong; Mutharasan, Rajakkannu; Ko, Frank K.; Steinetz, Bruce M.
1993-01-01
A new type of engine seal is being developed to meet the needs of advanced hypersonic engines. A seal braided of emerging high temperature ceramic fibers comprised of a sheath-core construction was selected for study based on its low leakage rates. Flexible, low-leakage, high temperature seals are required to seal the movable engine panels of advanced ramjet-scramjet engines either preventing potentially dangerous leakage into backside engine cavities or limiting the purge coolant flow rates through the seals. To predict the leakage through these flexible, porous seal structures as a function of preload and engine pressures, new analytical flow models are required. An empirical leakage resistance/preload model is proposed to characterize the observed decrease in leakage with increasing preload. Empirically determined compression modulus and preload factor are used to correlate experimental leakage data for a wide range of seal architectures. Good agreement between measured and predicted values are observed over a range of engine pressures and seal preloads.
NASA Astrophysics Data System (ADS)
Ivchenko, V. M.; Prikhodko, N. A.; Grigorev, V. A.
1985-12-01
Problems associated with the development of optimal hydrojet engines and hydrojet systems with minimal irreversible losses are reviewed in the light of recent theoretical and experimental studies. In particular, attention is given to the theory of hydrojet propulsion, the hydrodynamics of supercavitating hydrojet engines, hydrojet engines with distributed water intake, and water-gas ramjets. The discussion also covers water-steam jet engines, experimental equipment and methods for testing hydrojet systems, and the principal applications of hydrojet engines.
Mathematics in Technology & Engineering Education: Judgments of Grade-Level Appropriateness
ERIC Educational Resources Information Center
Flowers, Jim; Rose, Mary Annette
2014-01-01
Technology and engineering (TE) educators have long championed the infusion of mathematics into technology curriculum, especially to enhance TE learning goals and demonstrate "connections between technology and other fields of study." There is a need for curriculum development and professional development initiatives to purposefully…
Why Can't a Computer Be More Like a Brain?
ERIC Educational Resources Information Center
Lerner, Eric J.
1984-01-01
Engineers seeking to develop intelligent computers have looked to studies of the human brain in hope of imitating its processes. A theory (known as cooperative action) that the brain processes information with electromagnetic waves may inspire engineers to develop entirely new types of computers. (JN)
Nuclear electric propulsion mission engineering study. Volume 2: Final report
NASA Technical Reports Server (NTRS)
1973-01-01
Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.
Engine Icing Modeling and Simulation (Part 2): Performance Simulation of Engine Rollback Phenomena
NASA Technical Reports Server (NTRS)
May, Ryan D.; Guo, Ten-Huei; Veres, Joseph P.; Jorgenson, Philip C. E.
2011-01-01
Ice buildup in the compressor section of a commercial aircraft gas turbine engine can cause a number of engine failures. One of these failure modes is known as engine rollback: an uncommanded decrease in thrust accompanied by a decrease in fan speed and an increase in turbine temperature. This paper describes the development of a model which simulates the system level impact of engine icing using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). When an ice blockage is added to C-MAPSS40k, the control system responds in a manner similar to that of an actual engine, and, in cases with severe blockage, an engine rollback is observed. Using this capability to simulate engine rollback, a proof-of-concept detection scheme is developed and tested using only typical engine sensors. This paper concludes that the engine control system s limit protection is the proximate cause of iced engine rollback and that the controller can detect the buildup of ice particles in the compressor section. This work serves as a feasibility study for continued research into the detection and mitigation of engine rollback using the propulsion control system.
Identification of informative features for predicting proinflammatory potentials of engine exhausts.
Wang, Chia-Chi; Lin, Ying-Chi; Lin, Yuan-Chung; Jhang, Syu-Ruei; Tung, Chun-Wei
2017-08-18
The immunotoxicity of engine exhausts is of high concern to human health due to the increasing prevalence of immune-related diseases. However, the evaluation of immunotoxicity of engine exhausts is currently based on expensive and time-consuming experiments. It is desirable to develop efficient methods for immunotoxicity assessment. To accelerate the development of safe alternative fuels, this study proposed a computational method for identifying informative features for predicting proinflammatory potentials of engine exhausts. A principal component regression (PCR) algorithm was applied to develop prediction models. The informative features were identified by a sequential backward feature elimination (SBFE) algorithm. A total of 19 informative chemical and biological features were successfully identified by SBFE algorithm. The informative features were utilized to develop a computational method named FS-CBM for predicting proinflammatory potentials of engine exhausts. FS-CBM model achieved a high performance with correlation coefficient values of 0.997 and 0.943 obtained from training and independent test sets, respectively. The FS-CBM model was developed for predicting proinflammatory potentials of engine exhausts with a large improvement on prediction performance compared with our previous CBM model. The proposed method could be further applied to construct models for bioactivities of mixtures.
A study of mass data storage technology for rocket engine data
NASA Technical Reports Server (NTRS)
Ready, John F.; Benser, Earl T.; Fritz, Bernard S.; Nelson, Scott A.; Stauffer, Donald R.; Volna, William M.
1990-01-01
The results of a nine month study program on mass data storage technology for rocket engine (especially the Space Shuttle Main Engine) health monitoring and control are summarized. The program had the objective of recommending a candidate mass data storage technology development for rocket engine health monitoring and control and of formulating a project plan and specification for that technology development. The work was divided into three major technical tasks: (1) development of requirements; (2) survey of mass data storage technologies; and (3) definition of a project plan and specification for technology development. The first of these tasks reviewed current data storage technology and developed a prioritized set of requirements for the health monitoring and control applications. The second task included a survey of state-of-the-art and newly developing technologies and a matrix-based ranking of the technologies. It culminated in a recommendation of optical disk technology as the best candidate for technology development. The final task defined a proof-of-concept demonstration, including tasks required to develop, test, analyze, and demonstrate the technology advancement, plus an estimate of the level of effort required. The recommended demonstration emphasizes development of an optical disk system which incorporates an order-of-magnitude increase in writing speed above the current state of the art.
Wave rotor demonstrator engine assessment
NASA Technical Reports Server (NTRS)
Snyder, Philip H.
1996-01-01
The objective of the program was to determine a wave rotor demonstrator engine concept using the Allison 250 series engine. The results of the NASA LERC wave rotor effort were used as a basis for the wave rotor design. A wave rotor topped gas turbine engine was identified which incorporates five basic requirements of a successful demonstrator engine. Predicted performance maps of the wave rotor cycle were used along with maps of existing gas turbine hardware in a design point study. The effects of wave rotor topping on the engine cycle and the subsequent need to rematch compressor and turbine sections in the topped engine were addressed. Comparison of performance of the resulting engine is made on the basis of wave rotor topped engine versus an appropriate baseline engine using common shaft compressor hardware. The topped engine design clearly demonstrates an impressive improvement in shaft horsepower (+11.4%) and SFC (-22%). Off design part power engine performance for the wave rotor topped engine was similarly improved including that at engine idle conditions. Operation of the engine at off design was closely examined with wave rotor operation at less than design burner outlet temperatures and rotor speeds. Challenges identified in the development of a demonstrator engine are discussed. A preliminary design was made of the demonstrator engine including wave rotor to engine transition ducts. Program cost and schedule for a wave rotor demonstrator engine fabrication and test program were developed.
NASA Astrophysics Data System (ADS)
Salzman, Noah
Recent national dialogues on the importance of preparing more students for careers in Science, Technology, Engineering, and Mathematics has driven the development of formal and informal learning opportunities for children and adolescents to explore engineering. Despite the growth of these programs, relatively little research exists on how participation in these programs affects students who choose to pursue further study in engineering. The present study addressed this gap through an exploration of the different ways that First-Year Engineering students experience the transition from pre-college engineering to undergraduate engineering studies. Given the focus of this research on students' experiences, phenomenography was chosen to explore the phenomenon of transition from pre-college to first-year engineering at a large, public Midwestern university. This facilitated understanding the range of variation in the ways that students experienced this transition. Twenty-two students with different amounts of participation in a variety of different engineering programs were selected to be interviewed using a purposeful maximum variation sampling strategy. The interviews were guided by a semi-structured interview protocol that encouraged the participants to reflect on their pre-college engineering experiences, their experiences in First-Year Engineering, and the transition between the two domains. The interviews were analyzed using phenomenographic methods to develop an outcome space consisting of five qualitatively different but related ways of experiencing the transition from pre-college to First-Year Engineering. These categories of description included Foreclosure, Frustration, Tedium, Connection, and Engaging Others. With the exception of the first category which was characterized by a lack of passion and commitment to engineering, the remaining four categories formed a hierarchical relationship representing increasing integration in First-Year Engineering. The outcome space that emerged from this study captured a variety of positive and negative ways that the participants experienced their transitions to First-Year Engineering. Positive outcomes included increased familiarity and confidence with the material being taught in First-Year Engineering, a stronger commitment and drive to be successful in engineering, and the ability to encourage and incorporate input from others in the design process. Negative outcomes included less interest in First-Year Engineering projects, disappointment at the lack of alignment with pre-college engineering, and a struggle to connect with their peers. While not initially guided by Self-Determination Theory, the results of this study align with aspects of Self-Determination Theory, and the relationships between the results of this study and the motivational factors of competence, autonomy, and relatedness are explored. Finally, implications for First-Year and pre-college engineering instructional practices are presented, along with a plan for future work.
NASA Astrophysics Data System (ADS)
Endryansyah; Wanarti Rusimamto, Puput; Ridianto, Adam; Sugiarto, Hariyadi
2018-04-01
In the Department of Electrical Engineering FT Unesa, there are 3 majors: S1 Electrical Engineering Education, S1 Electrical Engineering, and D3 Electrical Engineering. Courses the Basic System Settings go to in the curriculum of the three programs. Team lecturer college of basic system settings seek learning innovation, focused on the development of trainer to student practicum at the laboratory of systems control. Trainer developed is a servo motor along with the lab module that contains a wide variety of theories about the servo motor and guide the practicum. This research type is development research using methods Research & development (R & D). In which the steps are applied in this study is as follows: pay attention to the potential and existing problems, gather information and study the literature, design the product, validate the design, revise the design, a limited trial. The results of the validation of learning device in the form of modules and trainer obtained as follows: score validation of learning device is 3,64; score validation lab module Servo Motor is 3,47; and questionnaire responses of students is 3,73. The result of the whole validation value is located in the interval >of 3.25 s/d 4 with the category of “Very Valid”, so it can be concluded that all instruments have a level of validity “Very Valid” and worthy of use for further learning.
Creating Learning Environment Connecting Engineering Design and 3D Printing
NASA Astrophysics Data System (ADS)
Pikkarainen, Ari; Salminen, Antti; Piili, Heidi
Engineering education in modern days require continuous development in didactics, pedagogics and used practical methods. 3D printing provides excellent opportunity to connect different engineering areas into practice and produce learning by doing applications. The 3D-printing technology used in this study is FDM (Fused deposition modeling). FDM is the most used 3D-printing technology by commercial numbers at the moment and the qualities of the technology makes it popular especially in academic environments. For achieving the best result possible, students will incorporate the principles of DFAM (Design for additive manufacturing) into their engineering design studies together with 3D printing. This paper presents a plan for creating learning environment for mechanical engineering students combining the aspects of engineering design, 3D-CAD learning and AM (additive manufacturing). As a result, process charts for carrying out the 3D printing process from technological point of view and design process for AM from engineering design point of view were created. These charts are used in engineering design education. The learning environment is developed to work also as a platform for Bachelor theses, work-training environment for students, prototyping service centre for cooperation partners and source of information for mechanical engineering education in Lapland University of Applied Sciences.
Acoustic Engineering program at the Universidad Austral de Chile (UACh)
NASA Astrophysics Data System (ADS)
Sommerhoff, Jorge; Poblete, Victor; Arenas, Jorge P.
2002-11-01
From the beginning of the acoustics program at UACh in 1968, the studies of Acoustic Engineering have been modified and developed according to the vision and human resources of its developers. Three different stages of growth can be seen. When the program began, it was totally aimed at forming skilled professionals in audio and recording. In this way, the professional title given was Sound Engineer. At that time, each applicant was required to have ''good musical hearing,'' which had to be demonstrated through a special musical audition test. The second stage was characterized by the incorporation of acoustics subjects which allowed students, with no musical abilities, to competently work on acoustic engineering activities not related to music. Then, the professional title was changed to Acoustic Engineer. Thus, job opportunities were diversified and access was allowed by all types of students. In the last stage, the study plan was modified as a response to the new vision and requirements of the globalized world in which the environmental component has a great importance. In this work the development of a program that dates from 35 years ago is presented and justified.
A practical model for economic evaluation of tissue-engineered therapies.
Tan, Tien-En; Peh, Gary S L; Finkelstein, Eric A; Mehta, Jodhbir S
2015-01-01
Tissue-engineered therapies are being developed across virtually all fields of medicine. Some of these therapies are already in clinical use, while others are still in clinical trials or the experimental phase. Most initial studies in the evaluation of new therapies focus on demonstration of clinical efficacy. However, cost considerations or economic viability are just as important. Many tissue-engineered therapies have failed to be impactful because of shortcomings in economic competitiveness, rather than clinical efficacy. Furthermore, such economic viability studies should be performed early in the process of development, before significant investment has been made. Cost-minimization analysis combined with sensitivity analysis is a useful model for the economic evaluation of new tissue-engineered therapies. The analysis can be performed early in the development process, and can provide valuable information to guide further investment and research. The utility of the model is illustrated with the practical real-world example of tissue-engineered constructs for corneal endothelial transplantation. The authors have declared no conflicts of interest for this article. © 2015 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Clarke, James B.; Coyle, James R.
2011-01-01
This article reports the results of a case study in which an experimental wiki knowledge base was designed, developed, and tested by the Brill Science Library at Miami University for an undergraduate engineering senior capstone project. The wiki knowledge base was created to determine if the science library could enhance the engineering literature…
Ti/Al Design/Cost Trade-Off Analysis
1978-10-01
evaluate the applV!ati’an of selected titanium aluuinide alloys to both dynamic and static components of aircraft gas turbine engines . Mr. D. 0. Nash...the development of advanced aircraft gas turbine engines , a continuing objective has been to develop lightweight, high-performance designs. A parallel... engines for the design/cost trade-off study are as follows: Dynamic Components "* F1O1 Fourth-Stage Compressor Blade "* JlO1 Low Pressure Turbine Blade
Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1972-01-01
An analysis of the solid propellant rocket engines for use with the space shuttle booster was conducted. A definition of the specific solid propellant rocket engine stage designs, development program requirements, production requirements, launch requirements, and cost data for each program phase were developed.
Professional Socialization of Electrical Engineers in University Education
ERIC Educational Resources Information Center
Keltikangas, Kirsti; Martinsuo, Miia
2009-01-01
University educators constantly seek ways in which courses and curricula would promote students' professional development in line with the needs of industries. The purpose of this study was to develop a framework for analysing professional socialization particularly in the context of electrical engineering education and explore factors associated…
Development of the Scale for "Convergence Thinking" in Engineering
ERIC Educational Resources Information Center
Park, Sungmi
2016-01-01
Purpose: The purpose of this paper is to define the concept of "convergence thinking" as a trading zone for knowledge fusion in the engineering field, and develops its measuring scale. Design/ Methodology/Approach: Based on results from literature review, this study clarifies a theoretical ground for "convergence thinking."…
ERIC Educational Resources Information Center
Ge, Xun; Huang, Kun; Dong, Yifei
2010-01-01
A semester-long ethnography study was carried out to investigate project-based learning in a graduate software engineering course through the implementation of an Open-Source Software Development (OSSD) learning environment, which featured authentic projects, learning community, cognitive apprenticeship, and technology affordances. The study…
Creativity and Brain-Functioning in Product Development Engineers: A Canonical Correlation Analysis
ERIC Educational Resources Information Center
Travis, Frederick; Lagrosen, Yvonne
2014-01-01
This study used canonical correlation analysis to explore the relation among scores on the Torrance test of figural and verbal creativity and demographic, psychological and physiological measures in Swedish product-development engineers. The first canonical variate included figural and verbal flexibility and originality as dependent measures and…
Effects of Engineered Nanomaterials on Plants Growth: An Overview
Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Juraimi, Abdul Shukor; Hashemi, Farahnaz Sadat Golestan
2014-01-01
Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level. PMID:25202734
NASA Astrophysics Data System (ADS)
Grusenmeyer, Linda Huey
This study examines the personal and curricular resources available to Delaware's elementary teachers during a time of innovative curriculum change, i.e., their knowledge, goals and beliefs regarding elementary engineering curriculum and the pedagogical support to teach two Science and Engineering Practices provided by science teaching materials. Delaware was at the forefront of K-12 STEM movement, first to adopt statewide elementary curriculum materials to complement existing science units, and one of the first to adopt the new science standards--Next Generation Science Standards. What supports were available to teachers as they adapted and adopted this new curriculum? To investigate this question, I examined (1) teachers' beliefs about engineering and the engineering curriculum, and (2) the pedagogical supports available to teachers in selected science and engineering curriculum. Teachers' knowledge, goals, and beliefs regarding Delaware's adoption of new elementary engineering curriculum were surveyed using an adapted version of the Design, Engineering, and Technology Survey (Hong, Purser, & Gardella, 2011; Yaser, Baker, Carpius, Krauss, & Roberts, 2006). Also, three open ended questions sought to reveal deeper understanding of teacher knowledge and understanding of engineering; their concerns about personal and systemic resources related to the new curriculum, its logistics, and feasibility; and their beliefs about the potential positive impact presented by the engineering education initiative. Teacher concerns were analyzed using the Concerns-Based Adoption Model (Hall & Hord, 2010). Lay understandings of engineering were analyzed by contrasting naive representations of engineering with three key characteristics of engineering adapted from an earlier study (Capobianco Diefes-Dux, Mena, & Weller, 2011). Survey findings for teachers who had attended training and those who have not yet attended professional development in the new curriculum were compared with few notable differences. Almost all elementary teacher respondents were familiar with engineering and able to define it using one or more key characteristics. They valued the inclusion of engineering in the elementary curriculum; however trained and untrained teachers reported they were not confident about teaching it and were unaware of the new standards related to engineering. Teachers saw potential advantages or benefits of the new curriculum as helping improve science and math understanding, an opportunity to increase vocational awareness, and engaging students and motivating them to learn. Most teachers saw similar barriers to implementation- lack of teacher knowledge, lack of time to learn about engineering and how to teach engineering, and lack of administrative support. Almost all were open to additional in-service training to learn more about this new curriculum. Three fifth grade science units were examined for evidence of teacher pedagogical support in teaching two Science and Engineering Practices (SEP) advocated by the Next Generation Science Standards. An analytic framework was developed based upon two NGSS SEPs: Asking questions, defining problems and Engaging in argument from evidence. Findings revealed that the kits varied greatly in their pedagogical approaches to the two SEPs and differences might be explained by each kit's underlying orientations to the teaching-learning process. Findings from these investigations have implications for the design of professional development and for engineering curricula. They highlight the importance of considering teacher beliefs about curriculum implementation and subject matter, as well as the importance of creating curriculum materials that focus teacher attention toward student thinking and the language rich science and engineering practices. Recommendations also include ongoing professional development to allow teachers time to try out and revise pedagogical routines that support the SEPs studied here.
Overview of NASA Glenn Seal Project
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Dunlap, Patrick; Proctor, Margaret; Delgado, Irebert; Finkbeiner, Josh; DeMange, Jeff; Daniels, Christopher C.; Taylor, Shawn; Oswald, Jay
2006-01-01
NASA Glenn is currently performing seal research supporting both advanced turbine engine development and advanced space vehicle/propulsion system development. Studies have shown that decreasing parasitic leakage through applying advanced seals will increase turbine engine performance and decrease operating costs. Studies have also shown that higher temperature, long life seals are critical in meeting next generation space vehicle and propulsion system goals in the areas of performance, reusability, safety, and cost. NASA Glenn is developing seal technology and providing technical consultation for the Agency s key aero- and space technology development programs.
ERIC Educational Resources Information Center
Shange, Thembeka G. C.
2015-01-01
With the increase in student enrolments in higher education, which has resulted in changes to student profiles, academic development has become important in terms of students' success. This article is a report on a qualitative study that used in-depth interviews to investigate the perceptions of Engineering students and staff to academic…
NASA Astrophysics Data System (ADS)
Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.
2018-05-01
This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.
NASA Astrophysics Data System (ADS)
Marek, W.; Śliwiński, K.
2016-09-01
The article concerns research carried out by the Krakow University of Technology on the concept of a pneumatic fuel injection spark ignition engines. In this artkule an example of an application of this type of power to the Wankel's engine, together with a description of its design and operating principles and the benefits of its use. The work was carried out over many years by Prof. Stanislaw Jarnuszkiewicz despite the development of many patents but not widely used in engines. Authors who were involved in the team-work of the team of Prof. Jarnuszkiewicz, after conducting exploratory studies, believed that this solution has development potential and this will be presented in future articles.
Implementation of a cooperative methodology to develop organic chemical engineering skills
NASA Astrophysics Data System (ADS)
Arteaga, J. F.; Díaz Blanco, M. J.; Toscano Fuentes, C.; Martín Alfonso, J. E.
2013-08-01
The objective of this work is to investigate how most of the competences required by engineering students may be developed through an active methodology based on cooperative learning/evaluation. Cooperative learning was employed by the University of Huelva's third-year engineering students. The teaching methodology pretends to create some of the most relevant engineering skills required nowadays such as the ability to cooperate finding appropriate information; the ability to solve problems through critical and creative thinking; and the ability to make decisions and to communicate effectively. The statistical study carried out supports the hypothesis that comprehensive and well-defined protocols in the development of the subject, the rubric and cooperative evaluation allow students to acquire a successful learning.
Data Mining and Optimization Tools for Developing Engine Parameters Tools
NASA Technical Reports Server (NTRS)
Dhawan, Atam P.
1998-01-01
This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. Tricia Erhardt and I studied the problem domain for developing an Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy, datasets. From the study and discussion with NASA LeRC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of tile data for GA based multi-resolution optimal search.
Engineering Pre-vascularized Scaffolds for Bone Regeneration.
Barabaschi, Giada D G; Manoharan, Vijayan; Li, Qing; Bertassoni, Luiz E
2015-01-01
Survival of functional tissue constructs of clinically relevant size depends on the formation of an organized and uniformly distributed network of blood vessels and capillaries. The lack of such vasculature leads to spatio-temporal gradients in oxygen, nutrients and accumulation of waste products inside engineered tissue constructs resulting in negative biological events at the core of the scaffold. Unavailability of a well-defined vasculature also results in ineffective integration of scaffolds to the host vasculature upon implantation. Arguably, one of the greatest challenges in engineering clinically relevant bone substitutes, therefore, has been the development of vascularized bone scaffolds. Various approaches ranging from peptide and growth factor functionalized biomaterials to hyper-porous scaffolds have been proposed to address this problem with reasonable success. An emerging alternative to address this challenge has been the fabrication of pre-vascularized scaffolds by taking advantage of biomanufacturing techniques, such as soft- and photo-lithography or 3D bioprinting, and cell-based approaches, where functional capillaries are engineered in cell-laden scaffolds prior to implantation. These strategies seek to engineer pre-vascularized tissues in vitro, allowing for improved anastomosis with the host vasculature upon implantation, while also improving cell viability and tissue development in vitro. This book chapter provides an overview of recent methods to engineer pre-vascularized scaffolds for bone regeneration. We first review the development of functional blood capillaries in bony structures and discuss controlled delivery of growth factors, co-culture systems, and on-chip studies to engineer vascularized cell-laden biomaterials. Lastly, we review recent studies using microfabrication techniques and 3D printing to engineer pre-vascularized scaffolds for bone tissue engineering.
Stratified charge rotary engine combustion studies
NASA Technical Reports Server (NTRS)
Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.
1989-01-01
Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.
Stratified charge rotary engine combustion studies
NASA Astrophysics Data System (ADS)
Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.
1989-07-01
Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.
Nanofibers and their applications in tissue engineering
Vasita, Rajesh; Katti, Dhirendra S
2006-01-01
Developing scaffolds that mimic the architecture of tissue at the nanoscale is one of the major challenges in the field of tissue engineering. The development of nanofibers has greatly enhanced the scope for fabricating scaffolds that can potentially meet this challenge. Currently, there are three techniques available for the synthesis of nanofibers: electrospinning, self-assembly, and phase separation. Of these techniques, electrospinning is the most widely studied technique and has also demonstrated the most promising results in terms of tissue engineering applications. The availability of a wide range of natural and synthetic biomaterials has broadened the scope for development of nanofibrous scaffolds, especially using the electrospinning technique. The three dimensional synthetic biodegradable scaffolds designed using nanofibers serve as an excellent framework for cell adhesion, proliferation, and differentiation. Therefore, nanofibers, irrespective of their method of synthesis, have been used as scaffolds for musculoskeletal tissue engineering (including bone, cartilage, ligament, and skeletal muscle), skin tissue engineering, vascular tissue engineering, neural tissue engineering, and as carriers for the controlled delivery of drugs, proteins, and DNA. This review summarizes the currently available techniques for nanofiber synthesis and discusses the use of nanofibers in tissue engineering and drug delivery applications. PMID:17722259
Principles of Sociology in Systems Engineering
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Andrews, James G.; Larsen, Jordan A.
2017-01-01
Systems engineering involves both the integration of the system and the integration of the disciplines which develop and operate the system. Integrating the disciplines is a sociological effort to bring together different groups, often with different terminology, to achieve a common goal, the system. The focus for the systems engineer is information flow through the organization, between the disciplines, to ensure the system is developed and operated with all relevant information informing system decisions. Robert K. Merton studied the sociological principles of the sciences and the sociological principles he developed apply to systems engineering. Concepts such as specification of ignorance, common terminology, opportunity structures, role-sets, and the reclama (reconsideration) process are all important sociological approaches that should be employed by the systems engineer. In bringing the disciplines together, the systems engineer must also be wary of social ambivalence, social anomie, social dysfunction, insider-outsider behavior, unintended consequences, and the self-fulfilling prophecy. These sociological principles provide the systems engineer with key approaches to manage the information flow through the organization as the disciplines are integrated and share their information. This also helps identify key sociological barriers to information flow through the organization. This paper will discuss this theoretical basis for the application of sociological principles to systems engineering.
Capability and flight record of the versatile space shuttle OMS engine
NASA Astrophysics Data System (ADS)
Judd, D. Craig
The development contract for Aerojet's Orbital Manuevering Subsystem (OMS) engine was awarded in February 1974. This paper provides a description of the OMS subcomponents along with a summary of the OMS development program and subsequent flight record. The major subcomponents include the platelet injector, regeneratively cooled chamber, radiation cooled nozzle extension, bipropellant valve, thrust mount, gimbal actuator assembly, and propellant feedlines. The OMS engine underwent an extensive development program between 1974 and 1978 that included approximately 3680 tests performed on 21 separate engines on components for a total duration of more than 19,000 seconds. This was followed with qualification testing of two engines with another 521 tests and 18,504 seconds of hot fire testing. The Space Shuttle system has completed 45 orbital flights with the OMS engines having fired a total of 356 times with a cumulative duration of 38,094 seconds. In all cases, the OMS engine has performed as required because of its maturity, simplicity, and built-in redundancy. Also described are the results of studies performed to increase the performance of the OMS engine either by using LOX/hydrocarbon propellants or by converting to a pump fed system to increase chamber pressure and area ratio.
A modular approach to creating large engineered cartilage surfaces.
Ford, Audrey C; Chui, Wan Fung; Zeng, Anne Y; Nandy, Aditya; Liebenberg, Ellen; Carraro, Carlo; Kazakia, Galateia; Alliston, Tamara; O'Connell, Grace D
2018-01-23
Native articular cartilage has limited capacity to repair itself from focal defects or osteoarthritis. Tissue engineering has provided a promising biological treatment strategy that is currently being evaluated in clinical trials. However, current approaches in translating these techniques to developing large engineered tissues remains a significant challenge. In this study, we present a method for developing large-scale engineered cartilage surfaces through modular fabrication. Modular Engineered Tissue Surfaces (METS) uses the well-known, but largely under-utilized self-adhesion properties of de novo tissue to create large scaffolds with nutrient channels. Compressive mechanical properties were evaluated throughout METS specimens, and the tensile mechanical strength of the bonds between attached constructs was evaluated over time. Raman spectroscopy, biochemical assays, and histology were performed to investigate matrix distribution. Results showed that by Day 14, stable connections had formed between the constructs in the METS samples. By Day 21, bonds were robust enough to form a rigid sheet and continued to increase in size and strength over time. Compressive mechanical properties and glycosaminoglycan (GAG) content of METS and individual constructs increased significantly over time. The METS technique builds on established tissue engineering accomplishments of developing constructs with GAG composition and compressive properties approaching native cartilage. This study demonstrated that modular fabrication is a viable technique for creating large-scale engineered cartilage, which can be broadly applied to many tissue engineering applications and construct geometries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stirling engine application study
NASA Technical Reports Server (NTRS)
Teagan, W. P.; Cunningham, D.
1983-01-01
A range of potential applications for Stirling engines in the power range from 0.5 to 5000 hp is surveyed. Over one hundred such engine applications are grouped into a small number of classes (10), with the application in each class having a high degree of commonality in technical performance and cost requirements. A review of conventional engines (usually spark ignition or Diesel) was then undertaken to determine the degree to which commercial engine practice now serves the needs of the application classes and to detemine the nature of the competition faced by a new engine system. In each application class the Stirling engine was compared to the conventional engines, assuming that objectives of ongoing Stirling engine development programs are met. This ranking process indicated that Stirling engines showed potential for use in all application classes except very light duty applications (lawn mowers, etc.). However, this potential is contingent on demonstrating much greater operating life and reliability than has been demonstrated to date by developmental Stirling engine systems. This implies that future program initiatives in developing Stirling engine systems should give more emphasis to life and reliability issues than has been the case in ongoing programs.
Developing a new industrial engineering curriculum using a systems engineering approach
NASA Astrophysics Data System (ADS)
Buyurgan, Nebil; Kiassat, Corey
2017-11-01
This paper reports on the development of an engineering curriculum for a new industrial engineering programme at a medium-sized private university in the northeast United States. A systems engineering process has been followed to design and develop the new curriculum. Considering the programme curriculum as a system, first the stakeholders have been identified, and some preliminary analysis on their needs and requirements has been conducted. Following that, the phases of conceptual design, preliminary design, and detailed design have been pursued during which different levels of validation, assessment, and evaluation processes have been utilised. In addition, a curriculum assessment and continuous improvement process have been developed to assess the curriculum and the courses frequently. The resulting curriculum is flexible, allowing the pursuit of accelerated graduate programmes, a second major, various minor options, and study-abroad; relevant, tailored to the needs of industry partners in the vicinity; and practical, providing hands-on education, resulting in employment-ready graduates.
Foreign Experience in Training Future Engineering Educators for Modeling Technological Processes
ERIC Educational Resources Information Center
Bokhonko, Yevhen
2017-01-01
The article deals with the study of foreign experience in training engineering educators for modeling technological processes. It has been stated that engineering education is a field that is being dramatically developed taking into account the occurring changes in educational paradigms, global higher education space, national higher education…
Career Pathways of Science, Engineering and Technology Research Postgraduates
ERIC Educational Resources Information Center
Giles, Marnie; Ski, Chantal; Vrdoljak, Davorin
2009-01-01
Suitably qualified scientists and engineers are essential for research and development, innovation and, in turn, the growth of the economy. Science, engineering and technology skills are therefore necessary for Australia to remain competitive in a global market. This article reports findings from a nationwide study investigating the career…
Engineering education for the 1980's: A speculation
NASA Technical Reports Server (NTRS)
Covert, E. E.
1975-01-01
The development of a course of study is briefly examined from two points of view. The first represents the background that would seem to be needed for a fledgling engineer upon his entry into the engineering profession and would allow him to complete successfully his on-the-job training, or engineering internship as it were. The second represents that which must be provided on the basis of the students background from secondary school. It is suggested that a course of study viewed in this way is never fixed, but rather evolves continuously. A particular evolving course of study is briefly discussed.
CECE: A Deep Throttling Demonstrator Cryogenic Engine for NASA's Lunar Lander
NASA Technical Reports Server (NTRS)
Giuliano, Victor J.; Leonard, Timothy G.; Adamski, Walter M.; Kim, Tony S.
2007-01-01
As one of the first technology development programs awarded under NASA's Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic Lunar Lander engine for use across multiple human and robotic lunar exploration mission segments with extensibility to Mars. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. NASA Marshall Space Flight Center and NASA Glenn Research Center personnel were integral design and analysis team members throughout the requirements assessment, propellant studies and the deep throttling demonstrator elements of the program. The testbed selected for the initial deep throttling demonstration phase of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. In just nine months from technical program start, CECE Demonstrator No. 1 engine testing in April/May 2006 at PWR's E06 test stand successfully demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. This test provided an early demonstration of a viable, enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for both the subsequent CECE Demonstrator No. 2 program and to the future Lunar Lander Design, Development, Test and Evaluation effort.
How Engineers Really Think About Risk: A Study of JPL Engineers
NASA Technical Reports Server (NTRS)
Hihn, Jairus; Chattopadhyay, Deb; Valerdi, Ricardo
2011-01-01
The objectives of this work are: To improve risk assessment practices as used during the mission design process by JPL's concurrent engineering teams. (1) Developing effective ways to identify and assess mission risks (2) Providing a process for more effective dialog between stakeholders about the existence and severity of mission risks (3) Enabling the analysis of interactions of risks across concurrent engineering roles.
ERIC Educational Resources Information Center
Hacker, Michael; Barak, Moshe
2017-01-01
Engineering and technology education (ETE) are receiving increased attention as components of STEM education. Curriculum development should be informed by perceptions of academic engineering educators (AEEs) and classroom technology teachers (CTTs) as both groups educate students to succeed in the technological world. The purpose of this study was…
Advanced Natural Gas Reciprocating Engine(s)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwok, Doris; Boucher, Cheryl
Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOxmore » emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work has consisted of both modeling and single cylinder engine experiments to quantify DIGN performance. The air handling systems of natural gas engines dissipate a percentage of available energy as a result of both flow losses and turbomachinery inefficiencies. An analytical study was initiated to increase compressor efficiency by employing a 2-stage inter-cooled compressor. Caterpillar also studied a turbo-compound system that employs a power turbine to recover energy from the exhaust gases for improved engine efficiency. Several other component and system investigations were undertaken during the final phase of the program to reach the ultimate ARES goals. An intake valve actuation system was developed and tested to improve engine efficiency, durability and load acceptance. Analytical modeling and materials testing were performed to evaluate the performance of steel pistons and compacted graphite iron cylinder head. Effort was made to improve the detonation sensing system by studying and comparing the performance of different pressure sensors. To reduce unburned hydrocarbon emissions, different camshafts were designed and built to investigate the effect of exhaust valve opening timing and value overlap. 1-D & 3-D coupled simulation was used to study intake and exhaust manifold dynamics with the goal of reducing load in-balance between cylinders. Selective catalytic reduction with on-board reductant generation to reduce NOx emissions was also engine tested. An effective mean to successfully deploy ARES technologies into the energy markets is to deploy demonstration projects in the field. In 2010, NETL and Caterpillar agreed to include a new “opportunity fuel” deliverable and two field demonstrations in the ARES program. An Organic Rankine Cycle system was designed with production intent incorporating lessons learned from the Phase II demonstration. Unfortunately, business conditions caused Caterpillar to cancel this demonstration in 2011. Nonetheless, Caterpillar partnered with a local dealer to deploy an ARES class engine using syngas from a biomass gasifier as the DE-FC26-01CH11079 primary combustion fuel in Gleason, TN. Upon the successful start-up and commissioning of the demonstration unit, ownership of the system was transferred to the dealer. In order to further our understanding of syngas combustion, a fundamental combustion study on syngas combustion at high pressure and lean condition was conducted through the collaboration with University of Southern California. A Methane program was also developed to rate engine performance for various compositions of syngas using empirical data obtained at CSU. While much work remains in terms of extending and integrating these developments into commercial products, it is evident that engine manufacturers on our own or through private consortium efforts could not have overcome the financial hurdles to drive these improvements into reciprocating engine and system capabilities, helping maintain the natural gas reciprocating engine power generation technology as a strong option for electric power markets, both in the United States and worldwide.« less
NASA Technical Reports Server (NTRS)
Stier, Bernd; Falco, R. E.
1994-01-01
Optical measurements on an axisymmetrical quartz component engine research model were made to evaluate the flow field encountered during induction. The measurement technique is LIPA (Laser Induced Photochemical Anemometry), a non-intrusive velocimetry concept that provides an investigator of fluid flow with a tool to attain planar information about three-dimensional velocity and vorticity vectors in a single measurement step. The goal of this investigation is to further develop this measurement technique and apply it to study the induction stroke of a water analog model of a four-stroke internal combustion engine. The research conducted in the water analog model is a fundamental scientific inquiry into the flow fields that develop in the induction stroke of an engine at idling engine speeds. As this is the first investigation of its kind using LIPA technique, our goal has been to quantify, in a preliminary manner, the flow field features that develop during the intake stroke. In the process a more comprehensive understanding of the flow field features was developed, and tied to the quantification. The study evaluated the flow field of the intake stroke by estimating fields of velocity and vorticity. On the basis of these data, information about fluid dynamics during induction at engine speeds of 10, 20, and 30 RPM (corresponding to 170, 340, and 510 RPM respectively, when air is the flowing medium) for three different valve lifts was obtained. The overall development of the flow field, its energy content (kinetic, fluctuation) for the different settings of the engine parameters, vorticity information, and cyclic variations have been quantified. These have been discussed in terms of mixing performance.
Murphy, Colleen; Gardoni, Paolo
2017-07-18
The development of the curriculum for engineering education (course requirements as well as extra-curricular activities like study abroad and internships) should be based on a comprehensive understanding of engineers' responsibilities. The responsibilities that are constitutive of being an engineer include striving to fulfill the standards of excellence set by technical codes; to improve the idealized models that engineers use to predict, for example, the behavior of alternative designs; and to achieve the internal goods such as safety and sustainability as they are reflected in the design codes. Globalization has implications for these responsibilities and, in turn, for engineering education, by, for example, modifying the collection of possible solutions recognized for existing problems. In addition, international internships can play an important role in fostering the requisite moral imagination of engineering students.
Development and Validation of an NPSS Model of a Small Turbojet Engine
NASA Astrophysics Data System (ADS)
Vannoy, Stephen Michael
Recent studies have shown that integrated gas turbine engine (GT)/solid oxide fuel cell (SOFC) systems for combined propulsion and power on aircraft offer a promising method for more efficient onboard electrical power generation. However, it appears that nobody has actually attempted to construct a hybrid GT/SOFC prototype for combined propulsion and electrical power generation. This thesis contributes to this ambition by developing an experimentally validated thermodynamic model of a small gas turbine (˜230 N thrust) platform for a bench-scale GT/SOFC system. The thermodynamic model is implemented in a NASA-developed software environment called Numerical Propulsion System Simulation (NPSS). An indoor test facility was constructed to measure the engine's performance parameters: thrust, air flow rate, fuel flow rate, engine speed (RPM), and all axial stage stagnation temperatures and pressures. The NPSS model predictions are compared to the measured performance parameters for steady state engine operation.
Future heavy duty trucking engine requirements
NASA Technical Reports Server (NTRS)
Strawhorn, L. W.; Suski, V. A.
1985-01-01
Developers of advanced heavy duty diesel engines are engaged in probing the opportunities presented by new materials and techniques. This process is technology driven, but there is neither assurance that the eventual users of the engines so developed will be comfortable with them nor, indeed, that those consumers will continue to exist in either the same form, or numbers as they do today. To ensure maximum payoff of research dollars, the equipment development process must consider user needs. This study defines motor carrier concerns, cost tolerances, and the engine parameters which match the future projected industry needs. The approach taken to do that is to be explained and the results presented. The material to be given comes basically from a survey of motor carrier fleets. It provides indications of the role of heavy duty vehicles in the 1998 period and their desired maintenance and engine performance parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ding; Han, Xiaoyan; Newaz, Golam
Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developingmore » the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.« less
The MSFC Systems Engineering Guide: An Overview and Plan
NASA Technical Reports Server (NTRS)
Shelby, Jerry A.; Thomas, L. Dale
2007-01-01
As systems and subsystems requirements become more complex in the pursuit of the exploration of space, advanced technology will demand and require an integrated approach to the design and development of safe and successful space vehicles and there products. System engineers play a vital and key role in transforming mission needs into vehicle requirements that can be verified and validated. This will result in a safe and cost effective design that will satisfy the mission schedule. A key to successful vehicle design within systems engineering is communication. Communication, through a systems engineering infrastructure, will not only ensure that customers and stakeholders are satisfied but will also assist in identifying vehicle requirements; i.e. identification, integration and management. This vehicle design will produce a system that is verifiable, traceable, and effectively satisfies cost, schedule, performance, and risk throughout the life-cycle of the product. A communication infrastructure will bring about the integration of different engineering disciplines within vehicle design. A system utilizing these aspects will enhance system engineering performance and improve upon required activities such as Development of Requirements, Requirements Management, Functional Analysis, Test, Synthesis, Trade Studies, Documentation, and Lessons Learned to produce a successful final product. This paper will describe the guiding vision, progress to date and the plan forward for development of the Marshall Space Flight Center (MSFC) Systems Engineering Guide (SEG), a virtual systems engineering handbook and archive that will describe the system engineering processes that are used by MSFC in the development of complex systems such as the Ares launch vehicle. It is the intent of this website to be a "One Stop Shop" for our systems engineers that will provide tutorial information, an overview of processes and procedures and links to assist system engineering with guidance and references, and provide an archive of systems engineering artifacts produced by the many NASA projects developed and managed by MSFC over the years.
Xu, Yan; Cai, Yanpeng; Sun, Tao; Yin, Xin'An; Tan, Qian
2017-06-30
An integrated indicator system was developed for determining synthetic environmental responses under multiple types of coastal reclamation engineering in the Yellow River estuary, China. Four types of coastal engineering works were analyzed, namely port construction, petroleum exploitation, fishery and aquaculture, and seawall defense. In addition, two areas with limited human disturbances were considered for comparison. From the weights of the response value for each indicator, port construction was determined to be the primary impact contributor among the four engineering works studies. Specifically, hydrodynamic conditions, ecological status, economic costs, and engineering intensity were on average 72.78%, 65.03%, 75.03%, and 66.35% higher than those of other engineering types. Furthermore, fishery and aquaculture impact on water quality was 42.51% higher than that of other engineering types, whereas seawall defense impact on landscape variation was 51.75% higher than that of other engineering types. The proposed indicator system may provide effective coastal management in future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Educating the engineers of 2020: An outcomes-based typology of engineering undergraduates
NASA Astrophysics Data System (ADS)
Knight, David B.
Members of government and industry have called for greater emphasis within U.S. colleges and universities on producing engineers who can enter and advance a more competitive, globally connected workforce. Looking toward this future, engineers will need to exhibit strong analytical skills as in the past, but they also will need to be proficient in a cadre of new abilities to compete. This study examines, in combination, an array of knowledge and skills aligned with the National Academy of Engineering's "engineer of 2020." The study has two major goals. The first is to develop a typology of engineering students based on the learning outcomes associated with the engineer of E2020. The second is to understand the educational experiences that distinguish these groups of students who resemble, more or less, the engineer of 2020. This approach acknowledges that engineering graduates need a complex skill set to succeed in the new global economy; it is the combination of skills associated with the engineer of 2020, not the individual skills in isolation, which will ensure graduates can respond to workforce needs of the future. To date, research on student outcomes has studied learning outcomes independent of one another rather than investigating student learning holistically. The study uses student data from the Prototype to production: Processes and conditions for preparing the Engineer of 2020 study, sponsored by the National Science Foundation (NSF EEC-0550608). Engineering students from a nationally representative sample of engineering programs in the United States answered a survey that collected information on their pre-college academic preparation and sociodemographic characteristics, their curricular and co-curricular experiences in their engineering programs, and their self-ratings of their engineering-related competencies. Only data on engineering students in their senior year (n=2,422) were utilized in analyses. Analyses were conducted in multiple phases for each of five engineering disciplines in the data set (biomedical/bioengineering, chemical, civil, electrical, and mechanical engineering). First, cluster analyses produced typologies (or groupings) of engineering seniors (one for each of five engineering disciplines studied and an "all engineering" analysis) based on nine self-reported learning outcomes, including fundamental skills, design skills, contextual awareness, interdisciplinary competence, and professional skills. Second, profiles of pre-college characteristics as well as student experiences in college were developed for each discipline and the five disciplines combined. Using analyses of variance, Chi-square analyses, and multinomial logistic regression, this phase also identified differences in student characteristics and college experiences between clusters of students reporting high proficiencies on the array of outcomes and students in other clusters. This second phase informed the third phase, which produced parsimonious models that used pre-college characteristics and student experience variables to predict cluster membership. As a whole, the findings demonstrate that analyses that include the full array of E2020 learning outcomes produce meaningful typologies that distinguish between groupings of students in different engineering fields. Findings demonstrate that a subset of students - the engineers of 2020 - report high skills and abilities on the full array of learning outcomes. These are the graduates sought by both the federal government and industry who most closely resemble the engineers of 2020. In addition, distinctive curricular and co-curricular experiences distinguish this E2020 group of students in each engineering discipline from other groupings of students in that same discipline. These findings have valuable implications for practice because they identify an array of discipline-specific, in- and out-of-class learning experiences that appear to promote the development of this multi-dimensional set of outcomes. Overall, however, greater curricular emphases on broad and systems perspectives in the engineering curriculum most consistently set apart the students who report high proficiencies on the E2020 outcomes. The findings also indicate that strategies for improving undergraduate engineering outcomes should be tailored by engineering discipline. The study contributes to both practice and research by developing a technique that can be used to create an outcomes-based typology that can be applied to any set of learning outcomes. Graphical representations of results consolidate large quantities of information into an easily accessible format so that findings can guide both practitioners and policymakers who seek to improve this multi-dimensional set of undergraduate engineering learning outcomes. Future directions for research, including operationalizing organizational contexts influencing E2020 learning outcomes as well as anticipated career trajectories of students across the typology, are also discussed.
Study of advanced rotary combustion engines for commuter aircraft
NASA Technical Reports Server (NTRS)
Berkowitz, M.; Jones, C.; Myers, D.
1983-01-01
Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.
Integrating ethics in design through the value-sensitive design approach.
Cummings, Mary L
2006-10-01
The Accreditation Board of Engineering and Technology (ABET) has declared that to achieve accredited status, 'engineering programs must demonstrate that their graduates have an understanding of professional and ethical responsibility.' Many engineering professors struggle to integrate this required ethics instruction in technical classes and projects because of the lack of a formalized ethics-in-design approach. However, one methodology developed in human-computer interaction research, the Value-Sensitive Design approach, can serve as an engineering education tool which bridges the gap between design and ethics for many engineering disciplines. The three major components of Value-Sensitive Design, conceptual, technical, and empirical, exemplified through a case study which focuses on the development of a command and control supervisory interface for a military cruise missile.
R and D of energy saving and new energy utilization in Japanese marine engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isshiki, N.; Murayama, Y.; Tamaki, H.
1982-08-01
As well known, Japanese shipbuilding and marine engineering industry has been one of the biggest in the world, and a lot of efforts have been made on energy saving and new energy development for the last several years, resulting in production of quite economical and energy saving ships and marine engines using all kinds of possible engineering methods. Also much promising research utilizing oceanic energy is under way for the ships of post-oil future. In this paper, first, the remarkable developments of energy saving in conventional marine engines and ship hulls, especially in diesel ships, in Japan are shown. Then,more » some studies on future marine engine systems and utilization of oceanic energy represented by ''Shin Aitoku Maru'' and other research on future windmill ships are described.« less
Rotary engine performance limits predicted by a zero-dimensional model
NASA Technical Reports Server (NTRS)
Bartrand, Timothy A.; Willis, Edward A.
1992-01-01
A parametric study was performed to determine the performance limits of a rotary combustion engine. This study shows how well increasing the combustion rate, insulating, and turbocharging increase brake power and decrease fuel consumption. Several generalizations can be made from the findings. First, it was shown that the fastest combustion rate is not necessarily the best combustion rate. Second, several engine insulation schemes were employed for a turbocharged engine. Performance improved only for a highly insulated engine. Finally, the variability of turbocompounding and the influence of exhaust port shape were calculated. Rotary engines performance was predicted by an improved zero-dimensional computer model based on a model developed at the Massachusetts Institute of Technology in the 1980's. Independent variables in the study include turbocharging, manifold pressures, wall thermal properties, leakage area, and exhaust port geometry. Additions to the computer programs since its results were last published include turbocharging, manifold modeling, and improved friction power loss calculation. The baseline engine for this study is a single rotor 650 cc direct-injection stratified-charge engine with aluminum housings and a stainless steel rotor. Engine maps are provided for the baseline and turbocharged versions of the engine.
Contingency Power Study for Short Haul Civil Tiltrotor
NASA Technical Reports Server (NTRS)
D'Angelo, Marin M.
2004-01-01
NASA has concluded from previous studies that the twin engine tiltrotor is the most economical and technologically viable rotorcraft for near-term civil applications. Twin engine civil rotorcraft must be able to hover safely on one engine in an emergency. This emergency power requirement generally results in engines 20 to 50 percent larger than needed for normal engine operation, negatively impacting aircraft economics. This study identifies several contingency power enhancement concepts, and quantifies their potential to reduce aircraft operating costs. Many unique concepts were examined, and the selected concepts are simple, reliable, and have a high potential for near term realization. These engine concepts allow extremely high turbine temperatures during emergency operation by providing cooling to the power turbine and augmenting cooling of both turbines and structural hardware. Direct operating cost are reduced 3 to percent, which could yield a 30 to 80 percent increase in operating profits. The study consists of the definition of an aircraft economics model and a baseline engine, and an engine concept screening study, and a preliminary definition of the selected concepts. The selected concepts are evaluated against the baseline engine, and the critical technologies and development needs are identified, along with applications for this technology.
NASA Technical Reports Server (NTRS)
Hall, Philip; Whitfield, Susan
2011-01-01
As NASA undertakes increasingly complex projects, the need for expert systems engineers and leaders in systems engineering is becoming more pronounced. As a result of this issue, the Agency has undertaken an initiative to develop more systems engineering leaders through its Systems Engineering Leadership Development Program; however, the NASA Office of the Chief Engineer has also called on the field Centers to develop mechanisms to strengthen their expertise in systems engineering locally. In response to this call, Marshall Space Flight Center (MSFC) has developed a comprehensive development program for aspiring systems engineers and systems engineering leaders. This presentation will summarize the two-level program, which consists of a combination of training courses and on-the-job, developmental training assignments at the Center to help develop stronger expertise in systems engineering and technical leadership. In addition, it will focus on the success the program has had in its pilot year. The program hosted a formal kickoff event for Level I on October 13, 2009. The first class includes 42 participants from across MSFC and Michoud Assembly Facility (MAF). A formal call for Level II is forthcoming. With the new Agency focus on research and development of new technologies, having a strong pool of well-trained systems engineers is becoming increasingly more critical. Programs such as the Marshall Systems Engineering Leadership Development Program, as well as those developed at other Centers, help ensure that there is an upcoming generation of trained systems engineers and systems engineering leaders to meet future design challenges.
de Vries, Rob B M; Leenaars, Marlies; Tra, Joppe; Huijbregtse, Robbertjan; Bongers, Erik; Jansen, John A; Gordijn, Bert; Ritskes-Hoitinga, Merel
2015-07-01
An underexposed ethical issue raised by tissue engineering is the use of laboratory animals in tissue engineering research. Even though this research results in suffering and loss of life in animals, tissue engineering also has great potential for the development of alternatives to animal experiments. With the objective of promoting a joint effort of tissue engineers and alternative experts to fully realise this potential, this study provides the first comprehensive overview of the possibilities of using tissue-engineered constructs as a replacement of laboratory animals. Through searches in two large biomedical databases (PubMed, Embase) and several specialised 3R databases, 244 relevant primary scientific articles, published between 1991 and 2011, were identified. By far most articles reviewed related to the use of tissue-engineered skin/epidermis for toxicological applications such as testing for skin irritation. This review article demonstrates, however, that the potential for the development of alternatives also extends to other tissues such as other epithelia and the liver, as well as to other fields of application such as drug screening and basic physiology. This review discusses which impediments need to be overcome to maximise the contributions that the field of tissue engineering can make, through the development of alternative methods, to the reduction of the use and suffering of laboratory animals. Copyright © 2013 John Wiley & Sons, Ltd.
Methanator Fueled Engines for Pollution Control
NASA Technical Reports Server (NTRS)
Cagliostro, D. E.; Winkler, E. L.
1973-01-01
A methanator fueled Otto-cycle engine is compared with other methods proposed to control pollution due to automobile exhaust emissions. The comparison is made with respect to state of development, emission factors, capital cost, operational and maintenance costs, performance, operational limitations, and impact on the automotive industries. The methanator fueled Otto-cycle engine is projected to meet 1975 emission standards and operate at a lower relative total cost compared to the catalytic muffler system and to have low impact. Additional study is required for system development.
ERIC Educational Resources Information Center
Bolton, B.; Adderley, K. J.
1978-01-01
After viewing videotaped case studies indicating the relevance of electrical laboratory work to professional engineers, student attitudes showed a positive improvement toward laboratory work. Semantic differential tests, questionnaires, and interviews were used. (Author/MH)
ERIC Educational Resources Information Center
Williamson, Jeanine M.; Han, Lee D.; Colon-Aguirre, Monica
2009-01-01
The study examined the extent of cross-disciplinarity in nanotechnology and transportation engineering research. Researchers in these two fields were determined from the web sites of the U.S. News and World Report top 100 schools in civil engineering and materials science. Web of Science searches for 2006 and 2007 articles were obtained and the…
Engineering With Nature Geographic Project Mapping Tool (EWN ProMap)
2015-07-01
EWN ProMap database provides numerous case studies for infrastructure projects such as breakwaters, river engineering dikes, and seawalls that have...the EWN Project Mapping Tool (EWN ProMap) is to assist users in their search for case study information that can be valuable for developing EWN ideas...Essential elements of EWN include: (1) using science and engineering to produce operational efficiencies supporting sustainable delivery of
Space Transportation Engine Program (STEP), phase B
NASA Technical Reports Server (NTRS)
1990-01-01
The Space Transportation Engine Program (STEP) Phase 2 effort includes preliminary design and activities plan preparation that will allow smooth and time transition into a Prototype Phase and then into Phases 3, 4, and 5. A Concurrent Engineering approach using Total Quality Management (TQM) techniques, is being applied to define an oxygen-hydrogen engine. The baseline from Phase 1/1' studies was used as a point of departure for trade studies and analyses. Existing STME system models are being enhanced as more detailed module/component characteristics are determined. Preliminary designs for the open expander, closed expander, and gas generator cycles were prepared, and recommendations for cycle selection made at the Design Concept Review (DCR). As a result of July '90 DCR, and information subsequently supplied to the Technical Review Team, a gas generator cycle was selected. Results of the various Advanced Development Programs (ADP's) for the Advanced Launch Systems (ALS) were contributive to this effort. An active vehicle integration effort is supplying the NASA, Air Force, and vehicle contractors with engine parameters and data, and flowing down appropriate vehicle requirements. Engine design and analysis trade studies are being documented in a data base that was developed and is being used to organize information. To date, seventy four trade studies were input to the data base.
2016-09-01
and network. The computing and network hardware are identified and include routers, servers, firewalls, laptops , backup hard drives, smart phones...deployable hardware units will be necessary. This includes the use of ruggedized laptops and desktop computers , a projector system, communications system...ENGINEERING STUDY AND CONCEPT DEVELOPMENT FOR A HUMANITARIAN AID AND DISASTER RELIEF OPERATIONS MANAGEMENT PLATFORM by Julie A. Reed September
Examining Thai high school students' developing STEM projects
NASA Astrophysics Data System (ADS)
Teenoi, Kultida; Siripun, Kulpatsorn; Yuenyong, Chokchai
2018-01-01
Like others, Thailand education strongly focused on STEM education. This paper aimed to examine existing Thai high school students' integrated knowledge about science, technology, engineering, and mathematics (STEM) in their developing science project. The participants included 49 high school students were studying the subject of individual study (IS) in Khon Kaen wittayayon school, Khon Kaen, Thailand. The IS was provided to gradually enhance students to know how to do science project starting from getting start to do science projects, They enrolled to study the individual study of science project for three year in roll. Methodology was qualitative research. Views of students' integrated knowledge about STEM were interpreted through participant observation, interview, and students' science projects. The first author as participant observation has taught this group of students for 3 years. It found that 16 science projects were developed. Views of students' integrated knowledge about STEM could be categorized into three categories. These included (1) completely indicated integration of knowledge about science, technology, engineering, and mathematics, (2) partial indicated integration of knowledge about science, technology, engineering, and mathematics, and (3) no integration. The findings revealed that majority of science projects could be categorized as completely indicated integration of knowledge about science, technology, engineering, and mathematics. The paper suggested some ideas of enhancing students to applying STEM for developing science projects.
The software-cycle model for re-engineering and reuse
NASA Technical Reports Server (NTRS)
Bailey, John W.; Basili, Victor R.
1992-01-01
This paper reports on the progress of a study which will contribute to our ability to perform high-level, component-based programming by describing means to obtain useful components, methods for the configuration and integration of those components, and an underlying economic model of the costs and benefits associated with this approach to reuse. One goal of the study is to develop and demonstrate methods to recover reusable components from domain-specific software through a combination of tools, to perform the identification, extraction, and re-engineering of components, and domain experts, to direct the applications of those tools. A second goal of the study is to enable the reuse of those components by identifying techniques for configuring and recombining the re-engineered software. This component-recovery or software-cycle model addresses not only the selection and re-engineering of components, but also their recombination into new programs. Once a model of reuse activities has been developed, the quantification of the costs and benefits of various reuse options will enable the development of an adaptable economic model of reuse, which is the principal goal of the overall study. This paper reports on the conception of the software-cycle model and on several supporting techniques of software recovery, measurement, and reuse which will lead to the development of the desired economic model.
Design and Testing of a Liquid Nitrous Oxide and Ethanol Fueled Rocket Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youngblood, Stewart
A small-scale, bi-propellant, liquid fueled rocket engine and supporting test infrastructure were designed and constructed at the Energetic Materials Research and Testing Center (EMRTC). This facility was used to evaluate liquid nitrous oxide and ethanol as potential rocket propellants. Thrust and pressure measurements along with high-speed digital imaging of the rocket exhaust plume were made. This experimental data was used for validation of a computational model developed of the rocket engine tested. The developed computational model was utilized to analyze rocket engine performance across a range of operating pressures, fuel-oxidizer mixture ratios, and outlet nozzle configurations. A comparative study ofmore » the modeling of a liquid rocket engine was performed using NASA CEA and Cantera, an opensource equilibrium code capable of being interfaced with MATLAB. One goal of this modeling was to demonstrate the ability of Cantera to accurately model the basic chemical equilibrium, thermodynamics, and transport properties for varied fuel and oxidizer operating conditions. Once validated for basic equilibrium, an expanded MATLAB code, referencing Cantera, was advanced beyond CEAs capabilities to predict rocket engine performance as a function of supplied propellant flow rate and rocket engine nozzle dimensions. Cantera was found to comparable favorably to CEA for making equilibrium calculations, supporting its use as an alternative to CEA. The developed rocket engine performs as predicted, demonstrating the developedMATLAB rocket engine model was successful in predicting real world rocket engine performance. Finally, nitrous oxide and ethanol were shown to perform well as rocket propellants, with specific impulses experimentally recorded in the range of 250 to 260 seconds.« less
Global engineering education programs: More than just international experiences
NASA Astrophysics Data System (ADS)
McNeill, Nathan J.
Engineers in both industry and academia recognize the global nature of the profession. This has lead to calls for engineering students to develop knowledge, skills, and attitudes necessary for success within a global profession. Many institutions are developing globally oriented programs specifically for their engineering students and are eager to know if these programs are helping their students to develop attributes that meet their program objectives, accreditation requirements, and the needs and desires of prospective employers. Administrators of such programs currently lack research data to support the learning objectives they are setting for their programs. This study documented the individual experiences and learning outcomes of students involved in three global education programs for engineering students. The first program provided a portfolio of experiences including foreign language instruction, one semester of study abroad, internships in the U.S. and abroad, and a two-semester global team design project. The second program was a one semester study abroad program in China, and the third was a global service project whose purpose was to design an irrigation system for two small farms in Rwanda. The research questions guiding this study were: 1. What specific knowledge, skills, and attitudes are students gaining from participation in their respective global engineering programs? 2. What kinds of experiences are resulting in these learning outcomes? Interviews were used to elicit the experiences and learning outcomes of participants in this study. Program administrators were also interviewed for their perspectives on the experiences and learning outcomes of participants for the purpose of triangulation. The study identified more than 50 outcomes that resulted from students' experiences in these three programs. The most prevalent outcomes across all three programs included knowledge of culture, openness to new experiences and other cultures, and communication skills.
Test Rig for Active Turbine Blade Tip Clearance Control Concepts: An Update
NASA Technical Reports Server (NTRS)
Taylor, Shawn; Steinetz, Bruce; Oswald, Jay; DeCastro, Jonathan; Melcher, Kevin
2006-01-01
The objective is to develop and demonstrate a fast-acting active clearance control system to improve turbine engine performance, reduce emissions, and increase service life. System studies have shown the benefits of reducing blade tip clearances in modern turbine engines. Minimizing blade tip clearances throughout the engine will contribute materially to meeting NASA's Ultra-Efficient Engine Technology (UEET) turbine engine project goals. NASA GRC is examining two candidate approaches including rub-avoidance and regeneration which are explained in subsequent slides.
Engineering Analysis Using a Web-based Protocol
NASA Technical Reports Server (NTRS)
Schoeffler, James D.; Claus, Russell W.
2002-01-01
This paper reviews the development of a web-based framework for engineering analysis. A one-dimensional, high-speed analysis code called LAPIN was used in this study, but the approach can be generalized to any engineering analysis tool. The web-based framework enables users to store, retrieve, and execute an engineering analysis from a standard web-browser. We review the encapsulation of the engineering data into the eXtensible Markup Language (XML) and various design considerations in the storage and retrieval of application data.
NASA Technical Reports Server (NTRS)
Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.
1992-01-01
In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.
Numerical study of a scramjet engine flow field
NASA Technical Reports Server (NTRS)
Drummond, J. P.; Weidner, E. H.
1981-01-01
A computer program has been developed to analyze the turbulent reacting flow field in a two-dimensional scramjet engine configuration. The program numerically solves the full two-dimensional Navier-Stokes and species equations in the engine inlet and combustor, allowing consideration of flow separation and possible inlet-combustor interactions. The current work represents an intermediate step towards development of a three-dimensional program to analyze actual scramjet engine flow fields. Results from the current program are presented that predict the flow field for two inlet-combustor configurations, and comparisons of the program with experiment are given to allow assessment of the modeling that is employed.
The effects of computer-aided design software on engineering students' spatial visualisation skills
NASA Astrophysics Data System (ADS)
Kösa, Temel; Karakuş, Fatih
2018-03-01
The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations (PSVT:R) for both the pre- and the post-test. The participants were 116 freshman students in the first year of their undergraduate programme in the Department of Mechanical Engineering at a university in Turkey. A total of 72 students comprised the experimental group; they were instructed with CAD-based activities in an engineering drawing course. The control group consisted of 44 students who did not attend this course. The results of the study showed that a CAD-based engineering drawing course had a positive effect on developing engineering students' spatial visualisation skills. Additionally, the results of the study showed that spatial visualisation skills can be a predictor for success in a computer-aided engineering drawing course.
Allison PD 370-41 derivative turboprop engine. Final report, October 1978-February 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolp, P.
1979-02-01
This study developed data on Detroit Diesel Allison (DDA) common core derivative engines for use in Maritime Patrol Aircraft (MPA) concept formulation studies. The study included the screening of potential DDA turboprop/turboshaft engines and the preparations of technical and planning information on three of the most promising engine candidates plus an all new engine. Screening of DDA derivative candidates was performed utilizing an analytical MPA model using synthesized mission profiles to rank the candidates in terms of fuel consumption, weight, cost and complexity. The three turboprop engines selected for further study were as follows: a derivative of the unity sizemore » T701-AD-700 shaft power engine with rematched turbine (PD 370-37), and an advanced T701 turboprop derivative with 25:1 overall pressure ratio and a scaled ATEGG demonstrated compressor (PD 370-40), an advanced T701 turboprop derivative with 17.7:1 overall pressure ratio and a scaled ATEGG demonstrated compressor.« less
Role of engine age and lubricant chemistry on the characteristics of EGR soot
NASA Astrophysics Data System (ADS)
Adeniran, Olusanmi Adeniji
Exhaust products of Diesel Engines serves as an environmental hazard, and to curtail this problem a Tier 3 emission standard was introduced which involves change in engine designs and introduction of EGR systems in Diesel engines. EGR systems, however has the challenge of generating soot which are abrasive and are major causes of wear in Diesel engines. This work has studied the characteristics of EGR soot formed in different range of engine age and in different lubricant chemistries of Mineral and Synthetic based diesel Oils. It is found that lubricant degradation is encouraged by less efficient combustion as engine age increases, and these are precursors to formation of crystalline and amorphous particles that are causes of wear in Diesel Engines. It is found that soot from new engine is dominated by calcium based crystals which are from calcium sulfonate detergent, which reduces formation of second phase particles that can be abrasive. Diversity and peak intensity is seen to increase in soot samples as engine age increases. This understanding of second phase particles formed in engines across age ranges can help in the durability development of engine, improvement of Oil formulation for EGR engines, and in development of chemistries for after-treatment Oil solutions that can combat formation of abrasive particles in Oils.
ERIC Educational Resources Information Center
Crede, Erin; Borrego, Maura
2013-01-01
As part of a sequential exploratory mixed methods study, 9 months of ethnographically guided observations and interviews were used to develop a survey examining graduate engineering student retention. Findings from the ethnographic fieldwork yielded several themes, including international diversity, research group organization and climate,…
ERIC Educational Resources Information Center
Robinson, Ann; Adelson, Jill L.; Kidd, Kristy A.; Cunningham, Christine M.
2018-01-01
Guided by the theoretical framework of curriculum as a platform for talent development, this quasi-experimental field study investigated an intervention focused on engineering curriculum and curriculum based on a biography of a scientist through a comparative design implemented in low-income schools. Student outcome measures included science…
ERIC Educational Resources Information Center
Hilpert, Jonathan C.; Husman, Jenefer
2017-01-01
The current study leveraged a professional development programme for engineering faculty at a large research university to examine the impact of instructional improvement on student engagement. Professors who participated in the professional development were observed three times and rated using an existing observation protocol. Students in courses…
David N. Wear; Ernest Dixon IV; Robert C. Abt; Navinder Singh
2015-01-01
Development of commercial Eucalyptus plantations has been limited in the United States because of the speciesâ sensitivity to freezing temperatures. Recently developed genetically engineered clones of a Eucalyptus hybrid, which confer freeze tolerance, could expand the range of commercial plantations. This study explores how...
Fitting the Framework: The STEM Institute and the 4-H Essential Elements
ERIC Educational Resources Information Center
Sallee, Jeff; Peek, Gina G.
2014-01-01
Extension and 4-H youth development programs are addressing a shortage of scientists, engineers, and other related professionals by promoting science, technology, engineering, and math (STEM). This case study illustrates how the Oklahoma 4-H Youth Development program trained youth-adult teams to design and implement STEM projects. The STEM…
Energy Efficient Engine Program: Technology Benefit/Cost Study, Volume II
NASA Technical Reports Server (NTRS)
Gray, D. E.; Gardner, W. B.
1983-01-01
The Benefit/Cost Study portion of the NASA-sponsored Energy Efficient Engine Component Development and Integration program was successful in achieving its objectives: identification of air transport propulsion system technology requirements for the years 2000 and 2010, and formulation of programs for developing these technologies. It is projected that the advanced technologies identified, when developed to a state of readiness, will provide future commercial and military turbofan engines with significant savings in fuel consumption and related operating costs. These benefits are significant and far from exhausted. The potential savings translate into billions of dollars in annual savings for the airlines. Analyses indicate that a significant portion of the overall savings is attributed to aerodynamic and structure advancements. Another important consideration in acquiring these benefits is developing a viable reference technology base that will permit engines to operate at substantially higher overall pressure ratios and bypass ratios. Results have pointed the direction for future research and a comprehensive program plan for achieving this was formulated. The next major step is initiating the program effort that will convert the advanced technologies into the expected benefits.
NASA Technical Reports Server (NTRS)
Jordan, Nicole; Falconi, Eric; Barido, Richard; Lewis, John
2009-01-01
Systems engineering could also be called the art of compromise. At its heart, systems engineering seeks to find that solution which maximizes the utility of the system, usually compromising the performance of each individual subsystem. While seemingly straightforward, systems engineering methodology is complicated when the utility to be maximized is unclear and the costs to each individual subsystem are not - or not easily - quantifiable. In this paper, we explore one such systems engineering problem within the Constellation Program as a case study in applied systems engineering. During suited operations, astronauts within Orion will be connected to an umbilical to receive and return breathing gas. The pressure drop associated with this umbilical must be overcome by the Orion vehicle. A smaller umbilical, which is desirable for crew operations, means a higher pressure drop, resulting in additional mass and power for the vehicle. We outline the technical considerations in the development of this integrated system and discuss the method by which we reached the ultimate solution. This paper, while just one example of the kind of problem solving that happens every day, offers insight into what happens when the theories of systems engineering are put into practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nix, Andrew; Johnson, Derek; Heltzel, Robert
Researchers at the Center for Alternative Fuels, Engines, and Emissions (CAFEE) completed a multi-year program under DE-FE0013689 entitled, “Assessing Fugitive Methane Emissions Impact Using Natural Gas Engines in Unconventional Resource Development.” When drilling activity was high and industry sought to lower operating costs and reduce emissions they began investing in dual fuel and dedicated natural gas engines to power unconventional well equipment. From a review of literature we determined that the prime-movers (or major fuel consumers) of unconventional well development were the service trucks (trucking), horizontal drilling rig (drilling) engines, and hydraulic stimulation pump (fracturing) engines. Based on early findingsmore » from on-road studies we assessed that conversion of prime movers to operate on natural gas could contribute to methane emissions associated with unconventional wells. As such, we collected significant in-use activity data from service trucks and in-use activity, fuel consumption, and gaseous emissions data from drilling and fracturing engines. Our findings confirmed that conversion of the prime movers to operate as dual fuel or dedicated natural gas – created an additional source of methane emissions. While some gaseous emissions were decreased from implementation of these technologies – methane and CO 2 equivalent emissions tended to increase, especially for non-road engines. The increases were highest for dual fuel engines due to methane slip from the exhaust and engine crankcase. Dedicated natural gas engines tended to have lower exhaust methane emissions but higher CO 2 emissions due to lower efficiency. Therefore, investing in currently available natural gas technologies for prime movers will increase the greenhouse gas footprint of the unconventional well development industry.« less
Teaching Risk Analysis in an Aircraft Gas Turbine Engine Design Capstone Course
2016-01-01
American Institute of Aeronautics and Astronautics 1 Teaching Risk Analysis in an Aircraft Gas Turbine Engine Design Capstone Course...development costs, engine production costs, and scheduling (Byerley A. R., 2013) as well as the linkage between turbine inlet temperature, blade cooling...analysis SE majors have studied and how this is linked to the specific issues they must face in aircraft gas turbine engine design. Aeronautical and
How Middle Schoolers Draw Engineers and Scientists
NASA Astrophysics Data System (ADS)
Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed
2009-02-01
The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are student perceptions of engineers and scientists similar and how are they different?" Approximately 1,600 middle school students from urban and suburban schools in the southeastern United States were asked to draw either an engineer or a scientist at work. Drawings included space for the students to explain what their person was doing in the picture. A checklist to code the drawings was developed and used by two raters. This paper discusses similarities and differences in middle school perceptions of scientists and engineers. Results reveal that the students involved in this study frequently perceive scientists as working indoors conducting experiments. A large fraction of the students have no perception of engineering. Others frequently perceive engineers as working outdoors in manual labor. The findings have implications for the development and implementation of engineering outreach efforts.
NASA Technical Reports Server (NTRS)
1984-01-01
In a number of feasibility studies of turbine rotor designs, engineers of Cummins Engine Company, Inc.'s turbocharger group have utilized a computer program from COSMIC. Part of Cummins research effort is aimed toward introduction of advanced turbocharged engines that deliver extra power with greater fuel efficiency. Company claims use of COSMIC program substantially reduced software development costs.
Enhancing Critical Thinking across the Undergraduate Experience: An Exemplar from Engineering
ERIC Educational Resources Information Center
Ralston, Patricia A.; Bays, Cathy L.
2013-01-01
Faculty in a large, urban school of engineering designed a longitudinal study to assess the critical thinking skills of undergraduate students as they progressed through the engineering program. The Paul-Elder critical thinking framework was used to design course assignments and develop a holistic assessment rubric. The curriculum was re-designed…
Effects of Web-Based Interactive Modules on Engineering Students' Learning Motivations
ERIC Educational Resources Information Center
Bai, Haiyan; Aman, Amjad; Xu, Yunjun; Orlovskaya, Nina; Zhou, Mingming
2016-01-01
The purpose of this study is to assess the impact of a newly developed modules, Interactive Web-Based Visualization Tools for Gluing Undergraduate Fuel Cell Systems Courses system (IGLU), on learning motivations of engineering students using two samples (n[subscript 1] = 144 and n[subscript 2] = 135) from senior engineering classes. The…
ERIC Educational Resources Information Center
Barroso, Luciana R.; Morgan, James R.
2012-01-01
This paper describes the creation and evolution of an undergraduate dynamics and vibrations course for civil engineering students. Incorporating vibrations into the course allows students to see and study "real" civil engineering applications of the course content. This connection of academic principles to real life situations is in…
Impact of Engineering Ambassador Programs on Student Development
ERIC Educational Resources Information Center
Anagnos, Thalia; Lyman-Holt, Alicia; Marin-Artieda, Claudia; Momsen, Ellen
2014-01-01
This study highlights the positive impact of participation in an engineering ambassador program on students from two universities: Oregon State University which is a large public university in a college town with a 13% minority student body, and Howard University, a medium sized private university with a relatively small engineering program in an…
Engineering Curriculum in the Preschool Classroom: The Teacher's Experience
ERIC Educational Resources Information Center
Bagiati, Aikaterini; Evangelou, Demetra
2015-01-01
The study presented here focuses on the development of an early education Science, Technology, Engineering and Mathematics (STEM) curriculum with emphasis on engineering. This article presents the teacher's experience as she undertook the task of familiarising herself with the new content and using the curriculum in a university based…
Stationary Engineering Laboratory--2. Teacher's Guide.
ERIC Educational Resources Information Center
Steingress, Frederick M.; Frost, Harold J.
The Stationary Engineering Laboratory Manual 2 Teacher's Guide was designed as an aid to the instructors of vocational-technical high school students who have received instruction in the basics of stationary engineering. The course of study was developed for students who will be operating a live plant and who will be responsible for supplying…
Optimal tuning of a confined Brownian information engine.
Park, Jong-Min; Lee, Jae Sung; Noh, Jae Dong
2016-03-01
A Brownian information engine is a device extracting mechanical work from a single heat bath by exploiting the information on the state of a Brownian particle immersed in the bath. As for engines, it is important to find the optimal operating condition that yields the maximum extracted work or power. The optimal condition for a Brownian information engine with a finite cycle time τ has been rarely studied because of the difficulty in finding the nonequilibrium steady state. In this study, we introduce a model for the Brownian information engine and develop an analytic formalism for its steady-state distribution for any τ. We find that the extracted work per engine cycle is maximum when τ approaches infinity, while the power is maximum when τ approaches zero.
CASIS Fact Sheet: Hardware and Facilities
NASA Technical Reports Server (NTRS)
Solomon, Michael R.; Romero, Vergel
2016-01-01
Vencore is a proven information solutions, engineering, and analytics company that helps our customers solve their most complex challenges. For more than 40 years, we have designed, developed and delivered mission-critical solutions as our customers' trusted partner. The Engineering Services Contract, or ESC, provides engineering and design services to the NASA organizations engaged in development of new technologies at the Kennedy Space Center. Vencore is the ESC prime contractor, with teammates that include Stinger Ghaffarian Technologies, Sierra Lobo, Nelson Engineering, EASi, and Craig Technologies. The Vencore team designs and develops systems and equipment to be used for the processing of space launch vehicles, spacecraft, and payloads. We perform flight systems engineering for spaceflight hardware and software; develop technologies that serve NASA's mission requirements and operations needs for the future. Our Flight Payload Support (FPS) team at Kennedy Space Center (KSC) provides engineering, development, and certification services as well as payload integration and management services to NASA and commercial customers. Our main objective is to assist principal investigators (PIs) integrate their science experiments into payload hardware for research aboard the International Space Station (ISS), commercial spacecraft, suborbital vehicles, parabolic flight aircrafts, and ground-based studies. Vencore's FPS team is AS9100 certified and a recognized implementation partner for the Center for Advancement of Science in Space (CASIS
Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease
Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko
2015-01-01
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641
Decellularized material as scaffolds for tissue engineering studies in long gap esophageal atresia.
Lee, Esmond; Milan, Anna; Urbani, Luca; De Coppi, Paolo; Lowdell, Mark W
2017-05-01
Esophageal atresia refers to an anomaly in foetal development in which the esophagus terminates in a blind end. Whilst surgical correction is achievable in most patients, when a long gap is present it still represents a major challenge associated with higher morbidity and mortality. In this context, tissue engineering could represent a successful alternative to restore oesophageal function and structure. Naturally derived biomaterials made of decellularized tissues retain native extracellular matrix architecture and composition, providing a suitable bed for the anchorage and growth of relevant cell types. Areas covered: This review outlines the various strategies and challenges in esophageal tissue engineering, highlighting the evolution of ideas in the development of decellularized scaffolds for clinical use. It explores the interplay between clinical needs, ethical dilemmas, and manufacturing challenges in the development of a tissue engineered decellularized scaffold for oesophageal atresia. Expert opinion: Current progress on oesophageal tissue engineering has enabled effective repair of patch defects, whilst the development of a full circumferential construct remains a challenge. Despite the different approaches available and the improvements achieved, a gold standard for fully functional tissue engineered oesophageal constructs has not been defined yet.
NASA Astrophysics Data System (ADS)
Bennett, Sean T.
This study examines African American student perceptions of persistence in engineering. The research design is methodologically qualitative using a purposefully selected population of engineering students. Semi-structured interviews were designed to develop an in-depth understanding of what completion of the engineering degree means to African American engineering students. This research seeks insight into the linkages between African American student perceptions of persistence as it relates to both the academic and social culture of the engineering department. Vincent Tinto's model of Institutional Departure (1975, 1987) is one of the most commonly cited models of persistence in higher education (Braxton, Milem, Sullivan, 2000). Tinto's model was leveraged in this study to understand perceptions obtained through student interviews. Tinto suggests that exploration of student goal commitment and perceptions of institutional commitment are key to understanding student persistence. Results of this study suggest that African American students have perceptions about the university that may influence the decision to persist in engineering. Ultimately, this study may prove useful to researchers and administrators interested in improving access and success for African American engineering students.
NASA Astrophysics Data System (ADS)
Arevalo, S.; Atwood, C.; Bell, P.; Blacker, T. D.; Dey, S.; Fisher, D.; Fisher, D. A.; Genalis, P.; Gorski, J.; Harris, A.; Hill, K.; Hurwitz, M.; Kendall, R. P.; Meakin, R. L.; Morton, S.; Moyer, E. T.; Post, D. E.; Strawn, R.; Veldhuizen, D. v.; Votta, L. G.; Wynn, S.; Zelinski, G.
2008-07-01
In FY2008, the U.S. Department of Defense (DoD) initiated the Computational Research and Engineering Acquisition Tools and Environments (CREATE) program, a 360M program with a two-year planning phase and a ten-year execution phase. CREATE will develop and deploy three computational engineering tool sets for DoD acquisition programs to use to design aircraft, ships and radio-frequency antennas. The planning and execution of CREATE are based on the 'lessons learned' from case studies of large-scale computational science and engineering projects. The case studies stress the importance of a stable, close-knit development team; a focus on customer needs and requirements; verification and validation; flexible and agile planning, management, and development processes; risk management; realistic schedules and resource levels; balanced short- and long-term goals and deliverables; and stable, long-term support by the program sponsor. Since it began in FY2008, the CREATE program has built a team and project structure, developed requirements and begun validating them, identified candidate products, established initial connections with the acquisition programs, begun detailed project planning and development, and generated the initial collaboration infrastructure necessary for success by its multi-institutional, multidisciplinary teams.
Tissue engineering therapy for cardiovascular disease.
Nugent, Helen M; Edelman, Elazer R
2003-05-30
The present treatments for the loss or failure of cardiovascular function include organ transplantation, surgical reconstruction, mechanical or synthetic devices, or the administration of metabolic products. Although routinely used, these treatments are not without constraints and complications. The emerging and interdisciplinary field of tissue engineering has evolved to provide solutions to tissue creation and repair. Tissue engineering applies the principles of engineering, material science, and biology toward the development of biological substitutes that restore, maintain, or improve tissue function. Progress has been made in engineering the various components of the cardiovascular system, including blood vessels, heart valves, and cardiac muscle. Many pivotal studies have been performed in recent years that may support the move toward the widespread application of tissue-engineered therapy for cardiovascular diseases. The studies discussed include endothelial cell seeding of vascular grafts, tissue-engineered vascular conduits, generation of heart valve leaflets, cardiomyoplasty, genetic manipulation, and in vitro conditions for optimizing tissue-engineered cardiovascular constructs.
Best management practices for soft engineering of shoreline
Caulk, Andrew D.; Gannon, John E.; Shaw, John R.; Hartig, John H.
2000-01-01
Historically, many river shorelines were stabilized and hardened with concrete and steel to protect developments from flooding and erosion, or to accommodate commercial navigation or industry. Typically shorelines were developed for a single purpose. Today, there is growing interest in developing shorelines for multiple purposes so that additional benefits can be accrued. Soft engineering is the use of ecological principles and practices to reduce erosion and achieve the stabilization and safety of shorelines, while enhancing habitat, improving aesthetics, and saving money. The purpose of this best management practices manual is to provide insights and technical advice to local governments, developers, planners, consultants, and industries on when, where, why, and how to incorporate soft engineering of shorelines into shoreline redevelopment projects and reap subsequent benefits. More specific technical advice and contact information can be found in the soft engineering case studies presented in this manual.
Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M
2015-01-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop microengineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, aging, and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue engineered constructs (hetTECs) with microscale non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical, and mechanobiological benchmarks of native tissue. Our tissue engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating, and regenerating fibrous tissues. PMID:26726994
Professional development for design-based learning in engineering education: a case study
NASA Astrophysics Data System (ADS)
Gómez Puente, Sonia M.; van Eijck, Michiel; Jochems, Wim
2015-01-01
Design-based learning (DBL) is an educational approach in which students gather and apply theoretical knowledge to solve design problems. In this study, we examined how critical DBL dimensions (project characteristics, design elements, the teacher's role, assessment, and social context) are applied by teachers in the redesign of DBL projects. We conducted an intervention for the professional development of the DBL teachers in the Mechanical Engineering and the Electrical Engineering departments. We used the Experiential Learning Cycle as an educational model for the professionalisation programme. The findings show that the programme encouraged teachers to apply the DBL theoretical framework. However, there are some limitations with regard to specific project characteristics. Further research into supporting teachers to develop open-ended and multidisciplinary activities in the projects that support learning is recommended.
Development Status of Reusable Rocket Engine
NASA Astrophysics Data System (ADS)
Yoshida, Makoto; Takada, Satoshi; Naruo, Yoshihiro; Niu, Kenichi
A 30-kN rocket engine, a pilot engine, is being developed in Japan. Development of this pilot engine has been initiated in relation to a reusable sounding rocket, which is also being developed in Japan. This rocket takes off vertically, reaches an altitude of 100 km, lands vertically at the launch site, and is launched again within several days. Due to advantage of reusability, successful development of this rocket will mean that observation missions can be carried out more frequently and economically. In order to realize this rocket concept, the engines installed on the rocket should be characterized by reusability, long life, deep throttling and health monitoring, features which have not yet been established in Japanese rocket engines. To solve the engineering factors entitled by those features, a new design methodology, advanced engine simulations and engineering testing are being focused on in the pilot engine development stage. Especially in engineering testing, limit condition data is acquired to facilitate development of new diagnostic techniques, which can be applied by utilizing the mobility of small-size hardware. In this paper, the development status of the pilot engine is described, including fundamental design and engineering tests of the turbopump bearing and seal, turbine rig, injector and combustion chamber, and operation and maintenance concepts for one hundred flights by a reusable rocket are examined.
Development of a helicopter rotor/propulsion system dynamics analysis
NASA Technical Reports Server (NTRS)
Warmbrodt, W.; Hull, R.
1982-01-01
A time-domain analysis of coupled engine/drive train/rotor dynamics of a twin-engine, single main rotor helicopter model has been performed. The analysis incorporates an existing helicopter model with nonlinear simulations of a helicopter turboshaft engine and its fuel controller. System dynamic behavior is studied using the resulting simulation which included representations for the two engines and their fuel controllers, drive system, main rotor, tail rotor, and aircraft rigid body motions. Time histories of engine and rotor RPM response to pilot control inputs are studied for a baseline rotor and propulsion system model. Sensitivity of rotor RPM droop to fuel controller gain changes and collective input feed-forward gain changes are studied. Torque-load-sharing between the two engines is investigated by making changes in the fuel controller feedback paths. A linear engine model is derived from the nonlinear engine simulation and used in the coupled system analysis. This four-state linear engine model is then reduced to a three-state model. The effect of this simplification on coupled system behavior is shown.
NASA Astrophysics Data System (ADS)
-Aurel Cherecheş, Ioan; -Ioana Borzan, Adela; -Laurean Băldean, Doru
2017-10-01
Study of construction and wearing process in the case of piston-rings and other significant components from internal combustion engines leads at any time to creative and useful optimizing ideas, both in designing and manufacturing phases. Main objective of the present paper is to realize an interdisciplinary research using advanced methods in piston-rings evaluation of a common vehicle on the streets which is Ford Focus FYDD. Specific objectives are a theoretical study of the idea for advanced analysis method in piston-rings evaluation and an applied research developed in at Technical University from Cluj-Napoca with the motor vehicle caught in the repairing process.
The responsibilities of engineers.
Smith, Justin; Gardoni, Paolo; Murphy, Colleen
2014-06-01
Knowledge of the responsibilities of engineers is the foundation for answering ethical questions about the work of engineers. This paper defines the responsibilities of engineers by considering what constitutes the nature of engineering as a particular form of activity. Specifically, this paper focuses on the ethical responsibilities of engineers qua engineers. Such responsibilities refer to the duties acquired in virtue of being a member of a group. We examine the practice of engineering, drawing on the idea of practices developed by philosopher Alasdair MacIntyre, and show how the idea of a practice is important for identifying and justifying the responsibilities of engineers. To demonstrate the contribution that knowledge of the responsibilities of engineers makes to engineering ethics, a case study from structural engineering is discussed. The discussion of the failure of the Sleipner A Platform off the coast of Norway in 1991 demonstrates how the responsibilities of engineers can be derived from knowledge of the nature of engineering and its context.
A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Piascik, Robert S.; Newman, James C., Jr.
1999-01-01
An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.
A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints
NASA Technical Reports Server (NTRS)
Harris, C. E.; Piascik, R. S.; Newman, J. C., Jr.
2000-01-01
An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.
About, for, in or through entrepreneurship in engineering education
NASA Astrophysics Data System (ADS)
Mäkimurto-Koivumaa, Soili; Belt, Pekka
2016-09-01
Engineering competences form a potential basis for entrepreneurship. There are pressures to find new approaches to entrepreneurship education (EE) in engineering education, as the traditional analytical logic of engineering does not match the modern view of entrepreneurship. Since the previous models do not give tangible enough tools on how to organise EE in practice, this article aims to develop a new framework for EE at the university level. We approach this aim by analysing existing scientific literature complemented by long-term practical observations, enabling a fruitful interplay between theory and practice. The developed framework recommends aspects in EE to be emphasised during each year of the study process. Action-based learning methods are highlighted in the beginning of studies to support students' personal growth. Explicit business knowledge is to be gradually increased only when professional, field-specific knowledge has been adequately accumulated.
Genetically Engineered Humanized Mouse Models for Preclinical Antibody Studies
Proetzel, Gabriele; Wiles, Michael V.; Roopenian, Derry C.
2015-01-01
The use of genetic engineering has vastly improved our capabilities to create animal models relevant in preclinical research. With the recent advances in gene-editing technologies, it is now possible to very rapidly create highly tunable mouse models as needs arise. Here, we provide an overview of genetic engineering methods, as well as the development of humanized neonatal Fc receptor (FcRn) models and their use for monoclonal antibody in vivo studies. PMID:24150980
Advanced Automotive Diesel Assessment Program, executive summary
NASA Technical Reports Server (NTRS)
1983-01-01
The objectives of this analytical study were: to select one advanced automotive diesel engine (AAD) concept which would increase the tank mileage of a 3,000 pound passenger car from the present 35 mpg to at least 52 mpg; to identify long term component research and development work required to bring the selected concept to fruition; and to prepare a development strategy that will bring the selected concept to a prototype testing phase. Cummins Engine Company has completed this study. The selected concept is a 4 stroke cycle, direct injection, spark assisted, advanced adiabatic diesel engine with positive displacement compounding plus expander and part load air preheating. The engine does not use a liquid coolant nor liquid lubricants. It is a 4 cylinder, in-line, 77 mm bore x 77 mm stroke, 1.434 liters displacement engine weighing 300 lb, and rated at 70 BHP at 3000 rpm. Installation dimensions are 621 mm length x 589 mm width x 479 mm height (24.4 inch x 22 inch x 18.9 inch).
ERIC Educational Resources Information Center
Lindberg, Andrew; And Others
This study guide is part of a curriculum entitled Science and Engineering Technician (SET) Curriculum, a program of studies which integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The purpose of this national curriculum development project was to provide a framework for…
Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.
1993-03-01
A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.
Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide
NASA Technical Reports Server (NTRS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.
1993-01-01
A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.
ERIC Educational Resources Information Center
Ballinger, Jack T.; Wolf, Lawrence J.
This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed to provide a framework for training technicians in the use of electronic instruments and their applications. This interdisciplinary course of study integrates elements from the disciplines of chemistry, physics, mathematics,…
Assessing and Controlling Blast Noise Emission: SARNAM Noise Impact Software
2007-12-29
Engineers, Engineer Research and Development Center Jeffery Mifflin U.S. Army Corps of Engineers, Engineer Research and Development Center Kristy A...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Engineer Research and Development Center (ERDC) Construction Engineering Research Laboratory...6 Figure 5. OneShot control page
Superconducting gravity gradiometer mission. Volume 1: Study team executive summary
NASA Technical Reports Server (NTRS)
Morgan, Samuel H. (Editor); Paik, Ho Jung (Editor)
1989-01-01
An executive summary is presented based upon the scientific and engineering studies and developments performed or directed by a Study Team composed of various Federal and University activities involved with the development of a three-axis Superconducting Gravity Gradiometer integrated with a six-axis superconducting accelerometer. This instrument is being developed for a future orbital mission to make precise global gravity measurements. The scientific justification and requirements for such a mission are discussed. This includes geophysics, the primary mission objective, as well as secondary objectives, such as navigation and tests of fundamental laws of physics, i.e., a null test of the inverse square law of gravitation and tests of general relativity. The instrument design and status along with mission analysis, engineering assessments, and preliminary spacecraft concepts are discussed. In addition, critical spacecraft systems and required technology advancements are examined. The mission requirements and an engineering assessment of a precursor flight test of the instrument are discussed.
Superconducting gravity gradiometer mission. Volume 2: Study team technical report
NASA Technical Reports Server (NTRS)
Morgan, Samuel H. (Editor); Paik, Ho Jung (Editor)
1988-01-01
Scientific and engineering studies and developments performed or directed by a Study Team composed of various Federal and University activities involved with the development of a three-axis superconducting gravity gradiometer integrated with a six-axis superconducting accelerometer are examined. This instrument is being developed for a future orbital mission to make precise global gravity measurements. The scientific justification and requirements for such a mission are discussed. This includes geophysics, the primary mission objective, as well as secondary objective, such as navigation and feats of fundamental laws of physics, i.e., a null test of the inverse square law of gravitation and tests of general relativity. The instrument design and status along with mission analysis, engineering assessments, and preliminary spacecraft concepts are discussed. In addition, critical spacecraft systems and required technology advancements are examined. The mission requirements and an engineering assessment of a precursor flight test of the instrument are discussed.
Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design
NASA Technical Reports Server (NTRS)
Alvarez, Erika; Forbes, John C.; Thornton, Randall J.
2010-01-01
The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform multiple burns including the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine technology testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.
Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design
NASA Technical Reports Server (NTRS)
Alarez, Erika; Thornton, Randall J.; Forbes, John C.
2008-01-01
The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform minor mid-course corrections, a Lunar Orbit Insertion (LOI) burn, a de-orbit burn, and the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.
Mesenchymal Stem Cells for Osteochondral Tissue Engineering
Ng, Johnathan; Bernhard, Jonathan; Vunjak-Novakovic, Gordana
2017-01-01
Summary Mesenchymal stem cells (MSC) are of major interest to regenerative medicine, because of the ease of harvesting from a variety of sources (including bone marrow and fat aspirates) and ability to form a range of mesenchymal tissues, in vitro and in vivo. We focus here on the use of MSCs for engineering of cartilage, bone, and complex osteochondral tissue constructs, using protocols that replicate some aspects of the natural mesodermal development. For engineering of human bone, we discuss some of the current advances, and highlight the use of perfusion bioreactors for supporting anatomically exact human bone grafts. For engineering of human cartilage, we discuss limitations of current approaches, and highlight engineering of stratified, mechanically functional human cartilage interfaced with bone by mesenchymal condensation of MSCs. Taken together, the current advances enable engineering physiologically relevant bone, cartilage and osteochondral composites, and physiologically relevant studies of osteochondral development and disease. PMID:27236665
Methodology discourses as boundary work in the construction of engineering education.
Beddoes, Kacey
2014-04-01
Engineering education research is a new field that emerged in the social sciences over the past 10 years. This analysis of engineering education research demonstrates that methodology discourses have played a central role in the construction and development of the field of engineering education, and that they have done so primarily through boundary work. This article thus contributes to science and technology studies literature by examining the role of methodology discourses in an emerging social science field. I begin with an overview of engineering education research before situating the case within relevant bodies of literature on methodology discourses and boundary work. I then identify two methodology discourses--rigor and methodological diversity--and discuss how they contribute to the construction and development of engineering education research. The article concludes with a discussion of how the findings relate to prior research on methodology discourses and boundary work and implications for future research.
Challenges in translating vascular tissue engineering to the pediatric clinic.
Duncan, Daniel R; Breuer, Christopher K
2011-10-14
The development of tissue-engineered vascular grafts for use in cardiovascular surgery holds great promise for improving outcomes in pediatric patients with complex congenital cardiac anomalies. Currently used synthetic grafts have a number of shortcomings in this setting but a tissue engineering approach has emerged in the past decade as a way to address these limitations. The first clinical trial of this technology showed that it is safe and effective but the primary mode of graft failure is stenosis. A variety of murine and large animal models have been developed to study and improve tissue engineering approaches with the hope of translating this technology into routine clinical use, but challenges remain. The purpose of this report is to address the clinical problem and review recent advances in vascular tissue engineering for pediatric applications. A deeper understanding of the mechanisms of neovessel formation and stenosis will enable rational design of improved tissue-engineered vascular grafts.
NASA Technical Reports Server (NTRS)
Alag, Gurbux S.; Gilyard, Glenn B.
1990-01-01
To develop advanced control systems for optimizing aircraft engine performance, unmeasurable output variables must be estimated. The estimation has to be done in an uncertain environment and be adaptable to varying degrees of modeling errors and other variations in engine behavior over its operational life cycle. This paper represented an approach to estimate unmeasured output variables by explicitly modeling the effects of off-nominal engine behavior as biases on the measurable output variables. A state variable model accommodating off-nominal behavior is developed for the engine, and Kalman filter concepts are used to estimate the required variables. Results are presented from nonlinear engine simulation studies as well as the application of the estimation algorithm on actual flight data. The formulation presented has a wide range of application since it is not restricted or tailored to the particular application described.
Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, K.; Graf, P.; Scott, G.
2015-01-01
The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems tomore » achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.« less
Herkert, Joseph R
2005-07-01
Engineering ethics entails three frames of reference: individual, professional, and social. "Microethics" considers individuals and internal relations of the engineering profession; "macroethics" applies to the collective social responsibility of the profession and to societal decisions about technology. Most research and teaching in engineering ethics, including online resources, has had a "micro" focus. Mechanisms for incorporating macroethical perspectives include: integrating engineering ethics and science, technology and society (STS); closer integration of engineering ethics and computer ethics; and consideration of the influence of professional engineering societies and corporate social responsibility programs on ethical engineering practice. Integrating macroethical issues and concerns in engineering ethics involves broadening the context of ethical problem solving. This in turn implies: developing courses emphasizing both micro and macro perspectives, providing faculty development that includes training in both STS and practical ethics; and revision of curriculum materials, including online resources. Multidisciplinary collaboration is recommended 1) to create online case studies emphasizing ethical decision making in individual, professional, and societal contexts; 2) to leverage existing online computer ethics resources with relevance to engineering education and practice; and 3) to create transparent linkages between public policy positions advocated by professional societies and codes of ethics.
Orbit transfer vehicle engine study, phase A, extension 1: Volume 2: Study results
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1981-01-01
Because of the advantage of the Advanced Expander Cycle Engine brought out in initial studies, further design optimization and comparative analyses were undertaken. The major results and conclusion derived are summarized. The primary areas covered are (1) thrust chamber geometry optimization, (2) expander cycle optimization, (3) alternate low thrust capability, (4) safety and reliability, (5) development risk comparison, and (6) cost comparisons. All of the results obtained were used to baseline the initial design concept for the OTV Advanced Expander Cycle Engine Point Design Study.
DOT National Transportation Integrated Search
2008-08-01
This study reports the findings of a project that was done during the implementation of a : problem-based learning (PBL) and cooperative learning (CL) elements into an : undergraduate transportation engineering course. The study procedure used the st...
FY04 Engineering Technology Reports Laboratory Directed Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharpe, R M
2005-01-27
This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2004, and exemplifies Engineering's more than 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investmentmore » in technologies is carried out through two programs, the ''Tech Base'' program and the LDRD program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply technologies to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2004, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the long-term science and technology investments for the Directorate. The Centers represent technologies that have been identified as critical for the present and future work of the Laboratory, and are chartered to develop their respective areas. Their LDRD projects are the key resources to attain this competency, and, as such, nearly all of Engineering's portfolio falls under one of the five Centers. The Centers and their Directors are: (1) Center for Computational Engineering: Robert M. Sharpe; (2) Center for Microtechnology and Nanotechnology: Raymond P. Mariella, Jr.; (3) Center for Nondestructive Characterization: Harry E. Martz, Jr.; (4) Center for Precision Engineering: Keith Carlisle; and (5) Center for Complex Distributed Systems: Gregory J. Suski, Acting Director.« less
Nakata, Paul A
2015-01-01
The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill both these needs. As a step toward this development, this study investigates the effects of transforming a non-calcium oxalate crystal accumulating plant, Arabidopsis thaliana, into a crystal accumulating plant. Calcium oxalate crystal accumulating A. thaliana lines were generated by ectopic expression of a single bacterial gene encoding an oxalic acid biosynthetic enzyme. Biochemical and cellular studies suggested that the engineered A. thaliana lines formed crystals of calcium oxalate in a manner similar to naturally occurring crystal accumulating plants. The amount of calcium oxalate accumulated in leaves also reached levels similar to those measured in the leaves of Medicago truncatula in which the crystals are known to play a defensive role. Visual inspection of the different engineered lines, however, suggested a phenotypic consequence on plant growth and development with higher calcium oxalate concentrations. The restoration of a near wild-type plant phenotype through an enzymatic reduction of tissue oxalate supported this observation. Overall, this study is a first to provide initial insight into the potential consequences of engineering calcium oxalate crystal formation in non-crystal accumulating plants.
Variable speed gas engine-driven air compressor system
NASA Astrophysics Data System (ADS)
Morgan, J. R.; Ruggles, A. E.; Chen, T. N.; Gehret, J.
1992-11-01
Tecogen Inc. and Ingersoll-Rand Co. as a subcontractor have designed a nominal 150-hp gas engine-driven air compressor utilizing the TECODRIVE 8000 engine and the Ingersoll-Rand 178.5-mm twin screw compressor. Phase 1 included the system engineering and design, economic and applications studies, and a draft commercialization plan. Phase 2 included controls development, laboratory prototype construction, and performance testing. The testing conducted verified that the compressor meets all design specifications.
Nuclear electric propulsion mission engineering study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1973-01-01
Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.
Engineering Protein Hydrogels Using SpyCatcher-SpyTag Chemistry.
Gao, Xiaoye; Fang, Jie; Xue, Bin; Fu, Linglan; Li, Hongbin
2016-09-12
Constructing hydrogels from engineered proteins has attracted significant attention within the material sciences, owing to their myriad potential applications in biomedical engineering. Developing efficient methods to cross-link tailored protein building blocks into hydrogels with desirable mechanical, physical, and functional properties is of paramount importance. By making use of the recently developed SpyCatcher-SpyTag chemistry, we successfully engineered protein hydrogels on the basis of engineered tandem modular elastomeric proteins. Our resultant protein hydrogels are soft but stable, and show excellent biocompatibility. As the first step, we tested the use of these hydrogels as a drug carrier, as well as in encapsulating human lung fibroblast cells. Our results demonstrate the robustness of the SpyCatcher-SpyTag chemistry, even when the SpyTag (or SpyCatcher) is flanked by folded globular domains. These results demonstrate that SpyCatcher-SpyTag chemistry can be used to engineer protein hydrogels from tandem modular elastomeric proteins that can find applications in tissue engineering, in fundamental mechano-biological studies, and as a controlled drug release vehicle.
Roper, Jatin; Martin, Eric S; Hung, Kenneth E
2014-06-16
Preclinical models for colorectal cancer (CRC) are critical for translational biology and drug development studies to characterize and treat this condition. Mouse models of human cancer are particularly popular because of their relatively low cost, short life span, and ease of use. Genetically engineered mouse models (GEMMs) of CRC are engineered from germline or somatic modification of critical tumor suppressor genes and/or oncogenes that drive mutations in human disease. Detailed in this overview are the salient features of several useful colorectal cancer GEMMs and their value as tools for translational biology and preclinical drug development. Copyright © 2014 John Wiley & Sons, Inc.
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2007-01-01
In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments
[Progress in industrial bioprocess engineering in China].
Zhuang, Yingping; Chen, Hongzhang; Xia, Jianye; Tang, Wenjun; Zhao, Zhimin
2015-06-01
The advances of industrial biotechnology highly depend on the development of industrial bioprocess researches. In China, we are facing several challenges because of a huge national industrial fermentation capacity. The industrial bioprocess development experienced several main stages. This work mainly reviews the development of the industrial bioprocess in China during the past 30 or 40 years: including the early stage kinetics model study derived from classical chemical engineering, researching method based on control theory, multiple-parameter analysis techniques of on-line measuring instruments and techniques, and multi-scale analysis theory, and also solid state fermentation techniques and fermenters. In addition, the cutting edge of bioprocess engineering was also addressed.
ERIC Educational Resources Information Center
Bledsoe, Karen E.; Flick, Lawrence
2012-01-01
This phenomenographic study documented changes in student-held electrical concepts the development of meaningful learning among students with both low and high prior knowledge within a problem-based learning (PBL) undergraduate electrical engineering course. This paper reports on four subjects: two with high prior knowledge and two with low prior…
Catalysts of Women's Talent Development in STEM: A Systematic Review
ERIC Educational Resources Information Center
Mullet, Dianna R.; Rinn, Anne N.; Kettler, Todd
2017-01-01
Numbers of women in the physical sciences, mathematics, and engineering are growing, yet women are still far outnumbered by men at upper levels of those fields. The purpose of the study is to review the literature on academic women who develop exceptional talent in science, technology, engineering, and mathematics (STEM). Data sources included 18…
ERIC Educational Resources Information Center
Berniklau, Vladimir V.
Focusing on management development of scientists and engineers within the Federal government, this study was done to form a framework of factors (mainly attitudes, motives or needs, and leadership styles) to be evaluated before choosing suitable techniques and alternatives. Such variables as differing program objectives, characteristics of…
ERIC Educational Resources Information Center
Business-Higher Education Forum, 2017
2017-01-01
Through the collaboration of its business and academic partners, the Business-Higher Education Forum (BHEF) launched the National Higher Education and Workforce Initiative (HEWI) to support business-higher education partnerships that co-design innovative community college and university pathways to careers, as well as maximize work-based learning…
ERIC Educational Resources Information Center
Hanning, Andreas; Abelsson, Anna Priem; Lundqvist, Ulrika; Svanstrom, Magdalena
2012-01-01
Purpose: The aim of this study is to contribute to the quality improvement and long-term strategic development of education for sustainable development (ESD) in engineering education curricula. Design/methodology/approach: The content in 70 courses in environment and SD were characterized and quantified using course document text analysis.…
ERIC Educational Resources Information Center
Jorgensen, Frances; Kofoed, Lise Busk
2007-01-01
In this paper, a study is presented in which engineering students at a Danish university developed Continuous Improvement (CI) and innovation capabilities through action research and experiential learning methods. The paper begins with a brief overview of the literature on CI and innovation, followed by an account of how the students designed and…
ERIC Educational Resources Information Center
Liu, Wei
2012-01-01
This is an evaluative research study of a NSF-funded, DRK-12 cyber-enabled teacher professional development program in elementary engineering education. The finding shows the significant impact of the program on students' science and engineering knowledge in the second year of the program's implementation. However, student learning gain…
ERIC Educational Resources Information Center
Ohland, Matthew W.; Long, Russell A.
2016-01-01
Sharing longitudinal student record data and merging data from different sources is critical to addressing important questions being asked of higher education. The Multiple-Institution Database for Investigating Engineering Longitudinal Development (MIDFIELD) is a multi-institution, longitudinal, student record level dataset that is used to answer…
Development of a Pedagogical Model to Help Engineering Faculty Design Interdisciplinary Curricula
ERIC Educational Resources Information Center
Navarro, Maria; Foutz, Timothy; Thompson, Sidney; Singer, Kerri Patrick
2016-01-01
The purpose of this study was to develop a model to help engineering faculty overcome the challenges they face when asked to design and implement interdisciplinary curricula. Researchers at a U.S. University worked with an Interdisciplinary Consultant Team and prepared a steering document with Guiding Principles and Essential Elements for the…
ERIC Educational Resources Information Center
Miller, Ronald L.; Streveler, Ruth A.; Yang, Dazhi; Roman, Aidsa I. Santiago
2011-01-01
This paper summarizes progress on two related lines of chemical engineering education research: 1) identifying persistent student misconceptions in thermal and transport science (fluid mechanics, heat transfer, and thermodynamics); and, 2) developing a method to help students repair these misconceptions. Progress on developing the Thermal and…
Banerjee, Chiranjib; Singh, Puneet Kumar; Shukla, Pratyoosh
2016-03-01
Exploring the efficiency of algae to produce remarkable products can be directly benefitted by studying its mechanism at systems level. Recent advents in biotechnology like flux balance analysis (FBA), genomics and in silico proteomics minimize the wet lab exertion. It is understood that FBA predicts the metabolic products, metabolic pathways and alternative pathway to maximize the desired product, and these are key components for microalgae bio-engineering. This review encompasses recent transgenesis techniques and metabolic engineering strategies applied to different microalgae for improving different traits. Further it also throws light on RNAi and riboswitch engineering based methods which may be advantageous for high throughput microalgal research. A valid and optimally designed microalga can be developed where every engineering strategies meet each other successfully and will definitely fulfill the market needs. It is also to be noted that Omics (viz. genetic and metabolic manipulation with bioinformatics) should be integrated to develop a strain which could prove to be a futuristic solution for sustainable development for energy. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Successful Latina Scientists and Engineers: Their Lived Mentoring Experiences and Career Development
ERIC Educational Resources Information Center
San Miguel, Anitza M.; Kim, Mikyong Minsun
2015-01-01
Utilizing a phenomenological perspective and method, this study aimed to reveal the lived career mentoring experiences of Latinas in science and engineering and to understand how selected Latina scientists and engineers achieved high-level positions. Our in-depth interviews revealed that (a) it is important to have multiple mentors for Latinas'…
ERIC Educational Resources Information Center
Yoon, So Yoon; Dyehouse, Melissa; Lucietto, Anne M.; Diefes-Dux, Heidi A.; Capobianco, Brenda M.
2014-01-01
This study examines the effects of integrated science, technology, and engineering (STE) education on second-, third-, and fourth-grade students' STE content knowledge and aspirations concerning engineering after validation of the measures. During the 2009-2010 school year, 59 elementary school teachers, who attended a week-long engineering…
ERIC Educational Resources Information Center
Nelson, Regina K.
2013-01-01
A mixed-methods research study was designed to test whether undergraduate engineering students were better prepared to learn advanced topics in biomedical engineering if they learned physiology via a quantitative, concept-based approach rather than a qualitative, system-based approach. Experiments were conducted with undergraduate engineering…
ERIC Educational Resources Information Center
Carvajal, Manuel J.
2004-01-01
Using data developed for the U.S. District Court, this study compared the performance of Hispanic-owned firms and two groupings of non-Hispanic-owned firms in three South Florida markets: architecture (n= 176), structural engineering (n= 144), and civil engineering (n = 200). Within each market, firms?earnings are expressed as functions of…
ERIC Educational Resources Information Center
Hellmann, Katherine
2013-01-01
Through a sociocultural lens, this study examines five Saudi Arabian engineering graduate students' valuation of English writing, their self-perceptions of writing, what promoted the development of those self-perceptions and how their self-perceptions compare with engineering industry writing standards. The data collected for this qualitative case…
ERIC Educational Resources Information Center
Capobianco, Brenda M.; DeLisi, Jacqueline; Radloff, Jeffrey
2018-01-01
In an effort to document teachers' enactments of new reform in science teaching, valid and scalable measures of science teaching using engineering design are needed. This study describes the development and testing of an approach for documenting and characterizing elementary science teachers' multiday enactments of engineering design-based science…
ERIC Educational Resources Information Center
Cherrstrom, Catherine A.; Raisor, Cindy; Fowler, Debra
2015-01-01
Engineering educators and employers value and prioritize communication skills, but developing and assessing such skills in engineering programs is challenging. Reflective ePortfolios provide opportunities to enhance communication skills. The purpose of this three-year qualitative case study was to investigate the use of reflective ePortfolios in…
ERIC Educational Resources Information Center
Wendell, Kristen Bethke
2011-01-01
This research illustrates how varying enactments of an engineering-design-based science curriculum shaped the development of students' domain-specific scientific ideas and practices. In this comparative case study rooted in the analytical perspectives of activity theory and learning environments, student and teacher participants in three…
ERIC Educational Resources Information Center
Yang, Yan
2012-01-01
Purpose: This paper aims to discuss the challenge for the classical idea of professionalism in understanding the Chinese software engineering industry after giving a close insight into the development of this industry as well as individual engineers with a psycho-societal perspective. Design/methodology/approach: The study starts with the general…
ERIC Educational Resources Information Center
Laugerman, Marcia; Shelley, Mack; Rover, Diane; Mickelson, Steve
2015-01-01
This study uses a unique synthesized set of data for community college students transferring to engineering by combining several cohorts of longitudinal data along with transcript-level data, from both the Community College and the University, to measure success rates in engineering. The success rates are calculated by developing Kaplan-Meier…
Teachers' Thoughts on Student Decision Making during Engineering Design Lessons
ERIC Educational Resources Information Center
Meyer, Helen
2018-01-01
In this paper, I share the results of a study of teachers' ideas about student decision-making at entry into a professional development program to integrate engineering into their instruction. The framework for the Engineering Design Process (EDP) was based on a Challenge-Based Learning (CBL) model. The EDP embedded within the CBL model suggests…
Study of solid rocket motor for space shuttle booster, Volume 3: Program acquisition planning
NASA Technical Reports Server (NTRS)
1972-01-01
The program planning acquisition functions for the development of the solid propellant rocket engine for the space shuttle booster is presented. The subjects discussed are: (1) program management, (2) contracts administration, (3) systems engineering, (4) configuration management, and (5) maintenance engineering. The plans for manufacturing, testing, and operations support are included.
Impacts of a Summer Bridge Program in Engineering on Student Retention and Graduation
ERIC Educational Resources Information Center
Cançado, Luciana; Reisel, John R.; Walker, Cindy M.
2018-01-01
A summer bridge program was developed in an engineering program to advance the preparation of incoming freshmen students, particularly with respect to their math course placement. The program was intended to raise the initial math course placement of students who otherwise would begin their engineering studies in courses below Calculus I. One…
Student attraction to engineering through flexibility and breadth in the curriculum
NASA Astrophysics Data System (ADS)
Alpay, E.
2013-03-01
Several European universities provide entry to general engineering studies prior to degree specialisation. The potential advantages of such entry include the provision of a broader foundation in engineering fundamentals, the option for students to defer specialisation until a greater awareness of the different engineering disciplines and the preparation of students for a more versatile career. In this paper, the attractiveness of general engineering (specifically in the first year of study) is explored through a national (UK) survey on pre-university students. Attention is given to gauging student enthusiasm for flexibility in engineering specialisation, combined degree options and exposure to other non-technical courses. The findings indicate that a general engineering programme is highly attractive to students who are currently considering an engineering degree. The programme is also attractive to some students who had previously not considered engineering. For both sets of students, the desire for education on broader topics is indicated, specifically in areas of leadership, teamwork and business skills, and more generally self-awareness and personal development.
A qualitative examination of the nature and impact of three California minority engineering programs
NASA Astrophysics Data System (ADS)
Christie, Barbara A.
According to the National Action Council for Minorities in Engineering (NACME), the national retention rate of engineering students is 68% and the national retention rate for underrepresented minority engineering students (African American, Latino, Native American and Pacific Islanders) is 37%. In response to the severity of retention issues concerning underrepresented minority students, colleges and universities across the United States have developed special programs known as minority engineering programs (MEP). MEPs are designed to provide academic support, personal counseling, social networking, career counseling and professional development as a means to improve retention. In order to provide a detailed description of the MEPs, the research method selected is a case study. This case study is an examination of the nature and impact of three MEPs in California. This study is also an analysis of the lack of participation by freshmen and sophomore students who qualify for these programs. Methodology included extensive surveys and interviews of students, faculty and staff, site visits, and examination of documents. Over 500 students were surveyed during lower division engineering courses. The qualifying students who gave permission for further interviews were provided with questions about their participation or nonparticipation and the reasons for their behavior. Faculty members were interviews about their knowledge and personal involvement with the minority engineering program on their campuses. Program directors were interviewed to discuss program design and implementation. A categorical method was used to separate the different groups within the study. Of the 509 respondents, 132 were classified as qualifier/nonparticipant freshman and sophomore engineering students. The results demonstrated that a high percentage of the qualifier/nonparticipants are unaware of the programs and events on their campuses. During the interviews the students stated they are very interested in academic enrichment, social networking and professional development. The students also stated they feel the faculty should provide information on enrichment programs available on campus. Conversely, during the faculty interviews, they stated that it is not their responsibility to inform students and were unfamiliar with the minority engineering programs on their campuses. These results concurred with works of Raymond Landis and Elaine Seymour.
Systems Engineering in NASA's R&TD Programs
NASA Technical Reports Server (NTRS)
Jones, Harry
2005-01-01
Systems engineering is largely the analysis and planning that support the design, development, and operation of systems. The most common application of systems engineering is in guiding systems development projects that use a phased process of requirements, specifications, design, and development. This paper investigates how systems engineering techniques should be applied in research and technology development programs for advanced space systems. These programs should include anticipatory engineering of future space flight systems and a project portfolio selection process, as well as systems engineering for multiple development projects.
Structural dynamics verification facility study
NASA Technical Reports Server (NTRS)
Kiraly, L. J.; Hirchbein, M. S.; Mcaleese, J. M.; Fleming, D. P.
1981-01-01
The need for a structural dynamics verification facility to support structures programs was studied. Most of the industry operated facilities are used for highly focused research, component development, and problem solving, and are not used for the generic understanding of the coupled dynamic response of major engine subsystems. Capabilities for the proposed facility include: the ability to both excite and measure coupled structural dynamic response of elastic blades on elastic shafting, the mechanical simulation of various dynamical loadings representative of those seen in operating engines, and the measurement of engine dynamic deflections and interface forces caused by alternative engine mounting configurations and compliances.
Engineering the future with America's high school students
NASA Technical Reports Server (NTRS)
Farrance, M. A.; Jenner, J. W.
1993-01-01
The number of students enrolled in engineering is declining while the need for engineers is increasing. One contributing factor is that most high school students have little or no knowledge about what engineering is, or what engineers do. To teach young students about engineering, engineers need good tools. This paper presents a course of study developed and used by the authors in a junior college course for high school students. Students learned about engineering through independent student projects, in-class problem solving, and use of career information resources. Selected activities from the course can be adapted to teach students about engineering in other settings. Among the most successful techniques were the student research paper assignments, working out a solution to an engineering problem as a class exercise, and the use of technical materials to illustrate engineering concepts and demonstrate 'tools of the trade'.
Prabhu, Ashish A; Boro, Bibari; Bharali, Biju; Chakraborty, Shuchishloka; Dasu, Veeranki V
2017-01-01
Process development involving system metabolic engineering and bioprocess engineering has become one of the major thrust for the development of therapeutic proteins or enzymes. Pichia pastoris has emerged as a prominent host for the production of therapeutic protein or enzymes. Regardless of producing high protein titers, various cellular and process level bottlenecks restrict the expression of recombinant proteins in P. pastoris. In the present review, we have summarized the recent developments in the expression of foreign proteins in P. pastoris. Further, we have discussed various cellular engineering strategies which include codon optimization, pathway engineering, signal peptide processing, development of protease deficient strain and glyco-engineered strains for the high yield protein secretion of recombinant protein. Bioprocess development of recombinant proteins in large-scale bioreactor including medium optimization, optimum feeding strategy and co-substrate feeding in fed-batch as well as continuous cultivation have been described. The recent advances in system and synthetic biology studies including metabolic flux analysis in understanding the phenotypic characteristics of recombinant Pichia and genome editing with CRISPR-CAS system have also been summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Technical Reports Server (NTRS)
Cross, James H., II
1990-01-01
The study, formulation, and generation of structures for Ada (GRASP/Ada) are discussed in this second phase report of a three phase effort. Various graphical representations that can be extracted or generated from source code are described and categorized with focus on reverse engineering. The overall goal is to provide the foundation for a CASE (computer-aided software design) environment in which reverse engineering and forward engineering (development) are tightly coupled. Emphasis is on a subset of architectural diagrams that can be generated automatically from source code with the control structure diagram (CSD) included for completeness.
Development of a test and flight engineering oriented language, phase 3
NASA Technical Reports Server (NTRS)
Kamsler, W. F.; Case, C. W.; Kinney, E. L.; Gyure, J.
1970-01-01
Based on an analysis of previously developed test oriented languages and a study of test language requirements, a high order language was designed to enable test and flight engineers to checkout and operate the proposed space shuttle and other NASA vehicles and experiments. The language is called ALOFT (a language oriented to flight engineering and testing). The language is described, its terminology is compared to similar terms in other test languages, and its features and utilization are discussed. The appendix provides the specifications for ALOFT.
Be(com)ing an Excellent Student: A Qualitative Study with Engineering Undergraduates
ERIC Educational Resources Information Center
Monteiro, Sílvia; Almeida, Leandro S.; Vasconcelos, Rosa M.; Cruz, José Fernando A.
2014-01-01
This study explores the factors affecting the development of academic excellence on a group of 33 high-achieving engineering students. Participants were interviewed individually to explore several personal and contextual aspects of their past and current academic pathways. The results obtained reflect three main contributions to the…
Impact of Transportation on the Environment and Quality of Life.
ERIC Educational Resources Information Center
Schuster, James J.
This paper discusses the changing role of civil engineers in developed nations. Transportation facilities generally follow a four phase approach before construction: long range systems planning, corridor location study, design location study, and final preparation of plans. Traditional engineering education emphasized the latter two phases but now…
Lynch, William T
2015-10-01
The article examines and extends work bringing together engineering ethics and Science and Technology Studies, which had built upon Diane Vaughan's analysis of the Challenger shuttle accident as a test case. Reconsidering the use of her term "normalization of deviance," the article argues for a middle path between moralizing against and excusing away engineering practices contributing to engineering disaster. To explore an illustrative pedagogical case and to suggest avenues for constructive research developing this middle path, it examines the emergence of green chemistry and green engineering. Green chemistry began when Paul Anastas and John Warner developed a set of new rules for chemical synthesis that sought to learn from missed opportunities to avoid environmental damage in the twentieth century, an approach that was soon extended to engineering as well. Examination of tacit assumptions about historical counterfactuals in recent, interdisciplinary discussions of green chemistry illuminate competing views about the field's prospects. An integrated perspective is sought, addressing how both technical practice within chemistry and engineering and the influence of a wider "social movement" can play a role in remedying environmental problems.
Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.
Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu
2011-05-23
The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.
2018-02-01
In the recent years the development of turbomachinery materials performance enhancement plays a vital role especially in aircraft air breathing engines like turbojet engine, turboprop engine, turboshaft engine and turbofan engines. Especially the transonic flow engines required highly sophisticated materials where it can sustain the entire thrust which can create by the engine. The main objective of this paper is to give an overview of the present cost-effective and technological capabilities process for turbomachinery component materials. Especially the main focus is given to study the Electro physical, Photonic additive removal process and Electro chemical process for turbomachinery parts manufacture. The aeronautical propulsion based technologies are reviewed thoroughly where in surface reliability, geometrical precession, and material removal and highly strengthened composite material deposition rates usually difficult to cut dedicated steels, Titanium and Nickel based alloys. In this paper the past aeronautical and propulsion mechanical based manufacturing technologies, current sophisticated technologies and also future challenging material processing techniques are covered. The paper also focuses on the brief description of turbomachinery components of shaping process and coating in aeromechanical applications.
Analysis of complex decisionmaking processes. [with application to jet engine development
NASA Technical Reports Server (NTRS)
Hill, J. D.; Ollila, R. G.
1978-01-01
The analysis of corporate decisionmaking processes related to major system developments is unusually difficult because of the number of decisionmakers involved in the process and the long development cycle. A method for analyzing such decision processes is developed and illustrated through its application to the analysis of the commercial jet engine development process. The method uses interaction matrices as the key tool for structuring the problem, recording data, and analyzing the data to establish the rank order of the major factors affecting development decisions. In the example, the use of interaction matrices permitted analysts to collect and analyze approximately 50 factors that influenced decisions during the four phases of the development cycle, and to determine the key influencers of decisions at each development phase. The results of this study indicate that the cost of new technology installed on an aircraft is the prime concern of the engine manufacturer.
Energy efficient engine preliminary design and integration study
NASA Technical Reports Server (NTRS)
Gray, D. E.
1978-01-01
The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.
Think first job! Preferences and expectations of engineering students in a French `Grande Ecole'
NASA Astrophysics Data System (ADS)
Gerwel Proches, Cecile N.; Chelin, Nathalie; Rouvrais, Siegfried
2018-03-01
A career in engineering may be appealing owing to the prospect of a good salary and a dynamic work environment. There may, however, be challenges for students wishing to enter their first job. In engineering education, career preparation courses may be included so as to prepare students adequately for their first job, future careers, and to reinforce career decision-making skills. This study explored the first-job preferences and expectations of engineering students at a generalist French 'Grande Ecole' before their compulsory internship. The study ultimately provided insight into ways in which future engineers may best be equipped for their first jobs. A qualitative research study was employed, using four focus groups to collect data, which was analysed thematically. Key findings indicate the resolute importance that engineering students place on having a challenging job, teamwork, independence, opportunities for development, and a participative style of being managed. The research findings may be of value in order to renew an engineering curriculum with better alignment between students' expectations and industry needs.
Biomolecular engineering for nanobio/bionanotechnology
NASA Astrophysics Data System (ADS)
Nagamune, Teruyuki
2017-04-01
Biomolecular engineering can be used to purposefully manipulate biomolecules, such as peptides, proteins, nucleic acids and lipids, within the framework of the relations among their structures, functions and properties, as well as their applicability to such areas as developing novel biomaterials, biosensing, bioimaging, and clinical diagnostics and therapeutics. Nanotechnology can also be used to design and tune the sizes, shapes, properties and functionality of nanomaterials. As such, there are considerable overlaps between nanotechnology and biomolecular engineering, in that both are concerned with the structure and behavior of materials on the nanometer scale or smaller. Therefore, in combination with nanotechnology, biomolecular engineering is expected to open up new fields of nanobio/bionanotechnology and to contribute to the development of novel nanobiomaterials, nanobiodevices and nanobiosystems. This review highlights recent studies using engineered biological molecules (e.g., oligonucleotides, peptides, proteins, enzymes, polysaccharides, lipids, biological cofactors and ligands) combined with functional nanomaterials in nanobio/bionanotechnology applications, including therapeutics, diagnostics, biosensing, bioanalysis and biocatalysts. Furthermore, this review focuses on five areas of recent advances in biomolecular engineering: (a) nucleic acid engineering, (b) gene engineering, (c) protein engineering, (d) chemical and enzymatic conjugation technologies, and (e) linker engineering. Precisely engineered nanobiomaterials, nanobiodevices and nanobiosystems are anticipated to emerge as next-generation platforms for bioelectronics, biosensors, biocatalysts, molecular imaging modalities, biological actuators, and biomedical applications.
Rocket-Based Combined Cycle Engine Technology Development: Inlet CFD Validation and Application
NASA Technical Reports Server (NTRS)
DeBonis, J. R.; Yungster, S.
1996-01-01
A CFD methodology has been developed for inlet analyses of Rocket-Based Combined Cycle (RBCC) Engines. A full Navier-Stokes analysis code, NPARC, was used in conjunction with pre- and post-processing tools to obtain a complete description of the flow field and integrated inlet performance. This methodology was developed and validated using results from a subscale test of the inlet to a RBCC 'Strut-Jet' engine performed in the NASA Lewis 1 x 1 ft. supersonic wind tunnel. Results obtained from this study include analyses at flight Mach numbers of 5 and 6 for super-critical operating conditions. These results showed excellent agreement with experimental data. The analysis tools were also used to obtain pre-test performance and operability predictions for the RBCC demonstrator engine planned for testing in the NASA Lewis Hypersonic Test Facility. This analysis calculated the baseline fuel-off internal force of the engine which is needed to determine the net thrust with fuel on.
Engineering Students: Enhancing Employability Skills through PBL
NASA Astrophysics Data System (ADS)
H, Othman; Mat Daud K., A.; U, Ewon; Salleh B, Mohd; Omar N., H.; Baser J, Abd; Ismail M., E.; A, Sulaiman
2017-05-01
As a developing country, Malaysia faces challenging tasks to develop her economy just like many other countries. Nowadays, change involves many aspects like the economy from agriculture to manufacturing, technology from modern to more advanced ones; mindset from traditional to advanced and so on. Previous studies show that one of the major issues facing local graduates is the lack of employability skills. This problem concerns not only the government but undergraduates and institutions alike. From the pedagogical aspect, one of the more effective ways to improve this is through instructional delivery and in this case the use of Problem-based Learning (PBL). The need to adopt PBL should involved applied subjects undertaken by engineering students. Studies have shown that the use of PBL has been proven to make learning more attractive and effective. In this research, we studied the effectiveness of PBL towards enhancing employability skills among engineering undergraduates. This study adopted a combination of qualitative and quantitative approaches. Data was collected using documents analysis. Student samples comprised manufacturing engineering undergraduates from public institutions of higher learning in Malaysia. The results show that student’s employability skills can be enhanced using PBL. In addition, students become more competitive towards making them more relevance with the needs of the industry with regard to employability skills. In conclusion, PBL is a very effective catalyst towards raising the employability skills among engineering undergraduates and should be adopted in all engineering education.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Glassman, Myron; Oliu, Walter E.
1990-01-01
This paper is based on the premise that scientific and technical information (STI), its use by aerospace engineers and scientists, and the aerospace research and development (R&D) process are related. We intend to support this premise with data gathered from numerous studies concerned with STI, the relationship of STI to the performance and management of R&D activities, and the information use and seeking behavior of engineers in general and aerospace engineers and scientists in particular. We intend to develop and present a synthesized appreciation of how aerospace R&D managers can improve the efficacy of the R&D process by understanding the role and value of STI in this process.
NASA Astrophysics Data System (ADS)
Okano, Shota; Shibuya, Hiroyuki; Kondo, Keiichiro
This paper presents a simple and energy-saving method for controlling hybrid powered railway vehicles that run on rural non-electrified railway lines and have diesel engine and electrical double layer capacitors (EDLCs). The aim this study is to reduce both the fuel consumption and the capacitance of EDLCs. A basic idea proposed in this paper is that EDLCs supply and absorb the kinetic energy of the vehicle and the engine output compensates supply the energy loss with the vehicle running. Thus, the energy loss is not taken into consideration while expressing the EDLC voltage reference (equation 1); energy loss is considered when the engine is in operating mode. The proposed method is examined by performing numerical simulations for various values of engine operation time, load, and grade section. The results of this study reveal the relationship between the capacitance of the EDLCs and the fuel consumption. Using this proposed control methods, excessive charging of EDLCs can be avoided. The results of this study are expected to expedite the development of energy-saving railway vehicles for the non-electrified lines. Finally, the results of this study increase the possibility of developing hybrid powered railway vehicles.
Multiple case study analysis of young women's experiences in high school engineering
NASA Astrophysics Data System (ADS)
Pollock, Meagan C.
At a time when engineers are in critical demand, women continue to be significantly underrepresented in engineering fields (11.7%) and degree programs (21.3%) in the United States. As a result, there is a national demand for improved K-12 STEM education and targeted efforts to improve equity and access to engineering and science careers for every underrepresented group. High school engineering has become a nascent and growing market for developers and an emergent opportunity for students across the United States to learn introductory engineering skills through strategic career pathways; however there is a disparity in participation at this level as well. Much useful research has been used to examine the problematization of underrepresentation (K Beddoes, 2011), but there is a dearth of literature that helps us to understand the experiences of young women in high school engineering. By examining the experiences of young women in high school engineering, we can learn ways to improve the curriculum, pedagogy, and environment for underrepresented groups such as females to ensure they have equitable access to these programs and are subsequently motivated to persist in engineering. Understanding the needs of marginalized groups is complex, and intersectional feminism seeks to understand gender in relation to other identities such as race, class, ethnicity, sexuality, and nationality. This theory asserts that gender alone is neither a total identity nor a universal experience, and it is thus advantageous to consider each of the intersecting layers of identity so as to not privilege a dominate group as representative of all women. Thus, to understand how female students engage with and experience engineering in grade school, it is useful to examine through the lens of gender, class, race, and sexuality, because this intersection frames much of the human experience. The purpose of this study is to examine high school females' experiences in engineering, with a goal to richly describe the diversity of experiences. A multiple case study analysis, this study answers the question: How do gender, class, race, and other components of intersectionality, influence high school females' experiences in engineering? Nine young women taking a high school engineering course in a suburban high school in Central Texas during the school year 2011-2012 volunteered to participate. The students were observed in their engineering classes for half of the spring 2012 semester, with bi-weekly interviews with the students, monthly interviews with the teacher, and a single interview with a parent of each volunteer. The nine rich case studies provide us with new stories that help prevent us from narrowing the experiences of women to a single incomplete stereotype, because these young women vary across race, socioeconomic backgrounds, and sexual orientation. Although each story is unique, there are commonalities among their experiences, including family, influence, classroom environment, biases, and beliefs. By drawing from their collective experiences in high school engineering, the findings direct us toward recommendations for educators, parents, engineering curriculum developers, designers of teacher professional development, and future research to improve equity and access for every student in engineering.
Re-engineering pre-employment check-up systems: a model for improving health services.
Rateb, Said Abdel Hakim; El Nouman, Azza Abdel Razek; Rateb, Moshira Abdel Hakim; Asar, Mohamed Naguib; El Amin, Ayman Mohammed; Gad, Saad abdel Aziz; Mohamed, Mohamed Salah Eldin
2011-01-01
The purpose of this paper is to develop a model for improving health services provided by the pre-employment medical fitness check-up system affiliated to Egypt's Health Insurance Organization (HIO). Operations research, notably system re-engineering, is used in six randomly selected centers and findings before and after re-engineering are compared. The re-engineering model follows a systems approach, focusing on three areas: structure, process and outcome. The model is based on six main components: electronic booking, standardized check-up processes, protected medical documents, advanced archiving through an electronic content management (ECM) system, infrastructure development, and capacity building. The model originates mainly from customer needs and expectations. The centers' monthly customer flow increased significantly after re-engineering. The mean time spent per customer cycle improved after re-engineering--18.3 +/- 5.5 minutes as compared to 48.8 +/- 14.5 minutes before. Appointment delay was also significantly decreased from an average 18 to 6.2 days. Both beneficiaries and service providers were significantly more satisfied with the services after re-engineering. The model proves that re-engineering program costs are exceeded by increased revenue. Re-engineering in this study involved multiple structure and process elements. The literature review did not reveal similar re-engineering healthcare packages. Therefore, each element was compared separately. This model is highly recommended for improving service effectiveness and efficiency. This research is the first in Egypt to apply the re-engineering approach to public health systems. Developing user-friendly models for service improvement is an added value.
Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P
2016-04-01
The need for more environmentally friendly and efficient energy conversion is of paramount importance in developing and designing next-generation internal combustion (IC) engines for transportation applications. One effective solution to reducing emissions of mono-nitrogen oxides (NOx) is exhaust gas recirculation (EGR), which has been widely implemented in modern vehicles. However, cylinder-to-cylinder and cycle-to-cycle variations in the charge-gas uniformity can be a major barrier to optimum EGR implementation on multi-cylinder engines, and can limit performance, stability, and efficiency. Precise knowledge and fine control over the EGR system is therefore crucial, particularly for optimizing advanced engine concepts such as reactivity controlled compression ignition (RCCI). An absorption-based laser diagnostic was developed to study spatiotemporal charge-gas distributions in an IC engine intake manifold in real-time. The laser was tuned to an absorption band of carbon dioxide (CO2), a standard exhaust-gas marker, near 2.7 µm. The sensor was capable of probing four separate measurement locations simultaneously, and independently analyzing EGR fraction at speeds of 5 kHz (1.2 crank-angle degree (CAD) at 1 k RPM) or faster with high accuracy. The probes were used to study spatiotemporal EGR non-uniformities in the intake manifold and ultimately promote the development of more efficient and higher performance engines. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Goncher, Andrea M.
thResearch on engineering design is a core area of concern within engineering education, and a fundamental understanding of how engineering students approach and undertake design is necessary in order to develop effective design models and pedagogies. This dissertation contributes to scholarship on engineering design by addressing a critical, but as yet underexplored, problem: how does the context in which students design shape their design practices? Using a qualitative study comprising of video data of design sessions, focus group interviews with students, and archives of their design work, this research explored how design decisions and actions are shaped by context, specifically the context of higher education. To develop a theoretical explanation for observed behavior, this study used the nested structuration. framework proposed by Perlow, Gittell, & Katz (2004). This framework explicated how teamwork is shaped by mutually reinforcing relationships at the individual, organizational, and institutional levels. I appropriated this framework to look specifically at how engineering students working on a course-related design project identify constraints that guide their design and how these constraints emerge as students interact while working on the project. I first identified and characterized the parameters associated with the design project from the student perspective and then, through multi-case studies of four design teams, I looked at the role these parameters play in student design practices. This qualitative investigation of first-year engineering student design teams revealed mutual and interconnected relationships between students and the organizations and institutions that they are a part of. In addition to contributing to research on engineering design, this work provides guidelines and practices to help design educators develop more effective design projects by incorporating constraints that enable effective design and learning. Moreover, I found that when appropriated in the context of higher education, multiple sublevels existed within nested structuration's organizational context and included course-level and project-level factors. The implications of this research can be used to improve the design of engineering course projects as well as the design of research efforts related to design in engineering education.
Low Pressure Nuclear Thermal Rocket (LPNTR) concept
NASA Technical Reports Server (NTRS)
Ramsthaler, J. H.
1991-01-01
A background and a description of the low pressure nuclear thermal system are presented. Performance, mission analysis, development, critical issues, and some conclusions are discussed. The following subject areas are covered: LPNTR's inherent advantages in critical NTR requirement; reactor trade studies; reference LPNTR; internal configuration and flow of preliminary LPNTR; particle bed fuel assembly; preliminary LPNTR neutronic study results; multiple LPNTR engine concept; tank and engine configuration for mission analysis; LPNTR reliability potential; LPNTR development program; and LPNTR program costs.
Overview of liquid lubricants for advanced aircraft
NASA Technical Reports Server (NTRS)
Loomis, W. R.
1982-01-01
An overall status report on liquid lubricants for use in high-performance turbojet engines is presented. Emphasis is placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is iven of the development of turbine engine lubricants which led to synthetic oils with their inherent modification advantages. The status and state of development of some nine candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Also, alternatives to high temperature fluid development are described. The importance of of continuing work on improving high temperature lubricant candidates and encouraging development of fluid base stocks is discussed.
ERIC Educational Resources Information Center
Dixon, Peggy; And Others
This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The objective of this curriculum development project is to train technicians in the use of…
ERIC Educational Resources Information Center
Mowery, Donald R.
This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed for the purpose of training technicians in the use of electronic instruments and their applications. The program integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and…
Writing in the Natural Sciences and Engineering: Implications for ESL Composition Courses.
ERIC Educational Resources Information Center
Braine, George
A study investigated the types of writing assignments commonly found in undergraduate natural sciences and engineering courses. The study was used as a basis for the development of composition courses for limited-English-speaking students in these fields, the most popular fields of study among foreign students. Eighty take-home assignments given…
NASA Astrophysics Data System (ADS)
Mohamed, Abdullah-Adnan; Asmawi, Adelina; Hamid, Mohd Rashid Ab; Mustafa, Zainol bin
2015-02-01
This paper reports a pilot study of Context Evaluation using a self-developed questionnaire distributed among engineering undergraduates at a university under study. The study aims to validate the self-developed questionnaires used in the Context evaluation, a component in the CIPP Model. The Context evaluation assesses background information for needs, assets, problems and opportunities relevant to beneficiaries of the study in a defined environment. Through the questionnaire, background information for the assessment of needs, assets and problems related to the engineering undergraduates' perceptions on the teaching and learning of technical oral presentation skills was collected and analysed. The questionnaire was developed using 5-points Likert scale to measure the constructs under study. They were distributed to 100 respondents with 79 returned. The respondents consisted of engineering undergraduates studied at various faculties at one technical university in Malaysia. The descriptive analysis of data for each item which makes up the construct for Context evaluation is found to be high. This implied that engineering undergraduates showed high interest in teaching and learning of technical oral presentation skills, thus their needs are met. Also, they agreed that assets and facilities are conducive to their learning. In conclusion, the context evaluation involving needs and assets factors are both considerably important; their needs are met and the assets and facilities do support their technical oral presentation skills learning experience.
Constructing engineers through practice: Gendered features of learning and identity development
NASA Astrophysics Data System (ADS)
Tonso, Karen L.
How do women and men student engineers develop an engineering identity (a sense of belonging, or not), while practicing "actual" engineering? What are the influences of gender, learning and knowledge, relations of power, and conceptions of equality on cultural identity development? I studied these issues in reform-minded engineering design classes, courses organized around teaching students communications, teamwork, and practical engineering. Engineering-student cultural identity categories revealed a status hierarchy, predicated on meeting "academic" criteria for excellence, and the almost total exclusion of women. While working as an engineering colleague on five student teams (three first-year and two senior) and attending their design classes, I documented how cultural identities were made evident and constructed in students' practical engineering. Design projects promoted linking academic knowledge with real-world situations, sharing responsibilities and trusting colleagues, communicating engineering knowledge to technical and non-technical members of business communities, and addressing gaps in students' knowledge. With a curriculum analysis and survey of students' perceptions of the differences between design and conventional courses, I embedded the design classes in the wider campus and found that: (1) Engineering education conferred prestige, power, and well-paying jobs on students who performed "academic" engineering, while failing to adequately encourage "actual" engineering practices. High-status student engineers were the least likely to perform "actual" engineering in design teams. (2) Engineering education advanced an ideology that encouraged its practitioners to consider men's privilege and women's invisibility normal. By making "acting like men act" the standards to which engineering students must conform, women learned to put up with oppressive treatment. Women's accepting their own mistreatment and hiding their womanhood became a condition of women's belonging. (3) Despite all of the pressures to do otherwise, (some) teams of students (at all levels) carved out small oases where "actual" engineering prevailed and women's participation was robust. Students--not faculty, not progressive pedagogy, not "reformed" courses--disrupted prevailing norms. However, two women engineering students, one on each senior team, performed fabulous "actual" engineering, yet neither of them had a job when they graduated--the only two senior students on my teams without jobs.
Study of unconventional aircraft engines designed for low energy consumption
NASA Technical Reports Server (NTRS)
Gray, D. E.
1976-01-01
Declining U.S. oil reserves and escalating energy costs underline the need for reducing fuel consumption in aircraft engines. The most promising unconventional aircraft engines based on their potential for fuel savings and improved economics are identified. The engines installed in both a long-range and medium-range aircraft were evaluated. Projected technology advances are identified and evaluated for their state-of-readiness for application to a commercial transport. Programs are recommended for developing the necessary technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhu, J.S.
1994-01-01
The limitations of human vaccines in use at present and the design requirements for a new generation of human vaccines are discussed. The progress in engineering of human vaccines for bacteria, viruses, parasites, and cancer is reviewed, and the data from human studies with the engineered vaccines are discussed, especially for cancer and AIDS vaccines. The final section of the review deals with the possible future developments in the field of engineered human vaccines and the requirement for effective new human adjuvants.
Parametric Model of an Aerospike Rocket Engine
NASA Technical Reports Server (NTRS)
Korte, J. J.
2000-01-01
A suite of computer codes was assembled to simulate the performance of an aerospike engine and to generate the engine input for the Program to Optimize Simulated Trajectories. First an engine simulator module was developed that predicts the aerospike engine performance for a given mixture ratio, power level, thrust vectoring level, and altitude. This module was then used to rapidly generate the aerospike engine performance tables for axial thrust, normal thrust, pitching moment, and specific thrust. Parametric engine geometry was defined for use with the engine simulator module. The parametric model was also integrated into the iSIGHTI multidisciplinary framework so that alternate designs could be determined. The computer codes were used to support in-house conceptual studies of reusable launch vehicle designs.
Parametric Model of an Aerospike Rocket Engine
NASA Technical Reports Server (NTRS)
Korte, J. J.
2000-01-01
A suite of computer codes was assembled to simulate the performance of an aerospike engine and to generate the engine input for the Program to Optimize Simulated Trajectories. First an engine simulator module was developed that predicts the aerospike engine performance for a given mixture ratio, power level, thrust vectoring level, and altitude. This module was then used to rapidly generate the aerospike engine performance tables for axial thrust, normal thrust, pitching moment, and specific thrust. Parametric engine geometry was defined for use with the engine simulator module. The parametric model was also integrated into the iSIGHT multidisciplinary framework so that alternate designs could be determined. The computer codes were used to support in-house conceptual studies of reusable launch vehicle designs.
Commissioning and Performance Analysis of WhisperGen Stirling Engine
NASA Astrophysics Data System (ADS)
Pradip, Prashant Kaliram
Stirling engine based cogeneration systems have potential to reduce energy consumption and greenhouse gas emission, due to their high cogeneration efficiency and emission control due to steady external combustion. To date, most studies on this unit have focused on performance based on both experimentation and computer models, and lack experimental data for diversified operating ranges. This thesis starts with the commissioning of a WhisperGen Stirling engine with components and instrumentation to evaluate power and thermal performance of the system. Next, a parametric study on primary engine variables, including air, diesel, and coolant flowrate and temperature were carried out to further understand their effect on engine power and efficiency. Then, this trend was validated with the thermodynamic model developed for the energy analysis of a Stirling cycle. Finally, the energy balance of the Stirling engine was compared without and with heat recovery from the engine block and the combustion chamber exhaust.
Fifteenth workshop on geothermal reservoir engineering: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.
Introducing Molecular Biology to Environmental Engineers through Development of a New Course.
ERIC Educational Resources Information Center
Oerther, Daniel B.
2002-01-01
Introduces a molecular biology course designed for environmental engineering majors using 16S ribosomal ribonucleic acid-targeted technology that allows students to identify and study microorganisms in bioreactor environments. (Contains 17 references.) (YDS)
NASA Technical Reports Server (NTRS)
Olsen, C. D.
1972-01-01
Planning documentation is presented covering the specific areas of project engineering and development, management, facilities, manufacturing, logistic support maintenance, and test and product assurance.
Engineering Large Animal Species to Model Human Diseases.
Rogers, Christopher S
2016-07-01
Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Mapping the landscape of climate engineering
Oldham, P.; Szerszynski, B.; Stilgoe, J.; Brown, C.; Eacott, B.; Yuille, A.
2014-01-01
In the absence of a governance framework for climate engineering technologies such as solar radiation management (SRM), the practices of scientific research and intellectual property acquisition can de facto shape the development of the field. It is therefore important to make visible emerging patterns of research and patenting, which we suggest can effectively be done using bibliometric methods. We explore the challenges in defining the boundary of climate engineering, and set out the research strategy taken in this study. A dataset of 825 scientific publications on climate engineering between 1971 and 2013 was identified, including 193 on SRM; these are analysed in terms of trends, institutions, authors and funders. For our patent dataset, we identified 143 first filings directly or indirectly related to climate engineering technologies—of which 28 were related to SRM technologies—linked to 910 family members. We analyse the main patterns discerned in patent trends, applicants and inventors. We compare our own findings with those of an earlier bibliometric study of climate engineering, and show how our method is consistent with the need for transparency and repeatability, and the need to adjust the method as the field develops. We conclude that bibliometric monitoring techniques can play an important role in the anticipatory governance of climate engineering. PMID:25404683
Affordable Development and Qualification Strategy for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Gerrish, Harold P., Jr.; Doughty, Glen E.; Bhattacharyya, Samit K.
2013-01-01
Nuclear Thermal Propulsion (NTP) is a concept which uses a nuclear reactor to heat a propellant to high temperatures without combustion and can achieve significantly greater specific impulse than chemical engines. NTP has been considered many times for human and cargo missions beyond low earth orbit. A lot of development and technical maturation of NTP components took place during the Rover/NERVA program of the 60's and early 70's. Other NTP programs and studies followed attempting to further mature the NTP concept and identify a champion customer willing to devote the funds and support the development schedule to a demonstration mission. Budgetary constraints require the use of an affordable development and qualification strategy that takes into account all the previous work performed on NTP to construct an existing database, and include lessons learned and past guidelines followed. Current guidelines and standards NASA uses for human rating chemical rocket engines is referenced. The long lead items for NTP development involve the fuel elements of the reactor and ground testing the engine system, subsystem, and components. Other considerations which greatly impact the development plans includes the National Space Policy, National Environmental Policy Act, Presidential Directive/National Security Council Memorandum #25 (Scientific or Technological Experiments with Possible Large-Scale Adverse Environmental Effects and Launch of Nuclear Systems into Space), and Safeguards and Security. Ground testing will utilize non-nuclear test capabilities to help down select components and subsystems before testing in a nuclear environment to save time and cost. Existing test facilities with minor modifications will be considered to the maximum extent practical. New facilities will be designed to meet minimum requirements. Engine and test facility requirements are based on the driving mission requirements with added factors of safety for better assurance and reliability. Emphasis will be placed on small engines, since the smaller the NTP engine, the easier it is to transport, assemble/disassemble, and filter the exhaust during tests. A new ground test concept using underground bore holes (modeled after the underground nuclear test program) to filter the NTP engine exhaust is being considered. The NTP engine system design, development, test, and evaluation plan includes many engine components and subsystems, which are very similar to those used in chemical engines, and can be developed in conjunction with them Other less mature NTP engine components and subsystems (e.g., reactor) will be thoroughly analyzed and tested to acceptable levels recommended by the referenced standards and guidelines. The affordable development strategy also considers a prototype flight test, as a final step in the development process. Preliminary development schedule estimates show that an aggressive development schedule (without much margin) will be required to be flight ready for a 2033 human mission to Mars.
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Friedlander, David; Kopasakis, George
2015-01-01
This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Friedlander, David; Kopasakis, George
2014-01-01
This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.
Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications.
Jayakumar, R; Ramachandran, Roshni; Divyarani, V V; Chennazhi, K P; Tamura, H; Nair, S V
2011-03-01
In this study, we prepared chitin-chitosan/nano TiO(2) composite scaffolds using lyophilization technique for bone tissue engineering. The prepared composite scaffold was characterized using SEM, XRD, FTIR and TGA. In addition, swelling, degradation and biomineralization capability of the composite scaffolds were evaluated. The developed composite scaffold showed controlled swelling and degradation when compared to the control scaffold. Cytocompatibility of the scaffold was assessed by MTT assay and cell attachment studies using osteoblast-like cells (MG-63), fibroblast cells (L929) and human mesenchymal stem cells (hMSCs). Results indicated no sign of toxicity and cells were found attached to the pore walls within the scaffolds. These results suggested that the developed composite scaffold possess the prerequisites for tissue engineering scaffolds and it can be used for tissue engineering applications. Copyright © 2010 Elsevier B.V. All rights reserved.
Design study: A 186 kW lightweight diesel aircraft engine
NASA Technical Reports Server (NTRS)
Brouwers, A. P.
1980-01-01
The design of an aircraft engine capable of developing 186 kW shaft power at a 7620 m altitude is described. The 186 kW design takes into account expected new developments in aircraft designs resulting in a reassessment of the power requirements at the cruise mode operation. Based on the results of this analysis a three phase technology development program is projected resulting in production dates of 1985, 1992, and 2000.
Advanced Propulsion System Studies for General Aviation Aircraft
NASA Technical Reports Server (NTRS)
Eisenberg, Joseph D. (Technical Monitor); German, Jon
2003-01-01
This final report addresses the following topics: Market Impact Analysis (1) assessment of general aviation, including commuter/regional, aircraft market impact due to incorporation of advanced technology propulsion system on acquisition and operating costs, job creation and/or manpower demand, and future fleet size; (2) selecting an aircraft and engine for the study by focusing on the next generation 19-passenger commuter and the Williams International FJ44 turbofan engine growth. Propulsion System Analysis Conducted mission analysis studies and engine cycle analysis to define a new commuter mission and required engine performance, define acquisition and operating costs and, select engine configuration and initiated preliminary design for hardware modifications required. Propulsion System Benefits (1) assessed and defined engine emissions improvements, (2) assessed and defined noise reduction potential and, (3) conducted a cost analysis impact study. Review of Relevant NASA Programs Conducted literature searches using NERAC and NASA RECON services for related technology in the emissions and acoustics area. Preliminary Technology Development Plans Defined plan to incorporate technology improvements for an FJ44-2 growth engine in performance, emissions, and noise suppression.
Seifarth, Volker; Gossmann, Matthias; Janke, Heinz Peter; Grosse, Joachim O; Becker, Christoph; Heschel, Ingo; Artmann, Gerhard M; Temiz Artmann, Aysegül
2015-01-01
Regenerative medicine, tissue engineering and biomedical research give hope to many patients who need bio-implants. Tissue engineering applications have already been developed based on bioreactors. Physiological ureter implants, however, do not still function sufficiently, as they represent tubular hollow structures with very specific cellular structures and alignments consisting of several cell types. The aim of this study was to a develop a new bioreactor system based on seamless, collagenous, tubular OPTIMAIX 3D prototype sponge as scaffold material for ex-vivo culturing of a tissue engineered ureter replacement for future urological applications. Particular emphasis was given to a great extent to mimic the physiological environment similar to the in vivo situation of a ureter. NIH-3T3 fibroblasts, C2C12, Urotsa and primary genitourinary tract cells were applied as co-cultures on the scaffold and the penetration of cells into the collagenous material was followed. By the end of this study, the bioreactor was functioning, physiological parameter as temperature and pH and the newly developed BIOREACTOR system is applicable to tubular scaffold materials with different lengths and diameters. The automatized incubation system worked reliably. The tubular OPTIMAIX 3D sponge was a suitable scaffold material for tissue engineering purposes and co-cultivation procedures. © 2015 S. Karger AG, Basel.
Sustainable Development in Engineering Education: A Pedagogical Approach
ERIC Educational Resources Information Center
Ahrens, A.; Zascerinska, J.
2012-01-01
Engineering education is facing a challenge of the development of student engineers' social responsibility in the context of sustainable development. The aim of the research is to analyze efficiency of engineering curriculum in the context of sustainable development underpinning elaboration of pedagogical guidelines on the development of students'…
Creating meaningful learning experiences: Understanding students' perspectives of engineering design
NASA Astrophysics Data System (ADS)
Aleong, Richard James Chung Mun
There is a societal need for design education to prepare holistic engineers with the knowledge, skills, and attitudes to innovate and compete globally. Design skills are paramount to the espoused values of higher education, as institutions of higher learning strive to develop in students the cognitive abilities of critical thinking, problem solving, and creativity. To meet these interests from industry and academia, it is important to advance the teaching and learning of engineering design. This research aims to understand how engineering students learn and think about design, as a way for engineering educators to optimize instructional practice and curriculum development. Qualitative research methodology was used to investigate the meaning that engineering students' ascribe to engineering design. The recruitment of participants and corresponding collection of data occurred in two phases using two different data collection techniques. The first phase involved the distribution of a one-time online questionnaire to all first year, third year, and fourth year undergraduate engineering students at three Canadian Universities. After the questionnaire, students were asked if they would be willing to participate in the second phase of data collection consisting of a personal interview. A total of ten students participated in interviews. Qualitative data analysis procedures were conducted on students' responses from the questionnaire and interviews. The data analysis process consisted of two phases: a descriptive phase to code and categorize the data, followed by an interpretative phase to generate further meaning and relationships. The research findings present a conceptual understanding of students' descriptions about engineering design, structured within two educational orientations: a learning studies orientation and a curriculum studies orientation. The learning studies orientation captured three themes of students' understanding of engineering design: awareness, relevance, and transfer. With this framework of student learning, engineering educators can enhance learning experiences by engaging all three levels of students' understanding. The curriculum studies orientation applied the three holistic elements of curriculum---subject matter, society, and the individual---to conceptualize design considerations for engineering curriculum and teaching practice. This research supports the characterization of students' learning experiences to help educators and students optimize their teaching and learning of design education.
Distributed Engine Control Empirical/Analytical Verification Tools
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan; Hettler, Eric; Yedavalli, Rama; Mitra, Sayan
2013-01-01
NASA's vision for an intelligent engine will be realized with the development of a truly distributed control system featuring highly reliable, modular, and dependable components capable of both surviving the harsh engine operating environment and decentralized functionality. A set of control system verification tools was developed and applied to a C-MAPSS40K engine model, and metrics were established to assess the stability and performance of these control systems on the same platform. A software tool was developed that allows designers to assemble easily a distributed control system in software and immediately assess the overall impacts of the system on the target (simulated) platform, allowing control system designers to converge rapidly on acceptable architectures with consideration to all required hardware elements. The software developed in this program will be installed on a distributed hardware-in-the-loop (DHIL) simulation tool to assist NASA and the Distributed Engine Control Working Group (DECWG) in integrating DCS (distributed engine control systems) components onto existing and next-generation engines.The distributed engine control simulator blockset for MATLAB/Simulink and hardware simulator provides the capability to simulate virtual subcomponents, as well as swap actual subcomponents for hardware-in-the-loop (HIL) analysis. Subcomponents can be the communication network, smart sensor or actuator nodes, or a centralized control system. The distributed engine control blockset for MATLAB/Simulink is a software development tool. The software includes an engine simulation, a communication network simulation, control algorithms, and analysis algorithms set up in a modular environment for rapid simulation of different network architectures; the hardware consists of an embedded device running parts of the CMAPSS engine simulator and controlled through Simulink. The distributed engine control simulation, evaluation, and analysis technology provides unique capabilities to study the effects of a given change to the control system in the context of the distributed paradigm. The simulation tool can support treatment of all components within the control system, both virtual and real; these include communication data network, smart sensor and actuator nodes, centralized control system (FADEC full authority digital engine control), and the aircraft engine itself. The DECsim tool can allow simulation-based prototyping of control laws, control architectures, and decentralization strategies before hardware is integrated into the system. With the configuration specified, the simulator allows a variety of key factors to be systematically assessed. Such factors include control system performance, reliability, weight, and bandwidth utilization.
A study of a direct-injection stratified-charge rotary engine for motor vehicle application
NASA Astrophysics Data System (ADS)
Kagawa, Ryoji; Okazaki, Syunki; Somyo, Nobuhiro; Akagi, Yuji
1993-03-01
A study of a direct-injection stratified-charge system (DISC), as applied to a rotary engine (RE) for motor vehicle usage, was undertaken. The goals of this study were improved fuel consumption and reduced exhaust emissions. These goals were thought feasible due to the high thermal efficiency associated with the DISC-RE. This was the first application of this technology to a motor vehicle engine. Stable ignition and ideal stratification systems were developed by means of numerical calculations, air-fuel mixture measurements, and actual engine tests. The use of DISC resulted in significantly improved fuel consumption and reduced exhaust emissions. The use of an exhaust gas recirculating system was studied and found to be beneficial in NOx reduction.
Fluid design studies of integrated modular engine system
NASA Technical Reports Server (NTRS)
Frankenfield, Bruce; Carek, Jerry
1993-01-01
A study was performed to develop a fluid system design and show the feasibility of constructing an integrated modular engine (IME) configuration, using an expander cycle engine. The primary design goal of the IME configuration was to improve the propulsion system reliability. The IME fluid system was designed as a single fault tolerant system, while minimizing the required fluid components. This study addresses the design of the high pressure manifolds, turbopumps and thrust chambers for the IME configuration. A physical layout drawing was made, which located each of the fluid system components, manifolds and thrust chambers. Finally, a comparison was made between the fluid system designs of an IME system and a non-network (clustered) engine system.
Liquid Rocket Booster Study. Volume 2, Book 1
NASA Technical Reports Server (NTRS)
1989-01-01
The recommended Liquid Rocket Booster (LRB) concept is shown which uses a common main engine with the Advanced Launch System (ALS) which burns LO2 and LH2. The central rationale is based on the belief that the U.S. can only afford one big new rocket engine development in the 1990's. A LO2/LH2 engine in the half million pound thrust class could satisfy STS LRB, ALS, and Shuttle C (instead of SSMEs). Development costs and higher production rates can be shared by NASA and USAF. If the ALS program does not occur, the LO2/RP-1 propellants would produce slight lower costs for and STS LRB. When the planned Booster Engine portion of the Civil Space Transportation Initiatives has provided data on large pressure fed LO2/RP-1 engines, then the choice should be reevaluated.
Enabling performance skills: Assessment in engineering education
NASA Astrophysics Data System (ADS)
Ferrone, Jenny Kristina
Current reform in engineering education is part of a national trend emphasizing student learning as well as accountability in instruction. Assessing student performance to demonstrate accountability has become a necessity in academia. In newly adopted criterion proposed by the Accreditation Board for Engineering and Technology (ABET), undergraduates are expected to demonstrate proficiency in outcomes considered essential for graduating engineers. The case study was designed as a formative evaluation of freshman engineering students to assess the perceived effectiveness of performance skills in a design laboratory environment. The mixed methodology used both quantitative and qualitative approaches to assess students' performance skills and congruency among the respondents, based on individual, team, and faculty perceptions of team effectiveness in three ABET areas: Communications Skills. Design Skills, and Teamwork. The findings of the research were used to address future use of the assessment tool and process. The results of the study found statistically significant differences in perceptions of Teamwork Skills (p < .05). When groups composed of students and professors were compared, professors were less likely to perceive student's teaming skills as effective. The study indicated the need to: (1) improve non-technical performance skills, such as teamwork, among freshman engineering students; (2) incorporate feedback into the learning process; (3) strengthen the assessment process with a follow-up plan that specifically targets performance skill deficiencies, and (4) integrate the assessment instrument and practice with ongoing curriculum development. The findings generated by this study provides engineering departments engaged in assessment activity, opportunity to reflect, refine, and develop their programs as it continues. It also extends research on ABET competencies of engineering students in an under-investigated topic of factors correlated with team processes, behavior, and student learning.
Chung, Christopher A; Alfred, Michael
2009-06-01
Societal pressures, accreditation organizations, and licensing agencies are emphasizing the importance of ethics in the engineering curriculum. Traditionally, this subject has been taught using dogma, heuristics, and case study approaches. Most recently a number of organizations have sought to increase the utility of these approaches by utilizing the Internet. Resources from these organizations include on-line courses and tests, videos, and DVDs. While these individual approaches provide a foundation on which to base engineering ethics, they may be limited in developing a student's ability to identify, analyze, and respond to engineering ethics situations outside of the classroom environment. More effective approaches utilize a combination of these types of approaches. This paper describes the design and development of an internet based interactive Simulator for Engineering Ethics Education. The simulator places students in first person perspective scenarios involving different types of ethical situations. Students must gather data, assess the situation, and make decisions. This requires students to develop their own ability to identify and respond to ethical engineering situations. A limited comparison between the internet based interactive simulator and conventional internet web based instruction indicates a statistically significant improvement of 32% in instructional effectiveness. The simulator is currently being used at the University of Houston to help fulfill ABET requirements.
ERIC Educational Resources Information Center
Kreinberg, Nancy
The purpose of this publication is to stimulate interest in science and engineering careers in young women. Questionnaires were mailed to 450 women scientists and engineers in the San Francisco Bay Area, asking their assistance in developing a booklet to encourage young women toward scientific and mathematical studies. One hundred sixty women…
ERIC Educational Resources Information Center
Garcia, Oscar N.; Varanasi, Murali R.; Acevedo, Miguel F.; Guturu, Parthasarathy
2011-01-01
We analyze and study the beginning of a new Electrical Engineering Department, supported by an NSF Departmental Level Reform award, within a new College of Engineering in the 21st Century and also describe the academic approach and influences of an innovative cognitive-based approach to curriculum development. In addition, the approach taken…
ERIC Educational Resources Information Center
BENDER, RALPH E.; HALTERMAN, JERRY J.
THIS STUDY WAS DESIGNED TO DEVELOP CURRICULUMS NEEDED IN TRAINING PROGRAMS FOR AGRICULTURAL ENGINEERING TECHNICIANS IN OHIO. A QUESTIONNAIRE TO INVENTORY THE LABOR FORCE WAS ADMINISTERED TO INDIVIDUALS, FIRMS, BUSINESSES, AND AGENCIES EMPLOYING PERSONS IN AREAS REQUIRING AGRICULTURAL ENGINEERING AND FARM MECHANICS. ANOTHER TO COLLECT INFORMATION…
ERIC Educational Resources Information Center
Emilsson, U. Melin; Lilje, B.
2008-01-01
The aim of this paper is to discuss whether "social competence" is necessary for engineers to contribute to sustainable development and if it is, how to teach communication, group-processes and leadership in technical environments like engineering education programmes. The article reflects on a pedagogical project carried out in the…
ERIC Educational Resources Information Center
Case, Jennifer M.; Fraser, Duncan M.; Kumar, Anil; Itika, Ambrose
2016-01-01
Curriculum reform is a key topic in the engineering education literature, but much of this discussion proceeds with little engagement with the impact of the local context in which the programme resides. This article thus seeks to understand the influence of local contextual dynamics on curriculum reform in engineering education. The empirical…
ERIC Educational Resources Information Center
Eckel, Edward J.
2009-01-01
Can one glimpse the development of emerging scholars in the work of engineering graduate students? To answer this question, the author studied the citation patterns in 96 Master's theses and 24 Ph.D. dissertations completed at Western Michigan University's College of Engineering and Applied Sciences between 2002 and 2006. The hypothesis of this…
ERIC Educational Resources Information Center
Voight, Keith L.
The primary purpose of the study was to develop a supply/demand ratio for nuclear degree scientists and engineers from July 1969 through 1973. The need by private industry and electric utilities for scientists and engineers with degrees in disciplines other than nuclear science or engineering, as well as for technicians, nuclear reactor operators,…
Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight
NASA Technical Reports Server (NTRS)
Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.
1997-01-01
A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from takeoff to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions.
NASA Astrophysics Data System (ADS)
White, Susan M.
Women engineers remain underrepresented in employment in engineering fields in the United States. Feminist theory views this gender disparity beyond equity in numbers for women engineers and looks at structural issues of women's access, opportunities, and quality of experience in the workplace. Research on women's success and persistence in engineering education is diverse; however, there are few studies that focus on the early years of women's careers in engineering and less using a phenomenological research design. Experiences of women engineers who have completed one to five years of professional engineering employment are presented using a phenomenological research design. Research questions explored the individual and composite experiences for the co-researchers of the study as well as challenges and advantages of the phenomenon of having completed one to five years of professional engineering employment. Themes that emanated from the data were a feeling that engineering is a positive profession, liking math and science from an early age, having experiences of attending math and science camps or learning and practicing engineering interests with their fathers for some co-researchers. Other themes included a feeling of being different as a woman in the engineering workplace, taking advantage of opportunities for training, education, and advancement to further their careers, and the role of informal and formal mentoring in developing workplace networks and engineering expertise. Co-researchers negotiated issues of management quality and support, experiences of gender discrimination in the workplace, and having to make decisions balancing their careers and family responsibilities. Finally, the women engineers for this research study expressed intentions to persist in their careers while pursuing expertise and experience in their individual engineering fields.
Federal Funding of Engineering Research and Development, 1980-1984.
ERIC Educational Resources Information Center
American Society of Mechanical Engineers, Washington, DC.
Data on the sources, amounts, and trends of federal funding for engineering research and development (R&D) are presented for 1980-1984. Narrative highlights are provided for: the total federal funding obligations for engineering R&D, mechanical engineering, astronautical engineering, aeronautical engineering, chemical engineering, civil…
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Rinehart, Aidan W.; Jones, Scott M.
2017-01-01
Aircraft flying in regions of high ice crystal concentrations are susceptible to the buildup of ice within the compression system of their gas turbine engines. This ice buildup can restrict engine airflow and cause an uncommanded loss of thrust, also known as engine rollback, which poses a potential safety hazard. The aviation community is conducting research to understand this phenomena, and to identify avoidance and mitigation strategies to address the concern. To support this research, a dynamic turbofan engine model has been created to enable the development and evaluation of engine icing detection and control-based mitigation strategies. This model captures the dynamic engine response due to high ice water ingestion and the buildup of ice blockage in the engines low pressure compressor. It includes a fuel control system allowing engine closed-loop control effects during engine icing events to be emulated. The model also includes bleed air valve and horsepower extraction actuators that, when modulated, change overall engine operating performance. This system-level model has been developed and compared against test data acquired from an aircraft turbofan engine undergoing engine icing studies in an altitude test facility and also against outputs from the manufacturers customer deck. This paper will describe the model and show results of its dynamic response under open-loop and closed-loop control operating scenarios in the presence of ice blockage buildup compared against engine test cell data. Planned follow-on use of the model for the development and evaluation of icing detection and control-based mitigation strategies will also be discussed. The intent is to combine the model and control mitigation logic with an engine icing risk calculation tool capable of predicting the risk of engine icing based on current operating conditions. Upon detection of an operating region of risk for engine icing events, the control mitigation logic will seek to change the engines operating point to a region of lower risk through the modulation of available control actuators while maintaining the desired engine thrust output. Follow-on work will assess the feasibility and effectiveness of such control-based mitigation strategies.
Aerothermo-Structural Analysis of Low Cost Composite Nozzle/Inlet Components
NASA Technical Reports Server (NTRS)
Shivakumar, Kuwigai; Challa, Preeli; Sree, Dave; Reddy, D.
1999-01-01
This research is a cooperative effort among the Turbomachinery and Propulsion Division of NASA Glenn, CCMR of NC A&T State University, and the Tuskegee University. The NC A&T is the lead center and Tuskegee University is the participating institution. Objectives of the research were to develop an integrated aerodynamic, thermal and structural analysis code for design of aircraft engine components, such as, nozzles and inlets made of textile composites; conduct design studies on typical inlets for hypersonic transportation vehicles and setup standards test examples and finally manufacture a scaled down composite inlet. These objectives are accomplished through the following seven tasks: (1) identify the relevant public domain codes for all three types of analysis; (2) evaluate the codes for the accuracy of results and computational efficiency; (3) develop aero-thermal and thermal structural mapping algorithms; (4) integrate all the codes into one single code; (5) write a graphical user interface to improve the user friendliness of the code; (6) conduct test studies for rocket based combined-cycle engine inlet; and finally (7) fabricate a demonstration inlet model using textile preform composites. Tasks one, two and six are being pursued. Selected and evaluated NPARC for flow field analysis, CSTEM for in-depth thermal analysis of inlets and nozzles and FRAC3D for stress analysis. These codes have been independently verified for accuracy and performance. In addition, graphical user interface based on micromechanics analysis for laminated as well as textile composites was developed. Demonstration of this code will be made at the conference. A rocket based combined cycle engine was selected for test studies. Flow field analysis of various inlet geometries were studied. Integration of codes is being continued. The codes developed are being applied to a candidate example of trailblazer engine proposed for space transportation. A successful development of the code will provide a simpler, faster and user-friendly tool for conducting design studies of aircraft and spacecraft engines, applicable in high speed civil transport and space missions.
Retaining minorities in engineering: Assessment of a program prototype
NASA Astrophysics Data System (ADS)
Good, Jennifer Marie (Phillips)
Program assessment is an essential part of healthy program development. Assessment should include multiple considerations, dimensions, and outcomes that match the program's objectives. As a newly formed retention program, the Auburn University Minority Engineering Program, designed to help pre-engineering minority students make the transition into their freshman year of university studies, incorporated evaluation and assessment into all three components of the program (the interactive learning laboratory, critical-thinking workshops, and Sunday-evening tutorials) from the program's inception. If students successfully adapted to the university environment and the demands of the pre-engineering course of study, then retention of minority students in the College of Engineering should improve. Data were gathered on the students involved in the various program components. Students who entered the Minority Engineering Program were pre- and posttested on three standardized subtests (critical thinking, mathematics, and science reasoning) of the Collegiate Assessment of Academic Proficiency. The first-quarter grade-point averages of the students were also gathered to compare their grades to freshman students in previous quarters within the College of Engineering. Qualitative data were also gathered on this same group of students. An analysis of the data revealed that student achievement is affected by involvement in the Minority Engineering Program. Specifically, the first quarter grade point averages of students involved in the program exceeded those of their peers in earlier years of study prior to the program's existence. In addition, mathematics and science reasoning scores on standardized tests increased pre- to postintervention. Comments collected in journals and files also demonstrated use of critical-thinking and problem-solving skills employed by the students. Recommendations for alterations of the program were made based on the outcome of the program evaluation. Further suggestions for research in minority engineering program development and evaluation were also discussed.
NASA Technical Reports Server (NTRS)
Richard, Jacques C.
1995-01-01
This paper presents a dynamic model of an internal combustion engine coupled to a variable pitch propeller. The low-order, nonlinear time-dependent model is useful for simulating the propulsion system of general aviation single-engine light aircraft. This model is suitable for investigating engine diagnostics and monitoring and for control design and development. Furthermore, the model may be extended to provide a tool for the study of engine emissions, fuel economy, component effects, alternative fuels, alternative engine cycles, flight simulators, sensors, and actuators. Results show that the model provides a reasonable representation of the propulsion system dynamics from zero to 10 Hertz.
A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control
NASA Astrophysics Data System (ADS)
Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi
A flyable FADEC system engineering model incorporating Integrated Flight and Propulsion Control (IFPC) concept is developed for a highly maneuverable aircraft and a fighter-class engine. An overview of the FADEC system and functional assignments for its components such as the Engine Control Unit (ECU) and the Integrated Control Unit (ICU) are described. Overall system reliability analysis, convex analysis and multivariable controller design for the engine, fault detection/redundancy management, and response characteristics of a fuel system are addressed. The engine control performance of the FADEC is demonstrated by hardware-in-the-loop simulation for fast acceleration and thrust transient characteristics.
Recent Developments: PKI Square Dish for the Soleras Project
NASA Technical Reports Server (NTRS)
Rogers, W. E.
1984-01-01
The Square Dish solar collectors are subjected to rigorous design attention regarding corrosion at the site, and certification of the collector structure. The microprocessor controls and tracking mechanisms are improved in the areas of fail safe operations, durability, and low parasitic power requirements. Prototype testing demonstrates performance efficiency of approximately 72% at 730 F outlet temperature. Studies are conducted that include developing formal engineering design studies, developing formal engineering design drawing and fabrication details, establishing subcontracts for fabrication of major components, and developing a rigorous quality control system. The improved design is more cost effective to product and the extensive manuals developed for assembly and operation/maintenance result in faster field assembly and ease of operation.
Recent developments: PKI square dish for the Soleras Project
NASA Astrophysics Data System (ADS)
Rogers, W. E.
1984-03-01
The Square Dish solar collectors are subjected to rigorous design attention regarding corrosion at the site, and certification of the collector structure. The microprocessor controls and tracking mechanisms are improved in the areas of fail safe operations, durability, and low parasitic power requirements. Prototype testing demonstrates performance efficiency of approximately 72% at 730 F outlet temperature. Studies are conducted that include developing formal engineering design studies, developing formal engineering design drawing and fabrication details, establishing subcontracts for fabrication of major components, and developing a rigorous quality control system. The improved design is more cost effective to product and the extensive manuals developed for assembly and operation/maintenance result in faster field assembly and ease of operation.
Horn, H; Holzemer, W L
1991-11-01
This study examined the demographic characteristics, vocational personality, and sex-role orientation of Israeli women studying nursing compared to women studying education and engineering. The convenience sample was 176 university students. The instrument included a demographic inventory, Holland's Self-Directed Search (SDS) questionnaire, and the Sex-Role Orientation Attitude questionnaire. Nursing and education students had Holland's "social" personality types and engineering students were more "realistic" or "investigative". Nursing and engineering students were significantly more feminist in their orientation than education majors. Nursing students were nontraditional women who had traditional family backgrounds, yet were nontraditional in their feminist orientation. With nursing's move into colleges and universities, the need for academically qualified applicants has intensified. Developing a better understanding of the unique nature of nursing and nursing students is a challenge.
NASA Astrophysics Data System (ADS)
Jordan, Kari L.
The percentage of bachelor's degrees in STEM awarded to women and underrepresented minority students needs to increase dramatically to reach parity with their majority counterparts. While three key underrepresented minority (URM) groups, African Americans, Hispanic/Latinos, and Native Americans constitute some 30 percent of the overall undergraduate student population in the United States, the share of engineering degrees earned by members of these groups declines as degree level increases. Underrepresented minority students accounted for about 12% of engineering bachelor's degrees awarded in 2009, 7% of master's degrees and 3% of doctorates (NSF Science Resource Statistics, 2009). The percent in engineering has been steadily decreasing, while overall participation in higher education among these groups has increased considerably. Keeping those thoughts in mind it is important to examine the historical theories and frameworks that will help us not only understand why underrepresented minority students pursue and persist in STEM majors in low numbers, but to also develop interventions to improve the alarming statistics that hamper engineering diversity. As indicated by our past two U.S. Presidents, there has been an increased discussion on the national and state level regarding the number of students entering engineering disciplines in general and underrepresented minority students in particular. Something happens between a student's freshman year and the point they decide to either switch their major or drop out of school altogether. Some researchers attribute the high dropout rate of underrepresented minority students in engineering programs to low engineering self-efficacy (e.g. Jordan et al., 2011). A student's engineering self-efficacy is his/her belief that he/she can successfully navigate the engineering curriculum and eventually become a practicing engineer. A student's engineering self-efficacy is formed by mastery experiences, vicarious experiences, his/her physiological state, and social persuasions, such as student-professor interaction. Increasing the awareness of a student's engineering self-efficacy could potentially improve sense of belonging and persistence for underrepresented minority students in engineering. The hypothesis of this study is that an intervention during the first semester of an incoming freshman's tenure can help improve their engineering self-efficacy, sense of belonging, and overall retention in the engineering program. This study explored the following research questions: 1. What are the differences in engineering self-efficacy, and sense of belonging for first-year underrepresented minority engineering students compared to majority students? 2. What factors or variables should be considered and/or addressed in designing an intervention to increase engineering self-efficacy and sense of belonging amongst first-year underrepresented minority engineering students? 3. Can a small intervention during the beginning of the first semester improve a student's sense of belonging, engineering self-efficacy, and student-professor interaction? Using the race, social fit, and achievement study by Walton and Cohen as a model, the author developed an intervention consisting of short compelling videos of upperclass engineering students from diverse backgrounds. In these videos, students discussed their pursuit of the engineering degree, what obstacles they faced in terms of sense of belonging and coping efficacy, and how they overcame those obstacles. Treatment groups of students watched the videos during the first few weeks of the semester, and pre and post tests were administered to measure mean gains in the student's engineering self-efficacy, sense of belonging, and other variables. The results showed that underrepresented minority students had a lower sense of belonging than whites. The intervention used in the study contributed to mean gain increases in participants' engineering self-efficacy, which could ultimately improve persistence. A single intervention did not show a significant increase in students' sense of belonging; more work needs to be done to develop an effective intervention. The intervention is easily adaptable with insignificant cost, making it attractive for Minority Engineering Program (MEP) and other success program whose aim is to increase students' engineering self-efficacy.
Yan, Zhao-Da; Zhou, Chong-Guang; Su, Shi-Chuan; Liu, Zhen-Tao; Wang, Xi-Zhen
2003-01-01
In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect of the operating parameters on combustion rate was also studied by means of this model. The study showed that the predicted results were good agreement with the experimental data. It was proved that the developed combustion rate model could be used to successfully predict and optimize the combustion process of dual fuel engine.
Study of an engine flow diverter system for a large scale ejector powered aircraft model
NASA Technical Reports Server (NTRS)
Springer, R. J.; Langley, B.; Plant, T.; Hunter, L.; Brock, O.
1981-01-01
Requirements were established for a conceptual design study to analyze and design an engine flow diverter system and to include accommodations for an ejector system in an existing 3/4 scale fighter model equipped with YJ-79 engines. Model constraints were identified and cost-effective limited modification was proposed to accept the ejectors, ducting and flow diverter valves. Complete system performance was calculated and a versatile computer program capable of analyzing any ejector system was developed.
NASA Technical Reports Server (NTRS)
1980-01-01
Detailed computer models of the engine were developed to predict both the steady state and transient operation of the engine system. Mechanical design layout drawings were prepared for the following components: thrust chamber and nozzle; extendible nozzle actuating mechanism and seal; LOX turbopump and boost pump; hydrogen turbopump and boost pump; and the propellant control valves. The necessary heat transfer, stress, fluid flow, dynamic, and performance analyses were performed to support the mechanical design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gastaldo, R.A.
Titles and authors of Ph.D dissertations and M.S. theses are listed as completed or near completion in the following areas of study related to coal: botany (10), chemistry (10), community development (1), economics (1), electrical science and systems engineering (1), forestry (7), geography (2), geology (23), health education (2), mathematics (1), zoology (24), mining engineering (9), plant and soil science (4), political science (2), and thermal and environmental engineering (3).
NASA Technical Reports Server (NTRS)
Lieber, Lysbeth; Golub, Robert (Technical Monitor)
2000-01-01
This Final Report has been prepared by AlliedSignal Engines and Systems, Phoenix, Arizona, documenting work performed during the period May 1997 through June 1999, under the Small Engines Technology Program, Contract No. NAS3-27483, Task Order 13, ANOPP Noise Prediction for Small Engines. The report specifically covers the work performed under Subtasks 4, 5 and 6. Subtask 4 describes the application of a semi-empirical procedure for jet noise prediction, subtask 5 describes the development of a procedure to predict the effects of wing shielding, and subtask 6 describes the results of system studies of the benefits of the new noise technology on business and regional aircraft.
77 FR 14462 - Research, Engineering and Development Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development....S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development.... Name: Research, Engineering & Development Advisory Committee. Time and Date: April 18, 2012--9:30 a.m...
75 FR 48411 - Research, Engineering and Development Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-10
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development.... 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development (R, E&D) Advisory Committee. Name: Research, Engineering & Development Advisory Committee. Time and Date: September...
76 FR 44648 - Research, Engineering and Development Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-26
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development....S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development.... Name: Research, Engineering & Development Advisory Committee. Time and Date: September 21, 2011--9 a.m...
78 FR 16357 - Research, Engineering and Development Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-14
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development... hereby given of a meeting of the FAA Research, Engineering and Development (R,E&D) Advisory Committee. Name: Research, Engineering & Development Advisory Committee. Time and Date: April 24--8:30 a.m. to 4...
Multimedia: Developing Creativity and Innovation in Engineering, Science,
Find ScienceCinema Search Results Multimedia: Developing Creativity and Innovation in Engineering , Science, and Medicine Citation Details Title: Developing Creativity and Innovation in Engineering, Science , and Medicine Title: Developing Creativity and Innovation in Engineering, Science, and Medicine Authors
Empathy among students in engineering programmes
NASA Astrophysics Data System (ADS)
Rasoal, Chato; Danielsson, Henrik; Jungert, Tomas
2012-10-01
Engineers face challenges when they are to manage project groups and be leaders for organisations because such positions demand skills in social competence and empathy. Previous studies have shown that engineers have low degrees of social competence skills. In this study, the level of empathy as measured by the four subscales of the Interpersonal Reactivity Index, perspective taking, fantasy, empathic distress and empathic concern, among engineering students was compared to students in health care profession programmes. Participants were undergraduate students at Linköping University, 365 students from four different health care profession programmes and 115 students from two different engineering programmes. When the empathy measures were corrected for effects of sex, engineering students from one of the programmes had lower empathy than psychology and social worker students on the fantasy and perspective-taking subscales. These results raise questions regarding opportunities for engineering students to develop their empathic abilities. It is important that engineering students acquire both theoretical and practical knowledge and skills regarding empathy.
Investigation into the impact of privatizing civil engineering operations in Louisiana DOTD.
DOT National Transportation Integrated Search
2013-06-01
The purpose of this study is to investigate the impact of privatizing all civil engineering operations in : the Louisiana Department of Transportation and Development (DOTD). It was investigated by : conducting a national and international literature...
Software technology insertion: A study of success factors
NASA Technical Reports Server (NTRS)
Lydon, Tom
1990-01-01
Managing software development in large organizations has become increasingly difficult due to increasing technical complexity, stricter government standards, a shortage of experienced software engineers, competitive pressure for improved productivity and quality, the need to co-develop hardware and software together, and the rapid changes in both hardware and software technology. The 'software factory' approach to software development minimizes risks while maximizing productivity and quality through standardization, automation, and training. However, in practice, this approach is relatively inflexible when adopting new software technologies. The methods that a large multi-project software engineering organization can use to increase the likelihood of successful software technology insertion (STI), especially in a standardized engineering environment, are described.
Automated inspection of turbine blades: Challenges and opportunities
NASA Technical Reports Server (NTRS)
Mehta, Manish; Marron, Joseph C.; Sampson, Robert E.; Peace, George M.
1994-01-01
Current inspection methods for complex shapes and contours exemplified by aircraft engine turbine blades are expensive, time-consuming and labor intensive. The logistics support of new manufacturing paradigms such as integrated product-process development (IPPD) for current and future engine technology development necessitates high speed, automated inspection of forged and cast jet engine blades, combined with a capability of retaining and retrieving metrology data for process improvements upstream (designer-level) and downstream (end-user facilities) at commercial and military installations. The paper presents the opportunities emerging from a feasibility study conducted using 3-D holographic laser radar in blade inspection. Requisite developments in computing technologies for systems integration of blade inspection in production are also discussed.
Engineering Students' Experiences of Interactive Teaching in Calculus
ERIC Educational Resources Information Center
Weurlander, Maria; Cronhjort, Mikael; Filipsson, Lars
2017-01-01
This study reports on an educational development initiative where peer instruction was used instead of traditional lectures in a calculus course for first-year engineering students. The aim of the study was to explore students' experiences of this method. Data were collected by means of an open-ended questionnaire on two occasions: early and late…
Some Specifications for a Computer-Oriented First Course in Electrical Engineering.
ERIC Educational Resources Information Center
Commission on Engineering Education, Washington, DC.
Reported are specifications for a computer-oriented first course in electrical engineering giving new direction to the development of texts and alternative courses of study. Guidelines for choice of topics, a statement of fundamental concepts, pitfalls to avoid, and some sample course outlines are given. The study of circuits through computer…
Elementary Educators' Perceptions of Design, Engineering, and Technology: An Analysis by Ethnicity
ERIC Educational Resources Information Center
Mendoza Diaz, Noemi V.; Cox, Monica F.; Adams, Stephanie G.
2013-01-01
This mixed-methods pilot study extends researchers' understandings about elementary teachers' (K-6) perceptions of design, engineering and technology. In the first phase of the study, a reliable and valid survey was given to thirty-five participants in a teacher professional development academy sponsored by the Institute for P-12 Engineering…
ERIC Educational Resources Information Center
Luster-Teasley, Stephanie; Hargrove-Leak, Sirena; Gibson, Willietta; Leak, Roland
2017-01-01
This educational research seeks to develop novel laboratory modules by using Case Studies in the Science Teaching method to introduce sustainability and environmental engineering laboratory concepts to 21st century learners. The increased interest in "going green" has led to a surge in the number of engineering students studying…
ERIC Educational Resources Information Center
Lai, Polly K.; Portolese, Alisha; Jacobson, Michael J.
2017-01-01
This paper presents a study that applied both "productive failure" (PF) and "authentic learning" instructional approaches in online learning activities for early-career process engineers' professional development. This study compares participants learning with either a PF (low-to-high [LH]) or a more traditional (high-to-low)…
NASA Astrophysics Data System (ADS)
Garvin, Kelley A.
Technological advancements in the field of tissue engineering could save the lives of thousands of organ transplant patients who die each year while waiting for donor organs. Currently, two of the primary challenges preventing tissue engineers from developing functional replacement tissues and organs are the need to recreate complex cell and extracellular microenvironments and to vascularize the tissue to maintain cell viability and function. Ultrasound is a form of mechanical energy that can noninvasively and nondestructively interact with tissues at the cell and protein level. In this thesis, novel ultrasound-based technologies were developed for the spatial patterning of cells and extracellular matrix proteins and the vascularization of three-dimensional engineered tissue constructs. Acoustic radiation forces associated with ultrasound standing wave fields were utilized to noninvasively control the spatial organization of cells and cell-bound extracellular matrix proteins within collagen-based engineered tissue. Additionally, ultrasound induced thermal mechanisms were exploited to site-specifically pattern various extracellular matrix collagen microstructures within a single engineered tissue construct. Finally, ultrasound standing wave field technology was used to promote the rapid and extensive vascularization of three-dimensional tissue constructs. As such, the ultrasound technologies developed in these studies have the potential to provide the field of tissue engineering with novel strategies to spatially pattern cells and extracellular matrix components and to vascularize engineered tissue, and thus, could advance the fabrication of functional replacement tissues and organs in the field of tissue engineering.
Novel technique for online characterization of cartilaginous tissue properties.
Yuan, Tai-Yi; Huang, Chun-Yuh; Yong Gu, Wei
2011-09-01
The goal of tissue engineering is to use substitutes to repair and restore organ function. Bioreactors are an indispensable tool for monitoring and controlling the unique environment for engineered constructs to grow. However, in order to determine the biochemical properties of engineered constructs, samples need to be destroyed. In this study, we developed a novel technique to nondestructively online-characterize the water content and fixed charge density of cartilaginous tissues. A new technique was developed to determine the tissue mechano-electrochemical properties nondestructively. Bovine knee articular cartilage and lumbar annulus fibrosus were used in this study to demonstrate that this technique could be used on different types of tissue. The results show that our newly developed method is capable of precisely predicting the water volume fraction (less than 3% disparity) and fixed charge density (less than 16.7% disparity) within cartilaginous tissues. This novel technique will help to design a new generation of bioreactors which are able to actively determine the essential properties of the engineered constructs, as well as regulate the local environment to achieve the optimal conditions for cultivating constructs.
Genetically engineered mouse models for studying inflammatory bowel disease.
Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko
2016-01-01
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Developing an industry-oriented safety curriculum using the Delphi technique.
Chen, Der-Fa; Wu, Tsung-Chih; Chen, Chi-Hsiang; Chang, Shu-Hsuan; Yao, Kai-Chao; Liao, Chin-Wen
2016-09-01
In this study, we examined the development of industry-oriented safety degree curricula at a college level. Based on a review of literature on the practices and study of the development of safety curricula, we classified occupational safety and health curricula into the following three domains: safety engineering, health engineering, and safety and health management. We invited 44 safety professionals to complete a four-round survey that was designed using a modified Delphi technique. We used Chi-square statistics to test the panel experts' consensus on the significance of the items in the three domains and employed descriptive statistics to rank the participants' rating of each item. The results showed that the top three items for each of the three domains were Risk Assessment, Dangerous Machinery and Equipment, and Fire and Explosion Prevention for safety engineering; Ergonomics, Industrial Toxicology, and Health Risk Assessment for health engineering; and Industrial Safety and Health Regulations, Accident Investigation and Analysis, and Emergency Response for safety and health management. Only graduates from safety programmes who possess practical industry-oriented abilities can satisfy industry demands and provide value to the existence of college safety programmes.