Sample records for engineering experiment station

  1. Space Station Freedom as an engineering experiment station: An overview

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank

    1992-01-01

    In this presentation, the premise that Space Station Freedom has great utility as an engineering experiment station will be explored. There are several modes in which it can be used for this purpose. The most obvious are space qualification, process development, in space satellite repair, and materials engineering. The range of engineering experiments which can be done at Space Station Freedom run the gamut from small process oriented experiments to full exploratory development models. A sampling of typical engineering experiments are discussed in this session. First and foremost, Space Station Freedom is an elaborate experiment itself, which, if properly instrumented, will provide engineering guidelines for even larger structures which must surely be built if humankind is truly 'outward bound.' Secondly, there is the test, evaluation and space qualification of advanced electric thruster concepts, advanced power technology and protective coatings which must of necessity be tested in the vacuum of space. The current approach to testing these technologies is to do exhaustive laboratory simulation followed by shuttle or unmanned flights. Third, the advanced development models of life support systems intended for future space stations, manned mars missions, and lunar colonies can be tested for operation in a low gravity environment. Fourth, it will be necessary to develop new protective coatings, establish construction techniques, evaluate new materials to be used in the upgrading and repair of Space Station Freedom. Finally, the industrial sector, if it is ever to build facilities for the production of commercial products, must have all the engineering aspects of the process evaluated in space prior to a commitment to such a facility.

  2. List of Publications of the U.S. Army Engineer Waterways Experiment Station. Volume 2

    DTIC Science & Technology

    1993-09-01

    Station List of Publications of the U.S. Army Engineer Waterways Experiment Station Volume II compiled by Research Library Information Management Division...Waterways Experiment Station for Other Agencies Air Base Survivability Systems Management Office Headquarters .............................. Z-1 Airport... manages , conducts, and coordinates research and development in the Information Management (IM) technology areas that include computer science

  3. Environmental Assessment and Finding of No Significant Impact (FONSI) of the Underground Technology Program, Rodgers Hollows, Fort Knox, Kentucky

    DTIC Science & Technology

    1994-10-01

    Technical Report SL-94-21 October 1994 •(rn US Army Corps 00• of Engineers CM Waterways Experiment , Station Environmental Assessment and Finding of...Underground Technology Program, Rodgers Hollow, Fort Knox, KY by D.W. Murrell. J. S. Shore U.S. Army Corps of Engineers Waterways Experiment Station 3909...Evaluation. I. Shore, J. S. II. Unitedl States. Army. Corl:, of Engineers . Ull. U.S. Army En- gineer Waterways Experiment Station. IV. Structures

  4. 17. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ENGINEERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ENGINEERS EXAMINING MODEL PUMPS, VIEW FROM MODEL BED. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  5. Space Station Freedom - Configuration management approach to supporting concurrent engineering and total quality management. [for NASA Space Station Freedom Program

    NASA Technical Reports Server (NTRS)

    Gavert, Raymond B.

    1990-01-01

    Some experiences of NASA configuration management in providing concurrent engineering support to the Space Station Freedom program for the achievement of life cycle benefits and total quality are discussed. Three change decision experiences involving tracing requirements and automated information systems of the electrical power system are described. The potential benefits of concurrent engineering and total quality management include improved operational effectiveness, reduced logistics and support requirements, prevention of schedule slippages, and life cycle cost savings. It is shown how configuration management can influence the benefits attained through disciplined approaches and innovations that compel consideration of all the technical elements of engineering and quality factors that apply to the program development, transition to operations and in operations. Configuration management experiences involving the Space Station program's tiered management structure, the work package contractors, international partners, and the participating NASA centers are discussed.

  6. Engineering Research and Technology Development on the Space Station

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report identifies and assesses the kinds of engineering research and technology development applicable to national, NASA, and commercial needs that can appropriately be performed on the space station. It also identifies the types of instrumentation that should be included in the space station design to support engineering research. The report contains a preliminary assessment of the potential benefits to U.S. competitiveness of engineering research that might be conducted on a space station, reviews NASA's current approach to jointly funded or cooperative experiments, and suggests modifications that might facilitate university and industry participation in engineering research and technology development activities on the space station.

  7. Using space for technology development - Planning for the Space Station era

    NASA Technical Reports Server (NTRS)

    Ambrus, Judith H.; Couch, Lana M.; Rosen, Robert R.; Gartrell, Charles F.

    1989-01-01

    Experience with the Shuttle and free-flying satellites as technology test-beds has shown the feasibility and desirability of using space assets as a facility for technology development. Thus, by the time the Space Station era will have arrived, the technologist will be ready for an accessible engineering facility in space. As the 21st century is approached, it is expected that virtually every flight to the Space Station Freedom will be required to carry one or more research, technology, and engineering experiments. The experiments planned will utilize both the pressurized volume, and the external payload attachment facilities. A unique, but extremely important, class of experiments will use the Space Station itself as an experimental vehicle. Based upon recent examination of possible Space Station Freedom assembly sequences, technology payloads may well utilize 20-30 percent of available resources.

  8. DomeGene Experiment at Cell Biology Experiment Facility (CBEF) in JPM

    NASA Image and Video Library

    2009-03-18

    ISS018-E-040985 (18 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18 flight engineer, uses a computer at the Japanese Remote Manipulator System (JEM-RMS) work station in the Kibo laboratory of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station.

  9. DomeGene Experiment at Cell Biology Experiment Facility (CBEF) in JPM

    NASA Image and Video Library

    2009-03-18

    ISS018-E-040986 (18 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18 flight engineer, uses a computer at the Japanese Remote Manipulator System (JEM-RMS) work station in the Kibo laboratory of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station.

  10. IET. Aerial view of snaptran destructive experiment in 1964. Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Aerial view of snaptran destructive experiment in 1964. Camera facing north. Test cell building (TAN-624) is positioned away from coupling station. Weather tower in right foreground. Divided duct just beyond coupling station. Air intake structure on south side of shielded control room. Experiment is on dolly at coupling station. Date: 1964. INEEL negative no. 64-1736 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  11. Glenn's Telescience Support Center Provided Around-the-Clock Operations Support for Space Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Malarik, Diane C.

    2005-01-01

    NASA Glenn Research Center s Telescience Support Center (TSC) allows researchers on Earth to operate experiments onboard the International Space Station (ISS) and the space shuttles. NASA s continuing investment in the required software, systems, and networks provides distributed ISS ground operations that enable payload developers and scientists to monitor and control their experiments from the Glenn TSC. The quality of scientific and engineering data is enhanced while the long-term operational costs of experiments are reduced because principal investigators and engineering teams can operate their payloads from their home institutions.

  12. 16. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. MECHANICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. MECHANICAL AND HYDRAULIC ENGINEERS EXAMINING MODEL PUMPS. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  13. 19. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ELECTRONICS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ELECTRONICS ENGINEER AT DATA COLLECTION COMPUTER ROOM. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  14. Cassidy in JEM

    NASA Image and Video Library

    2013-07-24

    ISS036-E-025489 (24 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, performs in-flight maintenance on the Marangoni Inside experiment in the Fluid Physics Experiment Facility (FPEF) which is part of a Japanese science rack in the International Space Station?s Kibo laboratory.

  15. Cassidy in JEM

    NASA Image and Video Library

    2013-07-24

    ISS036-E-025487 (24 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, performs in-flight maintenance on the Marangoni Inside experiment in the Fluid Physics Experiment Facility (FPEF) which is part of a Japanese science rack in the International Space Station?s Kibo laboratory.

  16. Cassidy in JEM

    NASA Image and Video Library

    2013-07-24

    ISS036-E-025484 (24 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, performs in-flight maintenance on the Marangoni Inside experiment in the Fluid Physics Experiment Facility (FPEF) which is part of a Japanese science rack in the International Space Station?s Kibo laboratory.

  17. Cassidy in JEM

    NASA Image and Video Library

    2013-07-24

    ISS036-E-025491 (24 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, performs in-flight maintenance on the Marangoni Inside experiment in the Fluid Physics Experiment Facility (FPEF) which is part of a Japanese science rack in the International Space Station?s Kibo laboratory.

  18. A History of the Waterways Experiment Station 1929-1979

    DTIC Science & Technology

    1979-06-01

    SUBTITLE A History of the Waterways Experiment Station 1929-1979 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) U.S. Army Corps of Engineers,Waterway Experiment...Station,3903 Halls Ferry Road,Vicksburg,MS,39180 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10

  19. Romanenko works with the Coulomb Crystal Experiment in the MRM-2

    NASA Image and Video Library

    2013-01-28

    ISS034-E-035764 (28 Jan. 2013) --- In the International Space Station?s Poisk Mini-Research Module 2 (MRM2), Russian cosmonaut Roman Romanenko, Expedition 34 flight engineer, works with the Coulomb Crystal experiment, which gathers data about charged particles in a weightless environment.

  20. A Modular Artificial Intelligence Inference Engine System (MAIS) for support of on orbit experiments

    NASA Technical Reports Server (NTRS)

    Hancock, Thomas M., III

    1994-01-01

    This paper describes a Modular Artificial Intelligence Inference Engine System (MAIS) support tool that would provide health and status monitoring, cognitive replanning, analysis and support of on-orbit Space Station, Spacelab experiments and systems.

  1. Veggie Harvest

    NASA Image and Video Library

    2017-10-27

    Charles Spern, project manager on the Engineering Services Contract, communicates instructions for the Veggie system to astronaut Joe Acaba on the International Space Station. Spern is in the Experiment Monitoring Room in the Space Station Processing Facility at Kennedy Space Center in Florida. Three different varieties of plants from the Veg-03D plant experiment were harvested.

  2. STS-114 Crew Interview: Stephen Robinson

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Stephen Robinson, Mission Specialist 2 (MS2), of the STS-114 space mission is seen during a prelaunch interview. He discusses his duties as flight engineer, Extravehicular Activity 2 (EVA 2) spacewalker, and medical officer. Robinson answers questions about his interests in spaceflight and the specific goals of the mission. He identifies this mission as the International Space Station Resupply Mission because supplies and experiments are brought to the International Space Station and Expedition 6 crew of Commander Kenneth Bowersox, and Flight Engineers Donald Pettit and Nikolai Budarin are returning to Earth. Lastly, he talks about the docking of the Space Shuttle Atlantis with the International Space Station. He looks forward to this experience in space.

  3. 32 CFR 555.2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Experiment Station (WES), the U.S. Army Construction Engineering Research Laboratory (CERL), the U.S. Army Engineer Topographic Laboratories (ETL), the U.S. Army Coastal Engineering Research Center (CERC), the U.S... CEMETERIES CORPS OF ENGINEERS, RESEARCH AND DEVELOPMENT, LABORATORY RESEARCH AND DEVELOPMENT AND TESTS, WORK...

  4. Computer-Assisted Laboratory Stations.

    ERIC Educational Resources Information Center

    Snyder, William J., Hanyak, Michael E.

    1985-01-01

    Describes the advantages and features of computer-assisted laboratory stations for use in a chemical engineering program. Also describes a typical experiment at such a station: determining the response times of a solid state humidity sensor at various humidity conditions and developing an empirical model for the sensor. (JN)

  5. 32 CFR 555.2 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... FOR OTHERS § 555.2 Applicability. This regulation applies to the U.S. Army Engineer Waterways Experiment Station (WES), the U.S. Army Construction Engineering Research Laboratory (CERL), the U.S. Army Engineer Topographic Laboratories (ETL), the U.S. Army Coastal Engineering Research Center (CERC), the U.S...

  6. 32 CFR 555.2 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... FOR OTHERS § 555.2 Applicability. This regulation applies to the U.S. Army Engineer Waterways Experiment Station (WES), the U.S. Army Construction Engineering Research Laboratory (CERL), the U.S. Army Engineer Topographic Laboratories (ETL), the U.S. Army Coastal Engineering Research Center (CERC), the U.S...

  7. 32 CFR 555.2 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FOR OTHERS § 555.2 Applicability. This regulation applies to the U.S. Army Engineer Waterways Experiment Station (WES), the U.S. Army Construction Engineering Research Laboratory (CERL), the U.S. Army Engineer Topographic Laboratories (ETL), the U.S. Army Coastal Engineering Research Center (CERC), the U.S...

  8. 32 CFR 555.2 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... FOR OTHERS § 555.2 Applicability. This regulation applies to the U.S. Army Engineer Waterways Experiment Station (WES), the U.S. Army Construction Engineering Research Laboratory (CERL), the U.S. Army Engineer Topographic Laboratories (ETL), the U.S. Army Coastal Engineering Research Center (CERC), the U.S...

  9. Expedition 6 Crew Interviews: Nikolai Budarin FEI (Flight Engineer 1)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 6 Flight Engineer Nikolai Budarin is seen during a prelaunch interview. He provides details on the mission's goals and significance, his role in the mission, what his responsibilities will be, what the crew activities will be like (docking of a Progress unpiloted supply vehicle, maintaining the space station, conducting science experiments and performing one spacewalk), the day-to-day life on an extended stay mission, and the experiments he will be conducting on board. Budarin also discusses how his previous experiences on mir space missions will help him and ends his thoughts on how valuable the International Space Station has proven.

  10. Introducing new technologies into Space Station subsystems

    NASA Technical Reports Server (NTRS)

    Wiskerchen, Michael J.; Mollakarimi, Cindy L.

    1989-01-01

    A new systems engineering technology has been developed and applied to Shuttle processing. The new engineering approach emphasizes the identification, quantitative assessment, and management of system performance and risk related to the dynamic nature of requirements, technology, and operational concepts. The Space Shuttle Tile Automation System is described as an example of the first application of the new engineering technology. Lessons learned from the Shuttle processing experience are examined, and concepts are presented which are applicable to the design and development of the Space Station Freedom.

  11. Veggie Processing

    NASA Image and Video Library

    2017-02-15

    Charles Spern, at right, project manager on the Engineering Services Contract (ESC), and Glenn Washington, ESC quality assurance specialist, perform final inspections of the Veggie Series 1 plant experiment inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The Series 1 experiment is being readied for flight aboard Orbital ATK's Cygnus module on its seventh (OA-7) Commercial Resupply Services mission to the International Space Station. The Veggie system is on the space station.

  12. Analytical determination of space station response to crew motion and design of suspension system for microgravity experiments

    NASA Technical Reports Server (NTRS)

    Liu, F. C.

    1986-01-01

    The objective of this investigation is to make analytical determination of the acceleration produced by crew motion in an orbiting space station and define design parameters for the suspension system of microgravity experiments. A simple structural model for simulation of the IOC space station is proposed. Mathematical formulation of this model provides the engineers a simple and direct tool for designing an effective suspension system.

  13. Hadfield holds bubble detectors for the RaDI-N Experiment in the Columbus Module

    NASA Image and Video Library

    2013-01-25

    ISS034-E-034506 (25 Jan. 2013) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, holds bubble detectors for the RaDI-N experiment in the International Space Station?s Kibo laboratory. RaDI-N measures neutron radiation levels onboard the space station. RaDI-N uses bubble detectors as neutron monitors which have been designed to only detect neutrons and ignore all other radiation.

  14. KSC-2012-3082

    NASA Image and Video Library

    2012-05-25

    CAPE CANAVERAL, Fla. – Children work with family members in the KSC Family Exploration Station at the Kennedy Space Center Visitor Complex. The station offered numerous scientific- and engineering-related activities for children to experience. Photo credit: NASA/Jim Grossmann

  15. KSC-2012-3083

    NASA Image and Video Library

    2012-05-25

    CAPE CANAVERAL, Fla. – Children work with family members in the KSC Family Exploration Station at the Kennedy Space Center Visitor Complex. The station offered numerous scientific- and engineering-related activities for children to experience. Photo credit: NASA/Jim Grossmann

  16. KSC-2012-3085

    NASA Image and Video Library

    2012-05-25

    CAPE CANAVERAL, Fla. – Children work with family members in the KSC Family Exploration Station at the Kennedy Space Center Visitor Complex. The station offered numerous scientific- and engineering-related activities for children to experience. Photo credit: NASA/Jim Grossmann

  17. FOOT experiment (Foot/Ground Reaction Forces during Space Flight)

    NASA Image and Video Library

    2005-06-29

    ISS011-E-09831 (29 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, works at the Canadarm2 controls while participating in the Foot/Ground Reaction Forces During Spaceflight (FOOT) experiment in the Destiny laboratory of the International Space Station. Phillips wore the specially instrumented Lower Extremity Monitoring Suit (LEMS), cycling tights outfitted with sensors, during the experiment.

  18. FOOT experiment (Foot/Ground Reaction Forces during Space Flight)

    NASA Image and Video Library

    2005-06-29

    ISS011-E-09825 (29 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, enters data into a computer while participating in the Foot/Ground Reaction Forces During Spaceflight (FOOT) experiment in the Destiny laboratory of the International Space Station. Phillips wore the specially instrumented Lower Extremity Monitoring Suit (LEMS), cycling tights outfitted with sensors, during the experiment.

  19. Preparation of X-ray astronomy satellite experiment Development of computer programs for the Salyut-HEXE X-ray experiment ground station

    NASA Astrophysics Data System (ADS)

    Petrik, J.

    The engineering model of the Salyut-HEXE experiment is described. The detector system, electronics box, and ground station are addressed. The microprocessor system is considered, discussing the cards and presenting block diagrams of their functions. The telemetry is examined, including the various modes and the direct and indirect transmission modes. The ground station programs are discussed, including the tasks, program development, input and output programs, status, power supply, count rates, telemetry dump, hard copy, and checksum.

  20. Airborne Visible Laser Optical Communications (AVLOC) experiment

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A series of optical communication experiments between a high altitude aircraft at 18.3 km (60,000 ft) and a ground station were conducted by NASA from summer 1972 through winter 1973. The basic system was an optical tracker and transmitter located in each terminal. The aircraft transceiver consisted of a 5-mW HeNe laser transmitter with a 30-megabit modulator. The ground station beacon was an argon laser operating at 488 nm. A separate pulsed laser radar was used for initial acquisition. The objective of the experiment was to obtain engineering data on the precision tracking and communication system performance at both terminals. Atmospheric effects on the system performance was also an experiment objective. The system description, engineering analysis, testing, and flight results are discussed.

  1. OA-7 Veggie Series 1 Processing

    NASA Image and Video Library

    2017-02-15

    Charles Spern, project manager on the Engineering Services Contract (ESC), and Glenn Washington, ESC quality assurance specialist, perform final inspections of the Veggie Series 1 plant experiment inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The Series 1 experiment is being readied for flight aboard Orbital ATK's Cygnus module on its seventh (OA-7) Commercial Resupply Services mission to the International Space Station. The Veggie system is on the space station.

  2. FOOT experiment (Foot/Ground Reaction Forces during Space Flight)

    NASA Image and Video Library

    2005-06-29

    ISS011-E-09822 (29 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, uses the Cycle Ergometer with Vibration Isolation System (CEVIS) while participating in the Foot/Ground Reaction Forces During Spaceflight (FOOT) experiment in the Destiny laboratory of the International Space Station. Phillips wore the specially instrumented Lower Extremity Monitoring Suit (LEMS), cycling tights outfitted with sensors, during the experiment.

  3. Proceedings of the Flat-Plate Solar Array Project Research Forum on the Design of Flat-Plate Photovoltaic Arrays for Central Stations

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.

  4. Veggie Processing

    NASA Image and Video Library

    2017-02-15

    Charles Spern, at right, project manager on the Engineering Services Contract (ESC), and Glenn Washington, ESC quality assurance specialist, perform final inspections of the Veggie Series 1 plant experiment inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. At far left is Dena Richmond, ESC configuration management. The Series 1 experiment is being readied for flight aboard Orbital ATK's Cygnus module on its seventh (OA-7) Commercial Resupply Services mission to the International Space Station. The Veggie system is on the space station.

  5. Williams working on the LOCAD-PTS Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-04-30

    ISS015-E-05649 (30 April 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  6. Williams works on the LOCAD-PTS Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-05-05

    ISS015-E-06777 (5 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  7. Williams working on the LOCAD-PTS Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-04-30

    ISS015-E-05640 (30 April 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  8. Proceedings of the First NASA Ada Users' Symposium

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Ada has the potential to be a part of the most significant change in software engineering technology within NASA in the last twenty years. Thus, it is particularly important that all NASA centers be aware of Ada experience and plans at other centers. Ada activity across NASA are covered, with presenters representing five of the nine major NASA centers and the Space Station Freedom Program Office. Projects discussed included - Space Station Freedom Program Office: the implications of Ada on training, reuse, management and the software support environment; Johnson Space Center (JSC): early experience with the use of Ada, software engineering and Ada training and the evaluation of Ada compilers; Marshall Space Flight Center (MSFC): university research with Ada and the application of Ada to Space Station Freedom, the Orbital Maneuvering Vehicle, the Aero-Assist Flight Experiment and the Secure Shuttle Data System; Lewis Research Center (LeRC): the evolution of Ada software to support the Space Station Power Management and Distribution System; Jet Propulsion Laboratory (JPL): the creation of a centralized Ada development laboratory and current applications of Ada including the Real-time Weather Processor for the FAA; and Goddard Space Flight Center (GSFC): experiences with Ada in the Flight Dynamics Division and the Extreme Ultraviolet Explorer (EUVE) project and the implications of GSFC experience for Ada use in NASA. Despite the diversity of the presentations, several common themes emerged from the program: Methodology - NASA experience in general indicates that the effective use of Ada requires modern software engineering methodologies; Training - It is the software engineering principles and methods that surround Ada, rather than Ada itself, which requires the major training effort; Reuse - Due to training and transition costs, the use of Ada may initially actually decrease productivity, as was clearly found at GSFC; and real-time work at LeRC, JPL and GSFC shows that it is possible to use Ada for real-time applications.

  9. LOH- RadGene experiment at Cell Biology Experiment Facility (CBEF)

    NASA Image and Video Library

    2009-02-20

    ISS018-E-034090 (20 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, uses a communication system near the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station.

  10. Engineer's drawing of Skylab 4 Far Ultraviolet Electronographic camera

    NASA Image and Video Library

    1973-11-19

    S73-36910 (November 1973) --- An engineer's drawing of the Skylab 4 Far Ultraviolet Electronographic camera (Experiment S201). Arrows point to various features and components of the camera. As the Comet Kohoutek streams through space at speeds of 100,000 miles per hour, the Skylab 4 crewmen will use the S201 UV camera to photograph features of the comet not visible from the Earth's surface. While the comet is some distance from the sun, the camera will be pointed through the scientific airlock in the wall of the Skylab space station Orbital Workshop (OWS). By using a movable mirror system built for the Ultraviolet Stellar Astronomy (S019) Experiment and rotating the space station, the S201 camera will be able to photograph the comet around the side of the space station. Photo credit: NASA

  11. FPEF (Fluid Physics Experiment Facility) for the planned MS (Marangoni Surface) experiment

    NASA Image and Video Library

    2009-07-01

    ISS020-E-016214 (1 July 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20 flight engineer, prepares the Fluid Physics Experiment Facility (FPEF) for the planned Marangoni Surface experiment in the Kibo laboratory of the International Space Station.

  12. FE-2 Nicole Stott works on the CBEF Space Seed Experiment

    NASA Image and Video Library

    2009-10-13

    ISS021-E-006261 (13 Oct. 2009) --- NASA astronaut Nicole Stott, Expedition 21 flight engineer, works with the Cell Biology Experiment Facility (CBEF) SPACE SEED experiment in the Kibo laboratory of the International Space Station.

  13. FE-2 Nicole Stott works on the CBEF Space Seed Experiment

    NASA Image and Video Library

    2009-10-13

    ISS021-E-006267 (13 Oct. 2009) --- NASA astronaut Nicole Stott, Expedition 21 flight engineer, works with the Cell Biology Experiment Facility (CBEF) SPACE SEED experiment in the Kibo laboratory of the International Space Station.

  14. Development and Certification of Station Development Test Objective (SDTO) Experiment # 15012-U, "Near RealTime Water Quality Monitoring Demonstration for ISS Biocides Using Colorimetric Solid Phase Extraction (CSPE)"

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Shcultz, John R.; Siperko, Lorraine M.; Porter, Marc D,; Lipert, Robert J.; Limardo, Jose G.; McCoy, J. Torin

    2009-01-01

    Scientists and engineers from the Wyle Integrated Science and Engineering Group are working with researchers at the University of Utah and Iowa State University to develop and certify an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE). The kit will be launched as a Station Development Test Objective (SDTO) experiment and evaluated on the International Space Station (ISS) to determine the acceptability of CSPE technology for routine inflight water quality monitoring. Iodine and silver, the biocides used in the US and Russian on-orbit water systems, will serve as test analytes for the technology evaluation. This manuscript provides an overview of the CSPE SDTO experiment and details the development and certification of the experimental water quality monitoring kit. Initial results from reagent and standard solution stability testing and environmental testing performed on the kit hardware are also reported.

  15. SPHERES Slosh Run

    NASA Image and Video Library

    2014-01-22

    ISS038-E-033890 (22 Jan. 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, works with a new experiment using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, which are already on the station. For the SPHERES-Slosh experiment, two SPHERES robots are attached to opposite ends of a metal frame holding the plastic tank with the green-colored water. The new hardware for the SPHERES-Slosh study was delivered to the station aboard Orbital Sciences' Cygnus cargo craft on Jan. 12.

  16. Reid BCAT Experiment

    NASA Image and Video Library

    2014-06-17

    ISS040-E-013856 (17 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test (BCAT) experiment at a workstation in the Harmony node of the International Space Station.

  17. MSG SAME Experiment

    NASA Image and Video Library

    2010-07-14

    ISS024-E-008369 (14 July 2010)--- Astronaut Shannon Walker, Expedition 24 flight engineer, works on the Smoke Aerosol Measurement Experiment (SAME) inside the Microgravity Science Glovebox (MSG) in the European laboratory Columbus on the International Space Station.

  18. MSG SAME Experiment

    NASA Image and Video Library

    2010-07-14

    ISS024-E-008364 (14 July 2010)--- Astronaut Shannon Walker, Expedition 24 flight engineer, works on the Smoke Aerosol Measurement Experiment (SAME) inside the Microgravity Science Glovebox (MSG) in the European laboratory Columbus on the International Space Station.

  19. Analysis of International Space Station Vehicle Materials Exposed on Materials International Space Station Experiment from 2001 to 2011

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Golden, J. L.; Kravchenko, M.

    2013-01-01

    Since August 2001, the Materials on International Space Station Experiment (MISSE) has provided data on a variety of materials and spacecraft components, including samples chosen to provide sustaining engineering and life extension data for the International Space Station vehicle itself. This Technical Publication is by no means a complete set of MISSE data but does provide changes in solar absorptance, infrared emittance, and visual appearance due to atomic oxygen, ultraviolet radiation, and thermal cycling in vacuum. Conversion coatings, anodizes, thermal control coatings with organic and inorganic binders, multilayer insulation components, optical materials, and part markings are discussed.

  20. Laboratory and Pilot Scale Evaluation of Coagulation, Clarification, and Filtration for Upgrading Sewage Lagoon Effluents.

    DTIC Science & Technology

    1980-08-01

    AD-AGAB 906 ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG--ETC FIG 14/2 LABORATORY AND PILOT SCALE EVALUATION OF COAGULATION, CLARIFICA -ETC U...FILTRATION FOR LWGRADING JEWAGE LAGOON EFFLUENTS~ w IL j0 ( M John ullinane, Jr., Richard A. hafer (0 Environmental Laboratory gel U. S. Army Engineer ...Shafer 9. PERFORMING ORGANIZATION NAME AND ADORESS SO. PROGRAM ELEMENT, PROJECT, TASK AREA a WORK UNIT NUMBERS U. S. Army Engineer Waterways Experiment

  1. Proceedings of the Ninth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Experiences in measurement, utilization, and evaluation of software methodologies, models, and tools are discussed. NASA's involvement in ever larger and more complex systems, like the space station project, provides a motive for the support of software engineering research and the exchange of ideas in such forums. The topics of current SEL research are software error studies, experiments with software development, and software tools.

  2. DomeGene Sample Removal from Cell Biology Experiment Facility (CBEF)

    NASA Image and Video Library

    2009-03-28

    ISS018-E-044268 (28 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, works on an experiment at the Saibo biological experiment rack in the Kibo laboratory of the International Space Station.

  3. InSPACE-3 experiment

    NASA Image and Video Library

    2013-08-18

    ISS036-E-033948 (18 Aug. 2013) --- NASA astronaut Karen Nyberg, Expedition 36 flight engineer, works with new test samples for the Advanced Colloids Experiment, or ACE, housed in the Light Microscopy Module (LMM) inside the Fluids Integrated Rack of the International Space Station?s Destiny laboratory. Results from ACE will help researchers understand how to optimize stabilizers to extend the shelf life of products like laundry detergent, paint, ketchup and even salad dressing.

  4. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014468 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity. Russian cosmonaut Maxim Suraev (bottom right), flight engineer, looks on.

  5. KSC-2014-2463

    NASA Image and Video Library

    2014-05-09

    CAPE CANAVERAL, Fla. – Researchers prepare to activate the Veggie plant growth system inside a control chamber at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. From left, are George Guerra, quality control engineer, and Chuck Spern, lead project engineer, both with QinetiQ North America on the Engineering Services Contract. The growth chamber will be used as a control unit and procedures will be followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth will be monitored for 28 days. At the end of the cycle, the plants will be carefully harvested, frozen and stored for return to Earth. Photo credit: NASA/Dimitri Gerondidakis

  6. MSG SAME Experiment

    NASA Image and Video Library

    2010-07-15

    ISS024-E-008351 (15 July 2010) --- NASA astronaut Shannon Walker, Expedition 24 flight engineer, works with the Smoke Aerosol Measurement Experiment (SAME) in the Microgravity Sciences Glovebox (MSG) located in the Columbus laboratory of the International Space Station.

  7. 1. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. ENGINEERING TECHNICIAN WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. ENGINEERING TECHNICIAN WITH VIDEO-CONTROLED MODEL BOAT IN MODEL NAVIGATION CHANNEL. NOTE CONTROL TRAILER IN BACKGROUND. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  8. FE-2 Nicole Stott works on the CBEF Space Seed Experiment

    NASA Image and Video Library

    2009-10-14

    ISS021-E-006292 (14 Oct. 2009) --- NASA astronaut Nicole Stott, Expedition 21 flight engineer, using a watering syringe, supplies water to the Cell Biology Experiment Facility (CBEF) SPACE SEED experiment in the Kibo laboratory on the International Space Station.

  9. DomeGene Sample Removal from Cell Biology Experiment Facility (CBEF)

    NASA Image and Video Library

    2009-03-28

    ISS018-E-044235 (28 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, works on an experiment at the Ryutai fluid science experiment rack in the Kibo laboratory of the International Space Station.

  10. B2 YNG Yeast EC (Experiment Container)

    NASA Image and Video Library

    2009-10-02

    ISS020-E-044457 (2 Oct. 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer and Expedition 21 commander, installs experiment containers in the Biolab incubator in the Columbus laboratory of the International Space Station.

  11. Dyson works with IVGEN Experiment Payload in Columbus MSG

    NASA Image and Video Library

    2010-05-03

    ISS023-E-030740 (3 May 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 23 flight engineer, works with experiment hardware in the Microgravity Science Glovebox (MSG) located in the Columbus laboratory of the International Space Station.

  12. Swanson configures LMM for CARA-Petri Plant Experiment

    NASA Image and Video Library

    2014-05-05

    ISS039-E-018472 (5 May 2014) --? NASA astronaut Steve Swanson, Expedition 39 flight engineer, works in the U.S. laboratory Destiny of the International Space Station, preparing the Light Microscopy Module (LMM) for a planet experiment.

  13. Kotov works with Plasma Crystal-3+ Experiment in the SM during Expedition 22

    NASA Image and Video Library

    2010-01-25

    ISS022-E-035436 (25 Jan. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, works with the Plasma Crystal-3 experiment in the Zvezda Service Module of the International Space Station.

  14. Kotov works with Plasma Crystal-3+ Experiment in the SM during Expedition 22

    NASA Image and Video Library

    2010-01-25

    ISS022-E-035434 (25 Jan. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, works with the Plasma Crystal-3 experiment in the Zvezda Service Module of the International Space Station.

  15. ]U.S. Commercial Cargo Ship Departs Space Station

    NASA Image and Video Library

    2017-09-17

    The SpaceX/Dragon cargo craft departed the International Space Station Sept. 17, one month after delivering more than three tons of supplies and scientific experiments for the station’s residents. Expedition 53 Flight Engineer Paolo Nespoli of the European Space Agency and station Commander Randy Bresnik used the Cnadarm2 robotic arm to release Dragon after it was detached from the Earth-facing port of the Harmony module. Dragon was scheduled to move to a safe distance away from the station for its engine to conduct a deorbit burn, enabling it to drop out of orit for a parachute-assisted splashdown in the Pacific southwest of Long Beach, California. Dragon was launched on a SpaceX Falcon 9 rocket from the Kennedy Space Center on Aug. 14, arriving at the orbital outpost Aug. 16.

  16. Anderson works with the TRAC experiment in the U.S. Laboratory during Joint Operations

    NASA Image and Video Library

    2007-06-12

    S117-E-07031 (12 June 2007) --- Astronaut Clayton Anderson, Expedition 15 flight engineer, works with the Test of Reaction and Adaptation Capabilities (TRAC) experiment in the Destiny laboratory of the International Space Station while Space Shuttle Atlantis was docked with the station. The TRAC investigation will test the theory of brain adaptation during space flight by testing hand-eye coordination before, during and after the space flight.

  17. Williams during Sleep-Long Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-05-24

    ISS015-E-09447 (24 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, enters data in a computer for the Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long (Sleep-Long) experiment in the Destiny laboratory of the International Space Station. Sleep-Long will examine the effects of spaceflight and ambient light exposure on the sleep-wake cycles of the crewmembers during long-duration stays on the station.

  18. Williams during Sleep-Long Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-05-24

    ISS015-E-09449 (24 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, enters data in a computer for the Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long (Sleep-Long) experiment in the Destiny laboratory of the International Space Station. Sleep-Long will examine the effects of spaceflight and ambient light exposure on the sleep-wake cycles of the crewmembers during long-duration stays on the station.

  19. Kuipers during replacement of the Marangoni Surface Fluid Dynamics Experiment

    NASA Image and Video Library

    2012-03-15

    ISS030-E-142827 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.

  20. Novitskiy prepares for the Typologia Experiment

    NASA Image and Video Library

    2013-02-12

    ISS034-E-042297 (12 Feb. 2013) --- Russian cosmonaut Oleg Novitskiy, Expedition 34 flight engineer, prepares for the Typologia experiment in the Zvezda Service Module of the International Space Station. This experiment studies the crew member's psychophysical state and ability to perform and communicate under stress.

  1. Novitskiy prepares for the Typologia Experiment

    NASA Image and Video Library

    2013-02-12

    ISS034-E-042298 (12 Feb. 2013) --- Russian cosmonaut Oleg Novitskiy, Expedition 34 flight engineer, prepares for the Typologia experiment in the Zvezda Service Module of the International Space Station. This experiment studies the crew member's psychophysical state and ability to perform and communicate under stress.

  2. Kuipers works to remove the Marangoni Suface Fluid Physics Experiment

    NASA Image and Video Library

    2012-03-15

    ISS030-E-142784 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.

  3. Kuipers works to remove the Marangoni Suface Fluid Physics Experiment

    NASA Image and Video Library

    2012-03-15

    ISS030-E-142785 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.

  4. Tarelkin prepares for the Typologia Experiment in the SM

    NASA Image and Video Library

    2013-01-24

    ISS034-E-033718 (24 Jan. 2013) --- Russian cosmonaut Evgeny Tarelkin, Expedition 34 flight engineer, prepares for the Typologia experiment in the Zvezda Service Module of the International Space Station. This experiment studies the crew member's psychophysical state and ability to perform and communicate under stress.

  5. MISSE 5 Thin Films Space Exposure Experiment

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Kinard, William H.; Jones, James L.

    2007-01-01

    The Materials International Space Station Experiment (MISSE) is a set of space exposure experiments using the International Space Station (ISS) as the flight platform. MISSE 5 is a co-operative endeavor by NASA-LaRC, United Stated Naval Academy, Naval Center for Space Technology (NCST), NASA-GRC, NASA-MSFC, Boeing, AZ Technology, MURE, and Team Cooperative. The primary experiment is performance measurement and monitoring of high performance solar cells for U.S. Navy research and development. A secondary experiment is the telemetry of this data to ground stations. A third experiment is the measurement of low-Earth-orbit (LEO) low-Sun-exposure space effects on thin film materials. Thin films can provide extremely efficacious thermal control, designation, and propulsion functions in space to name a few applications. Solar ultraviolet radiation and atomic oxygen are major degradation mechanisms in LEO. This paper is an engineering report of the MISSE 5 thm films 13 months space exposure experiment.

  6. In-space research, technology and engineering experiments and Space Station

    NASA Technical Reports Server (NTRS)

    Tyson, Richard; Gartrell, Charles F.

    1988-01-01

    The NASA Space Station will serve as a technology research laboratory, a payload-servicing facility, and a large structure fabrication and assembly facility. Space structures research will encompass advanced structural concepts and their dynamics, advanced control concepts, sensors, and actuators. Experiments dealing with fluid management will gather data on such fundamentals as multiphase flow phenomena. As requirements for power systems and thermal management grow, experiments quantifying the performance of energy systems and thermal management concepts will be undertaken, together with expanded efforts in the fields of information systems, automation, and robotics.

  7. STS-118 Astronaut Williams and Expedition 15 Engineer Anderson Perform EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    As the construction continued on the International Space Station (ISS), STS-118 Astronaut Dave Williams, representing the Canadian Space Agency, participated in the fourth and final session of Extra Vehicular Activity (EVA). During the 5 hour space walk, Williams and Expedition 15 engineer Clay Anderson (out of frame) installed the External Wireless Instrumentation System Antenna, attached a stand for the shuttle robotic arm extension boom, and retrieved the two Materials International Space Station Experiments (MISSE) for return to Earth. MISSE collects information on how different materials weather in the environment of space.

  8. Space Station Crew Bids Farewell to U.S. Commercial Cargo Spaceship

    NASA Image and Video Library

    2017-12-06

    Aboard the International Space Station, Expedition 53 Flight Engineers Mark Vande Hei and Joe Acaba of NASA used the Canadian-built robotic arm to release the Orbital ATK Cygnus resupply spacecraft three weeks after its arrival to bring some three tons of supplies and experiments to the orbital complex. Dubbed the "SS Gene Cernan," the Cygnus cargo ship will remain in orbit for almost two weeks conducting engineering tests before it is deorbited on Dec. 18 to burn up harmlessly in the Earth's atmosphere over the Pacific Ocean.

  9. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019318 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  10. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019300 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  11. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019312 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  12. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019307 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  13. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019299 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  14. STS-71 mission highlights resource tape

    NASA Astrophysics Data System (ADS)

    1995-09-01

    This video highlights the international cooperative Shuttle/Mir mission of the STS-71 flight. The STS-71 flightcrew consists of Cmdr. Robert Hoot' Gibson, Pilot Charles Precourt, and Mission Specialists Ellen Baker, Bonnie Dunbar, and Gregory Harbaugh. The Mir 18 flightcrew consisted of Cmdr. Vladamir Dezhurov, Flight Engineer Gennady Strekalov, and Cosmonaut-Research Dr. Norman Thagard. The Mir 18 crew consisted of Cmdr. Anatoly Solovyev and Flight Engineer Nikolai Budarin. The prelaunch, launch, shuttle in-orbit, and in-orbit rendezvous and docking of the Mir Space Station to the Atlantis Space Shuttle are shown. The Mir 19 crew accompanied the STS-71 crew and will replace the Mir 18 crew upon undocking from the Mir Space Station. Shown is on-board footage from the Mir Space Station of the Mir 18 crew engaged in hardware testing and maintenance, medical and physiological tests, and a tour of the Mir. A spacewalk by the two Mir 18 cosmonauts is shown as they performed maintenance of the Mir Space Station. After the docking between Atlantis and Mir is completed, several mid-deck physiological experiments are performed along with a tour of Atlantis. Dr Thagard remained behind with the Shuttle after undocking to return to Earth with reports from his Mir experiments and observations. In-cabin experiments included the IMAX Camera Systems tests and the Shuttle Amateur Radio Experiment-2 (SAREX-2). There is footage of the shuttle landing.

  15. Lonchakov checks the Rasteniya-2 plant growth experiment in the SM during Expedition Five

    NASA Image and Video Library

    2002-11-08

    ISS005-E-20309 (8 November 2002) --- Soyuz 5 Flight Engineer Yuri V. Lonchakov looks at a plant growth experiment in the Zvezda Service Module on the International Space Station (ISS). Lonchakov represents Rosaviakosmos.

  16. Whitson looks at the ADVASC Soybean plant growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-07-18

    ISS005-E-08001 (18 July 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, works with the Advanced Astroculture soybean plant growth experiment in the Destiny laboratory on the International Space Station (ISS).

  17. InSPACE3 Experiment Run

    NASA Image and Video Library

    2013-10-14

    ISS037-E-010695 (14 Oct. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 37 flight engineer, works with the Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions - 3 (InSPACE-3) experiment in the Destiny laboratory of the International Space Station.

  18. InSPACE3 Experiment Run

    NASA Image and Video Library

    2013-10-14

    ISS037-E-010697 (14 Oct. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 37 flight engineer, works with the Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions - 3 (InSPACE-3) experiment in the Destiny laboratory of the International Space Station.

  19. InSPACE3 Experiment Run

    NASA Image and Video Library

    2013-10-14

    ISS037-E-010698 (14 Oct. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 37 flight engineer, works with the Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions - 3 (InSPACE-3) experiment in the Destiny laboratory of the International Space Station.

  20. Kotov works with Plasma Crystal-3+ Experiment in the SM during Expedition 22

    NASA Image and Video Library

    2010-01-28

    ISS022-E-040614 (28 Jan. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, is pictured while working with the Plasma Crystal-3 experiment in the Zvezda Service Module of the International Space Station.

  1. Kotov works with Plasma Crystal-3 Experiment in the SM during Expedition 22

    NASA Image and Video Library

    2010-01-25

    ISS022-E-035439 (25 Jan. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, is pictured while working with the Plasma Crystal-3 experiment in the Zvezda Service Module of the International Space Station.

  2. Kotov works with Plasma Crystal-3 Experiment in the SM during Expedition 22

    NASA Image and Video Library

    2010-01-25

    ISS022-E-035438 (25 Jan. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, uses a computer while servicing the Plasma Crystal-3 experiment in the Zvezda Service Module of the International Space Station.

  3. Kotov works with Plasma Crystal-3+ Experiment in the SM during Expedition 22

    NASA Image and Video Library

    2010-01-28

    ISS022-E-040617 (28 Jan. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, is pictured while working with the Plasma Crystal-3 experiment in the Zvezda Service Module of the International Space Station.

  4. Kotov works with Plasma Crystal-3+ Experiment in the SM during Expedition 22

    NASA Image and Video Library

    2010-01-28

    ISS022-E-040615 (28 Jan. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, uses a computer while servicing the Plasma Crystal-3 experiment in the Zvezda Service Module of the International Space Station.

  5. Williams working on the JAXA MS (Marangoni Surface) Experiment

    NASA Image and Video Library

    2009-11-05

    ISS021-E-020299 (5 Nov. 2009) --- NASA astronaut Jeffrey Williams, Expedition 21 flight engineer, works with Fluid Physics Experiment Facility/Marangoni Surface (FPEF MS) Core hardware in the Kibo laboratory of the International Space Station. The Marangoni convection experiment in the FPEF examines fluid tension flow in micro-G.

  6. BISE (Bodies in the Space Environment) experiment

    NASA Image and Video Library

    2009-04-18

    ISS019-E-010149 (18 April 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, sets up equipment for the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.

  7. BISE Experiment

    NASA Image and Video Library

    2010-08-30

    ISS024-E-012668 (30 Aug. 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, uses Neurospat hardware to perform the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.

  8. BISE Experiment

    NASA Image and Video Library

    2010-08-30

    ISS024-E-012670 (30 Aug. 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, uses Neurospat hardware to perform the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.

  9. Inspiring the Next Generation: Student Experiments and Educational Activities on the International Space Station, 2000-2006

    NASA Technical Reports Server (NTRS)

    Thomas, Donald A.; Robinson, Julie A.; Tate, Judy; Thumm, Tracy

    2006-01-01

    One important objective of NASA has always been to inspire the next generation. NASA and human space flight have a unique ability to capture the imaginations of both students and teachers. The presence of humans onboard the International Space Station (ISS) for more than five years now has provided a foundation for numerous educational activities aimed at capturing the interest and motivating study in the sciences, technology, engineering, and mathematics. Yet even before the Expedition 1 crew arrived at station in November 2000, experiments with student participation were being conducted onboard ISS in support of NASA missions. One of NASA's protein crystal growth experiments had been delivered to station by the shuttle Atlantis during STS-106 in September 2000 and was returned to Earth six weeks later aboard the shuttle Discovery during the STS-92 mission. From very early on it was recognized that students would have a strong interest in the ISS, and that this would provide a unique opportunity for them to get involved and participate in science and engineering projects on ISS. It should be noted that participation is not limited to U.S. students but involves the 16 International Partner countries and various other countries under special commercial agree

  10. Spaceflight Safety on the North Coast of America

    NASA Technical Reports Server (NTRS)

    Ciancone, Michael L.; Havenhill, Maria T.; Terlep, Judith A.

    1996-01-01

    Spaceflight Safety (SFS) engineers at NASA Lewis Research Center (LeRC) are responsible for evaluating the microgravity fluids and combustion experiments, payloads and facilities developed at NASA LeRC which are manifested for spaceflight on the Space Shuttle, the Russian space station Mir, and/or the International Space Station (ISS). An ongoing activity at NASA LeRC is the comprehensive training of its SFS engineers through the creation and use of safety tools and processes. Teams of SFS engineers worked on the development of an Internet website (containing a spaceflight safety knowledge database and electronic templates of safety products) and the establishment of a technical peer review process (known as the Safety Assurance for Lewis Spaceflight Activities (SALSA) review).

  11. Acoustic emissions verification testing of International Space Station experiment racks at the NASA Glenn Research Center Acoustical Testing Laboratory

    NASA Astrophysics Data System (ADS)

    Akers, James C.; Passe, Paul J.; Cooper, Beth A.

    2005-09-01

    The Acoustical Testing Laboratory (ATL) at the NASA John H. Glenn Research Center (GRC) in Cleveland, OH, provides acoustic emission testing and noise control engineering services for a variety of specialized customers, particularly developers of equipment and science experiments manifested for NASA's manned space missions. The ATL's primary customer has been the Fluids and Combustion Facility (FCF), a multirack microgravity research facility being developed at GRC for the USA Laboratory Module of the International Space Station (ISS). Since opening in September 2000, ATL has conducted acoustic emission testing of components, subassemblies, and partially populated FCF engineering model racks. The culmination of this effort has been the acoustic emission verification tests on the FCF Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR), employing a procedure that incorporates ISO 11201 (``Acoustics-Noise emitted by machinery and equipment-Measurement of emission sound pressure levels at a work station and at other specified positions-Engineering method in an essentially free field over a reflecting plane''). This paper will provide an overview of the test methodology, software, and hardware developed to perform the acoustic emission verification tests on the CIR and FIR flight racks and lessons learned from these tests.

  12. KSC-2014-2905

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – The plant pillows containing the outredgeous red lettuce leaves have been removed from the Veggie plant growth system inside a control chamber at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. From left, are Trent Smith, NASA project manager in the ISS Ground Processing and Research Project Office, Chuck Spern, lead project engineer with QinetiQ North America on the Engineering Services Contract, George Guerra, quality control engineer with QinetiQ North America, Jim Smodell, a technician with SGT, Gioia Massa, NASA payload scientist for Veggie, and Nicole Dufour, NASA Engineering and Technology. The growth chamber was used as a control unit for Veggie and procedures were followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station. The chamber mimicked the temperature, relative humidity and carbon dioxide concentration of those in the Veggie unit on the space station. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth was monitored for 33 days. On June 10, at the end of the cycle, the plants were carefully harvested, frozen and stored for return to Earth by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Photo credit: NASA/Frankie Martin

  13. Apollo experience report: Crew station integration. Volume 1: Crew station design and development

    NASA Technical Reports Server (NTRS)

    Allen, L. D.; Nussman, D. A.

    1976-01-01

    An overview of the evolution of the design and development of the Apollo command module and lunar module crew stations is given, with emphasis placed on the period from 1964 to 1969. The organizational planning, engineering techniques, and documentation involved are described, and a detailed chronology of the meetings, reviews, and exercises is presented. Crew station anomalies for the Apollo 7 to 11 missions are discussed, and recommendations for the solution of recurring problems of crew station acoustics, instrument glass failure, and caution and warning system performance are presented. Photographs of the various crew station configurations are also provided.

  14. FIR ACE samples

    NASA Image and Video Library

    2014-06-04

    ISS040-E-007368 (5 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, works with Advanced Colloids Experiment (ACE) samples in the Destiny laboratory of the International Space Station.

  15. Williams works with LOCAD-PTS in Destiny lab

    NASA Image and Video Library

    2007-04-01

    ISS014-E-18822 (31 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  16. Williams works with LOCAD-PTS in Destiny lab

    NASA Image and Video Library

    2007-04-01

    ISS014-E-18818 (31 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  17. ISS Expedition 18 Lab-On-a-Chip Applications Development (LOCAD) OPS

    NASA Image and Video Library

    2009-01-10

    ISS018-E-018995 (10 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  18. Williams works with LOCAD-PTS in Destiny lab

    NASA Image and Video Library

    2007-04-01

    ISS014-E-18811 (31 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  19. KSC-2014-2902

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – Jim Smodell, a technician with SGT, moves the plant pillows containing the outredgeous red lettuce leaves outside of the International Space Station Environmental Simulator chamber at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The growth chamber was used as a control unit for Veggie and procedures were followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station. In the background is Chuck Spern, lead project engineer with QinetiQ North America on the Engineering Services Contract. The chamber mimicked the temperature, relative humidity and carbon dioxide concentration of those in the Veggie unit on the space station. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth was monitored for 33 days. On June 10, at the end of the cycle, the plants were carefully harvested, frozen and stored for return to Earth by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Photo credit: NASA/Frankie Martin

  20. KSC-2014-2903

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – Jim Smodell, left, a technician with SGT, and Chuck Spern, lead project engineer with QinetiQ North America on the Engineering Services Contract, move the plant pillows containing the outredgeous red lettuce leaves outside of the International Space Station Environmental Simulator chamber at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The growth chamber was used as a control unit for Veggie and procedures were followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station. The chamber mimicked the temperature, relative humidity and carbon dioxide concentration of those in the Veggie unit on the space station. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth was monitored for 33 days. On June 10, at the end of the cycle, the plants were carefully harvested, frozen and stored for return to Earth by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Photo credit: NASA/Frankie Martin

  1. BASS teardown

    NASA Image and Video Library

    2014-08-05

    ISS040-E-088798 (5 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, removes hardware for the combustion experiment known as the Burning and Suppression of Solids (BASS-II) from the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft. NASA astronaut Reid Wiseman, flight engineer, looks on.

  2. BASS teardown

    NASA Image and Video Library

    2014-08-05

    ISS040-E-088800 (5 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, removes hardware for the combustion experiment known as the Burning and Suppression of Solids (BASS-II) from the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft. NASA astronaut Reid Wiseman, flight engineer, looks on.

  3. BASS teardown

    NASA Image and Video Library

    2014-08-05

    ISS040-E-088801 (5 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, removes hardware for the combustion experiment known as the Burning and Suppression of Solids (BASS-II) from the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft. NASA astronaut Reid Wiseman, flight engineer, looks on.

  4. Hopkins during SPHERES Slosh Run

    NASA Image and Video Library

    2014-01-22

    ISS038-E-033884 (22 Jan. 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, holds a plastic container partially filled with green-colored water which will be used in a new experiment using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, which are already on the station. For the SPHERES-Slosh experiment, two SPHERES robots are attached to opposite ends of a metal frame holding the plastic tank with the green-colored water. The new hardware for the SPHERES-Slosh study was delivered to the station aboard Orbital Sciences' Cygnus cargo craft on Jan. 12.

  5. Hopkins during SODI-DCMIX 2 Experiment

    NASA Image and Video Library

    2013-11-30

    ISS038-E-009255 (26 Nov. 2013) --- In the International Space Station?s Destiny laboratory, NASA astronaut Michael Hopkins, Expedition 38 flight engineer, prepares to install and activate the Selectable Optics Diagnostic Instrument (SODI) cell array two in the Microgravity Science Glovebox (MSG) for the Selectable Optics Diagnostic Instrument-Diffusion Coefficient in Mixtures 2 (SODI-DCMIX 2) experiment. SODI-DCMIX 2 is supporting research to determine diffusion coefficients in different petroleum field samples and refine petroleum reservoir models to help lead to more efficient extraction of oil resources.

  6. InSPACE experiment

    NASA Image and Video Library

    2009-08-01

    ISS020-E-026859 (1 Aug. 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, works with the Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions (InSPACE) experiment in the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.

  7. Sample Collection for the Russian Biodegradatsiya Experiment

    NASA Image and Video Library

    2007-10-01

    ISS015-E-32031 (October 2007) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, uses a Bioproby Kit to collect surface samples for analysis for the Russian Biodegradation experiment in the Zvezda Service Module of the International Space Station.

  8. Popping a Hole in High-Speed Pursuits

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA s Plum Brook Station, a 6,400-acre, remote test installation site for Glenn Research Center, houses unique, world-class test facilities, including the world s largest space environment simulation chamber and the world s only laboratory capable of full-scale rocket engine firings and launch vehicle system level tests at high-altitude conditions. Plum Brook Station performs complex and innovative ground tests for the U.S. Government (civilian and military), the international aerospace community, as well as the private sector. Popping a Hole in High-Speed Pursuits Recently, Plum Brook Station s test facilities and NASA s engineering experience were combined to improve a family of tire deflating devices (TDDs) that helps law enforcement agents safely, simply, and successfully stop fleeing vehicles in high-speed pursuit

  9. KSC-2014-2206

    NASA Image and Video Library

    2014-04-18

    CAPE CANAVERAL, Fla. - A blinding flash of light under the Falcon 9 rocket signals engine ignition and liftoff of the SpaceX-3 mission from Space Launch Complex 40 on Cape Canaveral Air Force Station, sending the Dragon resupply spacecraft on its way to the International Space Station. Launch was during an instantaneous window at 3:25 p.m. EDT. Dragon is making its fourth trip to the space station. The SpaceX-3 mission, carrying almost 2.5 tons of supplies, technology and science experiments, is the third of 12 flights through a $1.6 billion NASA Commercial Resupply Services contract. Dragon's cargo will support more than 150 experiments that will be conducted during the station's Expeditions 39 and 40. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html. Photo credit: NASA/Tony Gray

  10. Expedition 6 Crew Interviews: Don Pettit, Flight Engineer 2/ International Space Station (ISS) Science Officer (SO)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 6 member Don Pettit (Flight Engineer 2/ International Space Station (ISS) Science Officer (SO)) is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut and his career path. Pettit, who had been training as a backup crewmember, discusses the importance of training backups for ISS missions. He gives details on the goals and significance of the ISS, regarding experiments in various scientific disciplines such as the life sciences and physical sciences. Pettit also comments on the value of conducting experiments under microgravity. He also gives an overview of the ISS program to date, including the ongoing construction, international aspects, and the routines of ISS crewmembers who inhabit the station for four months at a time. He gives a cursory description of crew transfer procedures that will take place when STS-113 docks with ISS to drop off Pettit and the rest of Expedition 6, and retrieve the Expedition 5 crew.

  11. IMP: Using microsat technology to support engineering research inside of the International Space Station

    NASA Astrophysics Data System (ADS)

    Carroll, Kieran A.

    2000-01-01

    This paper describes an International Space Station (ISS) experiment-support facility being developed by Dynacon for the Canadian Space Agency (CSA), based on microsatellite technology. The facility is called the ``Intravehicular Maneuverable Platform,'' or IMP. The core of IMP is a small, free-floating platform (or ``bus'') deployed inside one of the pressurized crew modules of ISS. Exchangeable experimental payloads can then be mounted to the IMP bus, in order to carry out engineering development or demonstration tests, or microgravity science experiments: the bus provides these payloads with services typical of a standard satellite bus (power, attitude control, etc.). The IMP facility takes advantage of unique features of the ISS, such as the Shuttle-based logistics system and the continuous availability of crew members, to greatly reduce the expense of carrying out space engineering experiments. Further cost reduction has been made possible by incorporating technology that Dynacon has developed for use in a current microsatellite mission. Numerous potential payloads for IMP have been identified, and the first of these (a flexible satellite control experiment) is under development by Dynacon and the University of Toronto's Institute for Aerospace Studies, for the CSA. .

  12. InSPACE-3 experiment

    NASA Image and Video Library

    2013-08-18

    ISS036-E-033936 (18 Aug. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, enters data on a computer in the Destiny laboratory of the International Space Station.

  13. ECOSTRESS Unbagging

    NASA Image and Video Library

    2018-04-10

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers removed protective wrapping from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS). ECOSTRESS is designed to monitor one of the most basic processes in living plants: the loss of water through the tiny pores in leaves. ECOSTRESS will launch to the International Space Station aboard a Dragon spacecraft launched by a Falcon 9 rocket on the SpaceX CRS-15 mission in June 2018.

  14. NASA Space Station Astronaut Discusses Life in Space with Washington State Students

    NASA Image and Video Library

    2017-12-12

    Aboard the International Space Station, Expedition 53 Flight Engineer Mark Vande Hei of NASA discussed life and work aboard the complex during an in-flight question and answer session Dec. 12 with a variety of students representing schools in Washington, including students from the Steve Luther Elementary School in Lakebay, Washington. Vande Hei is in the midst of a five-month mission on the station, conducting research involving hundreds of experiments from international investigators.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2002-07-10

    Expedition Five crewmember and flight engineer Peggy Whitson displays the progress of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2001-05-14

    Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.

  17. 2. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. HYDRAULIC ENGINEER PILOTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. HYDRAULIC ENGINEER PILOTING VIDEO-CONTROLED BOAT MODEL FROM CONTROL TRAILER. NOTE VIEW FROM BOAT-MOUNTED VIDEO CAMERA SHOWN ON MONITOR, AND MODEL WATERWAY VISIBLE THROUGH WINDOW AT LEFT. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  18. BISE (Bodies in the Space Environment) experiment

    NASA Image and Video Library

    2009-04-09

    ISS019-E-005710 (9 April 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, uses Neurospat hardware to perform the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.

  19. BISE (Bodies in the Space Environment) experiment

    NASA Image and Video Library

    2009-04-18

    ISS019-E-010155 (18 April 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, uses Neurospat hardware to perform the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.

  20. BISE (Bodies in the Space Environment) experiment

    NASA Image and Video Library

    2009-05-02

    ISS019-E-013388 (2 May 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, uses Neurospat hardware to perform the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.

  1. BISE (Bodies in the Space Environment) experiment run

    NASA Image and Video Library

    2009-09-26

    ISS020-E-042187 (26 Sept. 2009) --- NASA astronaut Nicole Stott, Expedition 20 flight engineer, uses Neurospat hardware to perform the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.

  2. BISE (Bodies in the Space Environment) experiment

    NASA Image and Video Library

    2009-10-05

    ISS020-E-045307 (5 Oct. 2009) --- NASA astronaut Jeffrey Williams, Expedition 21 flight engineer, uses Neurospat hardware to perform the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.

  3. BISE (Bodies in the Space Environment) experiment

    NASA Image and Video Library

    2009-04-09

    ISS019-E-005706 (9 April 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, uses Neurospat hardware to perform the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.

  4. BISE (Bodies in the Space Environment) experiment

    NASA Image and Video Library

    2009-05-02

    ISS019-E-013399 (2 May 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, uses Neurospat hardware to perform the Bodies in the Space Environment (BISE) experiment in the Destiny laboratory of the International Space Station. The Canadian Space Agency-sponsored BISE experiment studies how astronauts perceive up and down in microgravity.

  5. Walker in the JPM

    NASA Image and Video Library

    2010-10-21

    ISS025-E-008414 (21 Oct. 2010) --- NASA astronaut Shannon Walker, Expedition 25 flight engineer, works at the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station.

  6. Preliminary Estimates of Frequency-Direction Spectra Derived from the Samson Pressure Gage Array, November 1990 to May 1991

    DTIC Science & Technology

    1991-09-01

    1990 TO MAY 1991 by Charles E. Long Coastal Engineering Research Center DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers 3909...Public Release; Distribution Unlimited Prepared for DEPARTMENT OF THE ARMY US Army Corps of Engineers Washington, DC 20314-1000 Under Civil Works...Institution of Oc anography at the Coastal Engineering Research Center (CERC) Field Research Facility (FRF) near Duck, NC, a two-dimensional array of 24

  7. FSL_FASES

    NASA Image and Video Library

    2013-06-19

    ISS036-E-009550 (19 June 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, installs the Fundamental and Applied Studies of Emulsion Stability (FASES) experiment container into the Central Experiment Module (CEM) Lower of Fluid Science Laboratory (FSL) in the Columbus laboratory of the International Space Station.

  8. Flight Hardware Fabricated for Combustion Science in Space

    NASA Technical Reports Server (NTRS)

    OMalley, Terence F.; Weiland, Karen J.

    2005-01-01

    NASA Glenn Research Center s Telescience Support Center (TSC) allows researchers on Earth to operate experiments onboard the International Space Station (ISS) and the space shuttles. NASA s continuing investment in the required software, systems, and networks provides distributed ISS ground operations that enable payload developers and scientists to monitor and control their experiments from the Glenn TSC. The quality of scientific and engineering data is enhanced while the long-term operational costs of experiments are reduced because principal investigators and engineering teams can operate their payloads from their home institutions.

  9. Russian EVA 28

    NASA Image and Video Library

    2011-02-16

    ISS026-E-027391 (16 Feb. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, wearing a Russian Orlan-MK spacesuit, participates in a session of extravehicular activity (EVA) focused on the installation of two scientific experiments outside the Zvezda Service Module of the International Space Station. During the four-hour, 51-minute spacewalk, Kondratyev and Russian cosmonaut Oleg Skripochka (out of frame), flight engineer, installed a pair of earthquake and lightning sensing experiments and retrieved a pair of spacecraft material evaluation panels.

  10. Kondratyev during EVA 28

    NASA Image and Video Library

    2011-02-16

    ISS026-E-027361 (16 Feb. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, wearing a Russian Orlan-MK spacesuit, participates in a session of extravehicular activity (EVA) focused on the installation of two scientific experiments outside the Zvezda Service Module of the International Space Station. During the four-hour, 51-minute spacewalk, Kondratyev and Russian cosmonaut Oleg Skripochka (out of frame), flight engineer, installed a pair of earthquake and lightning sensing experiments and retrieved a pair of spacecraft material evaluation panels.

  11. Kondratyev during EVA 28

    NASA Image and Video Library

    2011-02-16

    ISS026-E-027368 (16 Feb. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, wearing a Russian Orlan-MK spacesuit, participates in a session of extravehicular activity (EVA) focused on the installation of two scientific experiments outside the Zvezda Service Module of the International Space Station. During the four-hour, 51-minute spacewalk, Kondratyev and Russian cosmonaut Oleg Skripochka (out of frame), flight engineer, installed a pair of earthquake and lightning sensing experiments and retrieved a pair of spacecraft material evaluation panels.

  12. Wakata working on the CIR

    NASA Image and Video Library

    2014-02-05

    ISS038-E-042747 (5 Feb. 2014) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, works on the Combustion Integrated Rack (CIR) in the Destiny laboratory of the International Space Station. This research rack, which includes an optics bench, combustion chamber, fuel and oxidizer control and five different cameras, allows a variety of combustion experiments to be performed safely aboard the station.

  13. Wakata working on the CIR

    NASA Image and Video Library

    2014-02-05

    ISS038-E-042754 (5 Feb. 2014) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, works on the Combustion Integrated Rack (CIR) in the Destiny laboratory of the International Space Station. This research rack, which includes an optics bench, combustion chamber, fuel and oxidizer control and five different cameras, allows a variety of combustion experiments to be performed safely aboard the station.

  14. Wakata working on the CIR

    NASA Image and Video Library

    2014-02-05

    ISS038-E-042758 (5 Feb. 2014) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, works on the Combustion Integrated Rack (CIR) in the Destiny laboratory of the International Space Station. This research rack, which includes an optics bench, combustion chamber, fuel and oxidizer control and five different cameras, allows a variety of combustion experiments to be performed safely aboard the station.

  15. Qualitative models for space system engineering

    NASA Technical Reports Server (NTRS)

    Forbus, Kenneth D.

    1990-01-01

    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  16. SpeedyTime-5_Water_In_Space

    NASA Image and Video Library

    2017-08-10

    The International Space Station is a one-of-a-kind spot for scientists who want to do experiments where there’s no gravity, to find out how other natural forces function without gravity’s influence. In this “SpeedyTime” segment, Expedition 52 flight engineer Jack Fischer uses a few simple tools to demonstrate what happens to water in space when there’s no pull of gravity. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  17. Space Station Cosmonauts Walk in Space to Upgrade Communications Hardware

    NASA Image and Video Library

    2018-02-02

    Aboard the International Space Station, Expedition 54 Flight Engineers Alexander Misurkin and Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) conducted a spacewalk outside the Pirs docking compartment Feb. 2 to install a new high-gain communications antenna on the aft end of the Zvezda Service Module and retrieve science experiment packages from the hull of the module. It was the 208th spacewalk in support of space station assembly and maintenance, the fourth in Misurkin’s career and the second for Shkaplerov.

  18. Final Technical Report: Hydrogen Energy in Engineering Education (H2E3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, Peter A.; Cashman, Eileen; Lipman, Timothy

    2011-09-15

    Schatz Energy Research Center's Hydrogen Energy in Engineering Education curriculum development project delivered hydrogen energy and fuel cell learning experiences to over 1,000 undergraduate engineering students at five California universities, provided follow-on internships for students at a fuel cell company; and developed commercializable hydrogen teaching tools including a fuel cell test station and a fuel cell/electrolyzer experiment kit. Monitoring and evaluation tracked student learning and faculty and student opinions of the curriculum, showing that use of the curriculum did advance student comprehension of hydrogen fundamentals. The project web site (hydrogencurriculum.org) provides more information.

  19. Preliminary Results, Analysis, and Overview of Part-1 of the GOLD Experiment

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Jeganathan, M.

    1996-01-01

    The Ground/Orbiter Lasercomm Demonstration (GOLD) is an optical communications demonstraton between the Japanese Engineering Test Satellite (ETS-VI) and an optical ground transmitting and receiving station at the Table Mountain Facility. GOLD was an experiment that demonstrated real-time international collaboration.

  20. Mastracchio assembles the Experiment Container in the Columbus Module

    NASA Image and Video Library

    2013-11-25

    ISS038-E-008037 (25 Nov. 2013) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with Biolab hardware in the Columbus laboratory of the International Space Station. Biolab is used to perform space biology experiments on microorganisms, cells, tissue cultures, plants and small invertebrates.

  1. Mastracchio assembles the Experiment Container in the Columbus Module

    NASA Image and Video Library

    2013-11-25

    ISS038-E-008033 (25 Nov. 2013) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with Biolab hardware in the Columbus laboratory of the International Space Station. Biolab is used to perform space biology experiments on microorganisms, cells, tissue cultures, plants and small invertebrates.

  2. FE-1 Suraev prepares a new version of the BIO-5 Rasteniya-2 Experiment

    NASA Image and Video Library

    2009-10-29

    ISS021-E-016211 (29 Oct. 2009) --- Russian cosmonaut Maxim Suraev, Expedition 21 flight engineer, works with a new growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload in the Zvezda Service Module of the International Space Station.

  3. FE-1 Suraev prepares a new version of the BIO-5 Rasteniya-2 Experiment

    NASA Image and Video Library

    2009-10-29

    ISS021-E-016204 (29 Oct. 2009) --- Russian cosmonaut Maxim Suraev, Expedition 21 flight engineer, works with a new growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload in the Zvezda Service Module of the International Space Station.

  4. Microgravity Sciences Glovebox (MSG) with Shear History Extensional Rheology Experiment (SHERE) in European Lab Columbus

    NASA Image and Video Library

    2008-07-31

    ISS017-E-012288 (31 July 2008) --- NASA astronaut Greg Chamitoff, Expedition 17 flight engineer, works with the Shear History Extensional Rheology Experiment (SHERE) rheometer inside the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.

  5. Microgravity Sciences Glovebox (MSG) with Shear History Extensional Rheology Experiment (SHERE) in European Lab Columbus

    NASA Image and Video Library

    2008-07-31

    ISS017-E-012283 (31 July 2008) --- NASA astronaut Greg Chamitoff, Expedition 17 flight engineer, works with the Shear History Extensional Rheology Experiment (SHERE) rheometer inside the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.

  6. BIO-5 Rasteniya-2 (Plants-2) Experiment in the LADA-16 Greenhouse

    NASA Image and Video Library

    2009-10-26

    ISS021-E-012522 (26 Oct. 2009) --- Russian cosmonaut Roman Romanenko, Expedition 21 flight engineer, poses for a photo with the current growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload in the Zvezda Service Module of the International Space Station.

  7. Noguchi conducts BioLab WAICO-2 Experiment

    NASA Image and Video Library

    2010-05-10

    ISS023-E-042460 (10 May 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 23 flight engineer, uses a computer in the Columbus laboratory of the International Space Station.

  8. Mastracchio conducts Gravi-2 Culture Hydration

    NASA Image and Video Library

    2014-05-05

    ISS039-E-018462 (5 May 2014) --? In the Harmony node of the Earth-orbiting International Space Station, NASA astronaut Rick Mastracchio, Expedition 39 flight engineer, prepares culture chambers for an experiment.

  9. GRC-2015-C-00903

    NASA Image and Video Library

    2011-03-15

    NASA (Zin Technologies) engineer prepares Advanced Colloid Experiment Heated-2 samples that will be analyzed aboard the International Space Station using the zero-gravity Light Microscopy Module, LMM in the Fluids Integrated Rack, FIR

  10. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011479 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  11. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011459 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  12. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011481 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  13. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011441 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  14. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011747 (24 June 2013) --- Russian cosmonaut Alexander Misurkin (bottom center), Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  15. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011642 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  16. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011440 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed one new one.

  17. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011480 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  18. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011745 (24 June 2013) --- Russian cosmonaut Alexander Misurkin (bottom center), Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  19. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011598 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed one new one.

  20. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011477 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  1. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011439 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed one new one.

  2. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011640 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  3. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011608 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  4. Space station attached payload program support

    NASA Technical Reports Server (NTRS)

    Estes, Maurice G., Jr.; Brown, Bardle D.

    1989-01-01

    The USRA is providing management and technical support for the peer review of the Space Station Freedom Attached Payload proposals. USRA is arranging for consultants to evaluate proposals, arranging meeting facilities for the reviewers to meet in Huntsville, Alabama and management of the actual review meetings. Assistance in developing an Experiment Requirements Data Base and Engineering/Technical Assessment support for the MSFC Technical Evaluation Team is also being provided. The results of the project will be coordinated into a consistent set of reviews and reports by USRA. The strengths and weaknesses analysis provided by the peer panel reviewers will by used NASA personnel in the selection of experiments for implementation on the Space Station Freedom.

  5. BCAT setup in Kibo

    NASA Image and Video Library

    2014-06-03

    ISS040-E-006891 (3 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test (BCAT) experiment in the Kibo laboratory of the International Space Station.

  6. DeWinne posing at the Rasteniya-2 plant growth experiment in the SM during Expedition Five

    NASA Image and Video Library

    2002-11-08

    ISS005-E-20310 (8 November 2002) --- Belgian Soyuz 5 Flight Engineer Frank DeWinne is pictured near a plant growth experiment in the Zvezda Service Module on the International Space Station (ISS). DeWinne represents the European Space Agency (ESA).

  7. Kotov works with samples from the Bioscience Experiment ASEPTIC during Joint Operations

    NASA Image and Video Library

    2010-02-19

    ISS022-E-068638 (18 Feb. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, works with samples from the bioscience experiment ASEPTIC (BTKh-39) in the new Russian Glavboks-S (Glovebox) located in the Poisk Mini-Research Module 2 (MRM2) of the International Space Station.

  8. Kotov works with samples from the Bioscience Experiment ASEPTIC during Joint Operations

    NASA Image and Video Library

    2010-02-19

    ISS022-E-068640 (18 Feb. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, works with samples from the bioscience experiment ASEPTIC (BTKh-39) in the new Russian Glavboks-S (Glovebox) located in the Poisk Mini-Research Module 2 (MRM2) of the International Space Station.

  9. Kotov works with samples from the Bioscience Experiment ASEPTIC during Joint Operations

    NASA Image and Video Library

    2010-02-19

    ISS022-E-068645 (18 Feb. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, works with samples from the bioscience experiment ASEPTIC (BTKh-39) in the new Russian Glavboks-S (Glovebox) located in the Poisk Mini-Research Module 2 (MRM2) of the International Space Station.

  10. iss028e048923

    NASA Image and Video Library

    2011-09-13

    ISS028-E-048923 (13 Sept. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 28 flight engineer, works with the Fluid Physics Experiment Facility/Marangoni Surface (FPEF MS) Core hardware in the Kibo laboratory of the International Space Station. The Marangoni convection experiment in the FPEF examines fluid tension flow in micro-G.

  11. Williams during the PFE-OUM Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-05-24

    ISS015-E-09461 (24 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) during a Periodic Fitness Evaluation with Oxygen Uptake Measurement (PFE-OUM) experiment in the Destiny laboratory of the International Space Station.

  12. DeWinne of ESA works with experiments housed in the MSG in the U.S. Laboratory

    NASA Image and Video Library

    2002-11-01

    ISS005-E-19073 (1 November 2002) --- Belgian Soyuz 5 Flight Engineer Frank DeWinne, of the European Space Agency (ESA), works with experiments housed in the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS).

  13. Expedition 16 FE Malenchenko working on the Conjugation Experiment Hardware in the SM

    NASA Image and Video Library

    2007-10-13

    ISS015-E-34286 (13 Oct. 2007) --- Cosmonaut Yuri I. Malenchenko, Expedition 16 flight engineer representing Russia's Federal Space Agency, works with a hybridizer from the Rekomb-K kit used in the Konyugatsia (Conjugation) experiment in the Zvezda Service Module of the International Space Station.

  14. Nespoli performs periodic maintenance on the PuFF Experiment

    NASA Image and Video Library

    2011-02-14

    ISS026-E-027009 (14 Feb. 2011) --- European Space Agency (ESA) astronaut Paolo Nespoli, Expedition 26 flight engineer, performs periodic maintenance on the Pulmonary Function in Flight (PuFF) experiment by re-greasing the PuFF calibration syringe in the Columbus laboratory of the International Space Station.

  15. KSC-2014-2904

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – The plant pillows containing the outredgeous red lettuce leaves have been removed from the Veggie plant growth system inside a control chamber at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. From left, are Chuck Spern, lead project engineer with QinetiQ North America on the Engineering Services Contract, Jim Smodell, a technician with SGT, and Gioia Massa, NASA payload scientist for Veggie. The growth chamber was used as a control unit for Veggie and procedures were followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station. The chamber mimicked the temperature, relative humidity and carbon dioxide concentration of those in the Veggie unit on the space station. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth was monitored for 33 days. On June 10, at the end of the cycle, the plants were carefully harvested, frozen and stored for return to Earth by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Photo credit: NASA/Frankie Martin

  16. Pettit performs a session of BASS Fire Safety Tests at the MSG

    NASA Image and Video Library

    2012-03-30

    ISS030-E-178648 (30 March 2012) --- NASA astronaut Don Pettit, Expedition 30 flight engineer, performs a session of Burning and Suppression of Solids (BASS) fire safety tests at the Microgravity Sciences Glovebox (MSG) in the International Space Station?s Destiny laboratory. BASS uses Smoke Point in Coflow Experiment (SPICE) equipment but burns solid fuel samples instead of gaseous jets.

  17. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025017 (26 July 2013) --- In the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, speaks in a microphone as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  18. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025034 (26 July 2013) --- From the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, uses a computer as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  19. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025030 (26 July 2013) --- From the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, uses a computer as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  20. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025012 (26 July 2013) --- From the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, uses a computer as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  1. Russian BAR/EXPERT experiment

    NASA Image and Video Library

    2009-08-28

    ISS020-E-035022 (27 Aug. 2009) --- Russian cosmonaut Roman Romanenko, Expedition 20 flight engineer, uses the Russian BAR/EXPERT science payload to take various environmental measurements in the Zvezda Service Module of the International Space Station.

  2. De Winne with CBEF in Kibo

    NASA Image and Video Library

    2009-07-10

    ISS020-E-019027 (10 July 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, works at the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station.

  3. Walker in the JPM

    NASA Image and Video Library

    2010-10-21

    ISS025-E-008416 (21 Oct. 2010) --- NASA astronaut Shannon Walker, Expedition 25 flight engineer, uses a computer while working at the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station.

  4. Wakata in JPM with CBEF

    NASA Image and Video Library

    2009-07-09

    ISS020-E-020276 (9 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works at the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station.

  5. iss031e140701

    NASA Image and Video Library

    2012-06-23

    ISS031-E-140701 (23 June 2012) --- Russian cosmonaut Sergei Revin, Expedition 31 flight engineer, works on the BTKh-26 KASKAD (Cascade) experiment in the Rassvet Mini-Research Module 1 (MRM-1) of the International Space Station.

  6. iss031e140699

    NASA Image and Video Library

    2012-06-23

    ISS031-E-140699 (23 June 2012) --- Russian cosmonaut Sergei Revin, Expedition 31 flight engineer, works on the BTKh-26 KASKAD (Cascade) experiment in the Rassvet Mini-Research Module 1 (MRM-1) of the International Space Station.

  7. Wiseman in with ACE sample

    NASA Image and Video Library

    2014-05-30

    ISS040-E-006569 (2 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, performs an Advanced Colloids Experiment (ACE) sample 40-minute mixing activity in the Destiny laboratory of the International Space Station.

  8. Wiseman in with ACE sample

    NASA Image and Video Library

    2014-05-30

    ISS040-E-006567 (2 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, performs an Advanced Colloids Experiment (ACE) sample 40-minute mixing activity in the Destiny laboratory of the International Space Station.

  9. InSPACE-3 Experiment

    NASA Image and Video Library

    2013-11-10

    ISS037-E-028590 (10 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 37/38 flight engineer, enters data into a computer near the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.

  10. GLACIER Express Rack Setup

    NASA Image and Video Library

    2010-09-01

    ISS024-E-012995 (1 Sept. 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, works with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.

  11. Engineering challenges of operating year-round portable seismic stations at high-latitude

    NASA Astrophysics Data System (ADS)

    Beaudoin, Bruce; Carpenter, Paul; Hebert, Jason; Childs, Dean; Anderson, Kent

    2017-04-01

    Remote portable seismic stations are, in most cases, constrained by logistics and cost. High latitude operations introduce environmental, technical and logistical challenges that require substantially more engineering work to ensure robust, high quality data return. Since 2006, IRIS PASSCAL has been funded by NSF to develop, deploy, and maintain a pool of polar specific seismic stations. Here, we describe our latest advancements to mitigate the challenges of high-latitude, year-round station operation. The IRIS PASSCAL program has supported high-latitude deployments since the late 1980s. These early deployments were largely controlled source, summer only experiments. In early 2000 PASSCAL users began proposing year-round deployments of broadband stations in some of the harshest environments on the planet. These early year-round deployments were stand-alone (no telemetry) stations largely designed to operate during summer months and then run as long as possible during the winter with hopes the stations would revive come following summer. In 2006 and in collaboration with UNAVCO, we began developing communications, power systems, and enclosures to extend recording to year-round. Since this initial effort, PASSCAL continued refinement to power systems, enclosure design and manufacturability, and real-time data communications. Several sensor and data logger manufacturers have made advances in cold weather performance and delivered newly designed instruments that have furthered our ability to successfully run portable stations at high-latitude with minimal logistics - reducing size and weight of instruments and infrastructure. All PASSCAL polar engineering work is openly shared through our website: www.passcal.nmt.edu/content/polar

  12. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-23

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, Michele Koralewicz, a mechanical technician with EASI on the Engineering Services Contract, sews up the end of a bag that contains one of the Veg-03 plant pillows. The Veg-03 experiment will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  13. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-23

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, Michele Koralewicz, a mechanical technician with EASI on the Engineering Services Contract, precisely sews up the end of a bag that contains one of the Veg-03 plant pillows. The Veg-03 experiment will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  14. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-23

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, Michele Koralewicz, a mechanical technician with EASI on the Engineering Services Contract, prepares to sew the end of a bag that contains one of the Veg-03 plant pillows. The Veg-03 experiment will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  15. SpaceX_CRS14_Release_2018_125_1300_649273

    NASA Image and Video Library

    2018-05-07

    U.S. COMMERCIAL CARGO SHIP DEPARTS THE INTERNATIONAL SPACE STATION The upiloted SpaceX Dragon cargo craft departed the International Space Station May 5 after a four-week delivery run in which thousands of pounds of supplies and science experiments arrived at the orbiting laboratory. Robotic ground controllers sent commands to release Dragon from the grasp of the Canadarm2 robotic arm, after which several firings of the Dragon’s engine sent the vehicle to a safe distance from the station. Later in the day, SpaceX flight controllers conducted a deorbit burn for Dragon, enabling it to return to Earth for a splashdown in the Pacific some 400 miles southwest of Long Beach, California. Dragon returned some two tons of vital science experiments for researchers and other critical components from the station for refurbishment.

  16. Planning for Space Station Freedom laboratory payload integration

    NASA Technical Reports Server (NTRS)

    Willenberg, Harvey J.; Torre, Larry P.

    1989-01-01

    Space Station Freedom is being developed to support extensive missions involving microgravity research and applications. Requirements for on-orbit payload integration and the simultaneous payload integration of multiple mission increments will provide the stimulus to develop new streamlined integration procedures in order to take advantage of the increased capabilities offered by Freedom. The United States Laboratory and its user accommodations are described. The process of integrating users' experiments and equipment into the United States Laboratory and the Pressurized Logistics Modules is described. This process includes the strategic and tactical phases of Space Station utilization planning. The support that the Work Package 01 Utilization office will provide to the users and hardware developers, in the form of Experiment Integration Engineers, early accommodation assessments, and physical integration of experiment equipment, is described. Plans for integrated payload analytical integration are also described.

  17. KSC-2013-1669

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  18. KSC-2013-1665

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  19. KSC-2013-1663

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  20. KSC-2013-1661

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  1. KSC-2013-1662

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  2. KSC-2013-1667

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  3. KSC-2013-1668

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  4. KSC-2013-1666

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  5. KSC-2013-1664

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  6. KSC-2013-1660

    NASA Image and Video Library

    2013-02-27

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, engineers prepare experiments for loading aboard the SpaceX Dragon capsule for launch to the International Space Station. Once the packaging is complete, the samples will be transported to Space Launch Complex-40 on Cape Canaveral Air Force Station where they will be loaded aboard the Dragon. Scheduled for launch March 1 atop a Falcon 9 rocket, Dragon will be making its third trip to the space station. The mission is the second of 12 SpaceX flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/spacex2-feature.html Photo credit: NASA/Kim Shiflett

  7. 77 FR 33560 - Woodland Rail, LLC-Acquisition and Operation Exemption-Line of Maine Central Railroad Co.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... United States. The end points of the Line are at engineering station 64+17 in Baileyville and engineering... Woodland Junction, Me., which is engineering station 363+45, and engineering station 393+37, and another spur track at St. Croix Junction, Me., which is engineering station 6817+12.\\1\\ \\1\\ In a related...

  8. Inspiring the Next Generation: The International Space Station Education Accomplishments

    NASA Technical Reports Server (NTRS)

    Alleyne, Camille W.; Hasbrook, Pete; Knowles, Carolyn; Chicoine, Ruth Ann; Miyagawa, Yayoi; Koyama, Masato; Savage, Nigel; Zell, Martin; Biryukova, Nataliya; Pinchuk, Vladimir; hide

    2014-01-01

    The International Space Station (ISS) has a unique ability to capture the imagination of both students and teachers worldwide. Since 2000, the presence of humans onboard ISS has provided a foundation for numerous educational activities aimed at capturing that interest and motivating study in the sciences, technology, engineering and mathematics (STEM). Over 43 million students around the world have participated in ISS-related educational activities. Projects such as YouTube Space Lab, Sally Ride Earth Knowledge-based Acquired by Middle Schools (EarthKAM), SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) Zero-Robotics, Tomatosphere, and MAI-75 events among others have allowed for global student, teacher and public access to space through student classroom investigations and real-time audio and video contacts with crewmembers. Educational activities are not limited to STEM but encompass all aspects of the human condition. This is well illustrated in the Uchu Renshi project, a chain poem initiated by an astronaut while in space and continued and completed by people on Earth. With ISS operations now extended to 2024, projects like these and their accompanying educational materials are available to more students around the world. From very early on in the program's history, students have been provided with a unique opportunity to get involved and participate in science and engineering projects. Many of these projects support inquiry-based learning that allows students to ask questions, develop hypothesis-derived experiments, obtain supporting evidence and identify solutions or explanations. This approach to learning is well-published as one of the most effective ways to inspire students to pursue careers in scientific and technology fields. Ever since the first space station element was launched, a wide range of student experiments and educational activities have been performed, both individually and collaboratively, by all the international partner agencies, National Aeronautics and Space Administration (NASA), Canadian Space Agency (CSA), European Space Agency, (ESA), Japan Aerospace Exploration Agency (JAXA) and Russian Federal Space Agency (Roscosmos), and a number of non-participating countries, some under commercial agreements. Many of these programs still continue, and others are being developed and added to the stations tasks on a regular basis. These diverse student experiments and programs fall into one of the following categories: student-developed experiments; students performing classroom versions of ISS experiments; students participating in ISS investigator experiments; education competitions; students participating in ISS Engineering Education; Education Demonstrations and Cultural Activities. This paper summarizes some of the main student experiments and educational activities that have been conducted on the space station.

  9. Marangoni Inside (MI) Removal

    NASA Image and Video Library

    2013-07-23

    ISS036-E-023061 (23 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, works to remove the Marangoni Inside (MI) from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.

  10. Marangoni Inside (MI) Removal

    NASA Image and Video Library

    2013-07-23

    ISS036-E-023083 (23 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, works to remove the Marangoni Inside (MI) from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.

  11. Marangoni Inside (MI) Removal

    NASA Image and Video Library

    2013-07-23

    ISS036-E-023070 (23 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, works to remove the Marangoni Inside (MI) from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.

  12. Borisenko works with BTKh-40/BIF (Bifidobacterius) Experiment

    NASA Image and Video Library

    2011-04-30

    ISS027-E-018248 (29 April 2011) --- Russian cosmonaut Andrey Borisenko, Expedition 27 flight engineer, is pictured near the TBU-V thermostat-controlled incubator located in the Russian segment of the International Space Station.

  13. Creamer works with IVGEN Experiment Payload in Columbus MSG

    NASA Image and Video Library

    2010-05-03

    ISS023-E-033108 (6 May 2010) --- NASA astronaut T.J. Creamer, Expedition 23 flight engineer, is pictured near the Microgravity Science Glovebox (MSG) located in the Columbus laboratory of the International Space Station.

  14. Creamer works with IVGEN Experiment Payload in Columbus MSG

    NASA Image and Video Library

    2010-05-03

    ISS023-E-033107 (6 May 2010) --- NASA astronaut T.J. Creamer, Expedition 23 flight engineer, is pictured near the Microgravity Science Glovebox (MSG) located in the Columbus laboratory of the International Space Station.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skibo, A.

    SRNL has considerable experience in designing, engineering, and operating systems for removing iodine-129 (I-129) and ruthenium-106 (Ru-106) from waste streams that are directly analogous to the Advanced Liquid Processing System (ALPS) waste streams. SRNL proposes to provide the technical background and design and engineering support for an improved I-129 and Ru-106 removal system for application to ALPS on the Fukushima Daiichi Nuclear Power Station (NPS).

  16. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-01

    As the construction continued on the International Space Station (ISS), STS-118 Astronaut Dave Williams, representing the Canadian Space Agency, participated in the fourth and final session of Extra Vehicular Activity (EVA). During the 5 hour space walk, Williams and Expedition 15 engineer Clay Anderson (out of frame) installed the External Wireless Instrumentation System Antenna, attached a stand for the shuttle robotic arm extension boom, and retrieved the two Materials International Space Station Experiments (MISSE) for return to Earth. MISSE collects information on how different materials weather in the environment of space.

  17. [Development of Engineering Systems for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    1995-01-01

    From January, 1990 through September, 1995, Cleveland State University (CSU) and Lewis Research Center (LeRC) participated in a research cooperative agreement. Extensive study and experimentation were done by CSU on research technologies, methods, and techniques employed by the Space Station Freedom (SSF) project and, later, the Space Experiments Division (SED). In spite of many problems occasioned by the virtual cancellation of Space Station Freedom at LeRC, and organizational and financial problem at LeRC, CSU was able to do valuable work in the study and improvement of research operating methods there.

  18. STS-106 Expedition 2 Crew Interview: Jim Voss

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Expedition 2 (the second resident crew of the International Space Station) Flight Engineer Jim Voss is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the Space Shuttle mission and goals, including information on the spacewalks and transfer of Expedition crews, and discusses his upcoming stay on the International Space Station (ISS). Voss gives his thoughts on the international cooperation needed to successfully construct the ISS and some of the scientific experiments that will take place on the station.

  19. Expedition 2 Crew Interview: Susan Helms

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Expedition 2 (the second resident crew of the International Space Station) Flight Engineer Susan Helms is seen being interviewed. She answers questions about her inspiration to become an astronaut and her career path. She gives details on the Space Shuttle mission and goals, including information on the spacewalks and transfer of Expedition crews, and discusses her upcoming stay on the International Space Station (ISS). Helms gives her thoughts on the international cooperation needed to successfully construct the ISS and some of the scientific experiments that will take place on the station.

  20. SpeedyTime-4_Microgravity_Science_Glovebox

    NASA Image and Video Library

    2017-08-03

    Doing groundbreaking science can mean working with dangerous materials; how do the astronauts on the International Space Station protect themselves and their ship in those cases? They use the Microgravity Science Glovebox: in this “SpeedyTime” segment Expedition 52 flight engineer Peggy Whitson pulls a rack out of the wall of the Destiny Laboratory to show us how astronauts access a sealed environment for science and technology experiments that involve potentially hazardous materials. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  1. Space Station Water Quality

    NASA Technical Reports Server (NTRS)

    Willis, Charles E. (Editor)

    1987-01-01

    The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.

  2. Noguchi in the JPM during Expedition 22

    NASA Image and Video Library

    2010-01-15

    ISS022-E-026221 (15 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, services the Fluid Physics Experiment Facility/Marangoni Surface (FPEF MS) Core hardware in the Kibo laboratory of the International Space Station. The Marangoni convection experiment in the FPEF examines fluid tension flow in micro-G.

  3. Noguchi in the JPM during Expedition 22

    NASA Image and Video Library

    2010-01-14

    ISS022-E-025474 (14 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, services the Fluid Physics Experiment Facility/Marangoni Surface (FPEF MS) Core hardware in the Kibo laboratory of the International Space Station. The Marangoni convection experiment in the FPEF examines fluid tension flow in micro-G.

  4. iss028e025736

    NASA Image and Video Library

    2011-08-15

    ISS028-E-025736 (15 Aug. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 28 flight engineer, uses a computer to activate the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. Furukawa was preparing to conduct experiments with the Shear History Extensional Rheology Experiment (SHERE) hardware inside the MSG.

  5. iss028e025737

    NASA Image and Video Library

    2011-08-15

    ISS028-E-025737 (15 Aug. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 28 flight engineer, uses a computer to activate the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. Furukawa was preparing to conduct experiments with the Shear History Extensional Rheology Experiment (SHERE) hardware inside the MSG.

  6. SPHINX (SPaceflight of Huvec: an Integrated eXperiment) Biobox kit

    NASA Image and Video Library

    2010-10-31

    ISS025-E-010145 (31 Oct. 2010) --- NASA astronaut Scott Kelly (left) and Russian cosmonaut Oleg Skripochka, both Expedition 25 flight engineers, are pictured during transfer activities of the European Space Agency?s SPHINX (SPaceflight of Huvec: an Integrated eXperiment) Biobox kit in the Unity node of the International Space Station.

  7. SPHINX (SPaceflight of Huvec: an Integrated eXperiment) Biobox kit

    NASA Image and Video Library

    2010-10-31

    ISS025-E-010146 (31 Oct. 2010) --- NASA astronaut Scott Kelly (left) and Russian cosmonaut Oleg Skripochka, both Expedition 25 flight engineers, are pictured during transfer activities of the European Space Agency?s SPHINX (SPaceflight of Huvec: an Integrated eXperiment) Biobox kit in the Unity node of the International Space Station.

  8. Experiments with windshields for precipitation gages

    Treesearch

    C. C. Warnick

    1953-01-01

    Under cooperative encouragement from several Federal agencies, the Engineering Experiment Station of the University of Idaho has been studying the principles, development, and use of high-altitude precipitation gages. A low-speed wind tunnel has been used to study the effect of wind on the catching characteristics of model storage precipitation gages. A snow storm was...

  9. Lonchakov holds Space Science P/L Kristallizator Module-1 experiment hardware in the SM during Joint Operations

    NASA Image and Video Library

    2008-10-15

    ISS017-E-018411 (15 Oct. 2008) --- Russian Federal Space Agency cosmonaut Yury Lonchakov, Expedition 18 flight engineer, looks over a procedures checklist while holding Space Science P/L Crystallizer Module-1 experiment hardware in the Zvezda Service Module of the International Space Station.

  10. Design, Certification, and Deployment of the Colorimetric Water Quality Monitoring Kit (CWQMK)

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeff A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Carrizales, Stephanie M.; McCoy, J. Torin

    2009-01-01

    In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS) aboard STS-128/17A. The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was developed by a team of scientists and engineers from NASA s Habitability and Environmental Factors Division in the Space Life Sciences Directorate at Johnson Space Center, the Wyle Integrated Science and Engineering Group in Houston, Texas, the University of Utah, and Iowa State University. The CWQMK was flown and deployed as a Station Development Test Objective (SDTO) experiment on ISS. The goal of the SDTO experiment was to evaluate the acceptability of CSPE technology for routine water quality monitoring on ISS. This paper provides an overview of the SDTO experiment, as well as a detailed description of the CWQMK hardware and a summary of the testing and analysis conducted to certify the CWQMK for use on ISS. The results obtained from the SDTO experiment are also reported and discussed in detail.

  11. FE6 during Sprint Ultrasound Scans

    NASA Image and Video Library

    2013-11-22

    ISS038-E-007119 (21 Nov. 2013) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, wears ultrasound gear around his legs while performing the Integrated Resistance and Aerobic Training Study (Sprint) experiment in the Columbus laboratory of the International Space Station. Sprint evaluates the use of high intensity, low volume exercise training to minimize loss of muscle, bone, and cardiovascular function in station crew members during long-duration missions.

  12. MATRYOSHKA-R (RBO-3-2) Radiation Suite in the Service Module (SM)

    NASA Image and Video Library

    2009-03-14

    ISS018-E-040944 (18 March 2009) --- Cosmonaut Yury Lonchakov, Expedition 18 flight engineer, works with the European Matroshka-R Phantom experiment in the Zvezda Service Module of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station. Matroshka, the name for the traditional Russian set of nestling dolls, is an antroph-amorphous model of a human torso designed for radiation studies.

  13. MATRYOSHKA-R (RBO-3-2) radiation suite in service module (SM)

    NASA Image and Video Library

    2009-03-18

    ISS018-E-040992 (18 March 2009) --- Cosmonaut Yury Lonchakov, Expedition 18 flight engineer, works with the European Matroshka-R Phantom experiment in the Zvezda Service Module of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station. Matroshka, the name for the traditional Russian set of nestling dolls, is an antroph-amorphous model of a human torso designed for radiation studies.

  14. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-013914 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  15. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014615 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (top), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  16. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014147 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (foreground), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  17. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014536 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  18. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014444 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  19. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-015415 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson, Expedition 40 commander; and Reid Wiseman (partially obscured), flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  20. 77 FR 33560 - Eastern Maine Railway Company-Trackage Rights Exemption-Woodland Rail, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... the Line within the United States. The end points of the Line are at engineering station 64+17 in Baileyville and engineering station 6978+84 in Calais, in Washington County, Me. The transaction includes a spur track between Woodland Junction, Me., which is engineering station 363+45, and engineering station...

  1. Results of Kirari optical communication demonstration experiments with NICT optical ground station (KODEN) aiming for future classical and quantum communications in space

    NASA Astrophysics Data System (ADS)

    Toyoshima, Morio; Takenaka, Hideki; Shoji, Yozo; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo

    2012-05-01

    Bi-directional ground-to-satellite laser communication experiments were successfully performed between the optical ground station developed by the National Institute of Information and Communications Technology (NICT), located in Koganei City in suburban Tokyo, and a low earth orbit (LEO) satellite, the "Kirari" Optical Inter-orbit Communications Engineering Test Satellite (OICETS). The experiments were conducted in cooperation with the Japan Aerospace Exploration Agency (JAXA), and called the Kirari Optical communication Demonstration Experiments with the NICT optical ground station (or KODEN). The ground-to-OICETS laser communication experiment was the first in-orbit demonstration involving the LEO satellite. The laser communication experiment was conducted since March 2006. The polarization characteristics of an artificial laser source in space, such as Stokes parameters, and the degree of polarization were measured through space-to-ground atmospheric transmission paths, which results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography on a global scale in the future. The Phase-5 experiment, international laser communications experiments were also successfully conducted with four optical ground stations located in the United States, Spain, Germany, and Japan from April 2009 to September 2009. The purpose of the Phase-5 experiment was to establish OICETS-to-ground laser communication links from the different optical ground stations and the statistical analyses such as the normalized power, scintillation index, probability density function, auto-covariance function, and power spectral density were performed. Thus the applicability of the satellite laser communications was demonstrated, aiming not only for geostationary earth orbit-LEO links but also for ground-to-LEO optical links. This paper presents the results of the KODEN experiments and mainly introduces the common analyses among the different optical ground stations.

  2. SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2

    NASA Image and Video Library

    2014-03-07

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Allison Caron, a QinetiQ mechanical engineer, checks out part of the Biotube experiment which will be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  3. Advanced Colloids Experiment-1 (ACE-1)

    NASA Image and Video Library

    2013-07-22

    ISS036-E-023770 (22 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, conducts science work with the ongoing experiment Advanced Colloids Experiment-1 (ACE-1) inside the Fluids Integrated Rack. The experiment observes colloids, microscopic particles evenly dispersed throughout materials, with the potential for manufacturing improved materials and products on Earth. Cassidy is working at the Light Microscopy Module (LMM) in the Destiny laboratory of the International Space Station.

  4. Thirsk with FPEF MS hardware in Kibo

    NASA Image and Video Library

    2009-10-07

    ISS020-E-048792 (7 Oct. 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20/21 flight engineer, holds Fluid Physics Experiment Facility/Marangoni Surface (FPEF MS) Core hardware in the Kibo laboratory of the International Space Station.

  5. BCAT-C1 Session in the JPM

    NASA Image and Video Library

    2012-08-08

    ISS032-E-014593 (6 Aug. 2012) --- NASA astronaut Joe Acaba, Expedition 32 flight engineer, conducts a session with the Binary Colloidal Alloy Test-6 (BCAT-6) experiment in the Kibo laboratory of the International Space Station.

  6. Chamitoff works on the SAIBO Rack in the JEM during Expedition 17

    NASA Image and Video Library

    2008-07-30

    ISS017-E-012001 (30 July 2008) --- NASA astronaut Greg Chamitoff, Expedition 17 flight engineer, uses a computer while working with an experiment in the Kibo laboratory of the International Space Station.

  7. ATS-6 engineering performance report. Volume 5: Propagation experiments

    NASA Technical Reports Server (NTRS)

    Wales, R. O. (Editor)

    1981-01-01

    Propagation experiments at 1550 MHz to 1650 MHz are reviewed, including the Integrated L-Band Experiments system and results, and the Mobile L-Band Terminals for Satellite Communication system. Experiments at 4 GHz to 6 GHz are reported, including the Radio Frequency Interferometer Measurements system and results, and Earth station antenna evaluations. Experiments above 10 GHz are discussed, including Comsat and ATS-6 millimeter wave propagation/experiments, and communication ATS-6 version at 20 and 30 GHz.

  8. Improving the Estimates of International Space Station (ISS) Induced K-Factor Failure Rates for On-Orbit Replacement Unit (ORU) Supportability Analyses

    NASA Technical Reports Server (NTRS)

    Anderson, Leif F.; Harrington, Sean P.; Omeke, Ojei, II; Schwaab, Douglas G.

    2009-01-01

    This is a case study on revised estimates of induced failure for International Space Station (ISS) on-orbit replacement units (ORUs). We devise a heuristic to leverage operational experience data by aggregating ORU, associated function (vehicle sub -system), and vehicle effective' k-factors using actual failure experience. With this input, we determine a significant failure threshold and minimize the difference between the actual and predicted failure rates. We conclude with a discussion on both qualitative and quantitative improvements the heuristic methods and potential benefits to ISS supportability engineering analysis.

  9. KSC-2014-2909

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – At far right, Jim Smodell, a technician with SGT, shows a plant pillow from the Veggie plant growth system to Gioia Massa, NASA payload scientist for Veggie. Partially hidden behind Smodell is Chuck Spern, lead project engineer with QinetiQ North America on the Engineering Services Contract. At left is Trent Smith, NASA project manager in the ISS Ground Processing and Research Project Office, and Nicole Dufour, NASA Engineering and Technology Directorate. They are in the Payload Development Laboratory at the Space Station Processing Facility, or SSPF, at NASA's Kennedy Space Center in Florida. The plant pillows were removed from the Veggie plant growth system inside a control chamber at the SSPF. The growth chamber was used as a control unit for Veggie and procedures were followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station. The chamber mimicked the temperature, relative humidity and carbon dioxide concentration of those in the Veggie unit on the space station. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth was monitored for 33 days. On June 10, at the end of the cycle, the plants were carefully harvested, frozen and stored for return to Earth by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Photo credit: NASA/Frankie Martin

  10. Multinational Experiment 7: Protecting Access to Space

    DTIC Science & Technology

    2013-07-08

    access to space cost to the design, engineering , production and operation of the spacecraft. They also have an impact on spacecraft mass, thermal...station and provide engineering support to receive data in the agreed format. Step 5 – Implementing interoperability. Once a framework has been...procedures or using alternative means (for example, high-altitude airships ). A7. The results support the view that better mitigation approaches need to

  11. Annual Data Summary for 1986 CERC (Coastal Engineering Research Center) Field Research Facility. Volume 1. Main Text and Appendix A

    DTIC Science & Technology

    1988-08-01

    Waterways Experiment Station, Corps of Engineers PO Box 631, Vicksburg, Mississippi 39180-0631 DTI ~;~c~v ~ jAUG 291988 : H Ke August 1988 Final Report...PART I: INTRODUCTION ................................................ 3 Background ........................................................ 3...Information Service, 5285 Port Royal Road, Springfield, VA. 22161. 2 ANNUAL DATA SUMMARY FOR 1986 CERC FIELD RESEARCH FACILITY PART I: INTRODUCTION

  12. Artificial Intelligence for Command and Control

    DTIC Science & Technology

    1988-05-15

    complexity of information and are a very active current research area. Some of the important unresolved frame -related issues are control issues , such as...indepth analysis of the combat engineer’s decisio -mnaking activities. -Specificaly 3 combat engineers-stationed at Fort Bragg, North Carolina (307th...experience. The CETOOLS concept is potentially applicable in any decision- making environment, commercial or government, where plans for actions are

  13. Reconnaissance Report on Coastal Erosion at Fort Ord, California.

    DTIC Science & Technology

    1983-12-01

    Granite Construction Company Monterey, Calif. Dr. Asbury Sallenger, Jr. U. S . Geological Survey Menlo Park, Calif. Yuchuek Hsia County of Monterey...Coastal Engineering Research Center U. S . Army Engineer Waterways Experiment Station P. 0. Box 631, Vicksburg, Miss. 39180 December 1983 Final Report...mnd Subettlo) S . TYPE OF REPORT & PERIOD COVERED RECONNAISSANCE REPORT ON COASTAL EROSION AT FORT Final Report ORD, CALIFORNIA 6. PERFORMING ORG

  14. Wiseman during BASS experiment

    NASA Image and Video Library

    2014-07-02

    ISS040-E-031397 (2 July 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, works with a combustion experiment known as the Burning and Suppression of Solids (BASS) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.

  15. Astronaut James S. Voss Performs Tasks in the Destiny Laboratory

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.

  16. The Plate Boundary Observatory Student Field Assistant Program in Southern California

    NASA Astrophysics Data System (ADS)

    Seider, E. L.

    2007-12-01

    Each summer, UNAVCO hires students as part of the Plate Boundary Observatory (PBO) Student Field Assistant Program. PBO, the geodetic component of the NSF-funded EarthScope project, involves the reconnaissance, permitting, installation, documentation, and maintenance of 880 permanent GPS stations in five years. During the summer 2007, nine students from around the US and Puerto Rico were hired to assist PBO engineers during the busy summer field season. From June to September, students worked closely with PBO field engineers to install and maintain permanent GPS stations in all regions of PBO, including Alaska. The PBO Student Field Assistant Program provides students with professional hands-on field experience as well as continuing education in the geosciences. It also gives students a glimpse into the increasing technologies available to the science community, the scope of geophysical research utilizing these technologies, and the field techniques necessary to complete this research. Students in the PBO Field Assistant Program are involved in all aspects of GPS support, including in-warehouse preparation and in-field installations and maintenance. Students are taught practical skills such as drilling, wiring, welding, hardware configuration, documentation, and proper field safety procedures needed to construct permanent GPS stations. These real world experiences provide the students with technical and professional skills that are not always available to them in a classroom, and will benefit them greatly in their future studies and careers. The 2007 summer field season in Southern California consisted of over 35 GPS permanent station installations. To date, the Southern California region of PBO has installed over 190 GPS stations. This poster presentation will highlight the experiences gained by the Southern California student field assistants, while supporting PBO- Southern California GPS installations in the Mohave Desert and the Inyo National Forest.

  17. MATRYOSHKA-R (RBO-3-2) Radiation Suite in the Service Module (SM)

    NASA Image and Video Library

    2009-03-14

    ISS018-E-040939 (18 March 2009) --- Cosmonaut Yury Lonchakov, Expedition 18 flight engineer, prepares to work with the European Matroshka-R Phantom experiment in the Zvezda Service Module of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station. Matroshka, the name for the traditional Russian set of nestling dolls, is an antroph-amorphous model of a human torso designed for radiation studies.

  18. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-013952 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Reid Wiseman, Expedition 40 flight engineer, enters data in a computer during test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES (out of frame). The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  19. Nyberg working with ACE in U.S. Laboratory

    NASA Image and Video Library

    2013-08-18

    ISS036-E-035770 (18 Aug. 2013) --- NASA astronaut Karen Nyberg, Expedition 36 flight engineer, works with new test samples for the Advanced Colloids Experiment, or ACE, housed in the Light Microscopy Module (LMM) inside the Fluids Integrated Rack of the International Space Station?s Destiny laboratory. Results from ACE will help researchers understand how to optimize stabilizers to extend the shelf life of products like laundry detergent, paint, ketchup and even salad dressing.

  20. Nyberg working with ACE in U.S. Laboratory

    NASA Image and Video Library

    2013-08-18

    ISS036-E-035767 (18 Aug. 2013) --- NASA astronaut Karen Nyberg, Expedition 36 flight engineer, works with new test samples for the Advanced Colloids Experiment, or ACE, housed in the Light Microscopy Module (LMM) inside the Fluids Integrated Rack of the International Space Station?s Destiny laboratory. Results from ACE will help researchers understand how to optimize stabilizers to extend the shelf life of products like laundry detergent, paint, ketchup and even salad dressing.

  1. Nyberg working with ACE in U.S. Laboratory

    NASA Image and Video Library

    2013-08-18

    ISS036-E-035780 (18 Aug. 2013) --- NASA astronaut Karen Nyberg, Expedition 36 flight engineer, works with new test samples for the Advanced Colloids Experiment, or ACE, housed in the Light Microscopy Module (LMM) inside the Fluids Integrated Rack of the International Space Station?s Destiny laboratory. Results from ACE will help researchers understand how to optimize stabilizers to extend the shelf life of products like laundry detergent, paint, ketchup and even salad dressing.

  2. Marangoni Inside (MI) Removal

    NASA Image and Video Library

    2013-07-23

    ISS036-E-023006 (23 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, uses a computer as he works to remove the Marangoni Inside (MI) from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.

  3. Expedition 16 FE Malenchenko works on the P-KINASE Experiment in the SM

    NASA Image and Video Library

    2007-10-13

    ISS015-E-34291 (13 Oct. 2007) --- Cosmonaut Yuri I. Malenchenko, Expedition 16 flight engineer representing Russia's Federal Space Agency, works with an incubator in the Zvezda Service Module of the International Space Station.

  4. Expedition 16 FE Malenchenko works on the P-KINASE Experiment in the SM

    NASA Image and Video Library

    2007-10-13

    ISS015-E-34289 (13 Oct. 2007) --- Cosmonaut Yuri I. Malenchenko, Expedition 16 flight engineer representing Russia's Federal Space Agency, works with an incubator in the Zvezda Service Module of the International Space Station.

  5. Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions (InSPACE-2) Experiment in Microgravity S

    NASA Image and Video Library

    2009-01-30

    ISS018-E-024515 (30 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works with the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.

  6. FE Furukawa poses for a photo during VolSci Session

    NASA Image and Video Library

    2011-06-25

    ISS028-E-009727 (25 June 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 28 flight engineer, is pictured near the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station.

  7. CASKAD. Manual Mixing in Bioreactor

    NASA Image and Video Library

    2013-10-05

    ISS037-E-005692 (5 Oct. 2013) --- Russian cosmonaut Sergey Ryazanskiy, Expedition 37 flight engineer, prepares to manually mix samples in a Bioreactor for the CASKAD experiment in the Poisk Mini-Research Module 2 (MRM2) of the International Space Station.

  8. CASKAD. Manual Mixing in Bioreactor

    NASA Image and Video Library

    2013-10-05

    ISS037-E-005694 (5 Oct. 2013) --- Russian cosmonaut Sergey Ryazanskiy, Expedition 37 flight engineer, prepares to manually mix samples in a Bioreactor for the CASKAD experiment in the Poisk Mini-Research Module 2 (MRM2) of the International Space Station.

  9. Wakata with GLACIER in U.S. Lab

    NASA Image and Video Library

    2009-06-15

    ISS020-E-010016 (15 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.

  10. Wakata with GLACIER in U.S. Lab

    NASA Image and Video Library

    2009-06-15

    ISS020-E-010017 (15 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.

  11. Noguchi removes the FPEF MI in the JPM during Expedition 22

    NASA Image and Video Library

    2010-01-11

    ISS022-E-020897 (11 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, works with Fluid Physics Experiment Facility/Marangoni Surface (FPEF MS) Core hardware in the Kibo laboratory of the International Space Station. The Marangoni convection experiment in the FPEF examines fluid tension flow in micro-G.

  12. Noguchi removes the FPEF MI in the JPM during Expedition 22

    NASA Image and Video Library

    2010-01-11

    ISS022-E-020894 (11 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, works with Fluid Physics Experiment Facility/Marangoni Surface (FPEF MS) Core hardware in the Kibo laboratory of the International Space Station. The Marangoni convection experiment in the FPEF examines fluid tension flow in micro-G.

  13. Noguchi removes the FPEF MI in the JPM during Expedition 22

    NASA Image and Video Library

    2010-01-11

    ISS022-E-020895 (11 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22 flight engineer, works with Fluid Physics Experiment Facility/Marangoni Surface (FPEF MS) Core hardware in the Kibo laboratory of the International Space Station. The Marangoni convection experiment in the FPEF examines fluid tension flow in micro-G.

  14. Flight Engineer Donald R. Pettit works with the InSpace experiments in the MSG in the U.S. Lab

    NASA Image and Video Library

    2003-04-01

    ISS006-E-41733 (1 April 2003) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, works with the InSpace (Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions) experiment in the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS).

  15. InSPACE-3 experiment

    NASA Image and Video Library

    2013-08-01

    NASA astronaut Karen Nyberg,Expedition 36 flight engineer,works with the InSPACE-3 experiment in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. InSPACE-3 applies different magnetic fields to vials of colloids,or liquids with microscopic particles,and observes how fluids can behave like a solid. Also sent as Twitter message.

  16. Williams with TRAC experiment in Destiny

    NASA Image and Video Library

    2007-03-08

    ISS014-E-16215 (8 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Test of Reaction and Adaptation Capabilities (TRAC) experiment in the Destiny laboratory of the International Space Station. The TRAC investigation will test the theory of brain adaptation during space flight by testing hand-eye coordination before, during and after the space flight.

  17. Williams with TRAC experiment in Destiny

    NASA Image and Video Library

    2007-03-08

    ISS014-E-16210 (8 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Test of Reaction and Adaptation Capabilities (TRAC) experiment in the Destiny laboratory of the International Space Station. The TRAC investigation will test the theory of brain adaptation during space flight by testing hand-eye coordination before, during and after the space flight.

  18. Williams with TRAC experiment in Destiny

    NASA Image and Video Library

    2007-03-08

    ISS014-E-16214 (8 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Test of Reaction and Adaptation Capabilities (TRAC) experiment in the Destiny laboratory of the International Space Station. The TRAC investigation will test the theory of brain adaptation during space flight by testing hand-eye coordination before, during and after the space flight.

  19. View of Expedition 15 FE Anderson performing the ANITA Experiment in the Node 1

    NASA Image and Video Library

    2007-10-06

    ISS015-E-32200 (6 Oct. 2007) --- Astronaut Clay Anderson, Expedition 15 flight engineer, uses an air sample pump and 2.5 liter gas sample bag to gather and analyze air samples for the Analyzing Interferometer for Ambient Air (ANITA) experiment in the Unity node of the International Space Station.

  20. Science and Technology Research Directions for the International Space Station

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The International Space Station (ISS) is a unique and unprecedented space research facility. Never before have scientists and engineers had access to such a robust, multidisciplinary, long-duration microgravity laboratory. To date, the research community has enjoyed success aboard such platforms as Skylab, the Space Shuttle, and the Russian Mir space station. However, these platforms were and are limited in ways that the ISS is not. Encompassing four times the volume of Mir, the ISS will support dedicated research facilities for at least a dozen scientific and engineering disciplines. Unlike the Space Shuttle, which must return to Earth after less than three weeks in space, the ISS will accommodate experiments that require many weeks even months to complete. Continual access to a microgravity laboratory will allow selected scientific disciplines to progress at a rate far greater than that obtainable with current space vehicles.

  1. Space Propulsion Technology Program Overview

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1991-01-01

    The topics presented are covered in viewgraph form. Focused program elements are: (1) transportation systems, which include earth-to-orbit propulsion, commercial vehicle propulsion, auxiliary propulsion, advanced cryogenic engines, cryogenic fluid systems, nuclear thermal propulsion, and nuclear electric propulsion; (2) space platforms, which include spacecraft on-board propulsion, and station keeping propulsion; and (3) technology flight experiments, which include cryogenic orbital N2 experiment (CONE), SEPS flight experiment, and cryogenic orbital H2 experiment (COHE).

  2. The International Space Station (ISS) Education Accomplishments and Opportunities

    NASA Technical Reports Server (NTRS)

    Alleyne, Camille W.; Blue, Regina; Mayo, Susan

    2012-01-01

    The International Space Station (ISS) has the unique ability to capture the imaginations of both students and teachers worldwide and thus stands as an invaluable learning platform for the advancement of proficiency in research and development and education. The presence of humans on board ISS for the past ten years has provided a foundation for numerous educational activities aimed at capturing that interest and motivating study in the sciences, technology, engineering and mathematics (STEM) disciplines which will lead to an increase in quality of teachers, advancements in research and development, an increase in the global reputation for intellectual achievement, and an expanded ability to pursue unchartered avenues towards a brighter future. Over 41 million students around the world have participated in ISS-related activities since the year 2000. Projects such as the Amateur Radio on International Space Station (ARISS) and Earth Knowledge Acquired by Middle School Students (EarthKAM), among others, have allowed for global student, teacher, and public access to space through radio contacts with crewmembers and student image acquisition respectively. . With planned ISS operations at least until 2020, projects like the aforementioned and their accompanying educational materials will be available to enable increased STEM literacy around the world. Since the launch of the first ISS element, a wide range of student experiments and educational activities have been performed by each of the international partner agencies: National Aeronautics and Space Administration (NASA), Canadian Space Agency (CSA), European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA) and Russian Federal Space Agency (Roscosmos). Additionally, a number of non-participating countries, some under commercial agreements, have also participated in Station-related activities. Many of these programs still continue while others are being developed and added to the station crewmembers tasks on a regular basis. These diverse student experiments and programs fall into one of the following categories: student-developed experiments; students performing classroom versions of ISS experiments; students participating in ISS investigator experiments; students participating in ISS engineering education; education demonstrations and cultural activities. This paper summarizes some of the main student experiments and educational activities that have been conducted on the ISS. It also highlights some upcoming projects.

  3. LOH- RadGene experiment at Cell Biology Experiment Facility (CBEF)

    NASA Image and Video Library

    2009-02-20

    ISS018-E-034074 (20 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works with the LOH- RadGene experiment near the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station. This experiment investigates alterations in immature immune cells that have been exposed to cosmic radiation. The samples were placed in culture bags and launched to the ISS on the STS-126 mission. After the experiment, frozen samples will be returned to the ground on the STS-119 mission.

  4. Artificial gravity studies and design considerations for Space Station centrifuges

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.; Brown, A. H.; Fuller, C. A.; Oyama, J.

    1984-01-01

    The requirements to and capabilities of a Space Station biological facility centrifuge are discussed on the basis of an assessment of the objectives and subjects of future microgravity biological experiments. It is argued that the facility should be capable of both acute and extended chronic exposure of test subjects and biological materials to altered-g loading. In addition, the experimental approaches and equipment for microgravity studies on a Space Station are outlined. Finally, the engineering requirements of such a centrifuge are examined, with consideration of radial gravity gradients, size, and physical access to animals.

  5. SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2

    NASA Image and Video Library

    2014-03-07

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Terry Tullis, a QinetiQ North America mechanical engineer, places the Biological Research In Canisters, or BRIC, 18-1 and 18-2 experiments with others to be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  6. SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2

    NASA Image and Video Library

    2014-03-07

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, QinetiQ North America Project Manager Carole Miller, left, works with Allison Caron, a QinetiQ mechanical engineer in preparing the Biotube experiment which will be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  7. SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2

    NASA Image and Video Library

    2014-03-07

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Terry Tullis, a QinetiQ North America mechanical engineer, prepares the Biological Research In Canisters, or BRIC, 18-1 and 18-2 experiments which will be launched to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  8. HydroTrop

    NASA Image and Video Library

    2010-10-18

    ISS025-E-007772 (18 Oct. 2010) --- NASA astronaut Shannon Walker, Expedition 25 flight engineer, works with the Japan Aerospace Exploration Agency (JAXA) experiment HydroTropi (Hydrotropism & Auxin-Inducible Gene Expression in Roots Grown under Microgravity Conditions) in the Kibo laboratory of the International Space Station.

  9. HydroTrop

    NASA Image and Video Library

    2010-10-18

    ISS025-E-007774 (18 Oct. 2010) --- NASA astronaut Shannon Walker, Expedition 25 flight engineer, works with the Japan Aerospace Exploration Agency (JAXA) experiment HydroTropi (Hydrotropism & Auxin-Inducible Gene Expression in Roots Grown under Microgravity Conditions) in the Kibo laboratory of the International Space Station.

  10. HydroTrop

    NASA Image and Video Library

    2010-10-18

    ISS025-E-007780 (18 Oct. 2010) --- NASA astronaut Shannon Walker, Expedition 25 flight engineer, works with the Japan Aerospace Exploration Agency (JAXA) experiment HydroTropi (Hydrotropism & Auxin-Inducible Gene Expression in Roots Grown under Microgravity Conditions) in the Kibo laboratory of the International Space Station.

  11. BIOLAB

    NASA Image and Video Library

    2013-08-27

    ISS036-E-037859 (27 Aug. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, works with the Biolab in the Columbus laboratory of the International Space Station. Biolab is used to perform space biology experiments on microorganisms, cells, tissue cultures, plants and small invertebrates.

  12. FE Caldwell Dyson works with the MERLIN in the US Lab

    NASA Image and Video Library

    2010-07-18

    ISS024-E-008590 (18 July 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, works with the Microgravity Experiment Research Locker/Incubator (MERLIN) on Express rack 6 in the Destiny laboratory of the International Space Station.

  13. Gerst with MSG during BASS session

    NASA Image and Video Library

    2014-06-13

    European Space Agency astronaut Alexander Gerst,Expedition 40 flight engineer,works with samples and hardware for a combustion experiment known as the Burning and Suppression of Solids (BASS) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.

  14. Expedition 16 FE Malenchenko working on the Conjugation Experiment Hardware in the SM

    NASA Image and Video Library

    2007-10-13

    ISS015-E-34287 (13 Oct. 2007) --- Cosmonaut Yuri I. Malenchenko, Expedition 16 flight engineer representing Russia's Federal Space Agency, places hybridizers in orange Rekomb-kit in the Zvezda Service Module of the International Space Station.

  15. iss028e050058

    NASA Image and Video Library

    2011-09-15

    ISS028-E-050058 (15 Sept. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, inspects a new growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload with its LADA-01 greenhouse in the Zvezda Service Module of the International Space Station.

  16. PASSCAL Instrument Center Support for Cryoseismology: Methodologies, Challenges, Development and Instrumentation

    NASA Astrophysics Data System (ADS)

    Beaudoin, B. C.; Anderson, K. R.; Bilek, S. L.; Carpenter, P.; Childs, D.; Chung, P.; Huerta, A. D.; Lingutla, N.; Nikolaus, K.; Winberry, J. P.

    2017-12-01

    Remote portable seismic stations are, in most cases, constrained by logistics and cost. High latitude operations introduce environmental, technical and logistical challenges that require substantially more engineering work to ensure robust, high quality data return. Since 2006, IRIS PASSCAL has been funded by NSF to develop, deploy, and maintain a pool of polar specific seismic stations. At roughly the same time, PASSCAL began supporting experiments specifically targeting glacier dynamics such as the mechanisms of subglacial hydrology, basal shear stress, ice stream stick slip mechanisms, and glacier seismicity. Although much of the development for high-latitude deployments was directly applicable to cryoseismology, these new experiments introduced a unique series of challenges including high ablation, standing water, and moving stations. Our polar development objectives have focused on: Reducing station power requirements, size and weight; Extending the operational temperature of a station; Simplifying logistics; Engineering solutions that are cost effective, manufacturable, serviceable and reusable; And, developing high-latitude communications for both state-of-health and data transmission. To these ends, PASSCAL continues testing new power storage technology, refining established power systems for lighter and smaller power banks, and exploring telemetry solutions to increase high-bandwidth communication options and abilities for remote seismic stations. Further enhancing PASSCAL's ability to support cryoseismology is a recent NSF funded collaborative effort lead by Central Washing University joined by IRIS and New Mexico Tech to build a Geophysical Earth Observatory for Ice Covered Environments (GEOICE). The GEOICE instrument, power system and other integrated ancillary components are designed to require minimal installation time and logistical load (i.e., size and weight), while maximizing ease-of-use in the field and optimizing costs of instrumentation and experiment consumables. The instrument capability will include a hybrid seismograph pool of broadband and intermediate elements, for observation of both long-period and intermediate-to-short-period signals, and a high-frequency node element.

  17. Gerst during BASS-II experiment

    NASA Image and Video Library

    2014-07-30

    ISS040-E-083576 (30 July 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, performs two tests with a combustion experiment known as the Burning and Suppression of Solids (BASS-II) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.

  18. Gerst during BASS-II experiment

    NASA Image and Video Library

    2014-07-30

    ISS040-E-083578 (30 July 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, performs two tests with a combustion experiment known as the Burning and Suppression of Solids (BASS-II) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.

  19. Kaleri works with the Pilot experiment during Expedition 8

    NASA Image and Video Library

    2003-10-31

    ISS008-E-05179 (31 October 2003) --- Cosmonaut Alexander Y. Kaleri, Expedition 8 flight engineer, works with the Russian biomedical “Pilot” experiment (MBI-15) in the Zvezda Service Module on the International Space Station (ISS). The experiment, which looks at psychological and physiological changes in crew performance during long-duration spaceflight, requires a worktable, ankle restraint system and two control handles for testing piloting skill. Kaleri represents Rosaviakosmos.

  20. Anderson works on the Nutrition Experiment during Expedition 15

    NASA Image and Video Library

    2007-06-25

    ISS015-E-13648 (25 June 2007) --- Astronaut Clayton Anderson, Expedition 15 flight engineer, works with test samples in the Human Research Facility 2 (HRF-2) Refrigerated Centrifuge as a part of the Nutritional Status Assessment (Nutrition) experiment in the Destiny laboratory of the International Space Station. The results of the Nutrition experiment will be used to better understand the time course effects of space flight on human physiology.

  1. Seismic Analysis of Intake Towers

    DTIC Science & Technology

    1982-10-01

    Experiment Station (WES) under the sponsorship of the Directorate of Civil Works of the Office, Chief of Engineers, U. S. Army. The work was funded under...the structural capacity of the intake S,-tower are contained in Engineer Technical Letter (ETL) 1110-2-265 " Civil Systems Incorporated, "Dynamic...Berkeley, Calif. " ___ 1975. "Earthquake Resistant Design of Intake-Outlet Towers," Journal of the Structural Division_ American Society of Civil

  2. Implementing CDIO project-based learning in training of Heat and Power engineers

    NASA Astrophysics Data System (ADS)

    Boiko, E. A.; Shishmarev, P. V.; Karabarin, D. I.; Yanov, S. R.; Pikalova, A. A.

    2017-11-01

    This paper presents the experience and current results of CDIO standards implementation in training of bachelors in Heat and Power Engineering at Thermal Power Stations academic department in Siberian Federal University. It provides information on methodology of modernization of educational programs, curricula and programs of disciplines in transition to CDIO project-based learning technology. Preliminary assessment and analysis of lessons learned and scaling perspectives are given.

  3. Engineering for Autonomous Seismic Stations at the IRIS PASSCAL Instrument Center

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.; Carpenter, P.; Beaudoin, B. C.; Parker, T.; Hebert, J.; Childs, D.; Chung, P.; Reusch, A. M.

    2015-12-01

    The NSF funded Incorporated Research Institutions for Seismology (IRIS) through New Mexico Tech operates the PASSCAL Instrument Center (PIC) in Socorro New Mexico. The engineering effort at the PIC seeks to optimize seismic station operations for all portable experiments, include those in extremely remote and harsh polar environments. Recent advances have resulted in improved station design, allowing improved operational efficiencies, data quality return and reduction in station logistics associated with installation, maintenance and decommissioning of stations. These include: Battery and power system designs. Incorporating primary Lithium Thionyl Chloride (LTC) technology with rechargeable Lithium Iron Phosphate (LiFePO4) batteries allows systems to operate in areas with long-term solar autonomy (high latitudes). Development includes charge controller systems to switch between primary and secondary technologies efficiently. Enclosures: Engineered solutions to efficiently manage waste heat, maintain operational environment and provide light-weight and durable housing for seismic instrumentation. Communications: In collaboration with Xeos Technologies Inc., we deliver Iridium-based SOH/Command and Control telemetry as well as full bandwidth seismic data communications in high latitude environments at low power requirements. Smaller-lighter-instrumentation: Through the GEOICE MRI, we are working with Nanometrics on next generation "all-in-one" seismic systems that can be deployed in polar environments - easing logistics, minimizing installation time and improving data quality return for these expensive deployments. All autonomous station designs are openly and freely available at the IRIS PASSCAL webpage (www.passcal.nmt.edu/polar/design-drawings). More information on GEOICE and data quality from various seismometer emplacements will be presented in other posters at this AGU meeting.

  4. Testing and numerical modeling of hypervelocity impact damaged Space Station multilayer insulation

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1992-01-01

    Results are presented of experiments measuring the degradation of the insulating capabilities of the multilayer insulation (MLI) of the Space Station Freedom, when subjected to hypervelocity impact damage. A simple numerical model was developed for use in an engineering design environment for quick assessment of thermal effect of the impact. The model was validated using results from thermal vacuum tests on MLI with simulated damage. The numerical model results agreed with experimental data.

  5. Phillips during FOOT experiment

    NASA Image and Video Library

    2005-09-16

    ISS011-E-13101 (16 Sept. 2005) --- Astronaut John L. Phillips, Expedition 11 NASA space station science officer and flight engineer, balances on the footplate of a special track attached to the Human Research Facility (HRF) rack in the Destiny laboratory on the International Space Station to perform Foot/Ground Reaction Forces During Spaceflight (FOOT) / Electromyography (EMG) calibration operations. Phillips is wearing the Lower Extremity Monitoring Suit (LEMS), the cycling tights outfitted with 20 sensors, which measures forces on joints and muscle activity.

  6. Bursch on outside of Quest Airlock during EVA 3, Expedition Four

    NASA Image and Video Library

    2002-02-20

    ISS004-E-8043 (20 February 2002) --- Astronaut Daniel W. Bursch, Expedition Four flight engineer, participates in the five-hour, 47-minute space walk on February 20, 2002. He moves among the oxygen and nitrogen tanks on the exterior of Quest Airlock. The square device (left) on the Space Station Remote Manipulator System (SSRMS) or Canadarm2 is the Materials International Space Station Experiment (MISSE). The image was recorded with a digital still camera.

  7. KSC-05PD-0180

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. An employee at the Space Station Processing Facility monitors engineering certification testing of the Alpha Magnetic spectrometer (AMS). The AMS is a superconducting magnet that will be used in an experiment from the International Space Station (ISS) to search for antimatter and dark matter in space. The testing is being performed to ensure that data flow from the external payload AMS and the internal AMS crew operation post can be successfully routed through the ISS systems.

  8. KSC-05PD-0181

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. An employee at the Space Station Processing Facility performs engineering certification testing of the Alpha Magnetic spectrometer (AMS). The AMS is a superconducting magnet that will be used in an experiment from the International Space Station (ISS) to search for antimatter and dark matter in space. The testing is being performed to ensure that data flow from the external payload AMS and the internal AMS crew operation post can be successfully routed through the ISS systems.

  9. KSC-05PD-0182

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. An employee at the Space Station Processing Facility performs engineering certification testing of the Alpha Magnetic spectrometer (AMS). The AMS is a superconducting magnet that will be used in an experiment from the International Space Station (ISS) to search for antimatter and dark matter in space. The testing is being performed to ensure that data flow from the external payload AMS and the internal AMS crew operation post can be successfully routed through the ISS systems.

  10. KSC-2014-2900

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – From left, Jim Smodell, a technician with SGT, and George Guerra, a quality control engineer with QinetiQ North America, prepare to remove the plant pillows containing the outredgeous red lettuce leaves from the Veggie plant growth system inside the International Space Station Environmental Simulator chamber at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The growth chamber was used as a control unit and procedures were followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station. The chamber mimicked the temperature, relative humidity and carbon dioxide concentration of those in the Veggie unit on the space station. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth was monitored for 33 days. On June 10, at the end of the cycle, the plants were carefully harvested, frozen and stored for return to Earth by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Photo credit: NASA/Frankie Martin

  11. KSC-2014-2899

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – From left, Jim Smodell, a technician with SGT, and George Guerra, a quality control engineer with QinetiQ North America, review procedures for removing the plant pillows containing the outredgeous red lettuce leaves from the Veggie plant growth system inside the International Space Station Environmental Simulator chamber at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The growth chamber was used as a control unit and procedures were followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station. The chamber mimicked the temperature, relative humidity and carbon dioxide concentration of those in the Veggie unit on the space station. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth was monitored for 33 days. On June 10, at the end of the cycle, the plants were carefully harvested, frozen and stored for return to Earth by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Photo credit: NASA/Frankie Martin

  12. The Design of Large-Scale Complex Engineered Systems: Present Challenges and Future Promise

    NASA Technical Reports Server (NTRS)

    Bloebaum, Christina L.; McGowan, Anna-Maria Rivas

    2012-01-01

    Model-Based Systems Engineering techniques are used in the SE community to address the need for managing the development of complex systems. A key feature of the MBSE approach is the use of a model to capture the requirements, architecture, behavior, operating environment and other key aspects of the system. The focus on the model differentiates MBSE from traditional SE techniques that may have a document centric approach. In an effort to assess the benefit of utilizing MBSE on its flight projects, NASA Langley has implemented a pilot program to apply MBSE techniques during the early phase of the Materials International Space Station Experiment-X (MISSE-X). MISSE-X is a Technology Demonstration Mission being developed by the NASA Office of the Chief Technologist i . Designed to be installed on the exterior of the International Space Station (ISS), MISSE-X will host experiments that advance the technology readiness of materials and devices needed for future space exploration. As a follow-on to the highly successful series of previous MISSE experiments on ISS, MISSE-X benefits from a significant interest by the

  13. Knowledge-based assistance in costing the space station DMS

    NASA Technical Reports Server (NTRS)

    Henson, Troy; Rone, Kyle

    1988-01-01

    The Software Cost Engineering (SCE) methodology developed over the last two decades at IBM Systems Integration Division (SID) in Houston is utilized to cost the NASA Space Station Data Management System (DMS). An ongoing project to capture this methodology, which is built on a foundation of experiences and lessons learned, has resulted in the development of an internal-use-only, PC-based prototype that integrates algorithmic tools with knowledge-based decision support assistants. This prototype Software Cost Engineering Automation Tool (SCEAT) is being employed to assist in the DMS costing exercises. At the same time, DMS costing serves as a forcing function and provides a platform for the continuing, iterative development, calibration, and validation and verification of SCEAT. The data that forms the cost engineering database is derived from more than 15 years of development of NASA Space Shuttle software, ranging from low criticality, low complexity support tools to highly complex and highly critical onboard software.

  14. Hopkins during CFE-2 Experiment

    NASA Image and Video Library

    2013-11-20

    ISS038-E-005962 (19 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the Capillary Flow Experiment-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  15. Gerst installs CMS-2 in KIBO rack

    NASA Image and Video Library

    2014-09-09

    European Space Agency astronaut Alexander Gerst,Expedition 40 flight engineer,installs a microscope for the Cell Mechanosensing-2 experiment in the Kibo laboratory of the International Space Station. The Japanese experiment,which is conducted in Kibos Kobairo rack,seeks to identify gravity sensors in cells that may change the expression of key proteins and genes and allowing muscles to atrophy in microgravity.

  16. Tyurin with TRAC experiment in Destiny laboratory

    NASA Image and Video Library

    2007-01-02

    ISS014-E-11047 (2 Jan. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, works with the Test of Reaction and Adaptation Capabilities (TRAC) experiment in the Destiny laboratory of the International Space Station. The TRAC investigation will test the theory of brain adaptation during space flight by testing hand-eye coordination before, during and after the space flight.

  17. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-23

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, Michele Koralewicz, a mechanical technician with EASI on the Engineering Services Contract, prepares to sew up the end of a bag that contains one of the Veg-03 plant pillows. In the foreground are all of the other plant pillows that need to be sealed. The Veg-03 experiment will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  18. CELSS experiment model and design concept of gas recycle system

    NASA Technical Reports Server (NTRS)

    Nitta, K.; Oguchi, M.; Kanda, S.

    1986-01-01

    In order to prolong the duration of manned missions around the Earth and to expand the human existing region from the Earth to other planets such as a Lunar Base or a manned Mars flight mission, the controlled ecological life support system (CELSS) becomes an essential factor of the future technology to be developed through utilization of space station. The preliminary system engineering and integration efforts regarding CELSS have been carried out by the Japanese CELSS concept study group for clarifying the feasibility of hardware development for Space station experiments and for getting the time phased mission sets after FY 1992. The results of these studies are briefly summarized and the design and utilization methods of a Gas Recycle System for CELSS experiments are discussed.

  19. STS-79 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    STS-79 was the fourth of nine planned missions to the Russian Mir Space Station. This report summarizes the activities such as rendezvous and docking and spaceborne experiment operations. The report also discusses the Orbiter, External Tank (ET), Solid Rocket Boosters (SRB), Reusable Solid Rocket Motor (RSRM) and the space shuttle main engine (SSME) systems performance during the flight. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and exchange a Mir Astronaut. A double Spacehab module carried science experiments and hardware, risk mitigation experiments (RME's) and Russian logistics in support of program requirements. Additionally, phase 1 program science experiments were carried in the middeck. Spacehab-05 operations were performed. The secondary objectives of the flight were to perform the operations necessary for the Shuttle Amateur Radio Experiment-2 (SAREX-2). Also, as a payload of opportunity, the requirements of Midcourse Space Experiment (MSX) were completed.

  20. Walker photographs BCAT-5 (Binary Colloidal Alloy Test-5) payload

    NASA Image and Video Library

    2010-10-19

    ISS025-E-008239 (19 Oct. 2010) --- NASA astronaut Shannon Walker, Expedition 25 flight engineer, uses a digital still camera to photograph Binary Colloidal Alloy Test-5 (BCAT-5) experiment samples in the Kibo laboratory of the International Space Station.

  1. Mastracchio installs MSG LSAH Decontamination System

    NASA Image and Video Library

    2014-02-10

    ISS038-E-044829 (10 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, prepares to use an ultraviolet light to decontaminate hardware used for life science experiments inside the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.

  2. iss028e034854

    NASA Image and Video Library

    2011-08-31

    ISS028-E-034854 (31 Aug. 2011) --- Russian cosmonaut Sergei Volkov, Expedition 28 flight engineer, checks the progress of a new growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload with its LADA-01 greenhouse in the Zvezda Service Module of the International Space Station.

  3. KSC-2014-2467

    NASA Image and Video Library

    2014-05-09

    CAPE CANAVERAL, Fla. – Researchers have activated the red, blue and green LED lights on the Veggie plant growth system inside a control chamber at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. From left, are Jim Smodell, a technician with SGT, and Chuck Spern, lead project engineer with QinetiQ North America. The growth chamber will be used as a control unit and procedures will be followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth will be monitored for 28 days. At the end of the cycle, the plants will be carefully harvested, frozen and stored for return to Earth. Photo credit: NASA/Dimitri Gerondidakis

  4. KSC-2014-2464

    NASA Image and Video Library

    2014-05-09

    CAPE CANAVERAL, Fla. – Researchers activate the red, blue and green LED lights on the Veggie plant growth system inside a control chamber at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. From left, are Jim Smodell, a technician with SGT, and Chuck Spern, lead project engineer, with QinetiQ North America. The growth chamber will be used as a control unit and procedures will be followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth will be monitored for 28 days. At the end of the cycle, the plants will be carefully harvested, frozen and stored for return to Earth. Photo credit: NASA/Dimitri Gerondidakis

  5. KSC-2014-2473

    NASA Image and Video Library

    2014-05-09

    CAPE CANAVERAL, Fla. – Researchers fill a water bag with ionized water for the Veggie plant growth system inside a control chamber at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. In front is Jim Smodell, a technician with SGT. Standing behind him is Chuck Spern, lead project engineer with QinetiQ North America. The growth chamber will be used as a control unit and procedures will be followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth will be monitored for 28 days. At the end of the cycle, the plants will be carefully harvested, frozen and stored for return to Earth. Photo credit: NASA/Dimitri Gerondidakis

  6. KSC-2014-2468

    NASA Image and Video Library

    2014-05-09

    CAPE CANAVERAL, Fla. – Researchers have activated the red, blue and green LED lights on the Veggie plant growth system inside a control chamber at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. In front, is Jim Smodell, a technician with SGT. Behind him is George Guerra, a quality control engineer with QinetiQ North America. The growth chamber will be used as a control unit and procedures will be followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth will be monitored for 28 days. At the end of the cycle, the plants will be carefully harvested, frozen and stored for return to Earth. Photo credit: NASA/Dimitri Gerondidakis

  7. KSC-2014-2469

    NASA Image and Video Library

    2014-05-09

    CAPE CANAVERAL, Fla. – Researchers acquire the ionized water for the Veggie plant growth system inside a control chamber at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. From left, are Jim Smodell, a technician with SGT, and George Guerra, a quality control engineer with QinetiQ North America. The growth chamber will be used as a control unit and procedures will be followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth will be monitored for 28 days. At the end of the cycle, the plants will be carefully harvested, frozen and stored for return to Earth. Photo credit: NASA/Dimitri Gerondidakis

  8. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    These 10 astronauts and cosmonauts represent the base STS-102 space travelers, as well as the crew members for the station crews switching out turns aboard the outpost. Those astronauts wearing orange represent the STS-102 crew members. In the top photo, from left to right are: James M. Kelly, pilot; Andrew S.W. Thomas, mission specialist; James D. Wetherbee, commander; and Paul W. Richards, mission specialist. The group pictured in the lower right portion of the portrait are STS-members as well as Expedition Two crew members (from left): mission specialist and flight engineer James S. Voss; cosmonaut Yury V. Usachev, Expedition Two Commander; and mission specialist and flight engineer Susan Helms. The lower left inset are the 3 man crew of Expedition One (pictured from left): Cosmonaut Sergei K. Krikalev, flight engineer; astronaut William M. (Bill) Shepherd, commander; and cosmonaut Yuri P. Gidzenko, Soyuz commander. The main objective of the STS-102 mission was the first Expedition Crew rotation and the primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission launched on March 8, 2001 aboard the Space Shuttle Orbiter Discovery.

  9. Modal identification experiment

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    1992-01-01

    The Modal Identification Experiment (MIE) is a proposed on-orbit experiment being developed by NASA's Office of Aeronautics and Space Technology wherein a series of vibration measurements would be made on various configurations of Space Station Freedom (SSF) during its on-orbit assembly phase. The experiment is to be conducted in conjunction with station reboost operations and consists of measuring the dynamic responses of the spacecraft produced by station-based attitude control system and reboost thrusters, recording and transmitting the data, and processing the data on the ground to identify the natural frequencies, damping factors, and shapes of significant vibratory modes. The experiment would likely be a part of the Space Station on-orbit verification. Basic research objectives of MIE are to evaluate and improve methods for analytically modeling large space structures, to develop techniques for performing in-space modal testing, and to validate candidate techniques for in-space modal identification. From an engineering point of view, MIE will provide the first opportunity to obtain vibration data for the fully-assembled structure because SSF is too large and too flexible to be tested as a single unit on the ground. Such full-system data is essential for validating the analytical model of SSF which would be used in any engineering efforts associated with structural or control system changes that might be made to the station as missions evolve over time. Extensive analytical simulations of on-orbit tests, as well exploratory laboratory simulations using small-scale models, have been conducted in-house and under contract to develop a measurement plan and evaluate its potential performance. In particular, performance trade and parametric studies conducted as part of these simulations were used to resolve issues related to the number and location of the measurements, the type of excitation, data acquisition and data processing, effects of noise and nonlinearities, selection of target vibration modes, and the appropriate type of data analysis scheme. The purpose of this talk is to provide an executive-summary-type overview of the modal identification experiment which has emerged from the conceptual design studies conducted to-date. Emphasis throughout is on those aspects of the experiment which should be of interest to those attending the subject utilization conference. The presentation begins with some preparatory remarks to provide background and motivation for the experiment, describe the experiment in general terms, and cite the specific technical objectives. This is followed by a summary of the major results of the conceptual design studies conducted to define the baseline experiment. The baseline experiment which has resulted from the studies is then described.

  10. STS-128 crew visits Stennis

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Astronauts C.J. Sturckow (seated, left) and Pat Forrester (seated, right) sign autographs during their Oct. 7 visit to Stennis Space Center. The astronauts visited the rocket engine testing facility to thank Stennis employees for contributions to their recent STS-128 space shuttle mission. All three of the main engines used on the mission were tested at Stennis. Sturckow served as commander for the STS-128 flight; Forrester was a mission specialist. During a 14-day mission aboard space shuttle discovery, the STS-128 crew delivered equipment and supplies to the International Space Station, including science and storage racks, a freezer to store research samples, a new sleeping compartment and an exercise treadmill. The mission featured three spacewalks to replace experiments and install new equipment at the space station.

  11. CFE-2 Experiment Run

    NASA Image and Video Library

    2013-11-11

    ISS038-E-000269 (11 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids move up surfaces in microgravity. The results aim to improve current computer models that are used by designers of low gravity fluid systems and may improve fluid transfer systems for water on future spacecraft.

  12. CFE-2 Experiment Run

    NASA Image and Video Library

    2013-11-11

    ISS038-E-000263 (11 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids move up surfaces in microgravity. The results aim to improve current computer models that are used by designers of low gravity fluid systems and may improve fluid transfer systems for water on future spacecraft.

  13. Capillary Flow Experiment

    NASA Image and Video Library

    2014-06-19

    ISS040-E-015539 (19 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  14. Williams loads the HRF2 Refrigerated Centrifuge for the Nutrition Experiment during Expedition 15

    NASA Image and Video Library

    2007-06-01

    ISS015-E-10554 (1 June 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, loads test samples in the Human Research Facility 2 (HRF-2) Refrigerated Centrifuge as a part of the Nutritional Status Assessment (Nutrition) experiment in the Destiny laboratory of the International Space Station. The results of the Nutrition experiment will be used to better understand the time course effects of space flight on human physiology.

  15. Microgravity

    NASA Image and Video Library

    2000-01-30

    Engineers from NASA's Glenn Research Center, demonstrate access to one of the experiment racks planned for the U.S. Destiny laboratory module on the International Space Station. This mockup has the full diameter, full corridor width, and half the length of the module. The mockup includes engineering mockups of the Fluids and Combustion Facility being developed by NASA's Glenn Research Center. (The full module will be six racks long; the mockup is three rack long) Photo credit: NASA/Marshall Space Flight Center

  16. Cygnus Orbital ATK OA-6 Liftoff

    NASA Image and Video Library

    2016-03-22

    At Cape Canaveral Air Force Station's Space Launch Complex 41, a United Launch Alliance Atlas V rocket with a single-engine Centaur upper stage stands ready to boost an Orbital ATK Cygnus spacecraft on a resupply mission to the International Space Station. Science payloads include the second generation of a portable onboard printer to demonstrate three-dimensional printing, an instrument for first space-based observations of the chemical composition of meteors entering Earth’s atmosphere and an experiment to study how fires burn in microgravity.

  17. Cygnus Orbital ATK OA-6 Rollout

    NASA Image and Video Library

    2016-03-21

    At Cape Canaveral Air Force Station's Space Launch Complex 41, a United Launch Alliance Atlas V rocket with a single-engine Centaur upper stage stands ready to boost an Orbital ATK Cygnus spacecraft on a resupply mission to the International Space Station. Science payloads include the second generation of a portable onboard printer to demonstrate three-dimensional printing, an instrument for first space-based observations of the chemical composition of meteors entering Earth’s atmosphere and an experiment to study how fires burn in microgravity.

  18. SPHERES-Vertigo experiment

    NASA Image and Video Library

    2014-07-25

    ISS040-E-080130 (25 July 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  19. Water use, waste generation, and traffic counts at interstate rest areas in Louisiana.

    DOT National Transportation Integrated Search

    2003-06-30

    Surprisingly, little current information for design purposes exists regarding water use and waste generation at interstate rest areas. The Waterways Experiment Station of the U.S. Army Corps of Engineers carried out the last major study in 1974. This...

  20. iss038e055240

    NASA Image and Video Library

    2014-02-24

    ISS038-E-055240 (24 Feb. 2014) --- In the International Space Station's Destiny laboratory, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, sets up the Advanced Colloids Experiment (ACE) housed in the Light Microscopy Module (LMM) inside the Fluids Integrated Rack. ACE studies microscopic particles suspended in a liquid.

  1. Expedition_55_Education_In-Flight_Interview_with_Fairchild_Botanic_Tropical_Garden_2018_115_1445_644897

    NASA Image and Video Library

    2018-04-25

    SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH STUDENT SCIENTISTS---- Aboard the International Space Station, Expedition 55 Flight Engineers Drew Feustel and Ricky Arnold of NASA discussed life and research on the orbital outpost during an in-flight educational event April 25 with students gathered at the Fairchild Botanic Gardens in Coral Gables, Florida. Using equipment that mimics the environmental conditions aboard the International Space Station, students conducted plant experiments to test factors that may influence plant growth, flavor, and nutrition. NASA will use students’ data to determine which plants they should begin growing in space on the Veggie facility. Feustel and Arnold arrived at the station in late March for a six-month mission on the complex.

  2. LOH- RadGene experiment at Cell Biology Experiment Facility (CBEF)

    NASA Image and Video Library

    2009-02-20

    ISS018-E-034555 (20 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, takes a moment for a photo while working with the LOH- RadGene experiment at the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station. This experiment investigates genetic alterations in immature immune cells that have been exposed to cosmic radiation. The samples were placed in culture bags and launched to the ISS on the STS-126 mission. After the experiment, frozen samples will be returned to the ground on the STS-119 mission.

  3. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  4. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  5. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  6. Expedition 54's Christmas Memories

    NASA Image and Video Library

    2017-12-20

    Flight Engineers Joe Acaba and Mark Vande Hei have been in space for three months already but they’re both about to experience something for the first time: Christmas on the International Space Station. And although it’s likely to be one they remember, both men have fond memories of Christmases past. Watch as these NASA astronauts recall childhood gifts from Santa, holiday trips to the tropics, and other cherished memories. HD Download: https://archive.org/details/jsc2017m001060_Expedition_54s_Christmas_Memories _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  7. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  8. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  9. Robotics EP Payloads

    NASA Image and Video Library

    2009-09-24

    ISS020-E-041981 (24 Sept. 2009) --- The exterior of the Japanese Kibo complex of the International Space Station and the station's Canadarm2 (bottom) are featured in this image photographed by an Expedition 20 crew member on the station. European Space Agency astronaut Frank De Winne and NASA astronaut Nicole Stott, both Expedition 20 flight engineers, used the controls of the Japanese Experiment Module Robotic Manipulator System (JEM-RMS) in Kibo to grapple and transfer two Japanese payloads from the Exposed Pallet to their Exposed Facility locations -- first HICO/Hyperspectral Imager for the Coastal Ocean & RAIDS/Remote Atmospheric and Ionospheric Detection System (HREP), then Superconducting Submillimeter-wave Limb-emission Sounder (SMILES).

  10. Identification challenges for large space structures

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.

    1990-01-01

    The paper examines the on-orbit modal identification of large space structures, stressing the importance of planning and experience, in preparation for the Space Station Structural Characterization Experiment (SSSCE) for the Space Station Freedom. The necessary information to foresee and overcome practical difficulties is considered in connection with seven key factors, including test objectives, dynamic complexity of the structure, data quality, extent of exploratory studies, availability and understanding of software tools, experience with similar problems, and pretest analytical conditions. These factors affect identification success in ground tests. Comparisons with similar ground tests of assembled systems are discussed, showing that the constraints of space tests make these factors more significant. The absence of data and experiences relating to on-orbit modal identification testing is shown to make identification a uniquely mathematical problem, although all spacecraft are constructed and verified by proven engineering methods.

  11. Payload Processing for Mice Drawer System

    NASA Technical Reports Server (NTRS)

    Brown, Judy

    2007-01-01

    Experimental payloads flown to the International Space Station provide us with valuable research conducted in a microgravity environment not attainable on earth. The Mice Drawer System is an experiment designed by Thales Alenia Space Italia to study the effects of microgravity on mice. It is designed to fly to orbit on the Space Shuttle Utilization Logistics Flight 2 in October 2008, remain onboard the International Space Station for approximately 100 days and then return to earth on a following Shuttle flight. The experiment apparatus will be housed inside a Double Payload Carrier. An engineering model of the Double Payload Carrier was sent to Kennedy Space Center for a fit check inside both Shuttles, and the rack that it will be installed in aboard the International Space Station. The Double Payload Carrier showed a good fit quality inside each vehicle, and Thales Alenia Space Italia will now construct the actual flight model and continue to prepare the Mice Drawer System experiment for launch.

  12. KSC-2009-6711

    NASA Image and Video Library

    2009-12-08

    CAPE CANAVERAL, Fla. - In Orbiter Processing Facility Bay 3 at NASA's Kennedy Space Center in Florida, United Space Alliance workers visually check the alignment of a space shuttle main engine approaching shuttle Discovery for the shuttle's STS-131 mission to the International Space Station. The seven-member STS-131 crew will deliver a Multi-Purpose Logistics Module filled with resupply stowage platforms and racks to be transferred to locations around the station. Three spacewalks will include work to attach a spare ammonia tank assembly to the station's exterior and return a European experiment from outside the station's Columbus module. Discovery's launch, targeted for March 18, 2010, will initiate the 33rd shuttle mission to the station. For information on the STS-131 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts131/index.html. Photo credit: NASA/Jack Pfaller

  13. Space Station Engineering and Technology Development: Proceedings of the Panel on In-Space Engineering Research and Technology Development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In 1984 the ad hoc committee on Space Station Engineering and Technology Development of the Aeronautics and Space Engineering Board (ASEB) conducted a review of the National Aeronautics and Space Administration's (NASA's) space station program planning. The review addressed the initial operating configuration (IOC) of the station. The ASEB has reconstituted the ad hoc committee which then established panels to address each specific related subject. The participants of the panels come from the committee, industry, and universities. The proceedings of the Panel on In Space Engineering Research and Technology Development are presented in this report. Activities, and plans for identifying and developing R&T programs to be conducted by the space station and related in space support needs including module requirements are addressed. Consideration is given to use of the station for R&T for other government agencies, universities, and industry.

  14. Research pilot Mark Pestana

    NASA Image and Video Library

    2001-04-16

    Mark Pestana is a research pilot and project manager at the NASA Dryden Flight Research Center, Edwards, Calif. He is a pilot for the Beech B200 King Air, the T-34C and the Predator B. He flies the F-18 Hornet as a co-pilot and flight test engineer. Pestana has accumulated more than 4,000 hours of military and civilian flight experience. He was also a flight engineer on the NASA DC-8 flying laboratory. Pestana was the project manager and pilot for the Hi–rate Wireless Airborne Network Demonstration flown on the NASA B200 research aircraft. He flew B200 research missions for the X-38 Space Integrated Inertial Navigation Global Positioning System experiment. Pestana also participated in several deployments of the DC-8, including Earth science expeditions ranging from hurricane research over the Caribbean Sea to ozone studies over the North Pole, atmospheric chemistry over the South Pacific, rain forest health in Central America, Rocky Mountain ice pack assessment, and volcanic and tectonic activity around the Pacific Rim. He came to Dryden as a DC-8 mission manager in June 1998 from NASA Johnson Space Center, Houston, where he served as the Earth and Space Science discipline manager for the International Space Station Program at Johnson. Pestana also served as a flight crew operations engineer in the Astronaut Office, developing the controls, displays, tools, crew accommodations and procedures for on-orbit assembly, test, and checkout of the International Space Station. He led the analysis and technical negotiations for modification of the Russian Soyuz spacecraft as an emergency crew return vehicle for space station crews. He joined the U.S. Air Force Reserve in 1991 and held various positions as a research and development engineer, intelligence analyst, and Delta II launch vehicle systems engineer. He retired from the U.S. Air Force Reserve with the rank of colonel in 2005. Prior to 1990, Pestana was on active duty with the U.S. Air Force as the director of mi

  15. Interior view of the Descanso Station engine garage, building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of the Descanso Station engine garage, building no. 2304 facing east. Photograph taken from the elevated position on the west end of the building, detail of the roof structure. - Descanso Ranger Station, Engine Garage, 24321 Viejas Grade Road, Descanso, San Diego County, CA

  16. 75 FR 36710 - The Texas Engineering Experiment Station/Texas A&M University System; Notice of Acceptance for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... for the Nuclear Science Center Reactor and Order Imposing Procedures for Access To Safeguards Information and Sensitive Unclassified Non- Safeguards Information AGENCY: Nuclear Regulatory Commission. ACTION: Notice of acceptance for docketing. FOR FURTHER INFORMATION CONTACT: Christian Cowdrey, Project...

  17. Wakata works with InSPACE hardware

    NASA Image and Video Library

    2009-07-13

    ISS020-E-019099 (13 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions (InSPACE) experiment in the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.

  18. Wakata works with InSPACE hardware

    NASA Image and Video Library

    2009-07-14

    ISS020-E-020303 (14 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions (InSPACE) experiment in the Microgravity Science Glovebox (MSG) in the Columbus laboratory of the International Space Station.

  19. Dredging Research

    DTIC Science & Technology

    1993-02-01

    Engineer Waterways Experiment Station, Vicksburg, MS, POC: Dr. Nicholas Kraus, (601) 634- 2018 . ______________’I.9 DRP Technical Area 1 workshop scheduled...I uold ask you is, ’What are which has been the " bible "of coastal en- videotape to reaffirm my commitment to the avenues we should pursue in this

  20. Williams working on the JAXA MS (Marangoni Surface) Experiment

    NASA Image and Video Library

    2009-11-05

    ISS021-E-020304 (5 Nov. 2009) --- NASA astronaut Jeffrey Williams, Expedition 21 flight engineer, works with Fluid Physics Experiment Facility/Marangoni Surface (FPEF MS) Core hardware in the Kibo laboratory of the International Space Station. Williams first inserted the Marangoni Inside (MI) cassette in the MI Core for a leak check, and then installed the MI Core into the FPEF MI Body. The Marangoni convection experiment in the FPEF examines fluid tension flow in micro-G.

  1. CFE-2 ICF-9 Experiment

    NASA Image and Video Library

    2014-01-03

    ISS038-E-025016 (3 Jan. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  2. Capillary Flow Experiment

    NASA Image and Video Library

    2014-06-19

    ISS040-E-015545 (19 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  3. Capillary Flow Experiment

    NASA Image and Video Library

    2014-06-19

    ISS040-E-015532 (19 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  4. Capillary Flow Experiment

    NASA Image and Video Library

    2014-06-19

    ISS040-E-015523 (19 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  5. Capillary Flow Experiment

    NASA Image and Video Library

    2014-06-19

    ISS040-E-015543 (19 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  6. Capillary Flow Experiment

    NASA Image and Video Library

    2014-06-19

    ISS040-E-015536 (19 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  7. Wiseman working with BASS-II Experiment

    NASA Image and Video Library

    2014-06-26

    ISS040-E-021546 (26 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a combustion experiment known as the Burning and Suppression of Solids (BASS) inside the Microgravity Science Glovebox (MSG) located in the International Space Station?s Destiny laboratory. Without gravity, materials burn quite differently, with a spherical flame instead of the conical shape seen on Earth. BASS is studying the hypothesis that some materials may actually become more flammable in space. Results from BASS will help guide spacecraft materials selection and improve strategies for putting out accidental fires aboard spacecraft. The research also provides scientists with improved computational models that will aid in the design of fire detection and suppression systems here on Earth.

  8. Microgravity

    NASA Image and Video Library

    2000-01-30

    Engineers from NASA's Glen Research Center demonstrate the access to one of the experiment racks plarned for the U.S. Destiny laboratory module on the International Space Station (ISS). This mockup has the full diameter, full corridor width, and half the length of the module. The mockup includes engineering mockups of the Fluids and Combustion Facility being developed by NASA's Glenn Research Center. (The full module will be six racks long; the mockup is three racks long). Photo credit: NASA/Marshall Space Flight Center (MSFC)

  9. KSC-2014-2906

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – The plant pillows containing the outredgeous red lettuce leaves are being harvested inside the Payload Development Laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. From left, are Jim Smodell, a technician with SGT, and George Guerra, a quality control engineer with QinetiQ North America. The plant pillows were removed from a growth chamber was used as a control unit for the Veggie plant growth system, and procedures were followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station. The chamber mimicked the temperature, relative humidity and carbon dioxide concentration of those in the Veggie unit on the space station. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth was monitored for 33 days. On June 10, at the end of the cycle, the plants were carefully harvested, frozen and stored for return to Earth by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Photo credit: NASA/Frankie Martin

  10. KSC-2014-2907

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – Jim Smodell, a technician with SGT, removes an outredgeous red lettuce leaf from a plant pillow inside the Payload Development Laboratory at the Space Station Processing Facility, or SSPF, at NASA's Kennedy Space Center in Florida. In the background is George Guerra, a quality control engineer with QinetiQ North America. The plant pillows were removed from the Veggie plant growth system inside a control chamber at the SSPF. The growth chamber was used as a control unit for Veggie and procedures were followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station. The chamber mimicked the temperature, relative humidity and carbon dioxide concentration of those in the Veggie unit on the space station. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth was monitored for 33 days. On June 10, at the end of the cycle, the plants were carefully harvested, frozen and stored for return to Earth by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Photo credit: NASA/Frankie Martin

  11. STS-111 Flight Day 8 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On Flight Day 8 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), the Leonardo Multi Purpose Logistics Module (MPLM) is shown from the outside of the ISS. The MPLM, used to transport goods to the station for the Expedition 5 crew, and to return goods used by the Expedition 4 crew, is being loaded and unloaded by crewmembers. Live video from within the Destiny Laboratory Module shows Whitson and Chang-Diaz. They have just completed the second of three reboosts planned for this mission, in each of which the station will gain an additional statutory mile in altitude. Following this there is an interview conducted by ground-based reporters with some members from each of the three crews, answering various questions on their respective missions including sleeping in space and conducting experiments. Video of Earth and space tools precedes a second interview much like the first, but with the crews in their entirety. Topics discussed include the feelings of Bursch and Walz on their breaking the US record for continual days spent in space. The video ends with footage of the Southern California coastline.

  12. STS-111 Flight Day 8 Highlights

    NASA Astrophysics Data System (ADS)

    2002-06-01

    On Flight Day 8 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), the Leonardo Multi Purpose Logistics Module (MPLM) is shown from the outside of the ISS. The MPLM, used to transport goods to the station for the Expedition 5 crew, and to return goods used by the Expedition 4 crew, is being loaded and unloaded by crewmembers. Live video from within the Destiny Laboratory Module shows Whitson and Chang-Diaz. They have just completed the second of three reboosts planned for this mission, in each of which the station will gain an additional statutory mile in altitude. Following this there is an interview conducted by ground-based reporters with some members from each of the three crews, answering various questions on their respective missions including sleeping in space and conducting experiments. Video of Earth and space tools precedes a second interview much like the first, but with the crews in their entirety. Topics discussed include the feelings of Bursch and Walz on their breaking the US record for continual days spent in space. The video ends with footage of the Southern California coastline.

  13. Nespolia moving the Neurospat Hardware in the Columbus Module during Expedition 26

    NASA Image and Video Library

    2010-12-20

    ISS026-E-012919 (20 Dec. 2010) --- European Space Agency astronaut Paolo Nespoli, Expedition 26 flight engineer, moves the Neurospat hardware (including light shield and frame) used for the Bodies in the Space Environment (BISE) experiment, in the Columbus Module aboard the International Space Station.

  14. A pilot study of a portable wood chipper

    Treesearch

    R. H. Fenton; H. A. McKusick

    1950-01-01

    A cooperative investigation carried on by the Connecticut State Park and Forest Commission and the Northeastern Forest Experiment Station in collaboration with the Northeastern Wood Utilization Council, Inc., the Fitchburg Engineering Company, the Connecticut Highway Department, and the Connecticut Board of Fisheries and Game. The authors acknowledge the generous...

  15. Repair, Evaluation, Maintenance, and Rehabilitation Research Program. Compliance Requirements for Environmental Laws Applicable to REMR Activities

    DTIC Science & Technology

    1988-08-01

    Endangered Species -Endangered Species Act 0 Marine Mammals .........- Marine Mammal Protection Act o Fish and Wildlife .......... Fish and Wildife ...Alternatives for the Tennessee-Tombigbee Corridor ," Miscellaneous Paper, EL-85-5, US Army Engineer Waterways Experiment Station, Vicksburg, MS. Kentucky

  16. Wiseman works with the MDCA hardware replacement, and CIR maintenance

    NASA Image and Video Library

    2014-09-18

    ISS041-E-016781 (18 Sept. 2014) --- NASA astronaut Reid Wiseman, Expedition 41 flight engineer, works with the Multi-user Drop Combustion Apparatus (MDCA) in the Destiny laboratory of the International Space Station. The MDCA contains hardware and software to conduct unique droplet combustion experiments in space.

  17. Gerst with MSG during BASS session

    NASA Image and Video Library

    2014-06-13

    ISS040-E-011004 (13 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, works with samples and hardware for a combustion experiment known as the Burning and Suppression of Solids (BASS) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.

  18. Gerst with MSG during BASS session

    NASA Image and Video Library

    2014-06-13

    ISS040-E-011006 (13 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, works with samples and hardware for a combustion experiment known as the Burning and Suppression of Solids (BASS) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.

  19. Hadfield prepares to insert biological samples in the MELFI-1

    NASA Image and Video Library

    2013-01-07

    View of Canadian Space Agency (CSA) Chris Hadfield,Expedition 34 Flight Engineer (FE),preparing to insert biological samples in the Minus Eighty Laboratory Freezer for International Space Station (ISS) - (MELFI-1),in the Japanese Experiment Module (JEM) Pressurized Module (JPM). Photo was taken during Expedition 34.

  20. Matagorda Ship Channel, Texas: Jetty Stability Study

    DTIC Science & Technology

    2006-08-01

    U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, 4 p. plus two tables and three plates. Dolan, R., Fenster, M. S., and Holme , S...Publication 10-1, U.S. Department of Commerce, Coast and Geodetic Survey, Washington, DC, 749 p. Smith, J. M., Sherlock , A. R., and Resio, D. T. (2001

  1. Flight Engineer Donald R. Pettit looks closely at Sodium Chloride within a 50-millimeter metal loop

    NASA Image and Video Library

    2003-03-12

    ISS006-E-39142 (12 March 2003) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, looks closely at a water bubble within a 50-millimeter metal loop. The experiment took place in the Destiny laboratory on the International Space Station (ISS).

  2. iss053e210425

    NASA Image and Video Library

    2017-11-07

    iss053e210425 (Nov. 7, 2017) --- Flight Engineer Joe Acaba holds a children's book that he is reading from as part of the Story Time From Space program. Astronauts read aloud from a STEM-related children's book while being videotaped and demonstrate simple science concepts and experiments aboard the International Space Station.

  3. Parabolic dish systems at work - Applying the concepts

    NASA Technical Reports Server (NTRS)

    Marriott, A. T.

    1981-01-01

    An overview is given of parabolic dish solar concentrator application experiments being conducted by the U.S. Department of Energy. The 'engineering experiments' comprise the testing of (1) a small-community powerplant system, in conjunction with a grid-connected utility; (2) stand-alone applications at remote sites such as military installations, radar stations and villages; and (3) dish modules that can deliver heat for direct use in industrial processes. Applicability projections are based on a dish and receiver that use a Brayton engine with an engine/generator efficiency of 25% and a production level of up to 25,000 units per year. Analyses indicate that parabolic-dish power systems can potentially replace small, oil-fired power plants in all regions of the U.S. between 1985 and 1991.

  4. An overview of NASA ISS human engineering and habitability: past, present, and future.

    PubMed

    Fitts, D; Architecture, B

    2000-09-01

    The International Space Station (ISS) is the first major NASA project to provide human engineering an equal system engineering an equal system engineering status to other disciplines. The incorporation and verification of hundreds of human engineering requirements applied across-the-board to the ISS has provided for a notably more habitable environment to support long duration spaceflight missions than might otherwise have been the case. As the ISS begins to be inhabited and become operational, much work remains in monitoring the effectiveness of the Station's built environment in supporting the range of activities required of a long-duration vehicle. With international partner participation, NASA's ISS Operational Habitability Assessment intends to carry human engineering and habitability considerations into the next phase of the ISS Program with constant attention to opportunities for cost-effective improvements that need to be and can be made to the on-orbit facility. Too, during its operations the ISS must be effectively used as an on-orbit laboratory to promote and expand human engineering/habitability awareness and knowledge to support the international space faring community with the data needed to develop future space vehicles for long-duration missions. As future space mission duration increases, the rise in importance of habitation issues make it imperative that lessons are captured from the experience of human engineering's incorporation into the ISS Program and applied to future NASA programmatic processes.

  5. Gerst installs CMS-2 in KIBO rack

    NASA Image and Video Library

    2014-09-09

    ISS040-E-130230 (9 Sept. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, installs a microscope for the Cell Mechanosensing-2 experiment in the Kibo laboratory of the International Space Station. The Japanese experiment, which is conducted in Kibo’s Kobairo rack, seeks to identify gravity sensors in cells that may change the expression of key proteins and genes and allowing muscles to atrophy in microgravity.

  6. Gerst installs CMS-2 in KIBO rack

    NASA Image and Video Library

    2014-09-09

    ISS040-E-130233 (9 Sept. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, installs a microscope for the Cell Mechanosensing-2 experiment in the Kibo laboratory of the International Space Station. The Japanese experiment, which is conducted in Kibo’s Kobairo rack, seeks to identify gravity sensors in cells that may change the expression of key proteins and genes and allowing muscles to atrophy in microgravity.

  7. Gerst installs CMS-2 in KIBO rack

    NASA Image and Video Library

    2014-09-09

    ISS040-E-130231 (9 Sept. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, installs a microscope for the Cell Mechanosensing-2 experiment in the Kibo laboratory of the International Space Station. The Japanese experiment, which is conducted in Kibo’s Kobairo rack, seeks to identify gravity sensors in cells that may change the expression of key proteins and genes and allowing muscles to atrophy in microgravity.

  8. Gerst installs CMS-2 in KIBO rack

    NASA Image and Video Library

    2014-09-09

    ISS040-E-130232 (9 Sept. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, installs a microscope for the Cell Mechanosensing-2 experiment in the Kibo laboratory of the International Space Station. The Japanese experiment, which is conducted in Kibo’s Kobairo rack, seeks to identify gravity sensors in cells that may change the expression of key proteins and genes and allowing muscles to atrophy in microgravity.

  9. Gerst in U.S. Laboratory

    NASA Image and Video Library

    2014-06-17

    ISS040-E-012309 (16 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts two flame tests for a combustion experiment known as the Burning and Suppression of Solids (BASS) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.

  10. Expedition 14 FE Williams performs the PMDIS in the U.S. Laboratory

    NASA Image and Video Library

    2006-12-12

    S116-E-05868 (12 Dec. 2006) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Perceptual Motor Deficits in Space (PMDIS) experiment in the Destiny laboratory of the International Space Station. The PMDIS experiment will measure the decline in hand-eye coordination of shuttle astronauts while on orbit. These measurements will be used to evaluate various mechanisms thought to be responsible for the decline.

  11. Wiseman conducts BCAT-C1 experiment

    NASA Image and Video Library

    2014-07-25

    ISS040-E-076505 (25 July 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test-C1, or BCAT-C1, experiment in the Kibo laboratory of the International Space Station. Results from this ongoing investigation of colloids ? mixtures of small particles distributed throughout a liquid ? will help materials scientists to develop new consumer products with unique properties and longer shelf lives.

  12. Wiseman conducts BCAT-C1 experiment

    NASA Image and Video Library

    2014-07-25

    ISS040-E-076510 (25 July 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test-C1, or BCAT-C1, experiment in the Kibo laboratory of the International Space Station. Results from this ongoing investigation of colloids ? mixtures of small particles distributed throughout a liquid ? will help materials scientists to develop new consumer products with unique properties and longer shelf lives.

  13. Wiseman conducts BCAT-C1 experiment

    NASA Image and Video Library

    2014-07-25

    ISS040-E-076507 (25 July 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test-C1, or BCAT-C1, experiment in the Kibo laboratory of the International Space Station. Results from this ongoing investigation of colloids ? mixtures of small particles distributed throughout a liquid ? will help materials scientists to develop new consumer products with unique properties and longer shelf lives.

  14. Graduate Education. Experiences and Preferences of WES (Waterways Experiment Station) Engineers and Scientists.

    DTIC Science & Technology

    1987-03-01

    Years From Now With Those Who Expect to Hold a Different WES Position Different Entire Work Same WES WES Force Position Position Population ... Characteristic Mean n Mean n Mean n Age 38 106 36 96 36 249 GS level 12.2 105 12.0 95 11.9 247 Months at current level 47 104 41 95 43 246 Years at WES 12.0 104

  15. Alexander Samokutyaev conducts BTKh-14/Bioemulsiya (Bioemulsion) Experiment

    NASA Image and Video Library

    2011-05-05

    ISS027-E-022454 (5 May 2011) --- Russian cosmonaut Alexander Samokutyaev, Expedition 27 flight engineer, uses a glovebox to service the Russian Bioemulsion science payload in the Poisk Mini-Research Module 2 (MRM2) of the International Space Station. The Bioemulsion experiment is attempting to develop faster technologies for obtaining microorganism biomass and biologically active substance biomass for creating highly efficient environmentally pure bacteria, enzymes, and medicinal/pharmaceutical preparations.

  16. Barratt with MSG in Kibo

    NASA Image and Video Library

    2009-04-29

    ISS019-E-012391 (29 April 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, activates the Microgravity Science Glovebox (MSG) from its A31p laptop, initiates and conducts a session, the first of Increment 19, with the experiment Smoke Point In Co-flow Experiment (SPICE), performed in the MSG and controlled by its A31p with SPICE micro-drives in the Kibo laboratory of the International Space Station.

  17. STATION BUILDING. United Engineering Company Ltd., Alameda Shipyard, Ship Repair ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STATION BUILDING. United Engineering Company Ltd., Alameda Shipyard, Ship Repair Facilities. Plan, elevations, sections, details. Austin Willmott Earl, Consulting Engineer, 233 Sansome Street, San Francisco, California. Drawing no. 504. Various scales. January 20, 1945, no revisions. U.S. Navy, Bureau of Yards & Docks, Contract no. bs 76, amendments 4 & 5. blueprint - United Engineering Company Shipyard, Electrical Services & Switching Station, 2900 Main Street, Alameda, Alameda County, CA

  18. KSC-2014-2474

    NASA Image and Video Library

    2014-05-09

    CAPE CANAVERAL, Fla. – Researchers have activated the red, blue and green LED lights on the Veggie plant growth system inside a control chamber at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Jim Smodell, a technician with SGT, starts the water supply to the plant pillows containing outredgeous red romaine lettuce seeds inside Veggie. Behind him is George Guerra, a quality control engineer with QinetiQ North America. The growth chamber will be used as a control unit and procedures will be followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth will be monitored for 28 days. At the end of the cycle, the plants will be carefully harvested, frozen and stored for return to Earth. Photo credit: NASA/Dimitri Gerondidakis

  19. KSC-2014-2472

    NASA Image and Video Library

    2014-05-09

    CAPE CANAVERAL, Fla. – Researchers have activated the red, blue and green LED lights on the Veggie plant growth system inside a control chamber at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Jim Smodell, a technician with SGT, is securing the plant pillows containing outredgeous red romaine lettuce seeds onto the root mat inside Veggie. To his left, is George Guerra, a quality control engineer with QinetiQ North America. The growth chamber will be used as a control unit and procedures will be followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth will be monitored for 28 days. At the end of the cycle, the plants will be carefully harvested, frozen and stored for return to Earth. Photo credit: NASA/Dimitri Gerondidakis

  20. KSC-2014-2465

    NASA Image and Video Library

    2014-05-09

    CAPE CANAVERAL, Fla. – Researchers have activated the red, blue and green LED lights on the Veggie plant growth system inside a control chamber at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. They are checking the plant pillows that contain outredgeous red romaine lettuce seeds. From left, are George Guerra, quality control engineer with QinetiQ North America, and Jim Smodell, a technician with SGT. The growth chamber will be used as a control unit and procedures will be followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth will be monitored for 28 days. At the end of the cycle, the plants will be carefully harvested, frozen and stored for return to Earth. Photo credit: NASA/Dimitri Gerondidakis

  1. CFE-2 Experiment ICF-5 in the Node 2

    NASA Image and Video Library

    2014-01-03

    ISS038-E-025000 (3 Jan. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, speaks in a microphone while conducting a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  2. Parmitano in Japanese Experiment Module (JEM)

    NASA Image and Video Library

    2013-07-23

    ISS036-E-024483 (23 July 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, holds a bag while performing evening prep work in the Kibo laboratory of the International Space Station. Parmitano is wearing a Thermolab Double Sensor on his forehead which is used on the Circadian Rhythms Experiment. This experiment examines the hypothesis that long-term spaceflights significantly affect the synchronization of the circadian rhythms in human beings due to changes of a non-24 hour light-dark cycle.

  3. KSC-04PD-1863

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Training Auditorium, astronaut Mike Foale speaks to the audience about his experiences aboard the International Space Station as commander of the Expedition 8 crew. Foale and Flight Engineer Alexander Kaleri spent 194 days, 18 hours and 35 minutes in space, the second longest expedition to be completed aboard the Station. In February Foale and Kaleri conducted the first spacewalk ever performed from the complex by a two-person crew. Foale has accumulated more time in space than any U.S. astronaut, amassing a total of 374 days, 11 hours and 19 minutes in space from his Expedition 8 mission, a 1997 flight to the Russian Mir Space Station, and four Space Shuttle missions.

  4. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  5. Installation of Radioskaf 11.2 Kit and batteries for Radioskaf (Suitsat-1) on Expedition 12

    NASA Image and Video Library

    2006-01-24

    ISS012-E-15655 (24 Jan. 2006) --- In the Unity node of the International Space Station, cosmonaut Valery I. Tokarev, Expedition 12 flight engineer representing Russia's Federal Space Agency, puts finishing touches on an old Russian Orlan spacesuit that will be released by hand from the space station during a spacewalk Feb. 3, 2006. Outfitted with a special radio transmitter and other gear, the spacesuit comprises a Russian experiment called SuitSat. It will fly free from the station as a satellite in orbit for several weeks of scientific research and radio tracking, including communications by amateur radio operators. Eventually, it will enter the atmosphere and be destroyed.

  6. Wakata and Thirsk with MELFI in KIBO

    NASA Image and Video Library

    2009-06-15

    ISS020-E-010028 (15 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, returns a dewar tray to the Minus Eighty Laboratory Freezer for ISS (MELFI) after inserting biological samples into the trays in the Kibo laboratory of the International Space Station. Samples were taken as part of the Nutritional Status Assessment (Nutrition) with Repository experiment, a study done by NASA to date of human physiologic changes during long-duration spaceflight. Canadian Space Agency astronaut Robert Thirsk, flight engineer, assisted Wakata.

  7. Boring Information and Subsurface Data Base Package User’s Guide.

    DTIC Science & Technology

    1984-09-01

    Army Engineer Waterways Experiment Station Computer Application in’ Ceotechnical Labor o y mue lctosi cia Geotechnical Engineering P0 Box 631...l F -3 7F - 2 1Y 1 U 3. T. 2 F1’--I F 4 -FEST- F,-1rE *~7 1 . ESTR - I -IL’’ 1 2 A. T F- E:7 * 7 T)*i ES l 2) 1-’E M 6FI- I; 2 6 𔄁.D L fO.W -ELLYV

  8. Application of a space station to communications satellites

    NASA Technical Reports Server (NTRS)

    Ramler, J. R.

    1983-01-01

    The economic benefits of a space station relative to communications satellites are discussed in terms of technology experiments, spacecraft checkout, repair, servicing, and refurbishment (RSR), and mating an OTV with satellites for boost to GEO. The zero gravity, vacuum conditions, and atmosphere free long ranges are environmental features that can be used for testing large, flexible antennas and laser communications devices. Some resistance might be encountered to checkout in LEO due to the substantial success of launches to GEO without LEO checkout. However, new generations of larger, more complex satellites may warrant the presence of a space station to verify performance of new spacecraft. One RSR positive aspect for a space station is as a storage site for propellant, as well as for reusable OTV booster engines. Also, the space station can serve as a base for manned or unmanned repair spacecraft which will travel to GEO to fix malfunctions in geostationary satellites.

  9. Summary of astronaut inputs on automation and robotics for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1990-01-01

    Astronauts and payload specialists present specific recommendations in the form of an overview that relate to the use of automation and robotics on the Space Station Freedom. The inputs are based on on-orbit operations experience, time requirements for crews, and similar crew-specific knowledge that address the impacts of automation and robotics on productivity. Interview techniques and specific questionnaire results are listed, and the majority of the responses indicate that incorporating automation and robotics to some extent and with human backup can improve productivity. Specific support is found for the use of advanced automation and EVA robotics on the Space Station Freedom and for the use of advanced automation on ground-based stations. Ground-based control of in-flight robotics is required, and Space Station activities and crew tasks should be analyzed to assess the systems engineering approach for incorporating automation and robotics.

  10. Russian EVA 35

    NASA Image and Video Library

    2013-08-22

    ISS036-E-035198 (22 Aug. 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 58-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame) completed the replacement of a laser communications experiment with a new platform for a small optical camera system, the installation of new spacewalk aids and an inspection of antenna covers. A section of the space station is visible in the reflections in his helmet visor.

  11. Russian EVA 35

    NASA Image and Video Library

    2013-08-22

    ISS036-E-035200 (22 Aug. 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 58-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame) completed the replacement of a laser communications experiment with a new platform for a small optical camera system, the installation of new spacewalk aids and an inspection of antenna covers. A section of the space station is visible in the reflections in his helmet visor.

  12. Expedition_55_Education_In-flight_Interview_with Boeing_Genes_in Space_2018_130_1615_651411

    NASA Image and Video Library

    2018-05-10

    SPACE STATION CREW MEMBERS DISCUSS RESEARCH WITH TEXAS STUDENTS------- Aboard the International Space Station, Expedition 55 Flight Engineers Drew Feustel and Scott Tingle of NASA discussed research on the orbital laboratory during an in-flight educational event May 10 with students gathered at Space Center Houston. The in-flight event centered around the Boeing-sponsored Genes in Space experiment which enlisted students in grades 7-12 to submit various ideas for DNA research with an eye to future implications for deep space exploration.

  13. The Biotechnology Facility for International Space Station.

    PubMed

    Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy

    2004-03-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.

  14. The Biotechnology Facility for International Space Station

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy

    2004-01-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.

  15. Window Observational Rack Facility (WORF)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Developed by Boeing, at the Marshall Space Flight Center (MSFC) Space Station Manufacturing building, the Window Observational Rack Facility (WORF) will help Space Station crews take some of the best photographs ever snapped from an orbiting spacecraft by eliminating glare and allowing researchers to control their cameras and other equipment from the ground. The WORF is designed to make the best possible use of the high-quality research window in the Space Station's U.S. Destiny laboratory module. Engineers at the MSFC proposed a derivative of the EXPRESS (Expedite the Processing of Experiments to the Space Station) Rack already used on the Space Station and were given the go-ahead. The EXPRESS rack can hold a wide variety of experiments and provide them with power, communications, data, cooling, fluids, and other utilities - all the things that Earth-observing experiment instruments would need. WORF will supply payloads with power, data, cooling, video downlink, and stable, standardized interfaces for mounting imaging instruments. Similar to specialized orbital observatories, the interior of the rack is sealed against light and coated with a special low-reflectant black paint, so payloads will be able to observe low-light-level subjects such as the faint glow of auroras. Cameras and remote sensing instruments in the WORF can be preprogrammed, controlled from the ground, or operated by a Station crewmember by using a flexible shroud designed to cinch tightly around the crewmember's waist. The WORF is scheduled to be launched aboard the STS-114 Space Shuttle mission in the year 2003.

  16. Space Station Freedom automation and robotics: An assessment of the potential for increased productivity

    NASA Technical Reports Server (NTRS)

    Weeks, David J.; Zimmerman, Wayne F.; Swietek, Gregory E.; Reid, David H.; Hoffman, Ronald B.; Stammerjohn, Lambert W., Jr.; Stoney, William; Ghovanlou, Ali H.

    1990-01-01

    This report presents the results of a study performed in support of the Space Station Freedom Advanced Development Program, under the sponsorship of the Space Station Engineering (Code MT), Office of Space Flight. The study consisted of the collection, compilation, and analysis of lessons learned, crew time requirements, and other factors influencing the application of advanced automation and robotics, with emphasis on potential improvements in productivity. The lessons learned data collected were based primarily on Skylab, Spacelab, and other Space Shuttle experiences, consisting principally of interviews with current and former crew members and other NASA personnel with relevant experience. The objectives of this report are to present a summary of this data and its analysis, and to present conclusions regarding promising areas for the application of advanced automation and robotics technology to the Space Station Freedom and the potential benefits in terms of increased productivity. In this study, primary emphasis was placed on advanced automation technology because of its fairly extensive utilization within private industry including the aerospace sector. In contrast, other than the Remote Manipulator System (RMS), there has been relatively limited experience with advanced robotics technology applicable to the Space Station. This report should be used as a guide and is not intended to be used as a substitute for official Astronaut Office crew positions on specific issues.

  17. Advanced Expander Test Bed Program

    DTIC Science & Technology

    1991-04-01

    CHAMBER COOLANT DP 503. CHAMBER COOLANT DT 896. ETA C* 0.993 CHAMBER Q 12371. ENGINE STATION CONDITIONS FUEL SYSTEM CONDITIONS STATION PRESS TEMP FLOW...1597.3 452.5 7.44 1507.1 0.62 CHAMBER 1500.0 * OXYGEN SYSTEM CONDITIONS STATION PRESS TEMP FLOW ENTHALPY DENSITY ENGINE INLET 70.0 163.0- 44.64 61.2...FUEL SYSTEM CONOITIONS PRESS TEMP FLOM ENTHALPY OENSITY STATION (PSIA) (DEG R) (LB/SEC) [(BTU/LB) (LB/FT31 ENGINE INLET 73.0 38.0 7.440 -104.8 4.389

  18. Expedition 5 Crew Interviews: Peggy Whitson

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 5 Flight Engineer Peggy Whitson is seen during a prelaunch interview. She gives details on the mission's goals and significance, her role in the mission, what her responsibilities will be, what the crew activities will be like (docking and undocking of two Progress unpiloted supply vehicles, normal space station maintenance tasks, conducting science experiments, installing the CETA (Crew and Equipment Translation) cart, and supporting the installation of the International Truss Structure S1 segment), the day-to-day life on an extended stay mission, the experiments she will be conducting on board, and what the S1 truss will mean to the International Space Station (ISS). Whitson ends with her thoughts on the short-term and long-term future of the ISS.

  19. STS-114 Crew Interview: Soichi Noguchi

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Soichi Noguchi, Mission Specialist 1 (MS1) representing Japan's National Space Development Agency (NASDA) is seen during a prelaunch interview. He discusses the main goals of this flight which are to take expedition 7 to the International Space Station and bring back expedition 6 to the Earth. He is also responsible for all Extravehicular (EVA) work on this mission. Expedition seven includes: Mission Specialist and Commander Yuri Malenchenko; NASA ISS Science Officer Edward Lu; and Flight Engineer Alexander Kaleri. Expedition Six includes: Commander Kenneth Bowersox; NASA ISS Science Officer Donald Petit; and Flight Engineer Nikolai Budarin. Noguchi explains the Utilization and Logistics Flight 1 (ULF1) Mission which entails the exchange of crewmembers, various supplies and experiments and the replacement of a control component on the International Space Station. This is also will be Soichi Noguchi's first spacewalk.

  20. Expedition Six Flight Engineer Donald R. Pettit is loading software on PC in U.S. Lab

    NASA Image and Video Library

    2002-12-06

    ISS006-E-07133 (9 December 2002) --- Astronaut Donald R. Pettit, Expedition 6 NASA ISS science officer, works to set up Pulmonary Function in Flight (PuFF) hardware in preparation for a Human Research Facility (HRF) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition 6 is the fourth and final expedition crew to perform the HRF/PuFF Experiment on the ISS.

  1. Expedition Six Flight Engineer Donald R. Pettit is loading software on PC in U.S. Lab

    NASA Image and Video Library

    2002-12-06

    ISS006-E-07134 (9 December 2002) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, works to set up Pulmonary Function in Flight (PuFF) hardware in preparation for a Human Research Facility (HRF) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six is the fourth and final expedition crew to perform the HRF/PuFF Experiment on the ISS.

  2. Water Bubble revealing a refracted image of ESA Andre Kuipers

    NASA Image and Video Library

    2012-02-28

    ISS030-E-108804 (28 Feb. 2012) -- A close look at this four-inch polished metal sphere onboard the International Space Station reveals a reflected image of NASA astronaut Don Pettit, Expedition 30 flight engineer. Using a 105-mm lens, Pettit took a series of pictures of the sphere. Also visible is hardware from the Capillary Flow Experiment-2 (CFE-2) Vane Gap 1 Experiment, in the U.S. Laboratory Destiny.

  3. Kotov and Mastracchio during SPHERES Experiment

    NASA Image and Video Library

    2014-01-16

    ISS038-E-031405 (15 Jan. 2014) --- In the International Space Station's Kibo laboratory, Russian cosmonaut Oleg Kotov (left), Expedition 38 commander; and NASA astronaut Rick Mastracchio, flight engineer, conduct a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The experiment uses student written algorithms that operate the small satellites to demonstrate critical mission tasks such as formation flying and vehicle dockings.

  4. InSPACE-3 experiment

    NASA Image and Video Library

    2013-08-01

    ISS036-E-028026 (1 Aug. 2013) --- NASA astronaut Karen Nyberg, Expedition 36 flight engineer, works with the InSPACE-3 experiment in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. InSPACE-3 applies different magnetic fields to vials of colloids, or liquids with microscopic particles, and observes how fluids can behave like a solid. Results may improve the strength and design of materials for stronger buildings and bridges.

  5. ACE-1 experiment

    NASA Image and Video Library

    2013-06-24

    In the International Space Stations Destiny laboratory,NASA astronaut Karen Nyberg,Expedition 36 flight engineer,speaks into a microphone while conducting a session with the Advanced Colloids Experiment (ACE)-1 sample preparation at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). ACE-1 is a series of microscopic imaging investigations that uses the microgravity environment to examine flow characteristics and the evolution and ordering effects within a group of colloidal materials.

  6. DEMONSTRATION BULLETIN: SITE CHARACTERIZATION ANALYSIS PENETROMETER SYSTEM (SCAPS) LIF SENSOR - U.S. ARMY, NAVY, AND AIR FORCE (TRI-SERVICES)

    EPA Science Inventory

    The Tri-Services Site Characterization Analysis Penetrometer System (SCAPS) was developed by the U.S. Army (U.S. Army Corps of Engineers, Waterways Experiment Station [WES] and the Army Environmental Center [AEC]), Navy (Naval Command, Control and Ocean Surveillance Center), and ...

  7. Simplified Procedures for Eutrophication Assessment and Prediction: User Manual

    DTIC Science & Technology

    1996-09-01

    1975), for use in the Lake Erie Wastewater Management Study and is described by Verhoff, Yaksich, and Melfi (1980) and Westerdahl et al. (1981). This...manual," Technical Re- port E-81-9, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. Westerdahl , H. E., Ford, W. B., Harris, J., and

  8. Dredging Operations Technical Support Program. Management Strategy for Disposal of Dredged Material: Contaminant Testing and Controls.

    DTIC Science & Technology

    1985-08-01

    laboratory test using a rainfall simulator has been developed ( Westerdahl and Skogerboe 1981) and is being used to predict surface runoff water quality...Marine Protection, Research, and Sanctuaries Act of 1972)," US Army Engineer Waterways Experiment Station, Vicksburg, Miss. Westerdahl , H. E., and

  9. MELFI / GLACIER Transfers

    NASA Image and Video Library

    2013-03-12

    ISS034-E-067263 (12 March 2013) --- Canadian astronaut Chris Hadfield, right, assists fellow Expedition 34 flight engineer and NASA astronaut Tom Marshburn during Minus Eighty-Degree Laboratory Freezer for International Space Station (MELFI)operations. The two are doing transfers of samples connected to the General Laboratory Active Cryogenic ISS Experiment Refrigerator or GLACIER in the U.S. lab Destiny.

  10. Wakata and Thirsk with GLACIER in U.S. Lab

    NASA Image and Video Library

    2009-06-15

    ISS020-E-010018 (15 June 2009) --- Canadian Space Agency astronaut Robert Thirsk and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata (partially out of frame at right), both Expedition 20 flight engineers, work with the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) in the Destiny laboratory of the International Space Station.

  11. CIR fuel reservoir swap closeout

    NASA Image and Video Library

    2014-08-11

    ISS040-E-090493 (11 Aug. 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, performs routine in-flight maintenance on the Multi-user Drop Combustion Apparatus (MDCA) inside the Combustion Integrated Rack (CIR) in the Destiny laboratory of the International Space Station. The MDCA contains hardware and software to conduct unique droplet combustion experiments in space.

  12. CIR fuel reservoir swap closeout

    NASA Image and Video Library

    2014-08-11

    ISS040-E-090497 (11 Aug. 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, performs routine in-flight maintenance on the Multi-user Drop Combustion Apparatus (MDCA) inside the Combustion Integrated Rack (CIR) in the Destiny laboratory of the International Space Station. The MDCA contains hardware and software to conduct unique droplet combustion experiments in space.

  13. CIR fuel reservoir swap closeout

    NASA Image and Video Library

    2014-08-11

    ISS040-E-090482 (11 Aug. 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, performs routine in-flight maintenance on the Multi-user Drop Combustion Apparatus (MDCA) inside the Combustion Integrated Rack (CIR) in the Destiny laboratory of the International Space Station. The MDCA contains hardware and software to conduct unique droplet combustion experiments in space.

  14. CIR fuel reservoir swap closeout

    NASA Image and Video Library

    2014-08-11

    ISS040-E-090484 (11 Aug. 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, performs routine in-flight maintenance on the Multi-user Drop Combustion Apparatus (MDCA) inside the Combustion Integrated Rack (CIR) in the Destiny laboratory of the International Space Station. The MDCA contains hardware and software to conduct unique droplet combustion experiments in space.

  15. STS-85 Day 08 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this eighth day of the STS-85 mission, the flight crew, Cmdr. Curtis L. Brown, Jr., Pilot Kent V. Rominger, Payload Cmdr. N. Jan Davis (Ph.D.), Mission Specialists Robert L. Curbeam, Jr. and Stephen K. Robinson (Ph.D.), and Payload Specialist Bjarni V. Tryggvason entered the final portion of its flight. The new Mir 24 crew of Commander Anatoly Solovyev and Flight Engineer Pavel Vinogradov, who arrived on the station the same day Discovery was launched, bid farewell to Mir 23 Commander Vasily Tsibliev and Flight Engineer Alexander Lazutkin who are returning home after 185 days in space. The Soyuz vehicle carrying the Mir 23 crew home undocked from the station. Robinson again used the Southwest Ultraviolet Imaging System (SWUIS), a 7-inch imaging telescope that is pointed out of the orbiter's middeck hatch window, to observe the Hale-Bopp comet. Curbeam continued his work with the Bioreactor Demonstration System designed to perform cell biology experiments under controlled conditions. Tryggvason spent part of his time troubleshooting a computer hard drive system that supports the Microgravity Vibration Isolation Mount experiment.

  16. Quality requirements for reclaimed/recycled water

    NASA Technical Reports Server (NTRS)

    Janik, Daniel S.; Sauer, Richard L.; Pierson, Duane L.; Thorstenson, Yvonne R.

    1987-01-01

    Water used during current and previous space missions has been either carried or made aloft. Future human space endeavors will require some form of water reclamation and recycling. There is little experience in the U.S. space program with this technology. Water reclamation and recycling constitute engineering challenges of the broadest nature that will require an intensive research and development effort if this technology is to mature in time for practical use on the proposed U.S. Space Station. In order for this to happen, reclaimed/recycled water specifications will need to be devised to guide engineering development. Present NASA Potable Water Specifications are not applicable to reclaimed or recycled water. Adequate specifications for ensuring the quality of the reclaimed or recycled potable water system is reviewed, limitations of present water specifications are examined, world experience with potable water reclamation/recycling systems and systems analogs is reviewed, and an approach to developing pertinent biomedical water specifications for spacecraft is presented. Space Station water specifications should be designed to ensure the health of all likely spacecraft inhabitants including man, animals, and plants.

  17. KSC-04PD-1864

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Training Auditorium, James Hattaway Jr., KSC associate director, presents a framed graphic to astronaut Mike Foale representing his stay aboard the International Space Station as commander of the Expedition 8 crew. .Foale spoke to the audience of employees about his experiences aboard the Space Station. Foale and Flight Engineer Alexander Kaleri spent 194 days, 18 hours and 35 minutes in space, the second longest expedition to be completed aboard the Station. In February Foale and Kaleri conducted the first spacewalk ever performed from the complex by a two-person crew. Foale has accumulated more time in space than any U.S. astronaut, amassing a total of 374 days, 11 hours and 19 minutes in space from his Expedition 8 mission, a 1997 flight to the Russian Mir Space Station, and four Space Shuttle missions.

  18. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011590 (24 June 2013) --- Russian cosmonauts Alexander Misurkin (left) and Fyodor Yurchikhin, both Expedition 36 flight engineers, participate in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Yurchikhin replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  19. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011593 (24 June 2013) --- Russian cosmonauts Alexander Misurkin (left) and Fyodor Yurchikhin, both Expedition 36 flight engineers, participate in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Yurchikhin replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed one new one.

  20. KSC-04PD-1861

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Astronaut Mike Foale, left, joins Center Director Jim Kennedy, right, in the Training Auditorium. Foale spoke to the audience about his experiences aboard the International Space Station as commander of the Expedition 8 crew. Foale and Flight Engineer Alexander Kaleri spent 194 days, 18 hours and 35 minutes in space, the second longest expedition to be completed aboard the Station. In February Foale and Kaleri conducted the first spacewalk ever performed from the complex by a two-person crew. Foale has accumulated more time in space than any U.S. astronaut, amassing a total of 374 days, 11 hours and 19 minutes in space from his Expedition 8 mission, a 1997 flight to the Russian Mir Space Station, and four Space Shuttle missions.

  1. KSC-04PD-1866

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. After his presentation in the Training Auditorium, astronaut Mike Foale greets employees and signs autographs. Foale shared his experiences aboard the International Space Station as commander of the Expedition 8 crew. Foale and Flight Engineer Alexander Kaleri spent 194 days, 18 hours and 35 minutes in space, the second longest expedition to be completed aboard the Station. In February Foale and Kaleri conducted the first spacewalk ever performed from the complex by a two-person crew. Foale has accumulated more time in space than any U.S. astronaut, amassing a total of 374 days, 11 hours and 19 minutes in space from his Expedition 8 mission, a 1997 flight to the Russian Mir Space Station, and four Space Shuttle missions.

  2. KSC-04PD-1867

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. After his presentation in the Training Auditorium, astronaut Mike Foale greets employees and signs autographs. Foale shared his experiences aboard the International Space Station as commander of the Expedition 8 crew. Foale and Flight Engineer Alexander Kaleri spent 194 days, 18 hours and 35 minutes in space, the second longest expedition to be completed aboard the Station. In February Foale and Kaleri conducted the first spacewalk ever performed from the complex by a two-person crew. Foale has accumulated more time in space than any U.S. astronaut, amassing a total of 374 days, 11 hours and 19 minutes in space from his Expedition 8 mission, a 1997 flight to the Russian Mir Space Station, and four Space Shuttle missions.

  3. KSC-04PD-1862

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Training Auditorium, Center Director Jim Kennedy presents a framed photo to astronaut Mike Foale, who spoke to the audience about his experiences aboard the International Space Station as commander of the Expedition 8 crew. Foale and Flight Engineer Alexander Kaleri spent 194 days, 18 hours and 35 minutes in space, the second longest expedition to be completed aboard the Station. In February Foale and Kaleri conducted the first spacewalk ever performed from the complex by a two-person crew. Foale has accumulated more time in space than any U.S. astronaut, amassing a total of 374 days, 11 hours and 19 minutes in space from his Expedition 8 mission, a 1997 flight to the Russian Mir Space Station, and four Space Shuttle missions.

  4. Adaptive Modeling of the International Space Station Electrical Power System

    NASA Technical Reports Server (NTRS)

    Thomas, Justin Ray

    2007-01-01

    Software simulations provide NASA engineers the ability to experiment with spacecraft systems in a computer-imitated environment. Engineers currently develop software models that encapsulate spacecraft system behavior. These models can be inaccurate due to invalid assumptions, erroneous operation, or system evolution. Increasing accuracy requires manual calibration and domain-specific knowledge. This thesis presents a method for automatically learning system models without any assumptions regarding system behavior. Data stream mining techniques are applied to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). We also explore a knowledge fusion approach that uses traditional engineered EPS models to supplement the learned models. We observed that these engineered EPS models provide useful background knowledge to reduce predictive error spikes when confronted with making predictions in situations that are quite different from the training scenarios used when learning the model. Evaluations using ISS sensor data and existing EPS models demonstrate the success of the adaptive approach. Our experimental results show that adaptive modeling provides reductions in model error anywhere from 80% to 96% over these existing models. Final discussions include impending use of adaptive modeling technology for ISS mission operations and the need for adaptive modeling in future NASA lunar and Martian exploration.

  5. Research experiments at Hangar L

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.

  6. SPHERES Zero Robotics Session

    NASA Image and Video Library

    2013-05-23

    ISS036-E-003308(23 May 2013) --- Onboard the International Space Station, Expedition 36 Flight Engineer Chris Cassidy, NASA astronaut, watches from just out of frame as he devotes some time with the long-running SPHERES experiment, also known as Synchronized Position Hold Engage and Reorient Experimental Satellites. The experiment is run in conjunction with students who program bowling ball-sized satellites using algorithms. The free-floating satellites are programmed to perform maneuvers potentially influencing the design of future missions.

  7. Tyurin readies the NASDA exposure experiment cases for their EVA

    NASA Image and Video Library

    2001-10-14

    ISS003-E-6623 (14 October 2001) --- Cosmonaut Mikhail Tyurin, Expedition Three flight engineer representing Rosaviakosmos, works with hardware for the Micro-Particles Capturer (MPAC) and Space Environment Exposure Device (SEED) experiment and fixture mechanism in the Zvezda Service Module on the International Space Station (ISS). MPAC and SEED were developed by Japan’s National Space Development Agency (NASDA), and Russia developed the Fixture Mechanism. This image was taken with a digital still camera.

  8. Duque works at the MSG for PromISS 2 in the Lab during Expedition Seven / 8 OPS

    NASA Image and Video Library

    2003-10-27

    ISS008-E-05026 (27 October 2003) --- European Space Agency (ESA) astronaut Pedro Duque (left) of Spain works with the Cervantes mission experiment PROMISS in the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS). This experiment will investigate the growth processes of proteins in weightless conditions. Astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, is visible at right.

  9. CARDIOCOG. Experiment ops

    NASA Image and Video Library

    2006-11-29

    ISS014-E-08795 (29 Nov. 2006) --- European Space Agency (ESA) astronaut Thomas Reiter, Expedition 14 flight engineer, works with the Cognitive Cardiovascular (Cardiocog-2) experiment in the Zvezda Service Module of the International Space Station. Cardiocog-2 will determine the impact of weightlessness on the cardiovascular system and respiratory system and the cognitive reactions of crewmembers. The results of this study will be used to develop additional countermeasures that will continue to keep crewmembers healthy during long-duration space exploration.

  10. KSC-2012-2866

    NASA Image and Video Library

    2012-05-19

    CAPE CANAVERAL, Fla. – Dr. Freya Shephard is interviewed by the media in the NASA Newsroom at Kennedy Space Center in Florida during prelaunch activities for the SpaceX demonstration test flight. Shephard is a researcher from the University of Nottingham in the United Kingdom and mentor to Paul Warren, an eleventh-grade student investigator from Henry E. Lackey High School in Charles County, Md. Warren’s experiment “Physiological Effects of Microgravity and Increased Levels of Radiation on Wild Type and Genetically Engineered Caenorhabditis elegans,” is one of 15 in the Student Spaceflight Experiments Program, or SSEP, being ferried to the International Space Station inside the Dragon capsule. The launch will be the second demonstration test flight for SpaceX for NASA's Commercial Orbital Transportation Services program, or COTS. SSEP, which began operation in June 2010 through a partnership of the National Center for Earth and Space Science Education with NanoRacks LLC, is a U.S. national science, technology, engineering and mathematics STEM education initiative that gives students across a community the opportunity to propose and design real experiments to fly in low Earth orbit. SSEP experiments flew on space shuttle missions STS-134 and STS-135 in 2011, the final flights of space shuttles Endeavour and Atlantis. For more information on SSEP, visit http://www.nasa.gov/audience/foreducators/station-here-we-come.html. Photo credit: NASA/Gianni Woods

  11. Lockheed L-1011 Test Station installation in support of the Adaptive Performance Optimization flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Technicians John Huffman, Phil Gonia and Mike Kerner of NASA's Dryden Flight Research Center, Edwards, California, carefully insert a monitor into the Research Engineering Test Station during installation of equipment for the Adaptive Performance Optimization experiment aboard Orbital Sciences Corporation's Lockheed L-1011 in Bakersfield, California, May, 6, 1997. The Adaptive Performance Optimization project is designed to reduce the aerodynamic drag of large subsonic transport aircraft by varying the camber of the wing through real-time adjustment of flaps or ailerons in response to changing flight conditions. Reducing the drag will improve aircraft efficiency and performance, resulting in signifigant fuel savings for the nation's airlines worth hundreds of millions of dollars annually. Flights for the NASA experiment will occur periodically over the next couple of years on the modified wide-bodied jetliner, with all flights flown out of Bakersfield's Meadows Field. The experiment is part of Dryden's Advanced Subsonic Transport Aircraft Research program.

  12. Cassidy conducts BASS Experiment Test Operations

    NASA Image and Video Library

    2013-04-05

    ISS035-E-015081 (5 April 2013) --- Astronaut Chris Cassidy, Expedition 35 flight engineer, conducts a session of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, Cassidy conducted a run of the experiment, which examined the burning and extinction characteristics of a wide variety of fuel samples in microgravity and will guide strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.

  13. BCAT (Binary Colloid Alloy Test) experiment documentation

    NASA Image and Video Library

    2009-05-02

    ISS019-E-013241 (2 May 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, prepares to photograph Binodal Colloidal Aggregation Test?4 (BCAT-4) experiment samples in the Destiny laboratory of the International Space Station. This experiment studies the long-term behavior of colloids ? fine particles suspended in a fluid in a microgravity environment, where the effects of sedimentation and convention are removed. Results from this study may lead to new colloid materials with applications in the communications and computer industries for switches, displays and optical devices with properties that could rival those of lasers.

  14. Preliminary plan for a Shuttle Coherent Atmospheric Lidar Experiment (SCALE)

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, D.; Beranek, R.; Bilbro, J.; Mabry, J.

    1985-01-01

    A study has been completed to define a Shuttle experiment that solves the most crucial scientific and engineering problems involved in building a satellite Doppler wind profiler for making global wind measurements. The study includes: (1) a laser study to determine the feasibility of using the existing NOAA Windvan laser in the Space Shuttle spacecraft; (2) a preliminary optics and telescope design; (3) an accommodations study including power, weight, thermal, and control system requirements; and (4) a flight trajectory and operations plan designed to accomplish the required scientific and engineering goals. The experiment will provide much-needed data on the global distribution of atmospheric aerosols and demonstrate the technique of making wind measurements from space, including scanning the laser beam and interpreting the data. Engineering accomplishments will include space qualification of the laser, development of signal processing and lag angle compensation hardware and software, and telescope and optics design. All of the results of this limited Spacelab experiment will be directly applicable to a complete satellite wind profiler for the Earth Observation System/Space Station or other free-flying satellite.

  15. A new ion-beam laboratory for materials research at the Slovak University of Technology

    NASA Astrophysics Data System (ADS)

    Noga, Pavol; Dobrovodský, Jozef; Vaňa, Dušan; Beňo, Matúš; Závacká, Anna; Muška, Martin; Halgaš, Radoslav; Minárik, Stanislav; Riedlmajer, Róbert

    2017-10-01

    An ion beam laboratory (IBL) for materials research has been commissioned recently at the Slovak University of Technology within the University Science Park CAMBO located in Trnava. The facility will support research in the field of materials science, physical engineering and nanotechnology. Ion-beam materials modification (IBMM) as well as ion-beam analysis (IBA) are covered and deliverable ion energies are in the range from tens of keV up to tens of MeV. Two systems have been put into operation. First, a high current version of the HVEE 6 MV Tandetron electrostatic tandem accelerator with duoplasmatron and cesium sputtering ion sources, equipped with two end-stations: a high-energy ion implantation and IBA end-station which includes RBS, PIXE and ERDA analytical systems. Second, a 500 kV implanter equipped with a Bernas type ion source and two experimental wafer processing end-stations. The facility itself, operational experience and first IBMM and IBA experiments are presented together with near-future plans and ongoing development of the IBL.

  16. Osteocytes and Mechano-Transduction (Osteo-4)

    NASA Image and Video Library

    2015-04-19

    ISS043E122574 (04/19/2015) --- ESA (European Space Station) astronaut Samantha Cristoforetti, a flight engineer on the International Space Station, is seen here unpacking the recently arrived Osteo-4 experiment which was carried up on Spacex’s sixth Dragon resupply mission. Osteo-4 is performing research on how microgravity effects changes in the most common cell found in human bones to protect the health of future astronauts. This research could also have implications for patients on Earth in the treatment of bone disorders related to disuse or immobilization, as well as metabolic diseases such as osteoporosis.

  17. Expedition 4 Crew Interviews: Carl Walz

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Expedition 4 Flight Engineer Carl Walz is seen during a prelaunch interview. He gives details on the mission's goals and significance, his role in the mission, what his responsibilities will be, what the crew exchange will be like (transferring the Expedition 4 crew in place of the Expedition 3 crew on the International Space Station (ISS)), the day-to-day life on an extended stay mission, the experiments he will be conducting on board, and what the S0 truss will mean to ISS. Walz ends with his thoughts on the short-term and long-term future of the International Space Station.

  18. last ATV docking OBT

    NASA Image and Video Library

    2014-08-07

    ISS040-E-089629 (7 Aug. 2014) --- In the International Space Station?s Zvezda Service Module, European Space Agency astronaut Alexander Gerst (foreground) and Russian cosmonaut Alexander Skvortsov, both Expedition 40 flight engineers, participate in a training session in preparation for the rendezvous and docking of ESA?s fifth and final Automated Transfer Vehicle (ATV-5). Nicknamed the ?Georges Lemaitre? in honor of the Belgian physicist and astronomer who first proposed the Big Bang theory, ATV-5 will deliver more than seven tons of scientific experiments, food and other supplies when it docks to the aft end of Zvezda on Aug. 12.

  19. last ATV docking OBT

    NASA Image and Video Library

    2014-08-07

    ISS040-E-089627 (7 Aug. 2014) --- In the International Space Station?s Zvezda Service Module, European Space Agency astronaut Alexander Gerst (foreground) and Russian cosmonaut Alexander Skvortsov, both Expedition 40 flight engineers, participate in a training session in preparation for the rendezvous and docking of ESA?s fifth and final Automated Transfer Vehicle (ATV-5). Nicknamed the ?Georges Lemaitre? in honor of the Belgian physicist and astronomer who first proposed the Big Bang theory, ATV-5 will deliver more than seven tons of scientific experiments, food and other supplies when it docks to the aft end of Zvezda on Aug. 12.

  20. KSC-2009-5140

    NASA Image and Video Library

    2009-09-15

    EDWARDS AIR FORCE BASE, Calif. – While on the space station, Buzz Lightyear supported NASA’s education outreach program – STEM (Science, Technology, Engineering and Mathematics) -- by creating a series of fun, educational online outreach programs. Following his return, Disney is partnering with NASA to create a new online educational game and an online mission patch competition for school kids across America. NASA will fly the winning patch in space. In addition, NASA plans to announce on Oct. 2 the details of a new exciting educational competition that will give students the opportunity to design an experiment for the astronauts on the space station.

  1. Another Powerful Spacewalk on This Week @NASA – January 13, 2017

    NASA Image and Video Library

    2017-01-13

    Outside the International Space Station, Expedition 50 Commander Shane Kimbrough of NASA and Flight Engineer Thomas Pesquet of the European Space Agency conducted a spacewalk on Jan. 13, to complete an upgrade that included installing adapter plates and hooking up electrical connections for six new lithium-ion batteries, which were delivered to the station in December. Kimbrough and fellow NASA astronaut Peggy Whitson began the upgrade work during a spacewalk on Jan. 6. Also, NASA at SciTech 2017, Testing How the SLS Deals with Shock, New Earth Science Field Experiments, and NASA Sees Storms Affecting the Western U.S.

  2. Expedition 4 Crew Interviews: Dan Bursch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Expedition 4 Flight Engineer Dan Bursch is seen during a prelaunch interview. He gives details on the mission's goals and significance, his role in the mission, what his responsibilities will be, what the crew exchange will be like (transferring the Expedition 4 crew in place of the Expedition 3 crew on the International Space Station (ISS)), the day-to-day life on an extended stay mission, the experiments he will be conducting on board, and what the S0 truss will mean to ISS. Bursch ends with his thoughts on the short-term and long-term future of the International Space Station.

  3. Burbank works at the MSG

    NASA Image and Video Library

    2012-01-10

    ISS030-E-030125 (10 Jan. 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, works on the Selectable Optical Diagnostics Instrument C Colloid (SODI-COLLOID) hardware in the Microgravity Science Glovebox in the International Space Station?s Destiny laboratory. Burbank is supporting ground-commanded operations by exchanging out some disks. COLLOID is part of ESA?s triple experiment series for advancement in liquids, diffusion measurements in petroleum reservoirs and the study on growth and properties of advanced photonic materials within colloidal solutions. The commander is currently joined by five other Expedition 30 astronauts and cosmonauts, all flight engineers, aboard the orbital outpost.

  4. Alkali Reactivity of Strained Quartz as a Constituent of Concrete Aggregate.

    DTIC Science & Technology

    1983-08-01

    MS STRUC. A D BUCK UCASIFIED AUG 83 WES/IIP/SL-83-13 CTIAC- 65 F/C 1112 N MENmIFINDhi L4 lilill - 11111.. . . ...- . .. 1 . 0 ." -.. - 1111LI- 5 114 1...Engineers. U. S Army 0Washington, 0. C. 20314LABORATORY u. OWS Work Unit 3113883 10 4 18 034 ".’ -’ ’- % ," ,% ’" .% " .- % "’ - - 5 ...U. S. Army Engineer Waterways Experiment Station AREA A WORK UNIT NUMUERS Structures Laboratory CWIS Work Unit 31138 P. 0. Box 631, Vicksburg, Miss

  5. Wakata and Thirsk with MELFI in KIBO

    NASA Image and Video Library

    2009-06-15

    ISS020-E-010025 (15 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, removes a dewar tray from the Minus Eighty Laboratory Freezer for ISS (MELFI) in order to insert biological samples into the trays in the Kibo laboratory of the International Space Station. Samples were taken as part of the Nutritional Status Assessment (Nutrition) with Repository experiment, a study done by NASA to date of human physiologic changes during long-duration spaceflight. Canadian Space Agency astronaut Robert Thirsk, flight engineer, assisted Wakata.

  6. Implementation of the Large-Scale Operations Management Test in the State of Washington.

    DTIC Science & Technology

    1982-12-01

    During FY 79, the U.S. Army Engineer Waterways Experiment Station (WES), Vicksburg, Miss., completed the first phase of its 3-year Large-Scale Operations Management Test (LSOMT). The LSOMT was designed to develop an operational plan to identify methodologies that can be implemented by the U.S. Army Engineer District, Seattle (NPS), to prevent the exotic aquatic macrophyte Eurasian watermilfoil (Myrophyllum spicatum L.) from reaching problem-level proportions in water bodies in the state of Washington. The WES developed specific plans as integral elements

  7. Aquatic Plant Control Research Program. Large-Scale Operations Management Test of Use of the White Amur for Control of Problem Aquatic Plants. Report 5. Synthesis Report.

    DTIC Science & Technology

    1984-06-01

    RD-Rl45 988 AQUATIC PLANT CONTROL RESEARCH PROGRAM LARGE-SCALE 1/2 OPERATIONS MANAGEMENT ..(U) ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MS...REPORT A-78-2 LARGE-SCALE OPERATIONS MANAGEMENT TEST OF USE OF THE WHITE AMUR FOR -, CONTROL OF PROBLEM AQUATIC PLANTS Report 5 SYNTHESIS REPORT bv Andrew...Corps of Engineers Washington, DC 20314 84 0,_1 oil.. LARGE-SCALE OPERATIONS MANAGEMENT TEST OF USE OF THE WHITE AMUR FOR CONTROL OF PROBLEM AQUATIC

  8. Williams works with LOCAD-PTS Experiment Hardware in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-05-05

    ISS015-E-06773 (5 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, sets up a video camera inside a flame resistant covering to film a chip during Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) Swab Operations in the Destiny laboratory of the International Space Station.

  9. Hopkins works with the MDCA inside the CIR in the U.S. Laboratory

    NASA Image and Video Library

    2013-11-12

    ISS038-E-001298 (12 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, works with the Multi-user Drop Combustion Apparatus (MDCA) inside the Combustion Integrated Rack (CIR) in the Destiny laboratory of the International Space Station. The MDCA contains hardware and software to conduct unique droplet combustion experiments in space.

  10. BASS II

    NASA Image and Video Library

    2014-02-14

    ISS038-E-047576 (14 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  11. BASS II

    NASA Image and Video Library

    2014-02-14

    ISS038-E-047582 (14 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  12. Mastracchio during BASS II Setup

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046381 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  13. Hopkins during BASS II Setup

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046393 (12 Feb. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  14. Mastracchio works with BASS-II

    NASA Image and Video Library

    2014-02-18

    ISS038-E-053250 (18 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  15. Investigation of Breakwater Stability at Presque Isle Peninsula Erie, Pennsylvania

    DTIC Science & Technology

    1989-05-01

    PRESQUE ISLE PENINSULA AD-A208 528 ERIE , PENNSYLVANIA by Peter J. Grace...STABILITY AT PRESQUE ISLE PENINSULA, ERIE . PENNSYLVANIA PART I: INTRODUCTION The Prototype 1. Harbor facilities at Erie , Pennsylvania , are protected...at Presque Isle Beaches, Erie , Pennsylvania ," Technical Report HL-83-15, US Army Engineer Waterways Experiment Station, Vicksburg, MS. Stevens, J.

  16. Catalog of Wargaming and Military Simulation Models

    DTIC Science & Technology

    1989-09-01

    and newly developed software models. This system currently (and will in the near term) supports battle force architecture design and evaluation...aborted air refuelings, or replacement aircraft. PLANNED IMPROVEMENTS AND MODIFICATIONS: Completion of model. INPUT: Input fields are required to...vehicle mobility evaluation model). PROPONENT: Mobility Systems Division, Geotechnical Laboratory, U.S. Army Engineer Waterways Experiment Station

  17. MAP - a mapping and analysis program for harvest planning

    Treesearch

    Robert N. Eli; Chris B. LeDoux; Penn A. Peters

    1984-01-01

    The Northeastern Forest Experiment Station and the Department of Civil Engineering at West Virginia University are cooperating in the development of a Mapping and Analysis Program, to be named MAP. The goal of this computer software package is to significantly improve the planning and harvest efficiency of small to moderately sized harvest units located in mountainous...

  18. Expedition 28 Crew Members remove samples from the JPM MELFI

    NASA Image and Video Library

    2011-07-08

    ISS028-E-014918 (8 July 2011) --- NASA astronauts Ron Garan (left) and Mike Fossum, both Expedition 28 flight engineers, remove samples from the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) and insert in the Minus Eighty Degree Laboratory Freezer for ISS (MELFI-1) in the Kibo laboratory of the International Space Station.

  19. Expedition 28 Crew Members remove samples from the JPM MELFI

    NASA Image and Video Library

    2011-07-08

    ISS028-E-014916 (8 July 2011) --- NASA astronauts Ron Garan (left) and Mike Fossum, both Expedition 28 flight engineers, remove samples from the General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) and insert in the Minus Eighty Degree Laboratory Freezer for ISS (MELFI-1) in the Kibo laboratory of the International Space Station.

  20. Kelly with CIR

    NASA Image and Video Library

    2010-10-26

    ISS025-E-009308 (26 Oct. 2010) --- NASA astronaut Scott Kelly, Expedition 25 flight engineer, works on the Combustion Integrated Rack (CIR) Multi-user Drop Combustion Apparatus (MDCA) in the Destiny laboratory of the International Space Station. Kelly set up an experiment run on the Fluids & Combustion Facility (FCF) with a new fuel reservoir, ground-assisted by Payload Operations Integration Center/Huntsville (POIC).

Top