Public health engineering education in India: current scenario, opportunities and challenges.
Hussain, Mohammad Akhtar; Sharma, Kavya; Zodpey, Sanjay
2011-01-01
Public health engineering can play an important and significant role in solving environmental health issues. In order to confront public health challenges emerging out of environmental problems we need adequately trained public health engineers / environmental engineers. Considering the current burden of disease attributable to environmental factors and expansion in scope of applications of public health / environmental engineering science, it is essential to understand the present scenario of teaching, training and capacity building programs in these areas. Against this background the present research was carried out to know the current teaching and training programs in public health engineering and related disciplines in India and to understand the potential opportunities and challenges available. A systematic, predefined approach was used to collect and assemble the data related to various teaching and training programs in public health engineering / environmental engineering in India. Public health engineering / environmental engineering education and training in the country is mainly offered through engineering institutions, as pre-service and in-service training. Pre-service programs include diploma, degree (graduate) and post-graduate courses affiliated to various state technical boards, institutes and universities, whereas in-service training is mainly provided by Government of India recognized engineering and public health training institutes. Though trainees of these programs acquire skills related to engineering sciences, they significantly lack in public health skills. The teaching and training of public health engineering / environmental engineering is limited as a part of public health programs (MD Community Medicine, MPH, DPH) in India. There is need for developing teaching and training of public health engineering or environmental engineering as an interdisciplinary subject. Public health institutes can play an important and significant role in this regard by engaging themselves in initiating specialized programs in this domain.
Trends in Environmental Health Engineering
ERIC Educational Resources Information Center
Rowe, D. R.
1972-01-01
Reviews the trends in environmental health engineering and describes programs in environmental engineering technology and the associated environmental engineering courses at Western Kentucky University (four-year program), Wytheville Community College (two-year program), and Rensselaer Polytechnic Institute (four-year program). (PR)
Considerations on Educating Engineers in Sustainability
ERIC Educational Resources Information Center
Boyle, Carol
2004-01-01
The teaching of sustainability to engineers will follow similar paths to that of environmental engineering. There is a strong feeling that environmental engineering is a discipline unto itself, requiring knowledge of chemistry, physics, biology, hydrology, toxicology, modelling and law. However, environmental engineering can also be encompassed…
Environmental Engineering in Mining Engineering Education
ERIC Educational Resources Information Center
Mahamud-Lopez, Manuel Maria; Menendez-Aguado, Juan Maria
2005-01-01
In this paper, the current profile of the environmental engineer and the programming of the subject "Environmental Engineering and Technology" corresponding to the studies of Mining Engineering at the University of Oviedo in Spain, is discussed. Professional profile, student knowledge prior to and following instruction as well as…
Undergraduate environmental engineering education in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, C.; Bero, B.N.
1999-07-01
In this paper, the development process, present situations, causes of improvement, and trends of higher education of environmental engineering in China are discussed. Several education modes in environmental engineering in China are also presented. The development process can be divided into three stages: the beginning stage, the expansion stage, and the modification stage. The 1970's and early 1980's wake of environmental consciousness and serious pollution situation in China resulted in about 20 universities setting up an environmental engineering specialty. The late 1980's and middle 1990's job opportunities for undergraduates in China resulted in many universities' creation of the environmental engineeringmore » specialty from specialties such as geography, geology, hydrology, mining engineering, and mineral separation engineering where job opportunities were stagnant. At present, adjustment and improvement of environmental engineering education are urgently required because of the excessive increase of undergraduate number, change of job opportunities and implementation of five-work-day system in China. Other problems include how to determine the ratio of social science courses to engineering science courses, how to determine the relationship of fundamental and applied courses, and how to determine the specialized direction. Hunan University, as a typical university conferring an accredited Bachelor degree in Environmental Engineering in four academic years in China, has been improving the instruction schedule for undergraduate education in environmental engineering. The curricula of the three phases for undergraduates of environmental engineering specialty at Hunan University are presented as a case study.« less
Environmental Engineering in the Slovak Republic
NASA Astrophysics Data System (ADS)
Stevulova, N.; Balintova, M.; Zelenakova, M.; Estokova, A.; Vilcekova, S.
2017-10-01
The fundamental role of environmental engineering is to protect human population and environment from impacts of human activities and to ensure environmental quality. It relates to achieving the environmental sustainability goals through advanced technologies for pollutants removing from air, water and soil in order to minimize risk in ecosystem and ensuring favourable conditions for life of humans and organisms. Nowadays, a critical analysis of the environment quality and innovative approaches to problem solving in order to achieve sustainability in environmental engineering, are necessary. This article presents an overview of the quality of the environment and progress in environmental engineering in Slovakia and gives information regarding the environmental engineering education at Faculty of Civil Engineering at Technical University in Kosice.
34 CFR Appendix to Part 648 - Academic Areas
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Electronic, and Communications Engineering 14.11Engineering Mechanics 14.12Engineering Physics 14.13Engineering Science 14.14Environmental/Environmental Health Engineering 14.15Geological Engineering 14... Arts and Art Studies 50.09Music 51.Health Professions and Related Sciences 51.01Chiropractic (D.C., D.C...
Site Characterization Report (Building 202). Volume 2. Appendicies A-H.
1996-04-01
Bionetics,Groundwater and Wells, Environmental Science and Engineering, Inc., Installation Assessment of ERADCOM Activities, Environmental Science and...Engineering, Inc., Plan for the Assessment of Contamination at Woodbridge Research Facility, Environmental Science and Engineering, Inc., Remedial...Action Plan for the Woodbridge Research Facility PCB Disposal Site, Environmental Science and Engineering, Inc., Remedial Investigation and
Green engineering education through a U.S. EPA/academia collaboration.
Shonnard, David R; Allen, David T; Nguyen, Nhan; Austin, Sharon Weil; Hesketh, Robert
2003-12-01
The need to use resources efficiently and reduce environmental impacts of industrial products and processes is becoming increasingly important in engineering design; therefore, green engineering principles are gaining prominence within engineering education. This paper describes a general framework for incorporating green engineering design principles into engineering curricula, with specific examples for chemical engineering. The framework for teaching green engineering discussed in this paper mirrors the 12 Principles of Green Engineering proposed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A), especially in methods for estimating the hazardous nature of chemicals, strategies for pollution prevention, and approaches leading to efficient energy and material utilization. The key elements in green engineering education, which enlarge the "box" for engineering design, are environmental literacy, environmentally conscious design, and beyond-the-plant boundary considerations.
Predicting on-site environmental impacts of municipal engineering works
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangolells, Marta, E-mail: marta.gangolells@upc.edu; Casals, Miquel, E-mail: miquel.casals@upc.edu; Forcada, Núria, E-mail: nuria.forcada@upc.edu
2014-01-15
The research findings fill a gap in the body of knowledge by presenting an effective way to evaluate the significance of on-site environmental impacts of municipal engineering works prior to the construction stage. First, 42 on-site environmental impacts of municipal engineering works were identified by means of a process-oriented approach. Then, 46 indicators and their corresponding significance limits were determined on the basis of a statistical analysis of 25 new-build and remodelling municipal engineering projects. In order to ensure the objectivity of the assessment process, direct and indirect indicators were always based on quantitative data from the municipal engineering projectmore » documents. Finally, two case studies were analysed and found to illustrate the practical use of the proposed model. The model highlights the significant environmental impacts of a particular municipal engineering project prior to the construction stage. Consequently, preventive actions can be planned and implemented during on-site activities. The results of the model also allow a comparison of proposed municipal engineering projects and alternatives with respect to the overall on-site environmental impact and the absolute importance of a particular environmental aspect. These findings are useful within the framework of the environmental impact assessment process, as they help to improve the identification and evaluation of on-site environmental aspects of municipal engineering works. The findings may also be of use to construction companies that are willing to implement an environmental management system or simply wish to improve on-site environmental performance in municipal engineering projects. -- Highlights: • We present a model to predict the environmental impacts of municipal engineering works. • It highlights significant on-site environmental impacts prior to the construction stage. • Findings are useful within the environmental impact assessment process. • They also help contractors to implement environmental management systems.« less
7 CFR 1780.55 - Preliminary engineering reports and Environmental Reports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 12 2011-01-01 2011-01-01 false Preliminary engineering reports and Environmental..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.55 Preliminary engineering reports and Environmental Reports. Preliminary engineering reports (PERs) must conform to customary professional standards...
7 CFR 1780.55 - Preliminary engineering reports and Environmental Reports.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 12 2012-01-01 2012-01-01 false Preliminary engineering reports and Environmental..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.55 Preliminary engineering reports and Environmental Reports. Preliminary engineering reports (PERs) must conform to customary professional standards...
7 CFR 1780.55 - Preliminary engineering reports and Environmental Reports.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 12 2014-01-01 2013-01-01 true Preliminary engineering reports and Environmental..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.55 Preliminary engineering reports and Environmental Reports. Preliminary engineering reports (PERs) must conform to customary professional standards...
7 CFR 1780.55 - Preliminary engineering reports and Environmental Reports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 12 2010-01-01 2010-01-01 false Preliminary engineering reports and Environmental..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.55 Preliminary engineering reports and Environmental Reports. Preliminary engineering reports (PERs) must conform to customary professional standards...
7 CFR 1780.55 - Preliminary engineering reports and Environmental Reports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 12 2013-01-01 2013-01-01 false Preliminary engineering reports and Environmental..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.55 Preliminary engineering reports and Environmental Reports. Preliminary engineering reports (PERs) must conform to customary professional standards...
Using Notable Women in Environmental Engineering to Dispel Misperceptions of Engineers
ERIC Educational Resources Information Center
Hoh, Yin Kiong
2009-01-01
This paper describes an activity the author has carried out with 72 high school science teachers to enable them to overcome their stereotypical perceptions of engineers. The activity introduced them to notable women in environmental engineering, and raised their awareness of these female engineers' contributions to engineering and society. The…
Environmental engineering: A profession in transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackay, D.
1996-11-01
This 50th Industrial Waste Conference at Purdue gives one an opportunity and excuse to reflect on progress in Environmental Engineering and speculate on future changes. The author suggests that during this 50-year period Environmental Engineering has emerged as a discrete and creditable body of knowledge, practice, and academic study. In this review he presents a personal view of the evolution of Environmental Engineering and its present status. He also suggests some future directions and principles which may prove useful, especially in the academic world. The paper discusses the sphere of the environmental engineer, the social incentive, the academic curriculum, environmentalmore » engineers and society, the chlorine controversy, research, and the electronic revolution.« less
EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...
Environmental engineering education at Ghent University, Flanders (Belgium).
Demeestere, K; Dewulf, J; Janssen, C; Van Langenhove, H
2004-01-01
Since the 1980s, environmental engineering education has been a rapidly growing discipline in many universities. This paper discusses the history, the current status and the near future of environmental engineering education at Ghent University. This university, with about 50% of the Flemish university environmental engineering students, can be considered as representative for the situation in Flanders, Belgium. In contrast to many other universities, environmental engineering education at Ghent University does not have its historical roots in civil engineering, but has been developed from the curricula organized by the former Faculty of Agricultural Sciences. As part of a reorganisation of the education and research activities at this faculty, a curriculum leading to the degree of "bio-engineer in environmental technology" was established in 1991. This curriculum covers a 5-year study and is constructed around 8 main components. Exchange of students with other European universities, e.g. within the Socrates framework, has become a prominent aspect of student life and education. This paper also briefly describes the employment opportunities of graduated bio-engineers in environmental technology. Finally, the current implementation of the bachelor's-master's structure, leading to a "master of science in environmental technology" degree is summarized.
Environmental Engineering Curricula assessment in the global world
NASA Astrophysics Data System (ADS)
Caporali, Enrica; Catelani, Marcantonio; Manfrida, Giampaolo; Valdiserri, Juna
2014-05-01
Environmental engineers are technicians with specific expertise on the sustainability of human presence in the environment. Among other global dilemmas, to the environmental engineers it is often demanded to be able in developing systematic, innovative solutions in order to simultaneously meet water and energy needs, to build resilience to natural and technological disasters, to more accurately gauge and manage countries' greenhouse gas emissions. The general objectives of the Environmental Engineers are to establish actions of environmental sustainability as well as to verify progress toward global goals or international commitments. The globalization of challenges and problems to be faced, leads, in general, to the globalization of the engineering profession. In particular, since the environmental issues are without boundaries, and many and different are the involved professions and the competences, the environmental engineer must have a multidisciplinary and interdisciplinary approach to adequately answer to the demand of technical innovative knowledge at global scale. The environmental engineers, more and more, are involved in international projects were the effective collaboration requires not only the capacity to communicate in a common technical language, but also the assurance of an adequate and common level of technical competences, knowledge and understanding. The Europe-based EUR ACE system, currently operated by ENAEE - European Network for Accreditation of Engineering Education, can represent the proper framework and accreditation system in order to provide a set of measures to assess the quality of engineering degree programmes in Europe and abroad. In the global frame of the knowledge triangle: education-innovation-research, the accreditation and quality assurance of engineering curricula in Europe is discussed with reference to the Environmental engineering curricula, of the 1st and 2nd cycle, based on the European Credit Transfer System and in accordance with the Bologna Process, offered at School of Engineering, University of Firenze. The application of the accreditation model EUR-ACE to the multidisciplinary first cycle degree in Civil, Building and Environmental Engineering and the more specific second cycle degree in Environmental Engineering is discussed. Particularly, the critical issues to guarantee the quality and the status of environmental engineering graduates, in terms of applying knowledge capacities and technical innovative competences are examined. The expected learning outcomes of the quality assessment according the Dublin descriptors or the more engineering focused EUR-ACE skill descriptors, and at local and global scale are analysed. The system for educating engineers in communicating knowledge and understanding, making informed judgments and choices, capacities to lifelong learning is also assessed. The involvement of the professional working world in the definition of goals in skills, of typical expectations of achievements and abilities, and in general in comparing the teaching profile with the actual needs of the technical workforce, is described. With the aim to promote the innovative aspects related with the environmental engineering education, the important role that science and technology could play is also taken into consideration.
Environmental engineering education: examples of accreditation and quality assurance
NASA Astrophysics Data System (ADS)
Caporali, E.; Catelani, M.; Manfrida, G.; Valdiserri, J.
2013-12-01
Environmental engineers respond to the challenges posed by a growing population, intensifying land-use pressures, natural resources exploitation as well as rapidly evolving technology. The environmental engineer must develop technically sound solutions within the framework of maintaining or improving environmental quality, complying with public policy, and optimizing the utilization of resources. The engineer provides system and component design, serves as a technical advisor in policy making and legal deliberations, develops management schemes for resources, and provides technical evaluations of systems. Through the current work of environmental engineers, individuals and businesses are able to understand how to coordinate society's interaction with the environment. There will always be a need for engineers who are able to integrate the latest technologies into systems to respond to the needs for food and energy while protecting natural resources. In general, the environment-related challenges and problems need to be faced at global level, leading to the globalization of the engineering profession which requires not only the capacity to communicate in a common technical language, but also the assurance of an adequate and common level of technical competences, knowledge and understanding. In this framework, the Europe-based EUR ACE (European Accreditation of Engineering Programmes) system, currently operated by ENAEE - European Network for Accreditation of Engineering Education can represent the proper framework and accreditation system in order to provide a set of measures to assess the quality of engineering degree programmes in Europe and abroad. The application of the accreditation model EUR-ACE, and of the National Italian Degree Courses Accreditation System, promoted by the Italian National Agency for the Evaluation of Universities and Research Institutes (ANVUR), to the Environmental Engineering Degree Courses at the University of Firenze is presented. In particular, the accreditation models of the multidisciplinary first cycle degree in Civil, Building and Environmental Engineering and the more specific second cycle degree in Environmental Engineering are discussed. The critical issues to assure the quality and the status of environmental engineering graduates, in terms of applying knowledge capacities and technical innovative competences, according to the more engineering focused EUR-ACE skill descriptors as well as with respect to the Dublin descriptors, at local and global scale are also compared. The involvement of the professional working world in the definition of goals in skills, of typical expectations of achievements and abilities is also described. The system for educating engineers in communicating knowledge and understanding, making informed judgments and choices, capacities to lifelong learning is in addition assessed. The promotion of innovative aspects related with the environmental engineering education, and of the role that science and technology could play in environmental engineering education is also taken into consideration.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... a Public Teleconference of the Environmental Engineering Committee AGENCY: Environmental Protection... public teleconference of the SAB Environmental Engineering Committee (EEC) to receive briefings regarding... U.S.C., App. 2, notice is hereby given that the SAB Environmental Engineering Committee (EEC) will...
Environmental Ethics and Civil Engineering.
ERIC Educational Resources Information Center
Vesilind, P. Aarne
1987-01-01
Traces the development of the civil engineering code of ethics. Points out that the code does have an enforceable provision that addresses the engineer's responsibility toward the environment. Suggests revisions to the code to accommodate the environmental impacts of civil engineering. (TW)
ERIC Educational Resources Information Center
Environmental Science and Technology, 1973
1973-01-01
Indicates that there will be a substantially increased demand for environmental engineers during the next few years, especially in the areas of water pollution control and sanitary engineering. Educators see the need for additional engineering graduates and for improved environmental training programs in schools. (JR)
Environmental Engineering Talent Demand and Undergraduate Education in China
ERIC Educational Resources Information Center
Zhang, Huan-zhen; Li, Jian-bo; Luo, Xiang-nan; Zhao, Bin-yan; Luo, Ren-ming; Wang, Qiao-ling
2004-01-01
In Chinese higher environmental education, undergraduate education of environmental engineering starts earliest and develops fastest. The undergraduate has been playing an important role in controlling pollution for more than twenty years. The setting and distribution of the environmental engineering major was analyzed, the conditions of the…
Passive Gamma-Ray Emission for Underwater Sediment-Disturbance Detection
2017-07-18
Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops innovative...solutions in civil and military engineering , geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense...Sediment-Disturbance Detection Jay L. Clausen U.S. Army Engineer Research and Development Center (ERDC) Cold Regions Research and Engineering
Civil engineering reference guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, F.S.
1986-01-01
The civil engineering reference guide contains the following: Structural theory. Structural steel design. Concrete design and construction. Wood design and construction. Bridge engineering. Geotechnical engineering. Water engineering. Environmental engineering. Surveying.
Introduction to environmental engineering
NASA Astrophysics Data System (ADS)
Šalić, Anita; Zelić, Bruno
2018-02-01
Nowadays we can easily say that environmental engineering is truly an interdisciplinary science. Combining biology, ecology, geology, geography, mathematics, chemistry, agronomy, medicine, economy, etc. environmental engineering strives to use environmental understanding and advancements in technology to serve mankind by decreasing production of environmental hazards and the effects of those hazards already present in the soil, water, and air. Major activities of environmental engineer involve water supply, waste water and solid management, air and noise pollution control, environmental sustainability, environmental impact assessment, climate changes, etc. And all this with only one main goal - to prevent or reduce undesirable impacts of human activities on the environment. To ensure we all have tomorrow.
Distance Teaching of Environmental Engineering Courses at the Open University.
ERIC Educational Resources Information Center
Porteous, Andrew; Nesaratnam, Suresh T.; Anderson, Judith
1997-01-01
Describes two integrated distance learning environmental engineering degree courses offered by the environmental engineering group of the Open University in Great Britain. Discusses admission requirements for courses, advantages offered by distance learning, professional accreditation, site visits, and tutors. (AIM)
Research on the Development and Enlightenment of Urban Environmental Engineering
NASA Astrophysics Data System (ADS)
Tian, Mingjing; Li, Guanglou; Zhang, Lu; Shou, Youping; Li, Yajuan; Ye, Wei; Xu, Jing
2018-04-01
In recent years, under the promotion of reform and opening up, China's economic development has greatly accelerated, urbanization is also gradually accelerated. In the process of urbanization, there are many problems. The development of environmental engineering is one of the most important points. While building our living environment; we should also pay attention to the implementation of sustainable development strategies. First of all, This paper describes basic situation of environmental engineering, and finally provided some measures to promote the strengthening of China's environmental engineering
ERIC Educational Resources Information Center
Dyehouse, Melissa; Weber, Nicole; Fang, Jun; Harris, Constance; David, Ray; Hua, Inez; Strobel, Johannes
2017-01-01
Engineering professional associations identified environmental sustainability as a key responsibility of the educated engineer. Data from national surveys of the general public demonstrate low environmental knowledge levels and a high level of resistance when it comes to environmental behavior. The purpose of this study was to examine the…
Bishop, P L; Keener, T C; Kukreti, A R; Kowel, S T
2004-01-01
Environmental engineering education has rapidly expanded in recent years and new teaching methods are needed. Many professionals and educators believe that a MS degree in environmental engineering should be the minimum in order to practice the profession, along with practical training. This paper describes an innovative program being offered at the University of Cincinnati that combines an integrated BS in civil engineering and an MS in environmental engineering with extensive practical co-operative education (co-op) experience, all within a five-year period. The program includes distance learning opportunities during the co-op periods. The result is a well-trained graduate who will receive higher pay and more challenging career opportunities, and who will have developed professionalism and maturity beyond that from traditional engineering programs.
ERIC Educational Resources Information Center
Goldman, Daphne; Assaraf, Orit Ben-Zvi; Shemesh, Julia
2014-01-01
While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was…
EnviroTech: Enhancing Environmental Literacy and Technology Assessment Skills
ERIC Educational Resources Information Center
Rose, Mary Annette
2010-01-01
It is no coincidence that many of the "Grand Challenges for Engineering" (National Academy of Engineering, 2007-2010)--such as carbon sequestration--address environmental problems that were precipitated by human inventiveness and engineering achievements. Although people recognize their dependence upon environmental processes to provide…
40 CFR 91.115 - Certification procedure-determining engine power and engine families.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engine power and engine families. 91.115 Section 91.115 Protection of Environment ENVIRONMENTAL... ENGINES Emission Standards and Certification Provisions § 91.115 Certification procedure—determining engine power and engine families. (a) Engine power must be calculated using SAE J1228. This procedure has...
Munitions Test Area and Incendiary Drop Site, Site 36-2, Data Addendum, Phase 2.
1988-09-01
MUNITIONS TEST AREA AND INCENDIARY DROP SITE (NI September 1988 Contract Number DAAK11-84-D-0016 | • (Version 3.1) Environmental Science And Engineering, Inc...SITE, September 1988 Contract Number DAAK11-84-D-0016 (Version 3.1)I PREPARED BY ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. Harding Lawson Associates I...the Program Managers Office (PMO). Environmental Science and Engineering (ESE), Morrison-Knudsen Engineers (MKE), and Harding Lawson Associates (HLA
Thermal and Environmental Barrier Coating Development for Advanced Propulsion Engine Systems
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.; Fox, Dennis S.
2008-01-01
Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. Advanced TEBCs that have significantly lower thermal conductivity, better thermal stability and higher toughness than current coatings will be beneficial for future low emission and high performance propulsion engine systems. In this paper, ceramic coating design and testing considerations will be described for turbine engine high temperature and high-heat-flux applications. Thermal barrier coatings for metallic turbine airfoils and thermal/environmental barrier coatings for SiC/SiC ceramic matrix composite (CMC) components for future supersonic aircraft propulsion engines will be emphasized. Further coating capability and durability improvements for the engine hot-section component applications can be expected by utilizing advanced modeling and design tools.
NASA Astrophysics Data System (ADS)
Balasubramanian, S.; Koloutsou-Vakakis, S.
2014-12-01
There is a need for environment engineers and sustainability managers to address global environmental, energy and health challenges. Environmental literacy programs at K-12 level provide a unique opportunity in motivating young minds in joining STEM and also provide additional value in learning about "saving planet earth". The Women in Engineering at the University of Illinois organize an annual week long camp, for female high school students with tracks corresponding to different fields of Engineering. The Environmental Engineering and Sustainability (EES) track is organized by faculty and graduate students of the Civil and Environmental Engineering department and introduces students to concepts in sustainability and systems thinking in connection with air and water quality, climate change and renewable energy. This study is a preliminary assessment of the relevance of the EES outreach track conducted in July 2014 in student learning. Specific goals include assessing (a) demographics of participants and their motivation to join this camp, (b) educational and enjoyability quotients of the modules and (c) learning and motivational outcomes using the Likert scale. A pre-camp survey indicated keen interest in learning about environmental engineering (4.56/5.0) and expected this camp to be a venue to learn about related career choices (4.9/5.0). Five days of instruction were divided thematically and included a mix of lectures, activity based learning, demonstrations and field visits. Overall modules were rated as educational (4.4/5.0) and enjoyable (4.5/5.0). Modules with hands-on learning were best received (4.67/5.0) and rated unique (4.7/5.0). Post camp, participants acknowledged the important contribution of environmental engineers to society (4.8/5.0) and could relate the different modules to the role engineer's play (4.06/5.0) for sustainability. On an average, the participants evinced interest in engineering as a career choice (4.0/5.0) but there was a broader range of responses regarding environmental engineering as their career choice (3.13/5.0).
Evolution of Project-Based Learning in Small Groups in Environmental Engineering Courses
ERIC Educational Resources Information Center
Requies, Jesús M.; Agirre, Ion; Barrio, V. Laura; Graells, Moisès
2018-01-01
This work presents the assessment of the development and evolution of an active methodology (Project-Based Learning--PBL) implemented on the course "Unit Operations in Environmental Engineering", within the bachelor's degree in Environmental Engineering, with the purpose of decreasing the dropout rate in this course. After the initial…
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2010 CFR
2010-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2011 CFR
2011-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2012 CFR
2012-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2014 CFR
2014-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2013 CFR
2013-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
Redmedial Action, Decision Document, Leaseback Area, Alabama Army Ammunition Plant
1988-02-01
Draft Report, Environmental Science and Engineering, Inc. (ESE), 1980. o Final Report for the Alabama Army Ammunition Plant, Leaseback Area...Requirements for the GSA and Leaseback Areas at the AAAP, Draft Report. Environmental Science and Engineering, Inc.(ESE), 1980. o Alabama Army...Ammunition Plant, Feasibility Study, Draft Report, Environmental Science and Engineering, Inc. (ESE), 1986. o Environmental Survey of Alabama Army Ammunition
Characterization of Reaerosolization in an Effort to Improve Sampling of Airborne Viruses
2008-04-01
financial support which helped me get through graduate school: Camp Dresser McKee for the CDM Fellowship; the UF Environmental Engineering Department...reservoir H um id ifi er /S at ur at or C ondenser THot TCold RH Figure A-1. BAU prototype schematic. A) Overview of system. B) Cross -sectional view of...degree in environmental engineering in August 2008 and entered the environmental engineering consulting industry with Camp Dresser McKee as an Engineer II in the Water/Wastewater Services Group.
40 CFR 1042.230 - Engine families.
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...
40 CFR 1042.230 - Engine families.
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...
40 CFR 1042.230 - Engine families.
Code of Federal Regulations, 2011 CFR
2011-07-01
... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...
40 CFR 1042.230 - Engine families.
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...
Engineering Students' Sustainability Approaches
ERIC Educational Resources Information Center
Haase, S.
2014-01-01
Sustainability issues are increasingly important in engineering work all over the world. This article explores systematic differences in self-assessed competencies, interests, importance, engagement and practices of newly enrolled engineering students in Denmark in relation to environmental and non-environmental sustainability issues. The…
18 CFR 50.5 - Pre-filing procedures.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ELECTRIC TRANSMISSION FACILITIES § 50.5 Pre-filing procedures. (a) Introduction. Any applicant seeking a... consultations, project engineering, route planning, environmental and engineering contractor engagement... proceeding. This description also must include the identification of the environmental and engineering firms...
SWCC Prediction: Seep/W Add-In Functions
2017-06-01
The U.S. Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops...innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department...Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199 Final report Approved for public release; distribution is
Environmental Testing of the NEXT PM1R Ion Engine
NASA Technical Reports Server (NTRS)
Snyder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.
2007-01-01
The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The subsystem includes an ion engine, power processing unit, feed system components, and thruster gimbal. The Prototype Model engine PM1 was subjected to qualification-level environmental testing in 2006 to demonstrate compatibility with environments representative of anticipated mission requirements. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. The engine was reworked to address most of these findings, renamed PM1R, and the environmental test sequence was repeated. Thruster functional testing was performed before and after the vibration and thermal-vacuum tests. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 min in each of three axes. Thermal-vacuum testing included three thermal cycles from 120 to 215 C with hot engine re-starts. Thruster performance was nominal throughout the test program, with minor variations in a few engine operating parameters likely caused by facility effects. There were no significant changes in engine performance as characterized by engine operating parameters, ion optics performance measurements, and beam current density measurements, indicating no significant changes to the hardware as a result of the environmental testing. The NEXT PM1R engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. The redesigned cathode heater terminations successfully survived the vibration environments. Based on the results of this test program and confidence in the engineering solutions available for the remaining findings of the first test program, specifically the particulate contamination, the hardware environmental qualification program can proceed with confidence
Biocatalysis engineering: the big picture.
Sheldon, Roger A; Pereira, Pedro C
2017-05-22
In this tutorial review we describe a holistic approach to the invention, development and optimisation of biotransformations utilising isolated enzymes. Increasing attention to applied biocatalysis is motivated by its numerous economic and environmental benefits. Biocatalysis engineering concerns the development of enzymatic systems as a whole, which entails engineering its different components: substrate engineering, medium engineering, protein (enzyme) engineering, biocatalyst (formulation) engineering, biocatalytic cascade engineering and reactor engineering.
40 CFR 1033.130 - Instructions for engine remanufacturing or engine installation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Instructions for engine remanufacturing or engine installation. 1033.130 Section 1033.130 Protection of Environment ENVIRONMENTAL... and Related Requirements § 1033.130 Instructions for engine remanufacturing or engine installation. (a...
40 CFR 1033.130 - Instructions for engine remanufacturing or engine installation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Instructions for engine remanufacturing or engine installation. 1033.130 Section 1033.130 Protection of Environment ENVIRONMENTAL... and Related Requirements § 1033.130 Instructions for engine remanufacturing or engine installation. (a...
40 CFR 1033.130 - Instructions for engine remanufacturing or engine installation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Instructions for engine remanufacturing or engine installation. 1033.130 Section 1033.130 Protection of Environment ENVIRONMENTAL... and Related Requirements § 1033.130 Instructions for engine remanufacturing or engine installation. (a...
40 CFR 1033.130 - Instructions for engine remanufacturing or engine installation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Instructions for engine remanufacturing or engine installation. 1033.130 Section 1033.130 Protection of Environment ENVIRONMENTAL... and Related Requirements § 1033.130 Instructions for engine remanufacturing or engine installation. (a...
40 CFR 1033.130 - Instructions for engine remanufacturing or engine installation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Instructions for engine remanufacturing or engine installation. 1033.130 Section 1033.130 Protection of Environment ENVIRONMENTAL... and Related Requirements § 1033.130 Instructions for engine remanufacturing or engine installation. (a...
NASA Astrophysics Data System (ADS)
Fitzpatrick, John J.
2017-11-01
This paper questions if engineering educators are producing engineers that are accelerating humanity along an unsustainable path. Even though technology and engineering are important drivers in trying to move humanity towards an environmentally sustainable paradigm, the paper suggests that maybe the most important levers and challenges lie in the economic and social domains. Short case studies of energy efficiency, the experience of the industrialist Ray Anderson and the authors own reflection of teaching chemical engineering students are used to highlight this. Engineering/technological innovation may not be enough and is often counteracted by the rebound effect and the current dominant neoclassical economic paradigm. The paper discusses what engineering educators can do to produce sustainability informed engineers who are better able to engage with the economic and social dimensions of sustainability. Some suggestions for engaging engineering students with the economic and social dimensions of environmental sustainability are provided. Engineers must somehow find ways, not just to influence technological levers (which are very important) but also to influence economic and social levers so that changes in economic and social behaviours can complement and facilitate technological change in moving humanity to an environmentally sustainable paradigm.
ERIC Educational Resources Information Center
Kuo, Shih-Yun; Jackson, Nancy L.
2014-01-01
Studies suggest that at engineering universities, where the percentage of males and engineering majors is high, pro-environmental attitudes are likely to be weak and may not change. The 15-item New Ecological Paradigm (NEP) scale was used to measure differences in student attitudes before and after an environmental studies course. Results revealed…
THERMODYNAMICS USED IN ENVIRONMENTAL ENGINEERING
Thermodynamics is a science in which energy transformations are studied as well as their relationships to the changes in the chemical properties of a system. It is the fundamental basis of many engineering fields. The profession of environmental engineering is no exception. In pa...
33 CFR 385.26 - Project Implementation Reports.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Implementation Report is a document that provides information on plan formulation and evaluation, engineering and..., environmental and/or economic benefits, engineering and design, costs, environmental impacts, real estate..., optimization and justification, cost-effectiveness, and engineering feasibility of the project; (xiii) Include...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false May I sell engines from an engine... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.330 May I sell engines from an engine...
48 CFR 1536.602 - Selection of firms for architect-engineer contracts.
Code of Federal Regulations, 2013 CFR
2013-10-01
... architect-engineer contracts. 1536.602 Section 1536.602 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 1536.602 Selection of firms for architect-engineer contracts. ...
48 CFR 1536.602 - Selection of firms for architect-engineer contracts.
Code of Federal Regulations, 2011 CFR
2011-10-01
... architect-engineer contracts. 1536.602 Section 1536.602 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 1536.602 Selection of firms for architect-engineer contracts. ...
48 CFR 1536.602 - Selection of firms for architect-engineer contracts.
Code of Federal Regulations, 2010 CFR
2010-10-01
... architect-engineer contracts. 1536.602 Section 1536.602 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 1536.602 Selection of firms for architect-engineer contracts. ...
48 CFR 1536.602 - Selection of firms for architect-engineer contracts.
Code of Federal Regulations, 2014 CFR
2014-10-01
... architect-engineer contracts. 1536.602 Section 1536.602 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 1536.602 Selection of firms for architect-engineer contracts. ...
48 CFR 1536.602 - Selection of firms for architect-engineer contracts.
Code of Federal Regulations, 2012 CFR
2012-10-01
... architect-engineer contracts. 1536.602 Section 1536.602 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 1536.602 Selection of firms for architect-engineer contracts. ...
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2014-01-01
Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned CMC components to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing advanced environmental barrier coating systems, the coating integrations with next generation CMC turbine components having improved environmental stability, cyclic durability and system performance will be described. The development trends for turbine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.
40 CFR 1048.301 - When must I test my production-line engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... engines? 1048.301 Section 1048.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.301 When must I test my production-line engines? (a) If you produce engines...
NASA Astrophysics Data System (ADS)
Uchrin, Christoph; Krogmann, Uta; Gimenez, Daniel
2010-05-01
It is becoming increasingly apparent that environmental problems have become extremely complex, involving inter- and multidisciplinary expertise. Furthermore, the nature of environmental episodes requires practitioners who are flexible in designing appropriate solution approaches. As a result, there is a high demand for environmental engineering graduates in the professional sector as well as graduate schools. At Rutgers University, we have designed and are now delivering an undergraduate curriculum that melds a strong background in basic and applied sciences with a rigorous sequence of design oriented engineering courses, all focused on producing graduates who view the environment in a holistic sense, rather than a narrow, medium oriented manner. Since the implementation of the program in 2004 student numbers have doubled and half of the students graduate with honors. The undergraduate program is complemented by the new Environmental Engineering option of the Graduate Program in Environmental Sciences. The undergraduate program and the graduate option are served by a highly committed faculty of seven full-time members and one part-time member.
Systems of frequency distributions for water and environmental engineering
NASA Astrophysics Data System (ADS)
Singh, Vijay P.
2018-09-01
A wide spectrum of frequency distributions are used in hydrologic, hydraulic, environmental and water resources engineering. These distributions may have different origins, are based on different hypotheses, and belong to different generating systems. Review of literature suggests that different systems of frequency distributions employed in science and engineering in general and environmental and water engineering in particular have been derived using different approaches which include (1) differential equations, (2) distribution elasticity, (3) genetic theory, (4) generating functions, (5) transformations, (6) Bessel function, (7) expansions, and (8) entropy maximization. This paper revisits these systems of distributions and discusses the hypotheses that are used for deriving these systems. It also proposes, based on empirical evidence, another general system of distributions and derives a number of distributions from this general system that are used in environmental and water engineering.
Green Engineering Textbook and Training Modules
EPA's Green Engineering textbook, Green Engineering: Environmentally Conscious Design of Chemical Processes, is a college senior-to-graduate-level engineering textbook. The primary authors are Dr. David Allen and Dr. David Shonnard.
Engineering students' sustainability approaches
NASA Astrophysics Data System (ADS)
Haase, S.
2014-05-01
Sustainability issues are increasingly important in engineering work all over the world. This article explores systematic differences in self-assessed competencies, interests, importance, engagement and practices of newly enrolled engineering students in Denmark in relation to environmental and non-environmental sustainability issues. The empirical base of the article is a nation-wide, web-based survey sent to all newly enrolled engineering students in Denmark commencing their education in the fall term 2010. The response rate was 46%. The survey focused on a variety of different aspects of what can be conceived as sustainability. By means of cluster analysis, three engineering student approaches to sustainability are identified and described. The article provides knowledge on the different prerequisites of engineering students in relation to the role of sustainability in engineering. This information is important input to educators trying to target new engineering students and contribute to the provision of engineers equipped to meet sustainability challenges.
CMC Technology Advancements for Gas Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2013-01-01
CMC research at NASA Glenn is focused on aircraft propulsion applications. The objective is to enable reduced engine emissions and fuel consumption for more environmentally friendly aircraft. Engine system studies show that incorporation of ceramic composites into turbine engines will enable significant reductions in emissions and fuel burn due to increased engine efficiency resulting from reduced cooling requirements for hot section components. This presentation will describe recent progress and challenges in developing fiber and matrix constituents for 2700 F CMC turbine applications. In addition, ongoing research in the development of durable environmental barrier coatings, ceramic joining integration technologies and life prediction methods for CMC engine components will be reviewed.
Modeling and Reduction of Shocks on Electronic Components Within a Projectile
2008-08-01
Engineering, University of Nevada, Las Vegas, NV 89154-4027 †Department of Civil and Environmental Engineering, University of Nevada, Las Vegas, NV...Samaan Ladkanyb, Mostafiz Chowdhuryc aDepartment of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV 89154-4027, USA bDepartment...of Civil and Environmental Engineering, University of Nevada, Las Vegas, Las Vegas, NV 89154-4027, USA cAMSRL-WM-MB (ALC), Ordnance Materials Branch
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false May I sell engines from an engine... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Testing Production-line Engines § 1045.330 May I sell engines from an...
40 CFR 1065.122 - Engine cooling and lubrication.
Code of Federal Regulations, 2011 CFR
2011-07-01
....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...
40 CFR 1065.122 - Engine cooling and lubrication.
Code of Federal Regulations, 2010 CFR
2010-07-01
....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...
40 CFR 1065.122 - Engine cooling and lubrication.
Code of Federal Regulations, 2013 CFR
2013-07-01
....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...
40 CFR 1065.122 - Engine cooling and lubrication.
Code of Federal Regulations, 2012 CFR
2012-07-01
....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...
40 CFR 1065.122 - Engine cooling and lubrication.
Code of Federal Regulations, 2014 CFR
2014-07-01
....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...
40 CFR 1048.140 - What are the provisions for certifying Blue Sky Series engines?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Blue Sky Series engines? 1048.140 Section 1048.140 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES Emission Standards and Related Requirements § 1048.140 What are the provisions for certifying Blue... emission control for engines designated as “Blue Sky Series” engines. If you certify an engine family under...
40 CFR 1048.140 - What are the provisions for certifying Blue Sky Series engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Blue Sky Series engines? 1048.140 Section 1048.140 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES Emission Standards and Related Requirements § 1048.140 What are the provisions for certifying Blue... emission control for engines designated as “Blue Sky Series” engines. If you certify an engine family under...
40 CFR 1048.140 - What are the provisions for certifying Blue Sky Series engines?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Blue Sky Series engines? 1048.140 Section 1048.140 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES Emission Standards and Related Requirements § 1048.140 What are the provisions for certifying Blue... emission control for engines designated as “Blue Sky Series” engines. If you certify an engine family under...
40 CFR 1048.140 - What are the provisions for certifying Blue Sky Series engines?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Blue Sky Series engines? 1048.140 Section 1048.140 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES Emission Standards and Related Requirements § 1048.140 What are the provisions for certifying Blue... emission control for engines designated as “Blue Sky Series” engines. If you certify an engine family under...
40 CFR 1048.140 - What are the provisions for certifying Blue Sky Series engines?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Blue Sky Series engines? 1048.140 Section 1048.140 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES Emission Standards and Related Requirements § 1048.140 What are the provisions for certifying Blue... emission control for engines designated as “Blue Sky Series” engines. If you certify an engine family under...
NASA Astrophysics Data System (ADS)
Goldman, Daphne; Ben-Zvi Assaraf, Orit; Shemesh, Julia
2014-05-01
While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was conducted with 247 3rd-4th year chemical engineering students in Israeli Universities. It employed the New Ecological Paradigm (NEP)-questionnaire to which students added written explanations. Quantitative analysis of NEP-scale results shows that the students demonstrated moderately ecocentric orientation. Explanations to the NEP-items reveal diverse, ambivalent ideas regarding the notions embodied in the NEP, strong scientific orientation and reliance on technology for addressing environmental challenges. Endorsing sustainability implies that today's engineers be equipped with an ecological perspective. The capacity of Higher Education to enable engineers to develop dispositions about human-nature interrelationships requires adaptation of curricula towards multidisciplinary, integrative learning addressing social-political-economic-ethical perspectives, and implementing critical-thinking within the socio-scientific issues pedagogical approach.
2010-03-01
FINAL ENVIRONMENTAL ASSESSMENT ADDRESSING CONSTRUCTION OF A NEW CIVIL ENGINEERING WORKSHOP AT BELLOWS AIR FORCE STATION , O‘AHU, HAWAI‘I...Minimize impacts on other Bellows AFS functions and environmental resources This alternative would be located in an area located near Building 546 and...Preparation of An Environmental Assessment for the Proposed Construction of New Civil Engineering Workshop at Bellows Air !Force Station Thank you
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2015-01-01
Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned 2700-3000F EBC - CMC systems to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current NASA candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, cyclic durability, erosion-impact resistance, and long-term system performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.
Clarens, Andres F.; Peters, Catherine A.
2016-01-01
Abstract Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on “The science and innovation of emerging subsurface energy technologies,” provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others. PMID:28031695
Clarens, Andres F; Peters, Catherine A
2016-10-01
Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on "The science and innovation of emerging subsurface energy technologies," provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others.
NASA Astrophysics Data System (ADS)
Christ, J. A.; Mahbob, M.; Seely, G. E.; Ressler, S. J.
2007-12-01
Many developing countries suffer from substandard employment of environmental engineering and science principles, which leads to poor management of natural and cultural resources, increased public health concerns, and limitations on economic investment and growth. Thus, prior to the implementation of well-intentioned programs designed to promote development, methods for sustaining basic needs, which are the focus of most environmental engineering disciplines, must be designed into the social fabric of the developing culture. Education is a promising method for fostering this development across cultures. Recently, the US Air Force Academy (USAFA) partnered with the US Military Academy (USMA) to implement a Civil Engineering Program at the National Military Academy of Afghanistan (NMAA), Kabul, Afghanistan. This work will outline the process followed during course development, deployment, and implementation, paying particular attention to challenges and benefits at each stage in the process. This cooperation may serve as a model for future implementation of science, technology, engineering and mathematics education programs in developing countries. Consistent with US Civil Engineering programs, the NMAA Civil Engineering program introduces students to a broad range of introductory-level civil engineering subjects--environmental, hydraulic, geotechnical, structural, construction, and transportation engineering. Basic environmental engineering and science principles are addressed through the implementation of an introductory environmental engineering course. Course development followed a three-stage process: (1) course development by US faculty at their home institution, (2) imbedding of US Faculty at the NMAA, and (3) implementation of the course within the NMAA Civil Engineering curriculum using adjunct Afghan faculty hired from Kabul University. An existing environmental engineering course taught at USAFA was used as a model for course development. Although this existing course provided the necessary framework for the Afghan course, there were a number of challenges with tailoring the course material to the education level, experience, and needs of the Afghan students and faculty. These challenges were overcome, in part, during the imbedding process of US instructors within the NMAA faculty. On-site transfer of course material and knowledge proved a necessary step in the implementation of the course. The imbedding process enabled US instructors to discuss the course with current NMAA faculty and identify an implementation path that met the needs of the program while appreciating the uniqueness of the Afghan experience. Implementation of the course is on-going with reach-back capability for Afghan faculty to continue the mentoring relationship with their US colleagues. Challenges that arise during course implementation (e.g., wet lab deployments, field trip relevance) will be overcome and used as learning tools for future course offerings. Ultimately, this course will provide future leaders of Afghanistan with the educational tools to make informed environmental management decisions and will serve as a model for similar courses implemented throughout Afghanistan.
The transformation and environmental fate of engineered nanomaterials (ENMs) is the focus of intense research due to concerns about their potential impacts in the environment as a result of their uniquely engineered properties. Many approaches are being applied to investigate th...
ERIC Educational Resources Information Center
Glavic, Peter; Lukman, Rebeka; Lozano, Rodrigo
2009-01-01
Over recent years, universities have been incorporating sustainable development (SD) into their systems, including their curricula. This article analyses the incorporation of SD into the curricula of chemical and environmental engineering or technology bachelor degrees at universities in the European Union (EU) and European Free Trade Association…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-15
... of nationally and internationally recognized scientists and engineers with demonstrated expertise and..., invasive species, water chemistry, environmental engineering, environmental monitoring, and environmental...
ERIC Educational Resources Information Center
Vick, Matthew E.; Garvey, Michael P.
2016-01-01
The Boy Scouts of America's Environmental Science and Engineering merit badges are two of their over 120 merit badges offered as a part of a non-formal educational program to U.S. boys. The Scientific and Engineering Practices of the U.S. Next Generation Science Standards provide a vision of science education that includes integrating eight…
Environmental Barrier Coatings for Turbine Engines: A Design and Performance Perspective
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis; Smialek, James L.; Miller, Robert A.
2009-01-01
Ceramic thermal and environmental barrier coatings (TEBC) for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating long-term durability remains a major concern with the ever-increasing temperature, strength and stability requirements in engine high heat-flux combustion environments, especially for highly-loaded rotating turbine components. Advanced TEBC systems, including nano-composite based HfO2-aluminosilicate and rare earth silicate coatings are being developed and tested for higher temperature capable SiC/SiC ceramic matrix composite (CMC) turbine blade applications. This paper will emphasize coating composite and multilayer design approach and the resulting performance and durability in simulated engine high heat-flux, high stress and high pressure combustion environments. The advances in the environmental barrier coating development showed promise for future rotating CMC blade applications.
40 CFR 86.1901 - What testing requirements apply to my engines that have gone into service?
Code of Federal Regulations, 2012 CFR
2012-07-01
... VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86... diesel heavy-duty engines above 8,500 lbs. GVWR that are subject to engine-based exhaust emission... engines that have gone into service? 86.1901 Section 86.1901 Protection of Environment ENVIRONMENTAL...
40 CFR 86.1901 - What testing requirements apply to my engines that have gone into service?
Code of Federal Regulations, 2010 CFR
2010-07-01
... VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86... diesel heavy-duty engines above 8500 lbs. GVWR that are subject to engine-based exhaust emission... engines that have gone into service? 86.1901 Section 86.1901 Protection of Environment ENVIRONMENTAL...
40 CFR 86.1901 - What testing requirements apply to my engines that have gone into service?
Code of Federal Regulations, 2013 CFR
2013-07-01
... VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86... diesel heavy-duty engines above 8,500 lbs. GVWR that are subject to engine-based exhaust emission... engines that have gone into service? 86.1901 Section 86.1901 Protection of Environment ENVIRONMENTAL...
40 CFR 86.1901 - What testing requirements apply to my engines that have gone into service?
Code of Federal Regulations, 2011 CFR
2011-07-01
... VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86... diesel heavy-duty engines above 8,500 lbs. GVWR that are subject to engine-based exhaust emission... engines that have gone into service? 86.1901 Section 86.1901 Protection of Environment ENVIRONMENTAL...
2017-09-18
Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental Impact Statement En vi ro nm en ta l L ab or at or y...Engineering Center-River Analysis System (HEC-RAS) Water Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental...Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000 Under Project 396939, “Missouri River Recovery Management Plan and Environmental
2011-02-01
Heating, Ventilation, Air Conditioning (HVAC) system to environmentally control the HPA Room as well as a Mechanical Room to house the new diesel ...Rickie D. Moon, Senior Systems Engineer MS, Environmental Management, Samford University BS, Chemistry and Mathematics, Samford University 28...Huntsville 16 LPES, Inc. Timothy Lavallee, PE, Principal/Senior Engineer BS, Mechanical Engineering , Northeastern University MS, Civil and
Transformation of TNT by Aquatic Plants,
1996-01-01
ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Department of Environmental Science and Engineering N/A George R. Brown School of Engineering Rice...Department of Environmental Science and Engineering at Rice University, Dr. Hughes teaches courses in Water and Wastewater Treatment, Biological Process...8:55 Chairperson’s Opening Remarks 1:40 Chairperson’s Remarks Alan J. M. Baker Ph.D., Reader in Environmental Science & Alan J. M. Baker, Ph.D
40 CFR 1045.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What is my engine's maximum engine power? 1045.140 Section 1045.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
40 CFR 1045.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What is my engine's maximum engine power? 1045.140 Section 1045.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
40 CFR 1045.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What is my engine's maximum engine power? 1045.140 Section 1045.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
40 CFR 1048.101 - What exhaust emission standards must my engines meet?
Code of Federal Regulations, 2013 CFR
2013-07-01
... engineering analysis of information equivalent to such in-use data, such as data from research engines or... my engines meet? 1048.101 Section 1048.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES...
40 CFR 1048.101 - What exhaust emission standards must my engines meet?
Code of Federal Regulations, 2014 CFR
2014-07-01
... engineering analysis of information equivalent to such in-use data, such as data from research engines or... my engines meet? 1048.101 Section 1048.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES...
40 CFR 1048.101 - What exhaust emission standards must my engines meet?
Code of Federal Regulations, 2011 CFR
2011-07-01
... engineering analysis of information equivalent to such in-use data, such as data from research engines or... my engines meet? 1048.101 Section 1048.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES...
40 CFR 1048.101 - What exhaust emission standards must my engines meet?
Code of Federal Regulations, 2012 CFR
2012-07-01
... engineering analysis of information equivalent to such in-use data, such as data from research engines or... my engines meet? 1048.101 Section 1048.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES...
40 CFR 91.1013 - Exemption for certified Small SI engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engines. 91.1013 Section 91.1013 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91.1013 Exemption for certified Small SI engines. The provisions of 40 CFR 1045.605...
40 CFR Appendix C-1 to Subpart E... - Required Provisions-Consulting Engineering Agreements
Code of Federal Regulations, 2014 CFR
2014-07-01
... Engineering Agreements C Appendix C-1 to Subpart E of Part 35 Protection of Environment ENVIRONMENTAL... Provisions—Consulting Engineering Agreements 1. General 2. Responsibility of the Engineer 3. Scope of Work 4... drawings, designs, specifications, reports, and incidental engineering work or materials furnished...
40 CFR Appendix C-1 to Subpart E... - Required Provisions-Consulting Engineering Agreements
Code of Federal Regulations, 2013 CFR
2013-07-01
... Engineering Agreements C Appendix C-1 to Subpart E of Part 35 Protection of Environment ENVIRONMENTAL... Provisions—Consulting Engineering Agreements 1. General 2. Responsibility of the Engineer 3. Scope of Work 4... drawings, designs, specifications, reports, and incidental engineering work or materials furnished...
40 CFR 35.937-12 - Subcontracts under subagreements for architectural or engineering services.
Code of Federal Regulations, 2011 CFR
2011-07-01
... architectural or engineering services. 35.937-12 Section 35.937-12 Protection of Environment ENVIRONMENTAL... engineering services. (a) Neither award and execution of subcontracts under a prime contract for architectural or engineering services, nor the procurement and negotiation procedures used by the engineer in...
40 CFR 35.937-12 - Subcontracts under subagreements for architectural or engineering services.
Code of Federal Regulations, 2012 CFR
2012-07-01
... architectural or engineering services. 35.937-12 Section 35.937-12 Protection of Environment ENVIRONMENTAL... engineering services. (a) Neither award and execution of subcontracts under a prime contract for architectural or engineering services, nor the procurement and negotiation procedures used by the engineer in...
40 CFR Appendix C-1 to Subpart E... - Required Provisions-Consulting Engineering Agreements
Code of Federal Regulations, 2011 CFR
2011-07-01
... Engineering Agreements C Appendix C-1 to Subpart E of Part 35 Protection of Environment ENVIRONMENTAL... Provisions—Consulting Engineering Agreements 1. General 2. Responsibility of the Engineer 3. Scope of Work 4... drawings, designs, specifications, reports, and incidental engineering work or materials furnished...
40 CFR 35.937-12 - Subcontracts under subagreements for architectural or engineering services.
Code of Federal Regulations, 2013 CFR
2013-07-01
... architectural or engineering services. 35.937-12 Section 35.937-12 Protection of Environment ENVIRONMENTAL... engineering services. (a) Neither award and execution of subcontracts under a prime contract for architectural or engineering services, nor the procurement and negotiation procedures used by the engineer in...
40 CFR 35.937-12 - Subcontracts under subagreements for architectural or engineering services.
Code of Federal Regulations, 2010 CFR
2010-07-01
... architectural or engineering services. 35.937-12 Section 35.937-12 Protection of Environment ENVIRONMENTAL... engineering services. (a) Neither award and execution of subcontracts under a prime contract for architectural or engineering services, nor the procurement and negotiation procedures used by the engineer in...
40 CFR 35.937-12 - Subcontracts under subagreements for architectural or engineering services.
Code of Federal Regulations, 2014 CFR
2014-07-01
... architectural or engineering services. 35.937-12 Section 35.937-12 Protection of Environment ENVIRONMENTAL... engineering services. (a) Neither award and execution of subcontracts under a prime contract for architectural or engineering services, nor the procurement and negotiation procedures used by the engineer in...
40 CFR Appendix C-1 to Subpart E... - Required Provisions-Consulting Engineering Agreements
Code of Federal Regulations, 2012 CFR
2012-07-01
... Engineering Agreements C Appendix C-1 to Subpart E of Part 35 Protection of Environment ENVIRONMENTAL... Provisions—Consulting Engineering Agreements 1. General 2. Responsibility of the Engineer 3. Scope of Work 4... drawings, designs, specifications, reports, and incidental engineering work or materials furnished...
40 CFR 1051.140 - What is my vehicle's maximum engine power and displacement?
Code of Federal Regulations, 2012 CFR
2012-07-01
... power and displacement? 1051.140 Section 1051.140 Protection of Environment ENVIRONMENTAL PROTECTION... displacement? This section describes how to quantify your vehicle's maximum engine power and displacement for... available engine torque with engine speed. (b) An engine configuration's displacement is the intended swept...
40 CFR 1051.140 - What is my vehicle's maximum engine power and displacement?
Code of Federal Regulations, 2013 CFR
2013-07-01
... power and displacement? 1051.140 Section 1051.140 Protection of Environment ENVIRONMENTAL PROTECTION... displacement? This section describes how to quantify your vehicle's maximum engine power and displacement for... available engine torque with engine speed. (b) An engine configuration's displacement is the intended swept...
40 CFR 1051.140 - What is my vehicle's maximum engine power and displacement?
Code of Federal Regulations, 2010 CFR
2010-07-01
... power and displacement? 1051.140 Section 1051.140 Protection of Environment ENVIRONMENTAL PROTECTION... displacement? This section describes how to quantify your vehicle's maximum engine power and displacement for... available engine torque with engine speed. (b) An engine configuration's displacement is the intended swept...
40 CFR 1051.140 - What is my vehicle's maximum engine power and displacement?
Code of Federal Regulations, 2014 CFR
2014-07-01
... power and displacement? 1051.140 Section 1051.140 Protection of Environment ENVIRONMENTAL PROTECTION... displacement? This section describes how to quantify your vehicle's maximum engine power and displacement for... available engine torque with engine speed. (b) An engine configuration's displacement is the intended swept...
40 CFR 1051.140 - What is my vehicle's maximum engine power and displacement?
Code of Federal Regulations, 2011 CFR
2011-07-01
... power and displacement? 1051.140 Section 1051.140 Protection of Environment ENVIRONMENTAL PROTECTION... displacement? This section describes how to quantify your vehicle's maximum engine power and displacement for... available engine torque with engine speed. (b) An engine configuration's displacement is the intended swept...
40 CFR 1045.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What is my engine's maximum engine power? 1045.140 Section 1045.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
Variable cycle engines for advanced supersonic transports
NASA Technical Reports Server (NTRS)
Howlett, R. A.; Kozlowski, H.
1975-01-01
Variable Cycle Engines being studied for advanced commercial supersonic transports show potential for significant environmental and economic improvements relative to 1st generation SST engines. The two most promising concepts are: a Variable Stream Control Engine and a Variable Cycle Engine with a rear flow-control valve. Each concept utilizes variable components and separate burners to provide independent temperature and velocity control for two coannular flow streams. Unique fuel control techniques are combined with cycle characteristics that provide low fuel consumption, similar to a turbojet engine, for supersonic operation. This is accomplished while retaining the good subsonic performance features of a turbofan engine. A two-stream coannular nozzle shows potential to reduce jet noise to below FAR Part 36 without suppressors. Advanced burner concepts have the potential for significant reductions in exhaust emissions. In total, these unique engine concepts have the potential for significant overall improvements to the environmental and economic characteristics of advanced supersonic transports.
40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...
40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...
40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...
40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...
40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...
The potential of computer-aided process engineering (CAPE) tools to enable process engineers to improve the environmental performance of both their processes and across the life cycle (from cradle-to-grave) has long been proffered. However, this use of CAPE has not been fully ach...
NASA Astrophysics Data System (ADS)
2014-09-01
Tami Bond, environmental engineer and professor in the Department of Civil and Environmental Engineering at the University of Illinois at Urbana-Champaign, has been selected as a 2014 MacArthur Fellow.
Environmental engineering education for developing countries: framework for the future.
Ujang, Z; Henze, M; Curtis, T; Schertenleib, R; Beal, L L
2004-01-01
This paper presents the existing philosophy, approach, criteria and delivery of environmental engineering education (E3) for developing countries. In general, environmental engineering is being taught in almost all major universities in developing countries, mostly under civil engineering degree programmes. There is an urgent need to address specific inputs that are particularly important for developing countries with respect to the reality of urbanisation and industrialisation. The main component of E3 in the near future will remain on basic sanitation in most developing countries, with special emphasis on the consumer-demand approach. In order to substantially overcome environmental problems in developing countries, E3 should include integrated urban water management, sustainable sanitation, appropriate technology, cleaner production, wastewater minimisation and financial framework.
Discussion on teaching reform of environmental planning and management
NASA Astrophysics Data System (ADS)
Zhang, Qiugen; Chen, Suhua; Xie, Yu; Wei, Li'an; Ding, Yuan
2018-05-01
The curriculum of environmental planning and management is an environmental engineering major curriculum established by the teaching steering committee of environmental science and engineering of Education Ministry, which is the core curriculum of Chinese engineering education professional certification. It plays an important role in cultivating environmental planning and environmental management ability of environmental engineering major. The selection and optimization of the course teaching content of environmental planning and management were discussed which including curriculum teaching content updating and optimizing and teaching resource system construction. The comprehensive application of teaching method was discussed which including teaching method synthesis and teaching method. The final combination of the assessment method was also discussed which including the formative assessment normal grades and the final result of the course examination. Through the curriculum comprehensive teaching reform, students' knowledge had been broadened, the subject status and autonomy of learning had been enhanced, students' learning interest had been motivated, the ability of students' finding, analyzing and solving problems had been improved. Students' innovative ability and positive spirit had been well cultivated.
Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses
ERIC Educational Resources Information Center
Martinez-Luaces, Victor
2009-01-01
In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…
40 CFR 1048.401 - What testing requirements apply to my engines that have gone into service?
Code of Federal Regulations, 2010 CFR
2010-07-01
... engines that have gone into service? 1048.401 Section 1048.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048.401 What testing requirements apply to my engines that have...
40 CFR 1051.301 - When must I test my production-line vehicles or engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... vehicles or engines? 1051.301 Section 1051.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.301 When must I test my production-line vehicles or engines? (a...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Importation of Nonconforming Marine Engines § 91.702... 213 and section 206(a) of the Act. Nonconforming marine engine. A marine SI engine which is not...
48 CFR 1536.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2013 CFR
2013-10-01
... with architect-engineer firms. 1536.209 Section 1536.209 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 1536.209 Construction contracts with architect-engineer...
48 CFR 1536.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with architect-engineer firms. 1536.209 Section 1536.209 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 1536.209 Construction contracts with architect-engineer...
48 CFR 1536.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2012 CFR
2012-10-01
... with architect-engineer firms. 1536.209 Section 1536.209 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 1536.209 Construction contracts with architect-engineer...
48 CFR 1536.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2010 CFR
2010-10-01
... architect-engineer firms. 1536.209 Section 1536.209 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 1536.209 Construction contracts with architect-engineer firms. (a...
48 CFR 1536.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2014 CFR
2014-10-01
... with architect-engineer firms. 1536.209 Section 1536.209 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 1536.209 Construction contracts with architect-engineer...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR... turboprop engines. Class TF means all turbofan or turbojet aircraft engines or aircraft engines designed for... turbine engines employed for propulsion of aircraft designed to operate at supersonic flight speeds...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-18
... DEPARTMENT OF DEFENSE Department of the Army, Corps of Engineers Notice of Availability of the... AGENCY: U.S. Army Corps of Engineers, DoD. ACTION: Notice of availability. SUMMARY: The U.S. Army Corps of Engineers (USACE) is issuing this notice to advise the public that a Draft Environmental Impact...
ADDRESSING ENVIRONMENTAL ENGINEERING CHALLENGES WITH COMPUTATIONAL FLUID DYNAMICS
In the field of environmental engineering, modeling tools are playing an ever larger role in addressing air quality issues, including source pollutant emissions, atmospheric dispersion and human exposure risks. More detailed modeling of environmental flows requires tools for c...
Indian Health Service: Community Health
... Community Health Representatives (CHRs) Office of Environmental Health & Engineering (OEHE) Environmental Health Support Center Training (EHSCT) IHS ... Contracting Tribes - 08E17 Office of Environmental Health and Engineering - 10N14C Office of Finance and Accounting - 10E54 Office ...
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Nemeth, Noel N.
2017-01-01
Advanced environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect emerging light-weight SiC/SiC ceramic matrix composite (CMC) engine components, further raising engine operating temperatures and performance. Because the environmental barrier coating systems are critical to the performance, reliability and durability of these hot-section ceramic engine components, a prime-reliant coating system along with established life design methodology are required for the hot-section ceramic component insertion into engine service. In this paper, we have first summarized some observations of high temperature, high-heat-flux environmental degradation and failure mechanisms of environmental barrier coating systems in laboratory simulated engine environment tests. In particular, the coating surface cracking morphologies and associated subsequent delamination mechanisms under the engine level high-heat-flux, combustion steam, and mechanical creep and fatigue loading conditions will be discussed. The EBC compostion and archtechture improvements based on advanced high heat flux environmental testing, and the modeling advances based on the integrated Finite Element Analysis Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program will also be highlighted. The stochastic progressive damage simulation successfully predicts mud flat damage pattern in EBCs on coated 3-D specimens, and a 2-D model of through-the-thickness cross-section. A 2-parameter Weibull distribution was assumed in characterizing the coating layer stochastic strength response and the formation of damage was therefore modeled. The damage initiation and coalescence into progressively smaller mudflat crack cells was demonstrated. A coating life prediction framework may be realized by examining the surface crack initiation and delamination propagation in conjunction with environmental degradation under high-heat-flux and environment load test conditions.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2014-01-01
Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.
Collaborative-Large scale Engineering Assessment Networks for Environmental Research: The Overview
NASA Astrophysics Data System (ADS)
Moo-Young, H.
2004-05-01
A networked infrastructure for engineering solutions and policy alternatives is necessary to assess, manage, and protect complex, anthropogenic ally stressed environmental resources effectively. Reductionist and discrete disciplinary methodologies are no longer adequate to evaluate and model complex environmental systems and anthropogenic stresses. While the reductonist approach provides important information regarding individual mechanisms, it cannot provide complete information about how multiple processes are related. Therefore, it is not possible to make accurate predictions about system responses to engineering interventions and the effectiveness of policy options. For example, experts cannot agree on best management strategies for contaminated sediments in riverine and estuarine systems. This is due, in part to the fact that existing models do not accurately capture integrated system dynamics. In addition, infrastructure is not available for investigators to exchange and archive data, to collaborate on new investigative methods, and to synthesize these results to develop engineering solutions and policy alternatives. Our vision for the future is to create a network comprising field facilities and a collaboration of engineers, scientists, policy makers, and community groups. This will allow integration across disciplines, across different temporal and spatial scales, surface and subsurface geographies, and air sheds and watersheds. Benefits include fast response to changes in system health, real-time decision making, and continuous data collection that can be used to anticipate future problems, and to develop sound engineering solutions and management decisions. CLEANER encompasses four general aspects: 1) A Network of environmental field facilities instrumented for the acquisition and analysis of environmental data; 2) A Virtual Repository of Data and information technology for engineering modeling, analysis and visualization of data, i.e. an environmental cyber-infrastructure; 3) A Mechanism for multidisciplinary research and education activities designed to exploit the output of the instrumented sites and networked information technology, to formulate engineering and policy options directed toward the protection, remediation, and restoration of stressed environments and sustainability of environmental resources; and 4) A Collaboration among engineers, natural and social scientists, educators, policy makers, industry, non-governmental organizations, the public, and other stakeholders.
2000-09-30
Environmental Science and Engineering Oregon Graduate Institute 20000 NW Walker Road Beaverton, OR 97006-8921 Phone: 1-503-748-1372 Fax: 1-503-748...Department of Environmental Science and Engineering,,Oregon Graduate Institute,20000 NW Walker Road,,Beaverton,,OR,97006 8. PERFORMING ORGANIZATION... Environmental Science and Engineering, Oregon Graduate Institute, 97 pp. Fain, A.M.V., D. A. Jay, D. J. Wilson, P. M. Orton, and A. M. Baptista, 2000
High-Heat-Flux Cyclic Durability of Thermal and Environmental Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Ghosn, Louis L.; Miller, Robert A.
2007-01-01
Advanced ceramic thermal and environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect the engine components and further raise engine temperatures. For the supersonic vehicles currently envisioned in the NASA fundamental aeronautics program, advanced gas turbine engines will be used to provide high power density thrust during the extended supersonic flight of the aircraft, while meeting stringent low emission requirements. Advanced ceramic coating systems are critical to the performance, life and durability of the hot-section components of the engine systems. In this work, the laser and burner rig based high-heat-flux testing approaches were developed to investigate the coating cyclic response and failure mechanisms under simulated supersonic long-duration cruise mission. The accelerated coating cracking and delamination mechanism under the engine high-heat-flux, and extended supersonic cruise time conditions will be addressed. A coating life prediction framework may be realized by examining the crack initiation and propagation in conjunction with environmental degradation under high-heat-flux test conditions.
75 FR 35497 - Updated Guidance: Prevention Strategies for Seasonal Influenza in Healthcare Settings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-22
...-generating procedure precautions, surveillance, and environmental and engineering controls. CDC will consider... procedures. Implementing environmental and engineering infection control measures. [[Page 35499
40 CFR 1068.210 - What are the provisions for exempting test engines/equipment?
Code of Federal Regulations, 2010 CFR
2010-07-01
... exempt engines/equipment that you will use for research, investigations, studies, demonstrations, or... test engines/equipment? 1068.210 Section 1068.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR ENGINE PROGRAMS Exemptions...
40 CFR 1068.210 - What are the provisions for exempting test engines/equipment?
Code of Federal Regulations, 2011 CFR
2011-07-01
... exempt engines/equipment that you will use for research, investigations, studies, demonstrations, or... test engines/equipment? 1068.210 Section 1068.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR ENGINE PROGRAMS Exemptions...
40 CFR 86.1901 - What testing requirements apply to my engines that have gone into service?
Code of Federal Regulations, 2014 CFR
2014-07-01
... VEHICLES AND ENGINES Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1901 What testing requirements apply to my engines that have gone into service? (a) If you manufacture diesel heavy... engines that have gone into service? 86.1901 Section 86.1901 Protection of Environment ENVIRONMENTAL...
Global Environmental Priorities of Engineering Students in Krakow Poland.
ERIC Educational Resources Information Center
Robinson, Michael; Bowen, William M.
2000-01-01
Reports and interprets the rankings of Rodger Bybee's 12 global-environmental issues/threats by first and second year engineering students (n=175) at the Technical University of Krakow, Poland. Results indicate that personal experience with local environmental issues are the most important determinant for ranking global environmental threats.…
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Farmer, Serene; McCue, Terry R.; Harder, Bryan; Hurst, Janet B.
2017-01-01
Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, environmental durable environmental barrier coating systems. In this paper, the durability and performance of advanced Electron Beam-Physical Vapor Deposition (EB-PVD) NASA HfO2-Si and YbGdSi(O) EBC bond coat top coat systems for SiCSiC CMC have been summarized. The high temperature thermomechanical creep, fatigue and oxidation resistance have been investigated in the laboratory simulated high-heat-flux environmental test conditions. The advanced NASA EBC systems showed promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.
Durability Challenges for Next Generation of Gas Turbine Engine Materials
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
2012-01-01
Aggressive fuel burn and carbon dioxide emission reduction goals for future gas turbine engines will require higher overall pressure ratio, and a significant increase in turbine inlet temperature. These goals can be achieved by increasing temperature capability of turbine engine hot section materials and decreasing weight of fan section of the engine. NASA is currently developing several advanced hot section materials for increasing temperature capability of future gas turbine engines. The materials of interest include ceramic matrix composites with 1482 - 1648 C temperature capability, advanced disk alloys with 815 C capability, and low conductivity thermal barrier coatings with erosion resistance. The presentation will provide an overview of durability challenges with emphasis on the environmental factors affecting durability for the next generation of gas turbine engine materials. The environmental factors include gaseous atmosphere in gas turbine engines, molten salt and glass deposits from airborne contaminants, impact from foreign object damage, and erosion from ingestion of small particles.
Richard D. Bergman; Scott A. Bowe
2010-01-01
Building products have come under increased scrutiny because of environmental impacts from their manufacturing. However, environmental impacts of manufacturing some wood productsâsuch as prefinished engineered wood flooringâhave not been determined. This study examined prefinished engineered wood flooring in the eastern United States following the life-cycle inventory...
40 CFR 1065.125 - Engine intake air.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Engine intake air. 1065.125 Section 1065.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.125 Engine intake air. (a) Use the intake-air...
14 CFR 34.89 - Compliance with smoke emission standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.89 Compliance with smoke emission... in Appendix 6 to ICAO Annex 16, Environmental Protection, Volume II, Aircraft Engine Emissions...
14 CFR 34.89 - Compliance with smoke emission standards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.89 Compliance with smoke emission... in Appendix 6 to ICAO Annex 16, Environmental Protection, Volume II, Aircraft Engine Emissions...
40 CFR 1068.240 - What are the provisions for exempting new replacement engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... new replacement engines? 1068.240 Section 1068.240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR ENGINE PROGRAMS Exemptions and Exclusions § 1068.240 What are the provisions for exempting new replacement engines? The...
Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis J.; Harder, Bryan
2011-01-01
Environmental barrier coatings will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability and stability of SiC/SiC ceramic matrix composite (CMC) engine components, thus improving the engine performance. In order to develop high performance, robust coating systems for engine components, appropriate test approaches simulating operating temperature gradient and stress environments for evaluating the critical coating properties must be established. In this paper, thermal gradient mechanical testing approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated environmental exposure conditions. The coating failure mechanisms will also be discussed under the heat flux and stress conditions.
BOOK REVIEW: ENVIRONMENTAL ENGINEERING, 5TH EDITION
Book Review of Environmental Engineering, 5th Edition (Joseph A. Salvato, Nelson L. Nemerow, Franklin J. Agardy (Editors), John Wiley and Sons, Inc. Hoboken, New Jersey. 2003.). Author wrote review per the request of the Editor-in-Chief of the Journal of Environmental Quality.
State-of-the-Art Opportunities. Hispanic Special Report: Careers in Engineering.
ERIC Educational Resources Information Center
Heller, Michele
1992-01-01
Although the demand for electrical, defense, and computer science engineers has dropped sharply, opportunities exist for Hispanics in computer communication and integration, miniaturization of electronic components, environmental, and genetic and biomedical engineering. Engineers should diversify their skills to adapt to the changing field. (KS)
14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.82..., Environmental Protection, Volume II, Aircraft Engine Emissions, Second Edition, July 1993, effective July 26...
14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.82..., Environmental Protection, Volume II, Aircraft Engine Emissions, Second Edition, July 1993, effective July 26...
40 CFR 1068.5 - How must manufacturers apply good engineering judgment?
Code of Federal Regulations, 2014 CFR
2014-07-01
... engineering judgment? 1068.5 Section 1068.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Applicability and Miscellaneous Provisions § 1068.5 How must manufacturers apply good engineering judgment? (a) You must use good engineering judgment for decisions related to any requirements under this...
40 CFR 35.935-18 - Value engineering.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Value engineering. 35.935-18 Section 35.935-18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE... engineering. A grantee must comply with the applicable value engineering requirements of § 35.926. ...
40 CFR 59.603 - How must manufacturers apply good engineering judgment?
Code of Federal Regulations, 2013 CFR
2013-07-01
... engineering judgment? 59.603 Section 59.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Applicability § 59.603 How must manufacturers apply good engineering judgment? (a) In addition to other requirements and prohibitions set forth in this subpart, you must use good engineering judgment...
40 CFR 59.603 - How must manufacturers apply good engineering judgment?
Code of Federal Regulations, 2014 CFR
2014-07-01
... engineering judgment? 59.603 Section 59.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Applicability § 59.603 How must manufacturers apply good engineering judgment? (a) In addition to other requirements and prohibitions set forth in this subpart, you must use good engineering judgment...
40 CFR 1068.5 - How must manufacturers apply good engineering judgment?
Code of Federal Regulations, 2012 CFR
2012-07-01
... engineering judgment? 1068.5 Section 1068.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Applicability and Miscellaneous Provisions § 1068.5 How must manufacturers apply good engineering judgment? (a) You must use good engineering judgment for decisions related to any requirements under this...
40 CFR 35.935-18 - Value engineering.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Value engineering. 35.935-18 Section 35.935-18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE... engineering. A grantee must comply with the applicable value engineering requirements of § 35.926. ...
40 CFR 59.603 - How must manufacturers apply good engineering judgment?
Code of Federal Regulations, 2011 CFR
2011-07-01
... engineering judgment? 59.603 Section 59.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Applicability § 59.603 How must manufacturers apply good engineering judgment? (a) In addition to other requirements and prohibitions set forth in this subpart, you must use good engineering judgment...
40 CFR 35.935-18 - Value engineering.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Value engineering. 35.935-18 Section 35.935-18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE... engineering. A grantee must comply with the applicable value engineering requirements of § 35.926. ...
40 CFR 1068.5 - How must manufacturers apply good engineering judgment?
Code of Federal Regulations, 2013 CFR
2013-07-01
... engineering judgment? 1068.5 Section 1068.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Applicability and Miscellaneous Provisions § 1068.5 How must manufacturers apply good engineering judgment? (a) You must use good engineering judgment for decisions related to any requirements under this...
40 CFR 35.935-18 - Value engineering.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Value engineering. 35.935-18 Section 35.935-18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE... engineering. A grantee must comply with the applicable value engineering requirements of § 35.926. ...
40 CFR 35.935-18 - Value engineering.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Value engineering. 35.935-18 Section 35.935-18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE... engineering. A grantee must comply with the applicable value engineering requirements of § 35.926. ...
40 CFR 59.603 - How must manufacturers apply good engineering judgment?
Code of Federal Regulations, 2010 CFR
2010-07-01
... engineering judgment? 59.603 Section 59.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Applicability § 59.603 How must manufacturers apply good engineering judgment? (a) In addition to other requirements and prohibitions set forth in this subpart, you must use good engineering judgment...
40 CFR 1068.5 - How must manufacturers apply good engineering judgment?
Code of Federal Regulations, 2010 CFR
2010-07-01
... engineering judgment? 1068.5 Section 1068.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Miscellaneous Provisions § 1068.5 How must manufacturers apply good engineering judgment? (a) You must use good engineering judgment for decisions related to any requirements under this chapter. This includes your...
40 CFR 59.603 - How must manufacturers apply good engineering judgment?
Code of Federal Regulations, 2012 CFR
2012-07-01
... engineering judgment? 59.603 Section 59.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Applicability § 59.603 How must manufacturers apply good engineering judgment? (a) In addition to other requirements and prohibitions set forth in this subpart, you must use good engineering judgment...
40 CFR 1068.5 - How must manufacturers apply good engineering judgment?
Code of Federal Regulations, 2011 CFR
2011-07-01
... engineering judgment? 1068.5 Section 1068.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Miscellaneous Provisions § 1068.5 How must manufacturers apply good engineering judgment? (a) You must use good engineering judgment for decisions related to any requirements under this chapter. This includes your...
40 CFR 89.325 - Engine intake air temperature measurement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 89.325 Section 89.325 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air...
Code of Federal Regulations, 2010 CFR
2010-07-01
... engine's design or emission-control system. (b) To sell engines from an engine family with a revoked... under this subpart and how may I sell these engines again? 1048.340 Section 1048.340 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I know when my engine family... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.315 How do I know when my engine...
Code of Federal Regulations, 2010 CFR
2010-07-01
... change the engine's design or emission control system. (b) To sell engines from an engine family with a... under this subpart and how may I sell these engines again? 1045.340 Section 1045.340 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK...
40 CFR 1045.660 - How do I certify outboard or personal watercraft engines for use in jet boats?
Code of Federal Regulations, 2010 CFR
2010-07-01
... watercraft engines for use in jet boats? 1045.660 Section 1045.660 Protection of Environment ENVIRONMENTAL... watercraft engines for use in jet boats? (a) This section describes how to certify outboard or personal watercraft engines for use in jet boats. To be certified under this section, the jet boat engines must be...
40 CFR 1045.660 - How do I certify outboard or personal watercraft engines for use in jet boats?
Code of Federal Regulations, 2011 CFR
2011-07-01
... watercraft engines for use in jet boats? 1045.660 Section 1045.660 Protection of Environment ENVIRONMENTAL... watercraft engines for use in jet boats? (a) This section describes how to certify outboard or personal watercraft engines for use in jet boats. To be certified under this section, the jet boat engines must be...
Service Modeling for Service Engineering
NASA Astrophysics Data System (ADS)
Shimomura, Yoshiki; Tomiyama, Tetsuo
Intensification of service and knowledge contents within product life cycles is considered crucial for dematerialization, in particular, to design optimal product-service systems from the viewpoint of environmentally conscious design and manufacturing in advanced post industrial societies. In addition to the environmental limitations, we are facing social limitations which include limitations of markets to accept increasing numbers of mass-produced artifacts and such environmental and social limitations are restraining economic growth. To attack and remove these problems, we need to reconsider the current mass production paradigm and to make products have more added values largely from knowledge and service contents to compensate volume reduction under the concept of dematerialization. Namely, dematerialization of products needs to enrich service contents. However, service was mainly discussed within marketing and has been mostly neglected within traditional engineering. Therefore, we need new engineering methods to look at services, rather than just functions, called "Service Engineering." To establish service engineering, this paper proposes a modeling technique of service.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan
2016-01-01
Environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft turbine engine systems, because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. This paper presents current NASA EBC-CMC development emphases including: the coating composition and processing improvements, laser high heat flux-thermal gradient thermo-mechanical fatigue - environmental testing methodology development, and property evaluations for next generation EBC-CMC systems. EBCs processed with various deposition techniques including Plasma Spray, Electron Beam - Physical Vapor Deposition, and Plasma Spray Physical Vapor Deposition (PS-PVD) will be particularly discussed. The testing results and demonstrations of advanced EBCs-CMCs in complex simulated engine thermal gradient cyclic fatigue, oxidizing-steam and CMAS environments will help provide insights into the coating development strategies to meet long-term engine component durability goals.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Halbig, Michael Charles; Sing, Mrityunjay
2014-01-01
The environmental stability and thermal gradient cyclic durability performance of SA Tyrannohex composites were investigated for turbine engine component applications. The work has been focused on investigating the combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue of uncoated and environmental barrier coated Tyrannohex SiC SA composites in simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. Flexural strength degradations have been evaluated, and the upper limits of operating temperature conditions for the SA composite material systems are discussed based on the experimental results.
Hendren, Christine Ogilvie; Lowry, Michael; Grieger, Khara D; Money, Eric S; Johnston, John M; Wiesner, Mark R; Beaulieu, Stephen M
2013-02-05
As the use of engineered nanomaterials becomes more prevalent, the likelihood of unintended exposure to these materials also increases. Given the current scarcity of experimental data regarding fate, transport, and bioavailability, determining potential environmental exposure to these materials requires an in depth analysis of modeling techniques that can be used in both the near- and long-term. Here, we provide a critical review of traditional and emerging exposure modeling approaches to highlight the challenges that scientists and decision-makers face when developing environmental exposure and risk assessments for nanomaterials. We find that accounting for nanospecific properties, overcoming data gaps, realizing model limitations, and handling uncertainty are key to developing informative and reliable environmental exposure and risk assessments for engineered nanomaterials. We find methods suited to recognizing and addressing significant uncertainty to be most appropriate for near-term environmental exposure modeling, given the current state of information and the current insufficiency of established deterministic models to address environmental exposure to engineered nanomaterials.
Defense AT&L (Volume 34, Number 5, September-October 2005)
2005-10-01
Engineering Command Pacific, Hawaii Installation—Environmental Restoration (tie) • Keesler Air Force Base, Miss. Installation—Environmental Restoration (tie...Ind.) Special—Shirley A. Bowe, Naval Facilities Engineering Command, Atlantic (Norfolk, Va.) Air Force Team—Battle Management/Command, Control and...the situation. 25 The NAVSEA Scientist to Sea Experience Matthew Tropiano Jr. NAVSEA engineers leave the lab for a spell at sea, learning the impact
Bridging Water Resources Policy and Environmental Engineering in the Classroom at Cornell University
NASA Astrophysics Data System (ADS)
Walter, M. T.; Shaw, S. B.; Seifert, S.; Schwarz, T.
2006-12-01
Current university undergraduate students in environmental sciences and engineering are the next generation of environmental protection practitioners. Recognizing this, Cornell's Biological and Environmental Engineering department has developed a popular class, Watershed Engineering (BEE 473), specifically designed to bridge the too-common gap between water resources policy and state-of-art science and technology. Weekly homework assignments are to design real-life solutions to actual water resources problems, often with the objective of applying storm water policies to local situations. Where appropriate, usually in conjunction with recent amendments to the Federal Clean Water Act, this course introduces water resource protection tools and concepts developed in the Cornell Soil and Water Lab. Here we present several examples of how we build bridges between university classrooms and the complex world of water resources policy.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... Reports and Voluntary Emission Recall Reports (Renewal) AGENCY: Environmental Protection Agency (EPA... request (ICR), Engine Emission Defect Information Reports and Voluntary Emission Recall Reports (EPA ICR... recall the engines. Engine manufacturers are required to submit Defect Information Reports (DIRs) if...
49 CFR 195.452 - Pipeline integrity management in high consequence areas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... engineering evaluation and provides an equivalent level of public safety and environmental protection. (c... situations—(i) Engineering basis. An operator may be able to justify an engineering basis for a longer assessment interval on a segment of line pipe. The justification must be supported by a reliable engineering...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-09
... Standards; Authorization of State Standards for 1996 and later New Diesel Cycle Engines 175 Horsepower and... ENVIRONMENTAL PROTECTION AGENCY [FRL-9264-3] California State Nonroad Engine Pollution Control... program that allows for the registration of nonroad engines and equipment units that operate at multiple...
30 CFR 250.610 - Diesel engine air intakes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Diesel engine air intakes. 250.610 Section 250.610 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall...
40 CFR 1039.640 - What special provisions apply to branded engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What special provisions apply to branded engines? 1039.640 Section 1039.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENGINES Special Compliance Provisions § 1039.640 What special provisions apply to branded engines? The...
40 CFR 1068.210 - What are the provisions for exempting test engines/equipment?
Code of Federal Regulations, 2013 CFR
2013-07-01
... NONROAD PROGRAMS Exemptions and Exclusions § 1068.210 What are the provisions for exempting test engines/equipment? (a) We may exempt engines/equipment that you will use for research, investigations, studies... test engines/equipment? 1068.210 Section 1068.210 Protection of Environment ENVIRONMENTAL PROTECTION...
40 CFR 1068.210 - What are the provisions for exempting test engines/equipment?
Code of Federal Regulations, 2014 CFR
2014-07-01
... NONROAD PROGRAMS Exemptions and Exclusions § 1068.210 What are the provisions for exempting test engines/equipment? (a) We may exempt engines/equipment that you will use for research, investigations, studies... test engines/equipment? 1068.210 Section 1068.210 Protection of Environment ENVIRONMENTAL PROTECTION...
40 CFR 1068.210 - What are the provisions for exempting test engines/equipment?
Code of Federal Regulations, 2012 CFR
2012-07-01
... NONROAD PROGRAMS Exemptions and Exclusions § 1068.210 What are the provisions for exempting test engines/equipment? (a) We may exempt engines/equipment that you will use for research, investigations, studies... test engines/equipment? 1068.210 Section 1068.210 Protection of Environment ENVIRONMENTAL PROTECTION...
40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...
40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...
40 CFR 94.11 - Requirements for rebuilding certified engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... person familiar with the design and function of motor vehicle engines would reasonably believe that the... Engine Book of Record Parameters. [64 FR 73331, Dec. 29, 1999, as amended at 68 FR 9784, Feb. 28, 2003] ... engines. 94.11 Section 94.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
30 CFR 250.510 - Diesel engine air intakes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to...
30 CFR 250.510 - Diesel engine air intakes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to...
30 CFR 250.510 - Diesel engine air intakes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to...
40 CFR 91.309 - Engine intake air temperature measurement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... measurement. 91.309 Section 91.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 100 cm of the air-intake of the engine. The measurement location must be either in...
40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...
40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...
40 CFR 1048.101 - What exhaust emission standards must my engines meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... my engines meet? 1048.101 Section 1048.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission Standards and Related Requirements § 1048.101 What exhaust emission standards must my engines meet...
An Introduction to Thermal-Fluid Engineering
NASA Astrophysics Data System (ADS)
Warhaft, Zellman
1998-01-01
This text is the first to provide an integrated introduction to basic engineering topics and the social implications of engineering practice. Aimed at beginning engineering students, the book presents the basic ideas of thermodynamics, fluid mechanics, heat transfer, and combustion through a real-world engineering situation. It relates the engine to the atmosphere in which it moves and exhausts its waste products. The book also discusses the greenhouse effect and atmospheric inversions, and the social implications of engineering in a crowded world with increasing energy demands. Students in mechanical, civil, agricultural, environmental, aerospace, and chemical engineering will welcome this engaging, well-illustrated introduction to thermal-fluid engineering.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
... modeling; atmospheric science and engineering; ecology and ecological risk assessment; epidemiology... assessment; environmental modeling; industrial ecology; environmental engineering; environmental medicine... ``Ethics Requirements for Advisors'' link on the blue navigational bar on the SAB Web site at http://www...
Engineering and public health at CDC.
Earnest, G Scott; Reed, Laurence D; Conover, D; Estill, C; Gjessing, C; Gressel, M; Hall, R; Hudock, S; Hudson, H; Kardous, C; Sheehy, J; Topmiller, J; Trout, D; Woebkenberg, M; Amendola, A; Hsiao, H; Keane, P; Weissman, D; Finfinger, G; Tadolini, S; Thimons, E; Cullen, E; Jenkins, M; McKibbin, R; Conway, G; Husberg, B; Lincoln, J; Rodenbeck, S; Lantagne, D; Cardarelli, J
2006-12-22
Engineering is the application of scientific and technical knowledge to solve human problems. Using imagination, judgment, and reasoning to apply science, technology, mathematics, and practical experience, engineers develop the design, production, and operation of useful objects or processes. During the 1940s, engineers dominated the ranks of CDC scientists. In fact, the first CDC director, Assistant Surgeon General Mark Hollis, was an engineer. CDC engineers were involved in malaria control through the elimination of standing water. Eventually the CDC mission expanded to include prevention and control of dengue, typhus, and other communicable diseases. The development of chlorination, water filtration, and sewage treatment were crucial to preventing waterborne illness. Beginning in the 1950s, CDC engineers began their work to improve public health while developing the fields of environmental health, industrial hygiene, and control of air pollution. Engineering disciplines represented at CDC today include biomedical, civil, chemical, electrical, industrial, mechanical, mining, and safety engineering. Most CDC engineers are located in the National Institute for Occupational Safety and Health (NIOSH) and the Agency for Toxic Substances and Disease Registry (ATSDR). Engineering research at CDC has a broad stakeholder base. With the cooperation of industry, labor, trade associations, and other stakeholders and partners, current work includes studies of air contaminants, mining, safety, physical agents, ergonomics, and environmental hazards. Engineering solutions remain a cornerstone of the traditional "hierarchy of controls" approach to reducing public health hazards.
NASA Technical Reports Server (NTRS)
Lu, Cherie; Lierens, Abigail
2003-01-01
With the increasing trend of charging for externalities and the aim of encouraging the sustainable development of the air transport industry, there is a need to evaluate the social costs of these undesirable side effects, mainly aircraft noise and engine emissions, for different airports. The aircraft noise and engine emissions social costs are calculated in monetary terms for five different airports, ranging from hub airports to small regional airports. The number of residences within different levels of airport noise contours and the aircraft noise classifications are the main determinants for accessing aircraft noise social costs. Whist, based on the damages of different engine pollutants on the human health, vegetation, materials, aquatic ecosystem and climate, the aircraft engine emissions social costs vary from engine types to aircraft categories. The results indicate that the relationship appears to be curvilinear between environmental costs and the traffic volume of an airport. The results and methodology of environmental cost calculation could input for to the proposed European wide harmonized noise charges as well as the social cost benefit analysis of airports.
ADDRESSING ENVIRONMENTAL ENGINEERING CHALLENGES WITH COMPUTATIONAL FLUID DYNAMICS
This paper discusses the status and application of Computational Fluid Dynamics )CFD) models to address environmental engineering challenges for more detailed understanding of air pollutant source emissions, atmospheric dispersion and resulting human exposure. CFD simulations ...
Meet EPA Environmental Engineer Terra Haxton, Ph.D.
EPA Environmental Engineer Terra Haxton, Ph.D., uses computer simulation models to protect drinking water. She investigates approaches to help water utilities be better prepared to respond to contamination incidents in their distribution systems.
Environmental and High-Strain Rate effects on composites for engine applications
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Smith, G. T.
1982-01-01
The Lewis Research Center is conducting a series of programs intended to investigate and develop the application of composite materials to structural components for turbojet engines. A significant part of that effort is directed to establishing resistance, defect growth, and strain rate characteristics of composite materials over the wide range of environmental and load conditions found in commercial turbojet engine operations. Both analytical and experimental efforts are involved.
Kong, Shibo; Tan, Xiaodong; Deng, Zhiqing; Xie, Yaofei; Yang, Fen; Zheng, Zengwang
2017-08-01
Snail control is a key link in schistosomiasis control, but no unified methods for eliminating snails have been produced to date. This study was conducted to explore an engineering method for eliminating Oncomelania hupensis applicable to urban areas. The engineering specifications were established using the Delphi method. An engineering project based on these specifications was conducted in Hankou marshland to eliminate snails, including the transformation of the beach surface and ditches. Molluscicide was used as a supplement. The snail control effect was evaluated by field investigation. The engineering results fulfilled the requirements of the design. The snail density decreased to 0/0.11m 2 , and the snail area dropped to 0m 2 after the project. There was a statistically significant difference in the number of frames with snails before and after the project (P<0.05). Snails were completely eliminated through one year of continuous monitoring, and no new snails were found after a flood disaster. This study demonstrates that engineering specifications for environmental modification were successfully established. Environmental modification, mainly through beach and ditch remediation, can completely change the environment of Oncomelania breeding. This method of environmental modification combined with mollusciciding was highly effective at eliminating snails. Copyright © 2017 Elsevier B.V. All rights reserved.
Environmental Testing of the NEXT PM1 Ion Engine
NASA Technical Reports Server (NTRS)
Synder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.
2008-01-01
The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The Prototype Model engine PM1 was subjected to qualification-level environmental testing to demonstrate compatibility with environments representative of anticipated mission requirements. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 minutes in each of three axes. Thermal-vacuum testing included a deep cold soak of the engine to temperatures of -168 C and thermal cycling from -120 to 203 C. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. Thruster performance was nominal throughout the test program, with minor variations in some engine operating parameters likely caused by facility effects. In general, the NEXT PM1 engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. After resolution of the findings from this test program the hardware environmental qualification program can proceed with confidence.
Preliminary engineering cost trends for highway projects.
DOT National Transportation Integrated Search
2011-10-21
Preliminary engineering (PE) for a highway project encompasses two efforts: planning to minimize the physical, social, and human environmental impacts of projects and engineering design to deliver the best alternative. PE efforts begin years in advan...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF..., emission control system, governed speed, fuel system, engine calibration, and other parameters as... engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF..., emission control system, governed speed, fuel system, engine calibration, and other parameters as... engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF..., emission control system, governed speed, fuel system, engine calibration, and other parameters as... engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF..., emission control system, governed speed, fuel system, engine calibration, and other parameters as... engines selected from the population of an engine family for emission testing. ...
This report documents the testing of a new technology that recovers and utilizes vapors from crude oil storage tanks employed in the oil production and processing industry. The COMM Engineering, USA Environmental Vapor Recovery Unit (EVRU) is a non-mechanical eductor, or jet pump...
Air Force Institute of Technology, Civil Engineering School: Environmental Protection Course.
ERIC Educational Resources Information Center
Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.
This document contains information assembled by the Civil Engineering School to meet the initial requirements of NEPA 1969 and Executive Orders which required the Air Force to implement an effective environmental protection program. This course presents the various aspects of Air Force environmental protection problems which military personnel…
NASA Astrophysics Data System (ADS)
Bowles, C.
2013-12-01
Ecological engineering, or eco engineering, is an emerging field in the study of integrating ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. According to Mitsch (1996) 'the design of sustainable ecosystems intends to integrate human society with its natural environment for the benefit of both'. Eco engineering emerged as a new idea in the early 1960s, and the concept has seen refinement since then. As a commonly practiced field of engineering it is relatively novel. Howard Odum (1963) and others first introduced it as 'utilizing natural energy sources as the predominant input to manipulate and control environmental systems'. Mtisch and Jorgensen (1989) were the first to define eco engineering, to provide eco engineering principles and conceptual eco engineering models. Later they refined the definition and increased the number of principles. They suggested that the goals of eco engineering are: a) the restoration of ecosystems that have been substantially disturbed by human activities such as environmental pollution or land disturbance, and b) the development of new sustainable ecosystems that have both human and ecological values. Here a more detailed overview of eco engineering is provided, particularly with regard to how engineers and ecologists are utilizing multi-dimensional computational models to link ecology and engineering, resulting in increasingly successful project implementation. Descriptions are provided pertaining to 1-, 2- and 3-dimensional hydrodynamic models and their use at small- and large-scale applications. A range of conceptual models that have been developed to aid the in the creation of linkages between ecology and engineering are discussed. Finally, several case studies that link ecology and engineering via computational modeling are provided. These studies include localized stream rehabilitation, spawning gravel enhancement on a large river system, and watershed-wide floodplain modeling of the Sacramento River Valley.
40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.23 Exhaust emission standards for Tier 6 and Tier 8...
40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.23 Exhaust emission standards for Tier 6 and Tier 8...
This report summarizes work conducted at the United States Army Corps of Engineers (USACE) Pittsburgh Engineering Warehouse and Repair Station (PEWARS) and Emsworth Locks and Dams in Pittsburgh, Pennsylvania under the U.S. Environmental Protection Agency's (EPA's) Waste Reduction...
40 CFR 1051.305 - How must I prepare and test my production-line vehicles or engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... production-line vehicles or engines? 1051.305 Section 1051.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.305 How must I prepare and test my production...
40 CFR 35.937-10 - Subagreement payments-architectural or engineering services.
Code of Federal Regulations, 2012 CFR
2012-07-01
... engineering services. 35.937-10 Section 35.937-10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.937-10 Subagreement payments—architectural or engineering services. The grantee... engineering agreement or in accordance with paragraph 7b of appendix C-1 to this subpart. Any retainage is at...
40 CFR 35.937-10 - Subagreement payments-architectural or engineering services.
Code of Federal Regulations, 2014 CFR
2014-07-01
... engineering services. 35.937-10 Section 35.937-10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.937-10 Subagreement payments—architectural or engineering services. The grantee... engineering agreement or in accordance with paragraph 7b of appendix C-1 to this subpart. Any retainage is at...
40 CFR 35.937-10 - Subagreement payments-architectural or engineering services.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engineering services. 35.937-10 Section 35.937-10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.937-10 Subagreement payments—architectural or engineering services. The grantee... engineering agreement or in accordance with paragraph 7b of appendix C-1 to this subpart. Any retainage is at...
40 CFR 35.937-10 - Subagreement payments-architectural or engineering services.
Code of Federal Regulations, 2011 CFR
2011-07-01
... engineering services. 35.937-10 Section 35.937-10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.937-10 Subagreement payments—architectural or engineering services. The grantee... engineering agreement or in accordance with paragraph 7b of appendix C-1 to this subpart. Any retainage is at...
40 CFR 35.937-10 - Subagreement payments-architectural or engineering services.
Code of Federal Regulations, 2013 CFR
2013-07-01
... engineering services. 35.937-10 Section 35.937-10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.937-10 Subagreement payments—architectural or engineering services. The grantee... engineering agreement or in accordance with paragraph 7b of appendix C-1 to this subpart. Any retainage is at...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
... recommendations to the Secretary of Defense, through the Secretary of the Army, Assistant Secretary of the Army (Civil Works), and the Chief of Engineers (U.S. Army Corps of Engineers) on matters relating to... DEPARTMENT OF DEFENSE Office of the Secretary Federal Advisory Committee; Chief of Engineers...
40 CFR 85.510 - Exemption provisions for new and relatively new vehicles/engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... relatively new vehicles/engines. 85.510 Section 85.510 Protection of Environment ENVIRONMENTAL PROTECTION... relatively new vehicles/engines. (a) You are exempted from the tampering prohibition with respect to new and relatively new vehicles/engines if you certify the conversion system to the emission standards specified in...
Lynch, William T
2015-10-01
The article examines and extends work bringing together engineering ethics and Science and Technology Studies, which had built upon Diane Vaughan's analysis of the Challenger shuttle accident as a test case. Reconsidering the use of her term "normalization of deviance," the article argues for a middle path between moralizing against and excusing away engineering practices contributing to engineering disaster. To explore an illustrative pedagogical case and to suggest avenues for constructive research developing this middle path, it examines the emergence of green chemistry and green engineering. Green chemistry began when Paul Anastas and John Warner developed a set of new rules for chemical synthesis that sought to learn from missed opportunities to avoid environmental damage in the twentieth century, an approach that was soon extended to engineering as well. Examination of tacit assumptions about historical counterfactuals in recent, interdisciplinary discussions of green chemistry illuminate competing views about the field's prospects. An integrated perspective is sought, addressing how both technical practice within chemistry and engineering and the influence of a wider "social movement" can play a role in remedying environmental problems.
Ally, Moonis R.; Sharma, Vishaldeep; Abdelaziz, Omar
2017-02-21
The choice of driving a heat pump with an electrically$-$or a thermally-driven engine is a vexing question complicated by the carbon footprint and environmental impact of using electricity versus natural gas (or waste heat) as the main driver for the respective engines. The amount of useful work generated by these two distinct engines is the focal point of this paper, which addresses a key question: which engine presents a better choice for a given heat pumping application within the constraints of energy and environmental stewardship? Extensive use of energy, exergy, and availability analysis is necessary to quantify the useful workmore » and to examine the issue holistically for both types of engines. The methodology explains why the output of work from these two distinct engines to satisfy a given load is vastly different, a direct consequence of their inherent Irreversibility. Thermodynamic consistency is guaranteed by satisfaction of the First and Second Laws applied to closed systems and their subsystems. The general conclusion is that thermally-driven engines are not industrious converters of heat to mechanical work.« less
Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review
NASA Astrophysics Data System (ADS)
Şöhret, Yasin; Ekici, Selcuk; Altuntaş, Önder; Hepbasli, Arif; Karakoç, T. Hikmet
2016-05-01
It is known that aircraft gas turbine engines operate according to thermodynamic principles. Exergy is considered a very useful tool for assessing machines working on the basis of thermodynamics. In the current study, exergy-based assessment methodologies are initially explained in detail. A literature overview is then presented. According to the literature overview, turbofans may be described as the most investigated type of aircraft gas turbine engines. The combustion chamber is found to be the most irreversible component, and the gas turbine component needs less exergetic improvement compared to all other components of an aircraft gas turbine engine. Finally, the need for analyses of exergy, exergo-economic, exergo-environmental and exergo-sustainability for aircraft gas turbine engines is emphasized. A lack of agreement on exergy analysis paradigms and assumptions is noted by the authors. Exergy analyses of aircraft gas turbine engines, fed with conventional fuel as well as alternative fuel using advanced exergy analysis methodology to understand the interaction among components, are suggested to those interested in thermal engineering, aerospace engineering and environmental sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ally, Moonis R.; Sharma, Vishaldeep; Abdelaziz, Omar
The choice of driving a heat pump with an electrically$-$or a thermally-driven engine is a vexing question complicated by the carbon footprint and environmental impact of using electricity versus natural gas (or waste heat) as the main driver for the respective engines. The amount of useful work generated by these two distinct engines is the focal point of this paper, which addresses a key question: which engine presents a better choice for a given heat pumping application within the constraints of energy and environmental stewardship? Extensive use of energy, exergy, and availability analysis is necessary to quantify the useful workmore » and to examine the issue holistically for both types of engines. The methodology explains why the output of work from these two distinct engines to satisfy a given load is vastly different, a direct consequence of their inherent Irreversibility. Thermodynamic consistency is guaranteed by satisfaction of the First and Second Laws applied to closed systems and their subsystems. The general conclusion is that thermally-driven engines are not industrious converters of heat to mechanical work.« less
Influence of Method of Adding Water to Combustible Mixture on Diesel Engine Performance
NASA Astrophysics Data System (ADS)
Devyanin, S. N.; Bigaev, A. V.; Markov, V. A.
2018-03-01
The supply of water to the cylinders of the diesel engine is one way to reduce the maximum temperature in the combustion zone of the fuel. A reduction of the maximum combustion temperature allows reducing the formation of nitrogen oxides and improving the environmental characteristics of the engine, which remains one of the urgent tasks at the present stage of their development. The methods of supplying water to the engine together with air at the inlet and with the fuel into the cylinder are well known. This article considers the influence of the way the water is supplied to the engine cylinders on its environmental characteristics. It presents the results of experimental studies on the internal combustion engine and analysis of the method of adding water on the engine performance from exhaust gas toxicity, operating efficiency and its thermal state. There are marked different effects on the motor performance of the method of adding water.
Does it matter what we call it?
USDA-ARS?s Scientific Manuscript database
Agronomy, soil science, plant science, crop science, agricultural science, computer science, environmental science, environmental engineering, agricultural and irrigation engineering, hydrology, meteorology – all are names that describe fields of study relevant to agriculture and the environment in ...
PERSONAL COMPUTERS AND ENVIRONMENTAL ENGINEERING
This article discusses how personal computers can be applied to environmental engineering. fter explaining some of the differences between mainframe and Personal computers, we will review the development of personal computers and describe the areas of data management, interactive...
40 CFR 52.1126 - Control strategy: Sulfur oxides.
Code of Federal Regulations, 2012 CFR
2012-07-01
... granted by the Massachusetts Department of Environmental Quality Engineering.) Massachusetts Mutual Life... stack). Central Massachusetts APCD Borden, Inc., Chemical Division, Leominster (conditioned upon first... Department of Environmental Quality Engineering.). Gardner State Hospital, Gardner. Grafton State Hospital...
40 CFR 52.1126 - Control strategy: Sulfur oxides.
Code of Federal Regulations, 2010 CFR
2010-07-01
... granted by the Massachusetts Department of Environmental Quality Engineering.) Massachusetts Mutual Life... stack). Central Massachusetts APCD Borden, Inc., Chemical Division, Leominster (conditioned upon first... Department of Environmental Quality Engineering.). Gardner State Hospital, Gardner. Grafton State Hospital...
40 CFR 52.1126 - Control strategy: Sulfur oxides.
Code of Federal Regulations, 2011 CFR
2011-07-01
... granted by the Massachusetts Department of Environmental Quality Engineering.) Massachusetts Mutual Life... stack). Central Massachusetts APCD Borden, Inc., Chemical Division, Leominster (conditioned upon first... Department of Environmental Quality Engineering.). Gardner State Hospital, Gardner. Grafton State Hospital...
Introducing Molecular Biology to Environmental Engineers through Development of a New Course.
ERIC Educational Resources Information Center
Oerther, Daniel B.
2002-01-01
Introduces a molecular biology course designed for environmental engineering majors using 16S ribosomal ribonucleic acid-targeted technology that allows students to identify and study microorganisms in bioreactor environments. (Contains 17 references.) (YDS)
NASA Technical Reports Server (NTRS)
Oneal, J. D.; Bwins, J. R.
1974-01-01
A discussion is presented of how The Engineer Agency for Resources Inventories utilized ERTS remotely sensed imagery as a/supplement to airphotos and collateral data for an environmental impact study of the Atchafalaya Basin for the New Orleans engineer district. This single overall inventory permitted a systematic approach and substantial economy for a number of engineering projects for which environmental impact statements would be required. The study area covered approximately 25,000 square miles and included all or part of 36 parishes in Louisiana and 8 counties in Mississippi. It was concluded that as a supplementary source, used in conjunction with airphotos, ERTS had proven itself as a significant means of economy. As a primary source, the Engineer Agency is not yet ready to accept ERTS for their own particular applications.
NASA Technical Reports Server (NTRS)
Adams, A.
1973-01-01
The Interface Control Document contains engine information necessary for installation of the baseline RL10 Derivative engines in the Space Tug vehicle. The ICD presents a description of the baseline engines and their operating characteristics, mass and load characteristics, and environmental criteria. The document defines the engine/vehicle mechanical, electrical, fluid and pneumatic interface requirements.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2015-01-01
Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. This paper will emphasize advanced environmental barrier coating developments for SiCSiC turbine airfoil components, by using advanced coating compositions and processing, in conjunction with mechanical and environment testing and durability validations. The coating-CMC degradations and durability in the laboratory simulated engine fatigue-creep and complex operating environments are being addressed. The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will be discussed. The results help understand the advanced EBC-CMC system performance, aiming at the durability improvements of more robust, prime-reliant environmental barrier coatings for successful applications of the component technologies and lifing methodologies.
Closed Loop Control of Automotive Engines
DOT National Transportation Integrated Search
1981-12-01
Internal combustion engine economy and emissions are known to be sensitive to changes in engine control variables. Two of the most important variables are fuel/air ratio (f/a) and spark advance. These variables are affected by environmental changes, ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Importation of Nonconforming Engines § 94.804 Exemptions...) Notwithstanding other requirements of this subpart, a nonconforming engine that qualifies for a temporary...
40 CFR 94.801 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Importation of Nonconforming Engines § 94.801 Applicability. (a) Except where otherwise indicated, this subpart is applicable to importers of engines (and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... described on the basis of gross power, emission control system, governed speed, injector size, engine... engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... described on the basis of gross power, emission control system, governed speed, injector size, engine... engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... described on the basis of gross power, emission control system, governed speed, injector size, engine... engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... described on the basis of gross power, emission control system, governed speed, injector size, engine... engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... described on the basis of gross power, emission control system, governed speed, injector size, engine... engines selected from the population of an engine family for emission testing. ...
Job Prospects for Marine Engineers.
ERIC Educational Resources Information Center
Basta, Nicholas
1986-01-01
Marine engineering is one of the smaller disciplines that have grown during recent decades. Job prospects in this field, salaries, types of employers (particularly Navy shipbuilding and infrastructure work), and marine/ocean engineers involvement with environmental issues are discussed. (JN)
NASA Astrophysics Data System (ADS)
Phaneuf, Tiffany
The implementation of sustainable development in higher education is a global trend. Engineers, as gatekeepers of technological innovation, confront increasingly complex world issues ranging from economic and social to political and environmental. Recently, a multitude of government reports have argued that solving such complex problems requires changes in the pedagogy of engineering education, such as that prescribed by the Science, Technology, Society, and education (STS) movement that grew out of the environmental movement in the 70s. In STS students are engaged in the community by understanding that scientific progress is innately a sociopolitical process that involves dimensions of power, wealth and responsibility. United States accreditation criteria now demand "the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context" (ABET Engineering Accreditation Commission 2005). With such emphasis on STS education as necessary to address complex world issues, it is vital to assess the barriers in the traditional engineering curriculum that may inhibit the success of such educational reform. This study identifies barriers to STS goals and pedagogy in post secondary science education by using the Francis College of Engineering at UMASS Lowell as a single case study. The study draws on existing literature to develop a theoretical framework for assessing four hypothesized barriers to STS education in undergraduate engineering. Identification of barriers to STS education in engineering generates a critical reflection of post secondary science education and its role in preparing engineers to be active citizens in shaping a rapidly globalizing world. The study offers policy recommendations for enabling post secondary science education to incorporate STS education into its curriculum.
NASA Astrophysics Data System (ADS)
Ben-Zvi-Assaraf, Orit; Ayal, Nitzan
2010-12-01
More and more technical universities now advocate integrating sustainability in higher education and including it as a strategic goal for improving education's quality and relevance to society. This study examines 30 fourth-year chemical engineering students, graduates of a university course designed to combine their terminological domain with sustainability-oriented goals, focusing on topics like corporate sustainability, developing environmental policy, introduction to ISO 14001—Environmental Management Systems (EMS), and environmental legislation. The study explores their perception of industrial-environmental issues and asks—How did the study unit influence the students' ability to use their preexisting scientific knowledge, while relating to industrial-environmental issues? Our findings indicate that engineering students can develop industrial-environmental awareness, and make use of interdisciplinary knowledge beyond that strictly related to the realm of engineering. Regarding the research's particular aim—i.e. determining the study unit's influence on students' ability to relate industrial-environmental issues to their own field of engineering—the findings indeed show a change in the students' conceptions of environmental elements related to industry. The course graduates became more attentive to the environmental aspects associated with building and opening a factory, and the concepts they raised in connection with the topic gained in variety.
NASA Astrophysics Data System (ADS)
von der Thannen, Magdalena; Paratscha, Roman; Smutny, Roman; Lampalzer, Thomas; Strauss, Alfred; Rauch, Hans Peter
2016-04-01
Nowadays there is a high demand on engineering solutions considering not only technical aspects but also ecological and aesthetic values. In this context soil bioengineering techniques are often used as standalone solutions or in combination with conventional engineering structures. It is a construction technique that uses biological components for hydraulic and civil engineering solutions. In general it pursues the same objectives as conventional civil engineering structures. Currently the used assessment methods for soil bioengineering structures are referencing technically, ecologically and socio-economically. In a modern engineering approach additionally, environmental impacts and potential added values should be considered. The research project E-Protect aims at developing Environmental Life Cycle Assessment (LCA) models for this special field of alpine protective constructions. Both, the Cumulative Energy Demand (CED) and the Global Warming Potential (GWP) should be considered in an Environmental LCA over the whole life cycle of an engineering structure. The life cycle itself can be divided into three phases: the construction phase, the use phase and the end of life phase. The paper represents a concept to apply an Environmental LCA model for soil bioengineering structures. Beside the construction phase of these structures particular attention will be given to the use phase. It is not only important in terms of engineering effects but also plays an important role for positive carbon footprint due to the growing plants of soil bioengineering structures in contrast to conventional structures. Innovative Environmental LCA models will be applied to soil bioengineering structures which provide a new transparency for the responsible planners and stakeholders, by pointing out the total consumption of resources in all construction phases and components.
ERIC Educational Resources Information Center
Bandeira de Melo, Gilberto C.; Pinto, Joana Darc da Silva
In this work a tentative approach is described, with the intent of an optimized insertion of the environmental contents in engineering courses, using the existing disciplines, and with a minimal, if any, increase of the disciplines related to environmental protection. The disciplines are firstly classified with regard to the environmental issues…
Spacecraft Environmental Anomalies Handbook
1989-08-01
1989 4. TITLE AND SUBTITLE S. FUNDING NUMBERS SPACECRAFT ENVIRONMENTAL ANOMALIES HANDBOOK 282201AA PE: 63410F 6. AUTHOR(S) Paul A. Robinson, Jr 7...engineering solutions for mitigating the effects of environmental anomalies have been developed. Among the causes o, spacecraft anomalies are surface...have been discovered after years of investig!:tion, and engineering solutions for mitigating the effccts of environmental anomalies have been developed
Caribbean Engineer and Environmental Conference (CSL Issue Paper, Volume 14-08, November 2008)
2008-11-01
Leadership, conducted a successful four day Engineer and Environment Conference between 2 and 5 September 2008 in San Jose , Puerto Rico. The purpose of...ANSI Std Z39-18 CONFERENCE SCHEDULE The Caribbean Engineer and Environmental Conference was conducted at the El San Juan Hotel in San Juan, Puerto...i.e. tsunamis, earthquakes, and volcanoes • Officials must develop ways to overcome communication problems between civil and military assets• Overall
Engineered nanomaterials (ENMs) are increasingly entering the environment with uncertain consequences including potential ecological effects. Various research communities view differently whether ecotoxicological testing of ENMs should be conducted using environmentally relevant ...
Students in the Environmental Engineering and Waster Resources capstone design class in the Department of Civil and Environmental Engineering will undertake a project in conjunction with Serasih Indonesia to develop a prototype mechanical aerator to be used in aquaculture live...
Modeling Engineered Nanomaterials (ENMs) Fate and Transport in Aquatic Ecosystems
Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants...
International Institute for Hydraulic and Environmental Engineering
ERIC Educational Resources Information Center
Mostertman, L. J.
1977-01-01
Describes the activities of the International Institute for Hydraulic and Environmental Engineering (IHE), whose primary function is the promotion of the better use of water resources as a vehicle of development by the transfer of knowledge and experience. (Author/RK)
ERIC Educational Resources Information Center
Fitzpatrick, John J.
2017-01-01
This paper questions if engineering educators are producing engineers that are accelerating humanity along an unsustainable path. Even though technology and engineering are important drivers in trying to move humanity towards an environmentally sustainable paradigm, the paper suggests that maybe the most important levers and challenges lie in the…
Code of Federal Regulations, 2010 CFR
2010-07-01
...-line vehicles or engines fails to meet emission standards? 1051.320 Section 1051.320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.320 What happens if one...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false May I sell vehicles from an engine... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.330 May I sell vehicles from an...
FAQ's | College of Engineering & Applied Science
zipped (compressed) format. This will help when the file is very large or created by one of the high end Milwaukee Engineer People Faculty and Staff Biomedical Engineering Civil & Environmental Engineering Computer Labs Technical Questions The labs are generally open 24/7, how will I know when a lab/system
40 CFR 89.916 - Emergency-vessel exemption for marine engines below 37 kW.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Emergency-vessel exemption for marine engines below 37 kW. 89.916 Section 89.916 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENGINES Exemption Provisions § 89.916 Emergency-vessel exemption for marine engines below 37 kW. The...
40 CFR 89.916 - Emergency-vessel exemption for marine engines below 37 kW.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Emergency-vessel exemption for marine engines below 37 kW. 89.916 Section 89.916 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENGINES Exemption Provisions § 89.916 Emergency-vessel exemption for marine engines below 37 kW. The...
40 CFR 89.916 - Emergency-vessel exemption for marine engines below 37 kW.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Emergency-vessel exemption for marine engines below 37 kW. 89.916 Section 89.916 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENGINES Exemption Provisions § 89.916 Emergency-vessel exemption for marine engines below 37 kW. The...
40 CFR 89.916 - Emergency-vessel exemption for marine engines below 37 kW.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Emergency-vessel exemption for marine engines below 37 kW. 89.916 Section 89.916 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENGINES Exemption Provisions § 89.916 Emergency-vessel exemption for marine engines below 37 kW. The...
40 CFR 89.916 - Emergency-vessel exemption for marine engines below 37 kW.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Emergency-vessel exemption for marine engines below 37 kW. 89.916 Section 89.916 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENGINES Exemption Provisions § 89.916 Emergency-vessel exemption for marine engines below 37 kW. The...
40 CFR 1068.225 - What are the provisions for exempting engines/equipment for national security?
Code of Federal Regulations, 2010 CFR
2010-07-01
... engines/equipment for national security? 1068.225 Section 1068.225 Protection of Environment ENVIRONMENTAL... security? (a) An engine/equipment is exempt without a request if it will be used or owned by an agency of...) Manufacturers may request a national security exemption for engines/equipment not meeting the conditions of...
ERIC Educational Resources Information Center
Montanes, M. T.; Palomares, A. E.; Sanchez-Tovar, R.
2012-01-01
The principles of sustainable development have been integrated in chemical engineering education by means of an environmental management system. These principles have been introduced in the teaching laboratories where students perform their practical classes. In this paper, the implementation of the environmental management system, the problems…
Going "Green": Environmental Jobs for Scientists and Engineers
ERIC Educational Resources Information Center
Ramey, Alice
2009-01-01
Green is often used as a synonym for environmental or ecological, especially as it relates to products and activities aimed at minimizing damage to the planet. Scientists and engineers have long had important roles in the environmental movement. Their expertise is focused on a variety of issues, including increasing energy efficiency, improving…
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Importation of Nonconforming Engines § 94.803 Admission. (a) A nonconforming engine offered for importation may be admitted into the United States pursuant to...
40 CFR 91.701 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Importation of Nonconforming Marine Engines § 91.701 Applicability. (a) Except where otherwise indicated, this subpart is applicable to marine SI engines for which...
40 CFR 94.220 - Service accumulation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 94.220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... emission levels from in-use engines over their full useful life, consistent with good engineering judgement... and projection procedures are determined using good engineering judgement. (c) No maintenance, other...
POLLUTION PREVENTION RESEARCH ONGOING - EPA'S RISK REDUCTION ENGINEERING LABORATORY
The mission of the Risk Reduction Engineering Laboratory is to advance the understanding, development and application of engineering solutions for the prevention or reduction of risks from environmental contamination. This mission is accomplished through basic and applied researc...
2017-04-01
nation’s toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering , geospatial sciences... civil engineer , Concrete and Materials Branch CEERD-GM-C Kirk Walker 601.634.3237 Kirk.E.Walker@usace.army.mil Engineering technician, Concrete...2017 Approved for public release; distribution is unlimited. The U.S. Army Engineer Research and Development Center (ERDC) solves the
NASA Technical Reports Server (NTRS)
1980-01-01
Burns & McDonnell Engineering's environmental control study is assisted by NASA's Computer Software Management and Information Center's programs in environmental analyses. Company is engaged primarily in design of such facilities as electrical utilities, industrial plants, wastewater treatment systems, dams and reservoirs and aviation installations. Company also conducts environmental engineering analyses and advises clients as to the environmental considerations of a particular construction project. Company makes use of many COSMIC computer programs which have allowed substantial savings.
40 CFR 91.1309 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 91.1309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Credit Program for New Marine... submitted to: Manager, Engine Compliance Programs Group 6403-J, U.S. Environmental Protection Agency, 1200...
Toxicity of Engineered Nanoparticles in the Environment
Maurer-Jones, Melissa A.; Gunsolus, Ian L.; Murphy, Catherine J.; Haynes, Christy L.
2014-01-01
While nanoparticles occur naturally in the environment and have been intentionally used for centuries, the production and use of engineered nanoparticles has seen a recent spike, which makes environmental release almost certain. Therefore, recent efforts to characterize the toxicity of engineered nanoparticles have focused on the environmental implications, including exploration of toxicity to organisms from wide-ranging parts of the ecosystem food webs. Herein, we summarize the current understanding of toxicity of engineered nanoparticles to representatives of various trophic levels, including bacteria, plants, and multicellular aquatic/terrestrial organisms, to highlight important challenges within the field of econanotoxicity, challenges that analytical chemists are expertly poised to address. PMID:23427995
Toxicity of engineered nanoparticles in the environment.
Maurer-Jones, Melissa A; Gunsolus, Ian L; Murphy, Catherine J; Haynes, Christy L
2013-03-19
While nanoparticles occur naturally in the environment and have been intentionally used for centuries, the production and use of engineered nanoparticles has seen a recent spike, which makes environmental release almost certain. Therefore, recent efforts to characterize the toxicity of engineered nanoparticles have focused on the environmental implications, including exploration of toxicity to organisms from wide-ranging parts of the ecosystem food webs. Herein, we summarize the current understanding of toxicity of engineered nanoparticles to representatives of various trophic levels, including bacteria, plants, and multicellular aquatic/terrestrial organisms, to highlight important challenges within the field of econanotoxicity, challenges that analytical chemists are expertly poised to address.
Barriers to the utilization of synthetic fuels for transportation
NASA Technical Reports Server (NTRS)
Parker, H. W.; Reilly, M. J.
1981-01-01
The principal types of engines for transportation uses are reviewed and the specifications for conventional fuels are compared with specifications for synthetic fuels. Synfuel processes nearing the commercialization phase are reviewed. The barriers to using synfuels can be classified into four groups: technical, such as the uncertainty that a new engine design can satisfy the desired performance criteria; environmental, such as the risk that the engine emissions cannot meet the applicable environmental standards; economic, including the cost of using a synfuel relative to conventional transportation fuels; and market, involving market penetration by offering new engines, establishing new distribution systems and/or changing user expectations.
Design approaches to more energy efficient engines
NASA Technical Reports Server (NTRS)
Saunders, N. T.; Colladay, R. S.; Macioce, L. E.
1978-01-01
The status of NASA's Energy Efficient Engine Project, a comparative government-industry effort aimed at advancing the technology base for the next generation of large turbofan engines for civil aircraft transports is summarized. Results of recently completed studies are reviewed. These studies involved selection of engine cycles and configurations that offer potential for at least 12% lower fuel consumption than current engines and also are economically attractive and environmentally acceptable. Emphasis is on the advancements required in component technologies and systems design concepts to permit future development of these more energy efficient engines.
NASA Technical Reports Server (NTRS)
1989-01-01
The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the space Transportation Booster Engine (STBE) Configuration Study were: (1) to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and (2) to explore innovative approaches to the follow-on Full-Scale Development (FSD) phase for the STBE.
Manufacturing engineering: Principles for optimization
NASA Astrophysics Data System (ADS)
Koenig, Daniel T.
Various subjects in the area of manufacturing engineering are addressed. The topics considered include: manufacturing engineering organization concepts and management techniques, factory capacity and loading techniques, capital equipment programs, machine tool and equipment selection and implementation, producibility engineering, methods, planning and work management, and process control engineering in job shops. Also discussed are: maintenance engineering, numerical control of machine tools, fundamentals of computer-aided design/computer-aided manufacture, computer-aided process planning and data collection, group technology basis for plant layout, environmental control and safety, and the Integrated Productivity Improvement Program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Importation of Nonconforming Marine Engines § 91.703 Admission. (a) A nonconforming marine SI engine offered for importation may only be imported into the United...
40 CFR 91.1001 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91.1001 Applicability. The requirements of this subpart K are applicable to all marine spark-ignition propulsion engines...
Code of Federal Regulations, 2010 CFR
2010-01-01
.... (i) A borrower's CWP or special engineering studies must be supported by a Borrower's Environmental..., and retirements. The primary components of the system consist of long-range engineering plans, construction work plans (CWPs), CWP amendments, and special engineering and cost studies. Long range...
Sustainable Development in Engineering Education
ERIC Educational Resources Information Center
Taoussanidis, Nikolaos N.; Antoniadou, Myrofora A.
2006-01-01
The principles and practice of environmentally and socially sustainable engineering are in line with growing community expectations and the strengthening voice of civil society in engineering interventions. Pressures towards internationalization and globalization are reflected in new course accreditation criteria and higher education structures.…
40 CFR 1042.835 - Certification of remanufactured engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... engines. 1042.835 Section 1042.835 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES... you provide must include appropriate manifolds, aftertreatment devices, electronic control units, and...
40 CFR 1042.835 - Certification of remanufactured engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... engines. 1042.835 Section 1042.835 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES... you provide must include appropriate manifolds, aftertreatment devices, electronic control units, and...
40 CFR 1042.835 - Certification of remanufactured engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... engines. 1042.835 Section 1042.835 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES... you provide must include appropriate manifolds, aftertreatment devices, electronic control units, and...
40 CFR 1042.835 - Certification of remanufactured engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... engines. 1042.835 Section 1042.835 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES... you provide must include appropriate manifolds, aftertreatment devices, electronic control units, and...
78 FR 44199 - Semiannual Regulatory Agenda, Spring 2013
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-23
..., interstate movement, and environmental release of certain genetically engineered organisms. This rule will... genetically engineered plants and certain other genetically engineered organisms. Timetable: Action Date FR... Citrus Canker; 0579-AC05 Compensation for Certified Citrus Nursery Stock. 17 Introduction of Organisms...
Environmentally safe fluids for hydraulics used in civil engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirzberger, E.; Rexroth, M.
1995-12-31
The majority of hydraulic units used in civil engineering are operated with pressure fluids based on mineral oil. Most civil engineering projects are installed near or immediately next to bodies of water, therefore, any leakage signifies danger for the environment. We try to avert this danger with increasingly safe hydraulic drives. However, growing environmental awareness and stricter laws are demanding more and more environmentally safe hydraulic fluids. Today, the manufacturers of fluids and hydraulic drives have to accept this challenge. What exactly is an environmentally safe hydraulic fluid? The major objectives are: (1) they have to be biodegradable, (2) nomore » fish toxicity, (3) no water pollution, and (4) food compatibility.« less
Quigley, Dianne
2015-02-01
A collaborative team of environmental sociologists, community psychologists, religious studies scholars, environmental studies/science researchers and engineers has been working together to design and implement new training in research ethics, culture and community-based approaches for place-based communities and cultural groups. The training is designed for short and semester-long graduate courses at several universities in the northeastern US. The team received a 3 year grant from the US National Science Foundation's Ethics Education in Science and Engineering in 2010. This manuscript details the curriculum topics developed that incorporate ethical principles, particularly for group protections/benefits within the field practices of environmental/engineering researchers.
FAST Center for Environmental Remediation, Fate and Transport of Hazardous Chemicals
2003-07-01
Because of the FAST Center project, A&T will compete for funding and will make significant research contributions in environmental science and engineering....include: (1) development of infrastructure and facilities for environmental research at A&T (2) significant research contributions in environmental ... science and engineering, (3) graduation of 25 M.S. graduates in five different disciplines, (4) training of 16 undergraduate assistants, (5) publication
Performance of HESCO Bastion Units Under Combined Normal and Cyclic Lateral Loading
2017-02-01
technology was not designed for residential applications, engineering standards would be needed to guide the designers of soldier contingency housing. In...public release; distribution is unlimited. The U.S. Army Engineer Research and Development Center (ERDC) solves the nation’s toughest... engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering , geospatial sciences, water resources, and
Integration of Research Into Grade Nine-Graduate Level Curricula
NASA Astrophysics Data System (ADS)
Bonner, J.; Callicott, K.; Page, C.
2004-05-01
Research on the Kolb Learning Cycle, engineering education, and recent cognitive learning research indicates that learning occurs through knowledge application. Moreover, experts in a given discipline will differ from novices with regard to their ability to transfer their knowledge by application to new contexts. We have developed a suite of educational opportunities to bridge the gap between research and the classroom, with activities spanning the educational spectrum from high school through graduate school. One mechanism for transferring of research into undergraduate/graduate curricula is through our National Science Foundation (NSF) funded Combined Research-Curriculum Development (CRCD) project ("Environmental Informatics in Coastal Margins"). This project modifies engineering curricula to provide the nation with the next generation of engineers who can utilize the latest environmental modeling tools. The project revises/creates three undergraduate courses forming the environmental informatics (EI) track of the civil engineering curriculum and two graduate courses integrating GIS and environmental measurements. Curriculum development efforts are guided by an expert team drawn from nearby campuses and both regional and national industry, and includes an expert in assessing the pedagogical value of the curriculum and developing suitable metrics to evaluate student learning experiences. Another NSF-funded project integrating research into an undergraduate educational setting is our Research Experience for Undergraduates (REU) project ("Undergraduate Research in Biodiversity and Ecological Processes in Fluctuating Environments"). Research includes overlapping topics in environmental engineering and life sciences. The summer research experience provides students an opportunity to integrate engineering and life science technologies and to the study of ecological processes associated with biodiversity and environmental quality. Students orally present their project and submit in-depth papers. Over twenty publications/proceedings papers have been generated thus far. A third project involves our collaborations with the ITS Center ("Information Technology in Science Center for Teaching and Learning") on the A&M campus. As an investment in "project team growing", the Center is collaborating with us to collect data on implementation of an engineering science and math enhancement module in Hearne Independent School District. The specific activity involves a CRCD engineering class and an educational psychology undergraduate class. The engineering students give group presentations, where each presentation addresses a scenario that focuses on an environmental topic presented in the class. The students present the technical material to the education students who serve as a non-technical lay audience, emulating a city council, for example. The education students adapt the material for presentation to high school students, working with mentor teachers to enhance content, relevance and hands on experience while learning to apply teaching pedagogy.
Phase 2 fuel efficiency standards for medium- and heavy-duty engines and vehicles : draft EIS.
DOT National Transportation Integrated Search
2015-06-01
This Draft Environmental Impact Statement (Draft EIS) analyzes the environmental impacts of fuel : efficiency standards and reasonable alternative standards for model years 2018 and beyond for medium- : and heavy- duty engines and vehicles that NHTSA...
On November 17-19, 1992, the U.S. Environmental Protection Agency's Technology Innovation Office and Risk Reduction Engineering Laboratory, Department of Energy, Corps of Engineers, and California Environmental Preotection Agency, hosted an International conference in San Francis...
Contribution of Engineers to Environmental Education
ERIC Educational Resources Information Center
Hirst, Eric
1972-01-01
Describes a junior level course taught at Tuskegee Institute, Alabama, Technology and Society," to show how engineers/technologists can contribute to environmental education. To improve understanding of the interactions between technology and society, interdisciplinary courses are needed which examine current socio-technical problems. (BL)
Environmental aspects of engineering geological mapping in the United States
Radbruch-Hall, Dorothy H.
1979-01-01
Many engineering geological maps at different scales have been prepared for various engineering and environmental purposes in regions of diverse geological conditions in the United States. They include maps of individual geological hazards and maps showing the effect of land development on the environment. An approach to assessing the environmental impact of land development that is used increasingly in the United States is the study of a single area by scientists from several disciplines, including geology. A study of this type has been made for the National Petroleum Reserve in northern Alaska. In the San Francisco Bay area, a technique has been worked out for evaluating the cost of different types of construction and land development in terms of the cost of a number of kinds of earth science factors. ?? 1979 International Association of Engineering Geology.
[Comparison Analysis of Economic and Engineering Control of Industrial VOCs].
Wang, Yu-fei; Liu, Chang-xin; Cheng, Jie; Hao, Zheng-ping; Wang, Zheng
2015-04-01
Volatile organic compounds (VOCs) pollutant has become China's major air pollutant in key urban areas like sulfur dioxide, nitrogen oxides and particulate matter. It is mainly produced from industry sectors, and engineering control is one of the most important reduction measures. During the 12th Five-Year Plan, China decides to invest 40 billion RMB to build pollution control projects in key industry sectors with annual emission reduction of 605 000 t x a(-1). It shows that China attaches a great importance to emission reduction by engineering projects and highlights the awareness of engineering reduction technologies. In this paper, a macroeconomic model, namely computable general equilibrium model, (CGE model) was employed to simulate engineering control and economic control (imposing environmental tax). We aim to compare the pros and cons of the two reduction policies. Considering the economic loss of the whole country, the environmental tax has more impacts on the economy system than engineering reduction measures. We suggest that the central government provides 7 500 RMB x t(-1) as subsidy for enterprises in industry sectors to encourage engineering reduction.
40 CFR 86.090-2 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Light heavy-duty diesel engines usually are non-sleeved and not designed for rebuild; their rated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... any motor vehicle (or motor vehicle engine) engineered and designed to be operated using a single fuel...
40 CFR 86.090-2 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Light heavy-duty diesel engines usually are non-sleeved and not designed for rebuild; their rated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... any motor vehicle (or motor vehicle engine) engineered and designed to be operated using a single fuel...
The U.S. Environmental Protection Agency (EPA) Engineering Issue papers are a series of documents that summarize the available information on specific contaminates, selected treatment and site remediation technologies, and related issues. This Engineering Issue paper is intended...
40 CFR 1042.301 - General provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 1042.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line Engines § 1042.301 General provisions. (a) If you produce engines that are subject to the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-21
... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY: Environmental Protection... Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance...
DESIGN CONSIDERATIONS FOR PULP AND PAPER-MILL SLUDGE LANDFILLS
This report presents procedures for the engineering design and control of pulp and paper-mill sludge disposal landfills. Engineering design will allow more efficient use, thereby contributing to economic and environmental benefits. To form the basis for engineering design of slud...
Engineered containment and control systems: nurturing nature.
Clarke, James H; MacDonell, Margaret M; Smith, Ellen D; Dunn, R Jeffrey; Waugh, W Jody
2004-06-01
The development of engineered containment and control systems for contaminated sites must consider the environmental setting of each site. The behaviors of both contaminated materials and engineered systems are affected by environmental conditions that will continue to evolve over time as a result of such natural processes as climate change, ecological succession, pedogenesis, and landform changes. Understanding these processes is crucial to designing, implementing, and maintaining effective systems for sustained health and environmental protection. Traditional engineered systems such as landfill liners and caps are designed to resist natural processes rather than working with them. These systems cannot be expected to provide long-term isolation without continued maintenance. In some cases, full-scale replacement and remediation may be required within 50 years, at an effort and cost much higher than for the original cleanup. Approaches are being developed to define smarter containment and control systems for stewardship sites, considering lessons learned from implementing prescriptive waste disposal regulations enacted since the 1970s. These approaches more effectively involve integrating natural and engineered systems; enhancing sensors and predictive tools for evaluating performance; and incorporating information on failure events, including precursors and consequences, into system design and maintenance. An important feature is using natural analogs to predict environmental conditions and system responses over the long term, to accommodate environmental change in the design process, and, as possible, to engineer containment systems that mimic favorable natural systems. The key emphasis is harmony with the environment, so systems will work with and rely on natural processes rather than resisting them. Implementing these new integrated systems will reduce current requirements for active management, which are resource-intensive and expensive.
Engine environmental effects on composite behavior
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Smith, G. T.
1980-01-01
A series of programs were conducted to investigate and develop the application of composite materials to turbojet engines. A significant part of that effort was directed to establishing the impact resistance and defect growth chracteristics of composite materials over the wide range of environmental conditions found in commercial turbojet engine operations. Both analytical and empirical efforts were involved. The experimental programs and the analytical methodology development as well as an evaluation program for the use of composite materials as fan exit guide vanes are summarized.
1994-10-01
Technical Report SL-94-21 October 1994 •(rn US Army Corps 00• of Engineers CM Waterways Experiment , Station Environmental Assessment and Finding of...Underground Technology Program, Rodgers Hollow, Fort Knox, KY by D.W. Murrell. J. S. Shore U.S. Army Corps of Engineers Waterways Experiment Station 3909...Evaluation. I. Shore, J. S. II. Unitedl States. Army. Corl:, of Engineers . Ull. U.S. Army En- gineer Waterways Experiment Station. IV. Structures
Environmental Engineering Unit Operations and Unit Processes Laboratory Manual.
ERIC Educational Resources Information Center
O'Connor, John T., Ed.
This manual was prepared for the purpose of stimulating the development of effective unit operations and unit processes laboratory courses in environmental engineering. Laboratory activities emphasizing physical operations, biological, and chemical processes are designed for various educational and equipment levels. An introductory section reviews…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-29
... that you telephone Steven Rosenthal, Environmental Engineer, at (312) 886-6052 before visiting the Region 5 office. FOR FURTHER INFORMATION CONTACT: Steven Rosenthal, Environmental Engineer, Attainment... Administrative Code (OAC). These include new fiberglass boat manufacturing, miscellaneous industrial adhesives...
Stationary Engineering, Environmental Control, Refrigeration. Science Manual I.
ERIC Educational Resources Information Center
Steingress, Frederick M.; And Others
The student materials present lessons about occupations related to environmental control, stationary engineering, and refrigeration. Included are 18 units organized by objective, information, reference, procedure, and assignment. Each lesson involves concrete trade experience where science is applied. Unit titles are: safety and housekeeping,…
Engineering noble metal nanomaterials for environmental applications
NASA Astrophysics Data System (ADS)
Li, Jingguo; Zhao, Tingting; Chen, Tiankai; Liu, Yanbiao; Ong, Choon Nam; Xie, Jianping
2015-04-01
Besides being valuable assets in our daily lives, noble metals (namely, gold, silver, and platinum) also feature many intriguing physical and chemical properties when their sizes are reduced to the nano- or even subnano-scale; such assets may significantly increase the values of the noble metals as functional materials for tackling important societal issues related to human health and the environment. Among which, designing/engineering of noble metal nanomaterials (NMNs) to address challenging issues in the environment has attracted recent interest in the community. In general, the use of NMNs for environmental applications is highly dependent on the physical and chemical properties of NMNs. Such properties can be readily controlled by tailoring the attributes of NMNs, including their size, shape, composition, and surface. In this feature article, we discuss recent progress in the rational design and engineering of NMNs with particular focus on their applications in the field of environmental sensing and catalysis. The development of functional NMNs for environmental applications is highly interdisciplinary, which requires concerted efforts from the communities of materials science, chemistry, engineering, and environmental science.
Engineering noble metal nanomaterials for environmental applications.
Li, Jingguo; Zhao, Tingting; Chen, Tiankai; Liu, Yanbiao; Ong, Choon Nam; Xie, Jianping
2015-05-07
Besides being valuable assets in our daily lives, noble metals (namely, gold, silver, and platinum) also feature many intriguing physical and chemical properties when their sizes are reduced to the nano- or even subnano-scale; such assets may significantly increase the values of the noble metals as functional materials for tackling important societal issues related to human health and the environment. Among which, designing/engineering of noble metal nanomaterials (NMNs) to address challenging issues in the environment has attracted recent interest in the community. In general, the use of NMNs for environmental applications is highly dependent on the physical and chemical properties of NMNs. Such properties can be readily controlled by tailoring the attributes of NMNs, including their size, shape, composition, and surface. In this feature article, we discuss recent progress in the rational design and engineering of NMNs with particular focus on their applications in the field of environmental sensing and catalysis. The development of functional NMNs for environmental applications is highly interdisciplinary, which requires concerted efforts from the communities of materials science, chemistry, engineering, and environmental science.
40 CFR 87.60 - Testing engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Testing engines. 87.60 Section 87.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR... gearbox-mounted components required to drive aircraft systems. (d) Test engines must reach a steady...
40 CFR 87.60 - Testing engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Testing engines. 87.60 Section 87.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR... gearbox-mounted components required to drive aircraft systems. (d) Test engines must reach a steady...
Job Prospects for Chemical Engineers.
ERIC Educational Resources Information Center
Basta, Nicholas
1985-01-01
After several lean years, chemical engineering (a popular discipline among women) is witnessing a higher job demand for new graduates. Companies show a trend toward specialty chemicals with resultant needs for more engineering talent. Other opportunities in the field include agriculture and food processing, environmental control, biotechnology,…
40 CFR 87.62 - Test procedure (propulsion engines).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Test procedure (propulsion engines). 87.62 Section 87.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 87.62 Test procedure (propulsion...
40 CFR 87.62 - Test procedure (propulsion engines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Test procedure (propulsion engines). 87.62 Section 87.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 87.62 Test procedure (propulsion...
40 CFR 87.62 - Test procedure (propulsion engines).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Test procedure (propulsion engines). 87.62 Section 87.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) Definitions. Test Procedures § 87.62 Test procedure (propulsion engines). Link to an...
40 CFR 1042.640 - Special provisions for branded engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Special provisions for branded engines. 1042.640 Section 1042.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Special Compliance Provisions § 1042.640 Special provisions for branded engines. The following provisions...
Lubricant Formulations to Enhance Engine Efficiency in Modern Internal Combustion Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Wai; Wong, Victor; Plumley, Michael
2017-04-19
The research program presented aimed to investigate, develop, and demonstrate low-friction, environmentally-friendly and commercially-feasible lubricant formulations that would significantly improve the mechanical efficiency of modern engines without incurring increased wear, emissions or deterioration of the emission-aftertreatment system.
The Top 10 Careers for the 1990s.
ERIC Educational Resources Information Center
Price, Paul
1988-01-01
Reports on a survey of experts from industry and academia which attempted to identify the top ten major career fields for engineers, including materials, biotechnology, automation and robotics, computer engineering, metals and mining, neural modeling, along with marine, aerospace, environmental and energy-related engineering. (TW)
Job Prospects for Petroleum Engineers.
ERIC Educational Resources Information Center
Basta, Nicholas
1988-01-01
Describes petroleum engineering as one area in industry where job opportunities are few but where the worst of the declines has been seen. Discusses the causes of the decline. Lists several areas where petroleum engineers have found alternatives including environmental projects, water supply projects, and computer applications. (CW)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-11
... Compression Ignition Internal Combustion Engines (Renewal) AGENCY: Environmental Protection Agency (EPA....regulations.gov . Title: NSPS for Stationary Source Compression Ignition Internal Combustion Engines (Renewal... Performance Standards (NSPS) for Stationary Source Compression Ignition Internal Combustion Engines (40 CFR...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-24
... Internal Combustion Engines (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... for Stationary Spark Ignition Internal Combustion Engines (40 CFR Part 60, Subpart JJJJ) (Renewal... operators of stationary spark ignition internal combustion engines. Respondent's obligation to respond...
40 CFR 91.1301 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Credit Program for New Marine Engines § 91.1301 Applicability. Marine SI engines subject to the provisions of subpart A of this part 91 are eligible to...
Thermal and Environmental Barrier Coatings for Advanced Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2005-01-01
Ceramic thermal and environmental barrier coatings (T/EBCs) will play a crucial role in advanced gas turbine engine systems because of their ability to significantly increase engine operating temperatures and reduce cooling requirements, thus help achieve engine low emission and high efficiency goals. Advanced T/EBCs are being developed for the low emission SiC/SiC ceramic matrix composite (CMC) combustor applications by extending the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water vapor containing combustion environments. Low conductivity thermal barrier coatings (TBCs) are also being developed for metallic turbine airfoil and combustor applications, providing the component temperature capability up to 1650 C (3000 F). In this paper, ceramic coating development considerations and requirements for both the ceramic and metallic components will be described for engine high temperature and high-heat-flux applications. The underlying coating failure mechanisms and life prediction approaches will be discussed based on the simulated engine tests and fracture mechanics modeling results.
Space vehicle engine and heat shield environment review. Volume 1: Engineering analysis
NASA Technical Reports Server (NTRS)
Mcanelly, W. B.; Young, C. T. K.
1973-01-01
Methods for predicting the base heating characteristics of a multiple rocket engine installation are discussed. The environmental data is applied to the design of adequate protection system for the engine components. The methods for predicting the base region thermal environment are categorized as: (1) scale model testing, (2) extrapolation of previous and related flight test results, and (3) semiempirical analytical techniques.
Study of solid rocket motor for space shuttle booster, volume 2, book 1
NASA Technical Reports Server (NTRS)
1972-01-01
The technical requirements for the solid propellant rocket engine to be used with the space shuttle orbiter are presented. The subjects discussed are: (1) propulsion system definition, (2) solid rocket engine stage design, (3) solid rocket engine stage recovery, (4) environmental effects, (5) manrating of the solid rocket engine stage, (6) system safety analysis, and (7) ground support equipment.
The U.S. Environmental Protection Agency established the Environmental Technology Verification Program to accelerate the development and commercialization of improved environmental technology through third party verification and reporting of product performance. Research Triangl...
ERIC Educational Resources Information Center
Montanes, Maria T.; Palomares, Antonio E.
2008-01-01
In this work we show how specific challenges related to sustainable development can be integrated into chemical engineering education by introducing an environmental management system in the laboratory where the students perform their experimental lessons. It is shown how the system has been developed and implemented in the laboratory, what role…
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Evans, Laura J.; McCue, Terry R.; Harder, Bryan
2016-01-01
Environmental barrier coated SiC-SiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. Advanced HfO2 and rare earth silicate environmental barrier coatings (EBCs), along with multicomponent hafnium and rare earth silicide EBC bond coats have been developed. The coating degradation mechanisms in the laboratory simulated engine thermal cycling, and fatigue-creep operating environments are also being investigated. This paper will focus on the microstructural and compositional evolutions of an advanced environmental barrier coating system on a SiC-SiC CMC substrate during the high temperature simulated durability tests, by using a Field Emission Gun Scanning Electron Microscopy, Energy Dispersive Spectroscopy (EDS) and Wavelength Dispersive Spectroscopy (WDS). The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will also be discussed. The detailed analysis results help understand the EBC-CMC system performance, aiming at the durability improvements to achieve more robust, prime-reliant environmental barrier coatings.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna
2016-01-01
Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in next generation turbine engines for hot-section component applications. The development of prime-reliant environmental barrier coatings is essential to the EBC-CMC system durability, ensuring the successful implementations of the high temperature and lightweight engine component technologies for engine applications.This paper will emphasize recent NASA environmental barrier coating and CMC developments for SiC/SiC turbine airfoil components, utilizing advanced coating compositions and processing methods. The emphasis has been particularly placed on thermomechanical and environment durability evaluations of EBC-CMC systems. We have also addressed the integration of the EBCs with advanced SiC/SiC CMCs, and studied the effects of combustion environments and Calcium-Magnesium-Alumino-Silicate (CMAS) deposits on the durability of the EBC-CMC systems under thermal gradient and mechanical loading conditions. Advanced environmental barrier coating systems, including multicomponent rare earth silicate EBCs and HfO2-Si based bond coats, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.
The Environment-Power System Analysis Tool development program. [for spacecraft power supplies
NASA Technical Reports Server (NTRS)
Jongeward, Gary A.; Kuharski, Robert A.; Kennedy, Eric M.; Wilcox, Katherine G.; Stevens, N. John; Putnam, Rand M.; Roche, James C.
1989-01-01
The Environment Power System Analysis Tool (EPSAT) is being developed to provide engineers with the ability to assess the effects of a broad range of environmental interactions on space power systems. A unique user-interface-data-dictionary code architecture oversees a collection of existing and future environmental modeling codes (e.g., neutral density) and physical interaction models (e.g., sheath ionization). The user-interface presents the engineer with tables, graphs, and plots which, under supervision of the data dictionary, are automatically updated in response to parameter change. EPSAT thus provides the engineer with a comprehensive and responsive environmental assessment tool and the scientist with a framework into which new environmental or physical models can be easily incorporated.
ETHICS AND JUSTICE IN ENVIRONMENTAL SCIENCE AND ENGINEERING
Science and engineering are built on trust. C.P. Snow's famous quote, "the only ethical principle which has made science possible is that the truth shall be told all the time" underscores the importance of honesty in science. Environmental scientists must do work that is useful...
Advances in the study of the environmental fate, transport, and ecotoxicological effects of engineered nanomaterials (ENMs) have been hampered by a lack of adequate techniques for the detection and quantification of ENMs at environmentally relevant concentrations in complex media...
As the use of engineered nanomaterials becomes more prevalent, the likelihood of unintended exposure to these materials also increases. Given the current scarcity of experimental data regarding fate, transport, and bioavailability, determining potential environmental exposure to ...
The same properties of engineered nanomaterials (ENMs) that are the basis for their many novel applications also raise important issues related to their environmental impact. ENMs might not behave similarly in the environment to the dissolved or solid forms of the chemicals from ...
Wang, Baojun; Barahona, Mauricio; Buck, Martin
2013-01-01
Cells perceive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate particular phenotypic responses. Here, we employ both single and mixed cell type populations, pre-programmed with engineered modular cell signalling and sensing circuits, as processing units to detect and integrate multiple environmental signals. Based on an engineered modular genetic AND logic gate, we report the construction of a set of scalable synthetic microbe-based biosensors comprising exchangeable sensory, signal processing and actuation modules. These cellular biosensors were engineered using distinct signalling sensory modules to precisely identify various chemical signals, and combinations thereof, with a quantitative fluorescent output. The genetic logic gate used can function as a biological filter and an amplifier to enhance the sensing selectivity and sensitivity of cell-based biosensors. In particular, an Escherichia coli consortium-based biosensor has been constructed that can detect and integrate three environmental signals (arsenic, mercury and copper ion levels) via either its native two-component signal transduction pathways or synthetic signalling sensors derived from other bacteria in combination with a cell-cell communication module. We demonstrate how a modular cell-based biosensor can be engineered predictably using exchangeable synthetic gene circuit modules to sense and integrate multiple-input signals. This study illustrates some of the key practical design principles required for the future application of these biosensors in broad environmental and healthcare areas. PMID:22981411
40 CFR 1045.601 - What compliance provisions apply to these engines?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What compliance provisions apply to these engines? 1045.601 Section 1045.601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.230 - How do I select engine families?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I select engine families? 1045.230 Section 1045.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Certifying...
40 CFR 1045.601 - What compliance provisions apply to these engines?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What compliance provisions apply to these engines? 1045.601 Section 1045.601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.230 - How do I select engine families?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I select engine families? 1045.230 Section 1045.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Certifying...
40 CFR 1045.110 - How must my engines diagnose malfunctions?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How must my engines diagnose malfunctions? 1045.110 Section 1045.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
40 CFR 1045.640 - What special provisions apply to branded engines?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What special provisions apply to branded engines? 1045.640 Section 1045.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.110 - How must my engines diagnose malfunctions?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How must my engines diagnose malfunctions? 1045.110 Section 1045.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
40 CFR 1045.230 - How do I select engine families?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I select engine families? 1045.230 Section 1045.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Certifying...
40 CFR 1045.640 - What special provisions apply to branded engines?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What special provisions apply to branded engines? 1045.640 Section 1045.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.601 - What compliance provisions apply to these engines?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What compliance provisions apply to these engines? 1045.601 Section 1045.601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.601 - What compliance provisions apply to these engines?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What compliance provisions apply to these engines? 1045.601 Section 1045.601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.601 - What compliance provisions apply to these engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What compliance provisions apply to these engines? 1045.601 Section 1045.601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.230 - How do I select engine families?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I select engine families? 1045.230 Section 1045.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Certifying...
40 CFR 1045.230 - How do I select engine families?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I select engine families? 1045.230 Section 1045.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Certifying...
40 CFR 1045.110 - How must my engines diagnose malfunctions?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How must my engines diagnose malfunctions? 1045.110 Section 1045.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
40 CFR 1045.110 - How must my engines diagnose malfunctions?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How must my engines diagnose malfunctions? 1045.110 Section 1045.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
40 CFR 1045.640 - What special provisions apply to branded engines?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What special provisions apply to branded engines? 1045.640 Section 1045.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.110 - How must my engines diagnose malfunctions?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How must my engines diagnose malfunctions? 1045.110 Section 1045.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
40 CFR 1045.640 - What special provisions apply to branded engines?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What special provisions apply to branded engines? 1045.640 Section 1045.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
The Environmental Technology Verification report discusses the technology and performance of the Lubrizol Engine Control Systems Purifilter SC17L manufactured by Lubrizol Engine Control Systems. The technology is a precious and base metal, passively regenerated particulate filter...
40 CFR 1036.235 - Testing requirements for certification.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... 1036.235 Section 1036.235 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES Certifying Engine..., subpart N. Engines certified for use in tractors may also be used in vocational vehicles; however, you may...
40 CFR 1036.235 - Testing requirements for certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... 1036.235 Section 1036.235 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES Certifying Engine..., subpart N. Engines certified for use in tractors may also be used in vocational vehicles; however, you may...
40 CFR 1036.235 - Testing requirements for certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... 1036.235 Section 1036.235 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES Certifying Engine..., subpart N. Engines certified for use in tractors may also be used in vocational vehicles; however, you may...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-06
... Ignition Internal Combustion Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Extension of... for stationary compression ignition and spark ignition internal combustion engines. In this [[Page... combustion engines. After publication of the proposed rule, EPA received requests from the American Petroleum...
40 CFR 90.309 - Engine intake air temperature measurement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 90.309 Section 90.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... Nonroad Engines and Recreational Vehicles AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... this action are importers into the United States of nonroad engines and vehicles. Title: Reporting and Recordkeeping Requirements for Importation of Nonroad Engines and Recreational Vehicles (Renewal). ICR numbers...
40 CFR 85.510 - Exemption provisions for new and relatively new vehicles/engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... system, engine calibration, and emission control system functionality when operating on the fuel with... relatively new vehicles/engines. 85.510 Section 85.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Exemption of...
Embedding Context in Teaching Engineering Design
ERIC Educational Resources Information Center
Neumeyer, Xaver; Chen, Wei; McKenna, Ann F.
2013-01-01
Understanding the global, societal, environmental and economic (GSEE) context of a product, process or system is critical to an engineer's ability to design and innovate. The already packed curricula in engineering programs provide few occasions to offer meaningful experiences to address this issue, and most departments delegate this requirement…
Sediment problems in urban areas
Guy, Harold P.
1970-01-01
One obstacle to a scientific recognition and an engineering solution to sediment-related environmental problems is that such problems are bound in conflicting and generally undefinable political and institutional restraints. Also, some of the difficulty may involve the fact that the scientist or engineer, because of his relatively narrow field of investigation, cannot always completely envision the less desirable effects of his work and communicate alternative solutions to the public. For example, the highway and motor-vehicle engineers have learned how to provide the means by which one can transport himself from one point to another with such great efficiency that a person's employment in this country is now commonly more than 5 miles from his residence. However, providing such efficient personal transport has created numerous serious environmental problems. Obstacles to recognition of and action to control sediment problems in and around urban areas are akin to other environmental problems with respect to the many scientific, engineering, economic, and social aspects.
Environmental resource document for the Idaho National Engineering Laboratory. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irving, J.S.
This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.
Presentation Description: The development and application of engineered nanomaterials (ENM) into commercial and consumer products is far outpacing the ability of traditional approaches to evaluate the potential implications for environmental health and safety. This problem recen...
Introducing Ethical, Social and Environmental Issues in ICT Engineering Degrees
ERIC Educational Resources Information Center
Miñano, Rafael; Aller, Celia Fernández; Anguera, Áurea; Portillo, Eloy
2015-01-01
This paper describes the experience of introducing ethical, social and environmental issues in undergraduate ICT engineering degrees at the Universidad Politécnica de Madrid. The experience before the Bologna Process was concentrated on developing elective courses related mainly on the field of the International Development Cooperation. The…
78 FR 69367 - Golden Valley Electric Association: Healy Power Plant Unit #2 Restart
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
...: Deirdre M. Remley, Environmental Protection Specialist, RUS, Water and Environmental Programs, Engineering...: (202) 720-9640 or email: [email protected] . The ROD is also available at RUS's Web site at... additional engineering and financial review, administrative actions and financing that would facilitate GVEA...
Environmental Engineering Teaching Reference Community.
ERIC Educational Resources Information Center
Bell, John M.; Brenchley, David L.
Dawson, Fairfax County/U.S.A. is a hypothetical community developed by the authors as a teaching aid for undergraduate and graduate courses in environmental engineering, providing a context for problem solving and role playing. It was contrived to provide students opportunities to: (1) identify important community relationships, (2) appreciate the…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... holidays. We recommend that you telephone Matt Rau, Environmental Engineer, at (312) 886-6524 before visiting the Region 5 office. FOR FURTHER INFORMATION CONTACT: Matt Rau, Environmental Engineer, Control..., Restrictions on Particulate Emissions from Industrial Sources, on December 13, 2011. The revised rule was...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... holidays. We recommend that you telephone Steven Rosenthal, Environmental Engineer, at (312) 886-6052... Engineer, Attainment Planning and Maintenance Section, Air Programs Branch (AR-18J), Environmental... January 2012, No. 673, effective February 1, 2012. (D) NR 419.045 Industrial wastewater operations, as...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-11
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2696-033-NY] Town of Stuyvesant, NY; Albany Engineering Corporation; Notice of Availability of Final Environmental Assessment In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission's...
Engineered nanoparticles represent a unique hazard to human health and the environment because their inherent characteristics differ significantly from commonly used chemicals and bulk forms of materials. The U.S. Environmental Protection Agency (EPA) is responsible for protecti...
40 CFR 1045.301 - When must I test my production-line engines?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false When must I test my production-line engines? 1045.301 Section 1045.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
40 CFR 1045.310 - How must I select engines for production-line testing?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How must I select engines for production-line testing? 1045.310 Section 1045.310 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.310 - How must I select engines for production-line testing?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How must I select engines for production-line testing? 1045.310 Section 1045.310 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.301 - When must I test my production-line engines?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false When must I test my production-line engines? 1045.301 Section 1045.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
40 CFR 1045.301 - When must I test my production-line engines?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false When must I test my production-line engines? 1045.301 Section 1045.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
40 CFR 1045.301 - When must I test my production-line engines?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false When must I test my production-line engines? 1045.301 Section 1045.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
40 CFR 1045.310 - How must I select engines for production-line testing?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How must I select engines for production-line testing? 1045.310 Section 1045.310 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.301 - When must I test my production-line engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false When must I test my production-line engines? 1045.301 Section 1045.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
40 CFR 1045.310 - How must I select engines for production-line testing?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How must I select engines for production-line testing? 1045.310 Section 1045.310 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.310 - How must I select engines for production-line testing?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How must I select engines for production-line testing? 1045.310 Section 1045.310 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1051.645 - What special provisions apply to branded engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What special provisions apply to branded engines? 1051.645 Section 1051.645 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Provisions § 1051.645 What special provisions apply to branded engines? The following provisions apply if you...
40 CFR 89.1009 - What special provisions apply to branded engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false What special provisions apply to branded engines? 89.1009 Section 89.1009 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... branded engines? A manufacturer identifying the name and trademark of another company on the emission...
40 CFR 1054.640 - What special provisions apply to branded engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What special provisions apply to branded engines? 1054.640 Section 1054.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... EQUIPMENT Special Compliance Provisions § 1054.640 What special provisions apply to branded engines? The...
40 CFR 1048.635 - What special provisions apply to branded engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What special provisions apply to branded engines? 1048.635 Section 1048.635 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Compliance Provisions § 1048.635 What special provisions apply to branded engines? The following provisions...
40 CFR 1045.640 - What special provisions apply to branded engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What special provisions apply to branded engines? 1045.640 Section 1045.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... VESSELS Special Compliance Provisions § 1045.640 What special provisions apply to branded engines? The...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-27
... Determination of Nonregulated Status for Corn Genetically Engineered for Drought Tolerance AGENCY: Animal and... nonregulated status for corn designated as MON 87460, which has been genetically engineered for drought... nonregulated status for corn designated as MON 87460, which has been genetically engineered for drought...
40 CFR 92.104 - Locomotive and engine testing; overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
... restriction within 1 inch of water of the upper limit of a typical engine as installed with clean air filters...; overview. 92.104 Section 92.104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92...
40 CFR 92.104 - Locomotive and engine testing; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
... restriction within 1 inch of water of the upper limit of a typical engine as installed with clean air filters...; overview. 92.104 Section 92.104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92...
40 CFR 91.407 - Engine inlet and exhaust systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (b) The air inlet filter system and exhaust muffler system combination used on the test engine must... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine inlet and exhaust systems. 91.407 Section 91.407 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
... Determination of Nonregulated Status of Soybean Genetically Engineered for Herbicide Resistance AGENCY: Animal... genetically engineered for resistance to herbicides in the imidazolinone family. We are soliciting comments on... genetically engineered for resistance to herbicides in the imidazolinone family. The petition states that this...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-02
...] Determination of Regulated Status of Alfalfa Genetically Engineered for Tolerance to the Herbicide Glyphosate... for tolerance to the herbicide glyphosate based on APHIS' final environmental impact statement. FOR... regulated status of alfalfa genetically engineered for tolerance to the herbicide glyphosate based on an...
Pedagogical Basis of DAS Formalism in Engineering Education
ERIC Educational Resources Information Center
Hiltunen, J.; Heikkinen, E.-P.; Jaako, J.; Ahola, J.
2011-01-01
The paper presents a new approach for a bachelor-level curriculum structure in engineering. The approach is called DAS formalism according to its three phases: description, analysis and synthesis. Although developed specifically for process and environmental engineering, DAS formalism has a generic nature and it could also be used in other…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-09
... Internal Combustion Engines (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... Combustion Engines (Renewal) ICR Numbers: EPA ICR Number 2227.03, OMB Control Number 2060-0610. ICR Status... internal combustion engines. Estimated Number of Respondents: 17,052. Frequency of Response: Initially and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
... Internal Combustion Engines (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice...), ``NESHAP for Stationary Reciprocating Internal Combustion Engines (Renewal)'' (EPA ICR No. 1975.09, OMB... combustion engines (RICE) have been regulated under previous actions. Thus, this final action fulfills the...
40 CFR 86.1334-84 - Pre-test engine and dynamometer preparation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Pre-test engine and dynamometer preparation. 86.1334-84 Section 86.1334-84 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Exhaust Test Procedures § 86.1334-84 Pre-test engine and dynamometer preparation. (a) Control system...
40 CFR 86.1334-84 - Pre-test engine and dynamometer preparation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Pre-test engine and dynamometer preparation. 86.1334-84 Section 86.1334-84 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Exhaust Test Procedures § 86.1334-84 Pre-test engine and dynamometer preparation. (a) Control system...
40 CFR 86.1334-84 - Pre-test engine and dynamometer preparation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Pre-test engine and dynamometer preparation. 86.1334-84 Section 86.1334-84 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Exhaust Test Procedures § 86.1334-84 Pre-test engine and dynamometer preparation. (a) Control system...
40 CFR 86.1334-84 - Pre-test engine and dynamometer preparation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Pre-test engine and dynamometer preparation. 86.1334-84 Section 86.1334-84 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Exhaust Test Procedures § 86.1334-84 Pre-test engine and dynamometer preparation. (a) Control system...
40 CFR 1068.415 - How do I test my engines/equipment?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test my engines/equipment? 1068.415 Section 1068.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR ENGINE PROGRAMS Selective Enforcement Auditing § 1068...
40 CFR 85.510 - Exemption provisions for new and relatively new vehicles/engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... control system functionality when operating on the fuel with which the vehicle/engine was originally... relatively new vehicles/engines. 85.510 Section 85.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Exemption of...
40 CFR 86.336-79 - Diesel engine test cycle.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Diesel engine test cycle. 86.336-79 Section 86.336-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer operation...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... Determination of Nonregulated Status for Soybean Genetically Engineered To Have a Modified Fatty Acid Profile... soybean designated as MON 87705, which has been genetically engineered to have a modified fatty acid... our regulations concerning the introduction of certain genetically engineered organisms and products...
40 CFR 1068.310 - What are the exclusions for imported engines/equipment?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What are the exclusions for imported engines/equipment? 1068.310 Section 1068.310 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR ENGINE PROGRAMS Imports § 1068.310 What...
40 CFR 1068.315 - What are the permanent exemptions for imported engines/equipment?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What are the permanent exemptions for imported engines/equipment? 1068.315 Section 1068.315 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR ENGINE PROGRAMS Imports...
40 CFR 1068.310 - What are the exclusions for imported engines/equipment?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What are the exclusions for imported engines/equipment? 1068.310 Section 1068.310 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR ENGINE PROGRAMS Imports § 1068.310 What...
Report of the Action Committee on Bioengineering.
ERIC Educational Resources Information Center
Schein, Martin W.
Bioengineering has been defined as "the application of knowledge gained by a cross fertilization of engineering and the biological sciences so that both will be more fully utilized for the benefit of mankind." Bioengineering has at least six areas of application: (1) medical engineering, (2) environmental health engineering, (3)…
Research approach to teaching groundwater biodegradation in karst aquifers
King, L.; Byl, T.; Painter, R.
2006-01-01
TSU in partnership with the USGS has conducted extensive research regarding biode??gradation of contaminants in karst aquifers. This research resulted in the development of a numerical approach to modeling biodegradation of contaminants in karst aquifers that is taught to environmental engineering students in several steps. First, environmental engineering students are taught chemical-reaction engineering principles relating to a wide variety of environmental fate and transport issues. Second, as part of TSU's engineering course curriculum, students use a non-ideal flow laboratory reactor system and run a tracer study to establish residence time distribution (RTD). Next, the students couple that formula to a first-order biodegradation rate and predict the removal of a biodegradable contaminant as a function of residence time. Following this, students are shown data collected from karst bedrock wells that suggest that karst aquifers are analogous to non-ideal flow reactors. The students are challenged to develop rates of biodegradation through lab studies and use their results to predict biodegradaton at an actual contaminated karst site. Field studies are also conducted to determine the accuracy of the students' predictions. This academic approach teaches biodegradation processes, rate-kinetic processes, hydraulic processes and numerical principles. The students are able to experience how chemical engineering principles can be applied to other situations, such as, modeling biodegradation of contaminants in karst aquifers. This paper provides background on the chemical engineering principles and karst issues used in the research-enhanced curriculum. ?? American Society for Engineering Education, 2006.
A Summary of Best Management Practices for Nonpoint Source Pollution
1992-08-01
200-1, Environmental Protection and Enhancement, requies that NPS pollution be minimized and that Army installations and major commands comply with...Federal and state regula- tions. However, environmental managers and engineers have no concise summary of alterna- tives available for NPS pollution... environmental managers and engineers have no concise summary of alternatives available for NPS pollution control. This report presents a range of
Code of Federal Regulations, 2011 CFR
2011-07-01
... AND MAINTENANCE OF ARMY CORPS OF ENGINEERS CIVIL WORKS PROJECTS INVOLVING THE DISCHARGE OF DREDGED OR... and most practicable location, and consistent with engineering and environmental requirements. ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND MAINTENANCE OF ARMY CORPS OF ENGINEERS CIVIL WORKS PROJECTS INVOLVING THE DISCHARGE OF DREDGED OR... and most practicable location, and consistent with engineering and environmental requirements. ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AND MAINTENANCE OF ARMY CORPS OF ENGINEERS CIVIL WORKS PROJECTS INVOLVING THE DISCHARGE OF DREDGED OR... and most practicable location, and consistent with engineering and environmental requirements. ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND MAINTENANCE OF ARMY CORPS OF ENGINEERS CIVIL WORKS PROJECTS INVOLVING THE DISCHARGE OF DREDGED OR... and most practicable location, and consistent with engineering and environmental requirements. ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AND MAINTENANCE OF ARMY CORPS OF ENGINEERS CIVIL WORKS PROJECTS INVOLVING THE DISCHARGE OF DREDGED OR... and most practicable location, and consistent with engineering and environmental requirements. ...
Emerging Engineering Fields: New Jobs in an Old Profession.
ERIC Educational Resources Information Center
Martin, Gail M.
1980-01-01
Discusses career opportunities, educational requirements, and information sources in these emerging professions: environmental, biomedical, fire protection, ocean, energy, ceramic, and plastics engineering. (SK)
Allahverdyan, A E; Babajanyan, S G; Martirosyan, N H; Melkikh, A V
2016-07-15
A major limitation of many heat engines is that their functioning demands on-line control and/or an external fitting between the environmental parameters (e.g., temperatures of thermal baths) and internal parameters of the engine. We study a model for an adaptive heat engine, where-due to feedback from the functional part-the engine's structure adapts to given thermal baths. Hence, no on-line control and no external fitting are needed. The engine can employ unknown resources; it can also adapt to results of its own functioning that make the bath temperatures closer. We determine resources of adaptation and relate them to the prior information available about the environment.
322-R2U2 Engineering Assessment - August 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abri, M.; Griffin, D.
This Engineering Assessment and Certification of Integrity of retention tank system 322-R2 has been prepared for tank systems that store and neutralizes hazardous waste and have secondary containment. The regulations require that this assessment be completed periodically and certified by an independent, qualified, California-registered professional engineer. Abri Environmental Engineering performed an inspection of the 322-R2 Tank system at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA. Mr. William W. Moore, P.E., conducted this inspection on March 16, 2015. Mr. Moore is a California Registered Civil Engineer, with extensive experience in civil engineering, and hazardous waste management.
Advanced Environmental Barrier Coatings Development for Si-Based Ceramics
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Choi, R. Sung; Robinson, Raymond C.; Lee, Kang N.; Bhatt, Ramakrishna T.; Miller, Robert A.
2005-01-01
Advanced environmental barrier coating concepts based on multi-component HfO2 (ZrO2) and modified mullite systems are developed for monolithic Si3N4 and SiC/SiC ceramic matrix composite (CMC) applications. Comprehensive testing approaches were established using the water vapor cyclic furnace, high pressure burner rig and laser heat flux steam rig to evaluate the coating water vapor stability, cyclic durability, radiation and erosion resistance under simulated engine environments. Test results demonstrated the feasibility and durability of the environmental barrier coating systems for 2700 to 3000 F monolithic Si3N4 and SiC/SiC CMC component applications. The high-temperature-capable environmental barrier coating systems are being further developed and optimized in collaboration with engine companies for advanced turbine engine applications.
2017-01-01
ER D C/ CR RE L TR -1 7- 2 Engineering for Polar Operations, Logistics, and Research (EPOLAR) Geophysical Survey of McMurdo Ice Shelf...Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops...ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default. Engineering for Polar Operations, Logistics, and Research (EPOLAR
Code of Federal Regulations, 2011 CFR
2011-07-01
... Agents, and Diesel Particulate Matter Diesel Particulate Matter-Underground Only § 57.5067 Engines. (a... (2) Meet or exceed the applicable particulate matter emission requirements of the Environmental...
Method for improving the fuel efficiency of a gas turbine engine
NASA Technical Reports Server (NTRS)
Coffinberry, G. A. (Inventor)
1985-01-01
An energy recovery system is provided for an aircraft gas turbine engine of the type in which some of the pneumatic energy developed by the engine is made available to support systems such as an environmental control system. In one such energy recovery system, some of the pneumatic energy made available to but not utilized by the support system is utilized to heat the engine fuel immediately prior to the consumption of the fuel by the engine. Some of the recovered energy may also be utilized to heat the fuel in the fuel tanks. Provision is made for multiengine applications wherein energy recovered from one engine may be utilized by another one of the engines or systems associated therewith.
Apparatus for improving the fuel efficiency of a gas turbine engine
NASA Technical Reports Server (NTRS)
Coffinberry, G. A. (Inventor)
1983-01-01
An energy recovery system is provided for an aircraft gas turbine engine of the type in which some of the pneumatic energy developed by the engine is made available to support systems such as an environmental control system. In one such energy recovery system, some of the pneumatic energy made available to but not utilized by the support system is utilized to heat the engine fuel immediately prior to the consumption of the fuel by the engine. Some of the recovered energy may also be utilized to heat the fuel in the fuel tanks. Provision is made for multiengine applications wherein energy recovered from one engine may be utilized by another one of the engines or systems associated therewith.
NASA Astrophysics Data System (ADS)
Romero, Jesus Franklin A.; Leite, Patrícia; Mantovani, Gerson L.; Lanfredi, Alexandre J. C.; Martins-Filho, Luiz S.
2011-06-01
This paper describes the experience of an introductory discipline to the engineering curricula at the Brazilian Federal University of ABC (UFABC). The university offers a common basic curriculum that must be accomplished by every student and can be followed by professionalising courses. The discipline 'Introduction to Engineering' presents the basis of the engineering career, methods and thinking together with professional commitments and regulations. The objective is to help students to consciously choose their careers, minimising the precocity problem in deciding a professional future. The discipline methodology includes activities proposed by the TryEngineering website and from Brazilian engineering councils. Lectures with invited professors introduce UFABC engineering specialities: Aerospace, Bioengineering, Energy, Environmental & Urban, Information, Instrumentation & Automation & Robotics, Management, Materials. This paper reports the proposed activities, results obtained by the students, a methodology critical analysis and the impacts on the following steps of students embracing an engineering career.
Functional groups of ecosystem engineers: a proposed classification with comments on current issues.
Berke, Sarah K
2010-08-01
Ecologists have long known that certain organisms fundamentally modify, create, or define habitats by altering the habitat's physical properties. In the past 15 years, these processes have been formally defined as "ecosystem engineering", reflecting a growing consensus that environmental structuring by organisms represents a fundamental class of ecological interactions occurring in most, if not all, ecosystems. Yet, the precise definition and scope of ecosystem engineering remains debated, as one should expect given the complexity, enormity, and variability of ecological systems. Here I briefly comment on a few specific current points of contention in the ecosystem engineering concept. I then suggest that ecosystem engineering can be profitably subdivided into four narrower functional categories reflecting four broad mechanisms by which ecosystem engineering occurs: structural engineers, bioturbators, chemical engineers, and light engineers. Finally, I suggest some conceptual model frameworks that could apply broadly within these functional groups.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... U.S. Postal Service to Naval Facilities Engineering Command Pacific, Attention: MITT EIS/OEIS... project Web site ( www.MITT-EIS.com ). All comments, oral or written, submitted during the public review... Facilities Engineering Command Pacific, Attention: MITT EIS/OEIS Project Manager, 258 Makalapa Drive, Suite...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-17
... Science Advisory Board can be found on the SAB Web site at http://www.epa.gov/sab . SUPPLEMENTARY...: (1) The SAB Environmental Engineering Committee Hydraulic Fracturing Research Plan Review; (2) the... regarding the planned research. The SAB Environmental Engineering Committee discussed its advice on April 7...
This review focus on environmental implications and applications of engineered magnetite (Fe3O4) nanoparticles (MNPs) as a single phase or a component of a hybrid nanocomposite that take advantages of their superparamagnetism and high surface area. MNPs are synthesized via co-pre...
Virtual Placements to Develop Employability Skills for Civil and Environmental Engineering Students
ERIC Educational Resources Information Center
Paul, Parneet
2015-01-01
This project work addresses the crucial need to encourage undergraduate civil and environmental engineering students to gain employment skills and training right from the start of their studies so that their overall employability increases; their confidence level in networking with industry and within the workplace increases; and so that they are…
Construction Site Environmental Impact in Civil Engineering Education
ERIC Educational Resources Information Center
Teixeira, Jose M. Cardoso
2005-01-01
The environmental impact of construction activity has gained increasing importance in the last few years and become a key subject for civil engineering education. A survey of Portuguese higher education institutions shows that concern with this topic is mostly directed at the impact of large construction projects and especially focused on their…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-03
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2696-033-NY] Town of Stuyvesant, New York and Albany Engineering Corporation; Notice of Availability of Draft Environmental Assessment In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory...
Skill Sets Required for Environmental Engineering and Where They Are Learned
ERIC Educational Resources Information Center
Reed, Kathaleen
2010-01-01
The purpose of this study was to investigate the knowledge, skills, abilities and traits environmental engineers need. Two questions were asked: what skills are considered important, and where are they learned? Dreyfus and Dreyfus' novice-to-expert model, which describes a progressive, five-step process of skill development that occurs over time…
Stationary Engineering, Environmental Control, Refrigeration. Science I--Teachers Guide.
ERIC Educational Resources Information Center
Steingress, Frederick M.; And Others
The document presents lessons for teaching about occupations related to environmental control, stationary engineering, and refrigeration. Intended for use with the assignments in the related science manual for students, each unit provides the teacher with objectives, a list of aids needed, procedures, a summary, and testing questions. There are 18…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lips, H.I.; Gotterba, J.A.; Lim, K.J.
1981-07-01
The report gives results of an environmental assessment of combustion modification techniques for stationary internal combustion engines, with respect to NOx control reduction effectiveness, operational impact, thermal efficiency impact, capital and annualized operating costs, and effects on emissions of pollutants other than NOx.
2004-10-15
Fuel Injection," SAE 910489. Density and Vaporization on Penetration and 7. Shundoh, S., Komori, M., Tsujimura , K., and Dispersion of Diesel Sprays...of a 3-D Engines", SAE 920725. multi-zone combustion model for the prediction 12. Kakegawa, T., Suzuki, T., Tsujimura , K., of a DI diesel engines
40 CFR 1045.415 - What happens if in-use engines do not meet requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What happens if in-use engines do not meet requirements? 1045.415 Section 1045.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.305 - How must I prepare and test my production-line engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How must I prepare and test my production-line engines? 1045.305 Section 1045.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.305 - How must I prepare and test my production-line engines?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How must I prepare and test my production-line engines? 1045.305 Section 1045.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.135 - How must I label and identify the engines I produce?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How must I label and identify the engines I produce? 1045.135 Section 1045.135 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.415 - What happens if in-use engines do not meet requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What happens if in-use engines do not meet requirements? 1045.415 Section 1045.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.415 - What happens if in-use engines do not meet requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What happens if in-use engines do not meet requirements? 1045.415 Section 1045.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.135 - How must I label and identify the engines I produce?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How must I label and identify the engines I produce? 1045.135 Section 1045.135 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.135 - How must I label and identify the engines I produce?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How must I label and identify the engines I produce? 1045.135 Section 1045.135 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.305 - How must I prepare and test my production-line engines?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How must I prepare and test my production-line engines? 1045.305 Section 1045.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.135 - How must I label and identify the engines I produce?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How must I label and identify the engines I produce? 1045.135 Section 1045.135 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.305 - How must I prepare and test my production-line engines?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How must I prepare and test my production-line engines? 1045.305 Section 1045.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.305 - How must I prepare and test my production-line engines?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How must I prepare and test my production-line engines? 1045.305 Section 1045.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
40 CFR 1045.415 - What happens if in-use engines do not meet requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What happens if in-use engines do not meet requirements? 1045.415 Section 1045.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-24
... Gasoline; Extension of Comment Period AGENCY: Environmental Protection Agency (EPA). ACTION: Advance notice...-Engine Aircraft Using Leaded Aviation Gasoline (hereinafter referred to as the ANPR). EPA published this... from the use of leaded aviation gasoline (avgas) in piston-engine powered aircraft. The ANPR is one of...
40 CFR 90.419 - Raw emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-gasoline fueled engines. 90.419 Section 90.419 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... KILOWATTS Gaseous Exhaust Test Procedures § 90.419 Raw emission sampling calculations—gasoline fueled...-stroke gasoline small engines, as follows: KH = (9.953 × H + 0.832) Where: H = the amount of water in an...
40 CFR 90.419 - Raw emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-gasoline fueled engines. 90.419 Section 90.419 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... KILOWATTS Gaseous Exhaust Test Procedures § 90.419 Raw emission sampling calculations—gasoline fueled...-stroke gasoline small engines, as follows: KH = (9.953 × H + 0.832) Where: H = the amount of water in an...
40 CFR 90.419 - Raw emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-gasoline fueled engines. 90.419 Section 90.419 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... KILOWATTS Gaseous Exhaust Test Procedures § 90.419 Raw emission sampling calculations—gasoline fueled...-stroke gasoline small engines, as follows: KH = (9.953 × H + 0.832) Where: H = the amount of water in an...
40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Exhaust emission standards for Tier 6 and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) Definitions. Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87...
. Education M.S. Civil, Environmental, and Architectural Engineering, Building Systems Program, University of Colorado at Boulder B.S. Civil Engineering, University of Texas at Austin B.A. Sociology/Spanish, Rice Engineering Kristin.Field-Macumber@nrel.gov | 303-384-7376 Kristin joined NREL in January 2009. Her expertise
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
... Engineered Eucalyptus Hybrid AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice... for a proposed controlled field release of a genetically engineered clone of a Eucalyptus hybrid. This... proposed controlled field release of a genetically engineered clone of a Eucalyptus hybrid. \\1\\ To view the...
30 CFR 203.87 - What is in an engineering report?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What is in an engineering report? 203.87 Section 203.87 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE... § 203.87 What is in an engineering report? This report defines the development plan and capital...
30 CFR 203.87 - What is in an engineering report?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What is in an engineering report? 203.87 Section 203.87 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE... § 203.87 What is in an engineering report? This report defines the development plan and capital...
30 CFR 203.87 - What is in an engineering report?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What is in an engineering report? 203.87 Section 203.87 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE... § 203.87 What is in an engineering report? This report defines the development plan and capital...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-15
... DEPARTMENT OF DEFENSE Department of the Army, Corps of Engineers Intent To Prepare a Draft and... of the Army, U.S. Army Corps of Engineers, DOD. ACTION: Notice of intent. SUMMARY: The Jacksonville District, U.S. Army Corps of Engineers (Corps) [[Page 11165
40 CFR Table 4 to Subpart IIIi of... - Emission Standards for Stationary Fire Pump Engines
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission Standards for Stationary Fire Pump Engines 4 Table 4 to Subpart IIII of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Stationary Compression Ignition Internal Combustion Engines Part 60, Subpt. IIII...
40 CFR Table 3 to Subpart IIIi of... - Certification Requirements for Stationary Fire Pump Engines
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Certification Requirements for Stationary Fire Pump Engines 3 Table 3 to Subpart IIII of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Compression Ignition Internal Combustion Engines Part 60, Subpt...
78 FR 76383 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-17
...: LGA runways 4 and 31 runway safety area planning, environmental, and engineering. Brief Description of... Collection at EWR and Use at JFK at a $3.00 PFC Level: JFK taxiway P rehabilitation planning and engineering... delay reduction phase II--planning and engineering. Brief Description of Project Approved for Collection...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-29
...- Ignition Engines (Renewal). ICR Numbers: EPA ICR No. 1695.10, OMB Control No. 2060-0338. ICR Status: This... Engines and Equipment, OMB Control Number 2060-0603) were incorporated into ICR 1695.10. This action was... Requirements for Nonroad Spark-Ignition Engines (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION...
40 CFR 85.515 - Exemption provisions for intermediate age vehicles/engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... age vehicles/engines. 85.515 Section 85.515 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-ready status using an OBD scan tool appropriate for the OBD system in the vehicle/engine in question... have reset to a ready status, you must submit an OBD scan tool report showing that with the vehicle...
40 CFR 85.515 - Exemption provisions for intermediate age vehicles/engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... age vehicles/engines. 85.515 Section 85.515 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-ready status using an OBD scan tool appropriate for the OBD system in the vehicle/engine in question... have reset to a ready status, you must submit an OBD scan tool report showing that with the vehicle...
40 CFR 85.515 - Exemption provisions for intermediate age vehicles/engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... age vehicles/engines. 85.515 Section 85.515 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-ready status using an OBD scan tool appropriate for the OBD system in the vehicle/engine in question... have reset to a ready status, you must submit an OBD scan tool report showing that with the vehicle...
40 CFR 85.515 - Exemption provisions for intermediate age vehicles/engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... age vehicles/engines. 85.515 Section 85.515 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-ready status using an OBD scan tool appropriate for the OBD system in the vehicle/engine in question... have reset to a ready status, you must submit an OBD scan tool report showing that with the vehicle...
Integration, Authenticity, and Relevancy in College Science through Engineering Design
ERIC Educational Resources Information Center
Turner, Ken L., Jr.; Hoffman, Adam R.
2018-01-01
Engineering design is an ideal perspective for engaging students in college science classes. An engineering design problem-solving framework was used to create a general chemistry lab activity focused on an important environmental issue--dead zones. Dead zones impact over 400 locations around the world and are a result of nutrient pollution, one…