Sample records for engineering engineering technology

  1. Small Engine Component Technology (SECT) study

    NASA Technical Reports Server (NTRS)

    Singh, B.

    1986-01-01

    Small advanced (450 to 850 pounds thrust, 2002 to 3781 N) gas turbine engines were studied for a subsonic strategic cruise missile application, using projected year 2000 technology. An aircraft, mission characteristics, and baseline (state-of-the-art) engine were defined to evaluate technology benefits. Engine performance and configuration analyses were performed for two and three spool turbofan and propfan engine concepts. Mission and Life Cycle Cost (LCC) analyses were performed in which the candidate engines were compared to the baseline engines over a prescribed mission. The advanced technology engines reduced system LCC up to 41 percent relative to the baseline engine. Critical aerodynamic, materials, and mechanical systems turbine engine technologies were identified and program plans were defined for each identified critical technology.

  2. Engine Seal Technology Requirements to Meet NASA's Advanced Subsonic Technology Program Goals

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Hendricks, Robert C.

    1994-01-01

    Cycle studies have shown the benefits of increasing engine pressure ratios and cycle temperatures to decrease engine weight and improve performance of commercial turbine engines. NASA is working with industry to define technology requirements of advanced engines and engine technology to meet the goals of NASA's Advanced Subsonic Technology Initiative. As engine operating conditions become more severe and customers demand lower operating costs, NASA and engine manufacturers are investigating methods of improving engine efficiency and reducing operating costs. A number of new technologies are being examined that will allow next generation engines to operate at higher pressures and temperatures. Improving seal performance - reducing leakage and increasing service life while operating under more demanding conditions - will play an important role in meeting overall program goals of reducing specific fuel consumption and ultimately reducing direct operating costs. This paper provides an overview of the Advanced Subsonic Technology program goals, discusses the motivation for advanced seal development, and highlights seal technology requirements to meet future engine performance goals.

  3. Persistence Factors Associated with First-Year Engineering Technology Learners

    ERIC Educational Resources Information Center

    Christe, Barbara

    2015-01-01

    Engineering technology learners are understudied group that comprise the "T" of the science, technology, engineering, and mathematics disciplines. Attrition from engineering technology majors is a profound and complex challenge, as substantially less than half of students who begin an engineering technology major persist through the…

  4. Variable Cycle Engine Technology Program Planning and Definition Study

    NASA Technical Reports Server (NTRS)

    Westmoreland, J. S.; Stern, A. M.

    1978-01-01

    The variable stream control engine, VSCE-502B, was selected as the base engine, with the inverted flow engine concept selected as a backup. Critical component technologies were identified, and technology programs were formulated. Several engine configurations were defined on a preliminary basis to serve as demonstration vehicles for the various technologies. The different configurations present compromises in cost, technical risk, and technology return. Plans for possible variably cycle engine technology programs were formulated by synthesizing the technology requirements with the different demonstrator configurations.

  5. Engineering and "Standards for Technological Literacy."

    ERIC Educational Resources Information Center

    Gorham, Douglas

    2002-01-01

    Describes the relationship between engineering and technological literacy, criteria used by the Accrediting Board for Engineering and Technology, and the role of professional engineering societies in promoting technological literacy. (SK)

  6. Technician Career Opportunities in Engineering Technology.

    ERIC Educational Resources Information Center

    Engineers' Council for Professional Development, New York, NY.

    Career opportunities for engineering technicians are available in the technologies relating to air conditioning, heating, and refrigeration, aviation and aerospace, building construction, chemical engineering, civil engineering, electrical engineering, electronics, industrial engineering, instrumentation, internal combustion engines, mechanical…

  7. Examining the Relationship between Technology & Engineering Instruction and Technology & Engineering Literacy in K-8 Education

    ERIC Educational Resources Information Center

    Mitchell, Tamarra L.

    2017-01-01

    The purpose of this study was to examine the relationship between technology and engineering instruction and technology and engineering literacy in grades K-8. The factors identified and used for the purpose of this study were gender, socioeconomic status, race/ethnicity, and important modes of technology and engineering instruction. These factors…

  8. Development of Key Performance Indicators for the Engineering Technology Education Programs in Taiwan

    ERIC Educational Resources Information Center

    Lee, Lung-Sheng; Lai, Chun-Chin

    2004-01-01

    In comparison with engineering, engineering technology is more practical and purposeful. The engineering technology education programs in Taiwan have been mainly offered in 56 universities/colleges of technology (UTs/CTs) and are anticipated to continuously improve their performance to prepare quality engineering technologists. However, it is…

  9. Comparison of China-US Engineering Ethics Educations in Sino-Western Philosophies of Technology.

    PubMed

    Cao, Gui Hong

    2015-12-01

    Ethics education has become essential in modern engineering. Ethics education in engineering has been increasingly implemented worldwide. It can improve ethical behaviors in technology and engineering design under the guidance of the philosophy of technology. Hence, this study aims to compare China-US engineering ethics education in Sino-Western philosophies of technology by using literature studies, online surveys, observational researches, textual analyses, and comparative methods. In my original theoretical framework and model of input and output for education, six primary variables emerge in the pedagogy: disciplinary statuses, educational goals, instructional contents, didactic models, teaching methods, and edificatory effects. I focus on the similarities and differences of engineering ethics educations between China and the U.S. in Chinese and Western philosophies of technology. In the field of engineering, the U.S. tends toward applied ethics training, whereas China inclines toward practical moral education. The U.S. is the leader, particularly in the amount of money invested and engineering results. China has quickened its pace, focusing specifically on engineering labor input and output. Engineering ethics is a multiplayer game effected at various levels among (a) lower level technicians and engineers, engineering associations, and stockholders; (b) middle ranking engineering ethics education, the ministry of education, the academy of engineering, and the philosophy of technology; and (c) top national and international technological policies. I propose that professional engineering ethics education can play many important roles in reforming engineering social responsibility by international cooperation in societies that are becoming increasingly reliant on engineered devices and systems. Significantly, my proposals contribute to improving engineering ethics education and better-solving engineering ethics issues, thereby maximizing engineering sustainability.

  10. Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.

  11. Advanced High Pressure O2/H2 Technology

    NASA Technical Reports Server (NTRS)

    Morea, S. F. (Editor); Wu, S. T. (Editor)

    1985-01-01

    Activities in the development of advanced high pressure oxygen-hydrogen stage combustion rocket engines are reported. Particular emphasis is given to the Space Shuttle main engine. The areas of engine technology discussed include fracture and fatigue in engine components, manufacturing and producibility engineering, materials, bearing technology, structure dynamics, fluid dynamics, and instrumentation technology.

  12. The Nazi engineers: reflections on technological ethics in hell.

    PubMed

    Katz, Eric

    2011-09-01

    Engineers, architects, and other technological professionals designed the genocidal death machines of the Third Reich. The death camp operations were highly efficient, so these technological professionals knew what they were doing: they were, so to speak, good engineers. As an educator at a technological university, I need to explain to my students-future engineers and architects-the motivations and ethical reasoning of the technological professionals of the Third Reich. I need to educate my students in the ethical practices of this hellish regime so that they can avoid the kind of ethical justifications used by the Nazi engineers. In their own professional lives, my former students should not only be good engineers in a technical sense, but good engineers in a moral sense. In this essay, I examine several arguments about the ethical judgments of professionals in Nazi Germany, and attempt a synthesis that can provide a lesson for contemporary engineers and other technological professionals. How does an engineer avoid the error of the Nazi engineers in their embrace of an evil ideology underlying their technological creations? How does an engineer know that the values he embodies through his technological products are good values that will lead to a better world? This last question, I believe, is the fundamental issue for the understanding of engineering ethics.

  13. 1+1=3: Cross-Discipline Collaboration Really Adds Up!

    ERIC Educational Resources Information Center

    Breen, Mindy

    2006-01-01

    The Department of Engineering & Design at Eastern Washington University (EWU) offers a bachelor of arts degree in visual communication design and bachelor of science degrees in mechanical engineering technology, manufacturing technology, construction technology, design technology, electrical engineering, computer engineering technology and…

  14. Advanced General Aviation Turbine Engine (GATE) study

    NASA Technical Reports Server (NTRS)

    Smith, R.; Benstein, E. H.

    1979-01-01

    The small engine technology requirements suitable for general aviation service in the 1987 to 1988 time frame were defined. The market analysis showed potential United States engines sales of 31,500 per year providing that the turbine engine sales price approaches current reciprocating engine prices. An optimum engine design was prepared for four categories of fixed wing aircraft and for rotary wing applications. A common core approach was derived from the optimum engines that maximizes engine commonality over the power spectrum with a projected price competitive with reciprocating piston engines. The advanced technology features reduced engine cost, approximately 50 percent compared with current technology.

  15. Thrust Area Report, Engineering Research, Development and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Programmore » has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.« less

  16. Two-Year ET Programs: Essential Topics and Levels of Proficiency.

    ERIC Educational Resources Information Center

    Gourley, Frank A., Jr.

    1990-01-01

    Reports the results of a survey of graduates, employers, and instructors of engineering technology programs for the essential topics in mechanical engineering technology, mechanical drafting/design technology, manufacturing engineering technology, and industrial engineering technology. Identifies the proficiency level suggested for classwork and…

  17. Fuel conservative aircraft engine technology

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1978-01-01

    Technology developments for more fuel-efficiency subsonic transport aircraft are reported. Three major propulsion projects were considered: (1) engine component improvement - directed at current engines; (2) energy efficient engine - directed at new turbofan engines; and (3) advanced turboprops - directed at technology for advanced turboprop-powered aircraft. Each project is reviewed and some of the technologies and recent accomplishments are described.

  18. Analysis of Engineering Content within Technology Education Programs

    ERIC Educational Resources Information Center

    Fantz, Todd D.; Katsioloudis, Petros J.

    2011-01-01

    In order to effectively teach engineering, technology teachers need to be taught engineering content, concepts, and related pedagogy. Some researchers posit that technology education programs may not have enough content to prepare technology teachers to teach engineering design. Certain technology teacher education programs have responded by…

  19. Technology of interdisciplinary open-ended designing in engineering education

    NASA Astrophysics Data System (ADS)

    Isaev, A. P.; Plotnikov, L. V.; Fomin, N. I.

    2017-11-01

    Author’s technology of interdisciplinary open-ended engineering is presented in this article. This technology is an integrated teaching method that significantly increases the practical component in the educational program. Author’s technology creates the conditions to overcome the shortcomings in the engineering education. The basic ideas of the technology of open-ended engineering, experience of their implementation in higher education and the author’s vision of the teaching technology are examined in the article. The main stages of development process of the author’s technology of open-ended engineering to prepare students (bachelor) of technical profile are presented in the article. Complex of the methodological tools and procedures is shown in the article. This complex is the basis of the developed training technology that is used in educational process in higher school of engineering (UrFU). The organizational model of the technology of open-ended engineering is presented. Organizational model integrates the functions in the creation and implementation of all educational program. Analysis of the characteristics of educational activity of students working on author’s technology of interdisciplinary open-ended engineering is presented. Intermediate results of the application of author’s technology in the educational process of the engineering undergraduate are shown.

  20. 77 FR 34206 - Airworthiness Directives; Hartzell Engine Technologies Turbochargers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... Airworthiness Directives; Hartzell Engine Technologies Turbochargers AGENCY: Federal Aviation Administration... directive (AD) for Cessna 206, 207, and 210 airplanes with Hartzell Engine Technologies (HET) turbochargers... information identified in this AD, contact Hartzell Engine Technologies, LLC, 2900 Selma Highway, Montgomery...

  1. An overview of NASA research on positive displacement general-aviation engines

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.

    1980-01-01

    The research and technology program related to improved and advanced general aviation engines is described. Current research is directed at the near-term improvement of conventional air-cooled spark-ignition piston engines and at future alternative engine systems based on all-new spark-ignition piston engines, lightweight diesels, and rotary combustion engines that show potential for meeting program goals in the midterm and long-term future. The conventional piston engine activities involve efforts on applying existing technology to improve fuel economy, investigation of key processes to permit leaner operation and reduce drag, and the development of cost effective technology to permit flight at high-altitudes where fuel economy and safety are improved. The advanced engine concepts activities include engine conceptual design studies and enabling technology efforts on the critical or key technology items.

  2. Engine Validation of Noise and Emission Reduction Technology Phase I

    NASA Technical Reports Server (NTRS)

    Weir, Don (Editor)

    2008-01-01

    This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period December 2004 through August 2007 for the NASA Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3-01136, Task Order 8, Engine Validation of Noise and Emission Reduction Technology Phase I. The NASA Task Manager was Dr. Joe Grady of the NASA Glenn Research Center. The NASA Contract Officer was Mr. Albert Spence of the NASA Glenn Research Center. This report is for a test program in which NASA funded engine validations of integrated technologies that reduce aircraft engine noise. These technologies address the reduction of engine fan and jet noise, and noise associated with propulsion/airframe integration. The results of these tests will be used by NASA to identify the engineering tradeoffs associated with the technologies that are needed to enable advanced engine systems to meet stringent goals for the reduction of noise. The objectives of this program are to (1) conduct system engineering and integration efforts to define the engine test-bed configuration; (2) develop selected noise reduction technologies to a technical maturity sufficient to enable engine testing and validation of those technologies in the FY06-07 time frame; (3) conduct engine tests designed to gain insight into the sources, mechanisms and characteristics of noise in the engines; and (4) establish baseline engine noise measurements for subsequent use in the evaluation of noise reduction.

  3. Teaching Engineering Habits of Mind in Technology Education

    ERIC Educational Resources Information Center

    Loveland, Thomas; Dunn, Derrek

    2014-01-01

    With a new emphasis on the inclusion of engineering content and practices in technology education, attention has focused on what engineering content should be taught and assessed in technology education. The National Academy of Engineering (2010) proposed three general principles for K-12 engineering education in "Standards for K-12…

  4. Ultra Efficient Engine Technology Systems Integration and Environmental Assessment

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Geiselhart, Karl A. (Technical Monitor)

    2002-01-01

    This study documents the design and analysis of four types of advanced technology commercial transport airplane configurations (small, medium large and very large) with an assumed technology readiness date of 2010. These airplane configurations were used as a platform to evaluate the design concept and installed performance of advanced technology engines being developed under the NASA Ultra Efficient Engine Technology (UEET) program. Upon installation of the UEET engines onto the UEET advanced technology airframes, the small and medium airplanes both achieved an additional 16% increase in fuel efficiency when using GE advanced turbofan engines. The large airplane achieved an 18% increase in fuel efficiency when using the P&W geared fan engine. The very large airplane (i.e. BWB), also using P&W geared fan engines, only achieved an additional 16% that was attributed to a non-optimized airplane/engine combination.

  5. Activist engineering: changing engineering practice by deploying praxis.

    PubMed

    Karwat, Darshan M A; Eagle, Walter E; Wooldridge, Margaret S; Princen, Thomas E

    2015-02-01

    In this paper, we reflect on current notions of engineering practice by examining some of the motives for engineered solutions to the problem of climate change. We draw on fields such as science and technology studies, the philosophy of technology, and environmental ethics to highlight how dominant notions of apoliticism and ahistoricity are ingrained in contemporary engineering practice. We argue that a solely technological response to climate change does not question the social, political, and cultural tenet of infinite material growth, one of the root causes of climate change. In response to the contemporary engineering practice, we define an activist engineer as someone who not only can provide specific engineered solutions, but who also steps back from their work and tackles the question, What is the real problem and does this problem "require" an engineering intervention? Solving complex problems like climate change requires radical cultural change, and a significant obstacle is educating engineers about how to conceive of and create "authentic alternatives," that is, solutions that differ from the paradigm of "technologically improving" our way out of problems. As a means to realize radically new solutions, we investigate how engineers might (re)deploy the concept of praxis, which raises awareness in engineers of the inherent politics of technological design. Praxis empowers engineers with a more comprehensive understanding of problems, and thus transforms technologies, when appropriate, into more socially just and ecologically sensitive interventions. Most importantly, praxis also raises a radical alternative rarely considered-not "engineering a solution." Activist engineering offers a contrasting method to contemporary engineering practice and leads toward social justice and ecological protection through problem solving by asking not, How will we technologize our way out of the problems we face? but instead, What really needs to be done?

  6. Engineering Technology Education: Bibliography 1989.

    ERIC Educational Resources Information Center

    Dyrud, Marilyn A., Comp.

    1990-01-01

    Over 200 references divided into 24 different areas are presented. Topics include administration, aeronautics, architecture, biomedical technology, CAD/CAM, civil engineering, computers, curriculum, electrical/electronics engineering, industrial engineering, industry and employment, instructional technology, laboratories, lasers, liberal studies,…

  7. Engineering analysis of shortfall for new technologies. Analysis memorandum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-03-11

    The engineering principles that govern the mpg performance of alternative technologies on the EPA test procedure and under in-use conditions are examined. The results can be used to interpret the shortfall of alternative technologies derived from statistical analyses. The analysis examines each of the four technologies in comparison to the conventional technology counterpart. Manual transmissions are compared to automatics, fuel injected S.I. engines to carburetted S.I. engines, front-wheel drive vehicles to rear-wheel drive vehicles and diesel engines to carburetted S.I. engines. The changes in shortfall of the four technologies in comparison to conventional technologies are explained through differences in responsesmore » to the factors.« less

  8. Motivation of Students Who Switch from Engineering to Engineering Technology

    ERIC Educational Resources Information Center

    Ramirez, Nichole

    2017-01-01

    A set of studies is reported describing the demographics, outcomes, and motivations of students who start in engineering and switch their major to engineering technology. There has been extensive research in engineering persistence, but little focus has been given to the "T" in STEM. Most research combines technology with other science…

  9. Nanoelectronics, Nanophotonics, and Nanomagnetics: Report of the National Nanotechnology Initiative Workshop February 11-13, 2004

    DTIC Science & Technology

    2004-02-01

    National Science and Technology Council Committee on Technology Subcommittee on Nanoscale Science, Engineering , and Technology National...18 About the Nanoscale Science, Engineering , and Technology Subcommittee The Nanoscale Science, Engineering , and Technology (NSET) Subcommittee is the...workshop was to examine trends and opportunities in nanoscale science and engineering as applied to electronic, photonic, and magnetic technologies

  10. Small Engine Component Technology (SECT) study

    NASA Technical Reports Server (NTRS)

    Larkin, T. R.

    1986-01-01

    The objective of this study is to identify high payoff technologies for year 2000 small gas turbine engines, and to provide a technology plan to guide research and technology efforts toward revolutionizing the small gas turbine technology base. The goal is to define the required technology to provide a 30 percent reduction in mission fuel burned, to reduce direct operating costs by at least 10 percent, and to provide increased reliability and durability of the gas turbine propulsion system. The baseline established to evaluate the year 2000 technology base was an 8-passenger commercial tilt-rotor aircraft powered by a current technology gas turbine engine. Three basic engine cycles were studied: the simple cycle engine, a waste heat recovery cycle, and a wave rotor engine cycle. For the simple cycle engine, two general arrangements were considered: the traditional concentric spool arrangement and a nonconcentric spool arrangement. Both a regenerative and a recuperative cycle were studied for the waste heat recovery cycle.

  11. Advanced liquid-cooled, turbocharged and intercooled stratified charge rotary engines for aircraft

    NASA Technical Reports Server (NTRS)

    Mount, Robert E.; Bartel, John; Hady, William F.

    1987-01-01

    Developments concerning stratified-charge rotary (SCR) engines over the past 10 years are reviewed. Aircraft engines being developed using SCR technology are shown and described, and the ability of such technology to meet general aviation engine needs is considered. Production timing and availability of SCR technology for the development of aviation rotary engines are discussed, and continuing efforts toward improving this technology, including NASA efforts, are described.

  12. Pre-Engineering Program: Science, Technology, Engineering and Mathematics (STEM)

    DTIC Science & Technology

    2013-08-29

    educators in the Urbana-Champaign area. 15. SUBJECT TERMS STEM: science, technology , engineering, mathematics 16. SECURITY CLASSIFICATION OF: 19a. NAME...9132T-13-1-0002 4. TITLE AND SUBTITLE Pre-Engineering Program: Science, Technology , Engineering and Mathematics (STEM) 5c. PROGRAM ELEMENT NUMBER N...project was focused on underserved children in grades 1-6 who need, but have limited access to, out-of-school time STEM (science, technology

  13. Advanced Natural Gas Reciprocating Engine(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, Edward

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cyclemore » efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.« less

  14. Advanced technology payoffs for future rotorcraft, commuter aircraft, cruise missile, and APU propulsion systems

    NASA Technical Reports Server (NTRS)

    Turk, M. A.; Zeiner, P. K.

    1986-01-01

    In connection with the significant advances made regarding the performance of larger gas turbines, challenges arise concerning the improvement of small gas turbine engines in the 250 to 1000 horsepower range. In response to these challenges, the NASA/Army-sponsored Small Engine Component Technology (SECT) study was undertaken with the objective to identify the engine cycle, configuration, and component technology requirements for the substantial performance improvements desired in year-2000 small gas turbine engines. In the context of this objective, an American turbine engine company evaluated engines for four year-2000 applications, including a rotorcraft, a commuter aircraft, a supersonic cruise missile, and an auxiliary power unit (APU). Attention is given to reference missions, reference engines, reference aircraft, year-2000 technology projections, cycle studies, advanced engine selections, and a technology evaluation.

  15. Gender and grade level differences in interest, perceived personal capacity, and involvement in technology and engineering-related activities

    NASA Astrophysics Data System (ADS)

    Weber, Katherine

    Society has become increasingly technological, demanding that all citizens have a level of technological literacy. In order for this to occur, both males and females must participate in technology-related activities to achieve an adequate level of technological literacy. Despite individual and organizational efforts, females continue to be underrepresented in STEM-related occupations. This is especially true in many engineering-related fields. Jolly, Campbell and Perlman (2004) devised the Engagement, Capacity, and Continuity (ECC) Trilogy. With each factor of the trilogy in place, Jolly et al. found that female representation increased in STEM. The purpose of this study was to identify whether Jolly, Campbell, and Perlman's (2004) Engagement, Capacity, and Continuity Trilogy could be utilized by teachers in technology and engineering program settings to examine their students' interest (engagement), perceived personal capacity (capacity), as well as participation in technology and engineering-related activities (continuity). This descriptive study surveyed 556 female and male middle school and high school students enrolled in Technology and Engineering classes. The results of this study revealed that when students indicated a high interest and a high perceived personal capacity, and when they participated in technology and engineering-related activities, they also indicated an interest in pursuing a career in engineering. The results also revealed that the male students continued to be encouraged by technology and engineering teachers, parents, and counselors to pursue a career in engineering more than female students. This startling finding should draw some concern; both males and females should be equally encouraged to consider engineering as a career. Technology and engineering teachers should implement activities that appeal to both males and females. Parents should encourage their daughters to participate in informal learning opportunities to nurture their daughters' interest in STEM-related areas. Counselors should gain an awareness of the scope and diversity of different engineering fields so they can advise both male and female students to consider careers in engineering. In order for the United States to be competitive and innovative at the global level, female representation and contributions in STEM fields must increase. Key Words: GENDER, ENGAGEMENT, INTEREST, PERCEIVED PERSONAL CAPACITY, TECHNOLOGY AND ENGINEERING ACTIVITIES, WISCONSIN, STEM, AFTERSCHOOL ACTIVITIES.

  16. Young Women's Perceptions of Technology and Engineering: Factors Influencing Their Participation in Math, Science and Technology? Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Roue, Leah C.

    2007-01-01

    The current number of women in technology and engineering only represents a fraction of today's workforce. Technological innovation depends on our nation's best and brightest, representing all segments of our diverse society. Sanders (2005), in talking about women in technology and engineering, stated that women's lack of participation can only be…

  17. Assessment of Knowledge and Skills Needed in Selected Engineering Technician Fields: Mechanical/Manufacturing/Industrial.

    ERIC Educational Resources Information Center

    Gourley, Frank A., Jr.

    A study identified the essential educational topics and the level of proficiency perceived to be required in these topics for selected two-year engineering technology programs in North Carolina. The four curricula studied were mechanical engineering technology, mechanical drafting and design technology, manufacturing engineering technology, and…

  18. Component improvement of free-piston Stirling engine key technology for space power

    NASA Technical Reports Server (NTRS)

    Alger, Donald L.

    1988-01-01

    The successful performance of the 25 kW Space Power Demonstrator (SPD) engine during an extensive testing period has provided a baseline of free piston Stirling engine technology from which future space Stirling engines may evolve. Much of the success of the engine was due to the initial careful selection of engine materials, fabrication and joining processes, and inspection procedures. Resolution of the few SPD engine problem areas that did occur has resulted in the technological advancement of certain key free piston Stirling engine components. Derivation of two half-SPD, single piston engines from the axially opposed piston SPD engine, designated as Space Power Research (SPR) engines, has made possible the continued improvement of these engine components. The two SPR engines serve as test bed engines for testing of engine components. Some important fabrication and joining processes are reviewed. Also, some component deficiencies that were discovered during SPD engine testing are described and approaches that were taken to correct these deficiencies are discussed. Potential component design modifications, based upon the SPD and SPR engine testing, are also reported.

  19. 77 FR 13159 - Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology, National Science and Technology Council Workshop ACTION: Notice of... Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National...

  20. A Study to Determine the Basic Science and Mathematics Topics Most Needed by Engineering Technology Graduates of Wake Technical Institute in Performing Job Duties.

    ERIC Educational Resources Information Center

    Edwards, Timothy I.; Roberson, Clarence E., Jr.

    A survey of 470 graduates of the six engineering technology programs at Wake Technical Institute--Architectural, Chemical, Civil Engineering, Computer, Electronic Engineering, and Industrial Engineering Technologies--and 227 of their employers was conducted in October, 1979, to determine the science and mathematics topics most needed by…

  1. Advanced supersonic propulsion study, phase 2. [propulsion system performance, design analysis and technology assessment

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.

    1975-01-01

    A continuation of the NASA/P and WA study to evaluate various types of propulsion systems for advanced commercial supersonic transports has resulted in the identification of two very promising engine concepts. They are the Variable Stream Control Engine which provides independent temperature and velocity control for two coannular exhaust streams, and a derivative of this engine, a Variable Cycle Engine that employs a rear flow-inverter valve to vary the bypass ratio of the cycle. Both concepts are based on advanced engine technology and have the potential for significant improvements in jet noise, exhaust emissions and economic characteristics relative to current technology supersonic engines. Extensive research and technology programs are required in several critical areas that are unique to these supersonic Variable Cycle Engines to realize these potential improvements. Parametric cycle and integration studies of conventional and Variable Cycle Engines are reviewed, features of the two most promising engine concepts are described, and critical technology requirements and required programs are summarized.

  2. Multi-fuel rotary engine for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  3. Predictors of Associate's Degree Completion in Engineering and Engineering Technologies

    NASA Astrophysics Data System (ADS)

    Reys-Nickel, Lynsey L.

    The purpose of this ex post facto study was to describe completers and non-completers of associate's degree programs in engineering and engineering technologies and determine whether and to what extent completion in these programs is a function of selected student-related variables and institutional variables. Data from the 2004/2009 Beginning Postsecondary Students Longitudinal Study (BPS: 04/09) of associate's degree completers and non-completers in engineering and engineering technologies were accessed and analyzed through PowerStats, a web-based data analysis tool from National Center for Education Statistics (NCES). Descriptive data indicated that, proportionally, engineering and engineering technologies completers were mostly White, married, middle income, employed part-time, enrolled full-time, did not hold a high school diploma or certificate, completed Trigonometry/Algebra II, had a father who's highest education level was an associate's degree, but did not know their mother's highest level of education, completed remedial coursework, and started college with the goal of earning an associate's degree. While more males enrolled in the programs, males and females demonstrated similar completion rates, proportionally--with females showing a slightly higher percentage of completion. Results from the logistic regression further indicated that the variables significant to completion in associate's degree programs in engineering and engineering technologies were gender and enrollment size. Findings suggested that female students were more likely to earn the degree, and that the larger the institution, the more likely the student would become a completer. However, since a major limitation of the study was the small weighted sample size, the results of the study are inconclusive in terms of the extent to which the findings can be generalized to the population of students in associate's degree programs in engineering and engineering technologies. This study fills a gap in the literature of what is known about engineering and engineering technician students. It also contributes to the body of research on an understudied STEM educational and professional pathway, the associate's degree in engineering and engineering technologies.

  4. New Perspectives: Technology Teacher Education and Engineering Design

    ERIC Educational Resources Information Center

    Hill, Roger B.

    2006-01-01

    Initiatives to integrate engineering design within the field of technology education are increasingly evident. The National Science Foundation has encouraged and funded opportunities for technology educators and engineers to work collaboratively. However, perspectives regarding the role engineering should play within the discipline of technology…

  5. Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3

    NASA Technical Reports Server (NTRS)

    Martinez, A.; Erickson, C.; Hines, B.

    1986-01-01

    Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.

  6. An airline study of advanced technology requirements for advanced high speed commercial transport engines. 1: Engine design study assessment

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial tranport engine are presented. The results of the phase 1 study effort cover the following areas: (1) statement of an airline's major objectives for future transport engines, (2) airline's method of evaluating engine proposals, (3) description of an optimum engine for a long range subsonic commercial transport including installation and critical design features, (4) discussion of engine performance problems and experience with performance degradation, (5) trends in engine and pod prices with increasing technology and objectives for the future, (6) discussion of the research objectives for composites, reversers, advanced components, engine control systems, and devices to reduce the impact of engine stall, and (7) discussion of the airline objectives for noise and pollution reduction.

  7. Rotorcraft convertible engine study

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Earle, R. V.; Mar, H. M.

    1982-01-01

    The objective of the Rotorcraft Convertible Engine Study was to define future research and technology effort required for commercial development by 1988 of convertible fan/shaft gas turbine engines for unconventional rotorcraft transports. Two rotorcraft and their respective missions were defined: a Fold Tilt Rotor aircraft and an Advancing Blade Concept (ABC) rotorcraft. Sensitivity studies were conducted with these rotorcraft to determine parametrically the influence of propulsion characteristics on aircraft size, mission fuel requirements, and direct operating costs (DOC). The two rotorcraft were flown with conventional propulsion systems (separate lift/cruise engines) and with convertible propulsion systems to determine the benefits to be derived from convertible engines. Trade-off studies were conducted to determine the optimum engine cycle and staging arrangement for a convertible engine. Advanced technology options applicable to convertible engines were studied. Research and technology programs were identified which would ensure technology readiness for commercial development of convertible engines by 1988.

  8. Research and technology at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Cryogenic engineering, hypergolic engineering, hazardous warning, structures and mechanics, computer sciences, communications, meteorology, technology applications, safety engineering, materials analysis, biomedicine, and engineering management and training aids research are reviewed.

  9. FY04 Engineering Technology Reports Technology Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, R M

    2005-01-27

    Lawrence Livermore National Laboratory's Engineering Directorate has two primary discretionary avenues for its investment in technologies: the Laboratory Directed Research and Development (LDRD) program and the ''Tech Base'' program. This volume summarizes progress on the projects funded for technology-base efforts in FY2004. The Engineering Technical Reports exemplify Engineering's more than 50-year history of researching and developing (LDRD), and reducing to practice (technology-base) the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and technicalmore » resources. This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Tech Base projects effect the natural transition to reduction-to-practice of scientific or engineering methods that are well understood and established. They represent discipline-oriented, core competency activities that are multi-programmatic in application, nature, and scope. The objectives of technology-base funding include: (1) the development and enhancement of tools and processes to provide Engineering support capability, such as code maintenance and improved fabrication methods; (2) support of Engineering science and technology infrastructure, such as the installation or integration of a new capability; (3) support for technical and administrative leadership through our technology Centers; and (4) the initial scoping and exploration of selected technology areas with high strategic potential, such as assessment of university, laboratory, and industrial partnerships. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, focus and guide longer-term investments within Engineering. The Centers attract and retain top staff, develop and maintain critical core technologies, and enable programs. Through their technology-base projects, they oversee the application of known engineering approaches and techniques to scientific and technical problems. The Centers and their Directors are as follows: (1) Center for Computational Engineering: Robert M. Sharpe; (2) Center for Microtechnology and Nanotechnology: Raymond P. Mariella, Jr. (3) Center for Nondestructive Characterization: Harry E. Martz, Jr.; (4) Center for Precision Engineering: Keith Carlisle; and (5) Center for Complex Distributed Systems: Gregory J. Suski, Acting Director.« less

  10. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  11. Critical Low-Noise Technologies Being Developed for Engine Noise Reduction Systems Subproject

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Civinskas, Kestutis C.

    2004-01-01

    NASA's previous Advanced Subsonic Technology (AST) Noise Reduction Program delivered the initial technologies for meeting a 10-year goal of a 10-dB reduction in total aircraft system noise. Technology Readiness Levels achieved for the engine-noise-reduction technologies ranged from 4 (rig scale) to 6 (engine demonstration). The current Quiet Aircraft Technology (QAT) project is building on those AST accomplishments to achieve the additional noise reduction needed to meet the Aerospace Technology Enterprise's 10-year goal, again validated through a combination of laboratory rig and engine demonstration tests. In order to meet the Aerospace Technology Enterprise goal for future aircraft of a 50- reduction in the perceived noise level, reductions of 4 dB are needed in both fan and jet noise. The primary objectives of the Engine Noise Reduction Systems (ENRS) subproject are, therefore, to develop technologies to reduce both fan and jet noise by 4 dB, to demonstrate these technologies in engine tests, and to develop and experimentally validate Computational Aero Acoustics (CAA) computer codes that will improve our ability to predict engine noise.

  12. Propulsion Study for Small Transport Aircraft Technology (STAT)

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.

    1980-01-01

    Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.

  13. Mapping Engineering Concepts for Secondary Level Education. Final Report. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Daugherty, Jenny L.

    2011-01-01

    Much of the national attention on science, technology, engineering, and mathematics (STEM) education tends to concentrate on science and mathematics, with its emphasis on standardized test scores. However as the National Academy of Engineering Committee on K-12 Engineering Education stressed, engineering can contribute to the development of an…

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: NEW CONDENSATOR, INC.--THE CONDENSATOR DIESEL ENGINE RETROFIT CRANKCASE VENTILATION SYSTEM

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...

  15. Diesel Technology: Engines. [Teacher and Student Editions.

    ERIC Educational Resources Information Center

    Barbieri, Dave; Miller, Roger; Kellum, Mary

    Competency-based teacher and student materials on diesel engines are provided for a diesel technology curriculum. Seventeen units of instruction cover the following topics: introduction to engine principles and procedures; engine systems and components; fuel systems; engine diagnosis and maintenance. The materials are based on the…

  16. Conventional engine technology. Volume 3: Comparisons and future potential

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.

    1981-01-01

    The status of five conventional automobile engine technologies was assessed and the future potential for increasing fuel economy and reducing exhaust emission was discussed, using the 1980 EPA California emisions standards as a comparative basis. By 1986, the fuel economy of a uniform charge Otto engine with a three-way catalyst is expected to increase 10%, while vehicles with lean burn (fast burn) engines should show a 20% fuel economy increase. Although vehicles with stratified-charge engines and rotary engines are expected to improve, their fuel economy will remain inferior to the other engine types. When adequate NO emissions control methods are implemented to meet the EPA requirements, vehicles with prechamber diesel engines are expected to yield a fuel economy advantage of about 15%. While successful introduction of direct injection diesel engine technology will provide a fuel savings of 30 to 35%, the planned regulation of exhaust particulates could seriously hinder this technology, because it is expected that only the smallest diesel engine vehicles could meet the proposed particulate requirements.

  17. Reusable Rocket Engine Advanced Health Management System. Architecture and Technology Evaluation: Summary

    NASA Technical Reports Server (NTRS)

    Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.

    1999-01-01

    In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.

  18. Electronic Engineering Technology Program Exit Examination as an ABET and Self-Assessment Tool

    ERIC Educational Resources Information Center

    Thomas, Gary; Darayan, Shahryar

    2018-01-01

    Every engineering, computing, and engineering technology program accredited by the Accreditation Board for Engineering and Technology (ABET) has formulated many and varied self-assessment methods. Methods used to assess a program for ABET accreditation and continuous improvement are for keeping programs current with academic and industrial…

  19. A Contemporary Preservice Technology Education Program

    ERIC Educational Resources Information Center

    Flanigan, Rod; Becker, Kurt; Stewardson, Gary

    2012-01-01

    In order to teach engineering education, today's engineering and technology education teachers must be equipped with lesson plans to teach engineering design, among other principles, to the 6th-12th grade levels. At Utah State University (USU), curriculum has been developed for preservice engineering and technology education teachers that…

  20. Airesearch QCGAT program. [quiet clean general aviation turbofan engines

    NASA Technical Reports Server (NTRS)

    Heldenbrand, R. W.; Norgren, W. M.

    1979-01-01

    A model TFE731-1 engine was used as a baseline for the NASA quiet clean general aviation turbofan engine and engine/nacelle program designed to demonstrate the applicability of large turbofan engine technology to small general aviation turbofan engines, and to obtain significant reductions in noise and pollutant emissions while reducing or maintaining fuel consumption levels. All new technology design for rotating parts and all items in the engine and nacelle that contributed to the acoustic and pollution characteristics of the engine system were of flight design, weight, and construction. The major noise, emissions, and performance goals were met. Noise levels estimated for the three FAR Part 36 conditions, are 10 t0 15 ENPdB below FAA requirements; emission values are considerably reduced below that of current technology engines; and the engine performance represents a TSFC improvement of approximately 9 percent over other turbofan engines.

  1. Small Engine Component Technology (SECT)

    NASA Technical Reports Server (NTRS)

    Early, M.; Dawson, R.; Zeiner, P.; Turk, M.; Benn, K.

    1986-01-01

    A study of small gas turbine engines was conducted to identify high payoff technologies for year-2000 engines and to define companion technology plans. The study addressed engines in the 186 to 746 KW (250 to 1000 shp) or equivalent thrust range for rotorcraft, commuter (turboprop), cruise missile (turbojet), and APU applications. The results show that aggressive advancement of high payoff technologies can produce significant benefits, including reduced SFC, weight, and cost for year-2000 engines. Mission studies for these engines show potential fuel burn reductions of 22 to 71 percent. These engine benefits translate into reductions in rotorcraft and commuter aircraft direct operating costs (DOC) of 7 to 11 percent, and in APU-related DOCs of 37 to 47 percent. The study further shows that cruise missile range can be increased by as much as 200 percent (320 percent with slurry fuels) for a year-2000 missile-turbojet system compared to a current rocket-powered system. The high payoff technologies were identified and the benefits quantified. Based on this, technology plans were defined for each of the four engine applications as recommended guidelines for further NASA research and technology efforts to establish technological readiness for the year 2000.

  2. Integrating Rehabilitation Engineering Technology With Biologics

    PubMed Central

    Collinger, Jennifer L.; Dicianno, Brad E.; Weber, Douglas J.; Cui, Xinyan Tracy; Wang, Wei; Brienza, David M.; Boninger, Michael L.

    2017-01-01

    Rehabilitation engineers apply engineering principles to improve function or to solve challenges faced by persons with disabilities. It is critical to integrate the knowledge of biologics into the process of rehabilitation engineering to advance the field and maximize potential benefits to patients. Some applications in particular demonstrate the value of a symbiotic relationship between biologics and rehabilitation engineering. In this review we illustrate how researchers working with neural interfaces and integrated prosthetics, assistive technology, and biologics data collection are currently integrating these 2 fields. We also discuss the potential for further integration of biologics and rehabilitation engineering to deliver the best technologies and treatments to patients. Engineers and clinicians must work together to develop technologies that meet clinical needs and are accessible to the intended patient population. PMID:21703573

  3. Engineering and Technology Education for the 21st Century. A Report from the Regional Colloquium on Engineering and Technology Education for the 21st Century (Nakhon Ratchasima, Thailand, February 11-14, 1997).

    ERIC Educational Resources Information Center

    Kettle, Kevin C., Ed.

    This colloquium was held with the purposes of promoting cooperation and collaboration among engineering education institutions in the Mekong subregion and establishing the linkage with engineering institutions in France; to promote university-industry collaboration in the field of engineering and technology education; to establish a network of…

  4. FY10 Engineering Innovations, Research and Technology Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, M A; Aceves, S M; Paulson, C N

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&Dmore » 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.« less

  5. Associate Degree Curriculum for Engineering Technology.

    ERIC Educational Resources Information Center

    Campbell, Clifton P.

    Presented is a two-year associate degree curriculum for Engineering Technology. Specializations are provided in civil, electronics, and mechanical technology. The civil engineering technology specialization facilitates three major areas of study, and mechanical technology includes design and production options. Each curriculum was designed to…

  6. Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving

    PubMed Central

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein

    2016-01-01

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. PMID:26924450

  7. 40 CFR 90.113 - In-use testing program for Phase 1 engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using... technology specifically installed to achieve compliance with emission standards of this part; (6) The engine... with itself or its vehicle manufacturer. (2) A test engine should have a maintenance history...

  8. Multi-fuel rotary engine for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, an advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25,000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed. Previously announced in STAR as N83-18910

  9. This photocopy of an engineering drawing shows the floor plan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This photocopy of an engineering drawing shows the floor plan of the Liner Lab, including room functions. Austin, Field & Fry, Architects Engineers, 22311 West Third Street, Los Angeles 57, California: Edwards Test Station Complex Phase II, Jet Propulsion Laboratory, California Institute of Technology, Edwards Air Force Base, Edwards, California: "Liner Laboratory, Floor Plan and Schedules," drawing no. E33/4-2, 26 June 1962. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Liner Laboratory, Edwards Air Force Base, Boron, Kern County, CA

  10. Advanced Earth-to-orbit propulsion technology program overview: Impact of civil space technology initiative

    NASA Technical Reports Server (NTRS)

    Stephenson, Frank W., Jr.

    1988-01-01

    The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.

  11. Patent Information Use in Engineering Technology Design: An Analysis of Student Work

    ERIC Educational Resources Information Center

    Phillips, Margaret; Zwicky, Dave

    2017-01-01

    How might engineering technology students make use of patent information in the engineering design process? Librarians analyzed team project reports and personal reflections created by students in an undergraduate mechanical engineering technology design course, revealing that the students used patents to consider the patentability of their ideas,…

  12. Integrated Tools for Future Distributed Engine Control Technologies

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Thomas, Randy; Saus, Joseph

    2013-01-01

    Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.

  13. Important Engineering and Technology Concepts and Skills for All High School Students in the United States: Comparing Perceptions of Engineering Educators and High School Teachers

    ERIC Educational Resources Information Center

    Hacker, Michael; Barak, Moshe

    2017-01-01

    Engineering and technology education (ETE) are receiving increased attention as components of STEM education. Curriculum development should be informed by perceptions of academic engineering educators (AEEs) and classroom technology teachers (CTTs) as both groups educate students to succeed in the technological world. The purpose of this study was…

  14. FY08 Engineering Research and Technology Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minichino, C; McNichols, D

    2009-02-24

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technologymore » development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.« less

  15. Information technology security system engineering methodology

    NASA Technical Reports Server (NTRS)

    Childs, D.

    2003-01-01

    A methodology is described for system engineering security into large information technology systems under development. The methodology is an integration of a risk management process and a generic system development life cycle process. The methodology is to be used by Security System Engineers to effectively engineer and integrate information technology security into a target system as it progresses through the development life cycle. The methodology can also be used to re-engineer security into a legacy system.

  16. Potential of Spark Ignition Engine : Engine Design Concepts

    DOT National Transportation Integrated Search

    1980-03-01

    This report provides a review and assessment of potential improvements in fuel economy for a selected number of spark ignition engine design technologies for passenger cars and light trucks. The engine design technologies examined include: : a) optim...

  17. Performance Benefits for a Turboshaft Engine Using Nonlinear Engine Control Technology Investigated

    NASA Technical Reports Server (NTRS)

    Jones, Scott M.

    2004-01-01

    The potential benefits of nonlinear engine control technology applied to a General Electric T700 helicopter engine were investigated. This technology is being developed by the U.S. Navy SPAWAR Systems Center for a variety of applications. When used as a means of active stability control, nonlinear engine control technology uses sensors and small amounts of injected air to allow compressors to operate with reduced stall margin, which can improve engine pressure ratio. The focus of this study was to determine the best achievable reduction in fuel consumption for the T700 turboshaft engine. A customer deck (computer code) was provided by General Electric to calculate the T700 engine performance, and the NASA Glenn Research Center used this code to perform the analysis. The results showed a 2- to 5-percent reduction in brake specific fuel consumption (BSFC) at the three Sikorsky H-60 helicopter operating points of cruise, loiter, and hover.

  18. A study of female students enrollment in engineering technology stem programs

    NASA Astrophysics Data System (ADS)

    Habib, Ihab S.

    The problem studied in this research project was the enrollment of female STEM Engineering Technology students and the impact of professional mentoring and financial incentives on their enrollment, retention, and completion of engineering curriculum. Several tasks were presented in researchers' professional position; to recruit more students to the program, especially female as a minority in the Engineering Technology Department, make appropriate changes to the curriculum, and make improvements in mentoring students to improve rates of enrollment, retention, and completion of the program. A survey was created to study the effects of Science Engineering Technology and Mathematics for Engineering Technology (STEM ENGT) students' perceptions, mentorship, and scholarships availability, enrollment, retention, and program completion by enrolled student gender. Other studies have discovered that more scholarship and faculty mentorship support provided for female students resulted in improved diversity within engineering curricula student bodies (Sorcinelli, 2007).

  19. Advanced supersonic propulsion study, phases 3 and 4. [variable cycle engines

    NASA Technical Reports Server (NTRS)

    Allan, R. D.; Joy, W.

    1977-01-01

    An evaluation of various advanced propulsion concepts for supersonic cruise aircraft resulted in the identification of the double-bypass variable cycle engine as the most promising concept. This engine design utilizes special variable geometry components and an annular exhaust nozzle to provide high take-off thrust and low jet noise. The engine also provides good performance at both supersonic cruise and subsonic cruise. Emission characteristics are excellent. The advanced technology double-bypass variable cycle engine offers an improvement in aircraft range performance relative to earlier supersonic jet engine designs and yet at a lower level of engine noise. Research and technology programs required in certain design areas for this engine concept to realize its potential benefits include refined parametric analysis of selected variable cycle engines, screening of additional unconventional concepts, and engine preliminary design studies. Required critical technology programs are summarized.

  20. STEM Career Cluster Engineering and Technology Education pathway in Georgia: Perceptions of Georgia engineering and technology education high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education survey

    NASA Astrophysics Data System (ADS)

    Crenshaw, Mark VanBuren

    This study examined the perceptions held by Georgia Science, Technology, Engineering, and Mathematics (STEM) Career Cluster Engineering and Technology Education (ETE) high school pathway teachers and Georgia's Career, Technical and Agriculture Education (CTAE) administrators regarding the ETE pathway and its effect on implementation within their district and schools. It provides strategies for ETE teaching methods, curriculum content, STEM integration, and how to improve the ETE pathway program of study. Current teaching and curricular trends were examined in ETE as well as the role ETE should play as related to STEM education. The study, using the Characteristics of Engineering and Technology Education Survey, was conducted to answer the following research questions: (a) Is there a significant difference in the perception of ETE teaching methodology between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (b) Is there a significant difference in the perception of ETE curriculum content between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (c) Is there a significant difference in the perception of STEM integration in the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? and (d) Is there a significant difference in the perception of how to improve the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? Suggestions for further research also were offered.

  1. 46 CFR 11.516 - Service requirements for third assistant engineer of steam and/or motor vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Graduation from the marine engineering course of a school of technology accredited by the Accreditation Board for Engineering and Technology, together with three months of service in the engine department of steam or motor vessels; (5) Graduation from the mechanical or electrical engineering course of a school...

  2. Engineering Outreach: A Successful Initiative with Gifted Students in Science and Technology in Hong Kong

    ERIC Educational Resources Information Center

    Chan, Yuen-Yan; Hui, Diane; Dickinson, Anthony R.; Chu, Dennis; Cheng, David Ki-Wai; Cheung, Edward; Ki, Wing-Hung; Lau, Wing-Hong; Wong, Jasper; Lo, Edward W. C.; Luk, Kwai-Man

    2010-01-01

    The primary goal of engineering outreach is to attract prospective students to engineering education and the engineering profession. Gifted students, especially those identified as possessing unusually high abilities in science and technology, are especially promising students to attract to careers in engineering. It is critical to cultivate these…

  3. Promoting Innovative Methods in Technology Education

    ERIC Educational Resources Information Center

    Al-Nasra, Moayyad M.

    2012-01-01

    The engineering profession is very sensitive to the new changes in the engineering job market demand. The engineering job market is changing in a much faster rate than the engineering/engineering technology education. A 13-year study will be presented. The study focuses on the factors affecting the survival rate, student academic performance,…

  4. Development of a Leadership, Policy, and Change Course for Science, Technology, Engineering, and Mathematics Graduate Students

    ERIC Educational Resources Information Center

    Cox, Monica F.; Berry, Carlotta A.; Smith, Karl A.

    2009-01-01

    This paper describes a graduate level engineering education course, "Leadership, Policy, and Change in Science, Technology, Engineering, and Mathematics (STEM) Education." Offered for the first time in 2007, the course integrated the perspectives of three instructors representing disciplines of engineering, education, and engineering education.…

  5. International Conference of Applied Science and Technology for Infrastructure Engineering

    NASA Astrophysics Data System (ADS)

    Elvina Santoso, Shelvy; Hardianto, Ekky

    2017-11-01

    Preface: International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017. The International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017 has been scheduled and successfully taken place at Swiss-Bell Inn Hotel, Surabaya, Indonesia, on August 5th 2017 organized by Department of Civil Infrastructure Engineering, Faculty of Vocation, Institut Teknologi Sepuluh Nopember (ITS). This annual event aims to create synergies between government, private sectors; employers; practitioners; and academics. This conference has different theme each year and “MATERIAL FOR INFRASTUCTURE ENGINEERING” will be taken for this year’s main theme. In addition, we also provide a platform for various other sub-theme topic including but not limited to Geopolymer Concrete and Materials Technology, Structural Dynamics, Engineering, and Sustainability, Seismic Design and Control of Structural Vibrations, Innovative and Green Buildings, Project Management, Transportation and Highway Engineering, Geotechnical Engineering, Water Engineering and Resources Management, Surveying and Geospatial Engineering, Coastal Engineering, Geophysics, Energy, Electronic and Mechatronic, Industrial Process, and Data Mining. List of Organizers, Journal Editors, Steering Committee, International Scientific Committee, Chairman, Keynote Speakers are available in this pdf.

  6. Tissue engineering: confronting the transplantation crisis.

    PubMed

    Nerem, R M

    2000-01-01

    Tissue engineering is the development of biological substitutes and/or the fostering of tissue regeneration/remodelling. It is emerging as a technology which has the potential to confront the crisis in transplantation caused by the shortage of donor tissues and organs. With the development of this technology, ther is emerging a new industry which is at the interface of biotechnology and the traditional medical implant field. For this technology and the associated industry to realize their full potential, there are core, enabling technologies that need to be developed. This is the focus of the Georgia Tech/Emory Center for the Engineering of Living Tissues, newly established in the United States, with an Engineering Research Center Award from the National Science Foundation. With the development of these core technologies, tissue engineering will evolve from an art form to a technology based on science and engineering.

  7. Development of natural gas rotary engines

    NASA Astrophysics Data System (ADS)

    Mack, J. R.

    1991-08-01

    Development of natural gas-fueled rotary engines was pursued on the parallel paths of converted Mazda automotive engines and of establishing technology and demonstration of a test model of a larger John Deer Technologies Incorporated (JDTI) rotary engine with power capability of 250 HP per power section for future production of multi-rotor engines with power ratings 250, 500, and 1000 HP and upward. Mazda engines were converted to natural gas and were characterized by a laboratory which was followed by nearly 12,000 hours of testing in three different field installations. To develop technology for the larger JDTI engine, laboratory and engine materials testing was accomplished. Extensive combustion analysis computer codes were modified, verified, and utilized to predict engine performance, to guide parameters for actual engine design, and to identify further improvements. A single rotor test engine of 5.8 liter displacement was designed for natural gas operation based on the JDTI 580 engine series. This engine was built and tested. It ran well and essentially achieved predicted performance. Lean combustion and low NOW emission were demonstrated.

  8. Use of Soft Computing Technologies For Rocket Engine Control

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.; Olcmen, Semih; Polites, Michael

    2003-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to further improve overall engine system reliability and performance. Specifically, this will be presented by enhancing rocket engine control and engine health management (EHM) using SCT coupled with conventional control technologies, and sound software engineering practices used in Marshall s Flight Software Group. The principle goals are to improve software management, software development time and maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control and EHM methodologies, but to provide alternative design choices for control, EHM, implementation, performance, and sustaining engineering. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion, software engineering for embedded systems, and soft computing technologies (i.e., neural networks, fuzzy logic, and Bayesian belief networks), much of which is presented in this paper. The first targeted demonstration rocket engine platform is the MC-1 (formerly FASTRAC Engine) which is simulated with hardware and software in the Marshall Avionics & Software Testbed laboratory that

  9. Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.

    PubMed

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein; Khademhosseini, Ali

    2016-04-06

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, microarchitecture, and mechanical properties of the fabrics play important roles in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Delivering Core Engineering Concepts to Secondary Level Students. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Merrill, Chris; Custer, Rodney L.; Daugherty, Jenny; Westrick, Martin; Zeng, Yong

    2007-01-01

    Within primary and secondary school technology education, engineering has been proposed as an avenue to bring about technological literacy. Different initiatives such as curriculum development projects (i.e., Project ProBase and Project Lead The Way) and National Science Foundation funded projects such as the National Center for Engineering and…

  11. Assessment of an Engineering Technology Outreach Program for 4th-7th Grade Girls

    ERIC Educational Resources Information Center

    Dell, Elizabeth M.; Christman, Jeanne; Garrick, Robert D.

    2011-01-01

    This paper describes a workshop led by female Engineering Technology students, with support from female faculty, to provide an introduction to Engineering Technology to 4th-7th grade girls through a series of interactive laboratory experiments. This outreach program was developed to improve attitudes towards science and engineering in middle…

  12. Materials technology assessment for stirling engines

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.; Watson, G. K.; Johnston, J. R.; Croft, W. J.

    1977-01-01

    A materials technology assessment of high temperature components in the improved (metal) and advanced (ceramic) Stirling engines was undertaken to evaluate the current state-of-the-art of metals and ceramics, identify materials research and development required to support the development of automotive Stirling engines, and to recommend materials technology programs to assure material readiness concurrent with engine system development programs. The most critical component for each engine is identified and some of the material problem areas are discussed.

  13. Case Study of a Small Scale Polytechnic Entrepreneurship Capstone Course Sequence

    ERIC Educational Resources Information Center

    Webster, Rustin D.; Kopp, Richard

    2017-01-01

    A multidisciplinary entrepreneurial senior capstone has been created for engineering technology students at a research I land-grant university statewide extension. The two semester course sequence welcomes students from Mechanical Engineering Technology, Electrical Engineering Technology, Computer Graphics Technology, and Organizational…

  14. The Effect of Rotor Cruise Tip Speed, Engine Technology and Engine/Drive System RPM on the NASA Large Civil Tiltrotor (LCTR2) Size and Performance

    NASA Technical Reports Server (NTRS)

    Robuck, Mark; Wilkerson, Joseph; Maciolek, Robert; Vonderwell, Dan

    2012-01-01

    A multi-year study was conducted under NASA NNA06BC41C Task Order 10 and NASA NNA09DA56C task orders 2, 4, and 5 to identify the most promising propulsion system concepts that enable rotor cruise tip speeds down to 54% of the hover tip speed for a civil tiltrotor aircraft. Combinations of engine RPM reduction and 2-speed drive systems were evaluated. Three levels of engine and the drive system advanced technology were assessed; 2015, 2025 and 2035. Propulsion and drive system configurations that resulted in minimum vehicle gross weight were identified. Design variables included engine speed reduction, drive system speed reduction, technology, and rotor cruise propulsion efficiency. The NASA Large Civil Tiltrotor, LCTR, aircraft served as the base vehicle concept for this study and was resized for over thirty combinations of operating cruise RPM and technology level, quantifying LCTR2 Gross Weight, size, and mission fuel. Additional studies show design sensitivity to other mission ranges and design airspeeds, with corresponding relative estimated operational cost. The lightest vehicle gross weight solution consistently came from rotor cruise tip speeds between 422 fps and 500 fps. Nearly equivalent results were achieved with operating at reduced engine RPM with a single-speed drive system or with a two-speed drive system and 100% engine RPM. Projected performance for a 2025 engine technology provided improved fuel flow over a wide range of operating speeds relative to the 2015 technology, but increased engine weight nullified the improved fuel flow resulting in increased aircraft gross weights. The 2035 engine technology provided further fuel flow reduction and 25% lower engine weight, and the 2035 drive system technology provided a 12% reduction in drive system weight. In combination, the 2035 technologies reduced aircraft takeoff gross weight by 14% relative to the 2015 technologies.

  15. Propulsion Technology Lifecycle Operational Analysis

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; Rhodes, Russell E.

    2010-01-01

    The paper presents the results of a focused effort performed by the members of the Space Propulsion Synergy Team (SPST) Functional Requirements Sub-team to develop propulsion data to support Advanced Technology Lifecycle Analysis System (ATLAS). This is a spreadsheet application to analyze the impact of technology decisions at a system-of-systems level. Results are summarized in an Excel workbook we call the Technology Tool Box (TTB). The TTB provides data for technology performance, operations, and programmatic parameters in the form of a library of technical information to support analysis tools and/or models. The lifecycle of technologies can be analyzed from this data and particularly useful for system operations involving long running missions. The propulsion technologies in this paper are listed against Chemical Rocket Engines in a Work Breakdown Structure (WBS) format. The overall effort involved establishing four elements: (1) A general purpose Functional System Breakdown Structure (FSBS). (2) Operational Requirements for Rocket Engines. (3) Technology Metric Values associated with Operating Systems (4) Work Breakdown Structure (WBS) of Chemical Rocket Engines The list of Chemical Rocket Engines identified in the WBS is by no means complete. It is planned to update the TTB with a more complete list of available Chemical Rocket Engines for United States (US) engines and add the Foreign rocket engines to the WBS which are available to NASA and the Aerospace Industry. The Operational Technology Metric Values were derived by the SPST Sub-team in the form of the TTB and establishes a database for users to help evaluate and establish the technology level of each Chemical Rocket Engine in the database. The Technology Metric Values will serve as a guide to help determine which rocket engine to invest technology money in for future development.

  16. Technical Path Evaluation for High Efficiency, Low Emission Natural Gas Engine

    DTIC Science & Technology

    2002-05-01

    Modeling and Mitigation for Large Bore Natural Gas Engines C. Evaluation of Technologies for Achieving High BMEP Levels in Natural Gas Engines D. Microfine ...Natural Gas Engines C. Evaluation of Technologies for Achieving High BMEP Levels in Natural Gas Engines D. Microfine Water Spray Injection for Knock...91 vi D. MICROFINE WATER SPRAY INJECTION FOR

  17. Advanced Subsonic Airplane Design and Economic Studies

    NASA Technical Reports Server (NTRS)

    Liebeck, Robert H.; Andrastek, Donald A.; Chau, Johnny; Girvin, Raquel; Lyon, Roger; Rawdon, Blaine K.; Scott, Paul W.; Wright, Robert A.

    1995-01-01

    A study was made to examine the effect of advanced technology engines on the performance of subsonic airplanes and provide a vision of the potential which these advanced engines offered. The year 2005 was selected as the entry-into-service (EIS) date for engine/airframe combination. A set of four airplane classes (passenger and design range combinations) that were envisioned to span the needs for the 2005 EIS period were defined. The airframes for all classes were designed and sized using 2005 EIS advanced technology. Two airplanes were designed and sized for each class: one using current technology (1995) engines to provide a baseline, and one using advanced technology (2005) engines. The resulting engine/airframe combinations were compared and evaluated on the basis on sensitivity to basic engine performance parameters (e.g. SFC and engine weight) as well as DOC+I. The advanced technology engines provided significant reductions in fuel burn, weight, and wing area. Average values were as follows: reduction in fuel burn = 18%, reduction in wing area = 7%, and reduction in TOGW = 9%. Average DOC+I reduction was 3.5% using the pricing model based on payload-range index and 5% using the pricing model based on airframe weight. Noise and emissions were not considered.

  18. Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Terrance

    This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, andmore » to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.« less

  19. Integrating rehabilitation engineering technology with biologics.

    PubMed

    Collinger, Jennifer L; Dicianno, Brad E; Weber, Douglas J; Cui, Xinyan Tracy; Wang, Wei; Brienza, David M; Boninger, Michael L

    2011-06-01

    Rehabilitation engineers apply engineering principles to improve function or to solve challenges faced by persons with disabilities. It is critical to integrate the knowledge of biologics into the process of rehabilitation engineering to advance the field and maximize potential benefits to patients. Some applications in particular demonstrate the value of a symbiotic relationship between biologics and rehabilitation engineering. In this review we illustrate how researchers working with neural interfaces and integrated prosthetics, assistive technology, and biologics data collection are currently integrating these 2 fields. We also discuss the potential for further integration of biologics and rehabilitation engineering to deliver the best technologies and treatments to patients. Engineers and clinicians must work together to develop technologies that meet clinical needs and are accessible to the intended patient population. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  20. Research and technology, 1984 report

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research and technology projects in the following areas are described: cryogenic engineering, hypergolic engineering, hazardous warning instrumentation, structures and mechanics, sensors and controls, computer sciences, communications, material analysis, biomedicine, meteorology, engineering management, logistics, training and maintenance aids, and technology applications.

  1. Advanced component technologies for energy-efficient turbofan engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.

    1980-01-01

    The paper reviews NASA's Energy Efficient Engine Project which was initiated to provide the advanced technology base for a new generation of fuel-conservative engines for introduction into airline service by the late 1980s. Efforts in this project are directed at advancing engine component and systems technologies to a point of demonstrating technology-readiness by 1984. Early results indicate high promise in achieving most of the goals established in the project.

  2. Examination of engineering design teacher self-efficacy and knowledge base in secondary technology education and engineering-related courses

    NASA Astrophysics Data System (ADS)

    Vessel, Kanika Nicole

    2011-12-01

    There is an increasing demand for individuals with engineering education and skills of varying fields in everyday life. With the proper education students of high-needs schools can help meet the demand for a highly skilled and educated workforce. Researchers have assumed the supply and demand has not been met within the engineering workforce as a result of students' collegiate educational experiences, which are impacted by experiences in K-12 education. Although factors outside of the classroom contribute to the inability of universities to meet the increasing demand for the engineering workforce, most noted by researchers is the academic unpreparedness of freshman engineering students. The unpreparedness of entering freshman engineering students is a result of K-12 classroom experiences. This draws attention not only to the quality and competence of teachers present in the K-12 classroom, but the type of engineering instruction these students are receiving. This paper was an effort to systematically address one of the more direct and immediate factors impacting freshman engineering candidates, the quality of secondary engineering educators. Engineers develop new ideas using the engineering design process, which is taught at the collegiate level, and has been argued to be the best approach to teach technological literacy to all K-12 students. However, it is of importance to investigate whether technology educators have the knowledge and understanding of engineering design, how to transfer that knowledge in the classroom to students through instructional strategies, and their perception of their ability to do that. Therefore, the purpose of this study is to show the need for examining the degree to which technology and non-technology educators are implementing elements of engineering design in the curriculum.

  3. Using Teaching Portfolios to Revise Curriculum and Explore Instructional Practices of Technology and Engineering Education Teachers

    ERIC Educational Resources Information Center

    Lomask, Michal; Crismond, David; Hacker, Michael

    2018-01-01

    This paper reports on the use of teaching portfolios to assist in curriculum revision and the exploration of instructional practices used by middle school technology and engineering education teachers. Two new middle school technology and engineering education units were developed through the Engineering for All (EfA) project. One EfA unit focused…

  4. Engineering innovation in healthcare: technology, ethics and persons.

    PubMed

    Bowen, W Richard

    2011-01-01

    Engineering makes profound contributions to our health. Many of these contributions benefit whole populations, such as clean water and sewage treatment, buildings, dependable sources of energy, efficient harvesting and storage of food, and pharmaceutical manufacture. Thus, ethical assessment of these and other engineering activities has often emphasized benefits to communities. This is in contrast to medical ethics, which has tended to emphasize the individual patient affected by a doctor's actions. However technological innovation is leading to an entanglement of the activities, and hence ethical responsibilities, of healthcare professionals and engineering professionals. The article outlines three categories of innovation: assistive technologies, telehealthcare and quasi-autonomous systems. Approaches to engineering ethics are described and applied to these innovations. Such innovations raise a number of ethical opportunities and challenges, especially as the complexity of the technology increases. In particular the design and operation of the technologies require engineers to seek closer involvement with the persons benefiting from their work. Future innovation will require engineers to have a good knowledge of human biology and psychology. More particularly, healthcare engineers will need to prioritize each person's wellbeing, agency, human relationships and ecological self rather than technology, in the same way that doctors prioritize the treatment of persons rather than their diseases.

  5. New opportunities for future small civil turbine engines: Overviewing the GATE studies

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1979-01-01

    An overview of four independent studies forecasts the potential impact of advanced technology turbine engines in the post 1988 market, identifies important aircraft and missions, desirable engine sizes, engine performance, and cost goals. Parametric evaluations of various engine cycles, configurations, design features, and advanced technology elements defined baseline conceptual engines for each of the important missions identified by the market analysis. Both fixed-wing and helicopter aircraft, and turboshaft, turboprop, and turbofan engines were considered. Sizable performance gains (e.g., 20% SFC decrease), and large engine cost reductions of sufficient magnitude are predicted to challenge the reciprocating engine in the 300-500 SHP class.

  6. Identifying Characteristics of Technology and Engineering Teachers Striving for Excellence Using a Modified Delphi

    ERIC Educational Resources Information Center

    Rose, Mary Annette; Shumway, Steven; Carter, Vinson; Brown, Josh

    2015-01-01

    Preparing a technology and engineering (TE) teacher who strives for teaching excellence is a fundamental mission of TE teacher education programs in the United States. In 2012, the International Technology and Engineering Educators Association (ITEEA, formerly the International Technology Education Association, ITEA) Council on Technology and…

  7. Is Computer Science Compatible with Technological Literacy?

    ERIC Educational Resources Information Center

    Buckler, Chris; Koperski, Kevin; Loveland, Thomas R.

    2018-01-01

    Although technology education evolved over time, and pressure increased to infuse more engineering principles and increase links to STEM (science technology, engineering, and mathematics) initiatives, there has never been an official alignment between technology and engineering education and computer science. There is movement at the federal level…

  8. Evolving technologies drive the new roles of Biomedical Engineering.

    PubMed

    Frisch, P H; St Germain, J; Lui, W

    2008-01-01

    Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.

  9. 25 CFR 700.465 - Technical feasibility.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...

  10. 25 CFR 700.465 - Technical feasibility.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...

  11. 25 CFR 700.465 - Technical feasibility.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...

  12. 25 CFR 700.465 - Technical feasibility.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...

  13. 25 CFR 700.465 - Technical feasibility.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...

  14. 40 CFR 94.218 - Deterioration factor determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... family. (b) Calculation procedures—(1) For engines not utilizing aftertreatment technology (e.g... technology (e.g., catalyst). For each applicable emission constituent, a multiplicative deterioration factor.... (iii) Engineering analysis for established technologies. In the case where an engine family uses...

  15. Engineering Student Outcomes for Grades 9-12. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Childress, Vincent; Rhodes, Craig

    2006-01-01

    This research study was conducted during the 2005-2006 academic year. Its purpose is to help the National Center for Engineering and Technology Education determine those engineering outcomes that should be studied in high school when the high school student intends to pursue engineering in college. The results of the study will also be used to…

  16. Automotive Stirling Engine Development Project

    NASA Technical Reports Server (NTRS)

    Ernst, William D.; Shaltens, Richard K.

    1997-01-01

    The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.

  17. Does engineering education need to engage more with the economic and social aspects of sustainability?

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, John J.

    2017-11-01

    This paper questions if engineering educators are producing engineers that are accelerating humanity along an unsustainable path. Even though technology and engineering are important drivers in trying to move humanity towards an environmentally sustainable paradigm, the paper suggests that maybe the most important levers and challenges lie in the economic and social domains. Short case studies of energy efficiency, the experience of the industrialist Ray Anderson and the authors own reflection of teaching chemical engineering students are used to highlight this. Engineering/technological innovation may not be enough and is often counteracted by the rebound effect and the current dominant neoclassical economic paradigm. The paper discusses what engineering educators can do to produce sustainability informed engineers who are better able to engage with the economic and social dimensions of sustainability. Some suggestions for engaging engineering students with the economic and social dimensions of environmental sustainability are provided. Engineers must somehow find ways, not just to influence technological levers (which are very important) but also to influence economic and social levers so that changes in economic and social behaviours can complement and facilitate technological change in moving humanity to an environmentally sustainable paradigm.

  18. Control technology for future aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Zeller, J. R.; Szuch, J. R.; Merrill, W. C.; Lehtinen, B.; Soeder, J. F.

    1984-01-01

    The need for a more sophisticated engine control system is discussed. The improvements in better thrust-to-weight ratios demand the manipulation of more control inputs. New technological solutions to the engine control problem are practiced. The digital electronic engine control (DEEC) system is a step in the evolution to digital electronic engine control. Technology issues are addressed to ensure a growth in confidence in sophisticated electronic controls for aircraft turbine engines. The need of a control system architecture which permits propulsion controls to be functionally integrated with other aircraft systems is established. Areas of technology studied include: (1) control design methodology; (2) improved modeling and simulation methods; and (3) implementation technologies. Objectives, results and future thrusts are summarized.

  19. Preliminary study of advanced turboprop and turboshaft engines for light aircraft. [cost effectiveness

    NASA Technical Reports Server (NTRS)

    Knip, G.; Plencner, R. M.; Eisenberg, J. D.

    1980-01-01

    The effects of engine configuration, advanced component technology, compressor pressure ratio and turbine rotor-inlet temperature on such figures of merit as vehicle gross weight, mission fuel, aircraft acquisition cost, operating, cost and life cycle cost are determined for three fixed- and two rotary-wing aircraft. Compared with a current production turboprop, an advanced technology (1988) engine results in a 23 percent decrease in specific fuel consumption. Depending on the figure of merit and the mission, turbine engine cost reductions required to achieve aircraft cost parity with a current spark ignition reciprocating (SIR) engine vary from 0 to 60 percent and from 6 to 74 percent with a hypothetical advanced SIR engine. Compared with a hypothetical turboshaft using currently available technology (1978), an advanced technology (1988) engine installed in a light twin-engine helicopter results in a 16 percent reduction in mission fuel and about 11 percent in most of the other figures of merit.

  20. Free-piston Stirling technology for space power

    NASA Technical Reports Server (NTRS)

    Slaby, Jack G.

    1989-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed here is the completion of the Space Power Demonstrator Engine (SPDE) testing-culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engine (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding.

  1. Recent Progress in Engine Noise Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Huff, Dennis; Gliebe, Philip

    2003-01-01

    Highlights from NASA-funded research over the past ten years for aircraft engine noise reduction are presented showing overall technical plans, accomplishments, and selected applications to turbofan engines. The work was sponsored by NASA's Advanced Subsonic Technology (AST) Noise Reduction Program. Emphasis is given to only the engine noise reduction research and significant accomplishments that were investigated at Technology Readiness Levels ranging from 4 to 6. The Engine Noise Reduction sub-element was divided into four work areas: source noise prediction, model scale tests, engine validation, and active noise control. Highlights from each area include technologies for higher bypass ratio turbofans, scarf inlets, forward-swept fans, swept and leaned stators, chevron/tabbed nozzles, advanced noise prediction analyses, and active noise control for fans. Finally, an industry perspective is given from General Electric Aircraft Engines showing how these technologies are being applied to commercial products. This publication contains only presentation vu-graphs from an invited lecture given at the 41st AIAA Aerospace Sciences Meeting, January 6-9, 2003.

  2. Technology for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  3. Advanced Prop-fan Engine Technology (APET) single- and counter-rotation gearbox/pitch change mechanism

    NASA Technical Reports Server (NTRS)

    Reynolds, C. N.

    1985-01-01

    The preliminary design of advanced technology (1992) prop-fan engines for single-rotation prop-fans, the conceptual design of the entire propulsion system, and an aircraft evaluation of the resultant designs are discussed. Four engine configurations were examined. A two-spool engine with all axial compressors and a three-spool engine with axial/centrifugal compressors were selected. Integrated propulsion systems were designed in conjunction with airframe manufacturers. The design efforts resulted in 12,000 shaft horsepower engines installed in over the installations with in-line and offset gearboxes. The prop-fan powered aircraft used 21 percent less fuel and cost 10 percent less to operate than a similar aircraft powered by turbofan engines with comparable technology.

  4. Two Rotor Stratified Charge Rotary Engine (SCRE) Engine System Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Hoffman, T.; Mack, J.; Mount, R.

    1994-01-01

    This report summarizes results of an evaluation of technology enablement component technologies as integrated into a two rotor Stratified Charge Rotary Engine (SCRE). The work constitutes a demonstration of two rotor engine system technology, utilizing upgraded and refined component technologies derived from prior NASA Contracts NAS3-25945, NAS3-24628 and NAS-23056. Technical objectives included definition of, procurement and assembly of an advanced two rotor core aircraft engine, operation with Jet-A fuel at Take-Off rating of 340 BHP (254kW) and operation at a maximum cruise condition of 255 BHP (190kW), 75% cruise. A fuel consumption objective of 0.435 LBS/BHP-Hr (265 GRS/kW-Hr) was identified for the maximum cruise condition. A critical technology component item, a high speed, unit injector fuel injection system with electronic control was defined, procured and tested in conjunction with this effort. The two rotor engine configuration established herein defines an affordable, advanced, Jet-A fuel capability core engine (not including reduction gear, propeller shaft and some aircraft accessories) for General Aviation of the mid-1990's and beyond.

  5. Multimedia Image Technology and Computer Aided Manufacturing Engineering Analysis

    NASA Astrophysics Data System (ADS)

    Nan, Song

    2018-03-01

    Since the reform and opening up, with the continuous development of science and technology in China, more and more advanced science and technology have emerged under the trend of diversification. Multimedia imaging technology, for example, has a significant and positive impact on computer aided manufacturing engineering in China. From the perspective of scientific and technological advancement and development, the multimedia image technology has a very positive influence on the application and development of computer-aided manufacturing engineering, whether in function or function play. Therefore, this paper mainly starts from the concept of multimedia image technology to analyze the application of multimedia image technology in computer aided manufacturing engineering.

  6. NASA Glenn's Engine Components Research Lab, Cell 2B, Reactivated to Support the U.S. Army Research Laboratory T700 Engine Test

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Griffin, Thomas A.

    2004-01-01

    The U.S. Army Vehicle Technology Directorate at the NASA Glenn Research Center has been directed by their parent command, the U.S. Army Research Laboratory (ARL), to demonstrate active stall technology in a turboshaft engine as the next step in transitioning this technology to the Army and aerospace industry. Therefore, the Vehicle Technology Directorate requested the reactivation of Glenn's Engine Components Research Lab, Cell 2B, (ECRL 2B). They wanted to test a T700 engine that had been used previously for turboshaft engine research as a partnership between the Army and NASA on small turbine engine research. ECRL 2B had been placed in standby mode in 1997. Glenn's Testing Division initiated reactivation in May 2002 to support the new research effort, and they completed reactivation and improvements in September 2003.

  7. Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration

    NASA Technical Reports Server (NTRS)

    Brown, Kendall K.; Nelson, Karl W.

    2005-01-01

    Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bi-propellant engines used in the Apollo program. A multi-use engine. one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, bum duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).

  8. Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration

    NASA Astrophysics Data System (ADS)

    Brown, Kendall K.; Nelson, Karl W.

    2005-02-01

    Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bipropellant engines used in the Apollo program. A multi-use engine, one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, burn duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).

  9. Recent Technology Advances in Distributed Engine Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis

    2017-01-01

    This presentation provides an overview of the work performed at NASA Glenn Research Center in distributed engine control technology. This is control system hardware technology that overcomes engine system constraints by modularizing control hardware and integrating the components over communication networks.

  10. The gate studies: Assessing the potential of future small general aviation turbine engines

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1979-01-01

    Four studies were completed that explore the opportunities for future General Aviation turbine engines (GATE) in the 150-1000 SHP class. These studies forecasted the potential impact of advanced technology turbine engines in the post-1988 market, identified important aircraft and missions, desirable engine sizes, engine performance, and cost goals. Parametric evaluations of various engine cycles, configurations, design features, and advanced technology elements defined baseline conceptual engines for each of the important missions identified by the market analysis. Both fixed-wing and helicopter aircraft, and turboshaft, turboprop, and turbofan engines were considered. Sizable performance gains (e.g., 20% SFC decrease), and large engine cost reductions of sufficient magnitude to challenge the reciprocating engine in the 300-500 SHP class were predicted.

  11. 40 CFR 1042.245 - Deterioration factors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to meet the Tier 1 and Tier 2 emission standards would qualify as established technology. We must... deterioration factors for Category 1 and Category 2 engines, either with an engineering analysis, with pre... deterioration factors for an engine family with established technology based on engineering analysis instead of...

  12. 40 CFR 1042.245 - Deterioration factors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to meet the Tier 1 and Tier 2 emission standards would qualify as established technology. We must... deterioration factors for Category 1 and Category 2 engines, either with an engineering analysis, with pre... deterioration factors for an engine family with established technology based on engineering analysis instead of...

  13. 40 CFR 1042.245 - Deterioration factors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to meet the Tier 1 and Tier 2 emission standards would qualify as established technology. We must... deterioration factors for Category 1 and Category 2 engines, either with an engineering analysis, with pre... deterioration factors for an engine family with established technology based on engineering analysis instead of...

  14. 40 CFR 1042.245 - Deterioration factors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to meet the Tier 1 and Tier 2 emission standards would qualify as established technology. We must... deterioration factors for Category 1 and Category 2 engines, either with an engineering analysis, with pre... deterioration factors for an engine family with established technology based on engineering analysis instead of...

  15. 40 CFR 1042.245 - Deterioration factors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to meet the Tier 1 and Tier 2 emission standards would qualify as established technology. We must... deterioration factors for Category 1 and Category 2 engines, either with an engineering analysis, with pre... deterioration factors for an engine family with established technology based on engineering analysis instead of...

  16. Engineering Encounters: Catch Me if You Can!

    ERIC Educational Resources Information Center

    Lott, Kimberly; Wallin, Mark; Roghaar, Deborah; Price, Tyson

    2013-01-01

    A science, technology, engineering, and math (STEM) activity is any activity that integrates the use of science, technology, engineering, and mathematics to solve a problem. Traditionally, STEM activities are highly engaging and may involve competition among student teams. Young children are natural engineers and often times spontaneously build…

  17. Influence of Science, Technology, and Engineering Curriculum on Rural Midwestern High School Student Career Decisions

    NASA Astrophysics Data System (ADS)

    Killingsworth, John

    Low degree completion in technical and engineering degrees is a growing concern for policymakers and educators in the United States. This study was an examination of the behaviors of adolescents specific to career decisions related to technology and engineering. The central research question for this study was: do rural, Midwestern high school technical and engineering curricula serve to engage students sufficiently to encourage them to persist through high school while sustaining their interests in technology and engineering careers? Engaging students in technology and engineering fields is the challenge for educators throughout the country and the Midwest. Rural schools have the additional challenge of meeting those issues because of resource limitations. Students in three Midwestern schools were surveyed to determine the level of interest in technology and engineering. The generalized likelihood ratio test was used to overcome concerns for small sample sizes. Accounting for dependent variables, multiple independent variables are examined using descriptive statistics to determine which have greater influence on career decisions, specifically those related to technology and engineering. A typical science curriculum is defined for rural Midwestern high schools. This study concludes that such curriculum achieves the goal of maintaining or increasing student interest and engagement in STEM careers. Furthermore, those schools that incorporate contextual and experiential learning activities into the curriculum demonstrate increased results in influencing student career choices toward technology and engineering careers. Implications for parents, educators, and industry professionals are discussed.

  18. 46 CFR 11.544 - Endorsement as assistant engineer (MODU).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... marine, mechanical, or electrical engineering technology which is accredited by the Accreditation Board for Engineering and Technology (ABET). The National Maritime Center will give consideration to...

  19. 1996 Laboratory directed research and development annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  20. Engineering Research and Development and Technology thrust area report FY92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, theymore » are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.« less

  1. Integral Engine Inlet Particle Separator. Volume 1. Technology Program

    DTIC Science & Technology

    1975-07-01

    inlet particle separators for future Army aircraft gas turbine engines . Appropriate technical personnel of this Directorate have reviewed this report...USAAMRDL-TR-75-31A I - / INTEGRAL ENGINE INLET PARTICLE SEPARATOR Volume I-- Technology Program General Electric Company Aircraft Engine Group...N1 i 9ap mm tm~qu INTRODUCTION The adverse environments in which Army equipment operates impose severe )enalties upon gas turbine engine performance

  2. Follow-On Technology Requirement Study for Advanced Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Wendus, Bruce E.; Stark, Donald F.; Holler, Richard P.; Funkhouser, Merle E.

    2003-01-01

    A study was conducted to define and assess the critical or enabling technologies required for a year 2005 entry into service (EIS) engine for subsonic commercial aircraft, with NASA Advanced Subsonic Transport goals used as benchmarks. The year 2005 EIS advanced technology engine is an Advanced Ducted Propulsor (ADP) engine. Performance analysis showed that the ADP design offered many advantages compared to a baseline turbofan engine. An airplane/ engine simulation study using a long range quad aircraft quantified the effects of the ADP engine on the economics of typical airline operation. Results of the economic analysis show the ADP propulsion system provides a 6% reduction in direct operating cost plus interest, with half the reduction resulting from reduced fuel consumption. Critical and enabling technologies for the year 2005 EIS ADP were identified and prioritized.

  3. Delivering Core Engineering Concepts to Secondary Level Students

    ERIC Educational Resources Information Center

    Merrill, Chris; Custer, Rodney L.; Daugherty, Jenny; Westrick, Martin; Zeng, Yong

    2008-01-01

    Through the efforts of National Center for Engineering and Technology Education (NCETE), three core engineering concepts within the realm of engineering design have emerged as crucial areas of need within secondary level technology education. These concepts are constraints, optimization, and predictive analysis (COPA). COPA appears to be at the…

  4. 40 CFR 89.118 - Deterioration factors and service accumulation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., subsystems, or components selected by the manufacturer under § 89.117(d). The manufacturer shall describe the... must be based on good engineering judgment. (iii) Engineering analysis for established technologies. (A) In the case where an engine family uses established technology, an analysis based on good engineering...

  5. 40 CFR 89.118 - Deterioration factors and service accumulation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., subsystems, or components selected by the manufacturer under § 89.117(d). The manufacturer shall describe the... must be based on good engineering judgment. (iii) Engineering analysis for established technologies. (A) In the case where an engine family uses established technology, an analysis based on good engineering...

  6. 40 CFR 89.118 - Deterioration factors and service accumulation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., subsystems, or components selected by the manufacturer under § 89.117(d). The manufacturer shall describe the... must be based on good engineering judgment. (iii) Engineering analysis for established technologies. (A) In the case where an engine family uses established technology, an analysis based on good engineering...

  7. 40 CFR 89.118 - Deterioration factors and service accumulation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., subsystems, or components selected by the manufacturer under § 89.117(d). The manufacturer shall describe the... must be based on good engineering judgment. (iii) Engineering analysis for established technologies. (A) In the case where an engine family uses established technology, an analysis based on good engineering...

  8. 40 CFR 89.118 - Deterioration factors and service accumulation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., subsystems, or components selected by the manufacturer under § 89.117(d). The manufacturer shall describe the... must be based on good engineering judgment. (iii) Engineering analysis for established technologies. (A) In the case where an engine family uses established technology, an analysis based on good engineering...

  9. Elementary Teachers' Views about Teaching Design, Engineering, and Technology

    ERIC Educational Resources Information Center

    Hsu, Ming-Chien; Purzer, Senay; Cardella, Monica E.

    2011-01-01

    While there is a growing interest in infusing engineering into elementary classrooms, very little is known about how well positioned elementary teachers are to teach engineering. This study examined elementary teachers' perceptions of and familiarity with design,engineering, and technology (DET). We collected data from 192 elementary teachers…

  10. Trends in U.S. Engineering and Engineering Technology: A Comparative Study of Admissions, Curricula, and Employment.

    ERIC Educational Resources Information Center

    Lebold, W. K.; Lebold, D. J.

    1985-01-01

    Discusses the admissions selection practices, educational programs, quality standards, and employment characteristics of engineering and engineering technology in the United States. The importance of these two occupations as part of technical teams (which include scientists and technicians) is documented and stressed. (JN)

  11. Science and Technology Resources on the Internet: Standards Resources for Engineering and Technology

    ERIC Educational Resources Information Center

    Phillips, Margaret; Huber, Sarah

    2017-01-01

    The goal of this webliography is to provide an introduction to standards resources for librarians that support post-secondary engineering and technology programs, as well as engineering and technology faculty members and students. It serves as a reference on standards collection development and integrating standards information literacy into…

  12. Teaching Sustainable Entrepreneurship to Engineering Students: The Case of Delft University of Technology

    ERIC Educational Resources Information Center

    Bonnet, Hans; Quist, Jaco; Hoogwater, Daan; Spaans, Johan; Wehrmann, Caroline

    2006-01-01

    Sustainability, enhancement of personal skills, social aspects of technology, management and entrepreneurship are of increasing concern for engineers and therefore for engineering education. In 1996 at Delft University of Technology this led to the introduction of a subject on sustainable entrepreneurship and technology in the course programmes of…

  13. Technology Education Benefits from the Inclusion of Pre-Engineering Education

    ERIC Educational Resources Information Center

    Rogers, Steve; Rogers, George E.

    2005-01-01

    Technology education is being taught today in almost every high school and middle school in America. Over 1000 technology education departments are now including pre-engineering education in their programs. According to these authors, the time has come for the profession to agree that including pre-engineering education in technology education…

  14. Primary School Students' Views about Science, Technology and Engineering

    ERIC Educational Resources Information Center

    Pekmez, Esin

    2018-01-01

    Some of the main goals of science education are to increase students' knowledge about the technology and engineering design process, and to train students as scientifically and technologically literate individuals. The main purpose of this study is to find out primary students' views about science, technology and engineering. For this aim and in…

  15. Development of Supersonic Vehicle for Demonstration of a Precooled Turbojet Engine

    NASA Astrophysics Data System (ADS)

    Sawai, Shujiro; Fujita, Kazuhisa; Kobayashi, Hiroaki; Sakai, Shin'ichiro; Bando, Nobutaka; Kadooka, Shouhei; Tsuboi, Nobuyuki; Miyaji, Koji; Uchiyama, Taku; Hashimoto, Tatsuaki

    JAXA is developing Mach 5 hypersonic turbojet engine technology that can be applied in a future hypersonic transport. Now, Jet Engine Technology Research Center of JAXA conducts the experimental study using a 1 / 10 scale-model engine. In parallel to engine development activities, a new supersonic flight-testing vehicle for the hypersonic turbojet engine is under development since 2004. In this paper, the system configuration of the flight-testing vehicle is outlined and development status is reported.

  16. Energy Efficient Engine integrated core/low spool design and performance report

    NASA Technical Reports Server (NTRS)

    Stearns, E. Marshall

    1985-01-01

    The Energy Efficient Engine (E3) is a NASA program to create fuel saving technology for future transport aircraft engines. The E3 technology advancements were demonstrated to operate reliably and achieve goal performance in tests of the Integrated Core/Low Spool vehicle. The first build of this undeveloped technology research engine set a record for low fuel consumption. Its design and detailed test results are herein presented.

  17. A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends.

    PubMed

    Damanik, Natalina; Ong, Hwai Chyuan; Tong, Chong Wen; Mahlia, Teuku Meurah Indra; Silitonga, Arridina Susan

    2018-06-01

    Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.

  18. Facilitation of University Technology Transfer Through a Cooperative Service-University-Industry Program.

    DTIC Science & Technology

    1997-02-01

    through technology transfer centers for applied engineering training and consulting, and second, in assisting and expanding university technology...both the services and industry with an applied engineering program and the training for new engineers and researchers, (2) serve as an information

  19. Precision genome engineering in lactic acid bacteria

    PubMed Central

    2014-01-01

    Innovative new genome engineering technologies for manipulating chromosomes have appeared in the last decade. One of these technologies, recombination mediated genetic engineering (recombineering) allows for precision DNA engineering of chromosomes and plasmids in Escherichia coli. Single-stranded DNA recombineering (SSDR) allows for the generation of subtle mutations without the need for selection and without leaving behind any foreign DNA. In this review we discuss the application of SSDR technology in lactic acid bacteria, with an emphasis on key factors that were critical to move this technology from E. coli into Lactobacillus reuteri and Lactococcus lactis. We also provide a blueprint for how to proceed if one is attempting to establish SSDR technology in a lactic acid bacterium. The emergence of CRISPR-Cas technology in genome engineering and its potential application to enhancing SSDR in lactic acid bacteria is discussed. The ability to perform precision genome engineering in medically and industrially important lactic acid bacteria will allow for the genetic improvement of strains without compromising safety. PMID:25185700

  20. Software Engineering Technology Infusion Within NASA

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1996-01-01

    Abstract technology transfer is of crucial concern to both government and industry today. In this paper, several software engineering technologies used within NASA are studied, and the mechanisms, schedules, and efforts at transferring these technologies are investigated. The goals of this study are: 1) to understand the difference between technology transfer (the adoption of a new method by large segments of an industry) as an industry-wide phenomenon and the adoption of a new technology by an individual organization (called technology infusion); and 2) to see if software engineering technology transfer differs from other engineering disciplines. While there is great interest today in developing technology transfer models for industry, it is the technology infusion process that actually causes changes in the current state of the practice.

  1. The Historical Basis of Engineering Ethics

    NASA Astrophysics Data System (ADS)

    Furuya, Keiichi

    There are different objects and motives between scientists and engineers. Science is to create new knowledge (episteme), while technology (techne) is to create new utility. Both types of social responsibility are required for engineer, because modern technology is tightly connected with science. The relationship between ethics for scientists and engineers is discussed as an evolution of ethical objects. A short history of engineering societies in U.S.A. and Japan are introduced with their ethical perspectives. As a conclusion, respect for fundamental rights for existence of those who stand in, with, and around engineers and their societies is needed for better engineering ethics.

  2. NLS propulsion - Government view

    NASA Technical Reports Server (NTRS)

    Smelser, Jerry W.

    1992-01-01

    The paper discusses the technology development for the Space Transportation Main Engine (STME). The STME is a liquid oxygen/liquid hydrogen engine with 650,000 pounds of thrust, which may be flown in single-engine or multiple-engine configurations, depending upon the payload and mission requirements. The technological developments completed so far include a vacuum plasma spray process, the liquid interface diffusion bonding, and a thin membrane platelet technology for the combustion chamber fabrication; baseline designs for the hydrogen turbopump and the oxygen pump; and the engine control system. The family of spacecraft for which this engine is being developed includes a 20,000 pound payload to LEO and a 150,000 pound to LEO vehicle.

  3. Small gas turbine engine technology

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, Richard W.; Meitner, Peter L.

    1988-01-01

    Performance of small gas turbine engines in the 250 to 1,000 horsepower size range is significantly lower than that of large engines. Engines of this size are typically used in rotorcraft, commutercraft, general aviation, and cruise missile applications. Principal reasons for the lower efficiencies of a smaller engine are well known: component efficients are lower by as much as 8 to 10 percentage points because of size effects. Small engines are designed for lower cycle pressures and temperatures because of smaller blading and cooling limitations. The highly developed analytical and manufacturing techniques evolved for large engines are not directly transferrable to small engines. Thus, it was recognized that a focused effort addressing technologies for small engies was needed and could significantly impact their performance. Recently, in-house and contract studies were undertaken at the NASA Lewis Research Center to identify advanced engine cycle and component requirements for substantial performance improvement of small gas turbines for projected year 2000 applications. The results of both in-house research and contract studies are presented. In summary, projected fuel savings of 22 to 42 percent could be obtained. Accompanying direct operating cost reductions of 11 to 17 percent, depending on fuel cost, were also estimated. High payoff technologies are identified for all engine applications, and recent results of experimental research to evolve the high payoff technologies are described.

  4. Prefreshman and cooperative education for minorities in engineering: Preface. Final report, October 20, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherry, N.C.

    1980-10-31

    The University of Dayton (UD) and Wilberforce University (WU) Preface Program provides a key component in a comprehensive and successful strategy for increasing minority group members and women students entering and graduating in engineering and engineering technology. The high school level includes programs for minority and women students, teachers, and counselors. The University level includes a Dual Degree Program (DDP) between Wilberforce University and the University of Dayton; freshman academic assistance and support programs and schlorships (PREFACE/INSTEP) for the critical freshman year; and, co-op employment to provide motivation and financial resources for students in upper classes. In the past fivemore » years, UD and WU have awarded 89 PREFACE/INSTEP scholarships to students entering UD or DDP and 75 are still in engineering or engineering technology for an outstanding retention rate of 84.27%. Thirty-seven scholarships have been funded by the DOE and its predecessor, the ERDA with a retention rate in engineering and engineering technology of 81.1%. There will be ten PREFACE students graduating in engineering and engineering technology in 1980-1981. The first ERDA Preface Scholar graduated in August 1980 and currently works for a DOE contractor - Monsanto Research Corporation.« less

  5. Systems Engineering Knowledge Asset (SEKA) Management for Higher Performing Engineering Teams: People, Process and Technology toward Effective Knowledge-Workers

    ERIC Educational Resources Information Center

    Shelby, Kenneth R., Jr.

    2013-01-01

    Systems engineering teams' value-creation for enterprises is slower than possible due to inefficiencies in communication, learning, common knowledge collaboration and leadership conduct. This dissertation outlines the surrounding people, process and technology dimensions for higher performing engineering teams. It describes a true experiment…

  6. High School Pre-Engineering Programs: Do They Contribute to College Retention?

    ERIC Educational Resources Information Center

    Cole, Belinda; High, Karen; Weinland, Kathryn

    2013-01-01

    The study examines the retention of students in the College of Engineering, Architecture and Technology at Oklahoma State University that enter college with a defined course sequence in a pre-engineering program from a regional career technology center as compared with the retention rates of university engineering students for the same time…

  7. Information Technologies in the System of Military Engineer Training of Cadets

    ERIC Educational Resources Information Center

    Khizhnaya, Anna V.; Kutepov, Maksim M.; Gladkova, Marina N.; Gladkov, Alexey V.; Dvornikova, Elena I.

    2016-01-01

    The necessity of enhancement of the information component in the military engineer training is determined by the result of a comparative analysis of global and national engineering education standards. The purpose is to substantiate the effectiveness and relevance of applying information technology in the system of military engineer training of…

  8. Coming to Terms with Engineering Design as Content

    ERIC Educational Resources Information Center

    Lewis, Theodore

    2005-01-01

    This article addresses the challenges posed by engineering design as a content area of technology education. What adjustments will technology teachers have to make in their approach to teaching and learning when they teach design as engineering in response to the new standards? How faithful to engineering as practiced must their approach be? There…

  9. The Technology of Forming of Innovative Content for Engineering Education

    ERIC Educational Resources Information Center

    Kayumova, Lilija A.; Savva, Lubov I.; Soldatchenko, Aleksandr L.; Sirazetdinov, Rustem M.; Akhmetov, Linar G.

    2016-01-01

    The relevance of the study is conditioned by the modernization of engineering education aimed at specialists' training to solve engineering and economic problems effectively. The goal of the paper is to develop the technology of the innovative content's formation for engineering education. The leading method to the study of this problem is a…

  10. Investigating Knowledge Creation Technology in an Engineering Course

    ERIC Educational Resources Information Center

    Jalonen, Satu; Lakkala, Minna; Paavola, Sami

    2011-01-01

    The aim of the present study was to examine the technological affordances of a web-based collaborative learning technology, Knowledge Practices Environment (KPE), for supporting different dimensions of knowledge creation processes. KPE was used by engineering students in a practically oriented undergraduate engineering course. The study…

  11. ETV TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES: LUBRIZOL ENGINE CONTROL SYSTEMS PURIFILTER SC17L

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Lubrizol Engine Control Systems Purifilter SC17L manufactured by Lubrizol Engine Control Systems. The technology is a precious and base metal, passively regenerated particulate filter...

  12. Engineer's Notebook--A Design Assessment Tool

    ERIC Educational Resources Information Center

    Kelley, Todd R.

    2011-01-01

    As technology education continues to consider a move toward an engineering design focus as proposed by various leaders in technology education, it will be necessary to employ new pedagogical approaches. Hill (2006) provided some new perspectives regarding pedagogical approaches for technology education with an engineering design focus. One…

  13. Integrating Engineering Design into Technology Education: Georgia's Perspective

    ERIC Educational Resources Information Center

    Denson, Cameron D.; Kelley, Todd R.; Wicklein, Robert C.

    2009-01-01

    This descriptive research study reported on Georgia's secondary level (grades 6-12) technology education programs capability to incorporate engineering concepts and/or engineering design into their curriculum. Participants were middle school and high school teachers in the state of Georgia who currently teach technology education. Participants…

  14. Impacts of Technological Changes in the Cyber Environment on Software/Systems Engineering Workforce Development

    DTIC Science & Technology

    2010-04-01

    for decoupled parallel development Ref: Barry Boehm 12 Impacts of Technological Changes in the Cyber Environment on Software/Systems Engineering... Pressman , R.S., Software Engineering: A Practitioner’s Approach, 13 Impacts of Technological Changes in the Cyber Environment on Software/Systems

  15. Facilitation of University Technology Transfer through a Cooperative Army-University-Industry Program,

    DTIC Science & Technology

    1995-01-01

    through Army technology transfer centers for applied engineering training and consulting, and second in assisting and expanding university technology...industry with an applied engineering program and the training for new engineers and researchers, serve as an information resource for both the Army and

  16. CTE's Role in Science, Technology, Engineering and Mathematics

    ERIC Educational Resources Information Center

    Hyslop, Alisha

    2010-01-01

    For the last several years, concern has been brewing about America's underinvestment and underperformance in science, technology, engineering and mathematics--the fields collectively known as STEM. STEM can be described as an initiative for securing America's leadership in science, technology, engineering and mathematics fields and identifying…

  17. Recent developments in turbomachinery component materials and manufacturing challenges for aero engine applications

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.

    2018-02-01

    In the recent years the development of turbomachinery materials performance enhancement plays a vital role especially in aircraft air breathing engines like turbojet engine, turboprop engine, turboshaft engine and turbofan engines. Especially the transonic flow engines required highly sophisticated materials where it can sustain the entire thrust which can create by the engine. The main objective of this paper is to give an overview of the present cost-effective and technological capabilities process for turbomachinery component materials. Especially the main focus is given to study the Electro physical, Photonic additive removal process and Electro chemical process for turbomachinery parts manufacture. The aeronautical propulsion based technologies are reviewed thoroughly where in surface reliability, geometrical precession, and material removal and highly strengthened composite material deposition rates usually difficult to cut dedicated steels, Titanium and Nickel based alloys. In this paper the past aeronautical and propulsion mechanical based manufacturing technologies, current sophisticated technologies and also future challenging material processing techniques are covered. The paper also focuses on the brief description of turbomachinery components of shaping process and coating in aeromechanical applications.

  18. General Aviation Turbine Engine (GATE) study

    NASA Technical Reports Server (NTRS)

    Baerst, C. F.; Furst, D. G.

    1979-01-01

    The feasibility of turbine engines for the smaller general aviation aircraft was investigated and a technology program for developing the necessary technology was identified. Major results included the definition of the 1988 general aviation market, the identification of turboprop and turboshaft engines that meet the requirements of the aircraft studies, a benefit analysis showing the superiority of gas turbine engines for portions of the market studied, and detailed plans for the development of the necessary technology.

  19. Opportunities in Civil Engineering. [VGM Career Horizons Series].

    ERIC Educational Resources Information Center

    Hagerty, D. Joseph; Heer, John E., Jr.

    This book presents information on career opportunities in civil engineering. Chapter 1 focuses on the scope of civil engineering, discussing: role of scientist, engineer, and technologists; engineering and engineering technology; civil engineer's role and obligations; and other information. Chapter 2 considers such aspects of the education for…

  20. Precision engineering: an evolutionary perspective.

    PubMed

    Evans, Chris J

    2012-08-28

    Precision engineering is a relatively new name for a technology with roots going back over a thousand years; those roots span astronomy, metrology, fundamental standards, manufacturing and money-making (literally). Throughout that history, precision engineers have created links across disparate disciplines to generate innovative responses to society's needs and wants. This review combines historical and technological perspectives to illuminate precision engineering's current character and directions. It first provides us a working definition of precision engineering and then reviews the subject's roots. Examples will be given showing the contributions of the technology to society, while simultaneously showing the creative tension between the technological convergence that spurs new directions and the vertical disintegration that optimizes manufacturing economics.

  1. Examination of Assessment Practices for Engineering Design Projects in Secondary Technology Education (Second Article in 3-Part Series)

    ERIC Educational Resources Information Center

    Kelley, Todd R.; Wicklein, Robert C.

    2009-01-01

    Based on the efforts to infuse engineering practices within the technology education curriculum it is appropriate to now investigate how technology education teachers are assessing engineering design activities within their classrooms. This descriptive study drew a full sample of high school technology teachers from the current International…

  2. Ceramic Technology For Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less

  3. Stratified charge rotary aircraft engine technology enablement program

    NASA Technical Reports Server (NTRS)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  4. Study of an advanced General Aviation Turbine Engine (GATE)

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Short, F. R.; Staton, D. V.; Zolezzi, B. A.; Curry, C. E.; Orelup, M. J.; Vaught, J. M.; Humphrey, J. M.

    1979-01-01

    The best technology program for a small, economically viable gas turbine engine applicable to the general aviation helicopter and aircraft market for 1985-1990 was studied. Turboshaft and turboprop engines in the 112 to 746 kW (150 to 1000 hp) range and turbofan engines up to 6672 N (1500 lbf) thrust were considered. A good market for new turbine engines was predicted for 1988 providing aircraft are designed to capitalize on the advantages of the turbine engine. Parametric engine families were defined in terms of design and off-design performance, mass, and cost. These were evaluated in aircraft design missions selected to represent important market segments for fixed and rotary-wing applications. Payoff parameters influenced by engine cycle and configuration changes were aircraft gross mass, acquisition cost, total cost of ownership, and cash flow. Significant advantage over a current technology, small gas turbine engines was found especially in cost of ownership and fuel economy for airframes incorporating an air-cooled high-pressure ratio engine. A power class of 373 kW (500 hp) was recommended as the next frontier for technology advance where large improvements in fuel economy and engine mass appear possible through component research and development.

  5. A summary of NASA/Air Force full scale engine research programs using the F100 engine

    NASA Technical Reports Server (NTRS)

    Deskin, W. J.; Hurrell, H. G.

    1979-01-01

    A full scale engine research (FSER) program conducted with the F100 engine is presented. The program mechanism is described and the F100 test vehicles utilized are illustrated. Technology items were addressed in the areas of swirl augmentation, flutter phenomenon, advanced electronic control logic theory, strain gage technology and distortion sensitivity. The associated test programs are described. The FSER approach utilizes existing state of the art engine hardware to evaluate advanced technology concepts and problem areas. Aerodynamic phenomenon previously not considered by design systems were identified and incorporated into industry design tools.

  6. Energy efficient engine preliminary design and integration study

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1978-01-01

    The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.

  7. 47 CFR 5.55 - Filing of applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the Office of Engineering and Technology Web site https://gullfoss2.fcc.gov/prod/oet/cf/els/index.cfm... Office of Engineering and Technology Web site https://gullfoss2.fcc.gov/prod/oet/cf/els/index.cfm... instead be submitted to the Commission's Office of Engineering and Technology, Washington, DC 20554...

  8. 47 CFR 5.55 - Filing of applications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the Office of Engineering and Technology Web site https://gullfoss2.fcc.gov/prod/oet/cf/els/index.cfm... Office of Engineering and Technology Web site https://gullfoss2.fcc.gov/prod/oet/cf/els/index.cfm... instead be submitted to the Commission's Office of Engineering and Technology, Washington, DC 20554...

  9. Open Campus: Strategic Plan

    DTIC Science & Technology

    2016-05-01

    The formal and informal interactions among scientists, engineers, and business and technology specialists fostered by this environment will lead...pathways for highly trained graduates of science, technology, engineering, and mathematics (STEM) academic programs, and help academic institutions...engineering and mathematics (STEM) disciplines relevant to ARL science and technology programs. Under EPAs, visiting students and professors

  10. 77 FR 4736 - Nonconformance Penalties for On-Highway Heavy-Duty Diesel Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... entire model year 2012 production. This manufacturer intends to use a different technology to meet the NO.... (2) Baseline Engine Technology Most manufacturers generally have never had production engines at 0.50... Risks'' H. Executive Order 13211 (Energy Effects) I. National Technology Transfer Advancement Act J...

  11. 47 CFR 5.55 - Filing of applications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the Office of Engineering and Technology Web site https://gullfoss2.fcc.gov/prod/oet/cf/els/index.cfm... Office of Engineering and Technology Web site https://gullfoss2.fcc.gov/prod/oet/cf/els/index.cfm... instead be submitted to the Commission's Office of Engineering and Technology, Washington, DC 20554...

  12. Bridges with Trigonometry Equals Engineering Achievement

    ERIC Educational Resources Information Center

    Gathing, Ahmed L.

    2011-01-01

    Exemplary and fun technology education classes in high schools are always welcome. The author introduces bridge building to his ninth graders and other students who comprise the Introduction to Engineering and Technology course within the first two months of the fall semester. In Georgia, Introduction to Engineering and Technology is the first of…

  13. Recent development on computer aided tissue engineering--a review.

    PubMed

    Sun, Wei; Lal, Pallavi

    2002-02-01

    The utilization of computer-aided technologies in tissue engineering has evolved in the development of a new field of computer-aided tissue engineering (CATE). This article reviews recent development and application of enabling computer technology, imaging technology, computer-aided design and computer-aided manufacturing (CAD and CAM), and rapid prototyping (RP) technology in tissue engineering, particularly, in computer-aided tissue anatomical modeling, three-dimensional (3-D) anatomy visualization and 3-D reconstruction, CAD-based anatomical modeling, computer-aided tissue classification, computer-aided tissue implantation and prototype modeling assisted surgical planning and reconstruction.

  14. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Work to develop and demonstrate the technology of structural ceramics for automotive engines and similar applications is described. Long-range technology is being sought to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. The Advanced Turbine Technology Application Project (ATTAP) test bed engine is designed such that, when installed in a 3,000 pound inertia weight automobile, it will provide low emissions, 42 miles per gallon fuel economy on diesel fuel, multifuel capability, costs competitive with current spark ignition engines, and noise and safety characteristics that meet Federal standards.

  15. An Historical Perspective of the NERVA Nuclear Rocket Engine Technology Program

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Finger, H. B.

    1991-01-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  16. Diesel Engine Technology Update

    DTIC Science & Technology

    1987-07-01

    AFWAL-TR-87-20 54 83-021-DET DIESEL ENGINE TECHNOLOGY UPDATE Kaupert, Andrew W., Lt. Col. USAFR Air Force Reserves Detroit Detachment 2 Ann Arbor, MI...sponsored adiabatic turbocompound diesel engine . One goal was the use of no water or air cooling for the engine to enable the minimized heat transfer from...sector with severe • impact on the stationary engine segment of the marketplace. The effect of this proposed legislation on Air Force fuel quality is

  17. Acoustics and Thrust of Separate Flow Exhaust Nozzles With Mixing Devices Investigated for High Bypass Ratio Engines

    NASA Technical Reports Server (NTRS)

    Saiyed, Naseem H.

    2000-01-01

    Typical installed separate-flow exhaust nozzle system. The jet noise from modern turbofan engines is a major contributor to the overall noise from commercial aircraft. Many of these engines use separate nozzles for exhausting core and fan streams. As a part of NASA s Advanced Subsonic Technology (AST) program, the NASA Glenn Research Center at Lewis Field led an experimental investigation using model-scale nozzles in Glenn s Aero-Acoustic Propulsion Laboratory. The goal of the investigation was to develop technology for reducing the jet noise by 3 EPNdB. Teams of engineers from Glenn, the NASA Langley Research Center, Pratt & Whitney, United Technologies Research Corporation, the Boeing Company, GE Aircraft Engines, Allison Engine Company, and Aero Systems Engineering contributed to the planning and implementation of the test.

  18. Design approaches to more energy efficient engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.; Colladay, R. S.; Macioce, L. E.

    1978-01-01

    The status of NASA's Energy Efficient Engine Project, a comparative government-industry effort aimed at advancing the technology base for the next generation of large turbofan engines for civil aircraft transports is summarized. Results of recently completed studies are reviewed. These studies involved selection of engine cycles and configurations that offer potential for at least 12% lower fuel consumption than current engines and also are economically attractive and environmentally acceptable. Emphasis is on the advancements required in component technologies and systems design concepts to permit future development of these more energy efficient engines.

  19. Orbital transfer rocket engine technology 7.5K-LB thrust rocket engine preliminary design

    NASA Technical Reports Server (NTRS)

    Harmon, T. J.; Roschak, E.

    1993-01-01

    A preliminary design of an advanced LOX/LH2 expander cycle rocket engine producing 7,500 lbf thrust for Orbital Transfer vehicle missions was completed. Engine system, component and turbomachinery analysis at both on design and off design conditions were completed. The preliminary design analysis results showed engine requirements and performance goals were met. Computer models are described and model outputs are presented. Engine system assembly layouts, component layouts and valve and control system analysis are presented. Major design technologies were identified and remaining issues and concerns were listed.

  20. Positive displacement type general-aviation engines: Summary and concluding remarks

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.

    1980-01-01

    The activities of programs investigating various aspects of aircraft internal combustion engines are briefly described including developments in fuel injection technology, cooling systems and drag reduction, turbocharger technology, and stratified-charge rotary engines.

  1. John Lewis | NREL

    Science.gov Websites

    Lewis John Lewis John Lewis Researcher IV-Chemical Engineering John.Lewis@nrel.gov | 303-275-3021 Education Ph.D. Chemical Engineering, California Institute of Technology, Pasadena, CA, 1996 M.S. Chemical Engineering, California Institute of Technology, Pasadena, CA, 1993 B.S. Chemical Engineering, Texas A&M

  2. Heat Pipes Reduce Engine-Exhaust Emissions

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1986-01-01

    Increased fuel vaporization raises engine efficiency. Heat-pipe technology increased efficiency of heat transfer beyond that obtained by metallic conduction. Resulted in both improved engine operation and reduction in fuel consumption. Raw material conservation through reduced dependence on strategic materials also benefit from this type of heat-pipe technology. Applications result in improved engine performance and cleaner environment.

  3. Integrating Communication into Engineering Curricula: An Interdisciplinary Approach to Facilitating Transfer at New Mexico Institute of Mining and Technology

    ERIC Educational Resources Information Center

    Ford, Julie Dyke

    2012-01-01

    This program profile describes a new approach towards integrating communication within Mechanical Engineering curricula. The author, who holds a joint appointment between Technical Communication and Mechanical Engineering at New Mexico Institute of Mining and Technology, has been collaborating with Mechanical Engineering colleagues to establish a…

  4. Engineering's Grand Challenges: Priorities and Integration Recommendations for Technology Education Curriculum Development

    ERIC Educational Resources Information Center

    Buelin, Jennifer; Clark, Aaron C.; Ernst, Jeremy V.

    2016-01-01

    In this study, the 14 Grand Challenges for Engineering in the 21st Century identified by the National Academy of Engineering were examined by a panel of experts in an effort to identify prospective curricular integration opportunities in the field of technology and engineering education. The study utilized a three-round modified Delphi methodology…

  5. Noise Reduction Technologies for Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2007-01-01

    Significant progress continues to be made with noise reduction for turbofan engines. NASA has conducted and sponsored research aimed at reducing noise from commercial aircraft. Since it takes many years for technologies to be developed and implemented, it is important to have aggressive technology goals that lead the target entry into service dates. Engine noise is one of the major contributors to the overall sound levels as aircraft operate near airports. Turbofan engines are commonly used on commercial transports due to their advantage for higher performance and lower noise. The noise reduction comes from combinations of changes to the engine cycle parameters and low noise design features. In this paper, an overview of major accomplishments from recent NASA research programs for engine noise will be given.

  6. Information Protection Engineering: Using Technology and Experience to Protect Assets

    DTIC Science & Technology

    2001-07-01

    SAIC’s highly experienced team has developed technology, techniques and expertise in protecting these information assets from electronic attack by...criminals, terrorists, hackers or nation states. INFORMATION PROTECTION ENGINEERING : Using Technology and Experience to Protect Assets William J. Marlow... Engineering : Using Technology and Experience to Protect Assets Contract or Grant Number Program Element Number Authors Marlow, William J. Project

  7. [The Engineering and Technical Services Directorate at the Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Moon, James

    2004-01-01

    My name is James Moon and I am a senior at Tennessee State University where my major is Aeronautical and Industrial Technology with a concentration in industrial electronics. I am currently serving my internship in the Engineering and Technical Services Directorate at the Glenn Research Center (GRC). The Engineering and Technical Service Directorate provides the services and infrastructure for the Glenn Research Center to take research concepts to reality. They provide a full range of integrated services including engineering, advanced prototyping and testing, facility management, and information technology for NASA, industry, and academia. Engineering and Technical Services contains the core knowledge in Information Technology (IT). This includes data systems and analysis, inter and intranet based systems design and data security. Including the design and development of embedded real-time s o h a r e applications for flight and supporting ground systems, Engineering and Technical Services provide a wide range of IT services and products specific to the Glenn Research Center research and engineering community. In the 7000 Directorate I work directly in the 7611 organization. This organization is known as the Aviation Environments Technical Branch. My mentor is Vincent Satterwhite who is also the Branch Chief of the Aviation Environments Technical Branch. In this branch, I serve as the Assistant program manager of the Engineering Technology Program. The Engineering Technology Program (ETP) is one of three components of the High School L.E.R.C.I.P. This is an Agency-sponsored, eight-week research-based apprenticeship program designed to attract traditionally underrepresented high school students that demonstrate an aptitude for and interest in mathematics, science, engineering, and technology.

  8. Performance potential of an advanced technology Mach 3 turbojet engine installed on a conceptual high-speed civil transport

    NASA Technical Reports Server (NTRS)

    Morris, Shelby J., Jr.; Geiselhart, Karl A.; Coen, Peter G.

    1989-01-01

    The performance of an advanced technology conceptual turbojet optimized for a high-speed civil aircraft is presented. This information represents an estimate of performance of a Mach 3 Brayton (gas turbine) cycle engine optimized for minimum fuel burned at supersonic cruise. This conceptual engine had no noise or environmental constraints imposed upon it. The purpose of this data is to define an upper boundary on the propulsion performance for a conceptual commercial Mach 3 transport design. A comparison is presented demonstrating the impact of the technology proposed for this conceptual engine on the weight and other characteristics of a proposed high-speed civil transport. This comparison indicates that the advanced technology turbojet described could reduce the gross weight of a hypothetical Mach 3 high-speed civil transport design from about 714,000 pounds to about 545,000 pounds. The aircraft with the baseline engine and the aircraft with the advanced technology engine are described.

  9. Concise Review: Organ Engineering: Design, Technology, and Integration.

    PubMed

    Kaushik, Gaurav; Leijten, Jeroen; Khademhosseini, Ali

    2017-01-01

    Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling technologies including biocompatible biomaterials and biofabrication platforms such as three-dimensional bioprinting. When engineering complex tissues and organs, core design principles must be taken into account, such as the structure-function relationship, biochemical signaling, mechanics, gradients, and spatial constraints. Technological advances in biomaterials, biofabrication, and biomedical imaging allow for in vitro control of these factors to recreate in vivo phenomena. Finally, organ engineering emerges as an integration of biological design and technical rigor. An overall workflow for organ engineering and guiding technology to advance biology as well as a perspective on necessary future iterations in the field is discussed. Stem Cells 2017;35:51-60. © 2016 AlphaMed Press.

  10. Application of Advanced Materials in Petroleum Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Gufan; Di, Weina; Wang, Minsheng

    With the background of increasing requirements on the petroleum engineering technology from more high demanding exploration targets, global oil companies and oil service companies are making more efforts on both R&D and application of new petroleum engineering technology. Advanced materials always have a decisive role in the functionality of a new product. Technology transplantation has become the important means of innovation in oil and gas industry. Here, we mainly discuss the properties and scope of application of several advanced materials. Based on the material requirements in petroleum engineering, we provide several candidates for downhole electronics protection, drilling fluid additives, downhole tools, etc. Based on the analysis of petroleum engineering technology characteristics, this paper made analysis and research on such advanced materials as new insulation materials, functional gradient materials, self-healing polymers, and introduced their application prospect in petroleum engineering in terms of specific characteristics.

  11. The development and application of CFD technology in mechanical engineering

    NASA Astrophysics Data System (ADS)

    Wei, Yufeng

    2017-12-01

    Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.

  12. Engineering Philosophy: Theories of Technology, German Idealism, and Social Order in High-Industrial Germany.

    PubMed

    Voskuhl, Adelheid

    During the so-called "Second Industrial Revolution," engineers were constituting themselves as a new social and professional group, and found themselves in often fierce competition with existing elites-the military, the nobility, and educated bourgeois mandarins-whose roots went back to medieval and early modern pre-industrial social orders. During that same time, engineers also discovered the discipline of philosophy: as a means to express their intellectual and social agendas, and to theorize technology and its relationship to art, history, culture, philosophy, and the state. This article analyzes engineers' own philosophical writings about technology as well as the institutions in which they composed them in 1910s and 1920s Germany. It emphasizes engineers' contributions to well-known discourses founded by canonical philosophers, the role of preindustrial economies and their imagination in such philosophies, and the role of both the history and the philosophy of technology in engineers' desire for upward social mobility.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 54: The technical communications practices of engineering technology students: Results of the NASA/DOD Aerospace Knowledge Diffusion Research Project phase 3 student surveys

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; England, Mark; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    Engineering technology programs are characterized by their focus on application and practice, and by their approximately 50/50 mix of theory and laboratory experience. Engineering technology graduates are employed across the technological spectrum and are often found in areas that deal with application, implementation, and production. Yet we know very little about the communications practices and information-use skills of engineering technology students. In this paper, we report selected results of an exploratory study of engineering technology students enrolled in three U.S. institutions of higher education. Data are presented for the following topics: career goals and aspirations; the importance of, receipt of, and helpfulness of communications and information-use skills instruction; collaborative writing; use of libraries; and the use of electronic (computer) networks.

  14. A status report on the Energy Efficient Engine Project

    NASA Technical Reports Server (NTRS)

    Macioce, L. E.; Schaefer, J. W.; Saunders, N. T.

    1980-01-01

    The Energy Efficient Engine (E3) Project is directed at providing, by 1984, the advanced technologies which could be used for a new generation of fuel conservative turbofan engines. This paper summarizes the scope of the entire project and the current status of these efforts. Included is a description of the preliminary designs of the fully developed engines, the potential benefits of these advanced engines, and highlights of some of the component technology efforts conducted to date.

  15. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    ATTAP activities were highlighted by test bed engine design and development activities; ceramic component design; materials and engine component characterization; ceramic component process development and fabrication; component rig testing; and test bed engine fabrication and testing. Specifically, ATTAP aims to develop and demonstrate the technology of structural ceramics that have the potential for competitive automotive engine life cycle cost and for operating for 3500 hours in a turbine engine environment at temperatures up to 1371 C (2500 F).

  16. DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakim, Nabil Balnaves, Mike

    2003-05-27

    DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuelmore » economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.« less

  17. Ceramic Technology Project semiannual progress report, April 1992--September 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    1993-07-01

    This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments,more » and ceramic coatings for thermal barrier and wear applications in these engines.« less

  18. An Educational Program of Mechatronics for Multidisciplinary Knowledge Acquisition

    NASA Astrophysics Data System (ADS)

    Watanuki, Keiichi; Kojima, Kazuyuki

    Recently, as the technologies surrounding mechanical engineering have improved remarkably, the expectations for students who graduate from departments of mechanical engineering have increased. For example, in order to develop a mechatronics system, a student needs to integrate a wide variety of technologies, such as mechanical engineering, electrical and electronics engineering, and information technology. Therefore, from the perspective of educators, the current education system, which stresses expertizing each technology, should be replaced by an education system that stresses integrating multidisciplinary knowledge. In this paper, a trial education program for students of the department of mechanical engineering in our university, in which students are required to integrate multidisciplinary knowledge in order to develop a biologically-based robot, is described. Finally, the efficacy of the program is analyzed.

  19. Multi-Fuel Rotary Engine for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  20. Oil-Free Turbomachinery Team Passed Milestone on Path to the First Oil-Free Turbine Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Bream, Bruce L.

    2002-01-01

    The Oil-Free Turbine Engine Technology Project team successfully demonstrated a foil-air bearing designed for the core rotor shaft of a turbine engine. The bearings were subjected to test conditions representative of the engine core environment through a combination of high speeds, sustained loads, and elevated temperatures. The operational test envelope was defined during conceptual design studies completed earlier this year by bearing manufacturer Mohawk Innovative Technologies and the turbine engine company Williams International. The prototype journal foil-air bearings were tested at the NASA Glenn Research Center. Glenn is working with Williams and Mohawk to create a revolution in turbomachinery by developing the world's first Oil-Free turbine aircraft engine. NASA's General Aviation Propulsion project and Williams International recently developed the FJX-2 turbofan engine that is being commercialized as the EJ-22. This core bearing milestone is a first step toward a future version of the EJ-22 that will take advantage of recent advances in foil-air bearings by eliminating the need for oil lubrication systems and rolling element bearings. Oil-Free technology can reduce engine weight by 15 percent and let engines operate at very high speeds, yielding power density improvements of 20 percent, and reducing engine maintenance costs. In addition, with NASA coating technology, engines can operate at temperatures up to 1200 F. Although the project is still a couple of years from a full engine test of the bearings, this milestone shows that the bearing design exceeds the expected environment, thus providing confidence that an Oil-Free turbine aircraft engine will be attained. The Oil-Free Turbomachinery Project is supported through the Aeropropulsion Base Research Program.

  1. A Qualitative Study of African American Women in Engineering Technology Programs in Community Colleges

    ERIC Educational Resources Information Center

    Blakley, Jacquelyn

    2016-01-01

    This study examined the experiences of African American women in engineering technology programs in community colleges. There is a lack of representation of African American women in engineering technology programs throughout higher education, especially in community/technical colleges. There is also lack of representation of African American…

  2. An Evaluation of HigherEd 2.0 Technologies in Undergraduate Mechanical Engineering Courses

    ERIC Educational Resources Information Center

    Orange, Amy; Heinecke, Walter; Berger, Edward; Krousgrill, Charles; Mikic, Borjana; Quinn, Dane

    2012-01-01

    Between 2006 and 2010, sophomore engineering students at four universities were exposed to technologies designed to increase their learning in undergraduate engineering courses. Our findings suggest that students at all sites found the technologies integrated into their courses useful to their learning. Video solutions received the most positive…

  3. The Study of the Effectiveness of Scholarship Grant Program on Low-Income Engineering Technology Students

    ERIC Educational Resources Information Center

    Ononye, Lawretta C.; Bong, Sabel

    2018-01-01

    This paper investigates the effectiveness of a National Science Foundation Scholarship in Science, Technology, Engineering, and Mathematics (NSF S-STEM) program named "Scholarship for Engineering Technology (SET)" at the State University of New York in Canton (SUNY Canton). The authors seek to answer the following question: To what…

  4. A Survey of Computer Use in Associate Degree Programs in Engineering Technology.

    ERIC Educational Resources Information Center

    Cunningham, Pearley

    As part of its annual program review process, the Department of Engineering Technology at the Community College of Allegheny County, in Pennsylvania, conducted a study of computer usage in community college engineering technology programs across the nation. Specifically, the study sought to determine the types of software, Internet access, average…

  5. E-Laboratory Design and Implementation for Enhanced Science, Technology and Engineering Education

    ERIC Educational Resources Information Center

    Morton, William; Uhomoibhi, James

    2011-01-01

    Purpose: This paper aims to report on the design and implementation of an e-laboratory for enhanced science, technology and engineering education studies. Design/methodology/approach: The paper assesses a computer-based e-laboratory, designed for new entrants to science, technology and engineering programmes of study in further and higher…

  6. Toys for Tots in Your Technology and Engineering Program

    ERIC Educational Resources Information Center

    Berkeihiser, Mike

    2016-01-01

    Most technology and engineering (T&E) classes are elective, so teachers are always looking for ways to market programs, engage students, and remind administrators and school board members about the good things T&E teachers do with and for kids. In this article, the Unionville High School (PA) Technology and Engineering Department describes…

  7. Measurement System for Energetic Materials Decomposition

    DTIC Science & Technology

    2015-01-05

    scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: Student Metrics This section only applies to...science, mathematics, engineering, or technology fields: The number of undergraduates funded by your agreement who graduated during this period and...will continue to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields

  8. Genome scale engineering techniques for metabolic engineering.

    PubMed

    Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T

    2015-11-01

    Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developingmore » the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.« less

  10. Creating Learning Environment Connecting Engineering Design and 3D Printing

    NASA Astrophysics Data System (ADS)

    Pikkarainen, Ari; Salminen, Antti; Piili, Heidi

    Engineering education in modern days require continuous development in didactics, pedagogics and used practical methods. 3D printing provides excellent opportunity to connect different engineering areas into practice and produce learning by doing applications. The 3D-printing technology used in this study is FDM (Fused deposition modeling). FDM is the most used 3D-printing technology by commercial numbers at the moment and the qualities of the technology makes it popular especially in academic environments. For achieving the best result possible, students will incorporate the principles of DFAM (Design for additive manufacturing) into their engineering design studies together with 3D printing. This paper presents a plan for creating learning environment for mechanical engineering students combining the aspects of engineering design, 3D-CAD learning and AM (additive manufacturing). As a result, process charts for carrying out the 3D printing process from technological point of view and design process for AM from engineering design point of view were created. These charts are used in engineering design education. The learning environment is developed to work also as a platform for Bachelor theses, work-training environment for students, prototyping service centre for cooperation partners and source of information for mechanical engineering education in Lapland University of Applied Sciences.

  11. Clinical engineering and risk management in healthcare technological process using architecture framework.

    PubMed

    Signori, Marcos R; Garcia, Renato

    2010-01-01

    This paper presents a model that aids the Clinical Engineering to deal with Risk Management in the Healthcare Technological Process. The healthcare technological setting is complex and supported by three basics entities: infrastructure (IS), healthcare technology (HT), and human resource (HR). Was used an Enterprise Architecture - MODAF (Ministry of Defence Architecture Framework) - to model this process for risk management. Thus, was created a new model to contribute to the risk management in the HT process, through the Clinical Engineering viewpoint. This architecture model can support and improve the decision making process of the Clinical Engineering to the Risk Management in the Healthcare Technological process.

  12. A Feasibility Study for Advanced Technology Integration for General Aviation.

    DTIC Science & Technology

    1980-05-01

    154 4.5.9.4 Stratified Charge Reciprocating Engine ..... .. 155 4.5.9.5 Advanced Diesel Engine . ... 158 4.5.9.6 Liquid Cooling ... ........ 159... diesel , rotary combustion engine, advanced reciprocating engine concepts. (7) Powerplant control - integrated controls, microprocessor- based controls...Research Center Topics. (1) GATE (2) Positive displacement engines (a) Advanced reciprocating engines. (b) Alternative engine systems Diesel engines

  13. Supporting research and technology for automotive Stirling engine development

    NASA Technical Reports Server (NTRS)

    Tomazic, W. A.

    1980-01-01

    The technology advancement topics described are a part of the supporting research and technology (SRT) program conducted to support the major Stirling engine development program. This support focuses on developing alternatives or backups to the engine development in critical areas. These areas are materials, seals control, combustors and system analysis. Specific objectives and planned milestone schedules for future activities as now envisioned are described. These planned SRT activities are related to the timeline of the engine development program that they must support.

  14. Ceramic Technology for Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional researchmore » is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.« less

  15. Energy Efficient Engine: Flight propulsion system final design and analysis

    NASA Technical Reports Server (NTRS)

    Davis, Donald Y.; Stearns, E. Marshall

    1985-01-01

    The Energy Efficient Engine (E3) is a NASA program to create fuel saving technology for future transport engines. The Flight Propulsion System (FPS) is the engine designed to achieve E3 goals. Achieving these goals required aerodynamic, mechanical and system technologies advanced beyond that of current production engines. These technologies were successfully demonstrated in component rigs, a core engine and a turbofan ground test engine. The design and benefits of the FPS are presented. All goals for efficiency, environmental considerations, and economic payoff were met. The FPS has, at maximum cruise, 10.67 km (35,000 ft), M0.8, standard day, a 16.9 percent lower installed specific fuel consumption than a CF6-50C. It provides an 8.6 percent reduction in direct operating cost for a short haul domestic transport and a 16.2 percent reduction for an international long distance transport.

  16. Activities of the Institute for Mechanical Engineering

    NASA Astrophysics Data System (ADS)

    The Institute of Mechanical Engineering (IME) is part of Canada's National Research Council. Its mission is to undertake, support, promote, and disseminate research and development in the mechanical engineering aspects of three vital sectors of the Canadian economy: transportation, resource industries, and manufacturing. The IME achieves its mission by performing research and development in its own facilities; by developing, providing, and transferring expertise and knowledge; by making its research facilities available to collaborators and clients; and by participating in international liaison and collaborative research activities. Six research programs are conducted in the IME: Advanced Manufacturing Technology; Coastal Zone Engineering; Cold Regions Engineering; Combustion and Fluids Engineering; Ground Transportation Technology; and Machinery and Engine Technology. The rationale and major research thrusts of each program are described, and specific achievements in 1991-92 are reviewed. Lists of technical reports and papers presented by IME personnel are also included.

  17. Engineering Research and Technology Development on the Space Station

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report identifies and assesses the kinds of engineering research and technology development applicable to national, NASA, and commercial needs that can appropriately be performed on the space station. It also identifies the types of instrumentation that should be included in the space station design to support engineering research. The report contains a preliminary assessment of the potential benefits to U.S. competitiveness of engineering research that might be conducted on a space station, reviews NASA's current approach to jointly funded or cooperative experiments, and suggests modifications that might facilitate university and industry participation in engineering research and technology development activities on the space station.

  18. Conventional engine technology. Volume 1: Status of OTTO cycle engine technology

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.

    1981-01-01

    Federally-mandated emissions standards have led to major changes in automotive technology during the last decade. Efforts to satisfy the new standards were directed more toward the use of add-on devices, such as catalytic converters, turbochargers, and improved fuel metering, than toward complete engine redesign. The resulting changes are described and the improvement brought about by them in fuel economy and emissions levels are fully documented. Four specific categories of gasoline-powered internal combustion engines are covered, including subsystem and total engine development. Also included are the results of fuel economy and exhaust emissions tests performed on representative vehicles from each category.

  19. An overview of in-flight plume diagnostics for rocket engines

    NASA Technical Reports Server (NTRS)

    Madzsar, G. C.; Bickford, R. L.; Duncan, D. B.

    1992-01-01

    An overview and progress report of the work performed or sponsored by LeRC toward the development of in-flight plume spectroscopy technology for health and performance monitoring of liquid propellant rocket engines are presented. The primary objective of this effort is to develop technology that can be utilized on any flight engine. This technology will be validated by a hardware demonstration of a system capable of being retrofitted onto the Space Shuttle Main Engines for spectroscopic measurements during flight. The philosophy on system definition and status on the development of instrumentation, optics, and signal processing with respect to implementation on a flight engine are discussed.

  20. What Chemistry To Teach Engineers?

    ERIC Educational Resources Information Center

    Hawkes, Stephen J.

    2000-01-01

    Examines possible general chemistry topics that would be most relevant and practical for engineering majors. Consults the Accreditation Board for Engineering and Technology (ABET), engineering textbooks, texts from other required subjects, and practicing engineers for recommendations. (Contains 24 references.) (WRM)

  1. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing," evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door, were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  2. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  3. 23 CFR 650.309 - Qualifications of personnel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Safety Inspector under the National Society of Professional Engineer's program for National Certification in Engineering Technologies (NICET) and have successfully completed an FHWA approved comprehensive... Accreditation Board for Engineering and Technology; (ii) Successfully passed the National Council of Examiners...

  4. 23 CFR 650.309 - Qualifications of personnel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Safety Inspector under the National Society of Professional Engineer's program for National Certification in Engineering Technologies (NICET) and have successfully completed an FHWA approved comprehensive... Accreditation Board for Engineering and Technology; (ii) Successfully passed the National Council of Examiners...

  5. FY04 Engineering Technology Reports Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, R M

    2005-01-27

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2004, and exemplifies Engineering's more than 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investmentmore » in technologies is carried out through two programs, the ''Tech Base'' program and the LDRD program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply technologies to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2004, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the long-term science and technology investments for the Directorate. The Centers represent technologies that have been identified as critical for the present and future work of the Laboratory, and are chartered to develop their respective areas. Their LDRD projects are the key resources to attain this competency, and, as such, nearly all of Engineering's portfolio falls under one of the five Centers. The Centers and their Directors are: (1) Center for Computational Engineering: Robert M. Sharpe; (2) Center for Microtechnology and Nanotechnology: Raymond P. Mariella, Jr.; (3) Center for Nondestructive Characterization: Harry E. Martz, Jr.; (4) Center for Precision Engineering: Keith Carlisle; and (5) Center for Complex Distributed Systems: Gregory J. Suski, Acting Director.« less

  6. Examining the Extent to Which Select Teacher Preparation Experiences Inform Technology and Engineering Educators' Teaching of Science Content and Practices

    ERIC Educational Resources Information Center

    Love, Tyler S.

    2015-01-01

    With the recent release of the "Next Generation Science Standards" (NGSS) (NGSS Lead States, 2014b) science educators were expected to teach engineering content and practices within their curricula. However, technology and engineering (T&E) educators have been expected to teach content and practices from engineering and other…

  7. Mason Bee Habitations: Teaching Proper "Making" Skill through Authentic Engineering Design Contests. Resources in Technology and Engineering

    ERIC Educational Resources Information Center

    Cool, Nate; Strimel, Greg J.; Croly, Michael; Grubbs, Michael E.

    2017-01-01

    To be technologically and engineering literate, people should be able to "make" or produce quality solutions to engineering design challenges while recognizing and understanding how to avoid hazards in a broad array of situations when properly using tools, machines, and materials (Haynie, 2009; Gunter, 2007; ITEA/ITEEA, 2000/2002/2007).…

  8. Engineering and Technology: The Public's Perspective--Part 2: A Qualitative Analysis for the National Academy of Engineering.

    ERIC Educational Resources Information Center

    Doble, John; Komarnicki, Mary

    This report for the National Academy of Engineering's Office of Public Awareness represents the second phase of an examination of public opinion about engineering and technology. This document presents an analysis of six qualitative, focused group discussions or focus groups. Five of these groups were college educated Americans and one was…

  9. Pollution reduction technology program for small jet aircraft engines: Class T1

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Mongia, H. C.

    1977-01-01

    Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated.

  10. Information engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, D.N.

    1997-02-01

    The Information Engineering thrust area develops information technology to support the programmatic needs of Lawrence Livermore National Laboratory`s Engineering Directorate. Progress in five programmatic areas are described in separate reports contained herein. These are entitled Three-dimensional Object Creation, Manipulation, and Transport, Zephyr:A Secure Internet-Based Process to Streamline Engineering Procurements, Subcarrier Multiplexing: Optical Network Demonstrations, Parallel Optical Interconnect Technology Demonstration, and Intelligent Automation Architecture.

  11. Automotive technology status and projections. Volume 2: Assessment report

    NASA Technical Reports Server (NTRS)

    Dowdy, M.; Burke, A.; Schneider, H.; Edmiston, W.; Klose, G. J.; Heft, R.

    1978-01-01

    Current and advanced conventional engines, advanced alternative engines, advanced power train components, and other energy conserving automobile modifications which could be implemented by the end of this century are examined. Topics covered include gas turbine engines, Stirling engines, advanced automatic transmissions, alternative fuels, and metal and ceramic technology. Critical problems are examined and areas for future research are indicated.

  12. Biotechnology Process Engineering Center at MIT Home

    Science.gov Websites

    Bioengineering / Engineering Research Centers Georgia Tech / Emory Center for the Engineering of Living Tissues University of Washington / Engineered Biomaterials Engineering Research Center Vanderbilt University / VaNTH Surgical Systems and Technology Univesity of Hawaii / Marine Bioproducts Engineering Center Funding Sources

  13. The Status of Technology and Engineering Education in the United States: A Fourth Report of the Findings from the States (2011-12)

    ERIC Educational Resources Information Center

    Moye, Johnny J.; Dugger, William E., Jr.; Starkweather, Kendall N.

    2012-01-01

    Technology and engineering education continues to evolve as it becomes more apparent that students need this information to become more successful in college and careers. The International Technology and Engineering Educators Association (ITEEA ) has tracked the status of technology education in the United States in three separate studies over the…

  14. An engineering dilemma: sustainability in the eyes of future technology professionals.

    PubMed

    Haase, S

    2013-09-01

    The ability to design technological solutions that address sustainability is considered pivotal to the future of the planet and its people. As technology professionals engineers are expected to play an important role in sustaining society. The present article aims at exploring sustainability concepts of newly enrolled engineering students in Denmark. Their understandings of sustainability and the role they ascribe to sustainability in their future professional practice is investigated by means of a critical discourse analysis including metaphor analysis and semiotic analysis. The sustainability construal is considered to delimit possible ways of dealing with the concept in practice along the engineering education pathway and in professional problem solving. Five different metaphors used by the engineering students to illustrate sustainability are identified, and their different connotative and interpretive implications are discussed. It is found that sustainability represents a dilemma to the engineering students that situates them in a tension between their technology fascination and the blame they find that technological progress bears. Their sustainability descriptions are collected as part of a survey containing among other questions one open-ended, qualitative question on sustainability. The survey covers an entire year group of Danish engineering students in the first month of their degree study.

  15. Advanced expander test bed engine

    NASA Technical Reports Server (NTRS)

    Mitchell, J. P.

    1992-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  16. 7. This photographic copy of an engineering drawing displays the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. This photographic copy of an engineering drawing displays the building's floor plan in its 1995 arrangement, with rooms designated. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office, "Addition to Weigh & Control Bldg. E-35, Demolition, Floor and Roof Plans," drawing no. E35/3-0, October 5, 1983. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA

  17. 4. This photographic copy of an engineering drawing shows the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. This photographic copy of an engineering drawing shows the plan and details for Test Stand "G" and the placement of the vibrator. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: "Vibration Test Facility-Bldg E-72, Floor & Roof Plans, Sections, Details & Door Schedule," drawing no. E72/2-5, 21 May 1964. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA

  18. Engineering education in Bangladesh - an indicator of economic development

    NASA Astrophysics Data System (ADS)

    Chowdhury, Harun; Alam, Firoz

    2012-05-01

    Developing nations including Bangladesh are significantly lagging behind the millennium development target due to the lack of science, technology and engineering education. Bangladesh as a least developing country has only 44 engineers per million people. Its technological education and gross domestic product growth are not collinear. Although limited progress was made in humanities, basic sciences, agriculture and medical sciences, a vast gap is left in technical and engineering education. This paper describes the present condition of engineering education in the country and explores ways to improve engineering education in order to meet the national as well as global skills demand.

  19. Bringing Engineering Research Coupled With Art Into The K-12 Classroom

    NASA Astrophysics Data System (ADS)

    Cola, J.

    2016-12-01

    The Partnerships for Research, Innovation and Multi-Scale Engineering Program, a Research Experiences for K-12 Teachers at Georgia Institute of Technology demonstrates a successful program that blends the fine arts with engineering research. Teachers selected for the program improve their science and engineering content knowledge, as well as their understanding of how to use STEAM to increase student comprehension and engagement. Participants in the program designed Science, Technology, Engineering, Art, and Mathematics (STEAM)- based lessons based on faculty engineering research. Examples of some STEAM lessons created will be discussed along with lessons learned.

  20. The formation of students’ engineering thinking as a way to create new techniques, technologies, materials

    NASA Astrophysics Data System (ADS)

    Gilmanshin, Iskander; Gilmanshina, Suriya

    2016-06-01

    Engineering thinking is regarded as the quality of the person, which is stimulating the human need for the creation of new techniques, technologies and materials. Applications in the study of competence approach allows us to consider a professional thinking as one of the core competencies required for successful engineer innovations in mechanical engineering. The author's definition of professional engineering thinking is presented. The ways of its formation at students of technical fields enrolled in university courses are illustrated

  1. Space shuttle hypergolic bipropellant RCS engine design study, Bell model 8701

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A research program was conducted to define the level of the current technology base for reaction control system rocket engines suitable for space shuttle applications. The project consisted of engine analyses, design, fabrication, and tests. The specific objectives are: (1) extrapolating current engine design experience to design of an RCS engine with required safety, reliability, performance, and operational capability, (2) demonstration of multiple reuse capability, and (3) identification of current design and technology deficiencies and critical areas for future effort.

  2. Ultrasound Technologies for the Spatial Patterning of Cells and Extracellular Matrix Proteins and the Vascularization of Engineered Tissue

    NASA Astrophysics Data System (ADS)

    Garvin, Kelley A.

    Technological advancements in the field of tissue engineering could save the lives of thousands of organ transplant patients who die each year while waiting for donor organs. Currently, two of the primary challenges preventing tissue engineers from developing functional replacement tissues and organs are the need to recreate complex cell and extracellular microenvironments and to vascularize the tissue to maintain cell viability and function. Ultrasound is a form of mechanical energy that can noninvasively and nondestructively interact with tissues at the cell and protein level. In this thesis, novel ultrasound-based technologies were developed for the spatial patterning of cells and extracellular matrix proteins and the vascularization of three-dimensional engineered tissue constructs. Acoustic radiation forces associated with ultrasound standing wave fields were utilized to noninvasively control the spatial organization of cells and cell-bound extracellular matrix proteins within collagen-based engineered tissue. Additionally, ultrasound induced thermal mechanisms were exploited to site-specifically pattern various extracellular matrix collagen microstructures within a single engineered tissue construct. Finally, ultrasound standing wave field technology was used to promote the rapid and extensive vascularization of three-dimensional tissue constructs. As such, the ultrasound technologies developed in these studies have the potential to provide the field of tissue engineering with novel strategies to spatially pattern cells and extracellular matrix components and to vascularize engineered tissue, and thus, could advance the fabrication of functional replacement tissues and organs in the field of tissue engineering.

  3. Small Engine Component Technology (SECT) studies

    NASA Technical Reports Server (NTRS)

    Meyer, P. K.; Harbour, L.

    1986-01-01

    A study was conducted to identify component technology requirements for small, expendable gas turbine engines that would result in substantial improvements in performance and cost by the year 2000. A subsonic, 2600 nautical mile (4815 km) strategic cruise missile mission was selected for study. A baseline (state-of-the-art) engine and missile configuration were defined to evaluate the advanced technology engines. Two advanced technology engines were configured and evaluated using advanced component efficiencies and ceramic composite materials; a 22:1 overall pressure ratio, 3.85 bypass ratio twin-spool turbofan; and an 8:1 overall pressure, 3.66 bypass ratio, single-spool recuperated turbofan with 0.85 recuperator effectiveness. Results of mission analysis indicated a reduction in fuel burn of 38 and 47 percent compared to the baseline engine when using the advanced turbofan and recuperated turbofan, respectively. While use of either advanced engine resulted in approximately a 25 percent reduction in missile size, the unit life cycle (LCC) cost reduction of 56 percent for the advanced turbofan relative to the baseline engine gave it a decisive advantage over the recuperated turbofan with 47 percent LCC reduction. An additional range improvement of 10 percent results when using a 56 percent loaded carbon slurry fuel with either engine. These results can be realized only if significant progress is attained in the fields of solid lubricated bearings, small aerodynamic component performance, composite ceramic materials and integration of slurry fuels. A technology plan outlining prospective programs in these fields is presented.

  4. Software Engineering for Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.

    2014-01-01

    The Spacecraft Software Engineering Branch of NASA Johnson Space Center (JSC) provides world-class products, leadership, and technical expertise in software engineering, processes, technology, and systems management for human spaceflight. The branch contributes to major NASA programs (e.g. ISS, MPCV/Orion) with in-house software development and prime contractor oversight, and maintains the JSC Engineering Directorate CMMI rating for flight software development. Software engineering teams work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements. They seek to infuse automation and autonomy into missions, and apply new technologies to flight processor and computational architectures. This presentation will provide an overview of key software-related projects, software methodologies and tools, and technology pursuits of interest to the JSC Spacecraft Software Engineering Branch.

  5. FY 2007 Progress Report for Advanced Combustion Engine Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2007-12-01

    Advanced combustion engines have great potential for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid- electric powertrain configurations. Light-duty vehicles with advanced combustion engines can compete directly with gasoline engine hybrid vehicles in terms of fuel economy and consumer-friendly driving characteristics; also, they are projected to have energy efficiencies that are competitive with hydrogen fuel cell vehicles when used in hybrid applications.Advanced engine technologies being researched and developed by the Advanced Combustion Engine R&D Sub-Program will also allow the use of hydrogen as a fuel in ICEs and will providemore » an energy-efficient interim hydrogen-based powertrain technology during the transition to hydrogen/fuelcell-powered transportation vehicles.« less

  6. High Reliability Engine Control Demonstrated for Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    1999-01-01

    For a dual redundant-control system, which is typical for short-haul aircraft, if a failure is detected in a control sensor, the engine control is transferred to a safety mode and an advisory is issued for immediate maintenance action to replace the failed sensor. The safety mode typically results in severely degraded engine performance. The goal of the High Reliability Engine Control (HREC) program was to demonstrate that the neural-network-based sensor validation technology can safely operate an engine by using the nominal closed-loop control during and after sensor failures. With this technology, engine performance could be maintained, and the sensor could be replaced as a conveniently scheduled maintenance action.

  7. Definition study for variable cycle engine testbed engine and associated test program

    NASA Technical Reports Server (NTRS)

    Vdoviak, J. W.

    1978-01-01

    The product/study double bypass variable cycle engine (VCE) was updated to incorporate recent improvements. The effect of these improvements on mission range and noise levels was determined. This engine design was then compared with current existing high-technology core engines in order to define a subscale testbed configuration that simulated many of the critical technology features of the product/study VCE. Detailed preliminary program plans were then developed for the design, fabrication, and static test of the selected testbed engine configuration. These plans included estimated costs and schedules for the detail design, fabrication and test of the testbed engine and the definition of a test program, test plan, schedule, instrumentation, and test stand requirements.

  8. Kerosene-Fuel Engine Testing Under Way

    NASA Image and Video Library

    2003-11-17

    NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.

  9. Software development environments: Status and trends

    NASA Technical Reports Server (NTRS)

    Duffel, Larry E.

    1988-01-01

    Currently software engineers are the essential integrating factors tying several components together. The components consist of process, methods, computers, tools, support environments, and software engineers. The engineers today empower the tools versus the tools empowering the engineers. Some of the issues in software engineering are quality, managing the software engineering process, and productivity. A strategy to accomplish this is to promote the evolution of software engineering from an ad hoc, labor intensive activity to a managed, technology supported discipline. This strategy may be implemented by putting the process under management control, adopting appropriate methods, inserting the technology that provides automated support for the process and methods, collecting automated tools into an integrated environment and educating the personnel.

  10. Kerosene-Fuel Engine Testing Under Way

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.

  11. Advanced supersonic propulsion system technology study, phase 2

    NASA Technical Reports Server (NTRS)

    Allan, R. D.

    1975-01-01

    Variable cycle engines were identified, based on the mixed-flow low-bypass-ratio augmented turbofan cycle, which has shown excellent range capability in the AST airplane. The best mixed-flow augmented turbofan engine was selected based on range in the AST Baseline Airplane. Selected variable cycle engine features were added to this best conventional baseline engine, and the Dual-Cycle VCE and Double-Bypass VCE were defined. The conventional mixed-flow turbofan and the Double-Bypass VCE were on the subjects of engine preliminary design studies to determine mechanical feasibility, confirm weight and dimensional estimates, and identify the necessary technology considered not yet available. Critical engine components were studied and incorporated into the variable cycle engine design.

  12. Electromechanical Engineering Technology Curriculum.

    ERIC Educational Resources Information Center

    Georgia State Univ., Atlanta. Dept. of Vocational and Career Development.

    This guide offers information and procedures necessary to train electromechanical engineering technicians. Discussed first are the rationale and objectives of the curriculum. The occupational field of electromechanical engineering technology is described. Next, a curriculum model is set forth that contains information on the standard…

  13. Australian Enrolment Trends in Technology and Engineering: Putting the T and E Back into School STEM

    ERIC Educational Resources Information Center

    Kennedy, JohnPaul; Quinn, Frances; Lyons, Terry

    2018-01-01

    There has been much political and educational focus on Science, Technology, Engineering and Mathematics (STEM) in Australian schools in recent years and while there has been significant research examining science and mathematics enrolments in senior high school, little is known about the corresponding trends in Technologies and engineering.…

  14. Evaluation of Engineering and Technology Activities in Primary Schools in Terms of Learning Environment, Attitudes and Understanding

    ERIC Educational Resources Information Center

    Koul, Rekha B.; Fraser, Barry J.; Maynard, Nicoleta; Tade, Moses

    2018-01-01

    Because the importance of science, technology, engineering and mathematics (STEM) education continues to be recognised around the world, we developed and validated an instrument to assess the learning environment and student attitudes in STEM classrooms, with a specific focus on engineering and technology (E&T) activities in primary schools.…

  15. Myths and Motives behind STEM (Science, Technology, Engineering, and Mathematics) Education and the STEM-Worker Shortage Narrartive

    ERIC Educational Resources Information Center

    Stevenson, Heidi J.

    2014-01-01

    The Business Roundtable (2013) website presents a common narrative in regard to STEM (Science, Technology, Engineering and Mathematics) education, "American students are falling behind in math and science. Fewer and fewer students are pursuing careers in science, technology, engineering and mathematics, and American students are performing at…

  16. Pre-Service Science Teachers' Cognitive Structures Regarding Science, Technology, Engineering, Mathematics (STEM) and Science Education

    ERIC Educational Resources Information Center

    Hacioglu, Yasemin; Yamak, Havva; Kavak, Nusret

    2016-01-01

    The aim of this study is to reveal pre-service science teachers' cognitive structures regarding Science, Technology, Engineering, Mathematics (STEM) and science education. The study group of the study consisted of 192 pre-service science teachers. A Free Word Association Test (WAT) consisting of science, technology, engineering, mathematics and…

  17. The Supply and Demand of Technology and Engineering Teachers in the United States: Who Knows?

    ERIC Educational Resources Information Center

    Moye, Johnny J.

    2017-01-01

    The purpose of this study was to determine the supply and demand of technology and engineering teachers in the United States. Once gathered, the resulting data (that was available) was compared to previous studies to determine trends. The researcher reviewed the 2010-11 through 2015-16 Technology & Engineering Teacher Education Directories. To…

  18. 40 CFR 1036.610 - Innovative technology credits and adjustments for reducing greenhouse gas emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and the in-use emission rate without the technology. Multiply this difference by the number of engines... HEAVY-DUTY HIGHWAY ENGINES Special Compliance Provisions § 1036.610 Innovative technology credits and... judgment. We recommend that you base your credit/adjustment on A to B testing of pairs of engines/vehicles...

  19. 40 CFR 1036.610 - Innovative technology credits and adjustments for reducing greenhouse gas emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and the in-use emission rate without the technology. Multiply this difference by the number of engines... HEAVY-DUTY HIGHWAY ENGINES Special Compliance Provisions § 1036.610 Innovative technology credits and... judgment. We recommend that you base your credit/adjustment on A to B testing of pairs of engines/vehicles...

  20. 40 CFR 1036.610 - Innovative technology credits and adjustments for reducing greenhouse gas emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and the in-use emission rate without the technology. Multiply this difference by the number of engines... HEAVY-DUTY HIGHWAY ENGINES Special Compliance Provisions § 1036.610 Innovative technology credits and... judgment. We recommend that you base your credit/adjustment on A to B testing of pairs of engines/vehicles...

  1. Methodology in Training Future Technology and Engineering Teachers in the USA

    ERIC Educational Resources Information Center

    Androshchuk, Iryna; Androshchuk, Ihor

    2017-01-01

    In the article, the defined problem has been justified and the significance of studying foreign experience in training future technology and engineering teachers in the USA has been determined. Particular attention has been paid to explanation of methods and forms of organization of future technology and engineering teachers' training in the USA.…

  2. 2014 Abridged Technology and Engineering Literacy Framework for the 2014 National Assessment of Educational Progress

    ERIC Educational Resources Information Center

    National Assessment Governing Board, 2014

    2014-01-01

    Due to the growing importance of technology and engineering in the educational landscape, and to support America's ability to contribute to and compete in a global economy, the National Assessment Governing Board (NAGB) initiated development of the first NAEP Technology and Engineering Literacy (TEL) Assessment. Relating to national efforts in…

  3. A Complex Formula: Girls and Women in Science, Technology, Engineering and Mathematics in Asia

    ERIC Educational Resources Information Center

    Salmon, Aliénor

    2015-01-01

    What factors might be causing the low participation of women Science, Technology, Engineering and Mathematics (STEM) fields? What can be done to attract more girls and women into STEM in Asia and beyond? The report, "A Complex Formula. Girls and Women in Science, Technology, Engineering and Mathematics in Asia", answers three fundamental…

  4. Positioning Technology and Engineering Education as a Key Force in STEM Education

    ERIC Educational Resources Information Center

    Strimel, Greg; Grubbs, Michael E.

    2016-01-01

    As the presence of engineering content and practices increases in science education, the distinction between the two fields of science and technology education becomes even more vague than previously theorized. Furthermore, the addition of engineering to the title of the profession raises the question of the true aim of technology education. As a…

  5. Trends in the Development of Technology and Engineering Education in Emerging Economies

    ERIC Educational Resources Information Center

    Adegbuyi, P. A. O.; Uhomoibhi, J. O.

    2008-01-01

    Purpose: The purpose of this paper is to report on the nature of technology and engineering education provision in developing economies, focusing on Nigeria. Design/methodology/approach: The paper draws on recent developments in the shake up and implementation of new measures to call for quality technology and engineering education in the country,…

  6. Systems Security Engineering

    DTIC Science & Technology

    2010-08-22

    Commission (IEC). “Information technology — Security techniques — Code of practice for information security management ( ISO /IEC 27002 ...Information technology — Security techniques — Information security management systems —Requirements ( ISO /IEC 27002 ),”, “Information technology — Security...was a draft ISO standard on Systems and software engineering, Systems and software assurance [18]. Created by systems engineers for systems

  7. High Stability Engine Control (HISTEC): Flight Demonstration Results

    NASA Technical Reports Server (NTRS)

    Delaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.

    1998-01-01

    Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The High Stability Engine Control (HISTEC) program has developed technologies for an advanced, integrated engine control system that uses measurement- based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and/or decrease in fuel burn. The HISTEC concept was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two parts, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.

  8. Advanced Propulsion System Studies for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); German, Jon

    2003-01-01

    This final report addresses the following topics: Market Impact Analysis (1) assessment of general aviation, including commuter/regional, aircraft market impact due to incorporation of advanced technology propulsion system on acquisition and operating costs, job creation and/or manpower demand, and future fleet size; (2) selecting an aircraft and engine for the study by focusing on the next generation 19-passenger commuter and the Williams International FJ44 turbofan engine growth. Propulsion System Analysis Conducted mission analysis studies and engine cycle analysis to define a new commuter mission and required engine performance, define acquisition and operating costs and, select engine configuration and initiated preliminary design for hardware modifications required. Propulsion System Benefits (1) assessed and defined engine emissions improvements, (2) assessed and defined noise reduction potential and, (3) conducted a cost analysis impact study. Review of Relevant NASA Programs Conducted literature searches using NERAC and NASA RECON services for related technology in the emissions and acoustics area. Preliminary Technology Development Plans Defined plan to incorporate technology improvements for an FJ44-2 growth engine in performance, emissions, and noise suppression.

  9. ENGage: The use of space and pixel art for increasing primary school children's interest in science, technology, engineering and mathematics

    NASA Astrophysics Data System (ADS)

    Roberts, Simon J.

    2014-01-01

    The Faculty of Engineering at The University of Nottingham, UK, has developed interdisciplinary, hands-on workshops for primary schools that introduce space technology, its relevance to everyday life and the importance of science, technology, engineering and maths. The workshop activities for 7-11 year olds highlight the roles that space and satellite technology play in observing and monitoring the Earth's biosphere as well as being vital to communications in the modern digital world. The programme also provides links to 'how science works', the environment and citizenship and uses pixel art through the medium of digital photography to demonstrate the importance of maths in a novel and unconventional manner. The interactive programme of activities provides learners with an opportunity to meet 'real' scientists and engineers, with one of the key messages from the day being that anyone can become involved in science and engineering whatever their ability or subject of interest. The methodology introduces the role of scientists and engineers using space technology themes, but it could easily be adapted for use with any inspirational topic. Analysis of learners' perceptions of science, technology, engineering and maths before and after participating in ENGage showed very positive and significant changes in their attitudes to these subjects and an increase in the number of children thinking they would be interested and capable in pursuing a career in science and engineering. This paper provides an overview of the activities, the methodology, the evaluation process and results.

  10. X-33/RLV Program Aerospike Engines

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Substantial progress was made during the past year in support of the X-33/RLV program. X-33 activity was directed towards completing the remaining design work and building hardware to support test activities. RLV work focused on the nozzle ramp and powerpack technology tasks and on supporting vehicle configuration studies. On X-33, the design activity was completed to the detail level and the remainder of the drawings were released. Component fabrication and engine assembly activity was initiated, and the first two powerpacks and the GSE and STE needed to support powerpack testing were completed. Components fabrication is on track to support the first engine assembly schedule. Testing activity included powerpack testing and component development tests consisting of thrust cell single cell testing, CWI system spider testing, and EMA valve flow and vibration testing. Work performed for RLV was divided between engine system and technology development tasks. Engine system activity focused on developing the engine system configuration and supporting vehicle configuration studies. Also, engine requirements were developed, and engine performance analyses were conducted. In addition, processes were developed for implementing reliability, mass properties, and cost controls during design. Technology development efforts were divided between powerpack and nozzle ramp technology tasks. Powerpack technology activities were directed towards the development of a prototype powerpack and a ceramic turbine technology demonstrator (CTTD) test article which will allow testing of ceramic turbines and a close-coupled gas generator design. Nozzle technology efforts were focused on the selection of a composite nozzle supplier and on the fabrication and test of composite nozzle coupons.

  11. The Evolution of Technology in the Deep Space Network: A History of the Advanced Systems Program

    NASA Technical Reports Server (NTRS)

    Layland, J. W.; Rauch, L. L.

    1994-01-01

    The Deep Space Network (DSN) of 1995 might be described as the evolutionary result of 45 years of deep space communication and navigation, together with the synergistic activities of radio science and radar and radio astronomy. But the evolution of the DSN did not just happen - it was carefully planned and created. The evolution of the DSN has been an ongoing engineering activity, and engineering is a process of problem solving under constraints, one of which is technology. In turn, technology is the knowledge base providing the capability and experience for practical application of various areas of science, when needed. The best engineering solutions result from optimization under the fewest constraints, and if technology needs are well anticipated (ready when needed), then the most effective engineering solution is possible. Throughout the history of the DSN it has been the goal and function of DSN advanced technology development (designated the DSN Advanced Systems Program from 1963 through 1994) to supply the technology needs of the DSN when needed, and thus to minimize this constraint on DSN engineering. Technology often takes considerable time to develop, and when that happens, it is important to have anticipated engineering needs; at times, this anticipation has been by as much as 15 years. Also, on a number of occasions, mission malfunctions or emergencies have resulted in unplanned needs for technology that has, in fact, been available from the reservoir of advanced technology provided by the DSN Advanced Systems Program. Sometimes, even DSN engineering personnel fail to realize that the organization of JPL permits an overlap of DSN advanced technology activities with subsequent engineering activities. This can result in the flow of advanced technology into DSN engineering in a natural and sometimes almost unnoticed way. In the following pages, we will explore some of the many contributions of the DSN Advanced Systems Program that were provided to DSN Engineering and Implementation. These contributions are, for the most part, unique capabilities that have met the requirements of flight projects for 45 years. These unique capabilities include not only the world's best deep-space communications system, but also outstanding competency in the fields of radio metric measurement, radar and radio astronomy, and radio science.

  12. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    NASA Technical Reports Server (NTRS)

    Slaby, Jack G.

    1987-01-01

    A brief overview is presented of the development and technological activities of the free-piston Stirling engine. The engine started as a small scale fractional horsepower engine which demonstrated basic engine operating principles and the advantages of being hermetically sealed, highly efficient, and simple. It eventually developed into the free piston Stirling engine driven heat pump, and then into the SP-100 Space Reactor Power Program from which came the Space Power Demonstrator Engine (SPDE). The SPDE successfully operated for over 300 hr and delivered 20 kW of PV power to an alternator plunger. The SPDE demonstrated that a dynamic power conversion system can, with proper design, be balanced; and the engine performed well with externally pumped hydrostatic gas bearings.

  13. Computing and Engineering in Elementary School: The Effect of Year-Long Training on Elementary Teacher Self-Efficacy and Beliefs about Teaching Computing and Engineering

    ERIC Educational Resources Information Center

    Rich, Peter Jacob; Jones, Brian; Belikov, Olga; Yoshikawa, Emily; Perkins, McKay

    2017-01-01

    STEM, the integration of Science, Technology, Engineering, and Mathematics is increasingly being promoted in elementary education. However, elementary educators are largely untrained in the 21st century skills of computing (a subset of technology) and engineering. The purpose of this study was to better understand elementary teachers'…

  14. Gaming, texting, learning? Teaching engineering ethics through students' lived experiences with technology.

    PubMed

    Voss, Georgina

    2013-09-01

    This paper examines how young peoples' lived experiences with personal technologies can be used to teach engineering ethics in a way which facilitates greater engagement with the subject. Engineering ethics can be challenging to teach: as a form of practical ethics, it is framed around future workplace experience in a professional setting which students are assumed to have no prior experience of. Yet the current generations of engineering students, who have been described as 'digital natives', do however have immersive personal experience with digital technologies; and experiential learning theory describes how students learn ethics more successfully when they can draw on personal experience which give context and meaning to abstract theories. This paper reviews current teaching practices in engineering ethics; and examines young people's engagement with technologies including cell phones, social networking sites, digital music and computer games to identify social and ethical elements of these practices which have relevance for the engineering ethics curricula. From this analysis three case studies are developed to illustrate how facets of the use of these technologies can be drawn on to teach topics including group work and communication; risk and safety; and engineering as social experimentation. Means for bridging personal experience and professional ethics when teaching these cases are discussed. The paper contributes to research and curriculum development in engineering ethics education, and to wider education research about methods of teaching 'the net generation'.

  15. What do K-12 students feel when dealing with technology and engineering issues? Gardner's multiple intelligence theory implications in technology lessons for motivating engineering vocations at Spanish Secondary School

    NASA Astrophysics Data System (ADS)

    Sánchez-Martín, Jesús; Álvarez-Gragera, García J.; Dávila-Acedo, M. Antonia; Mellado, Vicente

    2017-11-01

    The interest on engineering and scientific studies can be raised up even from the early years of academic instructional process. This vocation may be linked to emotions and aptitudes towards technological education. Particularly, students get in touch with these technological issues (namely STEM) during the Compulsory Secondary Education in Spain (12-16 years old).This work presents a preliminary evaluation of how relevant is Gardner's multiple intelligence theory (MIT) in the teaching-learning process within the Technology Lessons. In this sense, MIT was considered as an explanation variable of the emotional response within the different educational parts (so-called syllabus units, SU) in the Technology spanish curriculum. Different intelligence style (IS) will orient the student to a vision of the engineering and technology. This work tries to identify which relationships can be established between IS and specific technology and engineering learning. This research involved up to 135 students were subsequently tested about their predominant (IS) and on the emotions that arouse in them when working with each SU. The results were statistically significant and only those with a Logic-arithmetic or Environmental IS were not affected by the SU.Best teaching and learning practicesare required for encouraging further engineering studies.

  16. Infusing Software Engineering Technology into Practice at NASA

    NASA Technical Reports Server (NTRS)

    Pressburger, Thomas; Feather, Martin S.; Hinchey, Michael; Markosia, Lawrence

    2006-01-01

    We present an ongoing effort of the NASA Software Engineering Initiative to encourage the use of advanced software engineering technology on NASA projects. Technology infusion is in general a difficult process yet this effort seems to have found a modest approach that is successful for some types of technologies. We outline the process and describe the experience of the technology infusions that occurred over a two year period. We also present some lessons from the experiences.

  17. An N+3 Technology Level Reference Propulsion System

    NASA Technical Reports Server (NTRS)

    Jones, Scott M.; Haller, William J.; Tong, Michael To-Hing

    2017-01-01

    An N+3 technology level engine, suitable as a propulsion system for an advanced single-aisle transport, was developed as a reference cycle for use in technology assessment and decision-making efforts. This reference engine serves three main purposes: it provides thermodynamic quantities at each major engine station, it provides overall propulsion system performance data for vehicle designers to use in their analyses, and it can be used for comparison against other proposed N+3 technology-level propulsion systems on an equal basis. This reference cycle is meant to represent the expected capability of gas turbine engines in the N+3 timeframe given reasonable extrapolations of technology improvements and the ability to take full advantage of those improvements.

  18. The central equipment pool, an opportunity for improved technology management.

    PubMed

    Gentles, W M

    2000-01-01

    A model for a central equipment pool managed by a clinical engineering department has been presented. The advantages to patient care and to the clinical engineering department are many. The distribution of portable technology that has been traditionally managed by the materials management function is a logical match to the expanding role of clinical engineering departments in technology management. Accurate asset management tools have allowed us to provide reliable measures of infusion pump utilization, permitting us to predict future needs as programs expand. Thus we are more actively involved in strategic technology planning. The central equipment pool is an excellent opportunity for the clinical engineering department to increase its technology management activities.

  19. Engineering Issue: Technology Alternatives for the Remediation of PCB Contaminated Soils and Sediments

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Engineering Issue papers are a series of documents that summarize the available information on specific contaminates, selected treatment and site remediation technologies, and related issues. This Engineering Issue paper is intended...

  20. 46 CFR 11.470 - National officer endorsements as offshore installation manager.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., mechanical supervisor, electrician, crane operator, ballast control operator, or equivalent supervisory... from a program in engineering or engineering technology which is accredited by the Accreditation Board for Engineering and Technology (ABET). The National Maritime Center will give consideration to...

  1. Mechanical Engineering Technology Curriculum.

    ERIC Educational Resources Information Center

    Georgia State Univ., Atlanta. Dept. of Vocational and Career Development.

    This guide offers information and procedures necessary to train mechanical engineering technicians. Discussed first are the rationale and objectives of the curriculum. The occupational field of mechanical engineering technology is described. Next, a curriculum model is set forth that contains information on the standard mechanical engineering…

  2. 46 CFR 11.472 - Officer endorsements as barge supervisor.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., mechanic, electrician, crane operator, subsea specialist, ballast control operator or equivalent... or barge supervisor trainee; or (ii) A degree from a program in engineering or engineering technology which is accredited by the Accreditation Board for Engineering and Technology (ABET). Commanding Officer...

  3. An Engineering Technology Skills Framework that Reflects Workforce Needs on Maui and the Big Island of Hawai'i

    NASA Astrophysics Data System (ADS)

    Seagroves, S.; Hunter, L.

    2010-12-01

    The Akamai Workforce Initiative (AWI) is an interdisciplinary effort to improve science/engineering education in the state of Hawai'i, and to train a diverse population of local students in the skills needed for a high-tech economy. In 2009, the AWI undertook a survey of industry partners on Maui and the Big Island of Hawai'i to develop an engineering technology skills framework that will guide curriculum development at the U. of Hawai'i - Maui (formerly Maui Community College). This engineering skills framework builds directly on past engineering-education developments within the Center for Adaptive Optics Professional Development Program, and draws on curriculum development frameworks and engineering skills standards from the literature. Coupling that previous work with reviews of past Akamai Internship projects and information from previous conversations with the local high-tech community led to a structured-interview format where engineers and managers could contribute meaningful commentary to this framework. By incorporating these local high-tech companies' needs for entry-level engineers and technicians, a skills framework emerges that is unique and illuminating. Two surprising features arise in this framework: (1) "technician-like" skills of making existing technology work are on similar footing with "engineer-like" skills of creating new technology; in fact, both engineers and technicians at these workplaces use both sets of skills; and (2) project management skills are emphasized by employers even for entry-level positions.

  4. Use of Soft Computing Technologies for a Qualitative and Reliable Engine Control System for Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Trevino, Luis; Brown, Terry; Crumbley, R. T. (Technical Monitor)

    2001-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to improve overall vehicle system safety, reliability, and rocket engine performance by development of a qualitative and reliable engine control system (QRECS). Specifically, this will be addressed by enhancing rocket engine control using SCT, innovative data mining tools, and sound software engineering practices used in Marshall's Flight Software Group (FSG). The principle goals for addressing the issue of quality are to improve software management, software development time, software maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control methodologies, but to provide alternative design choices for control, implementation, performance, and sustaining engineering, all relative to addressing the issue of reliability. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion (system level), software engineering for embedded flight software systems, and soft computing technologies (i.e., neural networks, fuzzy logic, data mining, and Bayesian belief networks); some of which are briefed in this paper. For this effort, the targeted demonstration rocket engine testbed is the MC-1 engine (formerly FASTRAC) which is simulated with hardware and software in the Marshall Avionics & Software Testbed (MAST) laboratory that currently resides at NASA's Marshall Space Flight Center, building 4476, and is managed by the Avionics Department. A brief plan of action for design, development, implementation, and testing a Phase One effort for QRECS is given, along with expected results. Phase One will focus on development of a Smart Start Engine Module and a Mainstage Engine Module for proper engine start and mainstage engine operations. The overall intent is to demonstrate that by employing soft computing technologies, the quality and reliability of the overall scheme to engine controller development is further improved and vehicle safety is further insured. The final product that this paper proposes is an approach to development of an alternative low cost engine controller that would be capable of performing in unique vision spacecraft vehicles requiring low cost advanced avionics architectures for autonomous operations from engine pre-start to engine shutdown.

  5. Robust Rocket Engine Concept

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1995-01-01

    The potential for a revolutionary step in the durability of reusable rocket engines is made possible by the combination of several emerging technologies. The recent creation and analytical demonstration of life extending (or damage mitigating) control technology enables rapid rocket engine transients with minimum fatigue and creep damage. This technology has been further enhanced by the formulation of very simple but conservative continuum damage models. These new ideas when combined with recent advances in multidisciplinary optimization provide the potential for a large (revolutionary) step in reusable rocket engine durability. This concept has been named the robust rocket engine concept (RREC) and is the basic contribution of this paper. The concept also includes consideration of design innovations to minimize critical point damage.

  6. Biomimetics: determining engineering opportunities from nature

    NASA Astrophysics Data System (ADS)

    Fish, Frank E.

    2009-08-01

    The biomimetic approach seeks to incorporate designs based on biological organisms into engineered technologies. Biomimetics can be used to engineer machines that emulate the performance of organisms, particularly in instances where the organism's performance exceeds current mechanical technology or provides new directions to solve existing problems. For biologists, an adaptationist program has allowed for the identification of novel features of organisms based on engineering principles; whereas for engineers, identification of such novel features is necessary to exploit them for biomimetic development. Adaptations (leading edge tubercles to passively modify flow and high efficiency oscillatory propulsive systems) from marine animals demonstrate potential utility in the development of biomimetic products. Nature retains a store of untouched knowledge, which would be beneficial in advancing technology.

  7. Propulsion Control Technology Development in the United States A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Jaw, Link C.a; Garg, Sanjay

    2005-01-01

    This paper presents a historical perspective of the advancement of control technologies for aircraft gas turbine engines. The paper primarily covers technology advances in the United States in the last 60 years (1940 to approximately 2002). The paper emphasizes the pioneering technologies that have been tested or implemented during this period, assimilating knowledge and experience from industry experts, including personal interviews with both current and retired experts. Since the first United States-built aircraft gas turbine engine was flown in 1942, engine control technology has evolved from a simple hydro-mechanical fuel metering valve to a full-authority digital electronic control system (FADEC) that is common to all modern aircraft propulsion systems. At the same time, control systems have provided engine diagnostic functions. Engine diagnostic capabilities have also evolved from pilot observation of engine gauges to the automated on-board diagnostic system that uses mathematical models to assess engine health and assist in post-flight troubleshooting and maintenance. Using system complexity and capability as a measure, we can break the historical development of control systems down to four phases: (1) the start-up phase (1942 to 1949), (2) the growth phase (1950 to 1969), (3) the electronic phase (1970 to 1989), and (4) the integration phase (1990 to 2002). In each phase, the state-of-the-art control technology is described and the engines that have become historical landmarks, from the control and diagnostic standpoint, are identified. Finally, a historical perspective of engine controls in the last 60 years is presented in terms of control system complexity, number of sensors, number of lines of software (or embedded code), and other factors.

  8. Effects of globalisation on higher engineering education in Germany - current and future demands

    NASA Astrophysics Data System (ADS)

    Morace, Christophe; May, Dominik; Terkowsky, Claudius; Reynet, Olivier

    2017-03-01

    Germany is well known around the world for the strength of its economy, its industry and for the 'German model' for higher engineering education based on developing technological skills at a very high level. In this article, we firstly describe the former and present model of engineering education in Germany in a context of the globalisation of the world economy and of higher education, in order to understand how it covers the current demand for engineering resources. Secondly, we analyse the impact of globalisation from a technological perspective. To this end, we describe initiatives for innovation driven by the German federal government and engineering societies, and summarise the first impacts on engineering education and on social competence for engineers. Thirdly, we explore to what extent engineering education in Germany trains engineers in social and intercultural competency to comply with the future demands of the challenge of globalisation.

  9. On civil engineering disasters and their mitigation

    NASA Astrophysics Data System (ADS)

    Xie, Lili; Qu, Zhe

    2018-01-01

    Civil engineering works such as buildings and infrastructure are the carriers of human civilization. They are, however, also the origins of various types of disasters, which are referred to in this paper as civil engineering disasters. This paper presents the concept of civil engineering disasters, their characteristics, classification, causes, and mitigation technologies. Civil engineering disasters are caused primarily by civil engineering defects, which are usually attributed to improper selection of construction site, hazard assessment, design and construction, occupancy, and maintenance. From this viewpoint, many so-called natural disasters such as earthquakes, strong winds, floods, landslides, and debris flows are substantially due to civil engineering defects rather than the actual natural hazards. Civil engineering disasters occur frequently and globally and are the most closely related to human beings among all disasters. This paper emphasizes that such disasters can be mitigated mainly through civil engineering measures, and outlines the related objectives and scientific and technological challenges.

  10. Downsizing assessment of automotive Stirling engines

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Tew, R. C., Jr.; Klann, J. L.

    1983-01-01

    A 67 kW (90 hp) Stirling engine design, sized for use in a 1984 1440 kg (3170 lb) automobile was the focal point for developing automotive Stirling engine technology. Since recent trends are towards lighter vehicles, an assessment was made of the applicability of the Stirling technology being developed for smaller, lower power engines. Using both the Philips scaling laws and a Lewis Research Center (Lewis) Stirling engine performance code, dimensional and performance characteristics were determined for a 26 kW (35 hp) and a 37 kW (50 hp) engine for use in a nominal 907 kg (2000 lb) vehicle. Key engine elements were sized and stressed and mechanical layouts were made to ensure mechanical fit and integrity of the engines. Fuel economy estimates indicated that the Stirling engine would maintain a 30 to 45 percent fuel economy advantage comparable spark ignition and diesel powered vehicles in the 1984 period.

  11. Study, optimization, and design of a laser heat engine. [for satellite applications

    NASA Technical Reports Server (NTRS)

    Taussig, R. T.; Cassady, P. E.; Zumdieck, J. F.

    1978-01-01

    Laser heat engine concepts, proposed for satellite applications, are analyzed to determine which engine concept best meets the requirements of high efficiency (50 percent or better), continuous operation in space using near-term technology. The analysis of laser heat engines includes the thermodynamic cycles, engine design, laser power sources, collector/concentrator optics, receiving windows, absorbers, working fluids, electricity generation, and heat rejection. Specific engine concepts, optimized according to thermal efficiency, are rated by their technological availability and scaling to higher powers. A near-term experimental demonstration of the laser heat engine concept appears feasible utilizing an Otto cycle powered by CO2 laser radiation coupled into the engine through a diamond window. Higher cycle temperatures, higher efficiencies, and scalability to larger sizes appear to be achievable from a laser heat engine design based on the Brayton cycle and powered by a CO laser.

  12. A single instrument: engineering and engineering technology students demonstrating competence in ethics and professional standards.

    PubMed

    Feldhaus, Charles R; Wolter, Robert M; Hundley, Stephen P; Diemer, Tim

    2006-04-01

    This paper details efforts by the Purdue School of Engineering and Technology at Indiana University Purdue University Indianapolis (IUPUI) to create a single instrument for honors science, technology, engineering and mathematics (STEM) students wishing to demonstrate competence in the IUPUI Principles of Undergraduate Learning (PUL's) and Accreditation Board for Engineering and Technology (ABET) Engineering Accreditation Criterion (EAC) and Technology Accreditation Criterion (TAC) 2, a through k. Honors courses in Human Behavior, Ethical Decision-Making, Applied Leadership, International Issues and Leadership Theories and Processes were created along with a specific menu of activities and an assessment rubric based on PUL's and ABET criteria to evaluate student performance in the aforementioned courses. Students who complete the series of 18 Honors Credit hours are eligible for an Honors Certificate in Leadership Studies from the Department of Organizational Leadership and Supervision. Finally, an accounting of how various university assessment criteria, in this case the IUPUI Principles of Undergraduate Learning, can be linked to ABET outcomes and prove student competence in both, using the aforementioned courses, menu of items, and assessment rubrics; these will be analyzed and discussed.

  13. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Rohdenburg, C.; Antonelli, M. (Editor)

    1983-01-01

    Program status and plans are discussed for component and technology development; reference engine system design, the upgraded Mod 1 engine; industry test and evaluation; and product assurance. Four current Mod 1 engines reached a total of 2523 operational hours, while two upgraded engines accumulated 166 hours.

  14. Cryogenic gear technology for an orbital transfer vehicle engine and tester design

    NASA Technical Reports Server (NTRS)

    Calandra, M.; Duncan, G.

    1986-01-01

    Technology available for gears used in advanced Orbital Transfer Vehicle rocket engines and the design of a cryogenic adapted tester used for evaluating advanced gears are presented. The only high-speed, unlubricated gears currently in cryogenic service are used in the RL10 rocket engine turbomachinery. Advanced rocket engine gear systems experience operational load conditions and rotational speed that are beyond current experience levels. The work under this task consisted of a technology assessment and requirements definition followed by design of a self-contained portable cryogenic adapted gear test rig system.

  15. Aircraft Energy Efficiency (ACEE) status report

    NASA Technical Reports Server (NTRS)

    Nored, D. L.; Dugan, J. F., Jr.; Saunders, N. T.; Ziemianski, J. A.

    1979-01-01

    Fuel efficiency in aeronautics, for fuel conservation in general as well as for its effect on commercial aircraft operating economics is considered. Projects of the Aircraft Energy Efficiency Program related to propulsion are emphasized. These include: (1) engine component improvement, directed at performance improvement and engine diagnostics for prolonged service life; (2) energy efficient engine, directed at proving the technology base for the next generation of turbofan engines; and (3) advanced turboprop, directed at advancing the technology of turboprop powered aircraft to a point suitable for commercial airline service. Progress in these technology areas is reported.

  16. CMC Technology Advancements for Gas Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2013-01-01

    CMC research at NASA Glenn is focused on aircraft propulsion applications. The objective is to enable reduced engine emissions and fuel consumption for more environmentally friendly aircraft. Engine system studies show that incorporation of ceramic composites into turbine engines will enable significant reductions in emissions and fuel burn due to increased engine efficiency resulting from reduced cooling requirements for hot section components. This presentation will describe recent progress and challenges in developing fiber and matrix constituents for 2700 F CMC turbine applications. In addition, ongoing research in the development of durable environmental barrier coatings, ceramic joining integration technologies and life prediction methods for CMC engine components will be reviewed.

  17. NASA Orbit Transfer Rocket Engine Technology Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The advanced expander cycle engine with a 15,000 lb thrust level and a 6:1 mixture ratio and optimized performance was used as the baseline for a design study of the hydrogen/oxgyen propulsion system for the orbit transfer vehicle. The critical components of this engine are the thrust chamber, the turbomachinery, the extendible nozzle system, and the engine throttling system. Turbomachinery technology is examined for gears, bearing, seals, and rapid solidification rate turbopump shafts. Continuous throttling concepts are discussed. Components of the OTV engine described include the thrust chamber/nozzle assembly design, nozzles, the hydrogen regenerator, the gaseous oxygen heat exchanger, turbopumps, and the engine control valves.

  18. This photocopy of an engineering drawing shows the BakerPerkins 150gallon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This photocopy of an engineering drawing shows the Baker-Perkins 150-gallon mixer installation in the building. Austin, Field & Fry, Architects Engineers, 22311 West Third Street, Los Angeles 57, California: Edwards Test Station Complex, Jet Propulsion Laboratory, California Institute of Technology, Edwards Air Force Base, Edwards, California: "150 Gallon Mixer System Bldg. E-34, Plans, Sections & Details," drawing no. E34/6-0, 10 July 1963. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Mixer, Edwards Air Force Base, Boron, Kern County, CA

  19. This photographic copy of an engineering drawing shows floor plans, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This photographic copy of an engineering drawing shows floor plans, sections and elevations of Building E-86, with details typical of the steel frame and "Transite" building construction at JPL Edwards Facility. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office: "Casting & Curing, Building E-86, Floor Plan, Elevations & Section," drawing no. E86/6, 25 February 1977. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Casting & Curing Building, Edwards Air Force Base, Boron, Kern County, CA

  20. 3D Printing and Biofabrication for Load Bearing Tissue Engineering.

    PubMed

    Jeong, Claire G; Atala, Anthony

    2015-01-01

    Cell-based direct biofabrication and 3D bioprinting is becoming a dominant technological platform and is suggested as a new paradigm for twenty-first century tissue engineering. These techniques may be our next step in surpassing the hurdles and limitations of conventional scaffold-based tissue engineering, and may offer the industrial potential of tissue engineered products especially for load bearing tissues. Here we present a topically focused review regarding the fundamental concepts, state of the art, and perspectives of this new technology and field of biofabrication and 3D bioprinting, specifically focused on tissue engineering of load bearing tissues such as bone, cartilage, osteochondral and dental tissue engineering.

  1. Contingency Power Study for Short Haul Civil Tiltrotor

    NASA Technical Reports Server (NTRS)

    D'Angelo, Marin M.

    2004-01-01

    NASA has concluded from previous studies that the twin engine tiltrotor is the most economical and technologically viable rotorcraft for near-term civil applications. Twin engine civil rotorcraft must be able to hover safely on one engine in an emergency. This emergency power requirement generally results in engines 20 to 50 percent larger than needed for normal engine operation, negatively impacting aircraft economics. This study identifies several contingency power enhancement concepts, and quantifies their potential to reduce aircraft operating costs. Many unique concepts were examined, and the selected concepts are simple, reliable, and have a high potential for near term realization. These engine concepts allow extremely high turbine temperatures during emergency operation by providing cooling to the power turbine and augmenting cooling of both turbines and structural hardware. Direct operating cost are reduced 3 to percent, which could yield a 30 to 80 percent increase in operating profits. The study consists of the definition of an aircraft economics model and a baseline engine, and an engine concept screening study, and a preliminary definition of the selected concepts. The selected concepts are evaluated against the baseline engine, and the critical technologies and development needs are identified, along with applications for this technology.

  2. Turbine Engine Hot Section Technology, 1985

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Turbine Engine Section Technology (HOST) Project Office of the Lewis Research Center sponsored a workshop to discuss current research pertinent to turbine engine hot section durability problems. Presentations were made concerning hot section environment and the behavior of combustion liners, turbine blades, and turbine vanes.

  3. Application of Statistics in Engineering Technology Programs

    ERIC Educational Resources Information Center

    Zhan, Wei; Fink, Rainer; Fang, Alex

    2010-01-01

    Statistics is a critical tool for robustness analysis, measurement system error analysis, test data analysis, probabilistic risk assessment, and many other fields in the engineering world. Traditionally, however, statistics is not extensively used in undergraduate engineering technology (ET) programs, resulting in a major disconnect from industry…

  4. Engineering Design Concepts

    ERIC Educational Resources Information Center

    Fitzgerald, Mike

    2004-01-01

    In the author's opinion, the separation of content between science, math, engineering, and technology education should not exist. Working with the relationship between these content areas enhances students' efforts to learn about the physical world. In teaching students about design, technology, and engineering, attention should be given to the…

  5. Evaluation of Emerging Technologies on a 1.6 L Turbocharged GDI Engine

    EPA Science Inventory

    Low-pressure loop exhaust gas recirculation (LPL- EGR) combined with a higher compression ratio is a technology package that has been the focus of significant research to increase engine thermal efficiency of downsized, turbocharged GDI engines. Research shows that the addition ...

  6. New Challenging Approaches to Engineering Education: Enhancing University-Industry Co-Operation

    ERIC Educational Resources Information Center

    Korhonen-Yrjanheikki, Kati; Tukiainen, Taina; Takala, Minna

    2007-01-01

    Globalization, accelerated time-based competition, qualitative dynamics, rapid development of technology and especially Information and Communications Technology (ICT) developments challenge engineering education and capability development of each engineer. The success and the competitiveness of companies are increasingly based on their employees.…

  7. In Brief: Suresh slated to head U.S. National Science Foundation

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-06-01

    U.S. president Barack Obama announced on 3 June his intent to nominate Subra Suresh as the next director of the U.S. National Science Foundation (NSF). Arden Bement, who served as NSF director since 2004, resigned earlier this year to lead Purdue University's Global Policy Research Institute, in West Lafayette, Indiana. Suresh is dean of the School of Engineering and the Vannevar Bush Professor of Engineering at Massachusetts Institute of Technology (MIT), Cambridge. Suresh joined MIT in 1993 as the R. P. Simmons Professor of Materials Science and Engineering. Since then, he has held joint faculty appointments in the departments of Mechanical Engineering and Biological Engineering, as well as the Division of Health Sciences and Technology. He previously was head of the university's Department of Materials Science and Engineering. Suresh has a B.S. from the Indian Institute of Technology, Madras, India; an M.S. from Iowa State University of Science and Technology, Ames; and a Sc.D. from MIT.

  8. Education, Technology, and Media: A Peak into My Summer Internship at NASA Glenn Research Center in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Moon, James

    2004-01-01

    My name is James Moon and I am a senor at Tennessee State University where my major is Aeronautical and Industrial Technology with a concentration in industrial electronics. I am currently serving my internship in the Engineering and Technical Services Directorate at the Glenn Research Center (GRC). The Engineering and Technical Service Directorate provides the services and infrastructure for the Glenn Research Center to take research concepts to reality. They provide a full range of integrated services including engineering, advanced prototyping and testing, facility management, and information technology for NASA, industry, and academia. Engineering and Technical Services contains the core knowledge in Information Technology (IT). This includes data systems and analysis, inter and intranet based systems design and data security. Including the design and development of embedded real-time sohare applications for flight and supporting ground systems, Engineering and Technical Services provide a wide range of IT services and products specific to the Glenn Research Center research and engineering community.

  9. Orbit transfer rocket engine technology program: Automated preflight methods concept definition

    NASA Technical Reports Server (NTRS)

    Erickson, C. M.; Hertzberg, D. W.

    1991-01-01

    The possibility of automating preflight engine checkouts on orbit transfer engines is discussed. The minimum requirements in terms of information and processing necessary to assess the engine'e integrity and readiness to perform its mission were first defined. A variety of ways for remotely obtaining that information were generated. The sophistication of these approaches varied from a simple preliminary power up, where the engine is fired up for the first time, to the most advanced approach where the sensor and operational history data system alone indicates engine integrity. The critical issues and benefits of these methods were identified, outlined, and prioritized. The technology readiness of each of these automated preflight methods were then rated on a NASA Office of Exploration scale used for comparing technology options for future mission choices. Finally, estimates were made of the remaining cost to advance the technology for each method to a level where the system validation models have been demonstrated in a simulated environment.

  10. Development Status of the CECE Cryogenic Deep Throttling Demonstrator Engine

    NASA Technical Reports Server (NTRS)

    2008-01-01

    As one of the first technology development programs awarded by NASA under the U.S. Space Exploration Policy (USSEP), the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA's Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RLI0, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Two series of demonstrator engine tests, the first in April-May 2006 and the second in March-April 2007, have demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. Both test series have explored a combustion instability ("chug") environment at low throttled power levels. These tests have provided an early demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for future CECE Demonstrator engine tests.

  11. UCS-PROMOVE: The engineer of the future

    NASA Astrophysics Data System (ADS)

    Villas-Boas, V.

    2010-06-01

    The Universidade de Caxias do Sul (UCS) elaborated the cooperative project called 'The engineer of the future', with the objective of promoting science and engineering among high school teachers and students. This project aims to improve the quality of the teaching and to increase the interest of students in technological areas, leading to a future career in engineering. The activities of this project were planned to give meaning and foundation to the teaching-learning process of science and for the application of theory in the solution of real problems, while articulating scientific, economic, environmental, social and political aspects and also to reinforce the important role of engineering in society. Amongst the activities to be offered to high school teachers and students are a specialisation course for teachers based upon new educational methodologies, workshops in different areas of science and technology, a programme entitled 'Encouraging girls in technology, science and engineering', science fairs and visits to the industries of the region. Activities with the engineering instructors of UCS are also being developed in order to help them to incorporate in their classes more effective pedagogical strategies for educating the engineer-to-be.

  12. Sensor Needs for Control and Health Management of Intelligent Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Gang, Sanjay; Hunter, Gary W.; Guo, Ten-Huei; Semega, Kenneth J.

    2004-01-01

    NASA and the U.S. Department of Defense are conducting programs which support the future vision of "intelligent" aircraft engines for enhancing the affordability, performance, operability, safety, and reliability of aircraft propulsion systems. Intelligent engines will have advanced control and health management capabilities enabling these engines to be self-diagnostic, self-prognostic, and adaptive to optimize performance based upon the current condition of the engine or the current mission of the vehicle. Sensors are a critical technology necessary to enable the intelligent engine vision as they are relied upon to accurately collect the data required for engine control and health management. This paper reviews the anticipated sensor requirements to support the future vision of intelligent engines from a control and health management perspective. Propulsion control and health management technologies are discussed in the broad areas of active component controls, propulsion health management and distributed controls. In each of these three areas individual technologies will be described, input parameters necessary for control feedback or health management will be discussed, and sensor performance specifications for measuring these parameters will be summarized.

  13. The energy efficient engine project

    NASA Technical Reports Server (NTRS)

    Macioce, L. E.; Schaefer, J. W.; Saunders, N. T.

    1980-01-01

    The Energy Efficient Engine Project is directed at providing, by 1984, the advanced technologies which could be used for a generation of fuel conservative turbofan engines. The project is conducted through contracts with the General Electric Company and Pratt and Whitney Aircraft. The scope of the entire project and the current status of these efforts are summarized. A description of the preliminary designs of the fully developed engines is included and the potential benefits of these advanced engines, as well as highlights of some of the component technology efforts conducted to date, are discussed.

  14. Annotated bibliography of Software Engineering Laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon D.

    1991-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. All materials have been grouped into eight general subject areas for easy reference: The Software Engineering Laboratory; The Software Engineering Laboratory: Software Development Documents; Software Tools; Software Models; Software Measurement; Technology Evaluations; Ada Technology; and Data Collection. Subject and author indexes further classify these documents by specific topic and individual author.

  15. High temperature NASP engine seals: A technology review

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dellacorte, Christopher; Tong, Mike

    1991-01-01

    Progress in developing advanced high temperature engine seal concepts and related sealing technologies for advanced hypersonic engines are reviewed. Design attributes and issues requiring further development for both the ceramic wafer seal and the braided ceramic rope seal are examined. Leakage data are presented for these seals for engine simulated pressure and temperature conditions and compared to a target leakage limit. Basic elements of leakage flow models to predict leakage rates for each of these seals over the wide range of pressure and temperature conditions anticipated in the engine are also presented.

  16. What Do K-12 Students Feel When Dealing with Technology and Engineering Issues? Gardner's Multiple Intelligence Theory Implications in Technology Lessons for Motivating Engineering Vocations at Spanish Secondary School

    ERIC Educational Resources Information Center

    Sánchez-Martín, Jesús; Álvarez-Gragera, García J.; Dávila-Acedo, M. Antonia; Mellado, Vicente

    2017-01-01

    The interest on engineering and scientific studies can be raised up even from the early years of academic instructional process. This vocation may be linked to emotions and aptitudes towards technological education. Particularly, students get in touch with these technological issues (namely STEM) during the Compulsory Secondary Education in Spain…

  17. 77 FR 61448 - Nanoscale Science, Engineering and Technology Subcommittee Committee on Technology, National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering and Technology Subcommittee Committee on Technology, National Science and Technology Council; Public Meetings AGENCY: Executive Office of the President, Office of Science and Technology Policy. ACTION: Notice of Public Meetings. SUMMARY...

  18. Knowledge Integration and Wise Engineering

    ERIC Educational Resources Information Center

    Chiu, Jennifer L.; Linn, M. C.

    2011-01-01

    Recent efforts in engineering education focus on introducing engineering into secondary math and science courses to improve science, technology, engineering, and math (STEM) education (NAS, 2010). Infusing engineering into secondary classrooms can increase awareness of and interest in STEM careers, help students see the relevance of science and…

  19. CECE: Expanding the Envelope of Deep Throttling Technology in Liquid Oxygen/Liquid Hydrogen Rocket Engines for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.

    2010-01-01

    As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in high-energy, cryogenic, in-space propulsion. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Four series of demonstrator engine tests have been successfully completed between April 2006 and April 2010, accumulating 7,436 seconds of hot fire time over 47 separate tests. While the first two test series explored low power combustion (chug) and system instabilities, the third test series investigated and was ultimately successful in demonstrating several mitigating technologies for these instabilities and achieved a stable throttling ratio of 13:1. The fourth test series significantly expanded the engine s operability envelope by successfully demonstrating a closed-loop control system and extensive transient modeling to enable lower power engine starting, faster throttle ramp rates, and mission-specific ignition testing. The final hot fire test demonstrated a chug-free, minimum power level of 5.9%, corresponding to an overall 17.6:1 throttling ratio achieved. In total, these tests have provided an early technology demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for future lander descent main engines.

  20. Systems Engineering and Integration for Technology Programs

    NASA Technical Reports Server (NTRS)

    Kennedy, Kruss J.

    2006-01-01

    The Architecture, Habitability & Integration group (AH&I) is a system engineering and integration test team within the NASA Crew and Thermal Systems Division (CTSD) at Johnson Space Center. AH&I identifies and resolves system-level integration issues within the research and technology development community. The timely resolution of these integration issues is fundamental to the development of human system requirements and exploration capability. The integration of the many individual components necessary to construct an artificial environment is difficult. The necessary interactions between individual components and systems must be approached in a piece-wise fashion to achieve repeatable results. A formal systems engineering (SE) approach to define, develop, and integrate quality systems within the life support community has been developed. This approach will allow a Research & Technology Program to systematically approach the development, management, and quality of technology deliverables to the various exploration missions. A tiered system engineering structure has been proposed to implement best systems engineering practices across all development levels from basic research to working assemblies. These practices will be implemented through a management plan across all applicable programs, projects, elements and teams. While many of the engineering practices are common to other industries, the implementation is specific to technology development. An accounting of the systems engineering management philosophy will be discussed and the associated programmatic processes will be presented.

  1. Advanced Turbine Technology Applications Project (ATTAP) 1993 annual report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report summarizes work performed by AlliedSignal Engines, a unit of AlliedSignal Aerospace Company, during calendar year 1993, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the U.S. Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATFAP). During 1993, the test bed used to demonstrate ceramic technology was changed from the AlliedSignal Engines/Garrett Model AGT101 regenerated gas turbine engine to the Model 331-200(CT) engine. The 331-200(CT) ceramic demonstrator is a fully-developed test platform based on the existing production AlliedSignal 331-200(ER) gas turbine auxiliary power unit (APU), and is well suited to evaluating ceramic turbine blades and nozzles. In addition, commonality of the 331-200(CT) engine with existing gas turbine APU's in commercial service provides the potential for field testing of ceramic components. The 1993 ATTAP activities emphasized design modifications of the 331-200 engine test bed to accommodate ceramic first-stage turbine nozzles and blades, fabrication of the ceramic components, ceramic component proof and rig tests, operational tests of the test bed equipped with the ceramic components, and refinement of critical ceramic design technologies.

  2. Engine Family Groups for Verification of Clean Diesel Technology

    EPA Pesticide Factsheets

    These documents show engine family boxes that represent groupings of engine families with similar characterists (i.e., the emissions standards that the engines were built to) for current and past model years.

  3. The role of gender on academic performance in STEM-related disciplines: Data from a tertiary institution.

    PubMed

    John, Temitope M; Badejo, Joke A; Popoola, Segun I; Omole, David O; Odukoya, Jonathan A; Ajayi, Priscilla O; Aboyade, Mary; Atayero, Aderemi A

    2018-06-01

    This data article presents data of academic performances of undergraduate students in Science, Technology, Engineering and Mathematics (STEM) disciplines in Covenant University, Nigeria. The data shows academic performances of Male and Female students who graduated from 2010 to 2014. The total population of samples in the observation is 3046 undergraduates mined from Biochemistry (BCH), Building technology (BLD), Computer Engineering (CEN), Chemical Engineering (CHE), Industrial Chemistry (CHM), Computer Science (CIS), Civil Engineering (CVE), Electrical and Electronics Engineering (EEE), Information and Communication Engineering (ICE), Mathematics (MAT), Microbiology (MCB), Mechanical Engineering (MCE), Management and Information System (MIS), Petroleum Engineering (PET), Industrial Physics-Electronics and IT Applications (PHYE), Industrial Physics-Applied Geophysics (PHYG) and Industrial Physics-Renewable Energy (PHYR). The detailed dataset is made available in form of a Microsoft Excel spreadsheet in the supplementary material of this article.

  4. Quality assurance and accreditation of engineering education in Jordan

    NASA Astrophysics Data System (ADS)

    Aqlan, Faisal; Al-Araidah, Omar; Al-Hawari, Tarek

    2010-06-01

    This paper provides a study of the quality assurance and accreditation in the Jordanian higher education sector and focuses mainly on engineering education. It presents engineering education, accreditation and quality assurance in Jordan and considers the Jordan University of Science and Technology (JUST) for a case study. The study highlights the efforts undertaken by the faculty of engineering at JUST concerning quality assurance and accreditation. Three engineering departments were accorded substantial equivalency status by the Accreditation Board of Engineering and Technology in 2009. Various measures of quality improvement, including curricula development, laboratories improvement, computer facilities, e-learning, and other supporting services are also discussed. Further assessment of the current situation is made through two surveys, targeting engineering instructors and students. Finally, the paper draws conclusions and proposes recommendations to enhance the quality of engineering education at JUST and other Jordanian educational institutions.

  5. Biomaterials for Bone Regenerative Engineering.

    PubMed

    Yu, Xiaohua; Tang, Xiaoyan; Gohil, Shalini V; Laurencin, Cato T

    2015-06-24

    Strategies for bone tissue regeneration have been continuously evolving for the last 25 years since the introduction of the "tissue engineering" concept. The convergence of the life, physical, and engineering sciences has brought in several advanced technologies available to tissue engineers and scientists. This resulted in the creation of a new multidisciplinary field termed as "regenerative engineering". In this article, the role of biomaterials in bone regenerative engineering is systematically reviewed to elucidate the new design criteria for the next generation of biomaterials for bone regenerative engineering. The exemplary design of biomaterials harnessing various materials characteristics towards successful bone defect repair and regeneration is highlighted. Particular attention is given to the attempts of incorporating advanced materials science, stem cell technologies, and developmental biology into biomaterials design to engineer and develop the next generation bone grafts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Applying systems engineering methodologies to the micro- and nanoscale realm

    NASA Astrophysics Data System (ADS)

    Garrison Darrin, M. Ann

    2012-06-01

    Micro scale and nano scale technology developments have the potential to revolutionize smart and small systems. The application of systems engineering methodologies that integrate standalone, small-scale technologies and interface them with macro technologies to build useful systems is critical to realizing the potential of these technologies. This paper covers the expanding knowledge base on systems engineering principles for micro and nano technology integration starting with a discussion of the drivers for applying a systems approach. Technology development on the micro and nano scale has transition from laboratory curiosity to the realization of products in the health, automotive, aerospace, communication, and numerous other arenas. This paper focuses on the maturity (or lack thereof) of the field of nanosystems which is emerging in a third generation having transitioned from completing active structures to creating systems. The emphasis of applying a systems approach focuses on successful technology development based on the lack of maturity of current nano scale systems. Therefore the discussion includes details relating to enabling roles such as product systems engineering and technology development. Classical roles such as acquisition systems engineering are not covered. The results are also targeted towards small-scale technology developers who need to take into account systems engineering processes such as requirements definition, verification, and validation interface management and risk management in the concept phase of technology development to maximize the likelihood of success, cost effective micro and nano technology to increase the capability of emerging deployed systems and long-term growth and profits.

  7. A Research Program on Artificial Intelligence in Process Engineering.

    ERIC Educational Resources Information Center

    Stephanopoulos, George

    1986-01-01

    Discusses the use of artificial intelligence systems in process engineering. Describes a new program at the Massachusetts Institute of Technology which attempts to advance process engineering through technological advances in the areas of artificial intelligence and computers. Identifies the program's hardware facilities, software support,…

  8. Assessing Changes in Teachers' Attitudes toward Interdisciplinary STEM Teaching

    ERIC Educational Resources Information Center

    Al Salami, Mubarak K.; Makela, Carole J.; de Miranda, Michael A.

    2017-01-01

    Integrating engineering and technology concepts into K-12 science and math curricula through engineering design project-based learning has been found to increase students' interest in science, technology, engineering, and mathematics (STEM), however preparing teachers to shift to interdisciplinary teaching remains a significant challenge.…

  9. Analyzing Team Based Engineering Design Process in Computer Supported Collaborative Learning

    ERIC Educational Resources Information Center

    Lee, Dong-Kuk; Lee, Eun-Sang

    2016-01-01

    The engineering design process has been largely implemented in a collaborative project format. Recently, technological advancement has helped collaborative problem solving processes such as engineering design to have efficient implementation using computers or online technology. In this study, we investigated college students' interaction and…

  10. Metabolic Engineering X Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, Evan

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  11. 40 CFR 90.113 - In-use testing program for Phase 1 engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...

  12. 40 CFR 90.113 - In-use testing program for Phase 1 engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...

  13. 40 CFR 90.113 - In-use testing program for Phase 1 engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...

  14. 40 CFR 90.113 - In-use testing program for Phase 1 engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...

  15. Orbit Transfer Vehicle (OTV) advanced expander cycle engine point design study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1980-01-01

    Engine control techniques were established and new technology requirements were identified. The designs of the components and engine were prepared in sufficient depth to calculate engine and component weights and envelopes, turbopump efficiencies and recirculation leakage rates, and engine performance. Engine design assumptions are presented along with the structural design criteria.

  16. Sense and Sensibility: The Case for the Nationwide Inclusion of Engineering in the K-12 Curriculum

    NASA Technical Reports Server (NTRS)

    Lindberg, Robert E.; Pinelli, Thomas E.; Batterson, James G.

    2008-01-01

    The competitive status of the United States is inextricably linked to innovation just as innovation is inseparable from science, technology, engineering, and mathematics. To stay competitive in innovation requires that the United States produce a 21st century workforce complete with requisite education, training, skills, and motivation. If we accept a priori that science, technology, engineering, and mathematics education are crucial to competitiveness and innovation and that, in terms of innovation, mathematics, science, and engineering are interdependent, why are mathematics and science uniformly ubiquitous in the K-12 curriculum while engineering is conspicuously absent? We are passionate in our belief that the uniform addition of engineering to the K-12 curriculum will help ensure that the nation has "the right" 21st Century workforce. Furthermore, we believe that a nationwide effort, led by a coalition of engineering academics, practitioners, and societies is required to turn this goal into reality. However, accomplishing this goal necessitates, as we are reminded by the title of Jane Austen's timeless novel, "Sense and Sensibility", a workable solution that seeks the "middle ground" between passion and reason. We begin our paper by making two essential points: Engineers are not scientists. Engineering exists separate from science, has its own specialized knowledge community apart from science, and it is largely responsible for many of the most significant advancements and improvements in the quality of our life. Our workable solution requires that K-12 education, nationwide, accommodate the inclusion of engineering as a stand alone curriculum and we offer three reasons to support our position: (1) workforce development, (2) stimulating interest in STEM (science, technology, engineering, and mathematics) courses and careers, and (3) creating a technologically literate society. We conclude with some thoughts on how this important goal can be accomplished.

  17. Research and technology 1995 annual report

    NASA Technical Reports Server (NTRS)

    1995-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1995 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as technology transfer activities. Major areas of research include environmental engineering, automation, robotics, advanced software, materials science, life sciences, mechanical engineering, nondestructive evaluation, and industrial engineering.

  18. Study of Turbofan Engines Designed for Low Enery Consumption

    NASA Technical Reports Server (NTRS)

    Neitzel, R. E.; Hirschkron, R.; Johnston, R. P.

    1976-01-01

    Subsonic transport turbofan engine design and technology features which have promise of improving aircraft energy consumption are described. Task I addressed the selection and evaluation of features for the CF6 family of engines in current aircraft, and growth models of these aircraft. Task II involved cycle studies and the evaluation of technology features for advanced technology turbofans, consistent with initial service in 1985. Task III pursued the refined analysis of a specific design of an advanced technology turbofan engine selected as the result of Task II studies. In all of the above, the impact upon aircraft economics, as well as energy consumption, was evaluated. Task IV summarized recommendations for technology developments which would be necessary to achieve the improvements in energy consumption identified.

  19. 78 FR 24241 - Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National Science and Technology Council; Notice of Public Meeting AGENCY: Executive Office of the President, Office of Science and Technology Policy. ACTION: Notice of Public Meeting...

  20. Environmental Engineering in Mining Engineering Education

    ERIC Educational Resources Information Center

    Mahamud-Lopez, Manuel Maria; Menendez-Aguado, Juan Maria

    2005-01-01

    In this paper, the current profile of the environmental engineer and the programming of the subject "Environmental Engineering and Technology" corresponding to the studies of Mining Engineering at the University of Oviedo in Spain, is discussed. Professional profile, student knowledge prior to and following instruction as well as…

  1. Women Engineers and the Influence of Childhood Technologic Environment

    ERIC Educational Resources Information Center

    Mazdeh, Shahla

    2011-01-01

    This phenomenological multi-case study investigated the influence of women engineers' childhood exposure to engineering concepts on their preparation for an engineering profession. An ecologic model (Bronfenbrenner, 1979) was used as the conceptual framework of this research. Twelve professional women engineers from various age and…

  2. Preparing technicians for engineering materials technology

    NASA Technical Reports Server (NTRS)

    Jacobs, James A.; Metzloff, Carlton H.

    1990-01-01

    A long held principle is that for every engineer and scientist there is a need for ten technicians to maximize the efficiency of the technology team for meeting needs of industry and government. Developing an adequate supply of technicians to meet the requirements of the materials related industry will be a challenge and difficult to accomplish. A variety of agencies feel the need and wish to support development of engineering materials technology programs. In a joint effort among Battelle Laboratories, the Department of Energy (DOE) and Northwest College and University Association for Science (NORCUS), the development of an engineering materials technology program for vocational programs and community colleges for the Pacific Northwest Region was recently completed. This effort has implications for a national model. The model Associate of Applied Science degree in Engineering Materials Technology shown provides a general structure. It purposely has course titles which need delimiting while also including a core of courses necessary to develop cognitive, affective and psychomotor skills with the underlining principles of math, science and technology so students have job entry skills, and so that students can learn about and adapt to evolving technology.

  3. Chemical and toxicological properties of emissions from CNG transit buses equipped with three-way catalysts compared to lean-burn engines and oxidation catalyst technologies

    NASA Astrophysics Data System (ADS)

    Yoon, Seungju; Hu, Shaohua; Kado, Norman Y.; Thiruvengadam, Arvind; Collins, John F.; Gautam, Mridul; Herner, Jorn D.; Ayala, Alberto

    2014-02-01

    Chemical and toxicological properties of emissions from compressed natural gas (CNG) fueled transit buses with stoichiometric combustion engines and three-way catalyst (TWC) exhaust control systems were measured using a chassis dynamometer testing facility and compared to the data from earlier CNG engine and exhaust control technologies. Gaseous and particulate matter emissions from buses with stoichiometric engines and TWC were significantly lower than the emissions from buses with lean-burn engines. Carbonyls and volatile organic compounds (VOCs) from buses with stoichiometric engines and TWC were lower by more than 99% compared to buses with lean-burn engines. Elemental and organic carbons (EC and OC), polycyclic aromatic hydrocarbons (PAHs), and trace elements from buses with stoichiometric engines and TWC were effectively controlled and significantly lower than the emissions from buses with lean-burn engines. Potential mutagenicity measured using a microsuspension modification of the Salmonella/microsome assay was lower by more than 99% for buses with stoichiometric engines and TWC, compared to buses with lean-burn engines and OxC.

  4. Developing a Consensus-Driven, Core Competency Model to Shape Future Audio Engineering Technology Curriculum: A Web-Based Modified Delphi Study

    ERIC Educational Resources Information Center

    Tough, David T.

    2009-01-01

    The purpose of this online study was to create a ranking of essential core competencies and technologies required by AET (audio engineering technology) programs 10 years in the future. The study was designed to facilitate curriculum development and improvement in the rapidly expanding number of small to medium sized audio engineering technology…

  5. Bioencapsulation technologies in tissue engineering

    PubMed Central

    Majewski, Rebecca L.; Zhang, Wujie; Ma, Xiaojun; Cui, Zhanfeng; Ren, Weiping; Markel, David C.

    2017-01-01

    Bioencapsulation technologies have played an important role in the developing successes of tissue engineering. Besides offering immunoisolation, they also show promise for cell/tissue banking and the directed differentiation of stem cells, by providing a unique microenvironment. This review describes bioencapsulation technologies and summarizes their recent progress in research into tissue engineering. The review concludes with a brief outlook regarding future research directions in this field. PMID:27716872

  6. Computational and Genomic Analysis of Mycobacteriophage: A Longitudinal Study of Technology Engineered Biology Courses That Implemented an Inquiry Based Laboratory Practice Designed to Enhance, Encourage, and Empower Student Learning

    ERIC Educational Resources Information Center

    Hollowell, Gail P.; Osler, James E.; Hester, April L.

    2015-01-01

    This paper provides an applied research rational for a longitudinal investigation that involved teaching a "Technology Engineered Science Education Course" via an Interactive Laboratory Based Genomics Curriculum. The Technology st Engineering [TE] methodology was first introduced at the SAPES: South Atlantic Philosophy of Education…

  7. Encouraging Minority Students to Pursue Science, Technology, Engineering and Math Careers. A Briefing before the United States Commission on Civil Rights Held in Washington, D.C. Briefing Report

    ERIC Educational Resources Information Center

    US Commission on Civil Rights, 2010

    2010-01-01

    The Commission held a briefing entitled, "Encouraging Minority Students to Pursue Science, Technology, Engineering and Math Careers." In particular, the Commission examined why minority college students who begin their college studies intending to major in science, technology, engineering or math (STEM) leave these disciplines in disproportionate…

  8. Potential of Diesel Engine, 1979 Summary Source Document

    DOT National Transportation Integrated Search

    1980-03-01

    This document assesses the fuel economy potential of diesel engines in future passenger cars and light trucks. The primary technologies evaluated include: (1) engine control strategy and implementation, (2) the engine design variables, (3) emissions ...

  9. Small Engine Technology (SET) - Task 13 ANOPP Noise Prediction for Small Engines: Jet Noise Prediction Module, Wing Shielding Module, and System Studies Results

    NASA Technical Reports Server (NTRS)

    Lieber, Lysbeth; Golub, Robert (Technical Monitor)

    2000-01-01

    This Final Report has been prepared by AlliedSignal Engines and Systems, Phoenix, Arizona, documenting work performed during the period May 1997 through June 1999, under the Small Engines Technology Program, Contract No. NAS3-27483, Task Order 13, ANOPP Noise Prediction for Small Engines. The report specifically covers the work performed under Subtasks 4, 5 and 6. Subtask 4 describes the application of a semi-empirical procedure for jet noise prediction, subtask 5 describes the development of a procedure to predict the effects of wing shielding, and subtask 6 describes the results of system studies of the benefits of the new noise technology on business and regional aircraft.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissionsmore » regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low emissions, R&D activities are closely coordinated with the relevant activities of the Fuel Technologies Sub-Program, also within the Office of FreedomCAR and Vehicle Technologies. Research is also being undertaken on hydrogen-fueled internal combustion engines to provide an interim hydrogen-based powertrain technology that promotes the longer-range FreedomCAR Partnership goal of transitioning to a hydrogen-fueled transportation system. Hydrogen engine technologies being developed have the potential to provide diesel-like engine efficiencies with near-zero emissions.« less

  11. Future engineers: the intrinsic technology motivation of secondary school pupils

    NASA Astrophysics Data System (ADS)

    Jones, Lewis C. R.; McDermott, Hilary J.; Tyrer, John R.; Zanker, Nigel P.

    2018-07-01

    The supply of students motivated to study engineering in higher education is critical to the sector. Results are presented from the 'Mindsets STEM Enhancement Project'. Fifty-seven new resources packs, designed to improve STEM education in Design and Technology, were given to schools across London. A modified Intrinsic Motivation Inventory questionnaire measured pupils' (n = 458) motivation towards technology. The results show that although pupils have positive reactions to the technology content within Design and Technology lessons, the type of STEM resources and lessons created through the project had made no significant difference on pupils' interest/enjoyment towards technology. This suggests stand-alone resources do not improve pupil motivation. The impact of this work to engineering higher education is that the existing levels and the inability to improve pupil motivation in technology at school could be a factor affecting the pursuit of a technology or engineering related education or career.

  12. Chemical Reaction Engineering Applications in Non-traditional Technologies. A Textbook Supplement.

    ERIC Educational Resources Information Center

    Savage, Phillip E.; Blaine, Steven

    1991-01-01

    A set of educational materials that have been developed which deal with chemical engineering applications in emerging technologies is described. The organization and the content of the supplemental textbook materials and how they can be integrated into an undergraduate reaction engineering course are discussed. (KR)

  13. STEM: Science Technology Engineering Mathematics

    ERIC Educational Resources Information Center

    Carnevale, Anthony P.; Smith, Nicole; Melton, Michelle

    2011-01-01

    The generative economic power and social influence of Science, Technology, Engineering, and Mathematics (STEM) has made the production of a capable science and engineering workforce a priority among business and policy leaders. They are rightly concerned that without a robust STEM workforce, the nation will become less competitive in the global…

  14. Shaking up Pre-Calculus: Incorporating Engineering into K-12 Curricula

    ERIC Educational Resources Information Center

    Sabo, Chelsea; Burrows, Andrea; Childers, Lois

    2014-01-01

    Projects highlighting Science, Technology, Engineering, and Mathematics (STEM) education in high schools have promoted student interest in engineering-related fields and enhanced student understanding of mathematics and science concepts. The Science and Technology Enhancement Program (Project STEP), funded by a NSF GK-12 grant at the University of…

  15. FY2016 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  16. STEM - Science, Technology, Engineering, & Mathematics Career Expo

    Science.gov Websites

    Search STEM - Science, Technology, Engineering, & Mathematics Career Expo Come to Fermilab to meet Career Expo on April 18, 2018! Here's your guide to the event. Meet scientists, engineers, & ; technicians Ask career questions of the experts Ask experts about educational pathways leading to specific

  17. FY2014 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  18. Advancing the "E" in K-12 STEM Education

    ERIC Educational Resources Information Center

    Rockland, Ronald; Bloom, Diane S.; Carpinelli, John; Burr-Alexander, Levelle; Hirsch, Linda S.; Kimmel, Howard

    2010-01-01

    Technological fields, like engineering, are in desperate need of more qualified workers, yet not enough students are pursuing studies in science, technology, engineering, or mathematics (STEM) that would prepare them for technical careers. Unfortunately, many students have no interest in STEM careers, particularly engineering, because they are not…

  19. 76 FR 93 - Summer Undergraduate Research Fellowships (SURF) NIST Gaithersburg and Boulder Programs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ...: Catalog of Federal Domestic Assistance Name and Number: Measurement and Engineering Research and Standards... engineering sciences and, as the lead Federal agency for technology transfer, it provides a strong interface... enables the Center for Nanoscale Science and Technology (CNST), Engineering Laboratory (EL), Information...

  20. 78 FR 5469 - Announcement of Requirements and Registration for the 2013 NIBIB DEsign by Biomedical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... tools, tissue engineering, drug and gene delivery (c) Technology to Aid Underserved Populations and... and engineering and associated technologies and modalities with biomedical applications; and (3) to...: September 2013, Biomedical Engineering Society Conference (exact date to be announced at http://debut2013...

  1. Optimization, an Important Stage of Engineering Design

    ERIC Educational Resources Information Center

    Kelley, Todd R.

    2010-01-01

    A number of leaders in technology education have indicated that a major difference between the technological design process and the engineering design process is analysis and optimization. The analysis stage of the engineering design process is when mathematical models and scientific principles are employed to help the designer predict design…

  2. Developing Professional Skills in Undergraduate Engineering Students through Cocurricular Involvement

    ERIC Educational Resources Information Center

    Fisher, Dara R.; Bagiati, Aikaterini; Sarma, Sanjay

    2017-01-01

    As nations have sought to keep pace with rapid technological innovation, governments have renewed their focus on science, technology, engineering, and mathematics (STEM) education, with emphasis on developing both technical and non-technical skills in STEM students. This article examines which engineering-relevant skills may be developed by…

  3. Civil Engineering Technology Needs Assessment.

    ERIC Educational Resources Information Center

    Oakland Community Coll., Farmington, MI. Office of Institutional Planning and Analysis.

    In 1991, a study was conducted by Oakland Community College (OCC) to evaluate the need for a proposed Civil Engineering Technology program. An initial examination of the literature focused on industry needs and the job market for civil engineering technicians. In order to gather information on local area employers' hiring practices and needs, a…

  4. Foreign Experience in Training Future Engineering Educators for Modeling Technological Processes

    ERIC Educational Resources Information Center

    Bokhonko, Yevhen

    2017-01-01

    The article deals with the study of foreign experience in training engineering educators for modeling technological processes. It has been stated that engineering education is a field that is being dramatically developed taking into account the occurring changes in educational paradigms, global higher education space, national higher education…

  5. 75 FR 52982 - Notice of Determinations Regarding Eligibility To Apply for Worker Adjustment Assistance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... Boeing Company, St. Louis, MO February 24, 2009. Engineering Operations, etc., Off-Site Workers Reporting to St. Louis, MO. 73,635A The Boeing Company, St. Charles, MO February 24, 2009. Engineering... 24, 2009. Engineering Operations & Technology Div. & Information Technology Div. 73,753 Lodging by...

  6. Engineered and Other Wood Products - An Opportunity to "Grow the Pie"

    Treesearch

    Albert Schuler; Craig Adair

    2003-01-01

    The market for engineered wood products (EWP) is being driven by a number of factors including: technology; reduced availability of old-growth timber; construction activity, and globalization. Specifically, technological developments have allowed the industry to "engineer" or "design" improved performance properties and to utilize former "weed...

  7. Evaluating the Effectiveness of Integrative STEM Education: Teacher and Administrator Professional Development

    ERIC Educational Resources Information Center

    Havice, William; Havice, Pamela; Waugaman, Chelsea; Walker, Kristin

    2018-01-01

    The integration of science, technology, engineering, and mathematics (STEM) education, also referred to as integrative STEM education, is a relatively new interdisciplinary teaching technique that incorporates an engineering design-based learning approach with mathematics, science, technology, and engineering education (Sanders, 2010, 2012, 2013;…

  8. Engineering Education: Environmental and Chemical Engineering or Technology Curricula--A European Perspective

    ERIC Educational Resources Information Center

    Glavic, Peter; Lukman, Rebeka; Lozano, Rodrigo

    2009-01-01

    Over recent years, universities have been incorporating sustainable development (SD) into their systems, including their curricula. This article analyses the incorporation of SD into the curricula of chemical and environmental engineering or technology bachelor degrees at universities in the European Union (EU) and European Free Trade Association…

  9. Leading Practice in Space Education: Successful Approaches by Specialist Schools

    ERIC Educational Resources Information Center

    Schools Network, 2010

    2010-01-01

    The aim of the Government's Science, Technology, Engineering and Mathematics (STEM) programme is to ensure Britain's future success as a major centre for science, engineering and innovation. Specialist science, technology, engineering and maths & computing colleges help to drive this programme by becoming centres of excellence in STEM…

  10. Engineering Education in Bangladesh--An Indicator of Economic Development

    ERIC Educational Resources Information Center

    Chowdhury, Harun; Alam, Firoz

    2012-01-01

    Developing nations including Bangladesh are significantly lagging behind the millennium development target due to the lack of science, technology and engineering education. Bangladesh as a least developing country has only 44 engineers per million people. Its technological education and gross domestic product growth are not collinear. Although…

  11. Status of Elementary Teacher Development: Preparing Elementary Teachers to Deliver Technology and Engineering Experiences

    ERIC Educational Resources Information Center

    Rose, Mary Annette; Carter, Vinson; Brown, Josh; Shumway, Steven

    2017-01-01

    For over a century, teacher preparation programs (TPPs) have experienced peaks and valleys in preparing preservice teachers to deliver technology and engineering (TE) experiences in elementary classrooms. Calls to integrate engineering concepts into elementary education (Katehi, Pearson, & Feder, 2009; Kimmel, Carpinelli, Curr-Alexander, &…

  12. Colloquy on Minority Males in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Didion, Catherine; Fortenberry, Norman L.; Cady, Elizabeth

    2012-01-01

    On August 8-12, 2010 the National Academy of Engineering (NAE), with funding from the National Science Foundation (NSF), convened the Colloquy on Minority Males in Science, Technology, Engineering, and Mathematics (STEM), following the release of several reports highlighting the educational challenges facing minority males. The NSF recognized the…

  13. How an Integrative STEM Curriculum Can Benefit Students in Engineering Design Practices

    ERIC Educational Resources Information Center

    Fan, Szu-Chun; Yu, Kuang-Chao

    2017-01-01

    STEM-oriented engineering design practice has become recognized increasingly by technology education professionals in Taiwan. This study sought to examine the effectiveness of the application of an integrative STEM approach within engineering design practices in high school technology education in Taiwan. A quasi-experimental study was conducted…

  14. FY2015 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Gurpreet; Gravel, Roland M.; Howden, Kenneth C.

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  15. Career Pathways of Science, Engineering and Technology Research Postgraduates

    ERIC Educational Resources Information Center

    Giles, Marnie; Ski, Chantal; Vrdoljak, Davorin

    2009-01-01

    Suitably qualified scientists and engineers are essential for research and development, innovation and, in turn, the growth of the economy. Science, engineering and technology skills are therefore necessary for Australia to remain competitive in a global market. This article reports findings from a nationwide study investigating the career…

  16. Technological Literacy Learning with Cumulative and Stepwise Integration of Equations into Electrical Circuit Diagrams

    ERIC Educational Resources Information Center

    Ozogul, G.; Johnson, A. M.; Moreno, R.; Reisslein, M.

    2012-01-01

    Technological literacy education involves the teaching of basic engineering principles and problem solving, including elementary electrical circuit analysis, to non-engineering students. Learning materials on circuit analysis typically rely on equations and schematic diagrams, which are often unfamiliar to non-engineering students. The goal of…

  17. Quiet Clean Short-Haul Experimental Engine (QCSEE) Under-the-Wing (UTW) Final Design Report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The QCSEE Program provides for the design, fabrication, and testing of two experimental high-bypass geared turbofan engines and propulsion systems for short-haul passenger aircraft. The overall objective of the program is to develop the propulsion technology required for future externally blown flap types of aircraft with engines located both under-the-wing and over-the-wing. This technology includes work in composite structures and digital engine controls.

  18. Data systems and computer science: Software Engineering Program

    NASA Technical Reports Server (NTRS)

    Zygielbaum, Arthur I.

    1991-01-01

    An external review of the Integrated Technology Plan for the Civil Space Program is presented. This review is specifically concerned with the Software Engineering Program. The goals of the Software Engineering Program are as follows: (1) improve NASA's ability to manage development, operation, and maintenance of complex software systems; (2) decrease NASA's cost and risk in engineering complex software systems; and (3) provide technology to assure safety and reliability of software in mission critical applications.

  19. J85 Rejuvenation Through Technology Insertion

    DTIC Science & Technology

    2000-10-01

    and Sabre 75 business addition to military production, the J85 was jets . Number Model Produced Aircraft Type(s) Engine Type Thrust (lbs) J85-GE-4 740...REJUVENATION THROUGH TECHNOLOGY INSERTION T.A. Brisken, P.N. Howell, A.C. Ewing Military Engines Operation GE Aircraft Engines 1 Neumann Way Cincinnati...OH 45215, USA Summary thrust to weight ratio turbojet engines with potential application to early cruise missiles and drones. The history of the

  20. Conventional engine technology. Volume 2: Status of diesel engine technology

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1981-01-01

    The engines of diesel cars marketed in the United States were examined. Prominent design features, performance characteristics, fuel economy and emissions data were compared. Specific problems, in particular those of NO and smoke emissions, the effects of increasing dieselization on diesel fuel price and availability, current R&D work and advanced diesel concepts are discussed. Diesel cars currently have a fuel economy advantage over gasoline engine powered cars. Diesel drawbacks (noise and odor) were reduced to a less objectionable level. An equivalent gasoline engine driveability was obtained with turbocharging. Diesel manufacturers see a growth in the diesel market for the next ten years. Uncertainties regarding future emission regulation may inhibit future diesel production investments. With spark ignition engine technology advancing in the direction of high compression ratios, the fuel economy advantages of the diesel car is expected to diminish. To return its fuel economy lead, the diesel's potential for future improvement must be used.

  1. Regulated and unregulated emissions from highway heavy-duty diesel engines complying with U.S. Environmental Protection Agency 2007 emissions standards.

    PubMed

    Khalek, Imad A; Bougher, Thomas L; Merritt, Patrick M; Zielinska, Barbara

    2011-04-01

    As part of the Advanced Collaborative Emissions Study (ACES), regulated and unregulated exhaust emissions from four different 2007 model year U.S. Environmental Protection Agency (EPA)-compliant heavy-duty highway diesel engines were measured on an engine dynamometer. The engines were equipped with exhaust high-efficiency catalyzed diesel particle filters (C-DPFs) that are actively regenerated or cleaned using the engine control module. Regulated emissions of carbon monoxide, nonmethane hydrocarbons, and particulate matter (PM) were on average 97, 89, and 86% lower than the 2007 EPA standard, respectively, and oxides of nitrogen (NOx) were on average 9% lower. Unregulated exhaust emissions of nitrogen dioxide (NO2) emissions were on, average 1.3 and 2.8 times higher than the NO, emissions reported in previous work using 1998- and 2004-technology engines, respectively. However, compared with other work performed on 1994- to 2004-technology engines, average emission reductions in the range of 71-99% were observed for a very comprehensive list of unregulated engine exhaust pollutants and air toxic contaminants that included metals and other elements, elemental carbon (EC), inorganic ions, and gas- and particle-phase volatile and semi-volatile organic carbon (OC) compounds. The low PM mass emitted from the 2007 technology ACES engines was composed mainly of sulfate (53%) and OC (30%), with a small fraction of EC (13%) and metals and other elements (4%). The fraction of EC is expected to remain small, regardless of engine operation, because of the presence of the high-efficiency C-DPF in the exhaust. This is different from typical PM composition of pre-2007 engines with EC in the range of 10-90%, depending on engine operation. Most of the particles emitted from the 2007 engines were mainly volatile nuclei mode in the sub-30-nm size range. An increase in volatile nanoparticles was observed during C-DPF active regeneration, during which the observed particle number was similar to that observed in emissions of pre-2007 engines. However, on average, when combining engine operation with and without active regeneration events, particle number emissions with the 2007 engines were 90% lower than the particle number emitted from a 2004-technology engine tested in an earlier program.

  2. A study of the historical role of African Americans in science, engineering and technology

    NASA Astrophysics Data System (ADS)

    Jones, Keith Wayne

    2000-11-01

    The purpose of this study was to determine if there is adequate documentation of an historical role of African and African American involvement in science, engineering, and technology. Through the use of history of science and technology research methodology, along with an examination of the sociological and economic impacts of adequately accredited innovations and inventions contributed by Africans and African Americans, the researcher investigated their contributions to the following areas of science and technology: life science, physical sciences and chemistry, engineering, and science education. In regard to the timeframe for this study, the researcher specifically investigated African and African American involvement in science and technology that includes periods prior to black enslavement, scientific racism and colonialism, as well as during and after those periods. This research study reveals that there are adequate historical data regarding African and African American contributions to science, engineering, and technology. The data reveals that for many millennia African peoples have been continually involved in science and world science histories. The data further show that the numbers of African Americans acquiring BS, MS, Ph.D., Doctor of Science and Doctor of Engineering degrees in science and engineering disciplines are increasing. That these increases are not happening at a rate representative of the present or future African American percentages of the population. Consequently, because of future changes in our nation's demographics, increasing the numbers of people from under-represented groups who pursue scientific and engineering professions has become a matter of national security at the highest levels of government. Moreover, African Americans, Hispanics, and Native Americans are not pursuing careers or taking courses in science and engineering at a rate high enough to fulfill the prospective needs for the United States' industries, government, and military. Projections are that, in the 21st century, there will be even greater needs for more scientists, engineers, information technologists, and other types of scientific workers. The data from this study indicate that more inclusive history of science and technology can be used as a means for encouraging more people from under-represented groups to become scientifically literate and to pursue science and engineering careers.

  3. Key Future Engineering Capabilities for Human Capital Retention

    NASA Astrophysics Data System (ADS)

    Sivich, Lorrie

    Projected record retirements of Baby Boomer generation engineers have been predicted to result in significant losses of mission-critical knowledge in space, national security, and future scientific ventures vital to high-technology corporations. No comprehensive review or analysis of engineering capabilities has been performed to identify threats related to the specific loss of mission-critical knowledge posed by the increasing retirement of tenured engineers. Archival data from a single diversified Fortune 500 aerospace manufacturing engineering company's engineering career database were analyzed to ascertain whether relationships linking future engineering capabilities, engineering disciplines, and years of engineering experience could be identified to define critical knowledge transfer models. Chi square, logistic, and linear regression analyses were used to map patterns of discipline-specific, mission-critical knowledge using archival data of engineers' perceptions of engineering capabilities, key developmental experiences, and knowledge learned from their engineering careers. The results from the study were used to document key engineering future capabilities. The results were then used to develop a proposed human capital retention plan to address specific key knowledge gaps of younger engineers as veteran engineers retire. The potential for social change from this study involves informing leaders of aerospace engineering corporations on how to build better quality mentoring or succession plans to fill the void of lost knowledge from retiring engineers. This plan can secure mission-critical knowledge for younger engineers for current and future product development and increased global competitiveness in the technology market.

  4. Oregon Pre-Engineering Learning Outcomes Study: Final Report

    ERIC Educational Resources Information Center

    Conley, David T.; Langan, Holly; Veach, Darya; Farkas, Virginia

    2007-01-01

    The Oregon Pre-engineering Learning Outcomes Project was conducted by the Educational Policy Improvement Center (EPIC) with grant funding from the Engineering and Technology Industry Council (ETIC). The study sought to improve student preparation and success in pre-engineering programs through the development of the Oregon Pre-engineering Learning…

  5. 40 CFR 1039.245 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with an engineering analysis, with pre-existing test data, or with new emission measurements. Apply... factors for an engine family with established technology based on engineering analysis instead of testing... an engine family under paragraph (a) or (b) of this section, select engines, subsystems, or...

  6. 40 CFR 1039.245 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with an engineering analysis, with pre-existing test data, or with new emission measurements. Apply... factors for an engine family with established technology based on engineering analysis instead of testing... an engine family under paragraph (a) or (b) of this section, select engines, subsystems, or...

  7. 40 CFR 1039.245 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with an engineering analysis, with pre-existing test data, or with new emission measurements. Apply... factors for an engine family with established technology based on engineering analysis instead of testing... an engine family under paragraph (a) or (b) of this section, select engines, subsystems, or...

  8. 40 CFR 1039.245 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with an engineering analysis, with pre-existing test data, or with new emission measurements. Apply... factors for an engine family with established technology based on engineering analysis instead of testing... an engine family under paragraph (a) or (b) of this section, select engines, subsystems, or...

  9. 40 CFR 1039.245 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with an engineering analysis, with pre-existing test data, or with new emission measurements. Apply... factors for an engine family with established technology based on engineering analysis instead of testing... an engine family under paragraph (a) or (b) of this section, select engines, subsystems, or...

  10. Expose Mechanical Engineering Students to Biomechanics Topics

    ERIC Educational Resources Information Center

    Shen, Hui

    2011-01-01

    To adapt the focus of engineering education to emerging new industries and technologies nationwide and in the local area, a biomechanics module has been developed and incorporated into a mechanical engineering technical elective course to expose mechanical engineering students at ONU (Ohio Northern University) to the biomedical engineering topics.…

  11. What Do Engineers Want? Examining Engineering Education through Bloom's Taxonomy

    ERIC Educational Resources Information Center

    Goel, Sanjay; Sharda, Nalin

    2004-01-01

    Using Bloom's taxonomy as the basis for an empirical investigation, this paper examines what engineering students and professionals want from engineering education. Fifty engineering students, from Computer Science and Information Technology courses, were asked to rank activity verbs in order of their impression about frequency of their occurrence…

  12. Interdisciplinary Research Topics in Urban Engineering. (A Summary of the Report by the Urban Engineering Study Committee)

    ERIC Educational Resources Information Center

    Eng Educ, 1969

    1969-01-01

    Proposes preparation of urban engineers through interdisciplinary systems engineering research in order that technology may be applied to urban problems such as transportation, environment, and housing. Summary of report by the Urban Engineering Study Committee. Complete report available at

  13. Engineering Encounters: Engineer It, Learn It--Science and Engineering Practices in Action

    ERIC Educational Resources Information Center

    Lachapelle, Cathy P.; Sargianis, Kristin; Cunningham, Christine M.

    2013-01-01

    Engineering is prominently included in the "Next Generation Science Standards" (Achieve Inc. 2013), as it was in "A Framework for K-12 Science Education" (NRC 2012). The National Research Council, authors of the "Framework," write, "Engineering and technology are featured alongside the natural sciences (physical…

  14. Geometry and Simulation Results for a Gas Turbine Representative of the Energy Efficient Engine (EEE)

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.; Beach, Tim; Turner, Mark; Hendricks, Eric S.

    2015-01-01

    This paper describes the geometry and simulation results of a gas-turbine engine based on the original EEE engine developed in the 1980s. While the EEE engine was never in production, the technology developed during the program underpins many of the current generation of gas turbine engines. This geometry is being explored as a potential multi-stage turbomachinery test case that may be used to develop technology for virtual full-engine simulation. Simulation results were used to test the validity of each component geometry representation. Results are compared to a zero-dimensional engine model developed from experimental data. The geometry is captured in a series of Initial Graphical Exchange Specification (IGES) files and is available on a supplemental DVD to this report.

  15. NASA Propulsion Engineering Research Center, volume 2

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On 8-9 Sep. 1993, the Propulsion Engineering Research Center (PERC) at The Pennsylvania State University held its Fifth Annual Symposium. PERC was initiated in 1988 by a grant from the NASA Office of Aeronautics and Space Technology as a part of the University Space Engineering Research Center (USERC) program; the purpose of the USERC program is to replenish and enhance the capabilities of our Nation's engineering community to meet its future space technology needs. The Centers are designed to advance the state-of-the-art in key space-related engineering disciplines and to promote and support engineering education for the next generation of engineers for the national space program and related commercial space endeavors. Research on the following areas was initiated: liquid, solid, and hybrid chemical propulsion, nuclear propulsion, electrical propulsion, and advanced propulsion concepts.

  16. Dual-fuel natural gas/diesel engines: Technology, performance, and emissions

    NASA Astrophysics Data System (ADS)

    Turner, S. H.; Weaver, C. S.

    1994-11-01

    An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

  17. Software Engineering Research/Developer Collaborations in 2005

    NASA Technical Reports Server (NTRS)

    Pressburger, Tom

    2006-01-01

    In CY 2005, three collaborations between software engineering technology providers and NASA software development personnel deployed three software engineering technologies on NASA development projects (a different technology on each project). The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report. Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Also included is an acronym list.

  18. Adiabatic Wankel type rotary engine

    NASA Technical Reports Server (NTRS)

    Kamo, R.; Badgley, P.; Doup, D.

    1988-01-01

    This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.

  19. Developing Technologies for Space Resource Utilization: Concept for a Planetary Engineering Research Institute

    NASA Astrophysics Data System (ADS)

    Blacic, J. D.; Dreesen, D.; Mockler, T.

    2000-01-01

    There are two principal factors that control the economics and ultimate utilization of space resources: 1) space transportation, and 2) space resource utilization technologies. Development of space transportation technology is driven by major government (military and civilian) programs and, to a lesser degree, private industry-funded research. Communication within the propulsion and spacecraft engineering community is aided by an effective independent professional organization, the American Institute of Aeronautics and Astronautics (AIAA). The many aerospace engineering programs in major university engineering schools sustain professional-level education in these fields. NASA does an excellent job of public education in space science and engineering at all levels. Planetary science, a precursor and supporting discipline for space resource utilization, has benefited from the establishment of the Lunar and Planetary Institute (LPI) which has served, since the early post-Apollo days, as a focus for both professional and educational development in the geosciences of the Moon and other planets. The closest thing the nonaerospace engineering disciplines have had to this kind of professional nexus is the sponsorship by the American Society of Civil Engineers of a series of space engineering conferences that have had a predominantly space resource orientation. However, many of us with long-standing interests in space resource development have felt that an LPI-like, independent institute was needed to focus and facilitate both research and education on the specific engineering disciplines needed to develop space resource utilization technologies on an on-going basis.

  20. Education of Advanced Biotechnologists of Kitakyushu National College of Technology

    NASA Astrophysics Data System (ADS)

    Kawahara, Hiroharu

    The Cell Engineering Center was established in October, 2003 to research and develop manufacturing technologies and cell engineering technologies with human cell lines, which boost their uniqueness. The center serves as a base for advancing industrial development and creating new industries in Kitakyushu City area. One of the features in this center's activities is to promote technology exchanges between the students and researchers in private firms and to facilitate developed biotechnologies transferred to the private sectors. The Cell Engineering Center aims to train the advanced biotechnologists who have abilities for applying for patents, international communications, and leaderships. In this work, the educational and research activities in the Cell Engineering Center will be reported.

  1. 1996 Heavy-Duty Vehicle and Engine Resource Guide

    DOT National Transportation Integrated Search

    1996-01-01

    Engine manufacturers are moving forward when it comes to alternative fuel engine technology. This model year (MY96), heavy-duty engine manufacturers are offering a number of natural gas models with additional models nearing production. Electric vehic...

  2. Preparing engineers for the challenges of community engagement

    NASA Astrophysics Data System (ADS)

    Harsh, Matthew; Bernstein, Michael J.; Wetmore, Jameson; Cozzens, Susan; Woodson, Thomas; Castillo, Rafael

    2017-11-01

    Despite calls to address global challenges through community engagement, engineers are not formally prepared to engage with communities. Little research has been done on means to address this 'engagement gap' in engineering education. We examine the efficacy of an intensive, two-day Community Engagement Workshop for engineers, designed to help engineers better look beyond technology, listen to and learn from people, and empower communities. We assessed the efficacy of the workshop in a non-experimental pre-post design using a questionnaire and a concept map. Questionnaire results indicate participants came away better able to ask questions more broadly inclusive of non-technological dimensions of engineering projects. Concept map results indicate participants have a greater understanding of ways social factors shape complex material systems after completing the programme. Based on the workshop's strengths and weaknesses, we discuss the potential of expanding and supplementing the programme to help engineers account for social aspects central to engineered systems.

  3. How Engineers Engineer: Lessons from My First Big Engineering Project

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2008-01-01

    Little did the author realize how much his first engineering project would change his career path, but when it came, he was hooked forever on doing R&D-type engineering. In this article, the author takes the reader back to his first really important electrical engineering project. While the technology he worked on back then is antiquated by…

  4. The Impact of Engineering Identification and Stereotypes on Undergraduate Women's Achievement and Persistence in Engineering

    ERIC Educational Resources Information Center

    Jones, Brett D.; Ruff, Chloe; Paretti, Marie C.

    2013-01-01

    Women almost always comprise a minority in engineering programs and a smaller percentage of women pursue engineering than other science and technology majors. The culture of engineering departments and negative stereotypes of women's engineering and mathematical ability have been identified as factors that inhibit women's entry into…

  5. Exo-Skeletal Engine: Novel Engine Concept

    NASA Technical Reports Server (NTRS)

    Chamis, Cristos C.; Blankson, Isaiah M.

    2004-01-01

    The exo-skeletal engine concept represents a new radical engine technology with the potential to substantially revolutionize engine design. It is an all-composite drum-rotor engine in which conventionally heavy shafts and discs are eliminated and are replaced by rotating casings that support the blades in spanwise compression. Thus the rotating blades are in compression rather than tension. The resulting open channel at the engine centerline has immense potential for jet noise reduction and can also accommodate an inner combined-cycle thruster such as a ramjet. The exo-skeletal engine is described in some detail with respect to geometry, components, and potential benefits. Initial evaluations and results for drum rotors, bearings, and weights are summarized. Component configuration, assembly plan, and potential fabrication processes are also identified. A finite element model of the assembled engine and its major components is described. Preliminary results obtained thus far show at least a 30-percent reduction of engine weight and about a 10-dB noise reduction, compared with a baseline conventional high-bypass-ratio engine. Potential benefits in all aspects of this engine technology are identified and tabulated. Quantitative assessments of potential benefits are in progress.

  6. Space Station Engineering and Technology Development: Proceedings of the Panel on In-Space Engineering Research and Technology Development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In 1984 the ad hoc committee on Space Station Engineering and Technology Development of the Aeronautics and Space Engineering Board (ASEB) conducted a review of the National Aeronautics and Space Administration's (NASA's) space station program planning. The review addressed the initial operating configuration (IOC) of the station. The ASEB has reconstituted the ad hoc committee which then established panels to address each specific related subject. The participants of the panels come from the committee, industry, and universities. The proceedings of the Panel on In Space Engineering Research and Technology Development are presented in this report. Activities, and plans for identifying and developing R&T programs to be conducted by the space station and related in space support needs including module requirements are addressed. Consideration is given to use of the station for R&T for other government agencies, universities, and industry.

  7. Low-Noise Potential of Advanced Fan Stage Stator Vane Designs Verified in NASA Lewis Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    1999-01-01

    With the advent of new, more stringent noise regulations in the next century, aircraft engine manufacturers are investigating new technologies to make the current generation of aircraft engines as well as the next generation of advanced engines quieter without sacrificing operating performance. A current NASA initiative called the Advanced Subsonic Technology (AST) Program has set as a goal a 6-EPNdB (effective perceived noise) reduction in aircraft engine noise relative to 1992 technology levels by the year 2000. As part of this noise program, and in cooperation with the Allison Engine Company, an advanced, low-noise, high-bypass-ratio fan stage design and several advanced technology stator vane designs were recently tested in NASA Lewis Research Center's 9- by 15-Foot Low-Speed Wind Tunnel (an anechoic facility). The project was called the NASA/Allison Low Noise Fan.

  8. A Plan for Revolutionary Change in Gas Turbine Engine Control System Architecture

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.

    2011-01-01

    The implementation of Distributed Engine Control technology on the gas turbine engine has been a vexing challenge for the controls community. A successful implementation requires the resolution of multiple technical issues in areas such as network communications, power distribution, and system integration, but especially in the area of high temperature electronics. Impeding the achievement has been the lack of a clearly articulated message about the importance of the distributed control technology to future turbine engine system goals and objectives. To resolve these issues and bring the technology to fruition has, and will continue to require, a broad coalition of resources from government, industry, and academia. This presentation will describe the broad challenges facing the next generation of advanced control systems and the plan which is being put into action to successfully implement the technology on the next generation of gas turbine engine systems.

  9. Applying Technology Ranking and Systems Engineering in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Luna, Bernadette (Technical Monitor)

    2000-01-01

    According to the Advanced Life Support (ALS) Program Plan, the Systems Modeling and Analysis Project (SMAP) has two important tasks: 1) prioritizing investments in ALS Research and Technology Development (R&TD), and 2) guiding the evolution of ALS systems. Investments could be prioritized simply by independently ranking different technologies, but we should also consider a technology's impact on system design. Guiding future ALS systems will require SMAP to consider many aspects of systems engineering. R&TD investments can be prioritized using familiar methods for ranking technology. The first step is gathering data on technology performance, safety, readiness level, and cost. Then the technologies are ranked using metrics or by decision analysis using net present economic value. The R&TD portfolio can be optimized to provide the maximum expected payoff in the face of uncertain future events. But more is needed. The optimum ALS system can not be designed simply by selecting the best technology for each predefined subsystem. Incorporating a new technology, such as food plants, can change the specifications of other subsystems, such as air regeneration. Systems must be designed top-down starting from system objectives, not bottom-up from selected technologies. The familiar top-down systems engineering process includes defining mission objectives, mission design, system specification, technology analysis, preliminary design, and detail design. Technology selection is only one part of systems analysis and engineering, and it is strongly related to the subsystem definitions. ALS systems should be designed using top-down systems engineering. R&TD technology selection should consider how the technology affects ALS system design. Technology ranking is useful but it is only a small part of systems engineering.

  10. 2.0 AEDL Systems Engineering

    NASA Technical Reports Server (NTRS)

    Graves, Claude

    2005-01-01

    Some engineering topics: Some Initial Thoughts. Capability Description. Capability State-of-the-Art. Capability Requirements. Systems Engineering. Capability Roadmap. Capability Maturity. Candidate Technologies. Metrics.

  11. Orbit transfer rocket engine technology program

    NASA Technical Reports Server (NTRS)

    Gustafson, N. B.; Harmon, T. J.

    1993-01-01

    An advanced near term (1990's) space-based Orbit Transfer Vehicle Engine (OTVE) system was designed, and the technologies applicable to its construction, maintenance, and operations were developed under Tasks A through F of the Orbit Transfer Rocket Engine Technology Program. Task A was a reporting task. In Task B, promising OTV turbomachinery technologies were explored: two stage partial admission turbines, high velocity ratio diffusing crossovers, soft wear ring seals, advanced bearing concepts, and a rotordynamic analysis. In Task C, a ribbed combustor design was developed. Possible rib and channel geometries were chosen analytically. Rib candidates were hot air tested and laser velocimeter boundary layer analyses were conducted. A channel geometry was also chosen on the basis of laser velocimeter data. To verify the predicted heat enhancement effects, a ribbed calorimeter spool was hot fire tested. Under Task D, the optimum expander cycle engine thrust, performance and envelope were established for a set of OTV missions. Optimal nozzle contours and quick disconnects for modularity were developed. Failure Modes and Effects Analyses, maintenance and reliability studies and component study results were incorporated into the engine system. Parametric trades on engine thrust, mixture ratio, and area ratio were also generated. A control system and the health monitoring and maintenance operations necessary for a space-based engine were outlined in Task E. In addition, combustor wall thickness measuring devices and a fiberoptic shaft monitor were developed. These monitoring devices were incorporated into preflight engine readiness checkout procedures. In Task F, the Integrated Component Evaluator (I.C.E.) was used to demonstrate performance and operational characteristics of an advanced expander cycle engine system and its component technologies. Sub-system checkouts and a system blowdown were performed. Short transitions were then made into main combustor ignition and main stage operation.

  12. Improved components for engine fuel savings

    NASA Technical Reports Server (NTRS)

    Antl, R. J.; Mcaulay, J. E.

    1980-01-01

    NASA programs for developing fuel saving technology include the Engine Component Improvement Project for short term improvements in existing air engines. The Performance Improvement section is to define component technologies for improving fuel efficiency for CF6, JT9D and JT8D turbofan engines. Sixteen concepts were developed and nine were tested while four are already in use by airlines. If all sixteen concepts are successfully introduced the gain will be fuel savings of more than 6 billion gallons over the lifetime of the engines. The improvements include modifications in fans, mounts, exhaust nozzles, turbine clearance and turbine blades.

  13. Study, optimization, and design of a laser heat engine

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Laser heat engine concepts, proposed for satellite applications, were analyzed to determine which engine concepts best meet the requirements of high efficiency (50 percent or better) continuous operation in space. The best laser heat engine for a near-term experimental demonstration, selected on the basis of high overall operating efficiency, high power-to-weight characteristics, and availability of the required technology, is an Otto/Diesel cycle piston engine using a diamond window to admit CO2 laser radiation. The technology with the greatest promise of scaling to megawatt power levels in the long term is the energy exchanger/gas turbine combination.

  14. Benchmarking and Hardware-In-The-Loop Operation of a ...

    EPA Pesticide Factsheets

    Engine Performance evaluation in support of LD MTE. EPA used elements of its ALPHA model to apply hardware-in-the-loop (HIL) controls to the SKYACTIV engine test setup to better understand how the engine would operate in a chassis test after combined with future leading edge technologies, advanced high-efficiency transmission, reduced mass, and reduced roadload. Predict future vehicle performance with Atkinson engine. As part of its technology assessment for the upcoming midterm evaluation of the 2017-2025 LD vehicle GHG emissions regulation, EPA has been benchmarking engines and transmissions to generate inputs for use in its ALPHA model

  15. Knowledge translation in rehabilitation engineering research and development: a knowledge ecosystem framework.

    PubMed

    Chau, Tom; Moghimi, Saba; Popovic, Milos R

    2013-01-01

    Rehabilitation engineering is concerned with technology innovations and technology-mediated treatments for the improvement of quality of care and quality of life of individuals with disability. Unlike many other fields of health research, the knowledge translation (KT) cycle of rehabilitation engineering research and development (R&D) is often considered incomplete until a technology product or technology-facilitated therapy is available to target clientele. As such, the KT journey of rehabilitation engineering R&D is extremely challenging, necessarily involving knowledge exchange among numerous players across multiple sectors. In this article, we draw on recent literature about the knowledge trichotomy in technology-based rehabilitation R&D and propose a knowledge ecosystem to frame the rehabilitation engineering KT process from need to product. Identifying the principal process of the ecosystem as one of knowledge flow, we elucidate the roles of repository and networked knowledge, identify key consumers and producers in a trinity of communities of practice, and draw on knowledge management literature to describe different knowledge flows. The article concludes with instantiations of this knowledge ecosystem for 2 local rehabilitation engineering research-development-commercialization endeavors. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Research Technology

    NASA Image and Video Library

    2002-03-13

    NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, has begun a series of engine tests on the Reaction Control Engine developed by TRW Space and Electronics for NASA's Space Launch Initiative (SLI). SLI is a technology development effort aimed at improving the safety, reliability, and cost effectiveness of space travel for reusable launch vehicles. The engine in this photo, the first engine tested at MSFC that includes SLI technology, was tested for two seconds at a chamber pressure of 185 pounds per square inch absolute (psia). Propellants used were liquid oxygen as an oxidizer and liquid hydrogen as fuel. Designed to maneuver vehicles in orbit, the engine is used as an auxiliary propulsion system for docking, reentry, fine-pointing, and orbit transfer while the vehicle is in orbit. The Reaction Control Engine has two unique features. It uses nontoxic chemicals as propellants, which creates a safer environment with less maintenance and quicker turnaround time between missions, and it operates in dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The force of low level thrust allows the vehicle to fine-point maneuver and dock, while the force of the high level thrust is used for reentry, orbital transfer, and course positioning.

  17. Diesel Combustion and Emission Using High Boost and High Injection Pressure in a Single Cylinder Engine

    NASA Astrophysics Data System (ADS)

    Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi

    Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.

  18. The good engineer: giving virtue its due in engineering ethics.

    PubMed

    Harris, Charles E

    2008-06-01

    During the past few decades, engineering ethics has been oriented towards protecting the public from professional misconduct by engineers and from the harmful effects of technology. This "preventive ethics" project has been accomplished primarily by means of the promulgation of negative rules. However, some aspects of engineering professionalism, such as (1) sensitivity to risk (2) awareness of the social context of technology, (3) respect for nature, and (4) commitment to the public good, cannot be adequately accounted for in terms of rules, certainly not negative rules. Virtue ethics is a more appropriate vehicle for expressing these aspects of engineering professionalism. Some of the unique features of virtue ethics are the greater place it gives for discretion and judgment and also for inner motivation and commitment. Four of the many professional virtues that are important for engineers correspond to the four aspects of engineering professionalism listed above. Finally, the importance of the humanities and social sciences in promoting these virtues suggests that these disciplines are crucial in the professional education of engineers.

  19. Dual nozzle design update. [on liquid rocket engines for advanced earth-to-orbit transportation systems

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.

    1982-01-01

    Dual-nozzle engines, such as the dual-throat and dual-expander engines, are being evaluated for advanced earth-to-orbit transportation systems. Potential derivatives of the Space Shuttle and completely new vehicles might benefit from these advanced engines. In this paper, progress in the design of single-fuel and dual-fuel dual-nozzle engines is summarized. Dual-nozzle engines include those burning propellants such as LOX/RP-1/LH2, LOX/LC3H8/LH2, LOX/LCH4/LH2, LOX/LH2/LH2, LOX/LCH4/LCH4, LOX/LC3H8/C3H8 and N2O4/MMH/LH2. Engine data are applicable for thrust levels from 200,000 through 670,000 lbF. The results indicate that several versions of these engines utilize state-of-the-art technology and that even advanced versions of these engines do not require a major breakthrough in technology.

  20. JPRS report: Science and technology. USSR: Engineering and equipment

    NASA Astrophysics Data System (ADS)

    1991-10-01

    A bibliography is given of U.S.S.R. research in engineering and equipment. Topics covered include aviation, space technology, optics, high energy devices, nuclear energy, and industrial technology, planning, and productivity.

  1. JPRS Report. Science & Technology, USSR: Engineering & Equipment.

    DTIC Science & Technology

    1988-12-19

    unlimited Science & Technology USSR: Engineering & Equipment ^PRODUCED BY ^J’ODNALTECSL OF AMERCE SPR/NGnEL^ff’^1-INFORMATION S 22161 SERVICE...rv> DTIC QUALITY mSHBOTSD j5 Science & Technology USSR: Engineering & Equipment JPRS-UEQ-88-006 CONTENTS 19 DECEMBER 1988 Nuclear Energy Fuel...PROMYSHLENNOST, No 4, Apr 88] 36 Determining the Demand for Automated Foundry Equipment [A.A. Panov; MEKHAN1ZATS1YA IAVTOMATIZATSIYA PROIZVODSTVA, Apr 88] 40

  2. [The prospects of research on VR rehabilitation engineering].

    PubMed

    Huang, J; Liu, H; Li, H; Sun, Q; Xu, Y; Ling, D

    1999-06-01

    In this paper, we present the recent development of Vitual Reality (VR) technology and rehabilitation engineering and discuss the rationality and feasibility of the application of VR to rehabilitation. With VR technology, psychological induction can be better introduced in rehabilitating exercises and patients can be tremendously released from fret during traditional physical training for rehabilitation. The VR is expected to bring about a technological revolution in rehabilitation engineering.

  3. Performance and Durability Assessment of Two Emission Control Technologies Installed on a Legacy High-Speed Marine Diesel Engine

    DTIC Science & Technology

    2015-11-05

    program investigated cost- effective technologies to reduce emissions from legacy marine engines. High-speed, high-population engine models in both...respectively) were driven by health effects and environmental impacts. The U.S. Navy assessed its contribution to the domestic marine emission inventory...greatest potential. A laboratory developmental assessment was followed by a shipboard evaluation. Effective technology concepts applied to high

  4. A Novel Supercritical Fluid-Assisted Fabrication Technique for Producing Transparent Nanocomposites

    DTIC Science & Technology

    2013-10-03

    period with a degree in science, mathematics, engineering, or technology fields: The number of undergraduates funded by your agreement who graduated...during this period and will continue to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields: Number of...fellowships for further studies in science, mathematics, engineering or technology fields: 1.00 0.00 1.00 0.00 0.00 0.00

  5. Achieving Helicopter Modernization with Advanced Technology Turbine Engines

    DTIC Science & Technology

    1999-04-01

    computer modeling of compressor and turbine aerody- digital engine control ( FADEC ) with manual backup. namics. Modern directionally solidified and single...controlled by a dual RAH.66A M channel FADEC , and features a very simple installation "" Improved Gross Weight and significantly reduced pilot...air separation efficiencies as an "advanced technology" engine. Technological meas- high as 97.5%. The FADEC improves acceleration, ures include but

  6. Engineering Change Orders and their Impact on DoD Acquisition Contracts

    DTIC Science & Technology

    2017-03-23

    Air Force Institute of Technology AFIT Scholar Theses and Dissertations 3-23-2017 Engineering Change Orders and their Impact on DoD Acquisition...MS-17-M-180 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION...School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of

  7. An overview of the Small Engine Component Technology (SECT) studies

    NASA Technical Reports Server (NTRS)

    Vanco, M. R.; Wintucky, W. T.; Niedzwiecki, R. W.

    1986-01-01

    The objectives of the joint NASA/Army SECT Studies were to identify high payoff technologies for year 2000 small gas turbine engine applications and to provide a technology plan for guiding future research and technology efforts applicable to rotorcraft, commuter and general aviation aircraft and cruise missiles. Competitive contracts were awarded to Allison, AVCO Lycoming, Garrett, Teledyne CAE and Williams International. This paper presents an overview of the contractors' study efforts for the commuter, rotorcraft, cruise missile, and auxiliary power (APU) applications with engines in the 250 to 1,000 horsepower size range. Reference aircraft, missions and engines were selected. Advanced engine configurations and cycles with projected year 2000 component technologies were evaluated and compared with a reference engine selected by the contractor. For typical commuter and rotorcraft applications, fuel savings of 22 percent to 42 percent can be attained. For $1/gallon and $2/gallon fuel, reductions in direct operating cost range from 6 percent to 16 percent and from 11 percent to 17 percent respectively. For subsonic strategic cruise missile applications, fuel savings of 38 percent to 54 percent can be achieved which allows 35 percent to 60 percent increase in mission range and life cycle cost reductions of 40 percent to 56 percent. High payoff technologies have been identified for all applications.

  8. Cardiovascular tissue engineering: where we come from and where are we now?

    PubMed

    Smit, Francis E; Dohmen, Pascal M

    2015-01-27

    Abstract Tissue engineering was introduced by Vacanti and Langer in the 80's, exploring the potential of this new technology starting with the well-known "human ear on the mouse back". The goal is to create a substitute which supplies an individual therapy for patients with regeneration, remodeling and growth potential. The growth potential of these subjects is of special interest in congenital cardiac surgery, avoiding repeated interventions and surgery. Initial applications of tissue engineered created substitutes were relatively simple cardiovascular grafts seeded initially by end-differentiated autologous endothelial cells. Important data were collected from these initial clinical autologous endothelial cell seeded grafts in peripheral and coronary vessel disease. After these initial successfully implantation bone marrow cell were used to seed patches and pulmonary conduits were implanted in patients. Driven by the positive results of tissue engineered material implanted under low pressure circumstances, first tissue engineered patches were implanted in the systemic circulation followed by the implantation of tissue engineered aortic heart valves. Tissue engineering is an extreme dynamic technology with continuously modifications and improvements to optimize clinical products. New technologies are unified and so this has also be done with tissue engineering and new application features, so called transcatheter valve intervention. First studies are initiated to apply tissue engineered heart valves with this new transcatheter delivery system less invasive. Simultaneously studies have been started on tissue engineering of so-called whole organs since organ transplantation is restricted due to donor shortage and tissue engineering could overcome this problem. Initial studies of whole heart engineering in the rat model are promising and larger size models are initiated.

  9. Adaptive Engine Technologies for Aviation CO2 Emissions Reduction

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Haller, William J.; Tong, Michael T.

    2006-01-01

    Adaptive turbine engine technologies are assessed for their potential to reduce carbon dioxide emissions from commercial air transports.Technologies including inlet, fan, and compressor flow control, compressor stall control, blade clearance control, combustion control, active bearings and enabling technologies such as active materials and wireless sensors are discussed. The method of systems assessment is described, including strengths and weaknesses of the approach. Performance benefit estimates are presented for each technology, with a summary of potential emissions reduction possible from the development of new, adaptively controlled engine components.

  10. Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Stephens, G. E.

    1980-01-01

    The materials technologies studied included thermal barrier coatings for turbine airfoils, turbine disks, cases, turbine vanes and engine and nacelle composite materials. The cost/benefit of each technology was determined in terms of Relative Value defined as change in return on investment times probability of success divided by development cost. A recommended final ranking of technologies was based primarily on consideration of Relative Values with secondary consideration given to changes in other economic parameters. Technologies showing the most promising cost/benefits were thermal barrier coated temperature nacelle/engine system composites.

  11. A compendium of solar dish/Stirling technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stine, W.B.; Diver, R.B.

    1994-01-01

    This report surveys the emerging dish/Stirling technology. It documents -- using consistent terminology the design characteristics of dish concentrators, receivers, and Stirling engines applicable to solar electric power generation. Development status and operating experience for each system and an overview of dish/Stirling technology are also presented. This report enables comparisons of concentrator, receiver, and engine technologies. Specifications and performance data are presented on systems and on components that are in use or that could be used in dish/Stirling systems. This report is organized into two parts: The first part (Chapters 1 through 4) provides an overview of dish/Stirling technology --more » the dish/ Stirling components (concentrator, receiver, and engine/alternator), current technology, basic theory, and technology development. The second part (Chapters 5 through 7) provides a detailed survey of the existing dish/Stirling concentrators, receivers, and engine/alternators.« less

  12. Quiet Clean Short-haul Experimental Engine (QCSEE). Under-The-Wing (UTW) engine boilerplate nacelle test report. Volume 3: Mechanical performance

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Results of initial tests of the under the wing experimental engine and boilerplate nacelle are presented. The mechanical performance of the engine is reported with emphasis on the advanced technology components. Technology elements of the propulsion system covered include: system dynamics, composite fan blades, reduction gear, lube and accessory drive system, fan frame, inlet, core cowl cooling, fan exhaust nozzle, and digital control system.

  13. Compressor Research Facility F100 High Pressure Compressor Inlet Total Pressure and Swirl Profile Simulation.

    DTIC Science & Technology

    1984-10-01

    SECTION I INTRODUCTION 1. GENERAL -.The F100 gas turbine engine currently powers the Air Force F-15 and F-16 aircraft . The compression section of this... Aircraft in designing these vanes and screens to provide the measured engine profiles. lata acquisition system was defined and transported to Pratt and...WILLIAM W. COEHVRWALKER H. MITCHELL Compressor Test Group Chief, Technology Branch Technology Branch Turbine Engine Division Turbine Engine Division

  14. Study of unconventional aircraft engines designed for low energy consumption

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1976-01-01

    Declining U.S. oil reserves and escalating energy costs underline the need for reducing fuel consumption in aircraft engines. The most promising unconventional aircraft engines based on their potential for fuel savings and improved economics are identified. The engines installed in both a long-range and medium-range aircraft were evaluated. Projected technology advances are identified and evaluated for their state-of-readiness for application to a commercial transport. Programs are recommended for developing the necessary technology.

  15. A new generation T56 turboprop engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntire, W.L.

    1984-06-01

    The focus of the T56 Series IV turboprop engine development program is to improve power and fuel consumption through incorporation of demonstrated technology improvements while retaining the long term durability and cost effective design of the T56 family. The T56-A-427, the Navy Series IV derivative of the 5000 shp (3728.5 kW) class T56 turboprop engine, resulted from over ten years of technology development via Advanced Turbine Engine Gas Generator (ATEGG), Joint Technology Demonstrator Engine (JTDE), and advanced component programs at Allison Gas Turbine Operations. An example of government and industry cooperation to transfer advanced gas turbine technology is the Airmore » Force Engine Model Derivative Program (EMDP). The initial full-scale demonstration in this program confirmed a 10-1/2% reduction in specific fuel consumption (sfc) and a power growth of 21% in the basic T56 frame. Continued early demonstrations and development by IR and D, Navy funds, and Allison discretionary funds showed a further sfc reduction to 13% and power increase of 28%. The full-scale development program is now underway to provide production engines in late 1986. Engines will be available for the Grumman E-2 and C-2 aircraft, with follow-on adaptions for Lockheed C-130/L100 and P-3 aircraft, and generator sets for DD 963, DDG 993, CG 47 and DDG 51 warships.« less

  16. Introducing new technologies into Space Station subsystems

    NASA Technical Reports Server (NTRS)

    Wiskerchen, Michael J.; Mollakarimi, Cindy L.

    1989-01-01

    A new systems engineering technology has been developed and applied to Shuttle processing. The new engineering approach emphasizes the identification, quantitative assessment, and management of system performance and risk related to the dynamic nature of requirements, technology, and operational concepts. The Space Shuttle Tile Automation System is described as an example of the first application of the new engineering technology. Lessons learned from the Shuttle processing experience are examined, and concepts are presented which are applicable to the design and development of the Space Station Freedom.

  17. Advanced oxygen-hydrocarbon rocket engine study

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.; Salkeld, R.

    1980-01-01

    The advantages and disadvantages, system performance and operating limits, engine parametric data, and technology requirements for candidate high pressure LO2/Hydrocarbon engine systems are summarized. These summaries of parametric analysis and design provide a consistent engine system data base. Power balance data were generated for the eleven engine cycles. Engine cycle rating parameters were established and the desired condition and the effect of the parameter on the engine and/or vehicle are described.

  18. Diving Deep: A Comparative Study of Educator Undergraduate and Graduate Backgrounds and Their Effect on Student Understanding of Engineering and Engineering Careers, Utilizing an Underwater Robotics Program

    NASA Astrophysics Data System (ADS)

    Scribner, J. Adam

    Numerous studies have demonstrated that educators having degrees in their subjects significantly enhances student achievement, particularly in secondary mathematics and science (Chaney, 1995; Goe, 2007; Rowan, Chiang, & Miller, 1997; Wenglinsky, 2000). Yet, science teachers in states that adopt the Next Generation Science Standards will be facilitating classroom engineering activities despite the fact that few have backgrounds in engineering. This quantitative study analyzed ex-post facto WaterBotics (an innovative underwater robotics curriculum for middle and high school students) data to determine if educators having backgrounds in engineering (i.e., undergraduate and graduate degrees in engineering) positively affected student learning on two engineering outcomes: 1) the engineering design process, and 2) understanding of careers in engineering (who engineers are and what engineers do). The results indicated that educators having backgrounds in engineering did not significantly affect student understanding of the engineering design process or careers in engineering when compared to educators having backgrounds in science, mathematics, technology education, or other disciplines. There were, however, statistically significant differences between the groups of educators. Students of educators with backgrounds in technology education had the highest mean score on assessments pertaining to the engineering design process while students of educators with disciplines outside of STEM had the highest mean scores on instruments that assess for student understanding of careers in engineering. This might be due to the fact that educators who lack degrees in engineering but who teach engineering do a better job of "sticking to the script" of engineering curricula.

  19. Environmental engineering education at Ghent University, Flanders (Belgium).

    PubMed

    Demeestere, K; Dewulf, J; Janssen, C; Van Langenhove, H

    2004-01-01

    Since the 1980s, environmental engineering education has been a rapidly growing discipline in many universities. This paper discusses the history, the current status and the near future of environmental engineering education at Ghent University. This university, with about 50% of the Flemish university environmental engineering students, can be considered as representative for the situation in Flanders, Belgium. In contrast to many other universities, environmental engineering education at Ghent University does not have its historical roots in civil engineering, but has been developed from the curricula organized by the former Faculty of Agricultural Sciences. As part of a reorganisation of the education and research activities at this faculty, a curriculum leading to the degree of "bio-engineer in environmental technology" was established in 1991. This curriculum covers a 5-year study and is constructed around 8 main components. Exchange of students with other European universities, e.g. within the Socrates framework, has become a prominent aspect of student life and education. This paper also briefly describes the employment opportunities of graduated bio-engineers in environmental technology. Finally, the current implementation of the bachelor's-master's structure, leading to a "master of science in environmental technology" degree is summarized.

  20. Trends in Environmental Health Engineering

    ERIC Educational Resources Information Center

    Rowe, D. R.

    1972-01-01

    Reviews the trends in environmental health engineering and describes programs in environmental engineering technology and the associated environmental engineering courses at Western Kentucky University (four-year program), Wytheville Community College (two-year program), and Rensselaer Polytechnic Institute (four-year program). (PR)

  1. Formal Abstraction in Engineering Education--Challenges and Technology Support

    ERIC Educational Resources Information Center

    Neuper, Walther A.

    2017-01-01

    This is a position paper in the field of Engineering Education, which is at the very beginning in Europe. It relates challenges in the new field to the emerging technology of (Computer) Theorem Proving (TP). Experience shows, that "teaching" abstract models, for instance the wave equation in mechanical engineering and in electrical…

  2. JPRS Report, Science & Technology, Europe & Latin America

    DTIC Science & Technology

    1988-04-06

    courses and in polytechnics a growing number of undergraduate research theses [ tesi di laurea] are increasingly coming to resemble authentic feasibility...Information Science Eleven Priorities Research Priority Actions — Microbiological engineering —Enzyme engineering —Biotechnological engineering —Food...Foodstuffs Medicine Human and social sciences Technology, computer-integrated manufacturing Electronics, data processing Microbiological

  3. Gender Differences in Interest, Perceived Personal Capacity, and Participation in STEM-Related Activities

    ERIC Educational Resources Information Center

    Weber, Katherine

    2012-01-01

    Today, more women than in the past obtain degrees in science and engineering. However, women still remain underrepresented in science, technology, engineering, and mathematics (STEM). This study identifies whether the Engagement, Capacity, and Continuity (ECC) Trilogy could be utilized by teachers in technology and engineering program setting to…

  4. 75 FR 81650 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-United Negro...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... activities that advance the state-of-the-art as well as the scientific, technology, engineering and... utilizing science, technology, engineering and mathematics; (c) to increase the competitiveness of..., UNCFSP-RDC, in care of Engineering and Management Executive, Inc. (EME), 101 South Whiting Street, Suite...

  5. Preparing the Future Workforce: Science, Technology, Engineering and Math (STEM) Policy in K-12 Education

    ERIC Educational Resources Information Center

    Dickman, Anneliese; Schwabe, Amy; Schmidt, Jeff; Henken, Rob

    2009-01-01

    Last December, the Science, Technology, Engineering, and Mathematics (STEM) Education Coalition--a national organization of more than 600 groups representing knowledge workers, educators, scientists, engineers, and technicians--wrote to President-elect Obama urging him to "not lose sight of the critical role that STEM education plays in…

  6. Engineering Encounters: Sailing into the Digital Era

    ERIC Educational Resources Information Center

    Bellavance, Janet; Truchon, Amy

    2015-01-01

    This article describes how Janet Bellavance teamed with technology integration specialist, Amy Truchon to incorporate iPads into her Engineering is Elementary (EiE) unit--a curriculum that engages elementary students in engineering simple technologies. In an EiE unit, students design, test, and then, based on test results, improve their design,…

  7. Aeronautical Envineering at Technion - Israel Institute of Technology.

    ERIC Educational Resources Information Center

    Mathieu, Richard D.

    The shortage of engineers in Israel and the role that the Technion - Israel Institute of Technology plays in the education of engineers is discussed. Emphasis is placed on the academic program, research, and related activities in the Department of Aeronautical Engineering. A brief description of the development of the institute and its…

  8. The Impact of Software on Associate Degree Programs in Electronic Engineering Technology.

    ERIC Educational Resources Information Center

    Hata, David M.

    1986-01-01

    Assesses the range and extent of computer assisted instruction software available in electronic engineering technology education. Examines the need for software skills in four areas: (1) high-level languages; (2) assembly language; (3) computer-aided engineering; and (4) computer-aided instruction. Outlines strategies for the future in three…

  9. Teacher Challenges to Implement Engineering Design in Secondary Technology Education

    ERIC Educational Resources Information Center

    Kelley, Todd R.; Wicklein, Robert C.

    2009-01-01

    This descriptive study examined the current status of technology education teacher practices with respect to engineering design. This article is the third article in a three-part series presenting the results of this study. The first article in the series titled "Examination of Engineering Design Curriculum Content" highlighted the research…

  10. Discovery Camp Excites Students about Engineering and Technology Careers

    ERIC Educational Resources Information Center

    Massiha, G. H.

    2011-01-01

    In the United States and elsewhere, there is a dramatic shortage of engineers and technologists. And, unfortunately, these professions often suffer from a lack of awareness among K-12 students. Clearly, educators need to show students the very exciting and lucrative aspects of these fields. Engineering and technology are consistently listed by…

  11. K-12 Bolsters Ties to Engineering

    ERIC Educational Resources Information Center

    Robelen, Erik W.

    2013-01-01

    When science, technology, engineering and mathematics (STEM) education is discussed in the K-12 sphere, it often seems like shorthand for mathematics and science, with perhaps a nod to technology and even less, if any, real attention to engineering. But recent developments signal that the "e" in STEM may be gaining a firmer foothold at…

  12. Definition, technology readiness, and development cost of the orbit transfer vehicle engine integrated control and health monitoring system elements

    NASA Technical Reports Server (NTRS)

    Cannon, I.; Balcer, S.; Cochran, M.; Klop, J.; Peterson, S.

    1991-01-01

    An Integrated Control and Health Monitoring (ICHM) system was conceived for use on a 20 Klb thrust baseline Orbit Transfer Vehicle (OTV) engine. Considered for space used, the ICHM was defined for reusability requirements for an OTV engine service free life of 20 missions, with 100 starts and a total engine operational time of 4 hours. Functions were derived by flowing down requirements from NASA guidelines, previous OTV engine or ICHM documents, and related contracts. The elements of an ICHM were identified and listed, and these elements were described in sufficient detail to allow estimation of their technology readiness levels. These elements were assessed in terms of technology readiness level, and supporting rationale for these assessments presented. The remaining cost for development of a minimal ICHM system to technology readiness level 6 was estimated. The estimates are within an accuracy range of minus/plus 20 percent. The cost estimates cover what is needed to prepare an ICHM system for use on a focussed testbed for an expander cycle engine, excluding support to the actual test firings.

  13. Spherical Joint Piston and Connecting Rod Developed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under an interagency agreement with the Department of Energy, the NASA Lewis Research Center manages a Heavy-Duty Diesel Engine Technology (HDET) research program. The overall program objectives are to reduce fuel consumption through increased engine efficiency, reduce engine exhaust emissions, and provide options for the use of alternative fuels. The program is administered with a balance of research contracts, university research grants, and focused in-house research. The Cummins Engine Company participates in the HDET program under a cost-sharing research contract. Cummins is researching and developing in-cylinder component technologies for heavy-duty diesel engines. An objective of the Cummins research is to develop technologies for a low-emissions, 55-percent thermal efficiency (LE-55) engine. The best current-production engines in this class achieve about 46-percent thermal efficiency. Federal emissions regulations are driving this technology. Regulations for heavy duty diesel engines were tightened in 1994, more demanding emissions regulations are scheduled for 1998, and another step is planned for 2002. The LE-55 engine emissions goal is set at half of the 1998 regulation level and is consistent with plans for 2002 emissions regulations. LE-55 engine design requirements to meet the efficiency target dictate a need to operate at higher peak cylinder pressures. A key technology being developed and evaluated under the Cummins Engine Company LE-55 engine concept is the spherical joint piston and connecting rod. Unlike conventional piston and connecting rod arrangements which are joined by a pin forming a hinged joint, the spherical joint piston and connecting rod use a ball-and-socket joint. The ball-and-socket arrangement enables the piston to have an axisymmetric design allowing rotation within the cylinder. The potential benefits of piston symmetry and rotation are reduced scuffing, improved piston ring sealing, improved lubrication, mechanical and thermal load symmetry, reduced bearing stresses, reduced running clearances, and reduced oil consumption. The spherical joint piston is a monolithic, squeeze-cast, fiber-reinforced aluminum piston. The connecting rod has a ball end that seats on a spherical saddle within the piston and is retained by a pair of aluminum bronze holder rings. The holder rings are secured by a threaded ring that mates with the piston. As part of the ongoing research and development activity, the Cummins Engine Company successfully completed a 100-hr test of the spherical joint piston and connecting rod at LE- 55 peak steady-state engine conditions. In addition, a 100-hr transient cycle test that varied engine conditions between LE-55 no-load and LE-55 full-load was successfully completed.

  14. Ultra-efficient Engine Diameter Study

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Brown, Stephen T.; Kawai, Ron T.

    2003-01-01

    Engine fan diameter and Bypass Ratio (BPR) optimization studies have been conducted since the beginning of the turbofan age with the recognition that reducing the engine core jet velocity and increasing fan mass flow rate generally increases propulsive efficiency. However, performance tradeoffs limit the amount of fan flow achievable without reducing airplane efficiency. This study identifies the optimum engine fan diameter and BPR, given the advanced Ultra-Efficient Engine Technology (UEET) powerplant efficiencies, for use on an advanced subsonic airframe. Engine diameter studies have historically focused on specific engine size options, and were limited by existing technology and transportation infrastructure (e.g., ability to fit bare engines through aircraft doors and into cargo holds). This study is unique in defining the optimum fan diameter and drivers for future 2015 (UEET) powerplants while not limiting engine fan diameter by external constraints. This report follows on to a study identifying the system integration issues of UEET engines. This Engine Diameter study was managed by Boeing Phantom Works, Seattle, Washington through the NASA Glenn Revolutionary Aero Space Engine Research (RASER) contract under task order 10. Boeing Phantom Works, Huntington Beach, completed the engine/airplane sizing optimization, while the Boeing Commercial Airplane group (BCA) provided design oversight. A separate subcontract to support the overall project was issued to Tuskegee University.

  15. Small engine technology programs

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, Richard W.

    1990-01-01

    Described here is the small engine technology program being sponsored at the Lewis Research Center. Small gas turbine research is aimed at general aviation, commuter aircraft, rotorcraft, and cruise missile applications. The Rotary Engine program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. The Automotive Gas Turbine (AGT) and Heavy-Duty Diesel Transport Technology (HDTT) programs are sponsored by DOE. The Compound Cycle Engine program is sponsored by the Army. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The HDTT, rotary technology, and the compound cycle programs are all examining approaches to minimum heat rejection, or 'adiabatic' systems employing advanced materials. The AGT program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbine programs will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.

  16. Advanced Technology for Engineering Education

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  17. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  18. Ultra-Efficient Engine Technology (UEET) Program

    NASA Technical Reports Server (NTRS)

    Manthey, Lori A.

    2001-01-01

    The Ultra-Efficient Engine Technology (UEET) Program includes seven key projects that work with industry to develop and hand off revolutionary propulsion technologies that will enable future-generation vehicles over a wide range of flight speeds. A new program office, the Ultra-Efficient Engine Technology (UEET) Program Office, was formed at the NASA Glenn Research Center to manage an important National propulsion program for NASA. The Glenn-managed UEET Program, which began on October 1, 1999, includes participation from three other NASA centers (Ames, Goddard, and Langley), as well as five engine companies (GE Aircraft Engines, Pratt & Whitney, Honeywell, Allison/Rolls Royce, and Williams International) and two airplane manufacturers (the Boeing Company and Lockheed Martin Corporation). This 6-year, nearly $300 million program will address local air-quality concerns by developing technologies to significantly reduce nitrogen oxide (NOx) emissions. In addition, it will provide critical propulsion technologies to dramatically increase performance as measured in fuel burn reduction that will enable reductions of carbon dioxide (CO2) emissions. This is necessary to address the potential climate impact of long-term aviation growth.

  19. When Do Faculty Inputs Matter? A Panel Study of Racial/Ethnic Differences in Engineering Bachelor's Degree Production

    ERIC Educational Resources Information Center

    Ransom, Tafaya

    2013-01-01

    Science, technology, engineering and mathematics (STEM) fields are widely credited as the primary drivers of economic growth through innovation, with engineering universally identified as especially critical. Yet as other nations have strengthened their engineering talent pools, the United States has struggled to cultivate an engineering workforce…

  20. The History of Chemical Engineering and Pedagogy: The Paradox of Tradition and Innovation

    ERIC Educational Resources Information Center

    Wankat, Phillip C.

    2009-01-01

    The Massachusetts Institute of Technology started the first US chemical engineering program six score years ago. Since that time, the chemical engineering curriculum has evolved. The latest versions of the curriculum are attempts to broaden chemical engineering to add product engineering, biology and nanotechnology to the traditional process…

  1. Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses

    ERIC Educational Resources Information Center

    Martinez-Luaces, Victor

    2009-01-01

    In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…

  2. Does Curriculum Practical Training Affect Engineers' Workplace Outcomes? Evidence from an Engineer Survey in China

    ERIC Educational Resources Information Center

    Li, Jing; Zhang, Yu; Tsang, Mun; Li, Manli

    2015-01-01

    With the increasing attention to STEM (Science, Technology, Engineering, and Math), hands-on Curriculum Practical Training (CPT) has been expanding rapidly worldwide as a requirement of the undergraduate engineering education. In China, a typical CPT for undergraduate engineering students requires several weeks of hands-on training in the…

  3. Advanced Reciprocating Engine Systems (ARES): Raising the Bar on Engine Technology with Increased Efficiency and Reduced Emissions, at Attractive Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This is a fact sheet on the U.S. Department of Energy's (DOE) Advanced Reciprocating Engine Systems program (ARES), which is designed to promote separate, but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the United States.

  4. Engineering Programs of Tomorrow: The Role of Agricultural Engineering.

    ERIC Educational Resources Information Center

    Edwards, Donald M.

    Due to rapid growth of societal and technological endeavors, engineers of the future will require greater technical competence. At the same time, engineering will become more people oriented with greater emphasis placed on people input into decision making. As a result, engineering education must not only provide improved technical education but…

  5. Engineering in K-12 Education: Understanding the Status and Improving the Prospects

    ERIC Educational Resources Information Center

    Katehi, Linda, Ed.; Pearson, Greg, Ed.; Feder, Michael, Ed.

    2009-01-01

    Engineering education in K-12 classrooms is a small but growing phenomenon that may have implications for engineering and also for the other STEM subjects--science, technology, and mathematics. Specifically, engineering education may improve student learning and achievement in science and mathematics, increase awareness of engineering and the work…

  6. What Engineering Sophomores Know and Would Like to Know about Engineering Information Sources and Access

    ERIC Educational Resources Information Center

    Ercegovac, Zorana

    2009-01-01

    This exploratory study reports on what engineering undergraduate students know and would like to learn about engineering information sources and access. Responses were obtained on selected performance measures within the framework of "Information Literacy Standards for Science and Engineering/Technology" (ACRL/ALA/STS 2006). The results are based…

  7. High Cycle Fatigue (HCF) Science and Technology Program, 2001 Annual Report

    DTIC Science & Technology

    2002-05-01

    Engines , Pratt & Whitney, Rolls Royce Allison, Honeywell Engines and Systems , Southwest Research Institute, Purdue University, North...Pratt & Whitney, Rolls Royce Allison, Honeywell Engines and Systems , Southwest Research Institute, Purdue University, University of Illinois, North...Participating Organizations: Pratt & Whitney, Honeywell Engines and Systems , Arnold Engineering Development Center (AEDC) Points of Contact:

  8. Study of advanced rotary combustion engines for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  9. New Frontiers AO: Advanced Materials Bi-propellant Rocket (AMBR) Engine Information Summary

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    2008-01-01

    The Advanced Material Bi-propellant Rocket (AMBR) engine is a high performance (I(sub sp)), higher thrust, radiation cooled, storable bi-propellant space engine of the same physical envelope as the High Performance Apogee Thruster (HiPAT(TradeMark)). To provide further information about the AMBR engine, this document provides details on performance, development, mission implementation, key spacecraft integration considerations, project participants and approach, contact information, system specifications, and a list of references. The In-Space Propulsion Technology (ISPT) project team at NASA Glenn Research Center (GRC) leads the technology development of the AMBR engine. Their NASA partners were Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Aerojet leads the industrial partners selected competitively for the technology development via the NASA Research Announcement (NRA) process.

  10. Engineering Technology Education: Bibliography, 1988.

    ERIC Educational Resources Information Center

    Dyrud, Marilyn A.

    1989-01-01

    Lists articles and books related to engineering technology education published in 1988. Items are grouped administration, aeronautical, architectural, CAD/CAM, civil, computers, curriculum, electrical/electronics, industrial, industry/government/employers, instructional technology, laboratories, lasers, liberal studies, manufacturing, mechanical,…

  11. Software engineering technology transfer: Understanding the process

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  12. Engineering with uncertainty: monitoring air bag performance.

    PubMed

    Wetmore, Jameson M

    2008-06-01

    Modern engineering is complicated by an enormous number of uncertainties. Engineers know a great deal about the material world and how it works. But due to the inherent limits of testing and the complexities of the world outside the lab, engineers will never be able to fully predict how their creations will behave. One way the uncertainties of engineering can be dealt with is by actively monitoring technologies once they have left the development and production stage. This article uses an episode in the history of automobile air bags as an example of engineers who had the foresight and initiative to carefully track the technology on the road to discover problems as early as possible. Not only can monitoring help engineers identify problems that surface in the field, it can also assist them in their efforts to mobilize resources to resolve problem.

  13. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.

  14. Engineering complex tissues.

    PubMed

    Atala, Anthony; Kasper, F Kurtis; Mikos, Antonios G

    2012-11-14

    Tissue engineering has emerged at the intersection of numerous disciplines to meet a global clinical need for technologies to promote the regeneration of functional living tissues and organs. The complexity of many tissues and organs, coupled with confounding factors that may be associated with the injury or disease underlying the need for repair, is a challenge to traditional engineering approaches. Biomaterials, cells, and other factors are needed to design these constructs, but not all tissues are created equal. Flat tissues (skin); tubular structures (urethra); hollow, nontubular, viscus organs (vagina); and complex solid organs (liver) all present unique challenges in tissue engineering. This review highlights advances in tissue engineering technologies to enable regeneration of complex tissues and organs and to discuss how such innovative, engineered tissues can affect the clinic.

  15. Computer-Aided Software Engineering - An approach to real-time software development

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.; Turkovich, John J.

    1989-01-01

    A new software engineering discipline is Computer-Aided Software Engineering (CASE), a technology aimed at automating the software development process. This paper explores the development of CASE technology, particularly in the area of real-time/scientific/engineering software, and a history of CASE is given. The proposed software development environment for the Advanced Launch System (ALS CASE) is described as an example of an advanced software development system for real-time/scientific/engineering (RT/SE) software. The Automated Programming Subsystem of ALS CASE automatically generates executable code and corresponding documentation from a suitably formatted specification of the software requirements. Software requirements are interactively specified in the form of engineering block diagrams. Several demonstrations of the Automated Programming Subsystem are discussed.

  16. Software engineering laboratory series: Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon

    1992-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) the Software Engineering Laboratory; (2) the Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.

  17. Cardiac tissue engineering: from matrix design to the engineering of bionic hearts.

    PubMed

    Fleischer, Sharon; Feiner, Ron; Dvir, Tal

    2017-04-01

    The field of cardiac tissue engineering aims at replacing the scar tissue created after a patient has suffered from a myocardial infarction. Various technologies have been developed toward fabricating a functional engineered tissue that closely resembles that of the native heart. While the field continues to grow and techniques for better tissue fabrication continue to emerge, several hurdles still remain to be overcome. In this review we will focus on several key advances and recent technologies developed in the field, including biomimicking the natural extracellular matrix structure and enhancing the transfer of the electrical signal. We will also discuss recent developments in the engineering of bionic cardiac tissues which integrate the fields of tissue engineering and electronics to monitor and control tissue performance.

  18. [Biomedical engineering today : An overview from the viewpoint of the German Biomedical Engineering Society].

    PubMed

    Schlötelburg, C; Becks, T; Stieglitz, T

    2010-08-01

    Biomedical engineering is characterized by the interdisciplinary co-operation of technology, science, and ways of thinking, probably more than any other technological area. The close interaction of engineering and information sciences with medicine and biology results in innovative products and methods, but also requires high standards for the interdisciplinary transfer of ideas into products for patients' benefits. This article describes the situation of biomedical engineering in Germany. It displays characteristics of the medical device industry and ranks it with respect to the international market. The research landscape is described as well as up-to-date research topics and trends. The national funding situation of research in biomedical engineering is reviewed and existing innovation barriers are discussed.

  19. Ceramic applications in turbine engines

    NASA Technical Reports Server (NTRS)

    Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.

    1984-01-01

    The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.

  20. Rehabilitation engineering training for the future: influence of trends in academics, technology, and health reform.

    PubMed

    Winters, J M

    1995-01-01

    A perspective is offered on rehabilitation engineering educational strategies, with a focus on the bachelor's and master's levels. Ongoing changes in engineering education are summarized, especially as related to the integration of design and computers throughout the curriculum; most positively affect rehabilitation engineering training. The challenge of identifying long-term "niches" for rehabilitation engineers within a changing rehabilitation service delivery process is addressed. Five key training components are identified and developed: core science and engineering knowledge, synthesized open-ended problem-solving skill development, hands-on design experience, rehabilitation breadth exposure, and a clinical internship. Two unique abilities are identified that help demarcate the engineer from other providers: open-ended problem-solving skills that include quantitative analysis when appropriate, and objective quantitative evaluation of human performance. Educational strategies for developing these abilities are addressed. Finally, a case is made for training "hybrid" engineers/therapists, in particular bachelor-level engineers who go directly to graduate school to become certified orthotists/prosthetists or physical/occupational therapists, pass the RESNA-sponsored assistive technology service provision exam along the way, then later in life obtain a professional engineer's license and an engineering master's degree.

Top