Sample records for engineering experiments conducted

  1. International Co-Operation in Control Engineering Education Using Online Experiments

    ERIC Educational Resources Information Center

    Henry, Jim; Schaedel, Herbert M.

    2005-01-01

    This paper describes the international co-operation experience in teaching control engineering with laboratories being conducted remotely by students via the Internet. This paper describes how the students ran the experiments and their personal experiences with the laboratory. A tool for process identification and controller tuning based on…

  2. Undergraduate Research in Physics as a course for Engineering and Computer Science Majors

    NASA Astrophysics Data System (ADS)

    O'Brien, James; Rueckert, Franz; Sirokman, Greg

    2017-01-01

    Undergraduate research has become more and more integral to the functioning of higher educational institutions. At many institutions undergraduate research is conducted as capstone projects in the pure sciences, however, science faculty at some schools (including that of the authors) face the challenge of not having science majors. Even at these institutions, a select population of high achieving engineering students will often express a keen interest in conducting pure science research. Since a foray into science research provides the student the full exposure to the scientific method and scientific collaboration, the experience can be quite rewarding and beneficial to the development of the student as a professional. To this end, the authors have been working to find new contexts in which to offer research experiences to non- science majors, including a new undergraduate research class conducted by physics and chemistry faculty. An added benefit is that these courses are inherently interdisciplinary. Students in the engineering and computer science fields step into physics and chemistry labs to solve science problems, often invoking their own relevant expertise. In this paper we start by discussing the common themes and outcomes of the course. We then discuss three particular projects that were conducted with engineering students and focus on how the undergraduate research experience enhanced their already rigorous engineering curriculum.

  3. Engineering students' experiences and perceptions of workplace problem solving

    NASA Astrophysics Data System (ADS)

    Pan, Rui

    In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.

  4. Overview of a stirling engine test project

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1980-01-01

    Tests were conducted on three Stirling engines ranging in size from 1.33 to 53 horsepower (1 to 40 kW). The tests were directed toward developing alternative, backup component concepts to improve engine efficiency and performance or to reduce costs. Some of the activities included investigating attractive concepts and materials for cooler-regenerator units, installing a jet impingement device on a Stirling engine to determine its potential for improved engine performance, and presenting performance maps for initial characterization of Stirling engines. The experiment results of the tests are presented along with predictions of results of future tests to be conducted on the Stirling engines.

  5. List of Publications of the U.S. Army Engineer Waterways Experiment Station. Volume 2

    DTIC Science & Technology

    1993-09-01

    Station List of Publications of the U.S. Army Engineer Waterways Experiment Station Volume II compiled by Research Library Information Management Division...Waterways Experiment Station for Other Agencies Air Base Survivability Systems Management Office Headquarters .............................. Z-1 Airport... manages , conducts, and coordinates research and development in the Information Management (IM) technology areas that include computer science

  6. Pedagogical Evaluation of Remote Laboratories in eMerge Project

    ERIC Educational Resources Information Center

    Lang, Daniela; Mengelkamp, Christoph; Jaeger, Reinhold S.; Geoffroy, Didier; Billaud, Michel; Zimmer, Thomas

    2007-01-01

    This study investigates opportunities for conducting electrical engineering experiments via the Internet rather than in an actual laboratory. Eighty-four French students of electrical engineering (semester 1, 2004) at Bordeaux University 1 participated in practical courses. Half of the students performed experiments in a laboratory while the other…

  7. Conceptual design studies and experiments related to cavity exhaust systems for nuclear light bulb configurations

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.; Stoeffler, R. C.

    1972-01-01

    Investigations of various phases of gaseous nuclear rocket technology have been conducted. The principal research efforts have recently been directed toward the closed-cycle, vortex-stabilized nuclear light bulb engine and toward a small-scale fissioning uranium plasma experiment that could be conducted in the Los Alamos Scientific Laboratory's Nuclear Furnace. The engine concept is based on the transfer of energy by thermal radiation from gaseous fissioning uranium, through a transparent wall, to hydrogen propellant. The reference engine configuration is comprised of seven unit cavities, each having its own fuel transparent wall and propellant duct. The basic design of the engine is described. Subsequent studies performed to supplement and investigate the basic design are reported. Summaries of other nuclear light bulb research programs are included.

  8. Preparing University Students to Lead K-12 Engineering Outreach Programmes: A Design Experiment

    ERIC Educational Resources Information Center

    Anthony, Anika B.; Greene, Howard; Post, Paul E.; Parkhurst, Andrew; Zhan, Xi

    2016-01-01

    This paper describes an engineering outreach programme designed to increase the interest of under-represented youth in engineering and to disseminate pre-engineering design challenge materials to K-12 educators and volunteers. Given university students' critical role as facilitators of the outreach programme, researchers conducted a two-year…

  9. Using Learning Analytics to Characterize Student Experimentation Strategies in Engineering Design

    ERIC Educational Resources Information Center

    Vieira, Camilo; Goldstein, Molly Hathaway; Purzer, Senay; Magana, Alejandra J.

    2016-01-01

    Engineering design is a complex process both for students to participate in and for instructors to assess. Informed designers use the key strategy of conducting experiments as they test ideas to inform next steps. Conversely, beginning designers experiment less, often with confounding variables. These behaviours are not easy to assess in…

  10. Engineering Education Using a Remote Laboratory through the Internet

    ERIC Educational Resources Information Center

    Axaopoulos, Petros J.; Moutsopoulos, Konstantinos N.; Theodoridis, Michael P.

    2012-01-01

    An experiment using real hardware and under real test conditions can be remotely conducted by engineering students and other interested individuals in the world via the Internet and with the capability of live video streaming from the test site. The presentation of this innovative experiment refers to the determination of the current voltage…

  11. Versatile Desktop Experiment Module (DEMo) on Heat Transfer

    ERIC Educational Resources Information Center

    Minerick, Adrienne R.

    2010-01-01

    This paper outlines a new Desktop Experiment Module (DEMo) engineered for a chemical engineering junior-level Heat Transfer course. This new DEMo learning tool is versatile, fairly inexpensive, and portable such that it can be positioned on student desks throughout a classroom. The DEMo system can illustrate conduction of various materials,…

  12. Evaluation of the flame propagation within an SI engine using flame imaging and LES

    NASA Astrophysics Data System (ADS)

    He, Chao; Kuenne, Guido; Yildar, Esra; van Oijen, Jeroen; di Mare, Francesca; Sadiki, Amsini; Ding, Carl-Philipp; Baum, Elias; Peterson, Brian; Böhm, Benjamin; Janicka, Johannes

    2017-11-01

    This work shows experiments and simulations of the fired operation of a spark ignition engine with port-fuelled injection. The test rig considered is an optically accessible single cylinder engine specifically designed at TU Darmstadt for the detailed investigation of in-cylinder processes and model validation. The engine was operated under lean conditions using iso-octane as a substitute for gasoline. Experiments have been conducted to provide a sound database of the combustion process. A planar flame imaging technique has been applied within the swirl- and tumble-planes to provide statistical information on the combustion process to complement a pressure-based comparison between simulation and experiments. This data is then analysed and used to assess the large eddy simulation performed within this work. For the simulation, the engine code KIVA has been extended by the dynamically thickened flame model combined with chemistry reduction by means of pressure dependent tabulation. Sixty cycles have been simulated to perform a statistical evaluation. Based on a detailed comparison with the experimental data, a systematic study has been conducted to obtain insight into the most crucial modelling uncertainties.

  13. Expedition 6 Crew Interviews: Nikolai Budarin FEI (Flight Engineer 1)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 6 Flight Engineer Nikolai Budarin is seen during a prelaunch interview. He provides details on the mission's goals and significance, his role in the mission, what his responsibilities will be, what the crew activities will be like (docking of a Progress unpiloted supply vehicle, maintaining the space station, conducting science experiments and performing one spacewalk), the day-to-day life on an extended stay mission, and the experiments he will be conducting on board. Budarin also discusses how his previous experiences on mir space missions will help him and ends his thoughts on how valuable the International Space Station has proven.

  14. Searches Conducted for Engineers.

    ERIC Educational Resources Information Center

    Lorenz, Patricia

    This paper reports an industrial information specialist's experience in performing online searches for engineers and surveys the databases used. Engineers seeking assistance fall into three categories: (1) those who recognize the value of online retrieval; (2) referrals by colleagues; and (3) those who do not seek help. As more successful searches…

  15. Anxiety among Engineering Students in a Graduate EFL Classroom

    ERIC Educational Resources Information Center

    Samoilova, Valeriia; Thanh, Vo Duy; Wilang, Jeffrey Dawala

    2017-01-01

    This article reports the descriptive results of foreign language anxiety experiences of engineering students in a top-ranked research university in Thailand. Although numerous studies have been conducted in the past years about English language anxiety, few studies have reported anxiety situations specific to Thai engineering graduate students in…

  16. Interdisciplinary Learning for Chemical Engineering Students from Organic Chemistry Synthesis Lab to Reactor Design to Separation

    ERIC Educational Resources Information Center

    Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph

    2008-01-01

    A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…

  17. Demonstration and Assessment of a Simple Viscosity Experiment for High School Science Classes

    ERIC Educational Resources Information Center

    Floyd­-Smith, T. M.; Kwon, K. C.; Burmester, J. A.; Dale, F. F.; Vahdat, N.; Jones, P.

    2006-01-01

    The demonstration of a simple viscosity experiment for high school classes was conducted and assessed. The purpose of the demonstration was to elicit the interest of high school juniors and seniors in the field of chemical engineering. The demonstration consisted of a discussion on both engineering and the concept of viscosity as well as a…

  18. Experimental research on the Stirling engine

    NASA Technical Reports Server (NTRS)

    Ishizaki, Y.; Tani, Y.; Haramura, N.

    1982-01-01

    Experiments on Stirling engines of the 50 KW class were conducted to clarify the characteristics of the engine and its problems. The problems involve durability of the high temperature heat exchanger which is exposed to high flame temperatures above 1600 C, thermal distortion and high temperature corrosion of the devices near combustion, and of the preheater.

  19. Role of Human Factors and Engineering Psychology in Undergraduate and Graduate Engineering Curriculum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Jesse Rebol

    The engineering discipline is a profession of acquiring and applying technical knowledge, and the focus of engineering psychology is to optimize the effectiveness and efficiency with which human activities are conducted. Having human factors and engineering psychology be a permanent part of the engineering curriculum will make students aware of them, so they can learn from past experiences and avoid making the same mistakes their peers made. (Should be close to 200 words)

  20. RS-25 Rocket Engine Test

    NASA Image and Video Library

    2017-08-09

    The 8.5-minute test conducted at NASA’s Stennis Space Center is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch. The tests also support the development of a new controller, or “brain,” for the engine, which monitors engine status and communicates between the rocket and the engine, relaying commands to the engine and transmitting data back to the rocket.

  1. The Engineering Design Process: Conceptions Along the Learning-to-Teach Continuum

    NASA Astrophysics Data System (ADS)

    Iveland, Ashley

    In this study, I sought to identify differences in the views and understandings of engineering design among individuals along the learning-to-teach continuum. To do so, I conducted a comprehensive review of literature to determine the various aspects of engineering design described in the fields of professional engineering and engineering education. Additionally, I reviewed literature on the methods used in teaching engineering design at the secondary (grade 7-12) level - to describe the various models used in classrooms, even before the implementation of the Next Generation Science Standards (NGSS Lead States, 2013). Last, I defined four groups along the learning-to-teach continuum: prospective, preservice, and practicing teachers, as well as teacher educators. The context of this study centered around a California public university, including an internship program where undergraduates engaged with practicing mentor teachers in science and engineering teaching at local high schools, and a teacher education program where secondary science preservice teachers and the teacher educators who taught them participated. Interviews were conducted with all participants to gain insights into their views and understandings of engineering design. Prospective and preservice teachers were interviewed multiple times throughout the year and completed concept maps of the engineering design process multiple times as well; practicing teachers and teacher educators were interviewed once. Three levels of analyses were conducted. I identified 30 aspects of engineering discussed by participants. Through phenomenographic methods, I also constructed six conceptual categories for engineering design to organize those aspects most commonly discussed. These categories were combined to demonstrate a participant's view of engineering design (e.g., business focused, human centered, creative, etc.) as well as their complexity of understanding of engineering design overall (the more categories their ideas fit within, the more complex their understanding was thought to be). I found that the most commonly referenced aspects of engineering design were in line with the three main dimensions described in the Next Generation Science Standards (NGSS Lead States, 2013). I also found that the practicing teacher participants overall conveyed the most complex and integrated understandings of engineering design, with the undergraduate, prospective teachers not far behind. One of the most important factors related to a more integrated understanding of engineering design was having formal engineering experience, especially in the form of conducting engineering research or having been a professional engineer. Further, I found that female participants were more likely than their male counterparts to view engineering as having a human element--recognizing the need to collaborate with others throughout the process and the need to think about the potential user of the product the engineer is solving the problem for. These findings suggest that prior experience with engineering, and not experience in the classroom or with engineering education, tends to lead to a deeper, more authentic view of engineering. Finally, I close with a discussion of the overall findings, limitations of the study, potential implications, and future work.

  2. Skylab

    NASA Image and Video Library

    1972-12-21

    Hans F. Wuenscher, assistant director for Advanced Space Projects Engineering Laboratory at Marshall Space Flight Center (MSFC), examined the facility to be used by Skylab astronauts in performing a number of experiments in material science and manufacturing in space. The equipment shown here is a duplicate of the M512 Experiment hardware flown in the Multiple Docking Adapter section of the Sky lab. This equipment, itself an experiment, was be used for conducting 5 other experiments in the round vacuum chamber. Inside was a cavity which held the M518 Multipurpose Electric Furnace, a facility which was used for conducting other experiments. In all, a total of 17 experiments were conducted using this facility and furnace.

  3. The Hazard of Volcanic Ash Ingestion

    NASA Technical Reports Server (NTRS)

    Lekki, John

    2017-01-01

    A research team of U.S. Government agencies and engine manufacturers conducted an experiment to test volcanic-ash ingestion by a NASA owned engine in the same family as the PW 2000 that was donated by the U.S. Air Force. The experiment, called Vehicle Integrated Propulsions Research (VIPR) test, was conducted under the auspices of NASAs Convergent Aeronautics Solutions (CAS) Program and took place in summer of 2015 at Edwards AFB in California as an on-ground, on-wing test. The primary objectives of the volcanic ash test were to determine the effect on the engine of several hours of exposure to low to moderate ash concentrations and to evaluate the capability of engine health management technologies for detecting these effects. The target concentrations of volcanic ash tested were at 1 and 10 mgm3. A natural volcanic ash was used that is representative of distal ash clouds many 100s to 1000 km from a volcanic source. The glassy ash particles were expected to soften and become less viscous when exposed to the high temperatures of the combustion chamber, then stick to the nozzle guide vanes of the high-pressure turbine and this was observed. Numerous observations and measurements of the engines performance and degradation were made during the course of the experiment, including borescope inspections after each test run. The engine has been disassembled so that detailed inspections of the engine effects have been made. A summary of the test methodology and execution will be made along with results from the test. While not intended to be sufficient for rigorous certification of engine performance when ash is ingested, the experiment should provide useful information to aircraft manufacturers, airline operators, and military and civil regulators in their efforts to evaluate the range of risks that ash hazards pose to aviation.

  4. Proceedings of the Thirteenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics covered in the workshop included studies and experiments conducted in the Software Engineering Laboratory (SEL), a cooperative effort of NASA Goddard Space Flight Center, the University of Maryland, and Computer Sciences Corporation; software models; software products; and software tools.

  5. Physiology and the Biomedical Engineering Curriculum: Utilizing Emerging Instructional Technologies to Promote Development of Adaptive Expertise in Undergraduate Students

    ERIC Educational Resources Information Center

    Nelson, Regina K.

    2013-01-01

    A mixed-methods research study was designed to test whether undergraduate engineering students were better prepared to learn advanced topics in biomedical engineering if they learned physiology via a quantitative, concept-based approach rather than a qualitative, system-based approach. Experiments were conducted with undergraduate engineering…

  6. Announcement of the Public Release of Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) Level 1B2 V006

    Atmospheric Science Data Center

    2018-05-21

    ... Radar Definition Experiment (RADEX) SPEX engineering flights + Porter Ranch gas leak overflights (SPEX-PR) ... The SPEX engineering flights + Porter Ranch gas leak overflights (SPEX-PR) flight ... Armstrong Flight Research Center in Palmdale, CA. The SPEX engineering flights conducted on February 2 through February 5, 2016 focused on ...

  7. Reid BCAT Experiment

    NASA Image and Video Library

    2014-06-17

    ISS040-E-013856 (17 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test (BCAT) experiment at a workstation in the Harmony node of the International Space Station.

  8. RS 25 Hot Fire test

    NASA Image and Video Library

    2016-08-18

    The 7.5-minute test conducted at NASA’s Stennis Space Center is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch. The tests also support the development of a new controller, or “brain,” for the engine, which monitors engine status and communicates between the rocket and the engine, relaying commands to the engine and transmitting data back to the rocket.

  9. RS-25 Hot Fire test

    NASA Image and Video Library

    2016-08-18

    The 7.5-minute test conducted at NASA’s Stennis Space Center is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch. The tests also support the development of a new controller, or “brain,” for the engine, which monitors engine status and communicates between the rocket and the engine, relaying commands to the engine and transmitting data back to the rocket.

  10. Use of traffic displays for general aviation approach spacing : a human factors study

    DOT National Transportation Integrated Search

    2007-12-01

    A flight experiment was conducted to assess human factors issues associated with pilot use of traffic displays for approach : spacing. Sixteen multi-engine rated pilots participated. Eight flew approaches in a twin-engine Piper Aztec originating in :...

  11. Education through Experience.

    ERIC Educational Resources Information Center

    Fowler, Brian D.

    1995-01-01

    Describes the Langley Aerospace Research Summer Scholars Program, a 10-week internship program for junior and senior undergraduates and first-year graduate students who are pursuing degrees in engineering or science. The program enables participants to conduct research under the supervision of NASA scientists and engineers. Profiles American…

  12. Measurements of Low-Frequency Acoustic Attenuation in Soils.

    DTIC Science & Technology

    1994-10-13

    Engineering Research Laboratory to design an acoustic subsurface imaging system, a set of experiments was conducted in which the attenuation and the velocity...support of the U.S. Army Construction Engineering Research Laboratory’s efforts to design an acoustic subsurface imaging system which would ideally be...of acoustic waves such as those generated by a subsurface imaging system. An experiment reported in the literature characterized the acoustic

  13. Cassidy conducts BASS Experiment Test Operations

    NASA Image and Video Library

    2013-04-05

    ISS035-E-015081 (5 April 2013) --- Astronaut Chris Cassidy, Expedition 35 flight engineer, conducts a session of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, Cassidy conducted a run of the experiment, which examined the burning and extinction characteristics of a wide variety of fuel samples in microgravity and will guide strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.

  14. Opportunities for Multidisciplinary Research in Partnership with Rock Engineers at the Deep Underground Science and Engineering Laboratory

    NASA Astrophysics Data System (ADS)

    Laughton, C.

    2008-12-01

    For the last half century the physics community has increasingly turned to the use of underground space to conduct basic research. The community is currently planning to conduct a new generation of underground experiments at the Deep Underground Science and Engineering Laboratory (DUSEL). DUSEL will be constructed within the footprint of the defunct Homestake Gold Mine, located in Lead, South Dakota. Physics proposals call for the construction of new caverns in which to conduct major new experiments. Some of the proposed laboratory facilities will be significantly larger and deeper than any previously constructed. The talk will highlight possible opportunities for integrating multi-disciplinary research in to the cavern construction program, and will stress the need to work closely with design and construction contractors to ensure that research goals can be achieve with minimal impact on project work. The constructors of large caverns should be particularly receptive to, and encouraging of geoscience research that could improve the engineering characterization of the rock mass. An improved understanding of the rock mass, as the host construction material, would result in a more reliable cavern design and construction process, and a reduced construction risk to the Project.

  15. Advertising Post-Experience Courses in Science and Engineering

    ERIC Educational Resources Information Center

    Thomas, Edward

    1978-01-01

    Describes ten different forms of advertising that have been used to recruit scientists and engineers to residential postexperience courses. Reports the results of a survey conducted to assess the relative cost-benefit of each advertising method in attracting adult students to specialized postexperience courses. (EM)

  16. Fuel-injector/air-swirl characterization

    NASA Technical Reports Server (NTRS)

    Mcvey, J. B.; Kennedy, J. B.; Bennett, J. C.

    1985-01-01

    The objectives of this program are to establish an experimental data base documenting the behavior of gas turbine engine fuel injector sprays as the spray interacts with the swirling gas flow existing in the combustor dome, and to conduct an assessment of the validity of current analytical techniques for predicting fuel spray behavior. Emphasis is placed on the acquisition of data using injector/swirler components which closely resemble components currently in use in advanced aircraft gas turbine engines, conducting tests under conditions that closely simulate or closely approximate those developed in actual combustors, and conducting a well-controlled experimental effort which will comprise using a combination of low-risk experiments and experiments requiring the use of state-of-the-art diagnostic instrumentation. Analysis of the data is to be conducted using an existing, TEACH-type code which employs a stochastic analysis of the motion of the dispersed phase in the turbulent continuum flow field.

  17. Space shuttle hypergolic bipropellant RCS engine design study, Bell model 8701

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A research program was conducted to define the level of the current technology base for reaction control system rocket engines suitable for space shuttle applications. The project consisted of engine analyses, design, fabrication, and tests. The specific objectives are: (1) extrapolating current engine design experience to design of an RCS engine with required safety, reliability, performance, and operational capability, (2) demonstration of multiple reuse capability, and (3) identification of current design and technology deficiencies and critical areas for future effort.

  18. Transport and retention of surfactant- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material

    USDA-ARS?s Scientific Manuscript database

    Packed column experiments were conducted to investigate the transport and blocking behavior of surfactant- and polymer-stabilized engineered silver nanoparticles (Ag-ENPs) in saturated natural aquifer material with varying silt and clay content, background solution chemistry, and flow velocity. Brea...

  19. 77 FR 30238 - Living History Flight Experience (LHFE)-Exemptions for Passenger Carrying Operations Conducted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... significant, American- manufactured large, crew-served, piston-powered, multi-engine, World War II bomber... public safety (e.g., older and slower multi-engine which airplanes allow time for appropriate corrective... air show that was piloted by two highly qualified and well-trained flight crewmembers clearly...

  20. Hands-On Teaching and Entrepreneurship Development.

    ERIC Educational Resources Information Center

    da Silveira, Marcos Azevedo; da Silva, Mauro Schwanke; Kelber, Christian R.; de Freitas, Manuel R.

    This paper presents the experiment being conducted in the Electric Circuits II course (ELE1103) at PUC-Rio's Electrical Engineering Department since March 1997. This experiment was held in both the fall and the spring semesters of 1997. The basis for the experiment was concurrent teaching methodology, to which the principles of entrepreneurship…

  1. Effects of Induction-System Icing on Aircraft-Engine Operating Characteristics

    NASA Technical Reports Server (NTRS)

    Stevens, Howard C., Jr.

    1947-01-01

    An investigation was conducted on a multicylinder aircraft engine on a dynamometer stand to determine the effect of induction-system icing on engine operating characteristics and to compare the results with those of a previous laboratory investigation in which only the carburetor and the engine-stage supercharger assembly from the engine were used. The experiments were conducted at simulated glide power, low cruise power, and normal rated power through a range of humidity ratios and air temperatures at approximately sea-level pressure. Induction-system icing was found to occur within approximately the same limits as those established by the previous laboratory investigation after making suitable allowances for the difference in fuel volatility and throttle angles. Rough operation of the engine was experienced when ice caused a marked reduction in the air flow. Photographs of typical ice formations from this investigation indicate close similarity to icing previously observed in the laboratory.

  2. Female peer mentors early in college increase women’s positive academic experiences and retention in engineering

    PubMed Central

    Dasgupta, Nilanjana

    2017-01-01

    Scientific and engineering innovation is vital for American competitiveness, quality of life, and national security. However, too few American students, especially women, pursue these fields. Although this problem has attracted enormous attention, rigorously tested interventions outside artificial laboratory settings are quite rare. To address this gap, we conducted a longitudinal field experiment investigating the effect of peer mentoring on women’s experiences and retention in engineering during college transition, assessing its impact for 1 y while mentoring was active, and an additional 1 y after mentoring had ended. Incoming women engineering students (n = 150) were randomly assigned to female or male peer mentors or no mentors for 1 y. Their experiences were assessed multiple times during the intervention year and 1-y postintervention. Female (but not male) mentors protected women’s belonging in engineering, self-efficacy, motivation, retention in engineering majors, and postcollege engineering aspirations. Counter to common assumptions, better engineering grades were not associated with more retention or career aspirations in engineering in the first year of college. Notably, increased belonging and self-efficacy were significantly associated with more retention and career aspirations. The benefits of peer mentoring endured long after the intervention had ended, inoculating women for the first 2 y of college—the window of greatest attrition from science, technology, engineering, and mathematics (STEM) majors. Thus, same-gender peer mentoring for a short period during developmental transition points promotes women’s success and retention in engineering, yielding dividends over time. PMID:28533360

  3. Female peer mentors early in college increase women's positive academic experiences and retention in engineering.

    PubMed

    Dennehy, Tara C; Dasgupta, Nilanjana

    2017-06-06

    Scientific and engineering innovation is vital for American competitiveness, quality of life, and national security. However, too few American students, especially women, pursue these fields. Although this problem has attracted enormous attention, rigorously tested interventions outside artificial laboratory settings are quite rare. To address this gap, we conducted a longitudinal field experiment investigating the effect of peer mentoring on women's experiences and retention in engineering during college transition, assessing its impact for 1 y while mentoring was active, and an additional 1 y after mentoring had ended. Incoming women engineering students ( n = 150) were randomly assigned to female or male peer mentors or no mentors for 1 y. Their experiences were assessed multiple times during the intervention year and 1-y postintervention. Female (but not male) mentors protected women's belonging in engineering, self-efficacy, motivation, retention in engineering majors, and postcollege engineering aspirations. Counter to common assumptions, better engineering grades were not associated with more retention or career aspirations in engineering in the first year of college. Notably, increased belonging and self-efficacy were significantly associated with more retention and career aspirations. The benefits of peer mentoring endured long after the intervention had ended, inoculating women for the first 2 y of college-the window of greatest attrition from science, technology, engineering, and mathematics (STEM) majors. Thus, same-gender peer mentoring for a short period during developmental transition points promotes women's success and retention in engineering, yielding dividends over time.

  4. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2004-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30,60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized information from psychological and medical testing, data on the knowledge, experience and skills of the applicants, and team building exercises. The design, development, buildup and operation of test hardware and documentation followed the established NASA processes and requirements for test buildup and operation.

  5. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2006-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30, 60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized information from psychological and medical testing, data on the knowledge, experience and skills of the applicants, and team building exercises. The design, development, buildup and operation of test hardware and documentation followed the established NASA processes and requirements for test buildup and operation.

  6. High-speed schlieren imaging of rocket exhaust plumes

    NASA Astrophysics Data System (ADS)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  7. Done in 60 seconds- See a Massive Rocket Fuel Tank Built in A Minute

    NASA Image and Video Library

    2016-08-18

    The 7.5-minute test conducted at NASA’s Stennis Space Center is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch. The tests also support the development of a new controller, or “brain,” for the engine, which monitors engine status and communicates between the rocket and the engine, relaying commands to the engine and transmitting data back to the rocket.

  8. QRTEngine: An easy solution for running online reaction time experiments using Qualtrics.

    PubMed

    Barnhoorn, Jonathan S; Haasnoot, Erwin; Bocanegra, Bruno R; van Steenbergen, Henk

    2015-12-01

    Performing online behavioral research is gaining increased popularity among researchers in psychological and cognitive science. However, the currently available methods for conducting online reaction time experiments are often complicated and typically require advanced technical skills. In this article, we introduce the Qualtrics Reaction Time Engine (QRTEngine), an open-source JavaScript engine that can be embedded in the online survey development environment Qualtrics. The QRTEngine can be used to easily develop browser-based online reaction time experiments with accurate timing within current browser capabilities, and it requires only minimal programming skills. After introducing the QRTEngine, we briefly discuss how to create and distribute a Stroop task. Next, we describe a study in which we investigated the timing accuracy of the engine under different processor loads using external chronometry. Finally, we show that the QRTEngine can be used to reproduce classic behavioral effects in three reaction time paradigms: a Stroop task, an attentional blink task, and a masked-priming task. These findings demonstrate that QRTEngine can be used as a tool for conducting online behavioral research even when this requires accurate stimulus presentation times.

  9. A sociocultural analysis of Latino high school students' funds of knowledge and implications for culturally responsive engineering education

    NASA Astrophysics Data System (ADS)

    Mejia, Joel Alejandro

    Previous studies have suggested that, when funds of knowledge are incorporated into science and mathematics curricula, students are more engaged and often develop richer understandings of scientific concepts. While there has been a growing body of research addressing how teachers may integrate students' linguistic, social, and cultural practices with science and mathematics instruction, very little research has been conducted on how the same can be accomplished with Latino and Latina students in engineering. The purpose of this study was to address this gap in the literature by investigating how fourteen Latino and Latina high school adolescents used their funds of knowledge to address engineering design challenges. This project was intended to enhance the educational experience of underrepresented minorities whose social and cultural practices have been traditionally undervalued in schools. This ethnographic study investigated the funds of knowledge of fourteen Latino and Latina high school adolescents and how they used these funds of knowledge in engineering design. Participant observation, bi-monthly group discussion, retrospective and concurrent protocols, and monthly one-on-one interviews were conducted during the study. A constant comparative analysis suggested that Latino and Latina adolescents, although profoundly underrepresented in engineering, bring a wealth of knowledge and experiences that are relevant to engineering design thinking and practice.

  10. Stereotype Threat: A Qualitative Study of the Challenges Facing Female Undergraduate Engineering Students

    NASA Astrophysics Data System (ADS)

    Entsminger, J. R., II

    From a sociocultural point of view, this qualitative case study explored how upper-level, female undergraduate engineering students perceived the possibility of or experience with stereotype threat as shaping their experiences. The study also investigated how these students explained their reasons for choosing their engineering major, the challenges they encountered in the major, and their reasons for persevering in spite of those challenges. Using Steele and Aronson's (1995) stereotype threat theory as a framework, and considering the documented underrepresentation of females in engineering, the study sought to examine how stereotype threat shaped the experiences of these students and if stereotype threat could be considered a valid reason for the underrepresentation. The study was conducted at a large, four-year public university. First, students in the College of Engineering and Engineering Technology completed the Participant Screening Survey. Based on responses from the survey, six female engineering students from the college were identified and invited to participate in the study. The participants came from the following majors: Electrical Engineering, Industrial and Systems Engineering, and Mechanical Engineering. After receiving the study consent letter and agreeing to participate, the students were involved in a 90-minute focus group meeting, a 45-minute one-on-one interview, and a 30-minute follow-up interview. After conducting the data collection methods, the data were then transcribed, analyzed, and coded for theme development. The themes that emerged coincided with each research question. The themes highlighted the complex interactions and experiences shared by the female engineering majors. The female students were enveloped in an environment where there existed an increased risk for activating stereotype threat. In addition, the female students described feeling pushed to prove to themselves and to others that the negative stereotype that 'females are bad at engineering' was untrue. The findings illustrated the need for systematic changes at the university level. Intervention recommendations were provided. In regards to female underrepresentation in science fields, including engineering, stereotype threat certainly had the potential to cause the female students to question themselves, their abilities, their choice of an academic major, and subsequently remove themselves from a hostile learning or working environment. Thus, educational institutions and workplace organizations are responsible for not only educating themselves regarding stereotype threat, but also for taking steps to alleviate the pernicious effects of stereotype threat.

  11. Improving Power Density of Free-Piston Stirling Engines

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Prahl, Joseph M.; Loparo, Kenneth A.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free-piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58 percent using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a piston power increase of as much as 14 percent. Analytical predictions are compared to experimental data and show close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  12. Improving Power Density of Free-Piston Stirling Engines

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Prahl, Joseph; Loparo, Kenneth

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58 using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a maximum piston power increase of 14. Analytical predictions are compared to experimental data showing close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  13. Improving Free-Piston Stirling Engine Power Density

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58% using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a maximum piston power increase of 14%. Analytical predictions are compared to experimental data showing close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  14. Insights from industry: a quantitative analysis of engineers' perceptions of empathy and care within their practice

    NASA Astrophysics Data System (ADS)

    Hess, Justin L.; Strobel, Johannes; Pan, Rui Celia; Wachter Morris, Carrie A.

    2017-11-01

    This study focuses on two seldom-investigated skills or dispositions aligned with engineering habits of mind - empathy and care. In order to conduct quantitative research, we designed, explored the underlying structure of, validated, and tested the reliability of the Empathy and Care Questionnaire (ECQ), a new psychometric instrument. In the second part, we used the ECQ to explore the perceptions of empathy and care of alumni/ae of an internationally ranked US institution, along with how perceptions differed by work experience and gender. Results show that participants perceived empathy and care to be important in multiple respects, most notably in relational aspects of engineering practice. Engineers with more engineering experience were more likely to perceive empathy and care as existing in engineering practice and as important to their work. While these phenomena are sometimes depicted as feminine qualities, we found no gender differences among our respondents.

  15. Wiseman conducts BCAT-C1 experiment

    NASA Image and Video Library

    2014-07-25

    ISS040-E-076505 (25 July 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test-C1, or BCAT-C1, experiment in the Kibo laboratory of the International Space Station. Results from this ongoing investigation of colloids ? mixtures of small particles distributed throughout a liquid ? will help materials scientists to develop new consumer products with unique properties and longer shelf lives.

  16. Wiseman conducts BCAT-C1 experiment

    NASA Image and Video Library

    2014-07-25

    ISS040-E-076510 (25 July 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test-C1, or BCAT-C1, experiment in the Kibo laboratory of the International Space Station. Results from this ongoing investigation of colloids ? mixtures of small particles distributed throughout a liquid ? will help materials scientists to develop new consumer products with unique properties and longer shelf lives.

  17. Wiseman conducts BCAT-C1 experiment

    NASA Image and Video Library

    2014-07-25

    ISS040-E-076507 (25 July 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test-C1, or BCAT-C1, experiment in the Kibo laboratory of the International Space Station. Results from this ongoing investigation of colloids ? mixtures of small particles distributed throughout a liquid ? will help materials scientists to develop new consumer products with unique properties and longer shelf lives.

  18. A combined gene and cell therapy approach for restoration of conduction.

    PubMed

    Hofshi, Anat; Itzhaki, Ilanit; Gepstein, Amira; Arbel, Gil; Gross, Gil J; Gepstein, Lior

    2011-01-01

    Abnormal conduction underlies both bradyarrhythmias and re-entrant tachyarrhythmias. However, no practical way exists for restoring or improving conduction in areas of conduction slowing or block. This study sought to test the feasibility of a novel strategy for conduction repair using genetically engineered cells designed to form biological "conducting cables." An in vitro model of conduction block was established using spatially separated, spontaneously contracting, nonsynchronized human embryonic stem cell-derived cardiomyocytes clusters. Immunostaining, dye transfer, intracellular recordings, and multielectrode array (MEA) studies were performed to evaluate the ability of genetically engineered HEK293 cells, expressing the SCN5A-encoded Na(+) channel, to couple with cultured cardiomyocytes and to synchronize their electrical activity. Connexin-43 immunostaining and calcein dye-transfer experiments confirmed the formation of functional gap junctions between the engineered cells and neighboring cardiomyocytes. MEA and intracellular recordings were performed to assess the ability of the engineered cells to restore conduction in the co-cultures. Synchronization was defined by establishment of fixed local activation time differences between the cardiomyocytes clusters and convergence of their activation cycle lengths. Nontransfected control cells were able to induce synchronization between cardiomyocytes clusters separated by distances up to 300 μm (n = 21). In contrast, the Na(+) channel-expressing cells synchronized contractions between clusters separated by up to 1,050 μm, the longest distance studied (n = 23). Finally, engineered cells expressing the voltage-sensitive K(v)1.3 potassium channel prevented synchronization at any distance. Genetically engineered cells, transfected to express Na(+) channels, can form biological conducting cables bridging and coupling spatially separated cardiomyocytes. This novel cell therapy approach might be useful for the development of therapeutic strategies for both bradyarrhythmias and tachyarrhythmias. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  19. Taking Engineering Design out for a Spin

    ERIC Educational Resources Information Center

    Crismond, David; Soobyiah, Mark; Cain, Ryan

    2013-01-01

    This article highlights what inquiry and design have in common, and what makes engineering design uniquely different from inquiry. A case study is presented that gives students practice in conducting fair-test experiments, in troubleshooting to learn how to make designs better, and in building science-based explanations for how things work. The…

  20. A Comparative Study on Real Lab and Simulation Lab in Communication Engineering from Students' Perspectives

    ERIC Educational Resources Information Center

    Balakrishnan, B.; Woods, P. C.

    2013-01-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised…

  1. Evaluation of a Microwave Blade Tip Clearance Sensor for Propulsion Health Monitoring

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    2013-01-01

    The NASA Glenn Research Center has investigated a microwave blade tip clearance system for the structural health monitoring of gas turbine engines. This presentation describes the sensors and the experiments that have been conducted to evaluate their performance along with future plans for their use on an engine ground test.

  2. Women Ph.D. Students in Engineering and a Nuanced Terrain: Avoiding and Revealing Gender

    ERIC Educational Resources Information Center

    Erickson, Shelley K.

    2012-01-01

    Tensions regarding gender emerged from interviews conducted with 20 women Ph.D. students. This article does not focus explicitly on the reasons for women's continued underrepresentation in engineering. Rather the students' explanations for underrepresentation serve as a case study with which to analyze their gendered experiences. They avoid freely…

  3. Survey Result of the Engineering Undergraduate Student's “Human Performance”

    NASA Astrophysics Data System (ADS)

    Nakayama, Minoru; Takahashi, Hideaki; Kusakabe, Osamu; Ohtaguchi, Kazuhisa; Mizutani, Nobuyasu

    Development of engineer's “Human Performance” is being required to respond to various changes. “Human Performace” is defined as an ability of putting own knowledge and skill to a practical issue. Current engineering undergraduate education promotes to learn this ability. To examine effectiveness of the educational program, a questionnaire consisting of 66 items was developed and the survey was conducted across eight universities. As results, most students recognize importance of the ability, but their achievement is lower for English communication skill and adaptation of cultural difference. They learned the ability on laboratory experience for their thesis, experiment class, club activities, part-time jobs and other activities.

  4. Skylab experiments. Volume 7: Living and working in space. [Skylab mission data on human factors engineering and spacecraft components for high school level education

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Experiments conducted on the Skylab vehicle that will measure and evaluate the ability of the crew to live and work effectively in space are discussed. The methods and techniques of human engineering as they relate to the design and evaluation of work spaces, requirements, and tools are described. The application of these methods and the Skylab measurements to the design of future spacecraft are analyzed.

  5. A Rasch Analysis on Total Learning Experience of UKM Engineering Students

    ERIC Educational Resources Information Center

    Aziz, Azrilah Abdul; Khatimin, Nuraini; Mastor, Khairul Anwar; Zaharim, Azami; Yasin, Siti Hanani Mat

    2013-01-01

    Learning experience has always been influenced by not only the academic materials presented to students, but also others factors within the surroundings of the students. Assessment is conducted to monitor the students' total learning experience (TLE) throughout their academic tenure-ship at the higher learning institution. UKM has taken the…

  6. Data acquisition and experiment control system of the project Maus (materials science experiments under weightlessness)

    NASA Astrophysics Data System (ADS)

    Lensch, D.

    In the context of Spacelab and Shuttle utilization, it is possible to conduct experiments in 'Small Self Contained Packages' (SSCP). This possibility exists primarily for experiments related to materials research/industrial processing engineering. The program involved is called 'get away special' (GAS). The project Maus was established in West Germany with the aim to participate in the program GAS. The autonomous design of the considered experiments made it necessary to develop an electronic unit for the control and the automatic conduction of the experiment. In addition, the process of the acquisition and the recording of the experimental data is also controlled.

  7. CFD Modeling of Free-Piston Stirling Engines

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir B.; Zhang, Zhi-Guo; Tew, Roy C., Jr.; Gedeon, David; Simon, Terrence W.

    2001-01-01

    NASA Glenn Research Center (GRC) is funding Cleveland State University (CSU) to develop a reliable Computational Fluid Dynamics (CFD) code that can predict engine performance with the goal of significant improvements in accuracy when compared to one-dimensional (1-D) design code predictions. The funding also includes conducting code validation experiments at both the University of Minnesota (UMN) and CSU. In this paper a brief description of the work-in-progress is provided in the two areas (CFD and Experiments). Also, previous test results are compared with computational data obtained using (1) a 2-D CFD code obtained from Dr. Georg Scheuerer and further developed at CSU and (2) a multidimensional commercial code CFD-ACE+. The test data and computational results are for (1) a gas spring and (2) a single piston/cylinder with attached annular heat exchanger. The comparisons among the codes are discussed. The paper also discusses plans for conducting code validation experiments at CSU and UMN.

  8. A comparison of traditional physical laboratory and computer-simulated laboratory experiences in relation to engineering undergraduate students' conceptual understandings of a communication systems topic

    NASA Astrophysics Data System (ADS)

    Javidi, Giti

    2005-07-01

    This study was designed to investigate an alternative to the use of traditional physical laboratory activities in a communication systems course. Specifically, this study examined whether as an alternative, computer simulation is as effective as physical laboratory activities in teaching college-level electronics engineering education students about the concepts of signal transmission, modulation and demodulation. Eighty undergraduate engineering students participated in the study, which was conducted at a southeastern four-year university. The students were randomly assigned to two groups. The groups were compared on understanding the concepts, remembering the concepts, completion time of the lab experiments and perception toward the laboratory experiments. The physical group's (n = 40) treatment was to conduct laboratory experiments in a physical laboratory. The students in this group used equipment in a controlled electronics laboratory. The Simulation group's (n = 40) treatment was to conduct similar experiments in a PC laboratory. The students in this group used a simulation program in a controlled PC lab. At the completion of the treatment, scores on a validated conceptual test were collected once after the treatment and again three weeks after the treatment. Attitude surveys and qualitative study were administered at the completion of the treatment. The findings revealed significant differences, in favor of the simulation group, between the two groups on both the conceptual post-test and the follow-up test. The findings also revealed significant correlation between simulation groups' attitude toward the simulation program and their post-test scores. Moreover, there was a significant difference between the two groups on their attitude toward their laboratory experience in favor of the simulation group. In addition, there was significant difference between the two groups on their lab completion time in favor of the simulation group. At the same time, the qualitative research has uncovered several issues not explored by the quantitative research. It was concluded that incorporating the recommendations acquired from the qualitative research, especially elements of incorporating hardware experience to avoid lack of hands-on skills, into the laboratory pedagogy should help improve students' experience regardless of the environment in which the laboratory is conducted.

  9. Preparing university students to lead K-12 engineering outreach programmes: a design experiment

    NASA Astrophysics Data System (ADS)

    Anthony, Anika B.; Greene, Howard; Post, Paul E.; Parkhurst, Andrew; Zhan, Xi

    2016-11-01

    This paper describes an engineering outreach programme designed to increase the interest of under-represented youth in engineering and to disseminate pre-engineering design challenge materials to K-12 educators and volunteers. Given university students' critical role as facilitators of the outreach programme, researchers conducted a two-year design experiment to examine the programme's effectiveness at preparing university students to lead pre-engineering activities. Pre- and post-surveys incorporated items from the Student Engagement sub-scale of the Teacher Sense of Efficacy Scale. Surveys were analysed using paired-samples t-test. Interview and open-ended survey data were analysed using discourse analysis and the constant comparative method. As a result of participation in the programme, university students reported a gain in efficacy to lead pre-engineering activities. The paper discusses programme features that supported efficacy gains and concludes with a set of design principles for developing learning environments that effectively prepare university students to facilitate pre-engineering outreach programmes.

  10. Statistical Methodologies to Integrate Experimental and Computational Research

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; Johnson, R. T.; Montgomery, D. C.

    2008-01-01

    Development of advanced algorithms for simulating engine flow paths requires the integration of fundamental experiments with the validation of enhanced mathematical models. In this paper, we provide an overview of statistical methods to strategically and efficiently conduct experiments and computational model refinement. Moreover, the integration of experimental and computational research efforts is emphasized. With a statistical engineering perspective, scientific and engineering expertise is combined with statistical sciences to gain deeper insights into experimental phenomenon and code development performance; supporting the overall research objectives. The particular statistical methods discussed are design of experiments, response surface methodology, and uncertainty analysis and planning. Their application is illustrated with a coaxial free jet experiment and a turbulence model refinement investigation. Our goal is to provide an overview, focusing on concepts rather than practice, to demonstrate the benefits of using statistical methods in research and development, thereby encouraging their broader and more systematic application.

  11. Problem Based Learning for engineering.

    PubMed

    Kumar, Dinesh; Radcliffe, Pj

    2017-07-01

    the role of Problem Based Learning (PBL) is relative clear in domains such as medicine but its efficacy in engineering is as yet less certain. To clarify the role of PBL in engineering, a 3 day workshop was conducted for senior Brazilian engineering academics where they were given the theory and then an immersive PBL experience. One major purpose for running this workshop was for them to identify suitable courses where PBL could be considered. During this workshop, they were split in teams and given a diverse range of problems. At the conclusion of the workshop, a quantifiable survey was conducted and the results show that PBL can deliver superior educational outcomes providing the student group is drawn from the top 5% of the year 12 students, and that significantly higher resources are made available. Thus, any proposed PBL program in engineering must be able to demonstrate that it can meet these requirements before it can move forward to implementation.

  12. Design and development status of ETS-7, an RVD and space robot experiment satellite

    NASA Technical Reports Server (NTRS)

    Oda, M.; Inagaki, T.; Nishida, M.; Kibe, K.; Yamagata, F.

    1994-01-01

    ETS-7 (Engineering Test Satellite #7) is an experimental satellite for the in-orbit experiment of the Rendezvous Docking (RVD) and the space robot (RBT) technologies. ETS-7 is a set of two satellites, a chaser satellite and a target satellite. Both satellites will be launched together by NASDA's H-2 rocket into a low earth orbit. Development of ETS-7 started in 1990. Basic design and EM (Engineering Model) development are in progress now in 1994. The satellite will be launched in mid 1997 and the above in-orbit experiments will be conducted for 1.5 years. Design of ETS-7 RBT experiment system and development status are described in this paper.

  13. Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Chen, Wenjing; Zhang, Qican; Liu, Yuankun; Li, Dahai; Zhou, Xinzhi; Wei, Jun

    2017-08-01

    Common problems faced in optical comprehensive design experiment and going against the Washington Accord are pointed out. For resolving these problems, an instructional and innovative teaching scheme for Optics Comprehensive Design Experiment is proposed. We would like to understand the student that can improve the hands-on practical ability, theory knowledge understanding ability, complex problem solving ability, engineering application ability, cooperative ability after tracking and researching the student who have attended the class about Optical Comprehensive Design Experiment, We found that there are some problems on the course such as the experiment content vague, the student beginning less time, phase separation theory and engineering application, the experiment content lack of selectivity and so on. So we have made some improvements reference to the Washington Accord for the class teaching plan about Optical Comprehensive Design Experiment. This class must relevant to the engineering basic courses, professional foundation course and the major courses, so far as to the future study and work that which can play a role in inheriting and continuity to the students. The Optical Comprehensive Design Experiment teaching program requires students learning this course to have learnt basic courses like analog electronics technique, digital electronic technique, applied optics and computer and other related courses which students are required to comprehensively utilize. This teaching scheme contains six practical complex engineering problems which are respectively optical system design, light energy meter design, illuminometer design, material refractive index measuring system design, light intensity measuring system design and open design. Establishing the optional experiment and open experiment can provide students with a greater choice and enhance the students' creativity, vivid teaching experimental teachers and enriching contents of experiment can make the experiment more interesting, providing students with more opportunities to conduct experiment and improving students' practical ability with long learning time, putting emphasis on student's understanding of complex engineering problems and the cognitive of the process to solve complex engineering problems with actual engineering problems. Applying the scheme in other courses and improving accordingly will be able to ensure the quality of engineering education. Look forward to offering useful reference for the curriculum system construction in colleges and universities.

  14. Developing a Pre-Engineering Curriculum for 3D Printing Skills for High School Technology Education

    ERIC Educational Resources Information Center

    Chien, Yu-Hung

    2017-01-01

    This study developed an integrated-STEM CO[subscript 2] dragster design course using 3D printing technology. After developing a pre-engineering curriculum, we conducted a teaching experiment to assess students' differences in creativity, race forecast accuracy, and learning performance. We compared student performance in both 3D printing and…

  15. Localization of Mobile Robots Using an Extended Kalman Filter in a LEGO NXT

    ERIC Educational Resources Information Center

    Pinto, M.; Moreira, A. P.; Matos, A.

    2012-01-01

    The inspiration for this paper comes from a successful experiment conducted with students in the "Mobile Robots" course in the fifth year of the integrated Master's program in the Department of Electrical and Computer Engineering, Faculty of Engineering, University of Porto (FEUP), Porto, Portugal. One of the topics in this Mobile Robots…

  16. Involvement of African-American Girls in Science, Technology, Engineering, and Mathematics (STEM) Education

    ERIC Educational Resources Information Center

    Nkere, Nsidi

    2016-01-01

    A qualitative case study was conducted by examining the perceptions of fifth-grade African American girls about their experiences with science, technology, engineering and mathematics (STEM) education and potential for STEM as a future career. As the United States suffers from waning participation across all demographics in STEM and a high level…

  17. Development cooperation as methodology for teaching social responsibility to engineers

    NASA Astrophysics Data System (ADS)

    Lappalainen, Pia

    2011-12-01

    The role of engineering in promoting global well-being has become accentuated, turning the engineering curriculum into a means of dividing well-being equally. The gradual fortifying calls for humanitarian engineering have resulted in the incorporation of social responsibility themes in the university curriculum. Cooperation, communication, teamwork, intercultural cooperation, sustainability, social and global responsibility represent the socio-cultural dimensions that are becoming increasingly important as globalisation intensifies the demands for socially and globally adept engineering communities. This article describes an experiment, the Development Cooperation Project, which was conducted at Aalto University in Finland to integrate social responsibility themes into higher engineering education.

  18. A review and forecast of engine system research at the Army Propulsion Directorate

    NASA Technical Reports Server (NTRS)

    Bobula, George A.

    1989-01-01

    An account is given of the development status and achievements to date of the U.S. Army Propulsion Directorate's Small Turbine Engine Research (STER) programs, which are experimental investigations of the physics of entire engine systems from the viewpoints of component interactions and/or system dynamics. STER efforts are oriented toward the evaluation of complete turboshaft engine advanced concepts and are conducted at the ECRL-2 indoor, sea-level engine test facility. Attention is given to the results obtained by STER experiments concerned with IR-suppressing engine exhausts, a ceramic turbine-blade shroud, an active shaft-vibration control system, and a ceramic-matrix combustor liner.

  19. 322-R2U2 Engineering Assessment - August 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abri, M.; Griffin, D.

    This Engineering Assessment and Certification of Integrity of retention tank system 322-R2 has been prepared for tank systems that store and neutralizes hazardous waste and have secondary containment. The regulations require that this assessment be completed periodically and certified by an independent, qualified, California-registered professional engineer. Abri Environmental Engineering performed an inspection of the 322-R2 Tank system at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA. Mr. William W. Moore, P.E., conducted this inspection on March 16, 2015. Mr. Moore is a California Registered Civil Engineer, with extensive experience in civil engineering, and hazardous waste management.

  20. Space processing applications rocket project SPAR 4, engineering report

    NASA Technical Reports Server (NTRS)

    Reeves, F. (Compiler)

    1980-01-01

    The materials processing experiments in space, conducted on the SPAR 4 Black Brant VC rocket, are described and discussed. The SPAR 4 payload configuration, the rocket performance, and the flight sequence are reported. The results, analyses, and anomalies of the four experiments are discussed. The experiments conducted were the uniform dispersions of crystallization processing, the contained polycrstalline solidification in low gravity, the containerless processing of ferromagnetic materials, and the containerless processing technology. The instrumentation operations, payload power relay anomaly, relay postflight operational test, and relay postflight shock test are reported.

  1. On Design Experiment Teaching in Engineering Quality Cultivation

    ERIC Educational Resources Information Center

    Chen, Xiao

    2008-01-01

    Design experiment refers to that designed and conducted by students independently and is surely an important method to cultivate students' comprehensive quality. According to the development and requirements of experimental teaching, this article carries out a study and analysis on the purpose, significance, denotation, connotation and…

  2. Engineering and agronomy aspects of a long-term precision agriculture field experiment

    USDA-ARS?s Scientific Manuscript database

    Much research has been conducted on specific precision agriculture tools and implementation strategies, but little has been reported on long-term evaluation of integrated precision agriculture field experiments. In 2004 our research team developed and initiated a multi-faceted “precision agriculture...

  3. A comparative study on real lab and simulation lab in communication engineering from students' perspectives

    NASA Astrophysics Data System (ADS)

    Balakrishnan, B.; Woods, P. C.

    2013-05-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.

  4. [From gene cloning to expressional analysis--practice and experience from educational reform of experimental gene engineering].

    PubMed

    Wu, Yan-Hua; Guo, Bin; Lou, Hui-Ling; Cui, Yu-Liang; Gu, Hui-Juan; Qiao, Shou-Yi

    2012-02-01

    Experimental gene engineering is a laboratory course focusing on the molecular structure, expression pattern and biological function of genes. Providing our students with a solid knowledge base and correct ways to conduct research is very important for high-quality education of genetic engineering. Inspired by recent progresses in this field, we improved the experimental gene engineering course by adding more updated knowledge and technologies and emphasizing on the combination of teaching and research, with the aim of offering our students a good start in their scientific careers.

  5. Remediation of water and wastewater by using engineered nanomaterials: A review.

    PubMed

    Bishoge, Obadia K; Zhang, Lingling; Suntu, Shaldon L; Jin, Hui; Zewde, Abraham A; Qi, Zhongwei

    2018-05-12

    Nanotechnology is currently a fast-rising socioeconomic and political knowledge-based technology owing to the unique characteristics of its engineered nanomaterials. This branch of technology is useful for water and wastewater remediation. Many scientists and researchers have been conducting different studies and experiments on the applications of engineered nanomaterials at the local to international level. This review mainly aims to provide a current overview of existing knowledge on engineered nanomaterials and their applications in water and wastewater remediation. Furthermore, the present risks and challenges of nanotechnology are examined.

  6. Chemical Oxidative Polymerization of Polyaniline: A Practical Approach for Preparation of Smart Conductive Textiles

    ERIC Educational Resources Information Center

    Abu-Thabit, Nedal Y.

    2016-01-01

    Electrically conducting polymers are one of the promising alternative materials for technological applications in many interdisciplinary areas, including chemistry, material sciences, and engineering. This experiment was designed for providing undergraduate students with a quick and practical approach for preparation of a polyaniline-conducting…

  7. Sound synthesis and evaluation of interactive footsteps and environmental sounds rendering for virtual reality applications.

    PubMed

    Nordahl, Rolf; Turchet, Luca; Serafin, Stefania

    2011-09-01

    We propose a system that affords real-time sound synthesis of footsteps on different materials. The system is based on microphones, which detect real footstep sounds from subjects, from which the ground reaction force (GRF) is estimated. Such GRF is used to control a sound synthesis engine based on physical models. Two experiments were conducted. In the first experiment, the ability of subjects to recognize the surface they were exposed to was assessed. In the second experiment, the sound synthesis engine was enhanced with environmental sounds. Results show that, in some conditions, adding a soundscape significantly improves the recognition of the simulated environment.

  8. Design and evaluation of combustors for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Grobman, J.

    1973-01-01

    Various techniques and test results are briefly described and referenced for detail. The effort arises from the increasing concern for the measurement and control of emissions from gas turbine engines. The greater part of this research is focused on reducing the oxides of nitrogen formed during takeoff and cruise in both advanced CTOL, high pressure ratio engines, and advanced supersonic aircraft engines. The experimental approaches taken to reduce oxides of nitrogen emissions include the use of: multizone combustors incorporating reduced dwell time, fuel-air premixing, air atomization, fuel prevaporization, water injection, and gaseous fuels. In the experiments conducted to date, some of these techniques were more successful than others in reducing oxides of nitrogen emissions. Tests are being conducted on full-annular combustors at pressures up to 6 atmospheres and on combustor segments at pressures up to 30 atmospheres.

  9. Nuclear Criticality Experimental Research Center (NCERC) Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goda, Joetta Marie; Grove, Travis Justin; Hayes, David Kirk

    The mission of the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) is to conduct experiments and training with critical assemblies and fissionable material at or near criticality in order to explore reactivity phenomena, and to operate the assemblies in the regions from subcritical through delayed critical. One critical assembly, Godiva-IV, is designed to operate above prompt critical. The Nuclear Criticality Experimental Research Center (NCERC) is our nation’s only general-purpose critical experiments facility and is only one of a few that remain operational throughout the world. This presentation discusses the history of NCERC, the general activitiesmore » that makeup work at NCERC, and the various government programs and missions that NCERC supports. Recent activities at NCERC will be reviewed, with a focus on demonstrating how NCERC meets national security mission goals using engineering fundamentals. In particular, there will be a focus on engineering theory and design and applications of engineering fundamentals at NCERC. NCERC activities that relate to engineering education will also be examined.« less

  10. Comparison of Example-Based Learning and Problem-Based Learning in Engineering Domain

    ERIC Educational Resources Information Center

    Sern, Lai Chee; Salleh, Kahirol Mohd; Sulaiman, Nor lisa; Mohamad, Mimi Mohaffyza; Yunos, Jailani Md

    2015-01-01

    The research was conducted to compare the impacts of problem-based learning (PBL) and example-based learning (EBL) on the learning performance in an engineering domain. The research was implemented by means of experimental design. Specifically, a two-group experiment with a pre- and post-test design was used in this research. A total of 37…

  11. A Case Study of an Experiment Using Streaming of Lectures in Teaching Engineering Mathematics

    ERIC Educational Resources Information Center

    Fredriksen, Helge

    2015-01-01

    To support the possibility of taking an online engineering degree programme, Narvik University College has chosen to facilitate a streaming service of all lectures conducted by the college. At the Bodø college campus, in the academic year of 2012/2013, these online lectures were used as a central component in a didactic innovation project. The aim…

  12. Noguchi conducts BioLab WAICO-2 Experiment

    NASA Image and Video Library

    2010-05-10

    ISS023-E-042460 (10 May 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 23 flight engineer, uses a computer in the Columbus laboratory of the International Space Station.

  13. Combustion Integrated Rack (CIR)

    NASA Image and Video Library

    2016-06-22

    NASA Glenn engineer Chris Mroczka installs a gas-jet burner in a chamber within the center’s Combustion Integrated Rack. This chamber is where scientists conduct gaseous combustion experiments in a zero gravity environment.

  14. Mastracchio conducts Gravi-2 Culture Hydration

    NASA Image and Video Library

    2014-05-05

    ISS039-E-018462 (5 May 2014) --? In the Harmony node of the Earth-orbiting International Space Station, NASA astronaut Rick Mastracchio, Expedition 39 flight engineer, prepares culture chambers for an experiment.

  15. The Falls City Engineers: A History of the Louisville District Corps of Engineers United States Army

    DTIC Science & Technology

    1974-12-24

    illegal , though common, method of conducting the In- dian trade, These relationships suggest the multiple military and civil purposes of the...ditious method of h’aveling, e speciall y when your only resource b esides the current was the occasional use of the oar or the sail. F rom sixty to...Ohio in 1819 doubtless influenced his selection b\\" th e Chief of Engin eers in 1824 to s~pervise experiments \\\\"ith methods of improving navigation

  16. Advanced Colloids Experiment-1 (ACE-1)

    NASA Image and Video Library

    2013-07-22

    ISS036-E-023770 (22 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, conducts science work with the ongoing experiment Advanced Colloids Experiment-1 (ACE-1) inside the Fluids Integrated Rack. The experiment observes colloids, microscopic particles evenly dispersed throughout materials, with the potential for manufacturing improved materials and products on Earth. Cassidy is working at the Light Microscopy Module (LMM) in the Destiny laboratory of the International Space Station.

  17. Airborne Visible Laser Optical Communications (AVLOC) experiment

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A series of optical communication experiments between a high altitude aircraft at 18.3 km (60,000 ft) and a ground station were conducted by NASA from summer 1972 through winter 1973. The basic system was an optical tracker and transmitter located in each terminal. The aircraft transceiver consisted of a 5-mW HeNe laser transmitter with a 30-megabit modulator. The ground station beacon was an argon laser operating at 488 nm. A separate pulsed laser radar was used for initial acquisition. The objective of the experiment was to obtain engineering data on the precision tracking and communication system performance at both terminals. Atmospheric effects on the system performance was also an experiment objective. The system description, engineering analysis, testing, and flight results are discussed.

  18. Engineering Research and Technology Development on the Space Station

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report identifies and assesses the kinds of engineering research and technology development applicable to national, NASA, and commercial needs that can appropriately be performed on the space station. It also identifies the types of instrumentation that should be included in the space station design to support engineering research. The report contains a preliminary assessment of the potential benefits to U.S. competitiveness of engineering research that might be conducted on a space station, reviews NASA's current approach to jointly funded or cooperative experiments, and suggests modifications that might facilitate university and industry participation in engineering research and technology development activities on the space station.

  19. Cassidy conducts BASS Flame Test

    NASA Image and Video Library

    2013-04-09

    ISS035-E-16429 (9 April 2013) --- Astronaut Chris Cassidy, Expedition 35 flight engineer, conducts a session of the Burning and Suppression of Solids (BASS) experiment located in the U.S. lab Destiny onboard the Earth-orbiting International Space Station. Cassidy over a period of several days, has conducted several "runs" of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity and will guide strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.

  20. Multi-Partner Experiment to Test Volcanic-Ash Ingestion by a Jet Engine

    NASA Technical Reports Server (NTRS)

    Lekki, John; Lyall, Eric; Guffanti, Marianne; Fisher, John; Erlund, Beth; Clarkson, Rory; van de Wall, Allan

    2013-01-01

    A research team of U.S. Government agencies and engine manufacturers are designing an experiment to test volcanic-ash ingestion by a NASA owned F117 engine that was donated by the U.S. Air Force. The experiment is being conducted under the auspices of NASA s Vehicle Integrated Propulsion Research (VIPR) Program and will take place in early 2014 at Edwards AFB in California as an on-ground, on-wing test. The primary objectives are to determine the effect on the engine of several hours of exposure to low to moderate ash concentrations, currently proposed at 1 and 10 mg/m3 and to evaluate the capability of engine health management technologies for detecting these effects. A natural volcanic ash will be used that is representative of distal ash clouds many 100's to approximately 1000 km from a volcanic source i.e., the ash should be composed of fresh glassy particles a few tens of microns in size. The glassy ash particles are expected to soften and become less viscous when exposed to the high temperatures of the combustion chamber, then stick to the nozzle guide vanes of the high-pressure turbine. Numerous observations and measurements of the engine s performance and degradation will be made during the course of the experiment, including borescope and tear-down inspections. While not intended to be sufficient for rigorous certification of engine performance when ash is ingested, the experiment should provide useful information to aircraft manufacturers, airline operators, and military and civil regulators in their efforts to evaluate the range of risks that ash hazards pose to aviation.

  1. Design and optimization of smart grid system based on renewable energy in Nyamuk Island, Karimunjawa district, Central Java

    NASA Astrophysics Data System (ADS)

    Novitasari, D.; Indartono, Y. S.; Rachmidha, T. D.; Reksowardojo, I. K.; Irsyad, M.

    2017-03-01

    Nyamuk Island in Karimunjawa District is one of the regions in Java that has no access to electricity grid. The electricity in Nyamuk Island relies on diesel engine which is managed by local government and only operated for 6 hours per day. It occurs as a consequence of high fuel cost. A study on smart micro grid system based on renewable energy was conducted in Combustion Engine and Propulsion System Laboratory of Institut Teknologi Bandung by using 1 kWp solar panels and a 3 kW bio based diesel engine. The fuels used to run the bio based diesel engine were diesel, virgin coconut oil and pure palm oil. The results show that the smart grid system run well at varying load and also with different fuel. Based on the experiments, average inverter efficiency was about 87%. This experiments proved that the use of biofuels had no effects to the overall system performance. Based on the results of prototype experiments, this paper will focus on design and optimization of smart micro grid system using HOMER software for Nyamuk Island. The design consists of (1) a diesel engine existing in Nyamuk Island whose fuel was diesel, (2) a lister engine whose fuel was from vegetable oil from Callophyllum inophyllum, (3) solar panels, (4) batteries and (5) converter. In this simulation, the existing diesel engine was set to operate 2 hours per day, while operating time of the lister engine has been varied with several scenarios. In scenario I, the lister engine was operated 5 hours per day, in scenario II the lister engine was operated 24 hours per day and in scenario III the lister engine was operated 8 hours per week in the weekend. In addition, a design using a modified diesel engine was conducted as well with an assumption that the modified cost was about 10% of new diesel engine cost. By modifying the diesel engine, the system will not need a lister engine. Assessments has been done to evaluate the designs, and the result shows that the optimal value obtains by the lister engine being operated for 24 hours a day in which the capacity of each component was 27 kWp PV, 7 kW lister engine, 26 kVA existing diesel engine, 40 kW converter and 128 batteries. The result is based on the lowest value of Net Present Cost (NPC) of 542.682 and Cost Of Electricity (COE) of 0.49.

  2. BCAT setup in Kibo

    NASA Image and Video Library

    2014-06-03

    ISS040-E-006891 (3 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test (BCAT) experiment in the Kibo laboratory of the International Space Station.

  3. Student Drop Tower Competitions: Dropping In a Microgravity Environment (DIME) and What If No Gravity? (WING)

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Stocker, Dennis P.; DeLombard, Richard

    2011-01-01

    This paper describes two student competition programs that allow student teams to conceive a science or engineering experiment for a microgravity environment. Selected teams design and build their experimental hardware, conduct baseline tests, and ship their experiment to NASA where it is operated in the 2.2 Second Drop Tower. The hardware and acquired data is provided to the teams after the tests are conducted so that the teams can prepare their final reports about their findings.

  4. Evaluation of Thermal Barrier and PS-200 Self-Lubricating Coatings in an Air-Cooled Rotary Engine

    NASA Technical Reports Server (NTRS)

    Moller, Paul S.

    1995-01-01

    This project provides an evaluation of the feasibility and desirability of applying a thermal barrier coating overlaid with a wear coating on the internal surfaces of the combustion area of rotary engines. Many experiments were conducted with different combinations of coatings applied to engine components of aluminum, iron and titanium, and the engines were run on a well-instrumented test stand. Significant improvements in specific fuel consumption were achieved and the wear coating, PS-200, which was invented at NASA's Lewis Research Center, held up well under severe test conditions.

  5. Integrating Research and Extension for the Nsf-Reu Program in Water Resources

    NASA Astrophysics Data System (ADS)

    Judge, J.; Migliaccio, K.; Gao, B.; Shukla, S.; Ehsani, R.; McLamore, E.

    2011-12-01

    Providing positive and meaningful research experiences to students in their undergraduate years is critical for motivating them to pursue advanced degrees or research careers in science and engineering. Such experiences not only offer training for the students in problem solving and critical thinking via hands-on projects, but also offer excellent mentoring and recruiting opportunities for the faculty advisors. The goal of the Research Experience for Undergraduates (REU) Program in the Agricultural and Biological Engineering Department (ABE) at the University of Florida (UF) is to provide eight undergraduate students a unique opportunity to conduct research in water resources using interdisciplinary approaches, integrating research and extension. The students are selected from diverse cultural and educational backgrounds. The eight-week REU Program utilizes the extensive infrastructure of UF - Institute of Food and Agricultural Sciences (IFAS) through the Research and Education Centers (RECs). Two students are paired to participate in their own project under the direct supervision of one of the four research mentors. Four of the eight students are located at the main campus, in Gainesville, Fl, and four remaining students are located off-campus, at the RECs, where some of the ABE faculty are located. The students achieve an enriching cohort experience through social networking, daily blogs, and weekly video conferences to share their research and other REU experiences. The students are co-located during the Orientation week and also during the 5-day Florida Waters Tour. Weekly group meetings and guest lectures are conducted via synchronously through video conferencing. The integration of research and extension is naturally achieved through the projects at the RECs, the guest lectures, Extension workshops, and visits to the Water Management Districts in Florida. In the last two years of the Program, we have received over 80 applicants, from four-year and advanced degree offering institutions and a variety of majors such as Geology, Meteorology, Environmental Sciences & Engineering, Civil Engineering, Water Resources, Agricultural Engineering, Physics, Geography, Chemical Engineering, to name a few. This model of providing integrated research and extension opportunities in hydrology where not all the REU participants are physically co-located, is unique and can be extended to other disciplines.

  6. iss028e025736

    NASA Image and Video Library

    2011-08-15

    ISS028-E-025736 (15 Aug. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 28 flight engineer, uses a computer to activate the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. Furukawa was preparing to conduct experiments with the Shear History Extensional Rheology Experiment (SHERE) hardware inside the MSG.

  7. iss028e025737

    NASA Image and Video Library

    2011-08-15

    ISS028-E-025737 (15 Aug. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 28 flight engineer, uses a computer to activate the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. Furukawa was preparing to conduct experiments with the Shear History Extensional Rheology Experiment (SHERE) hardware inside the MSG.

  8. Enhancing Systems Engineering Education Through Case Study Writing

    NASA Technical Reports Server (NTRS)

    Stevens, Jennifer Stenger

    2016-01-01

    Developing and refining methods for teaching systems engineering is part of Systems Engineering grand challenges and agenda for research in the SE research community. Retention of systems engineering knowledge is a growing concern in the United States as the baby boom generation continues to retire and the faster pace of technology development does not allow for younger generations to gain experiential knowledge through years of practice. Government agencies, including the National Aeronautics and Space Administration (NASA), develop their own curricula and SE leadership development programs to "grow their own" systems engineers. Marshall Space Flight Center (MSFC) conducts its own Center-focused Marshall Systems Engineering Leadership Development Program (MSELDP), a competitive program consisting of coursework, a guest lecture series, and a rotational assignment into an unfamiliar organization engaged in systems engineering. Independently, MSFC developed two courses to address knowledge retention and sharing concerns: Real World Marshall Mission Success course and its Case Study Writers Workshop and Writers Experience. Teaching case study writing and leading students through a hands-on experience at writing a case study on an SE topic can enhance SE training and has the potential to accelerate the transfer of experiential knowledge. This paper is an overview of the pilot experiences with teaching case study writing, its application in case study-based learning, and identifies potential areas of research and application for case study writing in systems engineering education.

  9. 77 FR 50505 - Science Advisory Board Staff Office Request for Nominations of Experts for the SAB Hydraulic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... and internationally recognized scientists and engineers having experience and expertise related to...; geochemistry and analytical chemistry; environmental monitoring; conducting laboratory and/or field-based...

  10. Usability engineering for augmented reality: employing user-based studies to inform design.

    PubMed

    Gabbard, Joseph L; Swan, J Edward

    2008-01-01

    A major challenge, and thus opportunity, in the field of human-computer interaction and specifically usability engineering is designing effective user interfaces for emerging technologies that have no established design guidelines or interaction metaphors or introduce completely new ways for users to perceive and interact with technology and the world around them. Clearly, augmented reality is one such emerging technology. We propose a usability engineering approach that employs user-based studies to inform design, by iteratively inserting a series of user-based studies into a traditional usability engineering lifecycle to better inform initial user interface designs. We present an exemplar user-based study conducted to gain insight into how users perceive text in outdoor augmented reality settings and to derive implications for design in outdoor augmented reality. We also describe lessons learned from our experiences conducting user-based studies as part of the design process.

  11. Experiment to Characterize Aircraft Volatile Aerosol and Trace-Species Emissions (EXCAVATE)

    NASA Technical Reports Server (NTRS)

    Anderson, B. E.; Branham, H.-S.; Hudgins, C. H.; Plant, J. V.; Ballenthin, J. O.; Miller, T. M.; Viggiano, A. A.; Blake, D. R.; Boudries, H.; Canagaratna, M.

    2005-01-01

    The Experiment to Characterize Aircraft Volatile and Trace Species Emissions (EXCAVATE) was conducted at Langley Research Center (LaRC) in January 2002 and focused upon assaying the production of aerosols and aerosol precursors by a modern commercial aircraft, the Langley B757, during ground-based operation. Remaining uncertainty in the postcombustion fate of jet fuel sulfur contaminants, the need for data to test new theories of particle formation and growth within engine exhaust plumes, and the need for observations to develop air quality models for predicting pollution levels in airport terminal areas were the primary factors motivating the experiment. NASA's Atmospheric Effects of Aviation Project (AEAP) and the Ultra Effect Engine Technology (UEET) Program sponsored the experiment which had the specific objectives of determining ion densities; the fraction of fuel S converted from S(IV) to S(VI); the concentration and speciation of volatile aerosols and black carbon; and gas-phase concentrations of long-chain hydrocarbon and PAH species, all as functions of engine power, fuel composition, and plume age.

  12. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, Hun C.; Fang, Ho T.

    1987-01-01

    The technology base required to fabricate silicon nitride components with the strength, reliability, and reproducibility necessary for actual heat engine applications is presented. Task 2 was set up to develop test bars with high Weibull slope and greater high temperature strength, and to conduct an initial net shape component fabrication evaluation. Screening experiments were performed in Task 7 on advanced materials and processing for input to Task 2. The technical efforts performed in the second year of a 5-yr program are covered. The first iteration of Task 2 was completed as planned. Two half-replicated, fractional factorial (2 sup 5), statistically designed matrix experiments were conducted. These experiments have identified Denka 9FW Si3N4 as an alternate raw material to GTE SN502 Si3N4 for subsequent process evaluation. A detailed statistical analysis was conducted to correlate processing conditions with as-processed test bar properties. One processing condition produced a material with a 97 ksi average room temperature MOR (100 percent of goal) with 13.2 Weibull slope (83 percent of goal); another condition produced 86 ksi (6 percent over baseline) room temperature strength with a Weibull slope of 20 (125 percent of goal).

  13. Effect of compression ratio, nozzle opening pressure, engine load, and butanol addition on nanoparticle emissions from a non-road diesel engine.

    PubMed

    Maurya, Rakesh Kumar; Saxena, Mohit Raj; Rai, Piyush; Bhardwaj, Aashish

    2018-05-01

    Currently, diesel engines are more preferred over gasoline engines due to their higher torque output and fuel economy. However, diesel engines confront major challenge of meeting the future stringent emission norms (especially soot particle emissions) while maintaining the same fuel economy. In this study, nanosize range soot particle emission characteristics of a stationary (non-road) diesel engine have been experimentally investigated. Experiments are conducted at a constant speed of 1500 rpm for three compression ratios and nozzle opening pressures at different engine loads. In-cylinder pressure history for 2000 consecutive engine cycles is recorded and averaged data is used for analysis of combustion characteristics. An electrical mobility-based fast particle sizer is used for analyzing particle size and mass distributions of engine exhaust particles at different test conditions. Soot particle distribution from 5 to 1000 nm was recorded. Results show that total particle concentration decreases with an increase in engine operating loads. Moreover, the addition of butanol in the diesel fuel leads to the reduction in soot particle concentration. Regression analysis was also conducted to derive a correlation between combustion parameters and particle number emissions for different compression ratios. Regression analysis shows a strong correlation between cylinder pressure-based combustion parameters and particle number emission.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopper, Calvin Mitchell

    In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safetymore » engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National Laboratory (SNL) hands-on criticality experiments training, and the US DOE National Criticality Experiment Research Center (NCERC) hands-on criticality experiments training that is jointly supported by LLNL and LANL and located at the Nevada National Security Site (NNSS) This paper provides the description of the bases, content, and conduct of the piloted, and future US DOE NCSP Criticality Safety Engineer Training and Education Project.« less

  15. Integration of NASA Research into Undergraduate Education in Math, Science, Engineering and Technology at North Carolina A&T State University

    NASA Technical Reports Server (NTRS)

    Monroe, Joseph; Kelkar, Ajit

    2003-01-01

    The NASA PAIR program incorporated the NASA-Sponsored research into the undergraduate environment at North Carolina Agricultural and Technical State University. This program is designed to significantly improve undergraduate education in the areas of mathematics, science, engineering, and technology (MSET) by directly benefiting from the experiences of NASA field centers, affiliated industrial partners and academic institutions. The three basic goals of the program were enhancing core courses in MSET curriculum, upgrading core-engineering laboratories to compliment upgraded MSET curriculum, and conduct research training for undergraduates in MSET disciplines through a sophomore shadow program and through Research Experience for Undergraduates (REU) programs. Since the inception of the program nine courses have been modified to include NASA related topics and research. These courses have impacted over 900 students in the first three years of the program. The Electrical Engineering circuit's lab is completely re-equipped to include Computer controlled and data acquisition equipment. The Physics lab is upgraded to implement better sensory data acquisition to enhance students understanding of course concepts. In addition a new instrumentation laboratory in the department of Mechanical Engineering is developed. Research training for A&T students was conducted through four different programs: Apprentice program, Developers program, Sophomore Shadow program and Independent Research program. These programs provided opportunities for an average of forty students per semester.

  16. Compressibility Effects in Aeronautical Engineering

    NASA Technical Reports Server (NTRS)

    Stack, John

    1941-01-01

    Compressible-flow research, while a relatively new field in aeronautics, is very old, dating back almost to the development of the first firearm. Over the last hundred years, researches have been conducted in the ballistics field, but these results have been of practically no use in aeronautical engineering because the phenomena that have been studied have been the more or less steady supersonic condition of flow. Some work that has been done in connection with steam turbines, particularly nozzle studies, has been of value, In general, however, understanding of compressible-flow phenomena has been very incomplete and permitted no real basis for the solution of aeronautical engineering problems in which.the flow is likely to be unsteady because regions of both subsonic and supersonic speeds may occur. In the early phases of the development of the airplane, speeds were so low that the effects of compressibility could be justifiably ignored. During the last war and immediately after, however, propellers exhibited losses in efficiency as the tip speeds approached the speed of sound, and the first experiments of an aeronautical nature were therefore conducted with propellers. Results of these experiments indicated serious losses of efficiency, but aeronautical engineers were not seriously concerned at the time became it was generally possible. to design propellers with quite low tip. speeds. With the development of new engines having increased power and rotational speeds, however, the problems became of increasing importance.

  17. Semantic Clustering of Search Engine Results

    PubMed Central

    Soliman, Sara Saad; El-Sayed, Maged F.; Hassan, Yasser F.

    2015-01-01

    This paper presents a novel approach for search engine results clustering that relies on the semantics of the retrieved documents rather than the terms in those documents. The proposed approach takes into consideration both lexical and semantics similarities among documents and applies activation spreading technique in order to generate semantically meaningful clusters. This approach allows documents that are semantically similar to be clustered together rather than clustering documents based on similar terms. A prototype is implemented and several experiments are conducted to test the prospered solution. The result of the experiment confirmed that the proposed solution achieves remarkable results in terms of precision. PMID:26933673

  18. A Human Factors Framework for Payload Display Design

    NASA Technical Reports Server (NTRS)

    Dunn, Mariea C.; Hutchinson, Sonya L.

    1998-01-01

    During missions to space, one charge of the astronaut crew is to conduct research experiments. These experiments, referred to as payloads, typically are controlled by computers. Crewmembers interact with payload computers by using visual interfaces or displays. To enhance the safety, productivity, and efficiency of crewmember interaction with payload displays, particular attention must be paid to the usability of these displays. Enhancing display usability requires adoption of a design process that incorporates human factors engineering principles at each stage. This paper presents a proposed framework for incorporating human factors engineering principles into the payload display design process.

  19. Examining the Personal Nature of the K-14 Engineering Pipeline for Young Women

    NASA Astrophysics Data System (ADS)

    Gurski, Jennifer Sue

    This mixed-methods study examined young women's perceptions of their K-14 STEM pipeline experiences and their resulting choice to enter and persist in an engineering major. Despite the increase of women in the STEM workforce, women remain underrepresented among engineering majors (Beasley & Fischer, 2012; Heilbronner, 2012; Neihart & Teo, 2013). Few studies exist that utilize a retrospective approach to understand how the culmination of young women's K-14 experiences have influenced their formation of individually held perceptions that lead to engineering persistence. It is this study's aim to utilize a mixed-methods approach to answer the following research question: How do young women's perceptions of their K-14 STEM experiences influence their decision to enroll and persist in an engineering major? These perceptions are explored through an ethnographic approach focusing on young women enrolled in engineering programs during their junior and senior years of study at a small private liberal arts university with eight engineering majors. The mixed-methods approach follows a sequential design method (Creswell, 2013) and utilizes questions in a quantitative Likert-type survey from the Academic Pathways for People Learning Engineering (APPLES) survey (Eris, Chachra, Chen, Sheppard, & Ludlow, 2010) and the Motivated Strategy Learning Questionnaire (MSLQ) (Pintrich, Smith, Garcia, & McKeachie, 1991). The quantitative study results will lead to the development of open-ended, structured questions for conducting a qualitative focus group. Anonymity of all participants is maintained. Keywords: STEM, young women, perceptions, pipeline, intervention, underrepresentation, engineering, persistence, retrospective, self-efficacy.

  20. Measurements of nitrous acid in commercial aircraft exhaust at the Alternative Aviation Fuel Experiment.

    PubMed

    Lee, Ben H; Santoni, Gregory W; Wood, Ezra C; Herndon, Scott C; Miake-Lye, Richard C; Zahniser, Mark S; Wofsy, Steven C; Munger, J William

    2011-09-15

    The Alternative Aviation Fuel Experiment (AAFEX), conducted in January of 2009 in Palmdale, California, quantified aerosol and gaseous emissions from a DC-8 aircraft equipped with CFM56-2C1 engines using both traditional and synthetic fuels. This study examines the emissions of nitrous acid (HONO) and nitrogen oxides (NO(x) = NO + NO(2)) measured 145 m behind the grounded aircraft. The fuel-based emission index (EI) for HONO increases approximately 6-fold from idle to takeoff conditions but plateaus between 65 and 100% of maximum rated engine thrust, while the EI for NO(x) increases continuously. At high engine power, NO(x) EI is greater when combusting traditional (JP-8) rather than Fischer-Tropsch fuels, while HONO exhibits the opposite trend. Additionally, hydrogen peroxide (H(2)O(2)) was identified in exhaust plumes emitted only during engine idle. Chemical reactions responsible for emissions and comparison to previous measurement studies are discussed.

  1. Advanced Physics Labs and Undergraduate Research: Helping Them Work Together

    NASA Astrophysics Data System (ADS)

    Peterson, Richard W.

    2009-10-01

    The 2009 Advanced Lab Topical Conference in Ann Arbor affirmed the importance of advanced labs that teach crucial skills and methodologies by carefully conducting a time-honored experiment. Others however argued that such a constrained experiment can play a complementary role to more open-ended, project experiences. A genuine ``experiment'' where neither student or faculty member is exactly sure of the best approach or anticipated result can often trigger real excitement, creativity, and career direction for students while reinforcing the advanced lab and undergraduate research interface. Several examples are cited in areas of AMO physics, optics, fluids, and acoustics. Colleges and universities that have dual-degree engineering, engineering physics, or applied physics programs may especially profit from interdisciplinary projects that utilize optical, electromagnetic, and acoustical measurements in conjunction with computational physics and simulation.

  2. What Knowledge of Responsible Conduct of Research Do Undergraduates Bring to Their Undergraduate Research Experiences?

    ERIC Educational Resources Information Center

    Mabrouk, Patricia Ann

    2016-01-01

    Over a three-year period, chemistry and engineering students participating in six Research Experience for Undergraduates (REU) programs were surveyed before and after participating in a research ethics training workshop. The goal was to learn what undergraduate students already knew about key concepts in research ethics at the start of their…

  3. NASA STEM Event

    NASA Image and Video Library

    2013-01-19

    School children are given a hands-on experience with a mock spacesuit during a Science, Technology, Engineering, and Math (STEM) education event held at the Ritz-Carlton Hotel in Arlington, VA on Saturday, Jan. 19, 2013. Students were able to meet with Astronaut Leland Melvin, conduct experiments, build their own space jab, and touch a mockup space suit. Photo Credit: (NASA/Bill Ingalls)

  4. Propulsion control experience used in the Highly Integrated Digital Electronic Control (HIDEC) program

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1984-01-01

    The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed.

  5. Mechanical engineering and design criteria for the Magnetically Insulated Transmission Experiment Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staller, G.E.; Hamilton, I.D.; Aker, M.F.

    1978-02-01

    A single-unit electron beam accelerator was designed, fabricated, and assembled in Sandia's Technical Area V to conduct magnetically insulated transmission experiments. Results of these experiments will be utilized in the future design of larger, more complex accelerators. This design makes optimum use of existing facilities and equipment. When designing new components, possible future applications were considered as well as compatibility with existing facilities and hardware.

  6. Hopkins during CFE-2 Experiment

    NASA Image and Video Library

    2013-11-20

    ISS038-E-005962 (19 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the Capillary Flow Experiment-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  7. The Characteristics and Experiences of Successful Undergraduate Latina Students Who Persist in Engineering

    NASA Astrophysics Data System (ADS)

    Robinson, Carrie

    Females and underrepresented ethnic minorities earn a small percentage of engineering and computer science bachelor's degrees awarded in the United States, earn an even smaller proportion of master's and doctoral degrees, and are underrepresented in the engineering workforce (Engineering Workforce Commission, [2006], as cited in National Science Foundation, 2012; United States Department of Education, [2006], as cited in National Science Foundation, 2009a; United States Department of Education, [2006], as cited in National Science Foundation, 2009b). Considerable research has examined the perceptions, culture, curriculum, and pedagogy in engineering that inhibits the achievement of women and underrepresented ethnic minorities. This action research study used a qualitative approach to examine the characteristics and experiences of Latina students who pursued a bachelor's degree in the Ira A. Fulton Schools of Engineering at Arizona State University (ASU) as part of the 2008 first-time full-time freshman cohort. The researcher conducted two semi-structured individual interviews with seven undergraduate Latina students who successfully persisted to their fourth (senior) year in engineering. The researcher aimed to understand what characteristics made these students successful and how their experiences affected their persistence in an engineering major. The data collected showed that the Latina participants were motivated to persist in their engineering degree program due to their parents' expectations for success and high academic achievement; their desire to overcome the discrimination, stereotyping, and naysayers that they encountered; and their aspiration to become a role model for their family and other students interested in pursuing engineering. From the data collected, the researcher provided suggestions to implement and adapt educational activities and support systems within the Ira A. Fulton Schools of Engineering to improve the retention and graduation rates of Latinas in engineering at ASU.

  8. Parabolic dish systems at work - Applying the concepts

    NASA Technical Reports Server (NTRS)

    Marriott, A. T.

    1981-01-01

    An overview is given of parabolic dish solar concentrator application experiments being conducted by the U.S. Department of Energy. The 'engineering experiments' comprise the testing of (1) a small-community powerplant system, in conjunction with a grid-connected utility; (2) stand-alone applications at remote sites such as military installations, radar stations and villages; and (3) dish modules that can deliver heat for direct use in industrial processes. Applicability projections are based on a dish and receiver that use a Brayton engine with an engine/generator efficiency of 25% and a production level of up to 25,000 units per year. Analyses indicate that parabolic-dish power systems can potentially replace small, oil-fired power plants in all regions of the U.S. between 1985 and 1991.

  9. Studying the Transient Thermal Contact Conductance Between the Exhaust Valve and Its Seat Using the Inverse Method

    NASA Astrophysics Data System (ADS)

    Nezhad, Mohsen Motahari; Shojaeefard, Mohammad Hassan; Shahraki, Saeid

    2016-02-01

    In this study, the experiments aimed at analyzing thermally the exhaust valve in an air-cooled internal combustion engine and estimating the thermal contact conductance in fixed and periodic contacts. Due to the nature of internal combustion engines, the duration of contact between the valve and its seat is too short, and much time is needed to reach the quasi-steady state in the periodic contact between the exhaust valve and its seat. Using the methods of linear extrapolation and the inverse solution, the surface contact temperatures and the fixed and periodic thermal contact conductance were calculated. The results of linear extrapolation and inverse methods have similar trends, and based on the error analysis, they are accurate enough to estimate the thermal contact conductance. Moreover, due to the error analysis, a linear extrapolation method using inverse ratio is preferred. The effects of pressure, contact frequency, heat flux, and cooling air speed on thermal contact conductance have been investigated. The results show that by increasing the contact pressure the thermal contact conductance increases substantially. In addition, by increasing the engine speed the thermal contact conductance decreases. On the other hand, by boosting the air speed the thermal contact conductance increases, and by raising the heat flux the thermal contact conductance reduces. The average calculated error equals to 12.9 %.

  10. BCAT-C1 Session in the JPM

    NASA Image and Video Library

    2012-08-08

    ISS032-E-014593 (6 Aug. 2012) --- NASA astronaut Joe Acaba, Expedition 32 flight engineer, conducts a session with the Binary Colloidal Alloy Test-6 (BCAT-6) experiment in the Kibo laboratory of the International Space Station.

  11. Pore Formation and Mobility Furnace within the MSG

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dr. Richard Grugel, a materials scientist at NASA's Marshall Space Flight in Huntsville, Ala., examines the furnace used to conduct his Pore Formation and Mobility Investigation -- one of the first two materials science experiments to be conducted on the International Space Station. This experiment studies materials processes similar to those used to make components used in jet engines. Grugel's furnace was installed in the Microgravity Science Glovebox through the circular port on the side. In space, crewmembers are able to change out samples using the gloves on the front of the facility's work area.

  12. Material Science

    NASA Image and Video Library

    2003-01-22

    Dr. Richard Grugel, a materials scientist at NASA's Marshall Space Flight in Huntsville, Ala., examines the furnace used to conduct his Pore Formation and Mobility Investigation -- one of the first two materials science experiments to be conducted on the International Space Station. This experiment studies materials processes similar to those used to make components used in jet engines. Grugel's furnace was installed in the Microgravity Science Glovebox through the circular port on the side. In space, crewmembers are able to change out samples using the gloves on the front of the facility's work area.

  13. Roles, uses, and benefits of general aviation aircraft in aerospace engineering education

    NASA Technical Reports Server (NTRS)

    Odonoghue, Dennis P.; Mcknight, Robert C.

    1994-01-01

    Many colleges and universities throughout the United States offer outstanding programs in aerospace engineering. In addition to the fundamentals of aerodynamics, propulsion, flight dynamics, and air vehicle design, many of the best programs have in the past provided students the opportunity to design and fly airborne experiments on board various types of aircraft. Sadly, however, the number of institutions offering such 'airborne laboratories' has dwindled in recent years. As a result, opportunities for students to apply their classroom knowledge, analytical skills, and engineering judgement to the development and management of flight experiments on an actual aircraft are indeed rare. One major reason for the elimination of flight programs by some institutions, particularly the smaller colleges, is the prohibitive cost of operating and maintaining an aircraft as a flying laboratory. The purpose of this paper is to discuss simple, low-cost, relevant flight experiments that can be performed using readily available general aviation aircraft. This paper examines flight experiments that have been successfully conducted on board the NASA Lewis Research Center's T-34B aircraft, as part of the NASA/AIAA/University Flight Experiment Program for Students (NAUFEPS) and discusses how similar experiments could be inexpensively performed on other general aviation aircraft.

  14. Computer networks for remote laboratories in physics and engineering

    NASA Technical Reports Server (NTRS)

    Starks, Scott; Elizandro, David; Leiner, Barry M.; Wiskerchen, Michael

    1988-01-01

    This paper addresses a relatively new approach to scientific research, telescience, which is the conduct of scientific operations in locations remote from the site of central experimental activity. A testbed based on the concepts of telescience is being developed to ultimately enable scientific researchers on earth to conduct experiments onboard the Space Station. This system along with background materials are discussed.

  15. Design and characterization of a conductive nanostructured polypyrrole-polycaprolactone coated magnesium/PLGA composite for tissue engineering scaffolds.

    PubMed

    Liu, Haixia; Wang, Ran; Chu, Henry K; Sun, Dong

    2015-09-01

    A novel biodegradable and conductive composite consisting of magnesium (Mg), polypyrrole-block-ploycaprolactone (PPy-PCL), and poly(lactic-co-glycolic acid) (PLGA) is synthesized in a core-shell-skeleton manner for tissue engineering applications. Mg particles in the composite are first coated with a conductive nanostructured PPy-PCL layer for corrosion resistance via the UV-induced photopolymerization method. PLGA matrix is then added to tailor the biodegradability of the resultant composite. Composites with different composition ratios are examined through experiments, and their material properties are characterized. The in vitro experiments on culture of 293FT-GFP cells show that the composites are suitable for cell growth and culture. Biodegradability of the composite is also evaluated. By adding PLGA matrix to the composite, the degrading time of the composite can last for more than eight weeks, hence providing a longer period for tissue formation as compared to Mg composites or alloys. The findings of this research will offer a new opportunity to utilize a conductive, nanostructured-coated Mg/PLGA composite as the scaffold material for implants and tissue regeneration. © 2015 Wiley Periodicals, Inc.

  16. An overview of Korean astronaut’s space experiments

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Kim, Y. K.; Yi, S. Y.; Kim, K. S.; Kang, S. W.; Choi, G. H.; Sim, E. S.

    2010-10-01

    The paper presents an overview of the scientific space experiments in the Korean Astronaut Program (KAP) that were conducted on the International Space Station (ISS), beginning with launch of the Soyuz TMA-12 spacecraft with the first Korean astronaut and two Russian astronauts on April 8, 2008 and returning to Earth on April 19, 2008. During the 10 days aboard the ISS, the Korean astronaut successfully completed thirteen scientific experiments in biology, life science, material science, earth science, and system engineering, five educational space experiments, and three kinds of international collaboration experiments. These experiments were the first Korean manned space experiments and these missions were the first steps toward the manned space exploration by Korea. In this paper, we briefly discuss the descriptions, conduct, and results of the space experiments and discuss future plans. In addition, the lessons learned with respect to the performing of these manned space experiments on the ISS are presented.

  17. Keeping Disability in Mind: A Case Study in Implantable Brain-Computer Interface Research.

    PubMed

    Sullivan, Laura Specker; Klein, Eran; Brown, Tim; Sample, Matthew; Pham, Michelle; Tubig, Paul; Folland, Raney; Truitt, Anjali; Goering, Sara

    2018-04-01

    Brain-Computer Interface (BCI) research is an interdisciplinary area of study within Neural Engineering. Recent interest in end-user perspectives has led to an intersection with user-centered design (UCD). The goal of user-centered design is to reduce the translational gap between researchers and potential end users. However, while qualitative studies have been conducted with end users of BCI technology, little is known about individual BCI researchers' experience with and attitudes towards UCD. Given the scientific, financial, and ethical imperatives of UCD, we sought to gain a better understanding of practical and principled considerations for researchers who engage with end users. We conducted a qualitative interview case study with neural engineering researchers at a center dedicated to the creation of BCIs. Our analysis generated five themes common across interviews. The thematic analysis shows that participants identify multiple beneficiaries of their work, including other researchers, clinicians working with devices, device end users, and families and caregivers of device users. Participants value experience with device end users, and personal experience is the most meaningful type of interaction. They welcome (or even encourage) end-user input, but are skeptical of limited focus groups and case studies. They also recognize a tension between creating sophisticated devices and developing technology that will meet user needs. Finally, interviewees espouse functional, assistive goals for their technology, but describe uncertainty in what degree of function is "good enough" for individual end users. Based on these results, we offer preliminary recommendations for conducting future UCD studies in BCI and neural engineering.

  18. Modal Survey Test of the SOTV 2X3 Meter Off-Axis Inflatable Concentrator

    NASA Technical Reports Server (NTRS)

    Engberg, Robert C.; Lassiter, John O.; McGee, Jennie K.

    2000-01-01

    NASA's Marshall Space Flight Center has had several projects involving inflatable space structures. Projects in solar thermal propulsion have had the most involvement, primarily inflatable concentrators. A flight project called Shooting Star Experiment initiated the first detailed design, analysis and testing effort involving an inflatable concentrator that supported a Fresnel lens. The lens was to concentrate the sun's rays to provide an extremely large heat transfer for an experimental solar propulsion engine. Since the conclusion of this experiment, research and development activities for solar propulsion at Marshall Space Flight Center have continued both in the solar propulsion engine technology as well as inflatable space structures. Experience gained in conducting modal survey tests of inflatable structures for the Shooting Star Experiment has been used by dynamic test engineers at Marshall Space Flight Center to conduct a modal survey test on a Solar Orbital Transfer Vehicle (SOTV) off-axis inflatable concentrator. This paper describes how both previously learned test methods and new test methods that address the unique test requirements for inflatable structures were used. Effects of the inherent nonlinear response of the inflatable concentrator on test methods and test results are noted as well. Nine analytical mode shapes were successfully correlated to test mode shapes. The paper concludes with several "lessons learned" applicable to future dynamics testing and shows how Marshall Space Flight Center has utilized traditional and new methods for modal survey testing of inflatable space structures.

  19. TOPSIS-based parametric optimization of compression ignition engine performance and emission behavior with bael oil blends for different EGR and charge inlet temperature.

    PubMed

    Muniappan, Krishnamoorthi; Rajalingam, Malayalamurthi

    2018-05-02

    The demand for higher fuel energy and lesser exhaust emissions of diesel engines can be achieved by fuel being used and engine operating parameters. In the present work, effects of engine speed (RPM), injection timing (IT), injection pressure (IP), and compression ratio (CR) on performance and emission characteristics of a compression ignition (CI) engine were investigated. The ternary test fuel of 65% diesel + 25% bael oil + 10% diethyl ether (DEE) was used in this work and test was conducted at different charge inlet temperature (CIT) and exhaust gas recirculation (EGR). All the experiments are conducted at the tradeoff engine load that is 75% engine load. When operating the diesel engine with 320 K CIT, brake thermal efficiency (BTE) is improved to 28.6%, and carbon monoxide (CO) and hydrocarbon (HC) emissions have been reduced to 0.025% and 12.5 ppm at 18 CR. The oxide of nitrogen (NOx) has been reduced to 240 ppm at 1500 rpm for 30% EGR mode. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is frequently used in multi-factor selection and gray correlation analysis method is used to study uncertain of the systems.

  20. CFE-2 Experiment Run

    NASA Image and Video Library

    2013-11-11

    ISS038-E-000269 (11 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids move up surfaces in microgravity. The results aim to improve current computer models that are used by designers of low gravity fluid systems and may improve fluid transfer systems for water on future spacecraft.

  1. CFE-2 Experiment Run

    NASA Image and Video Library

    2013-11-11

    ISS038-E-000263 (11 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids move up surfaces in microgravity. The results aim to improve current computer models that are used by designers of low gravity fluid systems and may improve fluid transfer systems for water on future spacecraft.

  2. Capillary Flow Experiment

    NASA Image and Video Library

    2014-06-19

    ISS040-E-015539 (19 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  3. Gerst installs CMS-2 in KIBO rack

    NASA Image and Video Library

    2014-09-09

    European Space Agency astronaut Alexander Gerst,Expedition 40 flight engineer,installs a microscope for the Cell Mechanosensing-2 experiment in the Kibo laboratory of the International Space Station. The Japanese experiment,which is conducted in Kibos Kobairo rack,seeks to identify gravity sensors in cells that may change the expression of key proteins and genes and allowing muscles to atrophy in microgravity.

  4. NASA STEM Event

    NASA Image and Video Library

    2013-01-19

    School children are photographed by their parents during a hands-on experience with a mock spacesuit during a Science, Technology, Engineering, and Math (STEM) education event held at the Ritz-Carlton Hotel in Arlington, VA on Saturday, Jan. 19, 2013. Students were able to meet with Astronaut Leland Melvin, conduct experiments, build their own space jab, and touch a mockup space suit. Photo Credit: (NASA/Bill Ingalls)

  5. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    ERIC Educational Resources Information Center

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  6. Timonium Elementary School Solar Energy Heating and Cooling Augmentation Experiment. Final Engineering Report. Executive Summary.

    ERIC Educational Resources Information Center

    AAI Corp., Baltimore, MD.

    This report covers a two-year and seven-month solar space heating and cooling experiment conducted at the Timonium Elementary School, Timonium, Maryland. The system was designed to provide a minimum of 50 percent of the energy required during the heating season and to determine the feasibility of using solar energy to power absorption-type…

  7. An Overview of contributions of NASA Space Shuttle to Space Science and Engineering education

    NASA Astrophysics Data System (ADS)

    Lulla, Kamlesh

    2012-07-01

    This paper provides an indepth overview of the enormous contrbutions made by the NASA Space Shuttle Program to Space science and engineering education over the past thirty years. The author has served as one of the major contributors and editors of NASA book "Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle program" (NASA SP-2010-3409). Every Space Shuttle mission was an education mission: student involvement programs such as Get Away Specials housed in Shuttle payload allowed students to propose research and thus enrich their university education experience. School students were able to operate "EarthKAM" to learn the intricacies of orbital mechanics, earth viewing opportunities and were able to master the science and art of proposal writing and scientific collaboration. The purpose of this presentation is to introduce the global student and teaching community in space sciences and engineering to the plethora of educational resources available to them for engaging a wide variety of students (from early school to the undergraduate and graduate level and to inspire them towards careers in Space sciences and technologies. The volume "Wings In Orbit" book is one example of these ready to use in classroom materials. This paper will highlight the educational payloads, experiments and on-orbit classroom activities conducted for space science and engineering students, teachers and non-traditional educators. The presentation will include discussions on the science content and its educational relevance in all major disiciplines in which the research was conducted on-board the Space Shuttle.

  8. An investigation of the performance of an electronic in-line pump system for diesel engines

    NASA Astrophysics Data System (ADS)

    Fan, Li-Yun; Zhu, Yuan-Xian; Long, Wu-Qiang; Ma, Xiu-Zhen; Xue, Ying-Ying

    2008-12-01

    WIT Electronic Fuel System Co., Ltd. has developed a new fuel injector, the Electronic In-line Pump (EIP) system, designed to meet China’s diesel engine emission and fuel economy regulations. It can be used on marine diesel engines and commercial vehicle engines through different EIP systems. A numerical model of the EIP system was built in the AMESim environment for the purpose of creating a design tool for engine application and system optimization. The model was used to predict key injection characteristics under different operating conditions, such as injection pressure, injection rate, and injection duration. To validate these predictions, experimental tests were conducted under the conditions that were modeled. The results were quite encouraging and in agreement with model predictions. Additional experiments were conducted to study the injection characteristics of the EIP system. These results show that injection pressure and injection quantity are insensitive to injection timing variations, this is due to the design of the constant velocity cam profile. Finally, injection quantity and pressure vs. pulse width at different cam speeds are presented, an important injection characteristic for EIP system calibration.

  9. Microengineered Conductive Elastomeric Electrodes for Long-Term Electrophysiological Measurements with Consistent Impedance under Stretch

    PubMed Central

    Hu, Dinglong; Cheng, Tin Kei; Xie, Kai; Lam, Raymond H. W.

    2015-01-01

    In this research, we develop a micro-engineered conductive elastomeric electrode for measurements of human bio-potentials with the absence of conductive pastes. Mixing the biocompatible polydimethylsiloxane (PDMS) silicone with other biocompatible conductive nano-particles further provides the material with an electrical conductivity. We apply micro-replica mold casting for the micro-structures, which are arrays of micro-pillars embedded between two bulk conductive-PDMS layers. These micro-structures can reduce the micro-structural deformations along the direction of signal transmission; therefore the corresponding electrical impedance under the physical stretch by the movement of the human body can be maintained. Additionally, we conduct experiments to compare the electrical properties between the bulk conductive-PDMS material and the microengineered electrodes under stretch. We also demonstrate the working performance of these micro-engineered electrodes in the acquisition of the 12-lead electrocardiographs (ECG) of a healthy subject. Together, the presented gel-less microengineered electrodes can provide a more convenient and stable bio-potential measurement platform, making tele-medical care more achievable with reduced technical barriers for instrument installation performed by patients/users themselves. PMID:26512662

  10. Mathematical modeling of the Stirling engine in terms of applying the composition of the power complex containing non-conventional and renewable energy

    NASA Astrophysics Data System (ADS)

    Gaponenko, A. M.; Kagramanova, A. A.

    2017-11-01

    The opportunity of application of Stirling engine with non-conventional and renewable sources of energy. The advantage of such use. The resulting expression for the thermal efficiency of the Stirling engine. It is shown that the work per cycle is proportional to the quantity of matter, and hence the pressure of the working fluid, the temperature difference and, to a lesser extent, depends on the expansion coefficient; efficiency of ideal Stirling cycle coincides with the efficiency of an ideal engine working on the Carnot cycle, which distinguishes a Stirling cycle from the cycles of Otto and Diesel underlying engine. It has been established that the four input parameters, the only parameter which can be easily changed during operation, and which effectively affects the operation of the engine is the phase difference. Dependence of work per cycle of the phase difference, called the phase characteristic, visually illustrates mode of operation of Stirling engine. The mathematical model of the cycle of Schmidt and the analysis of operation of Stirling engine in the approach of Schmidt with the aid of numerical analysis. To conduct numerical experiments designed program feature in the language MathLab. The results of numerical experiments are illustrated by graphical charts.

  11. Charge It! Translating Electric Vehicle Research Results to Engage 7th and 8th Grade Girls

    NASA Astrophysics Data System (ADS)

    Egbue, Ona; Long, Suzanna; Ng, Ean-Harn

    2015-10-01

    Despite attempts to generate interest in science and technology careers, US students continue to show reduced interest in science, technology, engineering and mathematics (STEM) majors at the collegiate level. If girls are not engaged in STEM learning by the middle school level, studies show that they are even less likely to choose a science- or engineering-related major. This article presents results from a workshop for 7th and 8th grade girls designed to promote knowledge building in the area of sustainability and alternative energy use in transportation and to stimulate greater interest in STEM subjects. The workshop based on research conducted at University X focused on basic concepts of electric vehicles and electric vehicles' batteries. Tests were conducted to evaluate the students' knowledge and perceptions of electric vehicles and to determine the impact of the workshop. Early exposure to meaningful engineering experiences for these young girls may boost interest and the eventual pursuit of engineering and technology education paths.

  12. GT-SUPREEM: the Georgia Tech summer undergraduate packaging research and engineering experience for minorities

    NASA Astrophysics Data System (ADS)

    May, Gary S.

    1996-07-01

    The Georgia Tech SUmmer Undergraduate Packaging Research and Engineering Experience for Minorities (GT-SUPREEM) is an eight-week summer program designed to attract qualified minority students to pursue graduate degrees in packaging- related disciplines. The program is conducted under the auspices of the Georgia Tech Engineering Research Center in Low-Cost Electronic Packaging, which is sponsored by the National Science Foundation. In this program, nine junior and senior level undergraduate students are selected on a nationwide basis and paired with a faculty advisor to undertake research projects in the Packaging Research CEnter. The students are housed on campus and provided with a $DLR3,000 stipend and a travel allowance. At the conclusion of the program, the students present both oral and written project summaries. It is anticipated that this experience will motivate these students to become applicants for graduate study in ensuring years. This paper will provide an overview of the GT-SUPREEM program, including student research activities, success stories, lessons learned, and overall program outlook.

  13. Research Institute for Technical Careers

    NASA Technical Reports Server (NTRS)

    Glenn, Ronald L.

    1996-01-01

    The NASA research grant to Wilberforce University enabled us to establish the Research Institute for Technical Careers (RITC) in order to improve the teaching of science and engineering at Wilberforce. The major components of the research grant are infrastructure development, establishment of the Wilberforce Intensive Summer Experience (WISE), and Joint Research Collaborations with NASA Scientists. (A) Infrastructure Development. The NASA grant has enabled us to improve the standard of our chemistry laboratory and establish the electronics, design, and robotics laboratories. These laboratories have significantly improved the level of instruction at Wilberforce University. (B) Wilberforce Intensive Summer Experience (WISE). The WISE program is a science and engineering bridge program for prefreshman students. It is an intensive academic experience designed to strengthen students' knowledge in mathematics, science, engineering, computing skills, and writing. (C) Joint Collaboration. Another feature of the grant is research collaborations between NASA Scientists and Wilberforce University Scientists. These collaborations have enabled our faculty and students to conduct research at NASA Lewis during the summer and publish research findings in various journals and scientific proceedings.

  14. Jim Sanovia - South Dakota School of Mines and Technology Undergrad: Geological Engineering (Jr.) September 7, 2004 thesanoves@hotmail.com Abstract Experiences Interning at NASA/GSFC

    NASA Astrophysics Data System (ADS)

    Sanovia, J. J.

    2004-12-01

    In the summer of 2001 and 2004 I experienced internships at the NASA/ Goddard Space Flight Center in Greenbelt, MD. Through these internships I was introduced to Geographical Information Systems and Remote Sensing. My experiences at NASA have also helped me acquire the ability to learn how I can now best utilize my networking contacts at NASA and other connections to facilitate my future plans as an engineer working on Indian and non-Indian Reservation lands. My experiences working at a large agency such as NASA have shown me the significance how a Native American engineer can strive to improve and preserve Indian and non-Indian lands for future generations. Formulating new and inventive methodologies on how to better approach Indian Reservation research while incorporating Native American culture I feel are vital for success. My accomplishments throughout the recent past years have also allowed me conduct outreach to Indian K-12 kids and college students alike.

  15. Teaching Reform of Civil Engineering Materials Course Based on Project-Driven Pedagogy

    NASA Astrophysics Data System (ADS)

    Yidong, Xu; Wei, Chen; WeiguoJian, You; Jiansheng, Shen

    2018-05-01

    In view of the scattered experimental projects in practical courses of civil engineering materials, the poor practical ability of students and the disconnection between practical teaching and theoretical teaching, this paper proposes a practical teaching procedure. Firstly, the single experiment should be offered which emphasizes on improving the students’ basic experimental operating ability. Secondly, the compressive experiment is offered and the overall quality of students can be examined in the form of project team. In order to investigate the effect of teaching reform, the comparative analysis of the students of three grades (2014, 2015 and 2016) majored in civil engineering was conducted. The result shows that the students’ ability of experimental operation is obviously improved by using the project driven method-based teaching reform. Besides, the students’ ability to analyse and solve problems has also been improved.

  16. GENETIC ENGINEERING OF ENHANCED MICROBIAL NITRIFICATION

    EPA Science Inventory

    Experiments were conducted to introduce genetic information in the form of antibiotic or mercuric ion resistance genes into Nitrobacter hamburgensis strain X14. The resistance genes were either stable components of broad host range plasmids or transposable genes on methods for p...

  17. Crack-Detection Experiments on Simulated Turbine Engine Disks in NASA Glenn Research Center's Rotordynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Abdul-Aziz, Ali

    2010-01-01

    The development of new health-monitoring techniques requires the use of theoretical and experimental tools to allow new concepts to be demonstrated and validated prior to use on more complicated and expensive engine hardware. In order to meet this need, significant upgrades were made to NASA Glenn Research Center s Rotordynamics Laboratory and a series of tests were conducted on simulated turbine engine disks as a means of demonstrating potential crack-detection techniques. The Rotordynamics Laboratory consists of a high-precision spin rig that can rotate subscale engine disks at speeds up to 12,000 rpm. The crack-detection experiment involved introducing a notch on a subscale engine disk and measuring its vibration response using externally mounted blade-tip-clearance sensors as the disk was operated at speeds up to 12 000 rpm. Testing was accomplished on both a clean baseline disk and a disk with an artificial crack: a 50.8-mm- (2-in.-) long introduced notch. The disk s vibration responses were compared and evaluated against theoretical models to investigate how successful the technique was in detecting cracks. This paper presents the capabilities of the Rotordynamics Laboratory, the baseline theory and experimental setup for the crack-detection experiments, and the associated results from the latest test campaign.

  18. Statistical Engineering in Air Traffic Management Research

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.

    2015-01-01

    NASA is working to develop an integrated set of advanced technologies to enable efficient arrival operations in high-density terminal airspace for the Next Generation Air Transportation System. This integrated arrival solution is being validated and verified in laboratories and transitioned to a field prototype for an operational demonstration at a major U.S. airport. Within NASA, this is a collaborative effort between Ames and Langley Research Centers involving a multi-year iterative experimentation process. Designing and analyzing a series of sequential batch computer simulations and human-in-the-loop experiments across multiple facilities and simulation environments involves a number of statistical challenges. Experiments conducted in separate laboratories typically have different limitations and constraints, and can take different approaches with respect to the fundamental principles of statistical design of experiments. This often makes it difficult to compare results from multiple experiments and incorporate findings into the next experiment in the series. A statistical engineering approach is being employed within this project to support risk-informed decision making and maximize the knowledge gained within the available resources. This presentation describes a statistical engineering case study from NASA, highlights statistical challenges, and discusses areas where existing statistical methodology is adapted and extended.

  19. Survey on Intelligent Assistance for Workplace Learning in Software Engineering

    NASA Astrophysics Data System (ADS)

    Ras, Eric; Rech, Jörg

    Technology-enhanced learning (TEL) systems and intelligent assistance systems aim at supporting software engineers during learning and work. A questionnaire-based survey with 89 responses from industry was conducted to find out what kinds of services should be provided and how, as well as to determine which software engineering phases they should focus on. In this paper, we present the survey results regarding intelligent assistance for workplace learning in software engineering. We analyzed whether specific types of assistance depend on the organization's size, the respondent's role, and the experience level. The results show a demand for TEL that supports short-term problem solving and long-term competence development at the workplace.

  20. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol

    NASA Astrophysics Data System (ADS)

    Cheung, C. S.; Zhu, Lei; Huang, Zhen

    Experiments were carried out on a diesel engine operating on Euro V diesel fuel, pure biodiesel and biodiesel blended with methanol. The blended fuels contain 5%, 10% and 15% by volume of methanol. Experiments were conducted under five engine loads at a steady speed of 1800 rev min -1 to assess the performance and the emissions of the engine associated with the application of the different fuels. The results indicate an increase of brake specific fuel consumption and brake thermal efficiency when the diesel engine was operated with biodiesel and the blended fuels, compared with the diesel fuel. The blended fuels could lead to higher CO and HC emissions than biodiesel, higher CO emission but lower HC emission than the diesel fuel. There are simultaneous reductions of NO x and PM to a level below those of the diesel fuel. Regarding the unregulated emissions, compared with the diesel fuel, the blended fuels generate higher formaldehyde, acetaldehyde and unburned methanol emissions, lower 1,3-butadiene and benzene emissions, while the toluene and xylene emissions not significantly different.

  1. Alternative Aviation Fuel Experiment (AAFEX)

    NASA Technical Reports Server (NTRS)

    Anderson, B. E.; Beyersdorf, A. J.; Hudgins, C. H.; Plant, J. V.; Thornhill, K. L.; Winstead, E. L.; Ziemba, L. D.; Howard, R.; Corporan, E.; Miake-Lye, R. C.; hide

    2011-01-01

    The rising cost of oil coupled with the need to reduce pollution and dependence on foreign suppliers has spurred great interest and activity in developing alternative aviation fuels. Although a variety of fuels have been produced that have similar properties to standard Jet A, detailed studies are required to ascertain the exact impacts of the fuels on engine operation and exhaust composition. In response to this need, NASA acquired and burned a variety of alternative aviation fuel mixtures in the Dryden Flight Research Center DC-8 to assess changes in the aircraft s CFM-56 engine performance and emission parameters relative to operation with standard JP-8. This Alternative Aviation Fuel Experiment, or AAFEX, was conducted at NASA Dryden s Aircraft Operations Facility (DAOF) in Palmdale, California, from January 19 to February 3, 2009 and specifically sought to establish fuel matrix effects on: 1) engine and exhaust gas temperatures and compressor speeds; 2) engine and auxiliary power unit (APU) gas phase and particle emissions and characteristics; and 3) volatile aerosol formation in aging exhaust plumes

  2. Flight-determined benefits of integrated flight-propulsion control systems

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.

    1992-01-01

    Over the last two decades, NASA has conducted several experiments in integrated flight-propulsion control. Benefits have included improved maneuverability; increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. This paper presents the basic concepts for control integration, examples of implementation, and benefits. The F-111E experiment integrated the engine and inlet control systems. The YF-12C incorporated an integral control system involving the inlet, autopilot, autothrottle, airdata, navigation, and stability augmentation systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real-time, onboard optimization of engine, inlet, and flight control variables; a self-repairing flight control system; and an engines-only control concept for emergency control. The F-18A aircraft incorporated thrust vectoring integrated with the flight control system to provide enhanced maneuvering at high angles of attack. The flight research programs and the resulting benefits of each program are described.

  3. CFE-2 ICF-9 Experiment

    NASA Image and Video Library

    2014-01-03

    ISS038-E-025016 (3 Jan. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  4. Capillary Flow Experiment

    NASA Image and Video Library

    2014-06-19

    ISS040-E-015545 (19 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  5. Capillary Flow Experiment

    NASA Image and Video Library

    2014-06-19

    ISS040-E-015532 (19 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  6. Capillary Flow Experiment

    NASA Image and Video Library

    2014-06-19

    ISS040-E-015523 (19 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  7. Capillary Flow Experiment

    NASA Image and Video Library

    2014-06-19

    ISS040-E-015543 (19 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  8. Capillary Flow Experiment

    NASA Image and Video Library

    2014-06-19

    ISS040-E-015536 (19 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  9. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II. Part 3; Material Model Development and Simulation of Experiments

    NASA Technical Reports Server (NTRS)

    Simmons, J.; Erlich, D.; Shockey, D.

    2009-01-01

    A team consisting of Arizona State University, Honeywell Engines, Systems & Services, the National Aeronautics and Space Administration Glenn Research Center, and SRI International collaborated to develop computational models and verification testing for designing and evaluating turbine engine fan blade fabric containment structures. This research was conducted under the Federal Aviation Administration Airworthiness Assurance Center of Excellence and was sponsored by the Aircraft Catastrophic Failure Prevention Program. The research was directed toward improving the modeling of a turbine engine fabric containment structure for an engine blade-out containment demonstration test required for certification of aircraft engines. The research conducted in Phase II began a new level of capability to design and develop fan blade containment systems for turbine engines. Significant progress was made in three areas: (1) further development of the ballistic fabric model to increase confidence and robustness in the material models for the Kevlar(TradeName) and Zylon(TradeName) material models developed in Phase I, (2) the capability was improved for finite element modeling of multiple layers of fabric using multiple layers of shell elements, and (3) large-scale simulations were performed. This report concentrates on the material model development and simulations of the impact tests.

  10. Cognitive diversity in undergraduate engineering: Dyslexia

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Velvet R.

    In the United States, institutions have established multiple programs and initiatives aimed at increasing the diversity of both faculty and students in engineering as means to produce a workforce that will better serve society. However, there are two major problems in addressing engineering student diversity. First, the engineering education research community has paid little attention to date as to how engineering education research characterizes diversity in its broadest sense. Second, research on persons with disabilities in undergraduates engineering, a population of interests within diversity, is minimal. Available disability studies tend to be skewed toward physical disabilities, leading to a neglect of cognitive differences such as learning disabilities (LD). In addition, disability research questions and study designs are inherently steeped in ability bias. The purpose of this dissertation is to explore the meaning of ability for students with dyslexia while in undergraduate engineering and establish the significance of cognitive diversity, focusing on LD and more specifically dyslexia, in undergraduate engineering education and answer the following research question: How do undergraduate engineering students with dyslexia experience ability while pursuing and persisting in engineering? The motivation was to lay the groundwork for future engineering education studies on undergraduate students with LD in general but dyslexia in specific. The first goal was to conduct a critical literature review pertaining to the academic strengths of undergraduate students with LD, specifically, dyslexia and the second goal was to describe how undergraduate engineering students with dyslexia experience ability. The intent was not to redefine dyslexia or disability. The intent is to provide an inclusive account of dyslexia, weakness and strengths, within the field of engineering education. This study was conducted from a qualitative inquiry approach, within the social constructivism paradigm, and utilized purposive sampling to identify appropriate participants. The thematic analysis methodological framework was used to portray a rich, complex description of experiences in which undergraduate engineering students with dyslexia constructed meaning around ability while pursuing and persisting in engineering. Eight students participated and semi-structured interviews were the data source. The findings are presented in three parts. First, significant findings that were also salient amongst the general undergraduate engineering student populations are presented. This is done to make a clear demarcation from those significant findings found to be unique to undergraduate engineering students with dyslexia presented in the themes: relationships, early exposure to engineering, and securing an internship or co-op position. Second, the four themes that developed from the analysis will were discussed: alignment, dissociation, ideal education environments, and time. Third, additional findings for further investigation were proposed: the role of remediation practices, the representation of dyslexia in media, gender differences in extracurricular activities that constructed different meanings of ability, the prevalence of co-occurring LD amongst the participants, and the visualization of science, engineering, mathematics concepts. The study is closed with a discussion; findings are discussed with respect to relevant research in the conclusion.

  11. Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil

    NASA Astrophysics Data System (ADS)

    Karthikeyan, A.; Jayaprabakar, J.; Dude Williams, Richard

    2017-05-01

    The aim of the study is to use fish oil methyl ester (FME) and Jatropha oil methyl ester (JME) as a substitute for diesel in compression ignition engine. Experiments were conducted when the engine was fuelled with Diesel, Fish oil methyl ester and Jatropha oil methyl ester. The experiment covered a range of loads. An AVL smoke meter was used to measure the smoke density in HSU (Hatridge Smoke Unit). The exhaust emissions were measured using exhaust gas analyzer. High volume sampler was employed to measure the particulate matter in exhaust. The performance of the engine was evaluated in terms of brake specific fuel consumption, brake thermal efficiency. The combustion characteristics of the engine were studied in terms of cylinder pressure with respect to crank angle. The emissions of the engine were studied in terms of concentration of CO, NOx, particulate matter and smoke density. The results obtained for Fish oil methyl ester, Jatropha oil methyl ester, were compared with the results of diesel. Bio-diesel, which can be used as an alternate diesel fuel, is made from vegetable oil and animal fats. It is renewable, non-toxic and possesses low emission profiles.

  12. Experimental uncertainty and drag measurements in the national transonic facility

    NASA Technical Reports Server (NTRS)

    Batill, Stephen M.

    1994-01-01

    This report documents the results of a study which was conducted in order to establish a framework for the quantitative description of the uncertainty in measurements conducted in the National Transonic Facility (NTF). The importance of uncertainty analysis in both experiment planning and reporting results has grown significantly in the past few years. Various methodologies have been proposed and the engineering community appears to be 'converging' on certain accepted practices. The practical application of these methods to the complex wind tunnel testing environment at the NASA Langley Research Center was based upon terminology and methods established in the American National Standards Institute (ANSI) and the American Society of Mechanical Engineers (ASME) standards. The report overviews this methodology.

  13. A Fundamental Study of Smoldering with Emphasis on Experimental Design for Zero-G

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, Carlos; Pagni, Patrick J.

    1995-01-01

    A research program to study smoldering combustion with emphasis on the design of an experiment to be conducted in the space shuttle was conducted at the Department of Mechanical Engineering, University of California, Berkeley. The motivation of the research is the interest in smoldering both as a fundamental combustion problem and as a serious fire risk. Research conducted included theoretical and experimental studies that have brought considerable new information about smolder combustion, the effect that buoyancy has on the process, and specific information for the design of a space experiment. Experiments were conducted at normal gravity, in opposed and forward mode of propagation and in the upward and downward direction to determine the effect and range of influence of gravity on smolder. Experiments were also conducted in microgravity, in a drop tower and in parabolic aircraft flights, where the brief microgravity periods were used to analyze transient aspects of the problem. Significant progress was made on the study of one-dimensional smolder, particularly in the opposed-flow configuration. These studies provided enough information to design a small-scale space-based experiment that was successfully conducted in the Spacelab Glovebox in the June 1992 USML-1/STS-50 mission of the Space Shuttle Columbia.

  14. Nespoli conducts a test run with the French/CNES Neuroscientific Research Experiment

    NASA Image and Video Library

    2011-02-12

    ISS026-E-027000 (12 Feb. 2011) --- European Space Agency (ESA) astronaut Paolo Nespoli, Expedition 26 flight engineer, conducts a test run with the French/CNES neuroscientific research experiment ?3D-Space? (SAP) in the Columbus laboratory of the International Space Station. While floating freely, Nespoli used the ESA multipurpose laptop with a prepared hard disk drive, data storage on a memory card, and an electronic pen table connected to it. 3D-Space, which involves distance, writing and illusion exercises, is designed to test the hypothesis that altered visual perception affects motor control.

  15. PanDaTox: A tool for accelerated metabolic engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amitai, Gil; Sorek, Rotem

    2012-07-18

    Metabolic engineering is often facilitated by cloning of genes encoding enzymes from various heterologous organisms into E. coli. Such engineering efforts are frequently hampered by foreign genes that are toxic to the E. coli host. We have developed PanDaTox (www.weizmann.ac.il/pandatox), a web-based resource that provides experimental toxicity information for more than 1.5 million genes from hundreds of different microbial genomes. The toxicity predictions, which were extensively experimentally verified, are based on serial cloning of genes into E. coli as part of the Sanger whole genome shotgun sequencing process. PanDaTox can accelerate metabolic engineering projects by allowing researchers to exclude toxicmore » genes from the engineering plan and verify the clonability of selected genes before the actual metabolic engineering experiments are conducted.« less

  16. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyser (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, D. W.; Quadlander, G. A.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    We are conducting DSC/EGA experiments at Mars ambient temperature and pressure using the TEGA engineering model. These tests illustrate the outstanding capabilities of a TEGA-like instrument on the surface of Mars.

  17. A Multi-User Remote Academic Laboratory System

    ERIC Educational Resources Information Center

    Barrios, Arquimedes; Panche, Stifen; Duque, Mauricio; Grisales, Victor H.; Prieto, Flavio; Villa, Jose L.; Chevrel, Philippe; Canu, Michael

    2013-01-01

    This article describes the development, implementation and preliminary operation assessment of Multiuser Network Architecture to integrate a number of Remote Academic Laboratories for educational purposes on automatic control. Through the Internet, real processes or physical experiments conducted at the control engineering laboratories of four…

  18. Searching for Heavy Photons with Detached Verices in the Heavy Photon Search Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szumila-Vance, Holly

    The Jefferson Lab Heavy Photon Search (HPS) experiment is searching for a hypothetical massive particle called the heavy photon which could mediate a dark electromagnetic-type force. If heavy photons kinetically mix with Standard Model photons, they may be radiated by electrons scattering from a heavy nucleus and then decay to e+e- pairs. HPS uniquely searches for heavy photons that either decay at the target or a measurable distance after. The experiment utilizes a silicon vertex tracker (SVT) for momentum and vertex reconstruction, together with an electromagnetic calorimeter for measuring particle energies and triggering events. The HPS experiment took its firstmore » data during the spring 2015 engineering run using a 1 GeV electron beam incident on a tungsten target and its second data in the spring of 2016 at a beam energy of 2.3 GeV. The 2015 run obtained two days of production data that was used for the first physics results. The analysis of the data was conducted as a blinded analysis by tuning cuts on 10% of the data. This dissertation discusses the displaced vertex search for heavy photons in the 2015 engineering run. It describes the theoretical motivation for looking for heavy photons and provides an overview of the HPS experimental design and performance. The performance details of the experiment are primarily derived from the 2015 engineering run with some discussion from the higher energy running in 2016. This dissertation further discusses the cuts used to optimize the displaced vertex search and the results of the search. The displaced vertex search did not set a limit on the heavy photon but did validate the methodology for conducting the search. Finally, we used the full data set to make projections and guide future analyses.« less

  19. Microencapsulation of Drugs: New Cancer Therapies and Improved Drug Delivery Derived from Micro Gravity Research

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Haddad, Ruwaida S.

    2003-01-01

    Experiments on the ISS include encapsulation of several different anti-cancer drugs, magnetic triggering particles, and encapsulation of genetically engineered DNA. Eight experiments, using the MEPS-II apparatus, were conducted to study the limitations of the fluid shear and g-dependent forces. These studies included: 1) formation of anti-tumor microcapsules containing drugs for "Chemoembolization" of vascularized tumors, 2) formation of microcapsules containing a photo-activated drug which can be used for Photo Dynamic Therapy of solid tumors by activation with near infrared light (630 nm), 3) coencapsulation of magnetic trigger particles and anti-tumor drugs, and 4) encapsulation of plasmid DNA. The Microencapsulation Electrostatic Processing System (MEPS-II) is an automated apparatus modified for use in the ISS Express Rack. The process brings together two immiscible liquids, restricting fluid shear to permitting surface tension forces to predominate at the interface of the fluids. Microcapsules were recovered from all 8 experiments and are currently being analyzed for size distribution and drug content. Six NASA Patents have issued from the space research and several more are pending. The preliminary results from the Increment 5 - UF-2 experiments have provided new insight into the best formulations and conditions required to produce microcapsules of different drugs, esp. special capsules containing diagnostic imaging materials and triggered release particles. Co-encapsulation of multiple drugs and Photodynamic Therapy (PDT) drugs has enabled new engineering strategies for production of microcapsules on Earth designed for direct delivery into cancer tissues. Other microcapsules have now been made for treatment of deep tissue infections, clotting disorders, and to provide delivery of genetic engineered materials for potential gene therapy approaches. The MEPS-II apparatus remains in the ISS awaiting microencapsulation experiments to be conducted in micro-g, and returned to Earth for analysis.

  20. Inductive knowledge acquisition experience with commercial tools for space shuttle main engine testing

    NASA Technical Reports Server (NTRS)

    Modesitt, Kenneth L.

    1990-01-01

    Since 1984, an effort has been underway at Rocketdyne, manufacturer of the Space Shuttle Main Engine (SSME), to automate much of the analysis procedure conducted after engine test firings. Previously published articles at national and international conferences have contained the context of and justification for this effort. Here, progress is reported in building the full system, including the extensions of integrating large databases with the system, known as Scotty. Inductive knowledge acquisition has proven itself to be a key factor in the success of Scotty. The combination of a powerful inductive expert system building tool (ExTran), a relational data base management system (Reliance), and software engineering principles and Computer-Assisted Software Engineering (CASE) tools makes for a practical, useful and state-of-the-art application of an expert system.

  1. Rock Magnetic Characterization of fine Particles from car Engines, Break pads and Tobacco: An Environmental Pilot Study

    NASA Astrophysics Data System (ADS)

    Herrero-Bervera, E.; Lopez, V. A.; Gerstnecker, K.; Swilley, B.

    2017-12-01

    Today, it is very well known that small magnetic particles are very harmful to the health of humans. For the first time we have conducted an environmental pilot study of fine magnetic particles on the island of Oahu, Hawaii, of particulate matter (pm) 60, pm=10, and pm= 2.5. In order to do a rock magnetic characterization we have preformed low field susceptibility versus temperature (k-T) experiments to determine the Curie points of small particles collected from exhaust pipes, as well as from brake pads of 4 different types of car engines using octane ratings of 85, 87 and 92. The Curie point determinations are very well defined and range from 292 °C through 393 °C to 660 °C. In addition, we have conducted magnetic granulometry experiments on raw tobacco, burnt ashes as well as on car engines and brake pads in question. The results of the experiments show ferro- and ferrimagnetic hysteresis loops with magnetic grain sizes ranging from superparamagnetic-multidomain (SP_MD), multi-domain (MD) and pseudo-single domain (PSD) shown on the modified Day et al. diagram of Dunlop (2002). Thus far, the results we have obtained from this pilot study are in agreement with other studies conducted from cigarette ashes from Bulgaria (Jordanova et al., 2005). Our results could be correlated to the traffic-related PM in Rome, Italy where the SP fraction mainly occurs as coating of MD particles that originated by localized stress in the oxidized outer shell surrounding the unoxidized core of magnetite like grains as published by Sagnotti and Winkler (2012).

  2. Conducting Rock Mass Rating for tunnel construction on Mars

    NASA Astrophysics Data System (ADS)

    Beemer, Heidi D.; Worrells, D. Scott

    2017-10-01

    Mars analogue missions provide researchers, scientists, and engineers the opportunity to establish protocols prior to sending human explorers to another planet. This paper investigated the complexity of a team of simulation astronauts conducting a Rock Mass Rating task during Analogue Mars missions. This study was conducted at the Mars Desert Research Station in Hanksville, UT, during field season 2015/2016 and with crews 167,168, and 169. During the experiment, three-person teams completed a Rock Mass Rating task during a three hour Extra Vehicular Activity on day six of their two-week simulation mission. This geological test is used during design and construction of excavations in rock on Earth. On Mars, this test could be conducted by astronauts to determine suitable rock layers for tunnel construction which would provide explorers a permanent habitat and radiation shielding while living for long periods of time on the surface. The Rock Mass Rating system derives quantitative data for engineering designs that can easily be communicated between engineers and geologists. Conclusions from this research demonstrated that it is feasible for astronauts to conduct the Rock Mass Rating task in a Mars simulated environment. However, it was also concluded that Rock Mass Rating task orientation and training will be required to ensure that accurate results are obtained.

  3. Cardiac Conduction through Engineered Tissue

    PubMed Central

    Choi, Yeong-Hoon; Stamm, Christof; Hammer, Peter E.; Kwaku, Kevin F.; Marler, Jennifer J.; Friehs, Ingeborg; Jones, Mara; Rader, Christine M.; Roy, Nathalie; Eddy, Mau-Thek; Triedman, John K.; Walsh, Edward P.; McGowan, Francis X.; del Nido, Pedro J.; Cowan, Douglas B.

    2006-01-01

    In children, interruption of cardiac atrioventricular (AV) electrical conduction can result from congenital defects, surgical interventions, and maternal autoimmune diseases during pregnancy. Complete AV conduction block is typically treated by implanting an electronic pacemaker device, although long-term pacing therapy in pediatric patients has significant complications. As a first step toward developing a substitute treatment, we implanted engineered tissue constructs in rat hearts to create an alternative AV conduction pathway. We found that skeletal muscle-derived cells in the constructs exhibited sustained electrical coupling through persistent expression and function of gap junction proteins. Using fluorescence in situ hybridization and polymerase chain reaction analyses, myogenic cells in the constructs were shown to survive in the AV groove of implanted hearts for the duration of the animal’s natural life. Perfusion of hearts with fluorescently labeled lectin demonstrated that implanted tissues became vascularized and immunostaining verified the presence of proteins important in electromechanical integration of myogenic cells with surrounding recipient rat cardiomyocytes. Finally, using optical mapping and electrophysiological analyses, we provide evidence of permanent AV conduction through the implant in one-third of recipient animals. Our experiments provide a proof-of-principle that engineered tissue constructs can function as an electrical conduit and, ultimately, may offer a substitute treatment to conventional pacing therapy. PMID:16816362

  4. Experimental study on distributed optical fiber-based approach monitoring saturation line in levee engineering

    NASA Astrophysics Data System (ADS)

    Su, Huaizhi; Li, Hao; Kang, Yeyuan; Wen, Zhiping

    2018-02-01

    Seepage is one of key factors which affect the levee engineering safety. The seepage danger without timely detection and rapid response may likely lead to severe accidents such as seepage failure, slope instability, and even levee break. More than 90 percent of levee break events are caused by the seepage. It is very important for seepage behavior identification to determine accurately saturation line in levee engineering. Furthermore, the location of saturation line has a major impact on slope stability in levee engineering. Considering the structure characteristics and service condition of levee engineering, the distributed optical fiber sensing technology is introduced to implement the real-time observation of saturation line in levee engineering. The distributed optical fiber temperature sensor system (DTS)-based monitoring principle of saturation line in levee engineering is investigated. An experimental platform, which consists of DTS, heating system, water-supply system, auxiliary analysis system and levee model, is designed and constructed. The monitoring experiment of saturation line in levee model is implemented on this platform. According to the experimental results, the numerical relationship between moisture content and thermal conductivity in porous medium is identified. A line heat source-based distributed optical fiber method obtaining the thermal conductivity in porous medium is developed. A DTS-based approach is proposed to monitor the saturation line in levee engineering. The embedment pattern of optical fiber for monitoring saturation line is presented.

  5. Transfer film evaluation for shuttle engine turbopump bearing

    NASA Technical Reports Server (NTRS)

    Kannel, J. W.; Dufrane, K. F.

    1981-01-01

    A series of low speed experiments to evaluate the possible occurrence of transfer film lubrication and the effectiveness of burnished films in the shuttle spacecraft main engine thrust bearings were conducted. No evidence of transfer film lubrication was evident, although this could have been the result of the (used) condition of the bearing. Burnished films of either Teflon or Rulon were found to greatly enhance the performance of the bearing. Crush load experiments indicated that the bearing ultimate load capability is on the order of 489,000 N (110,000 pounds). The effect of ball (as well as race) burnishing techniques on bearing performance, different types of burnished films, and transfer film formation are suggested for further study.

  6. Ecosystem Consequences of Contrasting Flow Regimes in an Urban Effects Stream Mesocosm Study

    EPA Science Inventory

    A stream mesocosm experiment was conducted to study the ecosystem-wide effects of two replicated flow hydrograph treatments programmed in an attempt to compare a simulated predevelopment condition to the theoretical changes that new development brings, while accounting for engine...

  7. Flight Mechanics Experiment Onboard NASA's Zero Gravity Aircraft

    ERIC Educational Resources Information Center

    Matthews, Kyle R.; Motiwala, Samira A.; Edberg, Donald L.; García-Llama, Eduardo

    2012-01-01

    This paper presents a method to promote STEM (Science, Technology, Engineering, and Mathematics) education through participation in a reduced gravity program with NASA (National Aeronautics and Space Administration). Microgravity programs with NASA provide students with a unique opportunity to conduct scientific research with innovative and…

  8. User Facilities | Argonne National Laboratory

    Science.gov Websites

    , including biology and medicine. More than 7,000 scientists conduct experiments at Argonne user facilities Transformations IGSBInstitute for Genomics and Systems Biology IMEInstitute for Molecular Engineering JCESRJoint Science Center SBCStructural Biology Center Energy.gov U.S. Department of Energy Office of Science

  9. 78 FR 69749 - American Education Week, 2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... at the alphabet to conducting their first science experiment to crossing the stage at commencement... parents and mentors to community leaders and business owners. Through programs focused on tutoring, sports... accessible to every child in America; and working to strengthen programs in science, technology, engineering...

  10. An overview of integrated flight-propulsion controls flight research on the NASA F-15 research airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gatlin, Donald H.; Stewart, James F.

    1995-01-01

    The NASA Dryden Flight Research Center has been conducting integrated flight-propulsion control flight research using the NASA F-15 airplane for the past 12 years. The research began with the digital electronic engine control (DEEC) project, followed by the F100 Engine Model Derivative (EMD). HIDEC (Highly Integrated Digital Electronic Control) became the umbrella name for a series of experiments including: the Advanced Digital Engine Controls System (ADECS), a twin jet acoustics flight experiment, self-repairing flight control system (SRFCS), performance-seeking control (PSC), and propulsion controlled aircraft (PCA). The upcoming F-15 project is ACTIVE (Advanced Control Technology for Integrated Vehicles). This paper provides a brief summary of these activities and provides background for the PCA and PSC papers, and includes a bibliography of all papers and reports from the NASA F-15 project.

  11. CFE-2 Experiment ICF-5 in the Node 2

    NASA Image and Video Library

    2014-01-03

    ISS038-E-025000 (3 Jan. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, speaks in a microphone while conducting a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  12. Space Processing Applications Rocket project SPAR III

    NASA Technical Reports Server (NTRS)

    Reeves, F.

    1978-01-01

    This document presented the engineering report and science payload III test report and summarized the experiment objectives, design/operational concepts, and final results of each of five scientific experiments conducted during the third Space Processing Applications Rocket (SPAR) flight flown by NASA in December 1976. The five individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: Liquid Mixing, Interaction of Bubbles with Solidification Interfaces, Epitaxial Growth of Single Crystal Film, Containerless Processing of Beryllium, and Contact and Coalescence of Viscous Bodies.

  13. Ice Particle Impacts on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Ruggeri, Charles; Struk, Peter M.; Pereira, Mike; Revilock, Duane; Kreeger, Richard E.

    2015-01-01

    An experimental study was conducted at the Ballistic Laboratory of NASA Glenn Research Center to study the impact of ice particles on a stationary flat surface target set at 45 degrees with respect to the direction of motion of the impinging particle (Figure 1). The experiment is part of NASA efforts to study the physics involved in engine power-loss events due to ice-crystal ingestion and ice accretion formation inside engines. These events can occur when aircraft encounter high-altitude convective weather.

  14. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014468 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity. Russian cosmonaut Maxim Suraev (bottom right), flight engineer, looks on.

  15. Gerst installs CMS-2 in KIBO rack

    NASA Image and Video Library

    2014-09-09

    ISS040-E-130230 (9 Sept. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, installs a microscope for the Cell Mechanosensing-2 experiment in the Kibo laboratory of the International Space Station. The Japanese experiment, which is conducted in Kibo’s Kobairo rack, seeks to identify gravity sensors in cells that may change the expression of key proteins and genes and allowing muscles to atrophy in microgravity.

  16. Gerst installs CMS-2 in KIBO rack

    NASA Image and Video Library

    2014-09-09

    ISS040-E-130233 (9 Sept. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, installs a microscope for the Cell Mechanosensing-2 experiment in the Kibo laboratory of the International Space Station. The Japanese experiment, which is conducted in Kibo’s Kobairo rack, seeks to identify gravity sensors in cells that may change the expression of key proteins and genes and allowing muscles to atrophy in microgravity.

  17. Gerst installs CMS-2 in KIBO rack

    NASA Image and Video Library

    2014-09-09

    ISS040-E-130231 (9 Sept. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, installs a microscope for the Cell Mechanosensing-2 experiment in the Kibo laboratory of the International Space Station. The Japanese experiment, which is conducted in Kibo’s Kobairo rack, seeks to identify gravity sensors in cells that may change the expression of key proteins and genes and allowing muscles to atrophy in microgravity.

  18. Gerst installs CMS-2 in KIBO rack

    NASA Image and Video Library

    2014-09-09

    ISS040-E-130232 (9 Sept. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, installs a microscope for the Cell Mechanosensing-2 experiment in the Kibo laboratory of the International Space Station. The Japanese experiment, which is conducted in Kibo’s Kobairo rack, seeks to identify gravity sensors in cells that may change the expression of key proteins and genes and allowing muscles to atrophy in microgravity.

  19. Gerst in U.S. Laboratory

    NASA Image and Video Library

    2014-06-17

    ISS040-E-012309 (16 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts two flame tests for a combustion experiment known as the Burning and Suppression of Solids (BASS) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.

  20. Alexander Samokutyaev conducts BTKh-14/Bioemulsiya (Bioemulsion) Experiment

    NASA Image and Video Library

    2011-05-05

    ISS027-E-022454 (5 May 2011) --- Russian cosmonaut Alexander Samokutyaev, Expedition 27 flight engineer, uses a glovebox to service the Russian Bioemulsion science payload in the Poisk Mini-Research Module 2 (MRM2) of the International Space Station. The Bioemulsion experiment is attempting to develop faster technologies for obtaining microorganism biomass and biologically active substance biomass for creating highly efficient environmentally pure bacteria, enzymes, and medicinal/pharmaceutical preparations.

  1. Barratt with MSG in Kibo

    NASA Image and Video Library

    2009-04-29

    ISS019-E-012391 (29 April 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, activates the Microgravity Science Glovebox (MSG) from its A31p laptop, initiates and conducts a session, the first of Increment 19, with the experiment Smoke Point In Co-flow Experiment (SPICE), performed in the MSG and controlled by its A31p with SPICE micro-drives in the Kibo laboratory of the International Space Station.

  2. Biomedical engineering support. Final report, June 15, 1971--June 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolff, W.J.; Sandquist, G.; Olsen, D.B.

    On June 15, 1971 the Institute for Biomedical Engineering at the University of Utah contracted with the USAEC to provide biomedical support for an Artificial Heart Program. The goal of the program was to conceive, design, construct and test a prototype artificial heart system powered by an implantable radioisotope heat source. The system would serve as a total artificial heart for animal experiments and for studies directed at developing a total heart replacement system for humans. The major responsibilities of the Institute during the eight year contract period were to design, construct and test all blood handling components of themore » system and prove in vivo accommodation, performance and adequacy of the system in experimental animals. Upon completion of development of the Implantable Version of the Bench Model Blood Pump, a long series of comprehensive in vitro and in vivo experiments were conducted. In vivo experiments with the system conducted in calves demonstrated the general accommodation, adequate performance and good capacity to sustain the calf as a heart model for up to 36 days. During the more successful in vivo experiments the implanted calves were able to eat, drink, stand, exercise on a treadmill, and exhibited normal blood chemistry and pulmonary function.« less

  3. Application of an EGR system in a direct injection diesel engine to reduce NOx emissions

    NASA Astrophysics Data System (ADS)

    De Serio, D.; De Oliveira, A.; Sodré, J. R.

    2016-09-01

    This work presents the application of an exhaust gas recirculation (EGR) system in a direct injection diesel engine operating with diesel oil containing 7% biodiesel (B7). EGR rates of up to 10% were applied with the primary aim to reduce oxides of nitrogen (NOx) emissions. The experiments were conducted in a 44 kW diesel power generator to evaluate engine performance and emissions for different load settings. The use of EGR caused a peak pressure reduction during the combustion process and a decrease in thermal efficiency, mainly at high engine loads. A reduction of NOx emissions of up to 26% was achieved, though penalizing carbon monoxide (CO) and total hydrocarbons (THC) emissions.

  4. Deep sequencing methods for protein engineering and design.

    PubMed

    Wrenbeck, Emily E; Faber, Matthew S; Whitehead, Timothy A

    2017-08-01

    The advent of next-generation sequencing (NGS) has revolutionized protein science, and the development of complementary methods enabling NGS-driven protein engineering have followed. In general, these experiments address the functional consequences of thousands of protein variants in a massively parallel manner using genotype-phenotype linked high-throughput functional screens followed by DNA counting via deep sequencing. We highlight the use of information rich datasets to engineer protein molecular recognition. Examples include the creation of multiple dual-affinity Fabs targeting structurally dissimilar epitopes and engineering of a broad germline-targeted anti-HIV-1 immunogen. Additionally, we highlight the generation of enzyme fitness landscapes for conducting fundamental studies of protein behavior and evolution. We conclude with discussion of technological advances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3.

    PubMed

    Kinsey, J S; Hays, M D; Dong, Y; Williams, D C; Logan, R

    2011-04-15

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM) generated by commercial aviation engines. The exhaust plumes of seven turbofan engine models were sampled as part of the three test campaigns of the Aircraft Particle Emissions eXperiment (APEX). In these experiments, continuous measurements of black carbon (BC) and particle surface-bound polycyclic aromatic compounds (PAHs) were conducted. In addition, time-integrated sampling was performed for bulk elemental composition, water-soluble ions, organic and elemental carbon (OC and EC), and trace semivolatile organic compounds (SVOCs). The continuous BC and PAH monitoring showed a characteristic U-shaped curve of the emission index (EI or mass of pollutant/mass of fuel burned) vs fuel flow for the turbofan engines tested. The time-integrated EIs for both elemental composition and water-soluble ions were heavily dominated by sulfur and SO(4)(2-), respectively, with a ∼2.4% median conversion of fuel S(IV) to particle S(VI). The corrected OC and EC emission indices obtained in this study ranged from 37 to 83 mg/kg and 21 to 275 mg/kg, respectively, with the EC/OC ratio ranging from ∼0.3 to 7 depending on engine type and test conditions. Finally, the particle SVOC EIs varied by as much as 2 orders of magnitude with distinct variations in chemical composition observed for different engine types and operating conditions.

  6. Systems engineering real estate development projects

    NASA Astrophysics Data System (ADS)

    Gusakova, Elena; Titarenko, Boris; Stepanov, Vitaliy

    2017-10-01

    In recent years, real estate development has accumulated a wealth of experience in implementing major projects, which requires comprehension and systematization. The scientific instrument of system engineering is studied in the article and is substantively interpreted with reference to real estate development projects. The most perspective approaches and models are substantiated, allowing strategically to plan the life cycle of the project as a whole, and also to solve the engineering butt problems of the project. The relevance of further scientific studies of regularities and specifics of the life cycle of real estate development projects conducted at the Moscow State University of Economics and Management at the ISTA department is shown.

  7. Long-term health experience of jet engine manufacturing workers: VIII. glioblastoma incidence in relation to workplace experiences with parts and processes.

    PubMed

    Marsh, Gary M; Youk, Ada O; Buchanich, Jeanine M; Downing, Sarah; Kennedy, Kathleen J; Esmen, Nurtan A; Hancock, Roger P; Lacey, Steven E; Pierce, Jennifer S; Fleissner, Mary Lou

    2013-06-01

    To determine whether glioblastoma (GB) incidence rates among jet engine manufacturing workers were associated with workplace experiences with specific parts produced and processes performed. Subjects were 210,784 workers employed between 1952 and 2001. We conducted nested case-control and cohort incidence studies with focus on 277 GB cases. We estimated time experienced with 16 part families, 4 process categories, and 32 concurrent part-process combinations with 20 or more GB cases. In both the cohort and case-control studies, none of the part families, process categories, or both considered was associated with increased GB risk. If not due to chance alone, the not statistically significantly elevated GB rates in the North Haven plant may reflect external occupational factors or nonoccupational factors unmeasured in the current evaluation.

  8. Telescience testbed: operational support functions for biomedical experiments.

    PubMed

    Yamashita, M; Watanabe, S; Shoji, T; Clarke, A H; Suzuki, H; Yanagihara, D

    1992-07-01

    A telescience testbed was conducted to study the methodology of space biomedicine with simulated constraints imposed on space experiments. An experimental subject selected for this testbedding was an elaborate surgery of animals and electrophysiological measurements conducted by an operator onboard. The standing potential in the ampulla of the pigeon's semicircular canal was measured during gravitational and caloric stimulation. A principal investigator, isolated from the operation site, participated in the experiment interactively by telecommunication links. Reliability analysis was applied to the whole layers of experimentation, including design of experimental objectives and operational procedures. Engineering and technological aspects of telescience are discussed in terms of reliability to assure quality of science. Feasibility of robotics was examined for supportive functions to reduce the workload of the onboard operator.

  9. Authentic scientific research in an international setting as a path toward higher education

    NASA Astrophysics Data System (ADS)

    Mladenov, N.; Palomo, M.; Casad, B.; Pietruschka, B.; Buckley, C.

    2016-12-01

    Studies have shown that undergraduate research opportunities foster student interest in research, encourage minority students to seek advanced degrees, and put students on a path toward higher education. It has been further suggested that engineering projects in international settings address issues of sustainability and promote a connection between engineering and social welfare that may compel students to seek future research opportunities. In this study, we explored the role that authentic research experiences in an international setting play in promoting higher education for students from groups typically under-represented in engineering and sciences. We hypothesized that the international context of the research experiences will provide undergraduate and graduate students with a global perspective of water reuse challenges and promote increased interest in pursuing a higher degree in engineering. Through the Sustainable Sanitation International Research Experiences for Students (IRES) Program, US students conducting research in Durban, South Africa in 2015 and 2016, were tasked with leading 6-week long research projects, collaborating with partners at the University of KwaZulu Natal, and producing papers and presentations for regional and international scientific conferences. All undergraduate participants were from groups under-represented in the sciences. Pre- and post-program survey results revealed that, after completing the program, participants of Cohort 1 had 1) greater research skills, 2) greater identification as an engineer, and 3) stronger intentions to pursue a PhD in engineering. Survey data were also used to evaluate comfort with cultural diversity before and after the international program and the effect of pairing US with South African student researchers. Our results indicate that students' awareness of societal needs and engineering challenges faced in Durban resulted in a positive impact on each student. The benefits gained from the international research experience have important implications for environmental engineering and other scientific fields in terms of inducing greater self-efficacy and fostering an interest in higher education for students from groups traditionally under-represented in the sciences.

  10. NASA Glenn Research Center, Propulsion Systems Laboratory: Plan to Measure Engine Core Flow Water Vapor Content

    NASA Technical Reports Server (NTRS)

    Oliver, Michael

    2014-01-01

    This presentation will be made at the 92nd AIAA Turbine Engine Testing Working Group (TETWoG), a semi-annual technical meeting of turbine engine testing professionals. The objective is to describe an effort by NASA to measure the water vapor content on the core airflow in a full scale turbine engine ice crystal icing test and to open a discussion with colleagues how to accurately conduct the measurement based on any previous collective experience with the procedure, instruments and nature of engine icing testing within the group. The presentation lays out the schematics of the location in the flow path from which the sample will be drawn, the plumbing to get it from the engine flow path to the sensor and several different water vapor measurement technologies that will be used: Tunable diode laser and infrared spectroscopy.

  11. Fundamental study of subharmonic vibration of order 1/2 in automatic transmissions for cars

    NASA Astrophysics Data System (ADS)

    Ryu, T.; Nakae, T.; Matsuzaki, K.; Nanba, A.; Takikawa, Y.; Ooi, Y.; Sueoka, A.

    2016-09-01

    A torque converter is an element that transfers torque from the engine to the gear train in the automatic transmission of an automobile. The damper spring of the lock-up clutch in the torque converter is used to effectively absorb the torsional vibration caused by engine combustion. A damper with low stiffness reduces fluctuations in rotational speed but is difficult to use because of space limitations. In order to address this problem, the damper is designed using a piecewise-linear spring with three stiffness stages. However, the damper causes a nonlinear vibration referred to as a subharmonic vibration of order 1/2. In the subharmonic vibration, the frequency is half that of the vibrations from the engine. In order to clarify the mechanism of the subharmonic vibration, in the present study, experiments are conducted using the fundamental experimental apparatus of a single-degree-of-freedom system with two stiffness stages. In the experiments, countermeasures to reduce the subharmonic vibration by varying the conditions of the experiments are also performed. The results of the experiments are evaluated through numerical analysis using the shooting method. The experimental and analytical results were found to be in close agreement.

  12. Tu-144LL SST Flying Laboratory on Taxiway at Zhukovsky Air Development Center near Moscow, Russia

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The sleek lines of the Tupolev Tu-144LL are evident as it sits on the taxiway at the Zhukovsky Air Development Center near Moscow, Russia. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.

  13. Tu-144LL SST Flying Laboratory Lifts off Runway on a High-Speed Research Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Tupolev Tu-144LL lifts off from the Zhukovsky Air Development Center near Moscow, Russia, on a 1998 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.

  14. Student-inspired activities for the teaching and learning of engineering ethics.

    PubMed

    Alpay, E

    2013-12-01

    Ethics teaching in engineering can be problematic because of student perceptions of its subjective, ambiguous and philosophical content. The use of discipline-specific case studies has helped to address such perceptions, as has practical decision making and problem solving approaches based on some ethical frameworks. However, a need exists for a wider range of creative methods in ethics education to help complement the variety of activities and learning experiences within the engineering curriculum. In this work, a novel approach is presented in which first-year undergraduate students are responsible for proposing ethics education activities of relevance to their peers and discipline area. The students are prepared for the task through a short introduction on engineering ethics, whereby generic frameworks for moral and professional conduct are discussed, and discipline and student-relevance contexts provided. The approach has been used in four departments of engineering at Imperial College London, and has led to the generation of many creative ideas for wider student engagement in ethics awareness, reflection and understanding. The paper presents information on the premise of the introductory sessions for supporting the design task, and an evaluation of the student experience of the course and task work. Examples of proposals are given to demonstrate the value of such an approach to teachers, and ultimately to the learning experiences of the students themselves.

  15. Turbojet engine blade damping

    NASA Technical Reports Server (NTRS)

    Srinivasan, A. V.; Cutts, D. G.; Sridhar, S.

    1981-01-01

    The potentials of various sources of nonaerodynamic damping in engine blading are evaluated through a combination of advanced analysis and testing. The sources studied include material hysteresis, dry friction at shroud and root disk interfaces as well as at platform type external dampers. A limited seris of tests was conducted to evaluate damping capacities of composite materials (B/AL, B/AL/Ti) and thermal barrier coatings. Further, basic experiments were performed on titanium specimens to establish the characteristics of sliding friction and to determine material damping constants J and n. All the tests were conducted on single blades. Mathematical models were develthe several mechanisms of damping. Procedures to apply this data to predict damping levels in an assembly of blades are developed and discussed.

  16. Auditory Demonstrations for Science, Technology, Engineering, and Mathematics (STEM) Outreach

    DTIC Science & Technology

    2015-01-01

    were placed on a foam rubber pad. The bone vibrators were not attached to headbands, allowing students to freely experiment with the devices. Soft ...This bookmark is a visual representation of various common sounds that range from soft to very loud, with the corresponding intensity level marked...other pathway is called bone conduction. In bone conducted hearing, sound waves in bone and soft tissue are transmitted directly to the internal ear

  17. Modal identification experiment

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    1992-01-01

    The Modal Identification Experiment (MIE) is a proposed on-orbit experiment being developed by NASA's Office of Aeronautics and Space Technology wherein a series of vibration measurements would be made on various configurations of Space Station Freedom (SSF) during its on-orbit assembly phase. The experiment is to be conducted in conjunction with station reboost operations and consists of measuring the dynamic responses of the spacecraft produced by station-based attitude control system and reboost thrusters, recording and transmitting the data, and processing the data on the ground to identify the natural frequencies, damping factors, and shapes of significant vibratory modes. The experiment would likely be a part of the Space Station on-orbit verification. Basic research objectives of MIE are to evaluate and improve methods for analytically modeling large space structures, to develop techniques for performing in-space modal testing, and to validate candidate techniques for in-space modal identification. From an engineering point of view, MIE will provide the first opportunity to obtain vibration data for the fully-assembled structure because SSF is too large and too flexible to be tested as a single unit on the ground. Such full-system data is essential for validating the analytical model of SSF which would be used in any engineering efforts associated with structural or control system changes that might be made to the station as missions evolve over time. Extensive analytical simulations of on-orbit tests, as well exploratory laboratory simulations using small-scale models, have been conducted in-house and under contract to develop a measurement plan and evaluate its potential performance. In particular, performance trade and parametric studies conducted as part of these simulations were used to resolve issues related to the number and location of the measurements, the type of excitation, data acquisition and data processing, effects of noise and nonlinearities, selection of target vibration modes, and the appropriate type of data analysis scheme. The purpose of this talk is to provide an executive-summary-type overview of the modal identification experiment which has emerged from the conceptual design studies conducted to-date. Emphasis throughout is on those aspects of the experiment which should be of interest to those attending the subject utilization conference. The presentation begins with some preparatory remarks to provide background and motivation for the experiment, describe the experiment in general terms, and cite the specific technical objectives. This is followed by a summary of the major results of the conceptual design studies conducted to define the baseline experiment. The baseline experiment which has resulted from the studies is then described.

  18. Gender and teamwork: an analysis of professors' perspectives and practices

    NASA Astrophysics Data System (ADS)

    Beddoes, Kacey; Panther, Grace

    2018-05-01

    Teamwork is increasingly seen as an important component of engineering education programmes. Yet, prior research has shown that there are numerous ways in which teamwork is gendered, and can lead to negative experiences for women students. This article presents the first interview findings on professors' perspectives on gender and teamwork. Semi-structured interviews were conducted with 39 engineering professors to determine what and how they thought about gender in engineering and engineering education. For this article, the parts of the interviews about teamwork are analysed. We conclude that professors need tools to help them facilitate gender-inclusive teamwork, and those tools must address the beliefs that they already hold about teamwork. The findings raise questions about the adoption of evidence-based instructional practices and suggest current teamwork practices may exacerbate gender inequalities in engineering.

  19. Test Report for NASA MSFC Support of the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Elam, S. K.

    2000-01-01

    The Linear Aerospike SR-71 Experiment (LASRE) was performed in support of the Reusable Launch Vehicle (RLV) program to help develop a linear aerospike engine. The objective of this program was to operate a small aerospike engine at various speeds and altitudes to determine how slipstreams affect the engine's performance. The joint program between government and industry included NASA!s Dryden Flight Research Center, The Air Force's Phillips Laboratory, NASA's Marshall Space Flight Center, Lockheed Martin Skunkworks, Lockheed-Martin Astronautics, and Rocketdyne Division of Boeing North American. Ground testing of the LASRE engine produced two successful hot-fire tests, along with numerous cold flows to verify sequencing and operation before mounting the assembly on the SR-71. Once installed on the aircraft, flight testing performed several cold flows on the engine system at altitudes ranging from 30,000 to 50,000 feet and Mach numbers ranging from 0.9 to 1.5. The program was terminated before conducting hot-fires in flight because excessive leaks in the propellant supply systems could not be fixed to meet required safety levels without significant program cost and schedule impacts.

  20. FE Fyodor Yurchikhin works on the Uragan Experiment in the SM

    NASA Image and Video Library

    2010-07-08

    ISS024-E-007525 (8 July 2010) --- In the International Space Station’s Zvezda Service Module, Russian cosmonaut Fyodor Yurchikhin, Expedition 24 flight engineer, conducts a session for Russia's Environmental Safety Agency (EKON), making observations and taking KPT-3 aerial photography of environmental conditions on Earth.

  1. FE Fyodor Yurchikhin works on the Uragan Experiment in the SM

    NASA Image and Video Library

    2010-07-08

    ISS024-E-007526 (8 July 2010) --- In the International Space Station’s Zvezda Service Module, Russian cosmonaut Fyodor Yurchikhin, Expedition 24 flight engineer, conducts a session for Russia's Environmental Safety Agency (EKON), making observations and taking KPT-3 aerial photography of environmental conditions on Earth.

  2. FE Fyodor Yurchikhin works on the Uragan Experiment in the SM

    NASA Image and Video Library

    2010-07-08

    ISS024-E-007527 (8 July 2010) --- In the International Space Station’s Zvezda Service Module, Russian cosmonaut Fyodor Yurchikhin, Expedition 24 flight engineer, conducts a session for Russia's Environmental Safety Agency (EKON), making observations and taking KPT-3 aerial photography of environmental conditions on Earth.

  3. FE Fyodor Yurchikhin works on the Uragan Experiment in the SM

    NASA Image and Video Library

    2010-07-08

    ISS024-E-007521 (8 July 2010) --- In the International Space Station’s Zvezda Service Module, Russian cosmonaut Fyodor Yurchikhin, Expedition 24 flight engineer, prepares to conduct a session for Russia's Environmental Safety Agency (EKON), making observations and taking KPT-3 aerial photography of environmental conditions on Earth.

  4. Creating Energy.

    ERIC Educational Resources Information Center

    Wilson, David A.

    The author of this booklet is an engineer who conducts experiments in solar energy. Here he has described basic principles of the field. He also details methods of constructing a variety of solar implements, including solar panels, solar cells, a concentrating collector and a solar furnace. The book is intended for the layman and contains…

  5. Remote Access to Wireless Communications Systems Laboratory--New Technology Approach

    ERIC Educational Resources Information Center

    Kafadarova, Nadezhda; Sotirov, Sotir; Milev, Mihail

    2012-01-01

    Technology nowadays enables the remote access to laboratory equipment and instruments via Internet. This is especially useful in engineering education, where students can conduct laboratory experiment remotely. Such remote laboratory access can enable students to use expensive laboratory equipment, which is not usually available to students. In…

  6. Wiseman works with the MDCA hardware replacement, and CIR maintenance

    NASA Image and Video Library

    2014-09-18

    ISS041-E-016781 (18 Sept. 2014) --- NASA astronaut Reid Wiseman, Expedition 41 flight engineer, works with the Multi-user Drop Combustion Apparatus (MDCA) in the Destiny laboratory of the International Space Station. The MDCA contains hardware and software to conduct unique droplet combustion experiments in space.

  7. The Trouble with Thinking like Arena: Learning to Use Simulation Software

    ERIC Educational Resources Information Center

    Rodgers, Diane M.; Moraga, Reinaldo J.

    2011-01-01

    Simulation software used for modeling has become as ubiquitous as computers themselves. Despite growing reliance on simulation in educational and workplace settings, users encounter frustration in using simulation software programs. The authors conducted a study with 26 engineering students and interviewed them about their experience learning the…

  8. Erosion Control of Scour during Construction. Report 8. Summary Report.

    DTIC Science & Technology

    1985-01-01

    the breakwaters. Experiments were conducted by Hotta and Marui (1976) to investigate characteristics of the local scour; and it was found that local... Marui , N. 1976. "Local Scour and Current Around a Porous Breakwater," Proceedings, Fifteenth Conference on Coastal Engineering, Honolulu, Hawaii, Vol II

  9. Doing Justice in Evaluation Research.

    ERIC Educational Resources Information Center

    Hamilton, David

    The net result of the social-scientific developments in the 19th and 20th centuries is that educational research has inherited a science that is assumed to constitute a disinterested technology of social engineering and a benevolent source of positive social advance. Unfortunately, the social experiment conducted on traditional lines depends upon…

  10. Student-to-Student Legacies in Exploratory Action Research

    ERIC Educational Resources Information Center

    Moran, Katherine

    2017-01-01

    In 2013/2014, I conducted two consecutive cycles of exploratory action research aimed at improving the quality of my French engineering students' oral presentations in English. Each cycle involved a different group of students. I collaborated with the students extensively throughout the project and found that the experience was highly beneficial…

  11. Learning, Teaching and Scholarship: Fundamental Tensions of Undergraduate Research

    ERIC Educational Resources Information Center

    Laursen, Sandra; Seymour, Elaine; Hunter, Anne-Barrie

    2012-01-01

    Each year, thousands of undergraduates in the science, technology, engineering, and mathematics (STEM) fields conduct research in US university and college laboratories. Such undergraduate research (UR) experiences are common practice in US higher education, with nearly a century of history at research universities and liberal arts colleges.…

  12. Current research activities: Applied and numerical mathematics, fluid mechanics, experiments in transition and turbulence and aerodynamics, and computer science

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.

  13. Small scale adaptive optics experiment systems engineering

    NASA Technical Reports Server (NTRS)

    Boykin, William H.

    1993-01-01

    Assessment of the current technology relating to the laser power beaming system which in full scale is called the Beam Transmission Optical System (BTOS). Evaluation of system integration efforts are being conducted by the various government agencies and industry. Concepts are being developed for prototypes of adaptive optics for a BTOS.

  14. Kotov and Mastracchio during SPHERES Experiment

    NASA Image and Video Library

    2014-01-16

    ISS038-E-031405 (15 Jan. 2014) --- In the International Space Station's Kibo laboratory, Russian cosmonaut Oleg Kotov (left), Expedition 38 commander; and NASA astronaut Rick Mastracchio, flight engineer, conduct a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The experiment uses student written algorithms that operate the small satellites to demonstrate critical mission tasks such as formation flying and vehicle dockings.

  15. ACE-1 experiment

    NASA Image and Video Library

    2013-06-24

    In the International Space Stations Destiny laboratory,NASA astronaut Karen Nyberg,Expedition 36 flight engineer,speaks into a microphone while conducting a session with the Advanced Colloids Experiment (ACE)-1 sample preparation at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). ACE-1 is a series of microscopic imaging investigations that uses the microgravity environment to examine flow characteristics and the evolution and ordering effects within a group of colloidal materials.

  16. The X-43A Hyper-X Mach 7 Flight 2 Guidance, Navigation, and Control Overview and Flight Test Results

    NASA Technical Reports Server (NTRS)

    Bahm, Catherine; Baumann, Ethan; Martin, John; Bose, David; Beck, Roger E.; Strovers, Brian

    2005-01-01

    The objective of the Hyper-X program was to flight demonstrate an airframe-integrated hypersonic vehicle. On March 27, 2004, the Hyper-X program team successfully conducted flight 2 and achieved all of the research objectives. The Hyper-X research vehicle successfully separated from the Hyper-X launch vehicle and achieved the desired engine test conditions before the experiment began. The research vehicle rejected the disturbances caused by the cowl door opening and the fuel turning on and off and maintained the engine test conditions throughout the experiment. After the engine test was complete, the vehicle recovered and descended along a trajectory while performing research maneuvers. The last data acquired showed that the vehicle maintained control to the water. This report will provide an overview of the research vehicle guidance and control systems and the performance of the vehicle during the separation event and engine test. The research maneuvers were performed to collect data for aerodynamics and flight controls research. This report also will provide an overview of the flight controls related research and results.

  17. Plume mass flow and optical damage distributions for an MMH/N2O4 RCS thruster. [exhaust plume contamination of spacecraft components

    NASA Technical Reports Server (NTRS)

    Spisz, E. W.; Bowman, R. L.; Jack, J. R.

    1973-01-01

    The data obtained from two recent experiments conducted in a continuing series of experiments at the Lewis Research Center into the contamination characteristics of a 5-pound thrust MMH/N2O4 engine are presented. The primary objectives of these experiments were to establish the angular distribution of condensible exhaust products within the plume and the corresponding optical damage angular distribution of transmitting optical elements attributable to this contaminant. The plume mass flow distribution was measured by five quartz crystal microbalances (QCM's) located at the engine axis evaluation. The fifth QCM was located above the engine and 15 deg behind the nozzle exit plane. The optical damage was determined by ex-situ transmittance measurements for the wavelength range from 0.2 to 0.6 microns on 2.54 cm diameter fused silica discs also located at engine centerline elevation. Both the mass deposition and optical damage angular distributions followed the expected trend of decreasing deposition and damage as the angle between sensor or sample and the nozzle axis increased. A simple plume gas flow equation predicted the deposition distribution reasonably well for angles of up to 55 degrees. The optical damage measurements also indicated significant effects at large angles.

  18. Development and applications of various optimization algorithms for diesel engine combustion and emissions optimization

    NASA Astrophysics Data System (ADS)

    Ogren, Ryan M.

    For this work, Hybrid PSO-GA and Artificial Bee Colony Optimization (ABC) algorithms are applied to the optimization of experimental diesel engine performance, to meet Environmental Protection Agency, off-road, diesel engine standards. This work is the first to apply ABC optimization to experimental engine testing. All trials were conducted at partial load on a four-cylinder, turbocharged, John Deere engine using neat-Biodiesel for PSO-GA and regular pump diesel for ABC. Key variables were altered throughout the experiments, including, fuel pressure, intake gas temperature, exhaust gas recirculation flow, fuel injection quantity for two injections, pilot injection timing and main injection timing. Both forms of optimization proved effective for optimizing engine operation. The PSO-GA hybrid was able to find a superior solution to that of ABC within fewer engine runs. Both solutions call for high exhaust gas recirculation to reduce oxide of nitrogen (NOx) emissions while also moving pilot and main fuel injections to near top dead center for improved tradeoffs between NOx and particulate matter.

  19. Simulator Investigation of Pilot Aids for Helicopter Terminal Area Operations with One Engine Inoperative

    NASA Technical Reports Server (NTRS)

    Iseler, Laura; Chen, Robert; Dearing, Munro; Decker, William; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    Two recent piloted simulation experiments have investigated advanced display concepts applied to civil transport helicopter terminal area operations. Civil Category A helicopter operations apply to multi-engine helicopters wherein a safe recovery (land or fly out) is required in the event of a single engine failure. The investigation used the NASA Ames Research Center Vertical Motion Simulator, which has a full six degrees of freedom, to simulate the flight task as closely as possible. The goal of these experiments was to use advanced cockpit displays to improve flight safety and enhance the mission performance of Category A terminal area operations in confined areas. The first experiment investigated the use of military display formats to assist civil rotorcraft in performing a Category A takeoff in confined terminal areas. Specifically, it addressed how well a difficult hovering backup path could be followed using conventional instruments in comparison to panel mounted integrated displays. The hovering backup takeoff, which enables pilots to land back to the confined area pad in the event of an engine failure, was chosen since it is a difficult task to perform. Seven NASA and Army test pilots participated in the experiment. Evaluations, based on task performance and pilot workload, showed that an integrated display enabled the pilot to consistently achieve adequate or desired performance with reasonable pilot workload. Use of conventional instruments, however, frequently resulted in unacceptable performance (poor flight path tracking), higher pilot workload, and poor situational awareness. Although OEI landbacks were considered a visual task, the improved performance on the backup portion, in conjunction with increased situational awareness resulting from use of integrated displays, enabled the pilots to handle an engine failure and land back safely. In contrast, use of conventional instruments frequently led to excessive rates of sink at touchdown. A second simulation (in progress - July - August) is being conducted to investigate the use of advanced displays to perform vertical and short takeoffs and landings. One Engine Inoperative trajectories, which were optimized based on safety of flight restrictions, are utilized. Based on comments from the first experiment and further analytic development, appropriate fly out and approach guidance was added. Displays include conventional instruments with raw data, and the following integrated displays: multi-view and side-view hover displays based on the Apache Pilot Night Vision System, and variations of the pathway-in-the-sky displays with a flight-path-vector, a leader and flight director modifications. Panel mounted and head-up displays are being evaluated. Engine modifications have been incorporated to simulate 30 second and 2 minute contingency power ratings. Evaluations are based on task performance and pilot workload. NASA, Army, FAA, and industry test pilots participated. Details concerning the design, conduct, and the results of the experiment will be reported in the proposed paper.

  20. BASS-II Experiment

    NASA Image and Video Library

    2014-07-23

    ISS040-E-073120 (23 July 2014) --- This is a close-up image photographed during a run of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, NASA astronaut Reid Wiseman (out of frame), Expedition 40 flight engineer, conducted runs of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The experiment is planned for guiding strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.

  1. BASS-II Experiment

    NASA Image and Video Library

    2014-06-27

    ISS040-E-023287 (27 June 2014) --- This is a close-up image photographed during a run of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, NASA astronaut Reid Wiseman (out of frame), Expedition 40 flight engineer, conducted runs of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The experiment is planned for guiding strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.

  2. How Middle Schoolers Draw Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-02-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are student perceptions of engineers and scientists similar and how are they different?" Approximately 1,600 middle school students from urban and suburban schools in the southeastern United States were asked to draw either an engineer or a scientist at work. Drawings included space for the students to explain what their person was doing in the picture. A checklist to code the drawings was developed and used by two raters. This paper discusses similarities and differences in middle school perceptions of scientists and engineers. Results reveal that the students involved in this study frequently perceive scientists as working indoors conducting experiments. A large fraction of the students have no perception of engineering. Others frequently perceive engineers as working outdoors in manual labor. The findings have implications for the development and implementation of engineering outreach efforts.

  3. Experiment/Analytical Characterization of the RBCC Rocket-Ejector Mode

    NASA Technical Reports Server (NTRS)

    Ruf, J. H.; Lehman, M.; Pal, S.; Santoro, R. J.; West, J.; Turner, James E. (Technical Monitor)

    2000-01-01

    Experimental and complementary CFD results from the study of the rocket-ejector mode of a Rocket Based Combined Cycle (RBCC) engine are presented and discussed. The experiments involved systematic flowfield measurements in a two-dimensional, variable geometry rocket-ejector system. The rocket-ejector system utilizes a single two-dimensional, gaseous oxygen/gaseous hydrogen rocket as the ejector. To gain a thorough understanding of the rocket-ejector's internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static configurations for a range of rocket operating conditions. Overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust, whereas detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (oxygen, hydrogen, nitrogen and water vapor). The experimental results for both the direct-connect and sea-level static configurations are compared with CFD predictions of the flowfield.

  4. Tuning the thermal conductivity of solar cell polymers through side chain engineering.

    PubMed

    Guo, Zhi; Lee, Doyun; Liu, Yi; Sun, Fangyuan; Sliwinski, Anna; Gao, Haifeng; Burns, Peter C; Huang, Libai; Luo, Tengfei

    2014-05-07

    Thermal transport is critical to the performance and reliability of polymer-based energy devices, ranging from solar cells to thermoelectrics. This work shows that the thermal conductivity of a low band gap conjugated polymer, poly(4,8-bis-alkyloxybenzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-(alkylthieno[3,4-b]thiophene-2-carboxylate)-2,6-diyl) (PBDTTT), for photovoltaic applications can be actively tuned through side chain engineering. Compared to the original polymer modified with short branched side chains, the engineered polymer using all linear and long side chains shows a 160% increase in thermal conductivity. The thermal conductivity of the polymer exhibits a good correlation with the side chain lengths as well as the crystallinity of the polymer characterized using small-angle X-ray scattering (SAXS) experiments. Molecular dynamics simulations and atomic force microscopy are used to further probe the molecular level local order of different polymers. It is found that the linear side chain modified polymer can facilitate the formation of more ordered structures, as compared to the branched side chain modified ones. The effective medium theory modelling also reveals that the long linear side chain enables a larger heat carrier propagation length and the crystalline phase in the bulk polymer increases the overall thermal conductivity. It is concluded that both the length of the side chains and the induced polymer crystallization are important for thermal transport. These results offer important guidance for actively tuning the thermal conductivity of conjugated polymers through molecular level design.

  5. Experimental studies of two-stage centrifugal dust concentrator

    NASA Astrophysics Data System (ADS)

    Vechkanova, M. V.; Fadin, Yu M.; Ovsyannikov, Yu G.

    2018-03-01

    The article presents data of experimental results of two-stage centrifugal dust concentrator, describes its design, and shows the development of a method of engineering calculation and laboratory investigations. For the experiments, the authors used quartz, ceramic dust and slag. Experimental dispersion analysis of dust particles was obtained by sedimentation method. To build a mathematical model of the process, dust collection was built using central composite rotatable design of the four factorial experiment. A sequence of experiments was conducted in accordance with the table of random numbers. Conclusion were made.

  6. Thermal barrier coating experience in the gas turbine engine

    NASA Technical Reports Server (NTRS)

    Bose, S.; Demasi-Marcin, J.

    1995-01-01

    Thermal Barrier Coatings (TBC), provide thermal insulation and oxidation resistance in an environment consisting of hot combustion gases. TBC's consist of a two layer system. The outer ceramic layer provides good thermal insulation due to the low thermal conductivity of the ceramic coatings used, while the inner metallic bond coat layer provides needed oxidation resistance to the underlying superalloy. Pratt & Whitney has over a decade of experience with several generations of TBC systems on turbine airfoils. This paper will focus on the latest TBC field experience along with a proposed durability model.

  7. Results From Phase-1 and Phase-2 GOLD Experiments

    NASA Technical Reports Server (NTRS)

    Wilson, K.; Jeganathan, M.; Lesh, J. R.; James, J.; Xu, G.

    1997-01-01

    The Ground/Orbiter Lasercomm Demonstration conducted between the Japanese Engineering Test Satellite (ETS-VI) and the ground station at JPL's Table Mountain Facility, Wrightwood, California, was the rst ground-to-space two-way optical communications experiment. Experiment objectives included validating the performance predictions of the optical link. Atmospheric attenuation and seeing measurements were made during the experiment, and data were analyzed. Downlink telemetry data recovered over the course of the experiment provided information on in-orbit performance of the ETS-VI's laser communications equipment. Biterror rates as low as 10 4 were measured on the uplink and 10 5 on the downlink. Measured signal powers agreed well with theoretical predictions.

  8. Photocatalytic destruction of chlorinated solvents in water with solar energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacheco, J.E.; Prairie, M.R.; Yellowhorse, L.

    1993-08-01

    Sandia National Laboratories and the National Renewable Energy Laboratory are developing a photocatalytic process to destroy organic contaminants in water. Tests with common water pollutants have been conducted at Sandia's Solar Thermal Facility using a near commercial scale, single-axis tracking parabolic trough system with a glass pipe reactor mounted at its focus. Experiments at this scale provide verification of laboratory studies and allow examination of design and operation issues at a real-lifescale. The catalyst, titanium dioxide (TiO[sub 2]), is a harmless material found in paint, cosmetics, and toothpaste. Experiments were conducted to determine the effects of key process parameters onmore » destruction rates of chlorinated organic compounds that are common water pollutants. This paper summarizes the engineering-scale results of these experiments and analyses.« less

  9. Ice Accretion Measurements on an Airfoil and Wedge in Mixed-Phase Conditions

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Bartkus, Tadas; Tsao, Jen-Ching; Currie, Tom; Fuleki, Dan

    2015-01-01

    This paper describes ice accretion measurements from experiments conducted at the National Research Council (NRC) of Canada's Research Altitude Test Facility during 2012. Due to numerous engine power loss events associated with high altitude convective weather, potential ice accretion within an engine due to ice crystal ingestion is being investigated collaboratively by NASA and NRC. These investigations examine the physical mechanisms of ice accretion on surfaces exposed to ice crystal and mixed phase conditions, similar to those believed to exist in core compressor regions of jet engines. A further objective of these tests is to examine scaling effects since altitude appears to play a key role in this icing process.

  10. Experimental Investigation on Thermal Physical Properties of an Advanced Polyester Material

    NASA Astrophysics Data System (ADS)

    Guangfa, Gao; Shujie, Yuan; Ruiyuan, Huang; Yongchi, Li

    Polyester materials were applied widely in aircraft and space vehicles engineering. Aimed to an advanced polyester material, a series of experiments for thermal physical properties of this material were conducted, and the corresponding performance curves were obtained through statistic analyzing. The experimental results showed good consistency. And then the thermal physical parameters such as thermal expansion coefficient, engineering specific heat and sublimation heat were solved and calculated. This investigation provides an important foundation for the further research on the heat resistance and thermodynamic performance of this material.

  11. Space Station Crew Bids Farewell to U.S. Commercial Cargo Spaceship

    NASA Image and Video Library

    2017-12-06

    Aboard the International Space Station, Expedition 53 Flight Engineers Mark Vande Hei and Joe Acaba of NASA used the Canadian-built robotic arm to release the Orbital ATK Cygnus resupply spacecraft three weeks after its arrival to bring some three tons of supplies and experiments to the orbital complex. Dubbed the "SS Gene Cernan," the Cygnus cargo ship will remain in orbit for almost two weeks conducting engineering tests before it is deorbited on Dec. 18 to burn up harmlessly in the Earth's atmosphere over the Pacific Ocean.

  12. FlowGo: An Educational Kit for Fluid Dynamics and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Guri, Dominic; Portsmore, Merredith; Kemmerling, Erica

    2015-11-01

    The authors have designed and prototyped an educational toolkit that will help middle-school-aged students learn fundamental fluid mechanics and heat transfer concepts in a hands-on play environment. The kit allows kids to build arbitrary flow rigs to solve fluid mechanics and heat transfer challenge problems. Similar kits for other engineering fields, such as structural and electrical engineering, have resulted in pedagogical improvements, particularly in early engineering education, where visual demonstrations have a significant impact. Using the FlowGo kit, students will be able to conduct experiments and develop new design ideas to solve challenge problems such as building plant watering systems or modeling water and sewage reticulation. The toolkit consists of components such as tubes, junctions, and reservoirs that easily snap together via a modular, universal connector. Designed with the Massachusetts K-12 science standards in mind, this kit is intended to be affordable and suitable for classroom use. Results and user feedback from students conducting preliminary tests of the kit will be presented.

  13. Researches on Preliminary Chemical Reactions in Spark-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Muehlner, E.

    1943-01-01

    Chemical reactions can demonstrably occur in a fuel-air mixture compressed in the working cylinder of an Otto-cycle (spark ignition) internal-combustion engine even before the charge is ignited by the flame proceeding from the sparking plug. These are the so-called "prelinminary reactions" ("pre-flame" combustion or oxidation), and an exact knowledge of their characteristic development is of great importance for a correct appreciation of the phenomena of engine-knock (detonation), and consequently for its avoidance. Such reactions can be studied either in a working engine cylinder or in a combustion bomb. The first method necessitates a complicated experimental technique, while the second has the disadvantage of enabling only a single reaction to be studied at one time. Consequently, a new series of experiments was inaugurated, conducted in a motored (externally-driven) experimental engine of mixture-compression type, without ignition, the resulting preliminary reactions being detectable and measurable thermometrically.

  14. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    PubMed Central

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine. PMID:25379536

  15. Working characteristics of variable intake valve in compressed air engine.

    PubMed

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.

  16. A minimum cost tolerance allocation method for rocket engines and robust rocket engine design

    NASA Technical Reports Server (NTRS)

    Gerth, Richard J.

    1993-01-01

    Rocket engine design follows three phases: systems design, parameter design, and tolerance design. Systems design and parameter design are most effectively conducted in a concurrent engineering (CE) environment that utilize methods such as Quality Function Deployment and Taguchi methods. However, tolerance allocation remains an art driven by experience, handbooks, and rules of thumb. It was desirable to develop and optimization approach to tolerancing. The case study engine was the STME gas generator cycle. The design of the major components had been completed and the functional relationship between the component tolerances and system performance had been computed using the Generic Power Balance model. The system performance nominals (thrust, MR, and Isp) and tolerances were already specified, as were an initial set of component tolerances. However, the question was whether there existed an optimal combination of tolerances that would result in the minimum cost without any degradation in system performance.

  17. Complex analysis of the ionospheric response to operation of ``Progress'' cargo spacecraft according to the data of GNSS receivers in Baikal region

    NASA Astrophysics Data System (ADS)

    Ishin, Artem; Voeykov, Sergey; Perevalova, Natalia; Khakhinov, Vitaliy

    2017-12-01

    As a part of the Plasma-Progress and Radar-Progress space experiments conducted from 2006 to 2014, effects of the Progress spacecraft engines on the ionosphere have been studied using data from Global Navigation Satellite System (GNSS) receivers. 72 experiments have been carried out. All these experiments were based on data from the International GNSS Service (IGS) to record ionospheric plasma irregularities caused by engine operation. 35 experiments used data from the ISTP SB RAS network SibNet. The analysis of the spatio-temporal structure of total electron content (TEC) variations has shown that the problem of identifying the TEC response to engine operation is complicated by a number of factors: 1) the engine effect on ionospheric plasma is strongly localized in space and has a relatively low intensity; 2) a small number of satellite-receiver radio rays due to the limited number of GNSS stations, particularly before 2013; 3) a potential TEC response is masked with background ionospheric disturbances of various intensities. However, TEC responses are identified with certainty when a satellite-receiver radio ray crosses a disturbed region within minutes after the impact. TEC responses have been registered in 7 experiments (10 % of cases). The amplitude of ionospheric response (0.3-0.16 TECU) exceeded the background TEC variations (~0.25 TECU) several times. The TEC data indicate that the ionospheric irregularity lifetime is from 4 to 10 minutes. According to the estimates we made, the transverse size of irregularities is from 12 to 30 km.

  18. Preliminary Assessment of the Nutrient Film Technique for Wastewater Treatment

    DTIC Science & Technology

    1982-03-01

    umre) Hydroponics Thin films Wastes (Sanitary engineering) \\Waslewater \\I MArWIASSACr a m evemww sb N nem y., d idenif, by block nm,6...) An experiment...best described attach themselves. as a modified hydroponic system in which a thin film of nutrient solution flows through the root mat of Purpose plants...of an experiment conducted at CRREL to de- tween an NFT system and a hydroponic plant system termine the feasibility of using the nutrient film tech

  19. ACE-1 experiment

    NASA Image and Video Library

    2013-06-24

    ISS036-E-019760 (24 June 2013) --- In the International Space Station’s Destiny laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with the Advanced Colloids Experiment (ACE)-1 sample preparation at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). ACE-1 is a series of microscopic imaging investigations that uses the microgravity environment to examine flow characteristics and the evolution and ordering effects within a group of colloidal materials.

  20. Performance mapping of the STM4-120 kinematic Stirling engine using a statistical design of experiments method

    NASA Astrophysics Data System (ADS)

    Powell, M. A.; Rawlinson, K. S.

    A kinetic Stirling cycle engine, the Stirling Thermal Motors (STM) STM4-120, was tested at the Sandia National Laboratories Engine Test Facility (ETF) from March 1989-August 1992. Sandia is interested in determining this engine's potential for solar-thermal-electric applications. The last round of testing was conducted from July-August 1992 using Sandia-designed gas-fired heat pipe evaporators as the heat input system to the engine. The STM4-120 was performance mapped over a range of sodium vapor temperatures, cooling water temperatures, and cycle pressures. The resulting shaft power output levels ranged from 5-9 kW. The engine demonstrated high conversion efficiency (24-31%) even though the power output level was less than 40% of the rated output of 25 kW. The engine had been previously derated from 25 kW to 10 kW shaft power due to mechanical limitations that were identified by STM during parallel testing at their facility in Ann Arbor, MI. A statistical method was used to design the experiment, to choose the experimental points, and to generate correlation equations describing the engine performance given the operating parameters. The testing was truncated due to a failure of the heat pipe system caused by entrainment of liquid sodium in the condenser section of the heat pipes. Enough data was gathered to generate the correlations and to demonstrate the experimental technique. The correlation is accurate in the experimental space and is simple enough for use in hand calculations and spreadsheet-based system models. Use of this method can simplify the construction of accurate performance and economic models of systems in which the engine is a component. The purpose of this paper is to present the method used to design the experiments and to analyze the performance data.

  1. Creating meaningful learning experiences: Understanding students' perspectives of engineering design

    NASA Astrophysics Data System (ADS)

    Aleong, Richard James Chung Mun

    There is a societal need for design education to prepare holistic engineers with the knowledge, skills, and attitudes to innovate and compete globally. Design skills are paramount to the espoused values of higher education, as institutions of higher learning strive to develop in students the cognitive abilities of critical thinking, problem solving, and creativity. To meet these interests from industry and academia, it is important to advance the teaching and learning of engineering design. This research aims to understand how engineering students learn and think about design, as a way for engineering educators to optimize instructional practice and curriculum development. Qualitative research methodology was used to investigate the meaning that engineering students' ascribe to engineering design. The recruitment of participants and corresponding collection of data occurred in two phases using two different data collection techniques. The first phase involved the distribution of a one-time online questionnaire to all first year, third year, and fourth year undergraduate engineering students at three Canadian Universities. After the questionnaire, students were asked if they would be willing to participate in the second phase of data collection consisting of a personal interview. A total of ten students participated in interviews. Qualitative data analysis procedures were conducted on students' responses from the questionnaire and interviews. The data analysis process consisted of two phases: a descriptive phase to code and categorize the data, followed by an interpretative phase to generate further meaning and relationships. The research findings present a conceptual understanding of students' descriptions about engineering design, structured within two educational orientations: a learning studies orientation and a curriculum studies orientation. The learning studies orientation captured three themes of students' understanding of engineering design: awareness, relevance, and transfer. With this framework of student learning, engineering educators can enhance learning experiences by engaging all three levels of students' understanding. The curriculum studies orientation applied the three holistic elements of curriculum---subject matter, society, and the individual---to conceptualize design considerations for engineering curriculum and teaching practice. This research supports the characterization of students' learning experiences to help educators and students optimize their teaching and learning of design education.

  2. Using a Low Cost Flight Simulation Environment for Interdisciplinary Education

    NASA Technical Reports Server (NTRS)

    Khan, M. Javed; Rossi, Marcia; ALi, Syed F.

    2004-01-01

    A multi-disciplinary and inter-disciplinary education is increasingly being emphasized for engineering undergraduates. However, often the focus is on interaction between engineering disciplines. This paper discusses the experience at Tuskegee University in providing interdisciplinary research experiences for undergraduate students in both Aerospace Engineering and Psychology through the utilization of a low cost flight simulation environment. The environment, which is pc-based, runs a low-cost of-the-shelf software and is configured for multiple out-of-the-window views and a synthetic heads down display with joystick, rudder and throttle controls. While the environment is being utilized to investigate and evaluate various strategies for training novice pilots, students were involved to provide them with experience in conducting such interdisciplinary research. On the global inter-disciplinary level these experiences included developing experimental designs and research protocols, consideration of human participant ethical issues, and planning and executing the research studies. During the planning phase students were apprised of the limitations of the software in its basic form and the enhancements desired to investigate human factors issues. A number of enhancements to the flight environment were then undertaken, from creating Excel macros for determining the performance of the 'pilots', to interacting with the software to provide various audio/video cues based on the experimental protocol. These enhancements involved understanding the flight model and performance, stability & control issues. Throughout this process, discussions of data analysis included a focus from a human factors perspective as well as an engineering point of view.

  3. Mach 5 to 7 RBCC Propulsion System Testing at NASA-LeRC HTF

    NASA Technical Reports Server (NTRS)

    Perkins, H. Douglas; Thomas, Scott R.; Pack, William D.

    1996-01-01

    A series of Mach 5 to 7 freejet tests of a Rocket Based Combined Cycle (RBCC) engine were cnducted at the NASA Lewis Research Center (LERC) Hypersonic Tunnel Facility (HTF). This paper describes the configuration and operation of the HTF and the RBCC engine during these tests. A number of facility support systems are described which were added or modified to enhance the HTF test capability for conducting this experiment. The unfueled aerodynamic perfor- mance of the RBCC engine flowpath is also presented and compared to sub-scale test results previously obtained in the NASA LERC I x I Supersonic Wind Tunnel (SWT) and to Computational Fluid Dynamic (CFD) analysis results. This test program demonstrated a successful configuration of the HTF for facility starting and operation with a generic RBCC type engine and an increased range of facility operating conditions. The ability of sub-scale testing and CFD analysis to predict flowpath performance was also shown. The HTF is a freejet, blowdown propulsion test facility that can simulate up to Mach 7 flight conditions with true air composition. Mach 5, 6, and 7 facility nozzles are available, each with an exit diameter of 42 in. This combination of clean air, large scale, and Mach 7 capabilities is unique to the HTF. This RBCC engine study is the first engine test program conducted at the HTF since 1974.

  4. Teaching Business Management to Engineers: The Impact of Interactive Lectures

    ERIC Educational Resources Information Center

    Rambocas, Meena; Sastry, Musti K. S.

    2017-01-01

    Some education specialists are challenging the use of traditional strategies in classrooms and are calling for the use of contemporary teaching and learning techniques. In response to these calls, many field experiments that compare different teaching and learning strategies have been conducted. However, to date, little is known on the outcomes of…

  5. Process and Learning Outcomes from Remotely-Operated, Simulated, and Hands-on Student Laboratories

    ERIC Educational Resources Information Center

    Corter, James E.; Esche, Sven K.; Chassapis, Constantin; Ma, Jing; Nickerson, Jeffrey V.

    2011-01-01

    A large-scale, multi-year, randomized study compared learning activities and outcomes for hands-on, remotely-operated, and simulation-based educational laboratories in an undergraduate engineering course. Students (N = 458) worked in small-group lab teams to perform two experiments involving stress on a cantilever beam. Each team conducted the…

  6. See the Math behind the Medicine

    ERIC Educational Resources Information Center

    Saunders, Marnie M.

    2010-01-01

    To promote math and science, this author designed an activity to show students that biomedical fields are within their reach. The activity has three distinct goals: (1) To introduce the field of biomedical engineering to students and encourage them in these career pursuits; (2) To give them hands-on experience conducting a biomechanical test; and…

  7. Mechanics Simulations in Second Life

    ERIC Educational Resources Information Center

    Black, Kelly

    2010-01-01

    This paper examines the use of the 3-D virtual world Second Life to explore basic mechanics in physics. In Second Life, students can create scripts that take advantage of a virtual physics engine in order to conduct experiments that focus on specific phenomena. The paper explores two particular examples of this process: (1) the movement of an…

  8. NASA STEM Event

    NASA Image and Video Library

    2013-01-19

    School children react to food shrinking in a vacuum chamber during an Science, Technology, Engineering, and Math (STEM) education event held at the Ritz-Carlton Hotel in Arlington, VA on Saturday, Jan. 19, 2013. Students were able to meet with Astronaut Melvin, conduct experiments, build their own space jab, and touch a mockup space suit. Photo Credit: (NASA/Bill Ingalls)

  9. CIR fuel reservoir swap closeout

    NASA Image and Video Library

    2014-08-11

    ISS040-E-090493 (11 Aug. 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, performs routine in-flight maintenance on the Multi-user Drop Combustion Apparatus (MDCA) inside the Combustion Integrated Rack (CIR) in the Destiny laboratory of the International Space Station. The MDCA contains hardware and software to conduct unique droplet combustion experiments in space.

  10. CIR fuel reservoir swap closeout

    NASA Image and Video Library

    2014-08-11

    ISS040-E-090497 (11 Aug. 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, performs routine in-flight maintenance on the Multi-user Drop Combustion Apparatus (MDCA) inside the Combustion Integrated Rack (CIR) in the Destiny laboratory of the International Space Station. The MDCA contains hardware and software to conduct unique droplet combustion experiments in space.

  11. CIR fuel reservoir swap closeout

    NASA Image and Video Library

    2014-08-11

    ISS040-E-090482 (11 Aug. 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, performs routine in-flight maintenance on the Multi-user Drop Combustion Apparatus (MDCA) inside the Combustion Integrated Rack (CIR) in the Destiny laboratory of the International Space Station. The MDCA contains hardware and software to conduct unique droplet combustion experiments in space.

  12. CIR fuel reservoir swap closeout

    NASA Image and Video Library

    2014-08-11

    ISS040-E-090484 (11 Aug. 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, performs routine in-flight maintenance on the Multi-user Drop Combustion Apparatus (MDCA) inside the Combustion Integrated Rack (CIR) in the Destiny laboratory of the International Space Station. The MDCA contains hardware and software to conduct unique droplet combustion experiments in space.

  13. Apollo program soil mechanics experiment. [interaction of the lunar module with the lunar surface

    NASA Technical Reports Server (NTRS)

    Scott, R. F.

    1975-01-01

    The soil mechanics investigation was conducted to obtain information relating to the landing interaction of the lunar module (LM) with the lunar surface, and lunar soil erosion caused by the spacecraft engine exhaust. Results obtained by study of LM landing performance on each Apollo mission are summarized.

  14. Improving Students with Rubric-Based Self-Assessment and Oral Feedback

    ERIC Educational Resources Information Center

    Barney, S.; Khurum, M.; Petersen, K.; Unterkalmsteiner, M.; Jabangwe, R.

    2012-01-01

    Rubrics and oral feedback are approaches to help students improve performance and meet learning outcomes. However, their effect on the actual improvement achieved is inconclusive. This paper evaluates the effect of rubrics and oral feedback on student learning outcomes. An experiment was conducted in a software engineering course on requirements…

  15. Erosion Control of Scour during Construction; Report 2. Literature Survey of Theoretical, Experimental, and Prototype Investigations.

    DTIC Science & Technology

    1980-08-01

    induced currents around the breakwaters. Experiments were conducted by Hotta and Marui (1976) to investigate characteristics of the local scour; and it...on Oscillatory Boundary Layer Flow," Proceedings, Eleventh Conference on Coastal Engineering, London, England, Vol I, pp 467-486. Hotta, S., and Marui

  16. 43 CFR 3836.14 - What other requirements must geological, geochemical, or geophysical surveys meet to qualify as...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... qualified expert is a geologist or mining engineer qualified by education and experience to conduct... INTERIOR MINERALS MANAGEMENT (3000) ANNUAL ASSESSMENT WORK REQUIREMENTS FOR MINING CLAIMS Performing... analyzing the data. (c) You may not count these surveys as assessment work for more than 2 consecutive years...

  17. 43 CFR 3836.14 - What other requirements must geological, geochemical, or geophysical surveys meet to qualify as...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... qualified expert is a geologist or mining engineer qualified by education and experience to conduct... INTERIOR MINERALS MANAGEMENT (3000) ANNUAL ASSESSMENT WORK REQUIREMENTS FOR MINING CLAIMS Performing... analyzing the data. (c) You may not count these surveys as assessment work for more than 2 consecutive years...

  18. 43 CFR 3836.14 - What other requirements must geological, geochemical, or geophysical surveys meet to qualify as...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... qualified expert is a geologist or mining engineer qualified by education and experience to conduct... INTERIOR MINERALS MANAGEMENT (3000) ANNUAL ASSESSMENT WORK REQUIREMENTS FOR MINING CLAIMS Performing... analyzing the data. (c) You may not count these surveys as assessment work for more than 2 consecutive years...

  19. 43 CFR 3836.14 - What other requirements must geological, geochemical, or geophysical surveys meet to qualify as...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... qualified expert is a geologist or mining engineer qualified by education and experience to conduct... INTERIOR MINERALS MANAGEMENT (3000) ANNUAL ASSESSMENT WORK REQUIREMENTS FOR MINING CLAIMS Performing... analyzing the data. (c) You may not count these surveys as assessment work for more than 2 consecutive years...

  20. Tensile and shear strength of adhesives

    NASA Technical Reports Server (NTRS)

    Stibolt, Kenneth A.

    1990-01-01

    This experiment is conducted in a freshman-level course: Introduction to Engineering Materials. There are no prerequisites for the course although students should have some knowledge of basic algebra. The objectives are to tension and shear test adhesives and to determine the tensile and shear properties of adhesives. Details of equipment of procedure are given.

  1. Pioneer women in engineering studies: what can we learn from their experiences?

    NASA Astrophysics Data System (ADS)

    Pardo, P.; Calvet, M. D.; Pons, O.; Martinez, M. C.

    2016-11-01

    Women's access to higher education in Spain began in the last third of the nineteenth century. However, the full incorporation of women into technical studies did not occur until a century later. This article presents the results of research into the access of the first women to do technical studies in Catalonia (northeast Spain). Data have been collected from 11 technical schools belonging to the Universitat Politècnica de Catalunya (UPC) with the aim of understanding the dynamics of the incorporation of women into these schools between 1851 (foundation of the first engineering school in Catalonia) and 1980. Interviews were conducted with 21 pioneer women who completed their technical studies. Their experiences show how technical schools had to adapt, both physically and culturally, to female students. Finally, the current status of female engineers in Catalonia is compared with the situation in other Western countries. Similarities are found that show the relevance of gender as a social structuring force.

  2. A Microwave Blade Tip Clearance Sensor for Propulsion Health Monitoring

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Abdul-Aziz, Ali; Bencic, Timothy J.

    2010-01-01

    Microwave sensor technology is being investigated by the NASA Glenn Research Center as a means of making non-contact structural health measurements in the hot sections of gas turbine engines. This type of sensor technology is beneficial in that it is accurate, it has the ability to operate at extremely high temperatures, and is unaffected by contaminants that are present in turbine engines. It is specifically being targeted for use in the High Pressure Turbine (HPT) and High Pressure Compressor (HPC) sections to monitor the structural health of the rotating components. It is intended to use blade tip clearance to monitor blade growth and wear and blade tip timing to monitor blade vibration and deflection. The use of microwave sensors for this application is an emerging concept. Techniques on their use and calibration needed to be developed. As a means of better understanding the issues associated with the microwave sensors, a series of experiments have been conducted to evaluate their performance for aero engine applications. This paper presents the results of these experiments.

  3. KC-135 and Other Microgravity Simulations

    NASA Technical Reports Server (NTRS)

    Skinner, Noel C.

    1999-01-01

    This document represents a summary of medical and scientific evaluations conducted aboard the KC-135 from June 20, 1998 to June 20, 1999. Included is a general overview of KC-135 activities manifested and coordinated by the Life Sciences Research Laboratories. A collection of brief reports that describes tests conducted aboard the KC-135 follows the overview. Principal investigators and test engineers contributed significantly to the content of the report describing their particular experiment or hardware evaluation. Although this document follows general guidelines, each report format may vary to accommodate differences in experiment design and procedures. This document concludes with an appendix that provides background information concerning the KC-135 and the Reduced-Gravity Program.

  4. C-9 and Other Microgravity Simulations

    NASA Technical Reports Server (NTRS)

    Hecht, Sharon (Editor); Reeves, Jacqueline M. (Editor); Spector, Elisabeth (Editor)

    2009-01-01

    This document represents a summary of medical and scientific evaluations conducted aboard the C-9 and other NASA-sponsored aircraft from June 2008 to June 2009. Included is a general overview of investigations manifested and coordinated by the Human Adaptation and Counter-measures Division. A collection of brief reports that describe tests conducted aboard the NASA-sponsored aircraft follows the overview. Principal investigators and test engineers contributed significantly to the content of the report, describing their particular experiment or hardware evaluation. Although this document follows general guidelines, each report format may vary to accommodate differences in experiment design and procedures. This document concludes with an appendix that provides background information concerning the Reduced Gravity Program. Acknowledgments

  5. C-9 and Other Microgravity Simulations

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd; Skinner, Noel

    2007-01-01

    This document represents a summary of medical and scientific evaluations conducted aboard the C-9 or other NASA-sponsored aircraft from June 30, 2006, to June 30, 2007. Included is a general overview of investigations manifested and coordinated by the Human Adaptation and Countermeasures Office. A collection of brief reports that describe tests conducted aboard the NASA-sponsored aircraft follows the overview. Principal investigators and test engineers contributed significantly to the content of the report, describing their particular experiment or hardware evaluation. Although this document follows general guidelines, each report format may vary to accommodate differences in experiment design and procedures. This document concludes with an appendix that provides background information about the Reduced Gravity Program.

  6. KC-135 and Other Microgravity Simulations

    NASA Technical Reports Server (NTRS)

    Skinner, Noel C.; Schlegel, Todd T. (Technical Monitor)

    2001-01-01

    This document represents a summary of medical and scientific evaluations conducted aboard the KC-135 from January to June 15, 2001. Included is a general overview of KC-135 activities manifested and coordinated by the Human Adaptation and Countermeasures Office. A collection of brief reports that describes tests conducted aboard the KC-135 follows the overview. Principal investigators and test engineers contributed significantly to the content of the report describing their particular experiment or hardware evaluation. Although this document follows general guidelines, each report format may vary to accommodate differences in experiment design and procedures. This document concludes with an appendix that provides background information concerning the KC-135 and the Reduced-Gravity Program.

  7. C-9 and Other Microgravity Simulations Summary Report

    NASA Technical Reports Server (NTRS)

    2010-01-01

    This document represents a summary of medical and scientific evaluations conducted aboard the C-9 and other NASA-sponsored aircraft from June 2009 to June 2010. Included is a general overview of investigations manifested and coordinated by the Human Adaptation and Countermeasures Division. A collection of brief reports that describe tests conducted aboard the NASA-sponsored aircraft follows the overview. Principal investigators and test engineers contributed significantly to the content of the report, describing their particular experiment or hardware evaluation. Although this document follows general guidelines, each report format may vary to accommodate differences in experiment design and procedures. This document concludes with an appendix that provides background information concerning the Reduced Gravity Program.

  8. Effects of Gasoline Direct Injection Engine Operating Parameters on Particle Number Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X.; Ratcliff, M. A.; Zigler, B. T.

    2012-04-19

    A single-cylinder, wall-guided, spark ignition direct injection engine was used to study the impact of engine operating parameters on engine-out particle number (PN) emissions. Experiments were conducted with certification gasoline and a splash blend of 20% fuel grade ethanol in gasoline (E20), at four steady-state engine operating conditions. Independent engine control parameter sweeps were conducted including start of injection, injection pressure, spark timing, exhaust cam phasing, intake cam phasing, and air-fuel ratio. The results show that fuel injection timing is the dominant factor impacting PN emissions from this wall-guided gasoline direct injection engine. The major factor causing high PN emissionsmore » is fuel liquid impingement on the piston bowl. By avoiding fuel impingement, more than an order of magnitude reduction in PN emission was observed. Increasing fuel injection pressure reduces PN emissions because of smaller fuel droplet size and faster fuel-air mixing. PN emissions are insensitive to cam phasing and spark timing, especially at high engine load. Cold engine conditions produce higher PN emissions than hot engine conditions due to slower fuel vaporization and thus less fuel-air homogeneity during the combustion process. E20 produces lower PN emissions at low and medium loads if fuel liquid impingement on piston bowl is avoided. At high load or if there is fuel liquid impingement on piston bowl and/or cylinder wall, E20 tends to produce higher PN emissions. This is probably a function of the higher heat of vaporization of ethanol, which slows the vaporization of other fuel components from surfaces and may create local fuel-rich combustion or even pool-fires.« less

  9. Research approach to teaching groundwater biodegradation in karst aquifers

    USGS Publications Warehouse

    King, L.; Byl, T.; Painter, R.

    2006-01-01

    TSU in partnership with the USGS has conducted extensive research regarding biode??gradation of contaminants in karst aquifers. This research resulted in the development of a numerical approach to modeling biodegradation of contaminants in karst aquifers that is taught to environmental engineering students in several steps. First, environmental engineering students are taught chemical-reaction engineering principles relating to a wide variety of environmental fate and transport issues. Second, as part of TSU's engineering course curriculum, students use a non-ideal flow laboratory reactor system and run a tracer study to establish residence time distribution (RTD). Next, the students couple that formula to a first-order biodegradation rate and predict the removal of a biodegradable contaminant as a function of residence time. Following this, students are shown data collected from karst bedrock wells that suggest that karst aquifers are analogous to non-ideal flow reactors. The students are challenged to develop rates of biodegradation through lab studies and use their results to predict biodegradaton at an actual contaminated karst site. Field studies are also conducted to determine the accuracy of the students' predictions. This academic approach teaches biodegradation processes, rate-kinetic processes, hydraulic processes and numerical principles. The students are able to experience how chemical engineering principles can be applied to other situations, such as, modeling biodegradation of contaminants in karst aquifers. This paper provides background on the chemical engineering principles and karst issues used in the research-enhanced curriculum. ?? American Society for Engineering Education, 2006.

  10. PERSPECTIVE: Translational neural engineering: multiple perspectives on bringing benchtop research into the clinical domain

    NASA Astrophysics Data System (ADS)

    Rousche, Patrick; Schneeweis, David M.; Perreault, Eric J.; Jensen, Winnie

    2008-03-01

    A half-day forum to address a wide range of issues related to translational neural engineering was conducted at the annual meeting of the Biomedical Engineering Society. Successful practitioners of translational neural engineering from academics, clinical medicine and industry were invited to share a diversity of perspectives and experiences on the translational process. The forum was targeted towards traditional academic researchers who may be interested in the expanded funding opportunities available for translational research that emphasizes product commercialization and clinical implementation. The seminar was funded by the NIH with support from the Rehabilitation Institute of Chicago. We report here a summary of the speaker viewpoints with particular focus on extracting successful strategies for engaging in or conducting translational neural engineering research. Daryl Kipke, PhD, (Department of Biomedical Engineering at the University of Michigan) and Molly Shoichet, PhD, (Department of Chemical Engineering at the University of Toronto) gave details of their extensive experience with product commercialization while holding primary appointments in academic departments. They both encouraged strong clinical input at very early stages of research. Neurosurgeon Fady Charbel, MD, (Department of Neurosurgery at the University of Illinois at Chicago) discussed his role in product commercialization as a clinician. Todd Kuiken, MD, PhD, (Director of the Neural Engineering for Artificial Limbs at the Rehabilitation Institute of Chicago, affiliated with Northwestern University) also a clinician, described a model of translational engineering that emphasized the development of clinically relevant technology, without a strong commercialization imperative. The clinicians emphasized the importance of communicating effectively with engineers. Representing commercial neural engineering was Doug Sheffield, PhD, (Director of New Technology at Vertis Neuroscience, Inc.) who strongly encouraged open industrial academic partnerships as an efficient path forward in the translational process. Joe Pancrazio, PhD, a Program Director at NIH's National Institute of Neurological Disorders and Stroke, emphasized that NIH funding for translational research was aimed at breaking down scientific barriers to clinic entrance. Vivian Weil, PhD, (Director of Center for the Study of Ethics in the Professions at the Illinois Institute of Technology) a specialist on ethics in science and engineering, spoke of the usefulness of developing a code of ethics for addressing ethical aspects of translation from the bench to clinical implementation and of translation across disciplines in multi-disciplinary projects. Finally, the patient perspective was represented by Mr Jesse Sullivan. A double-arm amputee and patient of Dr Kuiken's, Mr Sullivan demonstrated the critically important role of the patient in successful translational neural engineering research.

  11. Translational neural engineering: multiple perspectives on bringing benchtop research into the clinical domain

    PubMed Central

    Rousche, Patrick; Schneeweis, David M; Perreault, Eric J; Jensen, Winnie

    2009-01-01

    A half-day forum to address a wide range of issues related to translational neural engineering was conducted at the annual meeting of the Biomedical Engineering Society. Successful practitioners of translational neural engineering from academics, clinical medicine and industry were invited to share a diversity of perspectives and experiences on the translational process. The forum was targeted towards traditional academic researchers who may be interested in the expanded funding opportunities available for translational research that emphasizes product commercialization and clinical implementation. The seminar was funded by the NIH with support from the Rehabilitation Institute of Chicago. We report here a summary of the speaker viewpoints with particular focus on extracting successful strategies for engaging in or conducting translational neural engineering research. Daryl Kipke, PhD, (Department of Biomedical Engineering at the University of Michigan) and Molly Shoichet, PhD, (Department of Chemical Engineering at the University of Toronto) gave details of their extensive experience with product commercialization while holding primary appointments in academic departments. They both encouraged strong clinical input at very early stages of research. Neurosurgeon Fady Charbel, MD, (Department of Neurosurgery at the University of Illinois at Chicago) discussed his role in product commercialization as a clinician. Todd Kuiken, MD, PhD, (Director of the Neural Engineering for Artificial Limbs at the Rehabilitation Institute of Chicago, affiliated with Northwestern University) also a clinician, described a model of translational engineering that emphasized the development of clinically relevant technology, without a strong commercialization imperative. The clinicians emphasized the importance of communicating effectively with engineers. Representing commercial neural engineering was Doug Sheffield, PhD, (Director of New Technology at Vertis Neuroscience, Inc.) who strongly encouraged open industrial–academic partnerships as an efficient path forward in the translational process. Joe Pancrazio, PhD, a Program Director at NIH’s National Institute of Neurological Disorders and Stroke, emphasized that NIH funding for translational research was aimed at breaking down scientific barriers to clinic entrance. Vivian Weil, PhD, (Director of Center for the Study of Ethics in the Professions at the Illinois Institute of Technology) a specialist on ethics in science and engineering, spoke of the usefulness of developing a code of ethics for addressing ethical aspects of translation from the bench to clinical implementation and of translation across disciplines in multi-disciplinary projects. Finally, the patient perspective was represented by Mr Jesse Sullivan. A double-arm amputee and patient of Dr Kuiken’s, Mr Sullivan demonstrated the critically important role of the patient in successful translational neural engineering research. PMID:18310805

  12. Translational neural engineering: multiple perspectives on bringing benchtop research into the clinical domain.

    PubMed

    Rousche, Patrick; Schneeweis, David M; Perreault, Eric J; Jensen, Winnie

    2008-03-01

    A half-day forum to address a wide range of issues related to translational neural engineering was conducted at the annual meeting of the Biomedical Engineering Society. Successful practitioners of translational neural engineering from academics, clinical medicine and industry were invited to share a diversity of perspectives and experiences on the translational process. The forum was targeted towards traditional academic researchers who may be interested in the expanded funding opportunities available for translational research that emphasizes product commercialization and clinical implementation. The seminar was funded by the NIH with support from the Rehabilitation Institute of Chicago. We report here a summary of the speaker viewpoints with particular focus on extracting successful strategies for engaging in or conducting translational neural engineering research. Daryl Kipke, PhD, (Department of Biomedical Engineering at the University of Michigan) and Molly Shoichet, PhD, (Department of Chemical Engineering at the University of Toronto) gave details of their extensive experience with product commercialization while holding primary appointments in academic departments. They both encouraged strong clinical input at very early stages of research. Neurosurgeon Fady Charbel, MD, (Department of Neurosurgery at the University of Illinois at Chicago) discussed his role in product commercialization as a clinician. Todd Kuiken, MD, PhD, (Director of the Neural Engineering for Artificial Limbs at the Rehabilitation Institute of Chicago, affiliated with Northwestern University) also a clinician, described a model of translational engineering that emphasized the development of clinically relevant technology, without a strong commercialization imperative. The clinicians emphasized the importance of communicating effectively with engineers. Representing commercial neural engineering was Doug Sheffield, PhD, (Director of New Technology at Vertis Neuroscience, Inc.) who strongly encouraged open industrial-academic partnerships as an efficient path forward in the translational process. Joe Pancrazio, PhD, a Program Director at NIH's National Institute of Neurological Disorders and Stroke, emphasized that NIH funding for translational research was aimed at breaking down scientific barriers to clinic entrance. Vivian Weil, PhD, (Director of Center for the Study of Ethics in the Professions at the Illinois Institute of Technology) a specialist on ethics in science and engineering, spoke of the usefulness of developing a code of ethics for addressing ethical aspects of translation from the bench to clinical implementation and of translation across disciplines in multi-disciplinary projects. Finally, the patient perspective was represented by Mr Jesse Sullivan. A double-arm amputee and patient of Dr Kuiken's, Mr Sullivan demonstrated the critically important role of the patient in successful translational neural engineering research.

  13. Processes and Procedures of the Higher Education Programs at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Heard, Pamala D.

    2002-01-01

    The purpose of my research was to investigate the policies, processes, procedures and timelines for the higher education programs at Marshall Space Flight Center. The three higher education programs that comprised this research included: the Graduate Student Researchers Program (GSRP), the National Research Council/Resident Research Associateships Program (NRC/RRA) and the Summer Faculty Fellowship Program (SFFP). The GSRP award fellowships each year to promising U.S. graduate students whose research interest coincides with NASA's mission. Fellowships are awarded for one year and are renewable for up to three years to competitively selected students. Each year, the award provides students the opportunity to spend a period in residence at a NASA center using that installation's unique facilities. This program is renewable for three years, students must reapply. The National Research Council conducts the Resident Research Associateships Program (NRC/RRA), a national competition to identify outstanding recent postdoctoral scientists and engineers and experience senior scientists and engineers, for tenure as guest researchers at NASA centers. The Resident Research Associateship Program provides an opportunity for recipients of doctoral degrees to concentrate their research in association with NASA personnel, often as a culmination to formal career preparation. The program also affords established scientists and engineers an opportunity for research without any interruptions and distracting assignments generated from permanent career positions. All opportunities for research at NASA Centers are open to citizens of the U.S. and to legal permanent residents. The Summer Faculty Fellowship Program (SFFP) is conducted each summer. NASA awards research fellowships to university faculty through the NASA/American Society for Engineering Education. The program is designed to promote an exchange of ideas between university faculties, NASA scientists and engineers. Selected participants in fields of science, engineering, math, and other disciplines spend approximately 10 weeks working with their professional peers on research projects at NASA facilities. Workshops and seminars further enrich the experience. This program is only for U.S. citizens.

  14. Simulation reduction using the Taguchi method

    NASA Technical Reports Server (NTRS)

    Mistree, Farrokh; Lautenschlager, Ume; Erikstad, Stein Owe; Allen, Janet K.

    1993-01-01

    A large amount of engineering effort is consumed in conducting experiments to obtain information needed for making design decisions. Efficiency in generating such information is the key to meeting market windows, keeping development and manufacturing costs low, and having high-quality products. The principal focus of this project is to develop and implement applications of Taguchi's quality engineering techniques. In particular, we show how these techniques are applied to reduce the number of experiments for trajectory simulation of the LifeSat space vehicle. Orthogonal arrays are used to study many parameters simultaneously with a minimum of time and resources. Taguchi's signal to noise ratio is being employed to measure quality. A compromise Decision Support Problem and Robust Design are applied to demonstrate how quality is designed into a product in the early stages of designing.

  15. ARC-2006-ACD06-0179-003

    NASA Image and Video Library

    2006-10-12

    Ames holds a Media Day at the Hypervelocity Free Flight facility where Ames is conducting high-speed tests of small models of the agency's new Orion CEV to learn about stability during flight. The hypervelocity test facility uses a gun to shoot Orion models between 0.5 and l.5 inches (1.25 - 3.75 centimeters in diameter. The facility can conduct experiments with speeds up to 19,000 miles per hour (30,400 kilometers per hour) with John Bluck (Ames PAO) and Chuck Cornelison Ames Engineer

  16. Haystack Observatory VLBI Correlator

    NASA Technical Reports Server (NTRS)

    Titus, Mike; Cappallo, Roger; Corey, Brian; Dudevoir, Kevin; Niell, Arthur; Whitney, Alan

    2013-01-01

    This report summarizes the activities of the Haystack Correlator during 2012. Highlights include finding a solution to the DiFX InfiniBand timeout problem and other DiFX software development, conducting a DBE comparison test following the First International VLBI Technology Workshop, conducting a Mark IV and DiFX correlator comparison, more broadband delay experiments, more u- VLBI Galactic Center observations, and conversion of RDV session processing to the Mark IV/HOPS path. Non-real-time e-VLBI transfers and engineering support of other correlators continued.

  17. Focused Rocket-Ejector RBCC Experiments

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This document reports the results of additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Perm State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3rd generation Reusable Launch Vehicles (RLV). The two tasks conducted under this program build on earlier NASA MSFC funded research program on rocket ejector investigations. The first task continued a systematic investigation of the improvements provided by a gaseous hydrogen (GHz)/oxygen (GO2) twin thruster RBCC rocket ejector system over a single rocket system. In a similar vein, the second task continued investigations into the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. For the GH2/GO2 propellant rocket ejector experiments, high frequency measurements of the pressure field within the system were also made to understand the unsteady behavior of the flowfield.

  18. Why are some STEM fields more gender balanced than others?

    PubMed

    Cheryan, Sapna; Ziegler, Sianna A; Montoya, Amanda K; Jiang, Lily

    2017-01-01

    Women obtain more than half of U.S. undergraduate degrees in biology, chemistry, and mathematics, yet they earn less than 20% of computer science, engineering, and physics undergraduate degrees (National Science Foundation, 2014a). Gender differences in interest in computer science, engineering, and physics appear even before college. Why are women represented in some science, technology, engineering, and mathematics (STEM) fields more than others? We conduct a critical review of the most commonly cited factors explaining gender disparities in STEM participation and investigate whether these factors explain differential gender participation across STEM fields. Math performance and discrimination influence who enters STEM, but there is little evidence to date that these factors explain why women's underrepresentation is relatively worse in some STEM fields. We introduce a model with three overarching factors to explain the larger gender gaps in participation in computer science, engineering, and physics than in biology, chemistry, and mathematics: (a) masculine cultures that signal a lower sense of belonging to women than men, (b) a lack of sufficient early experience with computer science, engineering, and physics, and (c) gender gaps in self-efficacy. Efforts to increase women's participation in computer science, engineering, and physics may benefit from changing masculine cultures and providing students with early experiences that signal equally to both girls and boys that they belong and can succeed in these fields. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Resilient Propulsion Control Research for the NASA Integrated Resilient Aircraft Control (IRAC) Project

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei; Litt, Jonathan S.

    2007-01-01

    Gas turbine engines are designed to provide sufficient safety margins to guarantee robust operation with an exceptionally long life. However, engine performance requirements may be drastically altered during abnormal flight conditions or emergency maneuvers. In some situations, the conservative design of the engine control system may not be in the best interest of overall aircraft safety; it may be advantageous to "sacrifice" the engine to "save" the aircraft. Motivated by this opportunity, the NASA Aviation Safety Program is conducting resilient propulsion research aimed at developing adaptive engine control methodologies to operate the engine beyond the normal domain for emergency operations to maximize the possibility of safely landing the damaged aircraft. Previous research studies and field incident reports show that the propulsion system can be an effective tool to help control and eventually land a damaged aircraft. Building upon the flight-proven Propulsion Controlled Aircraft (PCA) experience, this area of research will focus on how engine control systems can improve aircraft safe-landing probabilities under adverse conditions. This paper describes the proposed research topics in Engine System Requirements, Engine Modeling and Simulation, Engine Enhancement Research, Operational Risk Analysis and Modeling, and Integrated Flight and Propulsion Controller Designs that support the overall goal.

  20. Experimental investigation on Performance and Emission Characteristics of J20, P20, N20 Biodiesel blends and Sound Characteristics of P20 Biodiesel blend Used in Single Cylinder Diesel Engine

    NASA Astrophysics Data System (ADS)

    rajasekar, R.; karthik, N.; Xavier, Goldwin

    2017-05-01

    Present work provides the effect of biodiesel blends and Sound Characteristics of P20 Biodiesel blend compared with Performance and emission Characteristics of diesel. Methods and analysis biodiesel blends was prepared by the Transesterification Process. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Research is mainly focused on pongamia oil. It was observed that a 20% Pongamia oil blends and its properties were similar to diesel. The results showed that 20% Pongamia oil blends gave better performance, less in noise and emission compared with ester of Jatropha and neem oil blends. Hence Pongamia blends can be used in existing diesel engine without compromising the engine performance.

  1. Collaborative engagement experiment (CEE)

    NASA Astrophysics Data System (ADS)

    Wade, Robert L.; Reames, Joseph M.

    2005-05-01

    Unmanned ground and air systems operating in collaboration have the potential to provide future Joint Forces a significant capability for operations in complex terrain. Ground and air collaborative engagements potentially offer force conservation, perform timely acquisition and dissemination of essential combat information, and can eliminate high value and time critical targets. These engagements can also add considerably to force survivability by reducing soldier and equipment exposure during critical operations. The Office of the Secretary of Defense, Joint Robotics Program (JRP) sponsored Collaborative Engagement Experiment (CEE) is a consolidation of separate Air Force, Army and Navy collaborative efforts to provide a Joint capability. The Air Force Research Laboratory (AFRL), Material and Manufacturing Directorate, Aerospace Expeditionary Force Division, Force Protection Branch (AFRLMLQF), The Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) Joint Technology Center (JTC)/Systems Integration Laboratory (SIL), and the Space and Naval Warfare Systems Center-San Diego (SSC San Diego) are conducting technical research and proof of principle for an envisioned operational concept for extended range, three dimensional, collaborative operations between unmanned systems, with enhanced situational awareness for lethal operations in complex terrain. This program will assess information requirements and conduct experiments to identify and resolve technical risks for collaborative engagements using Unmanned Ground Vehicles (UGVs) and Unmanned Aerial Vehicles (UAVs). It will research, develop and physically integrate multiple unmanned systems and conduct live collaborative experiments. Modeling and Simulation systems will be upgraded to reflect engineering fidelity levels to greater understand technical challenges to operate as a team. This paper will provide an update of a multi-year program and will concentrate primarily on the JTC/SIL efforts. Other papers will outline in detail the Air Force and Navy portions of this effort.

  2. EC97-44347-15

    NASA Image and Video Library

    1997-12-11

    This console and its compliment of computers, monitors and commmunications equipment make up the Research Engineering Test Station, the nerve center for an aerodynamics experiment conducted by NASA's Dryden Flight Research Center, Edwards, California. The equipment was installed on a modified Lockheed L-1011 Tristar jetliner operated by Orbital Sciences Corp., of Dulles, Va., for Dryden's Adaptive Performance Optimization project. The experiment sought to improve the efficiency of long-range jetliners by using small movements of the ailerons to improve the aerodynamics of the wing at cruise conditions.

  3. ACE-1 experiment

    NASA Image and Video Library

    2013-06-24

    ISS036-E-019830 (24 June 2013) --- In the International Space Station’s Destiny laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, speaks into a microphone while conducting a session with the Advanced Colloids Experiment (ACE)-1 sample preparation at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). ACE-1 is a series of microscopic imaging investigations that uses the microgravity environment to examine flow characteristics and the evolution and ordering effects within a group of colloidal materials.

  4. Experiments and FEM simulations of fracture behaviors for ADC12 aluminum alloy under impact load

    NASA Astrophysics Data System (ADS)

    Hu, Yumei; Xiao, Yue; Jin, Xiaoqing; Zheng, Haoran; Zhou, Yinge; Shao, Jinhua

    2016-11-01

    Using the combination of experiment and simulation, the fracture behavior of the brittle metal named ADC12 aluminum alloy was studied. Five typical experiments were carried out on this material, with responding data collected on different stress states and dynamic strain rates. Fractographs revealed that the morphologies of fractured specimen under several rates showed different results, indicating that the fracture was predominantly a brittle one in nature. Simulations of the fracture processes of those specimens were conducted by Finite Element Method, whilst consistency was observed between simulations and experiments. In simulation, the Johnson- Cook model was chosen to describe the damage development and to predict the failure using parameters determined from those experimental data. Subsequently, an ADC12 engine mount bracket crashing simulation was conducted and the results indicated good agreement with the experiments. The accordance showed that our research can provide an accurate description for the deforming and fracture processes of the studied alloy.

  5. Skylab

    NASA Image and Video Library

    1972-06-02

    One of the most successful of the Skylab educational efforts was the Skylab Student Project. A nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA) in which secondary students were encouraged to submit proposals for experiments to be conducted on Skylan in Earth orbit the following year. After the official announcement of this project, over 4,000 students responded with 3,409 proposals. The winning 25 students, along with their parents and sponsor teachers, visited Marshall Space Flight Center (MSFC), the lead center for Skylab, where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment. This photograph is a group shot of the 25 winners, parents, and sponsors when they met for the first time on the steps of Building 4200 at MSFC in the Spring of 1972.

  6. Photocatalytic destruction of chlorinated solvents with solar energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacheco, J.; Prairie, M.; Yellowhorse, L.

    1990-01-01

    Sandia National Laboratories and the Solar Energy Research Institute are developing a photocatalytic process to destroy organic contaminants in water. Tests with common water pollutants are being conducted at Sandia's Solar Thermal Test Facility using a near commercial-scale single-axis tracking parabolic trough system with glass pipe mounted at its focus. Experiments at this scale provide verification of laboratory studies and allow examination of design and operation issues at a real-life scale. The catalyst, titanium dioxide (TiO{sub 2}), is a harmless material found in paint, cosmetics and toothpaste. Experiments were conducted to determine the effect of key process parameters on destructionmore » rates of two chlorinated organic compounds which are common water pollutants: trichloroethylene and trichloroethane. In this paper, we summarize the engineering-scale results of these experiments and analyses. 21 refs., 8 figs.« less

  7. Single element injector testing for STME injector technology

    NASA Technical Reports Server (NTRS)

    Hulka, J.; Schneider, J. A.; Davis, J.

    1992-01-01

    An oxidizer-swirled coaxial element injector is being developed for application in the liquid oxygen/gaseous hydrogen Space Transportation Main Engine (STME) for the National Launch System (NLS) vehicle. This paper reports on the first two parts of a four part single injector element study for optimization of the STME injector design. Measurements of Rupe mixing efficiency and atomization characteristics are reported for single element versions of injection elements from two multielement injectors that have been recently hot fire tested. Rather than attempting to measure a definitive mixing efficiency or droplet size parameters of these injector elements, the purpose of these experiments was to provide a baseline comparison for evaluating future injector element design modifications. Hence, all the experiments reported here were conducted with cold flow simulants to nonflowing, ambient conditions. Mixing experiments were conducted with liquid/liquid simulants to provide economical trend data. Atomization experiments were conducted with liquid/gas simulants without backpressure. The results, despite significant differences from hot fire conditions, were found to relate to mixing and atomization parameters deduced from the hot fire testing, suggesting that these experiments are valid for trend analyses. Single element and subscale multielement hot fire testing will verify optimized designs before committing to fullscale fabrication.

  8. My Rewarding Summer Research Experience at NASA

    NASA Technical Reports Server (NTRS)

    Aviles, Andres

    2007-01-01

    My summer research experience at the Kennedy Space Center has been a truly rewarding one. As an electrical engineering student at the University of South Florida, I was blessed with a beneficial opportunity to gain valuable knowledge in my career, and also apply it through working at NASA. One of my inspirations in becoming an engineer is to work at NASA someday, and I was very excited and honored to have this opportunity. My goal in this internship was to strengthen my preparation in becoming an engineer by learning new material, acquiring skills by practicing what I learned, and discovering the expectations of engineering work at NASA. Through this summer research, I was able to learn new computer programs and perform various tasks that gave me experience and skills as an engineer. My primary job was to conduct work on the Constellation Test article, which is a simulation model of the Crew Launch Vehicle (CLV) tanking system. This is a prototype of a launch facility and an Ares I Vehicle, which God willing will transport astronauts to the moon. Construction of the CLV is in progress and a test launch is anticipated for 2010. Moreover, the Test Article serves as a demonstration too, training test bed, and may be expanded for new simulation of launch system elements, which could be applied to real life operations. The test article is operated and run by a Programmable Logic Controller (PLC), which is a digital computer that is used to control all forms of machinery such as those in manufacturing buildings and other industries. PLCs are different than other computers because of the physical protection they have against damaging environmental conditions that would destroy other computers. Also, PLCs are equipped with lots of input and output connections that allow extensive amounts of commands to be executed, which would normally require many computers to do. Therefore, PLCs are small, rugged, and extremely powerful tools that may continue to be employed at NASA. Furthermore, in order to conduct productive work on the Test Article, I needed to learn the computer program called RS Logics 5000.

  9. New shipyard layout design for the preliminary phase & case study for the green field project

    NASA Astrophysics Data System (ADS)

    Song, Young Joo; Woo, Jong Hun

    2013-03-01

    For several decades, Asian nations such as Korea, Japan and China have been leading the shipbuilding industry since the decline in Europe and America. However, several developing countries such as India, Brazil, etc. are going to make an entrance into the shipbuilding industry. These developing countries are finding technical partners or information providers because they are in situation of little experiences and technologies. Now, the shipbuilding engineering companies of shipbuilding advanced countries are getting a chance of engineering business against those developing countries. The starting point of this business model is green field project for the construction of new shipyard. This business model is started with a design of the shipyard layout. For the conducting of the shipyard layout design, four kinds of engineering parts are required. Those are civil engineering, building engineering, utility engineering and production layout engineering. Among these parts, production layout engineering is most important because its result is the foundation of the other engineering parts and it determines the shipyard capacity during the shipyard operation lifecycle. Previous researches about the shipyard layout design are out of the range from the business requirements because most research cases are in the tower of ivory, which means that there are little consideration of real ship and shipbuilding operation. In this paper, a shipyard layout design for preliminary phase is conducted for the target of newly planned shipyard at Venezuela of South America with an integrated method that is capable of dealing with actual master data from the shipyard. The layout design method of this paper is differentiated from the previous researches in that the actual product data from the target ship and the actual shipbuilding operation data are used for the required area estimation.

  10. The technology improvement and development of the new design-engineering principles of pilot bore directional drilling

    NASA Astrophysics Data System (ADS)

    Shadrina, A.; Saruev, L.; Vasenin, S.

    2016-09-01

    This paper addresses the effectiveness of impact energy use in pilot bore directional drilling at pipe driving. We establish and develop new design-engineering principles for this method. These principles are based on a drill string construction with a new nipple thread connection and a generator construction of strain waves transferred through the drill string. The experiment was conducted on a test bench. Strain measurement is used to estimate compression, tensile, shear and bending stresses in the drill string during the propagation of elastic waves. Finally, the main directions of pilot bore directional drilling improvement during pipe driving are determinated. The new engineering design, as components of the pilot bore directional drilling technology are presented.

  11. Skylab

    NASA Image and Video Library

    1972-08-21

    Rockford, Illinois high school student, Vincent Converse (left), and Robert Head of the Marshall Space Flight Center (MSFC), check out the equipment to be used in conducting the student’s experiment aboard the Skylab the following year. His experiment, “Zero Gravity Mass Measurement” used a simple leaf spring with the mass to be weighed attached to the end. An electronic package oscillated the spring at a specific rate and the results were recorded electronically. Converse was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC two months earlier where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  12. Thrust Augmentation Measurements for a Pulse Detonation Engine Driven Ejector

    NASA Technical Reports Server (NTRS)

    Pal, S.; Santoro, Robert J.; Shehadeh, R.; Saretto, S.; Lee, S.-Y.

    2005-01-01

    Thrust augmentation results of an ongoing study of pulse detonation engine driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE) setup with various ejector configurations. The PDE used in these experiments utilizes ethylene (C2H4) as the fuel, and an equi-molar mixture of oxygen and nitrogen as the oxidizer at an equivalence ratio of one. High fidelity thrust measurements were made using an integrated spring damper system. The baseline thrust of the PDE engine was first measured and agrees with experimental and modeling results found in the literature. Thrust augmentation measurements were then made for constant diameter ejectors. The parameter space for the study included ejector length, PDE tube exit to ejector tube inlet overlap distance, and straight versus rounded ejector inlets. The relationship between the thrust augmentation results and various physical phenomena is described. To further understand the flow dynamics, shadow graph images of the exiting shock wave front from the PDE were also made. For the studied parameter space, the results showed a maximum augmentation of 40%. Further increase in augmentation is possible if the geometry of the ejector is tailored, a topic currently studied by numerous groups in the field.

  13. Garan conducts CsPINs Experiment Operations

    NASA Image and Video Library

    2011-04-28

    ISS027-E-017843 (28 April 2011) --- NASA astronaut Ron Garan, Expedition 27 flight engineer, supports the Dynamism of Auxin Efflux Facilitators responsible for Gravity-regulated Growth and Development in Cucumber (CsPINs) experiment in the Kibo laboratory of the International Space Station. CsPINs studies the phenomenon of tropism, i.e., the growth or turning movement of a biological organism, usually a plant, in response to an environmental stimulus. Specifically focusing on gravity, the new JAXA life science experiment investigates how plants sense gravity as an environmental signal and use it for governing their morphology and growth orientation.

  14. Garan conducts CsPINs Experiment Operations

    NASA Image and Video Library

    2011-04-28

    ISS027-E-017840 (28 April 2011) --- NASA astronaut Ron Garan, Expedition 27 flight engineer, supports the Dynamism of Auxin Efflux Facilitators responsible for Gravity-regulated Growth and Development in Cucumber (CsPINs) experiment in the Kibo laboratory of the International Space Station. CsPINs studies the phenomenon of tropism, i.e., the growth or turning movement of a biological organism, usually a plant, in response to an environmental stimulus. Specifically focusing on gravity, the new JAXA life science experiment investigates how plants sense gravity as an environmental signal and use it for governing their morphology and growth orientation.

  15. Garan conducts CsPINs Experiment Operations

    NASA Image and Video Library

    2011-04-28

    ISS027-E-017839 (28 April 2011) --- NASA astronaut Ron Garan, Expedition 27 flight engineer, supports the Dynamism of Auxin Efflux Facilitators responsible for Gravity-regulated Growth and Development in Cucumber (CsPINs) experiment in the Kibo laboratory of the International Space Station. CsPINs studies the phenomenon of tropism, i.e., the growth or turning movement of a biological organism, usually a plant, in response to an environmental stimulus. Specifically focusing on gravity, the new JAXA life science experiment investigates how plants sense gravity as an environmental signal and use it for governing their morphology and growth orientation.

  16. An experimental study of gaseous exhaust emissions of diesel engine using blend of natural fatty acid methyl ester

    NASA Astrophysics Data System (ADS)

    Sudrajad, Agung; Ali, Ismail; Samo, Khalid; Faturachman, Danny

    2012-09-01

    Vegetable oil form in Natural Fatty Acid Methyl Ester (FAME) has their own advantages: first of all they are available everywhere in the world. Secondly, they are renewable as the vegetables which produce oil seeds can be planted year after year. Thirdly, they are friendly with our environment, as they seldom contain sulphur element in them. This makes vegetable fuel studies become current among the various popular investigations. This study is attempt to optimization of using blend FAME on diesel engine by experimental laboratory. The investigation experimental project is comparison between using blend FAME and base diesel fuel. The engine experiment is conducted with YANMAR TF120M single cylinder four stroke diesel engine set-up at variable engine speed with constant load. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at difference engine speed conditions have generally indicated lower in emission NOx, but slightly higher on CO2 emission. The result also shown that the blends FAME are good in fuel consumption and potentially good substitute fuels for diesel engine

  17. Quantum-limited heat conduction over macroscopic distances

    NASA Astrophysics Data System (ADS)

    Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko

    2016-05-01

    The emerging quantum technological apparatuses, such as the quantum computer, call for extreme performance in thermal engineering. Cold distant heat sinks are needed for the quantized electric degrees of freedom owing to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance. However, the short distance between the heat-exchanging bodies in the previous experiments hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics, which provides a basis for the superconducting quantum computer. Especially, our results facilitate remote cooling of nanoelectronic devices using faraway in situ-tunable heat sinks. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications.

  18. Hopkins works with the MDCA inside the CIR in the U.S. Laboratory

    NASA Image and Video Library

    2013-11-12

    ISS038-E-001298 (12 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, works with the Multi-user Drop Combustion Apparatus (MDCA) inside the Combustion Integrated Rack (CIR) in the Destiny laboratory of the International Space Station. The MDCA contains hardware and software to conduct unique droplet combustion experiments in space.

  19. NASA STEM Event

    NASA Image and Video Library

    2013-01-19

    NASA Astronaut and Associate Administrator for Education, Leland Melvin, talks to school children during an Science, Technology, Engineering, and Math (STEM) education event held at the Ritz-Carlton Hotel in Arlington, VA on Saturday, Jan. 19, 2013. Students were able to meet with Astronaut Melvin, conduct experiments, build their own space jab, and touch a mockup space suit. Photo Credit: (NASA/Bill Ingalls)

  20. NASA STEM Event

    NASA Image and Video Library

    2013-01-19

    School children are taught to build their own spacecraft and habitat during a Science, Technology, Engineering, and Math (STEM) education event held at the Ritz-Carlton Hotel in Arlington, VA on Saturday, Jan. 19, 2013. Students were able to meet with Astronaut Leland Melvin, conduct experiments, build their own space jab, and touch a mockup space suit. Photo Credit: (NASA/Bill Ingalls)

  1. Conducting Sanitary Surveys of Water Supply Systems. Student Workbook.

    ERIC Educational Resources Information Center

    1976

    This workbook is utilized in connection with a 40-hour course on sanitary surveys of water supply systems for biologists, chemists, and engineers with experience as a water supply evaluator. Practical training is provided in each of the 21 self-contained modules. Each module outlines the purpose, objectives and content for that section. The course…

  2. Exposing Engineering Students to Renewable Energy through Hands-On Experiments

    ERIC Educational Resources Information Center

    Yang, Yonggao; Li, Lin

    2013-01-01

    Renewable energy is the most rapidly growing discipline in today's business world and is commonly viewed as the main arena for research and development in various fields. This article summarizes the work and efforts of an educational project conducted at Prairie View A&M University (PVAMU). A major goal of the project was to design renewable…

  3. Cryogenic thermal diode heat pipes

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1979-01-01

    The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.

  4. Mercury Orbiter: Report of the Science Working Team

    NASA Technical Reports Server (NTRS)

    Belcher, John W.; Slavin, James A.; Armstrong, Thomas P.; Farquhar, Robert W.; Akasofu, Syun I.; Baker, Daniel N.; Cattell, Cynthia A.; Cheng, Andrew F.; Chupp, Edward L.; Clark, Pamela E.

    1991-01-01

    The results are presented of the Mercury Orbiter Science Working Team which held three workshops in 1988 to 1989 under the auspices of the Space Physics and Planetary Exploration Divisions of NASA Headquarters. Spacecraft engineering and mission design studies at the Jet Propulsion Lab were conducted in parallel with this effort and are detailed elsewhere. The findings of the engineering study, summarized herein, indicate that spin stabilized spacecraft carrying comprehensive particles and fields experiments and key planetology instruments in high elliptical orbits can survive and function in Mercury orbit without costly sun shields and active cooling systems.

  5. Experimental Investigation on Thermal Physical Properties of an Advanced Glass Fiber Composite Material

    NASA Astrophysics Data System (ADS)

    Guangfa, Gao; Yongchi, Li; Zheng, Jing; Shujie, Yuan

    Fiber reinforced composite materials were applied widely in aircraft and space vehicles engineering. Aimed to an advanced glass fiber reinforced composite material, a series of experiments for measuring thermal physical properties of this material were conducted, and the corresponding performance curves were obtained through statistic analyzing. The experimental results showed good consistency. And then the thermal physical parameters such as thermal expansion coefficient, engineering specific heat and sublimation heat were solved and calculated. This investigation provides an important foundation for the further research on the heat resistance and thermodynamic performance of this material.

  6. Active Narrow-Band Vibration Isolation of Large Engineering Structures

    NASA Technical Reports Server (NTRS)

    Rahman, Zahidul; Spanos, John

    1994-01-01

    We present a narrow-band tracking control method using a variant of the Least Mean Squares (LMS) algorithm to isolate slowly changing periodic disturbances from engineering structures. The advantage of the algorithm is that it has a simple architecture and is relatively easy to implement while it can isolate disturbances on the order of 40-50 dB over decades of frequency band. We also present the results of an experiment conducted on a flexible truss structure. The average disturbance rejection achieved is over 40 dB over the frequency band of 5 Hz to 50 Hz.

  7. Preliminary summary of the ETF conceptual studies

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Bercaw, R. W.; Pearson, C. V.; Owens, W. R.

    1978-01-01

    Power plant studies have shown the attractiveness of MHD topped steam power plants for baseload utility applications. To realize these advantages, a three-phase development program was initiated. In the first phase, the engineering data and experience were developed for the design and construction of a pilot plant, the Engineering Test Facility (ETF). Results of the ETF studies are reviewed. These three parallel independent studies were conducted by industrial teams led by the AVCO Everett Research Laboratory, the General Electric Corporation, and the Westinghouse Corporation. A preliminary analysis and the status of the critical evaluation of these results are presented.

  8. Radiation of sound from unflanged cylindrical ducts

    NASA Technical Reports Server (NTRS)

    Hartharan, S. L.; Bayliss, A.

    1983-01-01

    Calculations of sound radiated from unflanged cylindrical ducts are presented. The numerical simulation models the problem of an aero-engine inlet. The time dependent linearized Euler equations are solved from a state of rest until a harmonic solution is attained. A fourth order accurate finite difference scheme is used and solutions are obtained from a fully vectorized Cyber-203 computer program. Cases of both plane waves and spin modes are treated. Spin modes model the sound generated by a turbofan engine. Boundary conditions for both plane waves and spin modes are treated. Solutions obtained are compared with experiments conducted at NASA Langley Research Center.

  9. Advanced blade tip seal system, volume 2

    NASA Technical Reports Server (NTRS)

    Zelahy, J. W.; Fairbanks, N. P.

    1982-01-01

    The results of the endurance and performance engine tests conducted on monocrystal/abrasive-tipped CF6-50 Stage 1 HPT blades fabricated in Task VII of MATE Project 3 are presented. Two engine tests are conducted. The endurance engine test is conducted for 1000 C cycles. The performance engine test is conducted on a variable cycle core engine. Posttest evaluation and analyses of the blades and shrouds included visual, dimensional, and destructive evaluations.

  10. Humanitarian engineering in the engineering curriculum

    NASA Astrophysics Data System (ADS)

    Vandersteen, Jonathan Daniel James

    There are many opportunities to use engineering skills to improve the conditions for marginalized communities, but our current engineering education praxis does not instruct on how engineering can be a force for human development. In a time of great inequality and exploitation, the desire to work with the impoverished is prevalent, and it has been proposed to adjust the engineering curriculum to include a larger focus on human needs. This proposed curriculum philosophy is called humanitarian engineering. Professional engineers have played an important role in the modern history of power, wealth, economic development, war, and industrialization; they have also contributed to infrastructure, sanitation, and energy sources necessary to meet human need. Engineers are currently at an important point in time when they must look back on their history in order to be more clear about how to move forward. The changing role of the engineer in history puts into context the call for a more balanced, community-centred engineering curriculum. Qualitative, phenomenographic research was conducted in order to understand the need, opportunity, benefits, and limitations of a proposed humanitarian engineering curriculum. The potential role of the engineer in marginalized communities and details regarding what a humanitarian engineering program could look like were also investigated. Thirty-two semi-structured research interviews were conducted in Canada and Ghana in order to collect a pool of understanding before a phenomenographic analysis resulted in five distinct outcome spaces. The data suggests that an effective curriculum design will include teaching technical skills in conjunction with instructing about issues of social justice, social location, cultural awareness, root causes of marginalization, a broader understanding of technology, and unlearning many elements about the role of the engineer and the dominant economic/political ideology. Cross-cultural engineering development placements are a valuable pedagogical experience but risk benefiting the student disproportionately more than the receiving community. Local development placements offer different rewards and liabilities. To conclude, a major adjustment in engineering curriculum to address human development is appropriate and this new curriculum should include both local and international placements. However, the great force of altruism must be directed towards creating meaningful and lasting change.

  11. NASA Alternative-Fuel Effects on Contrails and Cruise Emissions (ACCESS) Flight Experiments

    NASA Astrophysics Data System (ADS)

    Anderson, B. E.; Moore, R.; Beyersdorf, A. J.; Thornhill, K. L., II; Shook, M.; Winstead, E.; Ziemba, L. D.; Bulzan, D. L.; Brown, A.; Beaton, B.; Schlager, H.

    2014-12-01

    Although the emission performance of gas-turbine engines burning renewable aviation fuels have been thoroughly documented in recent ground-based studies, there is still great uncertainty regarding how the fuels effect aircraft exhaust composition and contrail formation at cruise altitudes. To fill this information gap, the NASA Aeronautics Research Mission Directorate sponsored the ACCESS flight series to make detailed measurements of trace gases, aerosols and ice particles in the near-field behind the NASA DC-8 aircraft as it burned either standard petroleum-based fuel of varying sulfur content or a 50:50 blend of standard fuel and a hydro-treated esters and fatty acid (HEFA) jet fuel produced from camelina plant oil. ACCESS 1, conducted in spring 2013 near Palmdale CA, focused on refining flight plans and sampling techniques and used the instrumented NASA Langley HU-25 aircraft to document DC-8 emissions and contrails on five separate flights of ~2 hour duration. ACCESS 2, conducted from Palmdale in May 2014, engaged partners from the Deutsches Zentrum für Luft- und Raumfahrt (DLR) and National Research Council-Canada to provide additional scientific expertise and sampling aircraft (Falcon 20 and CT-133, respectively) with more extensive trace gas, particle, or air motion measurement capability. Eight, muliti-aircraft research flights of 2 to 4 hour duration were conducted to document the emissions and contrail properties of the DC-8 as it 1) burned low sulfur Jet A, high sulfur Jet A or low sulfur Jet A/HEFA blend, 2) flew at altitudes between 6 and 11 km, and 3) operated its engines at three different fuel flow rates. This presentation further describes the ACCESS flight experiments, examines fuel type and thrust setting impacts on engine emissions, and compares cruise-altitude observations with similar data acquired in ground-test venues.

  12. Alternative-Fuel Effects on Contrails & Cruise Emissions (ACCESS-2) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Anderson, Bruce E.

    2015-01-01

    Although the emission performance of gas-turbine engines burning renewable aviation fuels have been thoroughly documented in recent ground-based studies, there is still great uncertainty regarding how the fuels effect aircraft exhaust composition and contrail formation at cruise altitudes. To fill this information gap, the NASA Aeronautics Research Mission Directorate sponsored the ACCESS flight series to make detailed measurements of trace gases, aerosols and ice particles in the near-field behind the NASA DC-8 aircraft as it burned either standard petroleum-based fuel of varying sulfur content or a 50:50 blend of standard fuel and a hydro-treated esters and fatty acid (HEFA) jet fuel produced from camelina plant oil. ACCESS 1, conducted in spring 2013 near Palmdale CA, focused on refining flight plans and sampling techniques and used the instrumented NASA Langley HU-25 aircraft to document DC-8 emissions and contrails on five separate flights of approx.2 hour duration. ACCESS 2, conducted from Palmdale in May 2014, engaged partners from the Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) and National Research Council-Canada to provide additional scientific expertise and sampling aircraft (Falcon 20 and CT-133, respectively) with more extensive trace gas, particle, or air motion measurement capability. Eight, muliti-aircraft research flights of 2 to 4 hour duration were conducted to document the emissions and contrail properties of the DC-8 as it 1) burned low sulfur Jet A, high sulfur Jet A or low sulfur Jet A/HEFA blend, 2) flew at altitudes between 6 and 11 km, and 3) operated its engines at three different fuel flow rates. This presentation further describes the ACCESS flight experiments, examines fuel type and thrust setting impacts on engine emissions, and compares cruise-altitude observations with similar data acquired in ground tests.

  13. Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with ethanol and dodecanol

    NASA Astrophysics Data System (ADS)

    Cheung, C. S.; Di, Yage; Huang, Zuohua

    Experiments were conducted on a four-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the main fuel, ethanol as the oxygenate additive and dodecanol as the solvent, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev min -1. Blended fuels containing 6.1%, 12.2%, 18.2% and 24.2% by volume of ethanol, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. The results indicate that with an increase in ethanol in the fuel, the brake specific fuel consumption becomes higher while there is little change in the brake thermal efficiency. Regarding the regulated emissions, HC and CO increase significantly at low engine load but might decrease at high engine load, NO x emission slightly decreases at low engine load but slightly increases at high engine load, while particulate mass decreases significantly at high engine load. For the unregulated gaseous emissions, unburned ethanol and acetaldehyde increase but formaldehyde, ethene, ethyne, 1,3-butadiene and BTX (benzene, toluene and xylene) in general decrease, especially at high engine load. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics.

  14. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    NASA Astrophysics Data System (ADS)

    Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-10-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.

  15. Identification of Surface and Near Surface Defects and Damage Evaluation by Laser Speckle Techniques

    NASA Technical Reports Server (NTRS)

    Gowda, Chandrakanth H.

    2001-01-01

    As a part of the grant activity, a laboratory was established within the Department of Electrical Engineering for the study for measurements of surface defects and damage evaluation. This facility has been utilized for implementing several algorithms for accurate measurements of defects. Experiments were conducted using simulated images and multiple images were fused to achieve accurate measurements. During the nine months of the grants when the principal investigator was transferred in my name, experiments were conducted using simulated synthetic aperture radar (SAR) images. This proved useful when several algorithms were used on images of smooth objects with minor deformalities. Given the time constraint, the derived algorithms could not be applied to actual images of smooth objects with minor abnormalities.

  16. Expedition 5 Crew Interviews: Peggy Whitson

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 5 Flight Engineer Peggy Whitson is seen during a prelaunch interview. She gives details on the mission's goals and significance, her role in the mission, what her responsibilities will be, what the crew activities will be like (docking and undocking of two Progress unpiloted supply vehicles, normal space station maintenance tasks, conducting science experiments, installing the CETA (Crew and Equipment Translation) cart, and supporting the installation of the International Truss Structure S1 segment), the day-to-day life on an extended stay mission, the experiments she will be conducting on board, and what the S1 truss will mean to the International Space Station (ISS). Whitson ends with her thoughts on the short-term and long-term future of the ISS.

  17. Research Pilot C. Gordon Fullerton in Cockpit of TU-144LL SST Flying Laboratory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA Research pilot C. Gordon Fullerton sits in cockpit of TU-144LL SST Flying Laboratory. Fullerton was one of two NASA pilots who flew the aircraft as part of a joint high speed research program. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.

  18. Russian Tu-144LL SST Roll-Out for Joint NASA Research Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The modified Tu-144LL supersonic flying laboratory is rolled out of its hangar at the Zhukovsky Air Development Center near Moscow, Russia in March 1996 at the beginning of a joint U.S. - Russian high-speed flight research program. The 'LL' stands for Letayuschaya Laboratoriya, which means Flying Laboratory. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.

  19. Russian Tu-144LL SST Roll-out for Joint NASA Research Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    U.S. Ambassador Pickering addresses Russian and American dignitaries, industry representatives and members of the press during a roll-out ceremony for the modified Tu-144LL supersonic flying laboratory. The ceremony was held at the Zhukovsky Air Development Center near Moscow, Russia, on March 17, 1996. The 'LL' designation for the aircraft stands for Letayuschaya Laboratoriya, which means Flying Laboratory in Russian. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.

  20. Design, Certification, and Deployment of the Colorimetric Water Quality Monitoring Kit (CWQMK)

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeff A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Carrizales, Stephanie M.; McCoy, J. Torin

    2009-01-01

    In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS) aboard STS-128/17A. The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was developed by a team of scientists and engineers from NASA s Habitability and Environmental Factors Division in the Space Life Sciences Directorate at Johnson Space Center, the Wyle Integrated Science and Engineering Group in Houston, Texas, the University of Utah, and Iowa State University. The CWQMK was flown and deployed as a Station Development Test Objective (SDTO) experiment on ISS. The goal of the SDTO experiment was to evaluate the acceptability of CSPE technology for routine water quality monitoring on ISS. This paper provides an overview of the SDTO experiment, as well as a detailed description of the CWQMK hardware and a summary of the testing and analysis conducted to certify the CWQMK for use on ISS. The results obtained from the SDTO experiment are also reported and discussed in detail.

  1. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission

    PubMed Central

    Zhang, Zhiheng; Yang, Guoan; Hu, Kun

    2018-01-01

    Fatigue failure is the main type of failure that occurs in gas turbine engine blades and an online monitoring method for detecting fatigue cracks in blades is urgently needed. Therefore, in this present study, we propose the use of acoustic emission (AE) monitoring for the online identification of the blade status. Experiments on fatigue crack propagation based on the AE monitoring of gas turbine engine blades and TC11 titanium alloy plates were conducted. The relationship between the cumulative AE hits and the fatigue crack length was established, before a method of using the AE parameters to determine the crack propagation stage was proposed. A method for predicting the degree of crack propagation and residual fatigue life based on the AE energy was obtained. The results provide a new method for the online monitoring of cracks in the gas turbine engine blade. PMID:29693556

  2. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.

    PubMed

    Zhang, Zhiheng; Yang, Guoan; Hu, Kun

    2018-04-25

    Fatigue failure is the main type of failure that occurs in gas turbine engine blades and an online monitoring method for detecting fatigue cracks in blades is urgently needed. Therefore, in this present study, we propose the use of acoustic emission (AE) monitoring for the online identification of the blade status. Experiments on fatigue crack propagation based on the AE monitoring of gas turbine engine blades and TC11 titanium alloy plates were conducted. The relationship between the cumulative AE hits and the fatigue crack length was established, before a method of using the AE parameters to determine the crack propagation stage was proposed. A method for predicting the degree of crack propagation and residual fatigue life based on the AE energy was obtained. The results provide a new method for the online monitoring of cracks in the gas turbine engine blade.

  3. Blade tip clearance measurement of the turbine engines based on a multi-mode fiber coupled laser ranging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Haotian; Duan, Fajie; Wu, Guoxiu

    2014-11-15

    The blade tip clearance is a parameter of great importance to guarantee the efficiency and safety of the turbine engines. In this article, a laser ranging system designed for blade tip clearance measurement is presented. Multi-mode fiber is utilized for optical transmission to guarantee that enough optical power is received by the sensor probe. The model of the tiny sensor probe is presented. The error brought by the optical path difference of different modes of the fiber is estimated and the length of the fiber is limited to reduce this error. The measurement range in which the optical power receivedmore » by the probe remains essentially unchanged is analyzed. Calibration experiments and dynamic experiments are conducted. The results of the calibration experiments indicate that the resolution of the system is about 0.02 mm and the range of the system is about 9 mm.« less

  4. Deicing System Protects General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Kelly Aerospace Thermal Systems LLC worked with researchers at Glenn Research Center on deicing technology with assistance from the Small Business Innovation Research (SBIR) program. Kelly Aerospace acquired Northcoast Technologies Ltd., a firm that had conducted work on a graphite foil heating element under a NASA SBIR contract and developed a lightweight, easy-to-install, reliable wing and tail deicing system. Kelly Aerospace engineers combined their experiences with those of the Northcoast engineers, leading to the certification and integration of a thermoelectric deicing system called Thermawing, a DC-powered air conditioner for single-engine aircraft called Thermacool, and high-output alternators to run them both. Thermawing, a reliable anti-icing and deicing system, allows pilots to safely fly through ice encounters and provides pilots of single-engine aircraft the heated wing technology usually reserved for larger, jet-powered craft. Thermacool, an innovative electric air conditioning system, uses a new compressor whose rotary pump design runs off an energy-efficient, brushless DC motor and allows pilots to use the air conditioner before the engine even starts

  5. Metallized Gelled Propellants: Oxygen/RP-1/Aluminum Rocket Engine Calorimeter Heat Transfer Measurements and Analysis

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    1997-01-01

    A set of analyses was conducted to determine the heat transfer characteristics of metallized gelled liquid propellants in a rocket engine. The analyses used the data from experiments conducted with a small 30- to 40-lbf thrust engine composed of a modular injector, igniter, chamber and nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-wt %, 5-wt%, and 55-wt% loadings of aluminum with silicon dioxide gellant, and gaseous oxygen as the oxidizer. Heat transfer was computed based on measurements using calorimeter rocket chamber and nozzle hardware with a total of 31 cooling channels. A gelled fuel coating formed in the 0-, 5- and 55-wt% engines, and the coating was composed of unburned gelled fuel and partially combusted RP-1. The coating caused a large decrease in calorimeter engine heat flux in the last half of the chamber for the 0- and 5-wt% RP-1/Al. This heat flux reduction effect was analyzed by comparing engine runs and the changes in the heat flux during a run as well as from run to run. Heat transfer and time-dependent heat flux analyses and interpretations are provided. The 5- and 55-wt% RP-1/Al fueled engines had the highest chamber heat fluxes, with the 5-wt% fuel having the highest throat flux. This result is counter to the predicted result, where the 55 wt% fuel has the highest combustion and throat temperature, and therefore implies that it would deliver the highest throat heat flux. The 5-wt% RP-1/Al produced the most influence on the engine heat transfer and the heat flux reduction was caused by the formation of a gelled propellant layer in the chamber and nozzle.

  6. Effect of residual oil saturation on hydrodynamic properties of porous media

    NASA Astrophysics Data System (ADS)

    Zhang, Junjie; Zheng, Xilai; Chen, Lei; Sun, Yunwei

    2014-07-01

    To understand the effect of residual oil on hydraulic properties and solute dispersive behavior of porous media, miscible displacement column experiments were conducted using two petroleum products (diesel and engine oil) and a sandy soil. The effective water permeability, effective water-filled porosity, and dispersivity were investigated in two-fluid systems of water and oil as a function of residual oil saturation (ROS). At the end of each experiment, the distribution of ending ROS along the sand column was determined by the method of petroleum ether extraction-ultraviolet spectrophotometry. Darcy’s Law was used to determine permeability, while breakthrough curves (BTCs) of a tracer, Cl-, were used to calibrate effective porosity and dispersivity. The experimental results indicate that the maximum saturated zone residual saturation of diesel and engine oil in this study are 16.0% and 45.7%, respectively. Cl- is found to have no sorption on the solid matrix. Generated BTCs are sigmoid in shape with no evidence of tailing. The effective porosity of sand is inversely proportional to ROS. For the same level of ROS, the magnitude of reduction in effective porosity by diesel is close to that by engine oil. The relative permeability of sand to water saturation decreases with increasing amount of trapped oil, and the slope of the relative permeability-saturation curve for water is larger at higher water saturations, indicating that oil first occupies larger pores, which have the most contribution to the conductivity of the water. In addition, the reduction rate of relative permeability by diesel is greater than that by engine oil. The dispersivity increases with increasing ROS, suggesting that the blockage of pore spaces by immobile oil globules may enhance local velocity variations and increase the tortuosity of aqueous-phase flow paths.

  7. KC-135 and Other Microgravity Simulations

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document represents a summary of medical and scientific evaluations conducted aboard the KC-135 from June 23, 2004 to June 27, 2005. Included is a general overview of KC-135 activities manifested and coordinated by the Human Adaptation and Countermeasures Office. A collection of brief reports that describe tests conducted aboard the KC-135 follows the overview. Principal investigators and test engineers contributed significantly to the content of the report describing their particular experiment or hardware evaluation. This document concludes with an appendix that provides background information concerning the KC-135 and the Reduced-Gravity Program.

  8. Intelligent hypertext systems for aerospace engineering applications

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.

    1989-01-01

    This paper is a progress report on the utilization of AI technology for assisting users locating and understanding technical information in manuals used for planning and conducting wind tunnel test. The specific goal is to create an Intelligent Hypertext System (IHS) for wind tunnel testing which combines the computerized manual in the form of hypertext and an advisory system that stores experts' knowledge and experiences. A prototype IHS for conducting transonic wind tunnel testing has been constructed with limited knowledge base. The prototype is being evaluated by potential users.

  9. Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with Euro V diesel fuel and fumigation methanol

    NASA Astrophysics Data System (ADS)

    Zhang, Z. H.; Cheung, C. S.; Chan, T. L.; Yao, C. D.

    2010-03-01

    Experiments were conducted on a four-cylinder direct-injection diesel engine with part of the engine load taken up by fumigation methanol injected into the air intake of each cylinder to investigate the regulated and unregulated gaseous emissions and particulate emission of the engine under five engine loads at an engine speed of 1920 rev min -1. The fumigation methanol was injected to top up 10%, 20% and 30% of the engine load under different engine operating conditions. The experimental results show that at low engine loads, the brake thermal efficiency (BTE) decreases with increase in fumigation methanol; but at high engine loads, the BTE is not significantly affected by fumigation methanol. The fumigation methanol results in significant increase in hydrocarbon (HC), carbon monoxide (CO) and nitrogen dioxide (NO 2) emissions, but decrease in nitrogen oxides (NO x). For the unregulated gaseous emissions, unburned methanol, formaldehyde and BTX (benzene, toluene and xylene) emissions increase but ethyne, ethene and 1,3-butadiene emissions decrease. Particulate mass and number concentrations also decrease with increase in fumigation methanol. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics, when the exhaust gas temperature is sufficiently high.

  10. Experimental investigation of engine emissions with marine gas oil-oxygenate blends.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2010-07-15

    This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Cell biology and biotechnology research for exploration of the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Pellis, N.; North, R.

    Health risks generated by human long exposure to radiation, microgravity, and unknown factors in the planetary environment are the major unresolved issues for human space exploration. A complete characterization of human and other biological systems adaptation processes to long-duration space missions is necessary for the development of countermeasures. The utilization of cell and engineered tissue cultures in space research and exploration complements research in human, animal, and plant subjects. We can bring a small number of humans, animals, or plants to the ISS, Moon, and Mars. However, we can investigate millions of their cells during these missions. Furthermore, many experiments can not be performed on humans, e.g. radiation exposure, cardiac muscle. Cells from critical tissues and tissue constructs per se are excellent subjects for experiments that address underlying mechanisms important to countermeasures. The development of cell tissue engineered for replacement, implantation of biomaterial to induce tissue regeneration (e.g. absorbable collagen matrix for guiding tissue regeneration in periodontal surgery), and immunoisolation (e.g. biopolymer coating on transplanted tissues to ward off immunological rejection) are good examples of cell research and biotechnology applications. NASA Cell Biology and Biotechnology research include Bone/Muscle and Cardiovascular cell culture and tissue engineering; Environmental Health and Life Support Systems; Immune System; Radiation; Gravity Thresholds ; and Advanced Biotechnology Development to increase the understanding of animal and plant cell adaptive behavior when exposed to space, and to advance technologies that facilitates exploration. Cell systems can be used to investigate processes related to food, microbial proliferation, waste management, biofilms and biomaterials. The NASA Cell Science Program has the advantage of conducting research in microgravity based on significantly small resources, and the ability to conduct experiments in the early phase of the development of requirements for exploration. Supporting the NASA concept of stepping stones, we believe that ground based, International Space Station, robotic and satellite missions offer the ideal environment to perform experiments and secure answers necessary for human exploration.

  12. An Experimental Introduction to Acoustics

    NASA Astrophysics Data System (ADS)

    Black, Andy Nicholas; Magruder, Robert H.

    2017-11-01

    Learning and understanding physics requires more than studying physics texts. It requires doing physics. Doing research is a key opportunity for students to connect physical principles with their everyday experience. A powerful way to introduce students to research and technique is through subjects in which they might find interest. Presented is an experiment that serves to introduce an advanced undergraduate or high school student to conducting research in acoustics via an experiment involving a standard dreadnought acoustic guitar, recording industry-related equipment, and relevant industrial analysis software. This experimental process is applicable to a wide range of acoustical topics including both acoustic and electric instruments. Also, the student has a hands-on experience with relevant audio engineering technology to study physical principles.

  13. Focused RBCC Experiments: Two-Rocket Configuration Experiments and Hydrocarbon/Oxygen Rocket Ejector Experiments

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This addendum report documents the results of two additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Penn State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3 d generation Reusable Launch Vehicles (RLV). The tasks reported here build on an earlier NASA MSFC funded research program on rocket ejector investigations. The first task investigated the improvements of a gaseous hydrogen/oxygen twin thruster RBCC rocket ejector system over a single rocket system. The second task investigated the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. Detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen, nitrogen and water vapor) for the gaseous hydrogen/oxygen rocket ejector experiments.

  14. NASA STEM Event

    NASA Image and Video Library

    2013-01-19

    School children watch a TV program showing how the Mars rover Curiosity landed on Mars during an Science, Technology, Engineering, and Math (STEM) education event held at the Ritz-Carlton Hotel in Arlington, VA on Saturday, Jan. 19, 2013. Students were able to meet with Astronaut Melvin, conduct experiments, build their own space jab, and touch a mockup space suit. Photo Credit: (NASA/Bill Ingalls)

  15. The 1939-1940 New York World's Fair and the Transformation of the American Science Extracurriculum

    ERIC Educational Resources Information Center

    Terzian, Sevan G.

    2009-01-01

    At the 1939-1940 New York World's Fair, several thousand boys and girls, all members of a growing national network of high school science and engineering clubs, displayed their science fair projects and conducted live experiments to more than 10 million visitors. Housed in the building sponsored by the Westinghouse Electric and Manufacturing…

  16. Using Prediction Markets to Track Information Flows: Evidence from Google

    NASA Astrophysics Data System (ADS)

    Cowgill, Bo; Wolfers, Justin; Zitzewitz, Eric

    Since 2005, Google has conducted the largest corporate experiment with prediction markets we are aware of. In this paper, we illustrate how markets can be used to study how an organization processes information. We show that market participants are not typical of Google’s workforce, and that market participation and success is skewed towards Google’s engineering and quantitatively oriented employees.

  17. A combined Eulerian-Lagrangian two-phase analysis of the SSME HPOTP nozzle plug trajectories

    NASA Technical Reports Server (NTRS)

    Garcia, Robert; Mcconnaughey, P. K.; Dejong, F. J.; Sabnis, J. S.; Pribik, D.

    1989-01-01

    As a result of high cycle fatigue, hydrogen embrittlement, and extended engine use, it was observed in testing that the trailing edge on the first stage nozzle plug in the High Pressure Oxygen Turbopump (HPOTP) could detach. The objective was to predict the trajectories followed by particles exiting the turbine. Experiments had shown that the heat exchanger soils, which lie downstream of the turbine, would be ruptured by particles traveling in the order of 360 ft/sec. An axisymmetric solution of the flow was obtained from the work of Lin et. al., who used INS3D to obtain the solution. The particle trajectories were obtained using the method of de Jong et. al., which employs Lagrangian tracking of the particle through the Eulerian flow field. The collision parameters were obtained from experiments conducted by Rocketdyne using problem specific alloys, speeds, and projectile geometries. A complete 3-D analysis using the most likely collision parameters shows maximum particle velocities of 200 ft/sec. in the heat exchanger region. Subsequent to this analysis, an engine level test was conducted in which seven particles passed through the turbine but no damage was observed on the heat exchanger coils.

  18. Participant outcomes, perceptions, and experiences in the Internationally Educated Engineers Qualification Program, University of Manitoba: An exploratory study

    NASA Astrophysics Data System (ADS)

    Friesen, Marcia R.

    Immigration, economic, and regulatory trends in Canada have challenged all professions to examine the processes by which immigrant professionals (international graduates) achieve professional licensure and meaningful employment in Canada. The Internationally Educated Engineers Qualification Program (IEEQ) at the University of Manitoba was developed as an alternate pathway to integrate international engineering graduates into the engineering profession in Manitoba. However, universities have the neither mandate nor the historical practice to facilitate licensure for immigrant professionals and, thus, the knowledge base for program development and delivery is predominantly experiential. This study was developed to address the void in the knowledge base and support the program's ongoing development by conducting a critical, exploratory, participant-oriented evaluation of the IEEQ Program for both formative and summative purposes. The research questions focussed on how the IEEQ participants perceived and described their experiences in the IEEQ Program, and how the participants' outcomes in the IEEQ Program compared to international engineering graduates pursuing other licensing pathways. The study was built on an interpretivist theoretical approach that supported a primarily qualitative methodology with selected quantitative elements. Data collection was grounded in focus group interviews, written questionnaires, student reports, and program records for data collection, with inductive data analysis for qualitative data and descriptive statistics for quantitative data. The findings yielded rich understandings of participants' experiences in the IEEQ Program, their outcomes relative to international engineering graduates (IEGs) pursuing other licensing pathways, and their perceptions of their own adaptation to the Canadian engineering profession. Specifically, the study suggests that foreign credentials recognition processes have tended to focus on the recognition and translation of human and/or institutional capital. Yet, access to and acquisition of social and cultural capital need to receive equal attention. Further, the study suggested that, while it is reasonable that language fluency is a pre-requisite for successful professional integration, there is also a fundamental link between language and cognition in that international engineering graduates are challenged to understand and assimilate information for which they may not possess useful language or the underlying mental constructs. The findings have implications for our collective understanding of the scope of the professional engineering body of knowledge.

  19. Optical projects in the Clinic program at Harvey Mudd College

    NASA Astrophysics Data System (ADS)

    Yang, Q.

    2017-08-01

    Clinic program is the senior capstone program at Harvey Mudd College (HMC). Multidisciplinary and industry-sponsored projects allow a team of students to solve a real-world problem over one academic year. Over its 50 plus years, Clinic program has completed numerous optics related projects. This report gives an overview of the Clinic program, reviews recent optical projects and discusses how this program supports the learning of the HMC engineering students. A few sample optical projects with more details are presented to provide an insight of what challenges that undergraduates can overcome. Students achieve learning within the optics discipline and the related engineering disciplines. The experiences in these optical projects indicate the great potential to bringing optical hands-on projects into the undergraduate level. Because of the general engineering curriculum at HMC, these projects often work the best with a multidisciplinary nature even if the core of the project is optically focused. Students gain leadership training, oral and written communication skills and experiences in team work. Close relationship with the sponsor liaisons allows for the students to gain skills in professional conduct, management of tight schedule and a specified budget, and it well prepares the students to their engineering practice. Optical projects have their own sets of specific challenges, so it needs to be chosen properly to match the undergraduate skill sets such as those of HMC engineering students.

  20. Investigation of methyl decanoate combustion in an optical direct-injection diesel engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, A. S.; Dumitrescu, Cosmin E.; Mueller, Charles J.

    In this study, an optically accessible heavy-duty diesel engine was used to investigate the impact of methyl decanoate (MD) on combustion and emissions. A specific goal of the study was to determine if MD could enable soot-free leaner-lifted flame combustion (LLFC) – a mode of mixing-controlled combustion associated with fuel-air equivalence ratios below approximately two. An ultra-low sulfur diesel certification fuel (CF) was used as the baseline fuel, and experiments were conducted at two fuel-injection pressures with three levels of charge-gas dilution. In addition to conventional pressure-based and engine-out emissions measurements, exhaust laser-induced incandescence, in-cylinder natural luminosity (NL), and in-cylindermore » chemiluminescence (CL) diagnostics were used to provide detailed insight into combustion processes.« less

  1. Investigation of methyl decanoate combustion in an optical direct-injection diesel engine

    DOE PAGES

    Cheng, A. S.; Dumitrescu, Cosmin E.; Mueller, Charles J.

    2014-11-24

    In this study, an optically accessible heavy-duty diesel engine was used to investigate the impact of methyl decanoate (MD) on combustion and emissions. A specific goal of the study was to determine if MD could enable soot-free leaner-lifted flame combustion (LLFC) – a mode of mixing-controlled combustion associated with fuel-air equivalence ratios below approximately two. An ultra-low sulfur diesel certification fuel (CF) was used as the baseline fuel, and experiments were conducted at two fuel-injection pressures with three levels of charge-gas dilution. In addition to conventional pressure-based and engine-out emissions measurements, exhaust laser-induced incandescence, in-cylinder natural luminosity (NL), and in-cylindermore » chemiluminescence (CL) diagnostics were used to provide detailed insight into combustion processes.« less

  2. (Surface engineering by high energy beams)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHargue, C.J.

    1989-10-23

    A paper entitled Structure-Mechanical Property relationships in Ion-Implanted Ceramics'' was presented at the 2nd International Seminar on Surface Engineering by High Energy Beams in Lisbon, Portugal. This seminar was sponsored by the International Federation of Heat Treatment and Surface Engineering and included discussions on surface modifications using laser, electron, and ion beams. The visit to the University of Lisbon and LNETI-Sacavem included discussions regarding collaborative research in which Professor J.C. Soares and Dr. M.F. da Silva would conduct perturbed angular correlation (PAC) studies on ion-implanted samples supplied by the traveler. The collaboration between researchers at ORNL and the University Claudemore » Bernard-Lyon 1 (France) continues. Data were analyzed during this visit, plans for further experiments were developed, and a paper was drafted for publication.« less

  3. Foil Bearing Starting Considerations and Requirements for Rotorcraft Engine Applications

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.; DellaCorte, Christopher

    2009-01-01

    Foil gas bearings under development for rotorcraft-sized, hot core engine applications have been susceptible to damage from the slow acceleration and rates typically encountered during the pre-ignition stage in conventional engines. Recent laboratory failures have been assumed to be directly linked to operating foil bearings below their lift-off speed while following conventional startup procedures for the engines. In each instance, the continuous sliding contact between the foils and shaft was believed to thermally overload the bearing and cause the engines to fail. These failures highlight the need to characterize required acceleration rates and minimum operating speeds for these applications. In this report, startup experiments were conducted with a large, rotorcraft engine sized foil bearing under moderate load and acceleration rates to identify the proper start procedures needed to avoid bearing failure. The results showed that a bearing under a 39.4 kPa static load can withstand a modest acceleration rate of 500 rpm/s and excessive loitering below the bearing lift-off speed provided an adequate solid lubricant is present.

  4. Aerodynamic Database Development for the Hyper-X Airframe Integrated Scramjet Propulsion Experiments

    NASA Technical Reports Server (NTRS)

    Engelund, Walter C.; Holland, Scott D.; Cockrell, Charles E., Jr.; Bittner, Robert D.

    2000-01-01

    This paper provides an overview of the activities associated with the aerodynamic database which is being developed in support of NASA's Hyper-X scramjet flight experiments. Three flight tests are planned as part of the Hyper-X program. Each will utilize a small, nonrecoverable research vehicle with an airframe integrated scramjet propulsion engine. The research vehicles will be individually rocket boosted to the scramjet engine test points at Mach 7 and Mach 10. The research vehicles will then separate from the first stage booster vehicle and the scramjet engine test will be conducted prior to the terminal decent phase of the flight. An overview is provided of the activities associated with the development of the Hyper-X aerodynamic database, including wind tunnel test activities and parallel CFD analysis efforts for all phases of the Hyper-X flight tests. A brief summary of the Hyper-X research vehicle aerodynamic characteristics is provided, including the direct and indirect effects of the airframe integrated scramjet propulsion system operation on the basic airframe stability and control characteristics. Brief comments on the planned post flight data analysis efforts are also included.

  5. Frequency and associated risk factors for neck pain among software engineers in Karachi, Pakistan.

    PubMed

    Rasim Ul Hasanat, Mohammad; Ali, Syed Shahzad; Rasheed, Abdur; Khan, Muhammad

    2017-07-01

    To determine the frequency of neck pain and its association with risk factors among software engineers. This descriptive, cross-sectional study was conducted at the Dow University of Health Sciences, Karachi, from February to March 2016, and comprised software engineers from 19 different locations. Non-probability purposive sampling technique was used to select individuals spending at least 6 hours in front of computer screens every day and having a work experience of at least 6 months. Data were collected using a self-administrable questionnaire. SPSS 21 was used for data analysis. Of the 185 participants, 49(26.5%) had neck pain at the time of data-gathering, while 136(73.5%) reported no pain. However, 119(64.32%) participants had a previous history of neck pain. Other factors like smoking, physical inactivity, history of any muscular pain and neck pain, uncomfortable workstation, and work-related mental stress and insufficient sleep at night, were found to be significantly associated with current neck pain (p<0.05 each). Intensive computer users are likely to experience at least one episode of computer-associated neck pain.

  6. Educating the engineers of 2020: An outcomes-based typology of engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Knight, David B.

    Members of government and industry have called for greater emphasis within U.S. colleges and universities on producing engineers who can enter and advance a more competitive, globally connected workforce. Looking toward this future, engineers will need to exhibit strong analytical skills as in the past, but they also will need to be proficient in a cadre of new abilities to compete. This study examines, in combination, an array of knowledge and skills aligned with the National Academy of Engineering's "engineer of 2020." The study has two major goals. The first is to develop a typology of engineering students based on the learning outcomes associated with the engineer of E2020. The second is to understand the educational experiences that distinguish these groups of students who resemble, more or less, the engineer of 2020. This approach acknowledges that engineering graduates need a complex skill set to succeed in the new global economy; it is the combination of skills associated with the engineer of 2020, not the individual skills in isolation, which will ensure graduates can respond to workforce needs of the future. To date, research on student outcomes has studied learning outcomes independent of one another rather than investigating student learning holistically. The study uses student data from the Prototype to production: Processes and conditions for preparing the Engineer of 2020 study, sponsored by the National Science Foundation (NSF EEC-0550608). Engineering students from a nationally representative sample of engineering programs in the United States answered a survey that collected information on their pre-college academic preparation and sociodemographic characteristics, their curricular and co-curricular experiences in their engineering programs, and their self-ratings of their engineering-related competencies. Only data on engineering students in their senior year (n=2,422) were utilized in analyses. Analyses were conducted in multiple phases for each of five engineering disciplines in the data set (biomedical/bioengineering, chemical, civil, electrical, and mechanical engineering). First, cluster analyses produced typologies (or groupings) of engineering seniors (one for each of five engineering disciplines studied and an "all engineering" analysis) based on nine self-reported learning outcomes, including fundamental skills, design skills, contextual awareness, interdisciplinary competence, and professional skills. Second, profiles of pre-college characteristics as well as student experiences in college were developed for each discipline and the five disciplines combined. Using analyses of variance, Chi-square analyses, and multinomial logistic regression, this phase also identified differences in student characteristics and college experiences between clusters of students reporting high proficiencies on the array of outcomes and students in other clusters. This second phase informed the third phase, which produced parsimonious models that used pre-college characteristics and student experience variables to predict cluster membership. As a whole, the findings demonstrate that analyses that include the full array of E2020 learning outcomes produce meaningful typologies that distinguish between groupings of students in different engineering fields. Findings demonstrate that a subset of students - the engineers of 2020 - report high skills and abilities on the full array of learning outcomes. These are the graduates sought by both the federal government and industry who most closely resemble the engineers of 2020. In addition, distinctive curricular and co-curricular experiences distinguish this E2020 group of students in each engineering discipline from other groupings of students in that same discipline. These findings have valuable implications for practice because they identify an array of discipline-specific, in- and out-of-class learning experiences that appear to promote the development of this multi-dimensional set of outcomes. Overall, however, greater curricular emphases on broad and systems perspectives in the engineering curriculum most consistently set apart the students who report high proficiencies on the E2020 outcomes. The findings also indicate that strategies for improving undergraduate engineering outcomes should be tailored by engineering discipline. The study contributes to both practice and research by developing a technique that can be used to create an outcomes-based typology that can be applied to any set of learning outcomes. Graphical representations of results consolidate large quantities of information into an easily accessible format so that findings can guide both practitioners and policymakers who seek to improve this multi-dimensional set of undergraduate engineering learning outcomes. Future directions for research, including operationalizing organizational contexts influencing E2020 learning outcomes as well as anticipated career trajectories of students across the typology, are also discussed.

  7. Experimental Study of a Pulse Detonation Engine Driven Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh; Shehadeh, R.; Saretto, S.; Lee, S.-Y.

    2005-01-01

    Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen (O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results are in excellent agreement with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various detonation tube/ejector tube overlap distances. The results show that for the geometries studied here, a maximum thrust augmentation of 24% is achieved. Further increases are possible by tailoring the ejector geometry based on CFD predictions conducted elsewhere. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.

  8. Payload crew training complex simulation engineer's handbook

    NASA Technical Reports Server (NTRS)

    Shipman, D. L.

    1984-01-01

    The Simulation Engineer's Handbook is a guide for new engineers assigned to Experiment Simulation and a reference for engineers previously assigned. The experiment simulation process, development of experiment simulator requirements, development of experiment simulator hardware and software, and the verification of experiment simulators are discussed. The training required for experiment simulation is extensive and is only referenced in the handbook.

  9. The search engine manipulation effect (SEME) and its possible impact on the outcomes of elections

    PubMed Central

    Epstein, Robert; Robertson, Ronald E.

    2015-01-01

    Internet search rankings have a significant impact on consumer choices, mainly because users trust and choose higher-ranked results more than lower-ranked results. Given the apparent power of search rankings, we asked whether they could be manipulated to alter the preferences of undecided voters in democratic elections. Here we report the results of five relevant double-blind, randomized controlled experiments, using a total of 4,556 undecided voters representing diverse demographic characteristics of the voting populations of the United States and India. The fifth experiment is especially notable in that it was conducted with eligible voters throughout India in the midst of India’s 2014 Lok Sabha elections just before the final votes were cast. The results of these experiments demonstrate that (i) biased search rankings can shift the voting preferences of undecided voters by 20% or more, (ii) the shift can be much higher in some demographic groups, and (iii) search ranking bias can be masked so that people show no awareness of the manipulation. We call this type of influence, which might be applicable to a variety of attitudes and beliefs, the search engine manipulation effect. Given that many elections are won by small margins, our results suggest that a search engine company has the power to influence the results of a substantial number of elections with impunity. The impact of such manipulations would be especially large in countries dominated by a single search engine company. PMID:26243876

  10. The search engine manipulation effect (SEME) and its possible impact on the outcomes of elections.

    PubMed

    Epstein, Robert; Robertson, Ronald E

    2015-08-18

    Internet search rankings have a significant impact on consumer choices, mainly because users trust and choose higher-ranked results more than lower-ranked results. Given the apparent power of search rankings, we asked whether they could be manipulated to alter the preferences of undecided voters in democratic elections. Here we report the results of five relevant double-blind, randomized controlled experiments, using a total of 4,556 undecided voters representing diverse demographic characteristics of the voting populations of the United States and India. The fifth experiment is especially notable in that it was conducted with eligible voters throughout India in the midst of India's 2014 Lok Sabha elections just before the final votes were cast. The results of these experiments demonstrate that (i) biased search rankings can shift the voting preferences of undecided voters by 20% or more, (ii) the shift can be much higher in some demographic groups, and (iii) search ranking bias can be masked so that people show no awareness of the manipulation. We call this type of influence, which might be applicable to a variety of attitudes and beliefs, the search engine manipulation effect. Given that many elections are won by small margins, our results suggest that a search engine company has the power to influence the results of a substantial number of elections with impunity. The impact of such manipulations would be especially large in countries dominated by a single search engine company.

  11. Transparent Alloys Operation

    NASA Image and Video Library

    2018-03-26

    iss055e005543 (March 26, 2018) --- Expedition 55 Flight Engineer and astronaut Scott Tingle is pictured conducting the Transparent Alloys experiment inside the Destiny lab module's Microgravity Science Glovebox. The Transparent Alloys study is a set of five experiments that seeks to improve the understanding of melting-solidification processes in plastics without the interference of Earth's gravity environment. Results may impact the development of new light-weight, high-performance structural materials for space applications. Observations may also impact fuel efficiency, consumption and recycling of materials on Earth potentially reducing costs and increasing industrial competitiveness.

  12. BCAT (Binary Colloid Alloy Test) experiment documentation

    NASA Image and Video Library

    2009-05-02

    ISS019-E-013240 (2 May 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, conducts a session with the Binodal Colloidal Aggregation Test?4 (BCAT-4) in the Destiny laboratory of the International Space Station. This experiment studies the long-term behavior of colloids ? fine particles suspended in a fluid in a microgravity environment, where the effects of sedimentation and convention are removed. Results from this study may lead to new colloid materials with applications in the communications and computer industries for switches, displays and optical devices with properties that could rival those of lasers.

  13. Cassidy conducts MDCA Fuel Reservoir Remove and Replace OPS

    NASA Image and Video Library

    2013-04-10

    ISS035-E-017699 (10 April 2013) --- This is one of several photos documenting the Multi-user Droplet Combustion Apparatus (MDCA) Fuel Reservoir replacement. Here, Expedition 35 Flight Engineer Chris Cassidy removes and replaces one of the Fuel Reservoirs with the MDCA Chamber Insert Assembly (CIA) pulled partially out of the Combustion Chamber. The MDCA Fuel Reservoirs contain the liquid fuel used during droplet combustion experiments. This reservoir change-out was in support of the FLame EXtinguishment (FLEX)-2 experiment, scheduled to be executed by ground controllers.

  14. Cassidy conducts MDCA Fuel Reservoir Remove and Replace OPS

    NASA Image and Video Library

    2013-04-10

    ISS035-E-017712 (10 April 2013)?-- This is one of several photos documenting the Multi-user Droplet Combustion Apparatus (MDCA) Fuel Reservoir replacement in the U.S. lab Destiny. Here, Expedition 35 Flight Engineer Chris Cassidy removes and replaces one of the Fuel Reservoirs with the MDCA Chamber Insert Assembly (CIA) pulled partially out of the Combustion Chamber. The MDCA Fuel Reservoirs contain the liquid fuel used during droplet combustion experiments. This reservoir change-out was in support of the FLame EXtinguishment (FLEX)-2 experiment, scheduled to be executed by ground controllers.

  15. KSC-2011-3465

    NASA Image and Video Library

    2011-05-12

    Cape Canaveral, Fla. -- Students listen intently as a laboratory technician describes the experiment being conducted in Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin

  16. ACE-1 experiment

    NASA Image and Video Library

    2013-06-24

    ISS036-E-019783 (24 June 2013) --- In the International Space Station’s Destiny laboratory, a fisheye lens attached to an electronic still camera was used to capture this image of NASA astronaut Karen Nyberg, Expedition 36 flight engineer, as she conducts a session with the Advanced Colloids Experiment (ACE)-1 sample preparation at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). ACE-1 is a series of microscopic imaging investigations that uses the microgravity environment to examine flow characteristics and the evolution and ordering effects within a group of colloidal materials.

  17. COBRA System Engineering Processes to Achieve SLI Strategic Goals

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2003-01-01

    The COBRA Prototype Main Engine Development Project was an endeavor conducted as a joint venture between Pratt & Whitney and Aerojet to conduct risk reduction in LOX/LH2 main engine technology for the NASA Space Launch Initiative (SLI). During the seventeen months of the project (April 2001 to September 2002), approximately seventy reviews were conducted, beginning with the Engine Systems Requirements Review (SRR) and ending with the Engine Systems Interim Design Review (IDR). This paper discusses some of the system engineering practices used to support the reviews and the overall engine development effort.

  18. The First Year of College: Understanding Student Persistence in Engineering

    NASA Astrophysics Data System (ADS)

    Hayden, Marina Calvet

    This research study aimed to expand our understanding of the factors that influence student persistence in engineering. The unique experiences of engineering students were examined as they transitioned into and navigated their first year of college at a public research university in California. Most students provided similar responses with respect to the way they experienced the transition to college and social life. There was, however, wide student response variation regarding their experience of academic life and academic policies, as well as in their level of pre-college academic preparation and financial circumstances. One key finding was that students' experiences during the first year of college varied widely based on the extent to which they had acquired organizational and learning skills prior to college. The study used a mixed methods approach. Quantitative and qualitative data were collected through an online survey and one-on-one interviews conducted with freshman students near the end of their first year of college. The theoretical foundations of this study included Astin's Theory of Student Involvement and Tinto's Theory of Student Departure. The design of the study was guided by these theories which emphasize the critical importance of student involvement with the academic and social aspects of college during the first year of college.

  19. 23 CFR 627.9 - Conducting a VE analysis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS VALUE ENGINEERING § 627.9 Conducting a VE analysis. (a) A VE analysis should be conducted as early as practicable in... that consider alternative construction materials; and (2) Be conducted based on: (i) An engineering and...

  20. 23 CFR 627.9 - Conducting a VE analysis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS VALUE ENGINEERING § 627.9 Conducting a VE analysis. (a) A VE analysis should be conducted as early as practicable in... that consider alternative construction materials; and (2) Be conducted based on: (i) An engineering and...

  1. Unique educational opportunities at the Missouri University research reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketring, A.R.; Ross, F.K.; Spate, V.

    1997-12-01

    Since the Missouri University Research Reactor (MURR) went critical in 1966, it has been a center where students from many departments conduct their graduate research. In the past three decades, hundreds of graduate students from the MU departments of chemistry, physics, anthropology, nuclear engineering, etc., have received masters and doctoral degrees based on research using neutrons produced at MURR. More recently, the educational opportunities at MURR have been expanded to include undergraduate students and local high school students. Since 1989 MURR has participated in the National Science Foundation-funded Research Experience for Undergraduates (REU) program. As part of this program, undergraduatemore » students from universities and colleges throughout the United States come to MURR and get hands-on research experience during the summer. Another program, started in 1994 by the Nuclear Analysis Program at MURR, allows students from a local high school to conduct a neutron activation analysis (NAA) experiment. We also conduct tours of the center, where we describe the research and educational programs at MURR to groups of elementary school children, high school science teachers, state legislators, professional organizations, and many other groups.« less

  2. Sample Return Primer and Handbook

    NASA Technical Reports Server (NTRS)

    Barrow, Kirk; Cheuvront, Allan; Faris, Grant; Hirst, Edward; Mainland, Nora; McGee, Michael; Szalai, Christine; Vellinga, Joseph; Wahl, Thomas; Williams, Kenneth; hide

    2007-01-01

    This three-part Sample Return Primer and Handbook provides a road map for conducting the terminal phase of a sample return mission. The main chapters describe element-by-element analyses and trade studies, as well as required operations plans, procedures, contingencies, interfaces, and corresponding documentation. Based on the experiences of the lead Stardust engineers, the topics include systems engineering (in particular range safety compliance), mission design and navigation, spacecraft hardware and entry, descent, and landing certification, flight and recovery operations, mission assurance and system safety, test and training, and the very important interactions with external support organizations (non-NASA tracking assets, landing site support, and science curation).

  3. Interaction of external conditions with the internal flowfield in liquid rocket engines - A computational study

    NASA Technical Reports Server (NTRS)

    Trinh, H. P.; Gross, K. W.

    1989-01-01

    Computational studies have been conducted to examine the capability of a CFD code by simulating the steady state thrust chamber internal flow. The SSME served as the sample case, and significant parameter profiles are presented and discussed. Performance predictions from TDK, the recommended JANNAF reference computer program, are compared with those from PHOENICS to establish the credibility of its results. The investigation of an overexpanded nozzle flow is particularly addressed since it plays an important role in the area ratio selection of future rocket engines. Experience gained during this uncompleted flow separation study and future steps are outlined.

  4. Research Laboratory for Engineering and Tehnology (ReLEnT)-Summer Program

    NASA Technical Reports Server (NTRS)

    Okhio, Cyril B.

    1996-01-01

    During the fiscal years 1994-1995 students at Central State University (CSU) have worked diligently under the supervision of the PI and associates to plan, design and conduct a four-week hands on summer program for high school students in grades 9 to 12. These workshops consists of experiments and computer aided design and manufacturing, designed to constructively stimulate interests in engineering and technology, and promote enrollment at CSU after they matriculate from high school. The experience gained in two years will be utilized to realize one of the deliverables for CSU engineering program during 1996. In FY-96 a new total of 30 students are now being interviewed for the 1996 program. This grant also provides resource for students enrolled in CSU's engineering program to work as undergraduate research assistants and ReLEnT tuition scholarship awards. These students are involved in the development of research, design projects, workshop procedures, laboratory exercises and seminars. Undergraduate students receiving tuition scholarships are required to maintain a cumulative grade point average of 3.0 or higher. Finally, the ReLEnT award has made it possible for CSU to acquire some experimental and CFD capability which now provides us with the opportunity to compete and respond to RFP's on a competitive basis and a timely manner.

  5. Design and development of experimental facilities for short duration, low-gravity combustion and fire experiments

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report contains the results of three projects conducted by undergraduate students from Worcester Polytechnical Institute at the NASA's Lewis Research Center under a NASA Award NCC3-312. The students involved in these projects spent part of the summer of 1993 at the Lewis Research Center (LeRC). The Principal Investigator at Worcester Polytechnic Institute was Professor Vahid Motevalli. Professor Motevalli served as the principal project advisor for two of the three projects which were in Mechanical Engineering. The third project was advised by Professor Duckworth of Electrical and Computer Engineering, while Professor Motevalli acted as the co-advisor. These projects provided an excellent opportunity for the students to participate in the cutting edge research and engineering design, interact with NASA engineers and gain valuable exposure to a real working environment. This report has been divided to three sections, representing the outcome of each of the separate projects. The three reports which have been written by the students under the supervision of their advisors have been compiled into a combined report by Dr. Motevalli. Each project report is presented here as a section which is essentially self-contained. Each section contains chapters introducing the problem, solution approach, description of the experiments, results and analysis, conclusions and appendixes as appropriate.

  6. Modeling nuclear processes by Simulink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashid, Nahrul Khair Alang Md, E-mail: nahrul@iium.edu.my

    2015-04-29

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox softwaremore » that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.« less

  7. A comparison of transient vehicle performance using a fixed geometry, wastegated turbocharger and a variable geometry turbocharger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, R.R.; Gall, J.M.

    1986-01-01

    The use of an exhaust-driven boosting device can significantly improve the performance of a vehicle using a small displacement engine. One of the concerns relative to the performance of vehicles using these devices is ''turbo lag,'' or the period of time during which no boost is generated. This paper presents the results of designed experiments comparing the performance of a fixed geometry, wastegated turbocharger to a variable geometry turbocharger incorporating a low-loss bearing system. In addition, experimental tests are presented for the naturally aspirated engine in the same vehicle. The results of the experiments show improvements with the use ofmore » pressure boosting and that there are signifcant differences in the boosting devices tested; specifically, the use of a variable geometry turbocharger demonstrates significant reduction in the length of time required to reach boost and reduced acceleration times for the tests conducted.« less

  8. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  9. Subcontinuum thermal transport in tip-based thermal engineering

    NASA Astrophysics Data System (ADS)

    Hamian, Sina

    For the past two decades, tip-based thermal engineering has made remarkable advances to realize unprecedented nanoscale thermal applications, such as thermomechanical data storage, thermophysical/chemical property characterization of materials in nanometer scale, and scanning thermal imaging and analysis. All these applications involve localized heating with elevated temperature, generally in the order of mean free paths of heat carriers, thus necessitates fundamental understanding of sub-continuum thermal transport across point constrictions and within thin films. Considering the demands, this dissertation is divided into three main scopes providing: (1) a numerical model that provides insight onto nanoscale thermal transport, (2) an electrothermal characterization of a heated microcantilever as a localized heating source, and (3) qualitative measurement of tip-substrate thermal transport using high resolution nanothermometer/heater. This dissertation starts with a literature review on the three aforementioned scopes followed by a numerical model for two-dimensional transient ballistic-diffusive heat transfer combining finite element analysis with discrete ordinate method (DOM-FEA), seeking to provide insight on subcontinuum thermal transport. The phonon Boltzmann transport equation (BTE) under grey relaxation time approximation is solved for different Knudsen numbers. Next, a thermal microcantilever, as one of the main tools in tip-based thermal engineering, is characterized under periodic heating operation in air and vacuum using 3o technique. A three-dimensional FEA simulation of a thermal microcantilever is used to model heat transfer in frequency domain resulting in good agreement with the experiment. Next, quantitative thermal transport is measured by a home-built nanothermometer fabricated using combination of electron-beam lithography and photolithography. An atomic force microscope (AFM) cantilever is used to scan over the sensing probe of the nanothermometer at an elevated temperature causing local cooling. The experiment is done in air resulting in a tip-substrate effective thermal conductance of 32.5 nW/K followed by theoretical calculations predicting contribution of solid-solid thermal conduction to be 48%. Finally, the same experiment is conducted in vacuum with similar operating condition, showing 50% contribution of solid-solid conductance, which is in good agreement with the theory, assuming no water meniscus in vacuum condition. The outcomes of these studies provide a strong platform to fundamentally understand thermal transport at the micro/nanometer scale.

  10. An experimental investigation on liquid methane heat transfer enhancement through the use of longitudinal fins in cooling channels

    NASA Astrophysics Data System (ADS)

    Galvan, Manuel de Jesus

    In the past years, hydrocarbon fuels have been the focus of attention as the interest in developing reusable, high-performing liquid rocket engines has grown. Liquid methane (LCH4) has been of particular interest because of the cost, handling, and storage advantages that it presents when compared to currently used propellants. Deep space exploration requires thrusters that can operate reliably during long-duration missions. One of the challenges in the development of a reliable engine has been providing adequate combustion chamber cooling to prevent engine failure. Regenerative (regen) cooling has presented itself as an appealing option because it provides improved cooling and engine efficiency over other types of cooling, such as film or dump cooling. Due to limited availability of experimental sub-critical liquid methane cooling data for pressure-fed regen engine design, there has been an interest in studying the heat transfer characteristics of the propellant. For this reason, recent experimental studies at the Center for Space Exploration Technology Research (cSETR) at the University of Texas at El Paso (UTEP) have focused on investigating the heat transfer characteristics of sub-critical CH4 flowing through smooth sub-scale cooling channels. In addition to investigating smooth channels, the cSETR has conducted experiments to investigate the effects of internal longitudinal fins on the heat transfer of methane. To conduct the experiments, the cSETR developed a conduction-based thermal concentrator known as the High Heat Flux Test Facility (HHFTF) in which the channels are heated. In this study, a smooth channel and three channels with longitudinal fins all with cross sectional geometries of 3.2 mm x 3.2 mm were tested. The Nusselt numbers ranged from 70 and 510, and Reynolds numbers were between 50,000 and 128,000. Sub-cooled film-boiling phenomena were discovered in the data pertaining to the smooth and two finned channels. Sub-cooled film-boiling was not observed in the channel that had the fins with the highest height. Film-boiling onset at Critical Heat Flux (CHF) was correlated to a Boiling Number (Bo) of approximately 0.1 for the channels studies. Convective Nusselt number follows predicted trends for Reynolds number with a wall temperature correction factor for both the boiling and non-boiling regimes.

  11. SPARTNIK: Engineering catalyst for government and industry

    NASA Technical Reports Server (NTRS)

    Prass, James D.; Romano, Thomas C.; Hunter, Jeanine M.

    1995-01-01

    Industrial demands for highly motivated and competent technical personnel to carry forward with the technological goals of the US has posed a significant challenge to graduating engineers. While curricula has improved and diversified over time to meet these industry demands, relevant industry experience is not always available to undergraduates. The microsatellite development program at San Jose State University (SJSU) has allowed an entire undergraduate senior class to utilize a broad range of training and education to refine their engineering skills, bringing them closer to becoming engineering professionals. Close interaction with industry mentors and manufacturers on a real world project provides a significant advantage to educators and students alike. With support from companies and government agencies, the students have designed and manufactured a microsatellite, designed to be launched into a low Earth orbit. This satellite will gather telemetry for characterizing the state of the spacecraft. This will enable the students to have a physical check on their predicted value of spacecraft subsystem performance. Additional experiments will also be undertaken during the two year lifetime, including micro-meteorite impact sensing and capturing digital color images of the Earth. This paper will detail the process whereby students designed, prototype and manufactured a small satellite in a large team environment, along with the experiments that will be performed on board. With the project's limited funds, it needed the support of many industry companies to help with technical issues and hardware acquisition. Among the many supporting companies, NASA's space shuttle small payloads program could be used for an affordable launch vehicle for the student project. The paper address these collaborations between the student project and industry support, as well as explaining the benefits to both. The paper draws conclusion on how these types of student projects can be used by industry as a feasible resource for developing small platforms for space based experiments, as well as increasing the practical experience and engineering knowledge of graduating students. These benefits to industry and universities, can lead to a close working relationship between the two. These types of projects can facilitate the development of low-cost space rated parts to be used by the industry and university projects. It can also help with the understanding and use of acceptable risk non-space rated parts reducing the cost of the spacecraft. This will lead to the development of low cost platforms for space based experiments, providing research companies an inexpensive, long duration platform to conduct their in-space experiments, while better preparing engineering undergraduates for their transition into the work force.

  12. SPARTNIK: Engineering catalyst for government and industry

    NASA Astrophysics Data System (ADS)

    Prass, James D.; Romano, Thomas C.; Hunter, Jeanine M.

    1995-09-01

    Industrial demands for highly motivated and competent technical personnel to carry forward with the technological goals of the US has posed a significant challenge to graduating engineers. While curricula has improved and diversified over time to meet these industry demands, relevant industry experience is not always available to undergraduates. The microsatellite development program at San Jose State University (SJSU) has allowed an entire undergraduate senior class to utilize a broad range of training and education to refine their engineering skills, bringing them closer to becoming engineering professionals. Close interaction with industry mentors and manufacturers on a real world project provides a significant advantage to educators and students alike. With support from companies and government agencies, the students have designed and manufactured a microsatellite, designed to be launched into a low Earth orbit. This satellite will gather telemetry for characterizing the state of the spacecraft. This will enable the students to have a physical check on their predicted value of spacecraft subsystem performance. Additional experiments will also be undertaken during the two year lifetime, including micro-meteorite impact sensing and capturing digital color images of the Earth. This paper will detail the process whereby students designed, prototype and manufactured a small satellite in a large team environment, along with the experiments that will be performed on board. With the project's limited funds, it needed the support of many industry companies to help with technical issues and hardware acquisition. Among the many supporting companies, NASA's space shuttle small payloads program could be used for an affordable launch vehicle for the student project. The paper address these collaborations between the student project and industry support, as well as explaining the benefits to both. The paper draws conclusion on how these types of student projects can be used by industry as a feasible resource for developing small platforms for space based experiments, as well as increasing the practical experience and engineering knowledge of graduating students. These benefits to industry and universities, can lead to a close working relationship between the two. These types of projects can facilitate the development of low-cost space rated parts to be used by the industry and university projects. It can also help with the understanding and use of acceptable risk non-space rated parts reducing the cost of the spacecraft. This will lead to the development of low cost platforms for space based experiments, providing research companies an inexpensive, long duration platform to conduct their in-space experiments, while better preparing engineering undergraduates for their transition into the work force.

  13. Manager's handbook for software development, revision 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Methods and aids for the management of software development projects are presented. The recommendations are based on analyses and experiences of the Software Engineering Laboratory (SEL) with flight dynamics software development. The management aspects of the following subjects are described: organizing the project, producing a development plan, estimating costs, scheduling, staffing, preparing deliverable documents, using management tools, monitoring the project, conducting reviews, auditing, testing, and certifying.

  14. Note: The full function test explosive generator.

    PubMed

    Reisman, D B; Javedani, J B; Griffith, L V; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B

    2010-03-01

    We have conducted three tests of a new pulsed power device called the full function test. These tests represented the culmination of an effort to establish a high energy pulsed power capability based on high explosive pulsed power (HEPP) technology. This involved an extensive computational modeling, engineering, fabrication, and fielding effort. The experiments were highly successful and a new U.S. record for magnetic energy was obtained.

  15. Leachate Testing of Hamlet City Lake, North Carolina, Sediment

    DTIC Science & Technology

    1992-11-01

    release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) Sediment leaching studies of Hamlet City Lake, Hamlet, NC, were conducted in...laboratories at the U.S. Army Engineer Waterways Experiment Station. The pur- pose of these studies was to provide quantitative information on the...conditions similar to landfarming. The study involved three elements: batch leach tests, column leach tests, and simulations using the Hydrologic

  16. Aquatic Plant Control Research Program. Alligatorweed Survey of Ten Southern States

    DTIC Science & Technology

    1988-04-01

    Environmental Labora- tory (EL), US Army Engineer Waterways Experiment Station (WES). The author extends appreciation to Dr. Dana Sanders and Messrs. Edwin A...the WES Information Technology Laboratory. This study was conducted under the direct supervision of Mr. Edwin A. Theriot and Dr. Hanley K. Smith, Chief...agents producing in your area? ................................................... 22 0 10 Site 2--Steenson Hollow (Wilson Lake, Colbert County

  17. Multi-Country Experience in Delivering a Joint Course on Software Engineering--Numerical Results

    ERIC Educational Resources Information Center

    Budimac, Zoran; Putnik, Zoran; Ivanovic, Mirjana; Bothe, Klaus; Zdravkova, Katerina; Jakimovski, Boro

    2014-01-01

    A joint course, created as a result of a project under the auspices of the "Stability Pact of South-Eastern Europe" and DAAD, has been conducted in several Balkan countries: in Novi Sad, Serbia, for the last six years in several different forms, in Skopje, FYR of Macedonia, for two years, for several types of students, and in Tirana,…

  18. Measurement uncertainty for the Uniform Engine Testing Program conducted at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Abdelwahab, Mahmood; Biesiadny, Thomas J.; Silver, Dean

    1987-01-01

    An uncertainty analysis was conducted to determine the bias and precision errors and total uncertainty of measured turbojet engine performance parameters. The engine tests were conducted as part of the Uniform Engine Test Program which was sponsored by the Advisory Group for Aerospace Research and Development (AGARD). With the same engines, support hardware, and instrumentation, performance parameters were measured twice, once during tests conducted in test cell number 3 and again during tests conducted in test cell number 4 of the NASA Lewis Propulsion Systems Laboratory. The analysis covers 15 engine parameters, including engine inlet airflow, engine net thrust, and engine specific fuel consumption measured at high rotor speed of 8875 rpm. Measurements were taken at three flight conditions defined by the following engine inlet pressure, engine inlet total temperature, and engine ram ratio: (1) 82.7 kPa, 288 K, 1.0, (2) 82.7 kPa, 288 K, 1.3, and (3) 20.7 kPa, 288 K, 1.3. In terms of bias, precision, and uncertainty magnitudes, there were no differences between most measurements made in test cells number 3 and 4. The magnitude of the errors increased for both test cells as engine pressure level decreased. Also, the level of the bias error was two to three times larger than that of the precision error.

  19. Mechanical properties of lunar regolith and lunar soil simulant

    NASA Technical Reports Server (NTRS)

    Perkins, Steven W.

    1989-01-01

    Through the Surveyor 3 and 7, and Apollo 11-17 missions a knowledge of the mechanical properties of Lunar regolith were gained. These properties, including material cohesion, friction, in-situ density, grain-size distribution and shape, and porosity, were determined by indirect means of trenching, penetration, and vane shear testing. Several of these properties were shown to be significantly different from those of terrestrial soils, such as an interlocking cohesion and tensile strength formed in the absence of moisture and particle cementation. To characterize the strength and deformation properties of Lunar regolith experiments have been conducted on a lunar soil simulant at various initial densities, fabric arrangements, and composition. These experiments included conventional triaxial compression and extension, direct tension, and combined tension-shear. Experiments have been conducted at low levels of effective confining stress. External conditions such as membrane induced confining stresses, end platten friction and material self weight have been shown to have a dramatic effect on the strength properties at low levels of confining stress. The solution has been to treat these external conditions and the specimen as a full-fledged boundary value problem rather than the idealized elemental cube of mechanics. Centrifuge modeling allows for the study of Lunar soil-structure interaction problems. In recent years centrifuge modeling has become an important tool for modeling processes that are dominated by gravity and for verifying analysis procedures and studying deformation and failure modes. Centrifuge modeling is well established for terrestrial enginering and applies equally as well to Lunar engineering. A brief review of the experiments is presented in graphic and outline form.

  20. Asymptotic Expansion Homogenization for Multiscale Nuclear Fuel Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hales, J. D.; Tonks, M. R.; Chockalingam, K.

    2015-03-01

    Engineering scale nuclear fuel performance simulations can benefit by utilizing high-fidelity models running at a lower length scale. Lower length-scale models provide a detailed view of the material behavior that is used to determine the average material response at the macroscale. These lower length-scale calculations may provide insight into material behavior where experimental data is sparse or nonexistent. This multiscale approach is especially useful in the nuclear field, since irradiation experiments are difficult and expensive to conduct. The lower length-scale models complement the experiments by influencing the types of experiments required and by reducing the total number of experiments needed.more » This multiscale modeling approach is a central motivation in the development of the BISON-MARMOT fuel performance codes at Idaho National Laboratory. These codes seek to provide more accurate and predictive solutions for nuclear fuel behavior. One critical aspect of multiscale modeling is the ability to extract the relevant information from the lower length-scale sim- ulations. One approach, the asymptotic expansion homogenization (AEH) technique, has proven to be an effective method for determining homogenized material parameters. The AEH technique prescribes a system of equations to solve at the microscale that are used to compute homogenized material constants for use at the engineering scale. In this work, we employ AEH to explore the effect of evolving microstructural thermal conductivity and elastic constants on nuclear fuel performance. We show that the AEH approach fits cleanly into the BISON and MARMOT codes and provides a natural, multidimensional homogenization capability.« less

  1. The Performance of Chrome-Coated Copper as Metallic Catalytic Converter to Reduce Exhaust Gas Emissions from Spark-Ignition Engine

    NASA Astrophysics Data System (ADS)

    Warju; Harto, S. P.; Soenarto

    2018-01-01

    One of the automotive technologies to reduce exhaust gas emissions from the spark-ignition engine (SIE) is by using a catalytic converter. The aims of this research are firstly to conduct a metallic catalytic converter, secondly to find out to what extend chrome-coated copper plate (Cu+Cr) as a catalyst is efficient. To measure the concentration of carbon monoxide (CO) and hydrocarbon (HC) on the frame there are two conditions required. First is when the standard condition, and second is when Cu+Cr metallic catalytic converter is applied using exhaust gas analyzer. Exhaust gas emissions from SIE are measured by using SNI 19-7118.1-2005. The testing of CO and HC emissions were conducted with variable speed to find the trend of exhaust gas emissions from idle speed to high speed. This experiment results in the fact that the use of Cu+Cr metallic catalytic converter can reduce the production of CO and HC of a four-stroke gasoline engine. The reduction of CO and HC emission are 95,35% and 79,28%. Using active metal catalyst in form of metallic catalytic converter, it is gained an optimum effective surface of a catalyst which finally is able to decrease the amount of CO and HC emission significantly in every spinning happened in the engine. Finally, this technology can be applied to the spark ignition engine both car and motorcycle to support blue sky program in Indonesia.

  2. Guidelines to design engineering education in the twenty-first century for supporting innovative product development

    NASA Astrophysics Data System (ADS)

    Violante, Maria Grazia; Vezzetti, Enrico

    2017-11-01

    In the twenty-first century, meeting our technological challenges demands educational excellence, a skilled populace that is ready for the critical challenges society faces. There is widespread consensus, however, that education systems are failing to adequately prepare all students with the essential twenty-first century knowledge and skills necessary to succeed in life, career, and citizenship. The purpose of this paper is to understand how twenty-first century knowledge and skills can be appropriately embedded in engineering education finalised to innovative product development by using additive manufacturing (AM). The study designs a learning model by which to achieve effective AM education to address the requirements of twenty-first century and to offer students the occasion to experiment with STEM (Science, technology, engineering, and mathematics) concepts. The study is conducted using the quality function deployment (QFD) methodology.

  3. Energy and Exergy Analysis of a Diesel Engine Fuelled with Diesel and Simarouba Biodiesel Blends

    NASA Astrophysics Data System (ADS)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2018-02-01

    This article intends to determine the available work and various losses of a diesel engine fuelled with diesel and SB20 (20 % Simarouba biodiesel by volume blended with 80 % diesel by volume). The energy and exergy analysis were carried out by using first law and second law of thermodynamics respectively. The experiments were carried out on a 3.5 kW compression ignition engine. The analysis was conducted on per mole of fuel basis. The energy analysis indicates that about 37.23 and 37.79 % of input energy is converted into the capacity to do work for diesel and SB20 respectively. The exergetic efficiency was 34.8 and 35 % for diesel and Simarouba respectively. Comparative study indicates that the energetic and exergetic performance of SB20 resembles with that of diesel fuel.

  4. Making aerospace technology work for the automotive industry - Introduction

    NASA Technical Reports Server (NTRS)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  5. Engineering aspect of the Microwave Ionosphere Nonlinear Interaction Experiment (MINIX) with a sounding rocket

    NASA Astrophysics Data System (ADS)

    Nagatomo, M.; Kaya, N.; Matsumoto, H.

    1984-10-01

    One type of problem arising in connection with an evaluation of the feasibility of the Solar Power Satellite (SPS) and the definition of suitable SPS designs is related to environmental issues. Questions exist, for instance, regarding the interaction between microwave power and the upper atmosphere. The present investigation is concerned with the Microwave Ionosphere Nonlinear Interaction Experiment (MINIX), which is a space plasma experiment originally devoted to the research of space plasma physics. MINIX is eventually to observe possible effects of a strong microwave field in the ionospheric environment. The scientific requirements of the MINIX are discussed, taking into account functional and experimental conditions. Attention is also given to rocket characteristics, experimental design, the payload, the inflight experiment configuration, and details concerning the conduction of the experiment.

  6. Skylab

    NASA Image and Video Library

    1972-06-02

    W. Brain Dunlap (left), high school student from Youngstown, Ohio, is pictured here with Harry Coons of the Marshall Space Flight Center (MSFC) during a visit to the center. Dunlap was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  7. Skylab

    NASA Image and Video Library

    1972-06-02

    Princeton, New Jersey high school student, Alison Hopfield, is greeted by astronauts Russell L. Schweickart (left) and Owen K. Garriott (center) during a tour of the Marshall Space Flight Center (MSFC). Hopfield was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  8. Skylab

    NASA Image and Video Library

    1972-06-02

    Gregory A. Merkel (left), high school student from Springfield, Massachusetts, is pictured here with Harry Coons of the Marshall Space Flight Center (MSFC) during a visit to the center. Merkel was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  9. GRIP Experiment 2010

    NASA Image and Video Library

    2017-12-08

    The NASA DC-8 airplane sits on the tarmac, Sunday, Aug. 15, 2010, at Fort Lauderdale International Airport in Fort Lauderdale, Fla. , as preparations continue for its part in the GRIP experiment. The Genesis and Rapid Intensification Processes (GRIP) experiment is a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Credit: NASA/Paul E. Alers To read more about the GRIP Mission go here or here for an interactive feature NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  10. Thermal Conductivity Enhancement by Optical Phonon Sub-Band Engineering of Nanostructures Based on C and BN

    DTIC Science & Technology

    2005-09-01

    Thermal Conductivity Enhancement by Optical Phonon Sub-Band Engineering of Nanostructures Based on C and BN DARPA CONTRACT MDA972-02-C-0044...AND SUBTITLE Thermal Conductivity Enhancement by Optical Phonon Sub-Band Engineering of Nanostructures Based on C and BN 5a. CONTRACT NUMBER 5b...Conductivity. Enhancement by Optical Phonon Sub-Bands Engineering in 3-D Nanostructures Based on C and BN Nanotubes" 1.3.1a. Phonon dynamics

  11. Biotechnology Facility: An ISS Microgravity Research Facility

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  12. Dual-fuel, dual-throat engine preliminary analysis

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.

    1979-01-01

    A propulsion system analysis of the dual fuel, dual throat engine for launch vehicle applications was conducted. Basic dual throat engine characterization data were obtained to allow vehicle optimization studies to be conducted. A preliminary baseline engine system was defined.

  13. Perception of risks and benefits of in vitro fertilization, genetic engineering and biotechnology.

    PubMed

    Macer, D R

    1994-01-01

    The use of new biotechnology in medicine has become an everyday experience, but many people still express concern about biotechnology. Concerns are evoked particularly by the phrases genetic engineering and in vitro fertilization (IVF), and these concerns persist despite more than a decade of their use in medicine. Mailed nationwide opinion surveys on attitudes to biotechnology were conducted in Japan, among samples of the public (N = 551), high school biology teachers (N = 228), scientists (N = 555) and nurses (N = 301). People do see more benefits coming from science than harm when balanced against the risks. There were especially mixed perceptions of benefit and risk about IVF and genetic engineering, and a relatively high degree of worry compared to other developments of science and technology. A discussion of assisted reproductive technologies and surrogacy in Japan is also made. The opinions of people in Japan were compared to the results of previous surveys conducted in Japan, and international surveys conducted in Australia, China, Europe, New Zealand, U.K. and U.S.A. Japanese have a very high awareness of biotechnology, 97% saying that they had heard of the word. They also have a high level of awareness of IVF and genetic engineering. Genetic engineering was said to be a worthwhile research area for Japan by 76%, while 58% perceived research on IVF as being worthwhile, however 61% were worried about research on IVF or genetic engineering. Japanese expressed more concern about IVF and genetic engineering than New Zealanders. The major reason cited for rejection of genetic manipulation research in Japan and New Zealand was that it was seen as interfering with nature, playing God or as unethical. The emotions concerning these technologies are complex, and we should avoid using simplistic public opinion data as measures of public perceptions. The level of concern expressed by scientists and teachers in Japan suggest that public education "technology promotion campaigns" will not reduce concern about science and technology. Such concern should be valued as discretion that is basic to increasing the bioethical maturity of a society, rather than being feared.

  14. Design and Control of a Proof-of-Concept Active Jet Engine Intake Using Shape Memory Alloy Actuators

    NASA Technical Reports Server (NTRS)

    Song, Gangbing; Ma, Ning; Penney, Nicholas; Barr, Todd; Lee, Ho-Jun; Arnold, Steven M.

    2004-01-01

    The design and control of a novel proof-of-concept active jet engine intake using Nickel-Titanium (Ni-Ti or Nitinol) shape memory alloy (SMA) wire actuators is used to demonstrate the potential of an adaptive intake to improve the fuel efficiency of a jet engine. The Nitinol SMA material is selected for this research due to the material's ability to generate large strains of up to 5 percent for repeated operations, a high power-to-weight ratio, electrical resistive actuation, and easy fabrication into a variety of shapes. The proof-of-concept engine intake employs an overlapping leaf design arranged in a concentric configuration. Each leaf is mounted on a supporting bar that rotates upon actuation by SMA wires electrical resistive heating. Feedback control is enabled through the use of a laser range sensor to detect the movement of a leaf and determine the radius of the intake area. Due to the hysteresis behavior inherent in SMAs, a nonlinear robust controller is used to direct the SMA wire actuation. The controller design utilizes the sliding-mode approach to compensate for the nonlinearities associated with the SMA actuator. Feedback control experiments conducted on a fabricated proof-of-concept model have demonstrated the capability to precisely control the intake area and achieve up to a 25 percent reduction in intake area. The experiments demonstrate the feasibility of engine intake area control using the proposed design.

  15. Noise-Reduction Benefits Analyzed for Over-the-Wing-Mounted Advanced Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2000-01-01

    As we look to the future, increasingly stringent civilian aviation noise regulations will require the design and manufacture of extremely quiet commercial aircraft. Also, the large fan diameters of modern engines with increasingly higher bypass ratios pose significant packaging and aircraft installation challenges. One design approach that addresses both of these challenges is to mount the engines above the wing. In addition to allowing the performance trend towards large diameters and high bypass ratio cycles to continue, this approach allows the wing to shield much of the engine noise from people on the ground. The Propulsion Systems Analysis Office at the NASA Glenn Research Center at Lewis Field conducted independent analytical research to estimate the noise reduction potential of mounting advanced turbofan engines above the wing. Certification noise predictions were made for a notional long-haul commercial quadjet transport. A large quad was chosen because, even under current regulations, such aircraft sometimes experience difficulty in complying with certification noise requirements with a substantial margin. Also, because of its long wing chords, a large airplane would receive the greatest advantage of any noise-shielding benefit.

  16. Investigations of thermal barrier coatings of turbine parts using gas flame heating

    NASA Astrophysics Data System (ADS)

    Lepeshkin, A. R.; Bichkov, N. G.; Ilinskaja, O. I.; Nazarov, V. V.

    2017-09-01

    The development of methods for the calculated and experimental investigations thermal barrier coatings and thermal state of gas-turbine engine parts with a thermal barrier coatings is actual work. The gas flame heating was demonstrated to be effectively used during investigations of a thermal ceramic barrier coatings and thermal state of such gas-turbine engine parts with a TBC as the cooled turbine blades and vanes and combustion liner components. The gas-flame heating is considered to be preferable when investigating the gas-turbine engine parts with a TBC in the special cases when both the convective and radiant components of thermal flow are of great importance. The small-size rig with gas-flame flow made it possible to conduct the comparison investigations with the purpose of evaluating the efficiency of thermal protection of the ceramic deposited thermal barrier coatings on APS and EB techniques. The developed design-experiment method was introduced in bench tests of turbine blades and combustion liner components of gas turbine engines.

  17. Technology Reinvestment Project Manufacturing Education and Training. Volume 1

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Bond, Arthur J.

    1997-01-01

    The manufacturing education program is a joint program between the University of Alabama in Huntsville's (UAH) College of Engineering and Alabama A&M University's (AAMLJ) School of Engineering and Technology. The objective of the program is to provide more hands-on experiences to undergraduate engineering and engineering technology students. The scope of work consisted of. Year 1, Task 1: Review courses at Alabama Industrial Development Training (AIDT); Task 2: Review courses at UAH and AAMU; Task 3: Develop new lab manuals; Task 4: Field test manuals; Task 5: Prepare annual report. Year 2, Task 1: Incorporate feedback into lab manuals; Task 2 : Introduce lab manuals into classes; Task 3: Field test manuals; Task 4: Prepare annual report. Year 3, Task 1: Incorporate feedback into lab manuals; Task 2: Introduce lab manuals into remaining classes; Task 3: Conduct evaluation with assistance of industry; Task 4: Prepare final report. This report only summarizes the activities of the University of Alabama in Huntsville. The activities of Alabama A&M University are contained in a separate report.

  18. Primary Emission and the Potential of Secondary Aerosol Formation from Chinese Gasoline Engine Exhaust

    NASA Astrophysics Data System (ADS)

    Hu, Min; Peng, Jianfei; Qin, Yanhong; Du, Zhuofei; Li, Mengjin; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Lu, Sihua; Wu, Yusheng; Zeng, Limin; Guo, Song; Shao, Min; Wang, Yinhui; Shuai, Shijin

    2017-04-01

    Along with the urbanization and economic growth, vehicle population in China reached 269 million, ranked the second in the world in 2015. Gasoline vehicle is identified to be the main source for urban PM2.5 in China, accounting for 15%-31%. In this study the impact of fuel components on PM2.5 and volatile organic compounds (VOCs) emissions from a gasoline port fuel injection (PFI) engine and a gasoline direct injection (GDI) engine are discussed. Results show that, higher proportion of aromatics, alkenes or sulfur in gasoline fuel will lead to higher PM emissions. The PM from the PFI engine mainly consists of OC and a small amount of EC and inorganic ions, while the PM discharge from the GDI engine mainly consists of EC, OM and a small amount of inorganic ions. Since the GDI engines can reduce fuel consumption and CO2 emissions, and it would become more and more popular in the near future. The characteristics of POM component, emission factors and source profile were investigated from GDI engine, particularly focused on the effect of engine speed, load and the catalyst, which will be very much helpful for source identification as source indicators. Chamber experiments were conducted to quantify the potential of secondary aerosol formation from exhaust of a PFI gasoline engine and China V gasoline fuel. During 4-5 h simulation, equivalent to10 days of atmospheric photo-oxidation in Beijing, the extreme SOA production was 426 ± 85 mg/kg fuel, with high precursors and OH exposure. 14% of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatility organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reduction of emissions of aerosol precursor gases from vehicles is essential to mediate pollution in China.

  19. Saturation dependence of the quadrature conductivity of oil-bearing sands

    NASA Astrophysics Data System (ADS)

    Schmutz, M.; Blondel, A.; Revil, A.

    2012-02-01

    We have investigated the complex conductivity of oil-bearing sands with six distinct oil types including sunflower oil, silicone oil, gum rosin, paraffin, engine oil, and an industrial oil of complex composition. In all these experiments, the oil was the non-wetting phase. The in-phase (real) conductivity follows a power law relationship with the saturation (also known as the second Archie's law) but with a saturation exponent n raging from 1.1 to 3.1. In most experiments, the quadrature conductivity follows also a power law relationship with the water saturation but with a power law exponent p can be either positive or negative. For some samples, the quadrature conductivity first increases with saturation and then decreases indicating that two processes compete in controlling the quadrature conductivity. One is related to the insulating nature of the oil phase and a second could be associated with the surface area of the oil / water interface. The quadrature conductivity seems to be influenced not only by the value of the saturation exponent n (according to the Vinegar and Waxman model, p = n - 1), but also by the surface area between the oil phase and the water phase especially for very water-repellent oil having a fractal oil-water interface.

  20. The experiences of women engineers who have completed one to five years of professional engineering employment: A phenomenological study

    NASA Astrophysics Data System (ADS)

    White, Susan M.

    Women engineers remain underrepresented in employment in engineering fields in the United States. Feminist theory views this gender disparity beyond equity in numbers for women engineers and looks at structural issues of women's access, opportunities, and quality of experience in the workplace. Research on women's success and persistence in engineering education is diverse; however, there are few studies that focus on the early years of women's careers in engineering and less using a phenomenological research design. Experiences of women engineers who have completed one to five years of professional engineering employment are presented using a phenomenological research design. Research questions explored the individual and composite experiences for the co-researchers of the study as well as challenges and advantages of the phenomenon of having completed one to five years of professional engineering employment. Themes that emanated from the data were a feeling that engineering is a positive profession, liking math and science from an early age, having experiences of attending math and science camps or learning and practicing engineering interests with their fathers for some co-researchers. Other themes included a feeling of being different as a woman in the engineering workplace, taking advantage of opportunities for training, education, and advancement to further their careers, and the role of informal and formal mentoring in developing workplace networks and engineering expertise. Co-researchers negotiated issues of management quality and support, experiences of gender discrimination in the workplace, and having to make decisions balancing their careers and family responsibilities. Finally, the women engineers for this research study expressed intentions to persist in their careers while pursuing expertise and experience in their individual engineering fields.

  1. Seeking health information on the web: positive hypothesis testing.

    PubMed

    Kayhan, Varol Onur

    2013-04-01

    The goal of this study is to investigate positive hypothesis testing among consumers of health information when they search the Web. After demonstrating the extent of positive hypothesis testing using Experiment 1, we conduct Experiment 2 to test the effectiveness of two debiasing techniques. A total of 60 undergraduate students searched a tightly controlled online database developed by the authors to test the validity of a hypothesis. The database had four abstracts that confirmed the hypothesis and three abstracts that disconfirmed it. Findings of Experiment 1 showed that majority of participants (85%) exhibited positive hypothesis testing. In Experiment 2, we found that the recommendation technique was not effective in reducing positive hypothesis testing since none of the participants assigned to this server could retrieve disconfirming evidence. Experiment 2 also showed that the incorporation technique successfully reduced positive hypothesis testing since 75% of the participants could retrieve disconfirming evidence. Positive hypothesis testing on the Web is an understudied topic. More studies are needed to validate the effectiveness of the debiasing techniques discussed in this study and develop new techniques. Search engine developers should consider developing new options for users so that both confirming and disconfirming evidence can be presented in search results as users test hypotheses using search engines. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Development of Experience-based Visible-type Electromagnetic Teaching Materials

    NASA Astrophysics Data System (ADS)

    Suzuki, Masayoshi; Shima, Kenzou

    Electromagnetism is the base of electrical engineering, however, it is one of the most difficult subjects to learn. The small experiments which show the principles of electricity visibly are useful technique to promote these comprehension. For classroom experimental materials to learn basic electromagnetism, we developed rotating magnetic field visualizer, gravity-use generators, simple motors, and electric-field visualizer. We report how we visualized the principles of motors and generators in classroom experiments. In particular, we discuss in detail how to visualize the mechanism of very simple motors. We have been demonstrating the motors in children science classes conducted all over Japan. We developed these experimental materials, and we achieved remarkable results using these materials in the electromagnetism class.

  3. Engineering study for pallet adapting the Apollo laser altimeter and photographic camera system for the Lidar Test Experiment on orbital flight tests 2 and 4

    NASA Technical Reports Server (NTRS)

    Kuebert, E. J.

    1977-01-01

    A Laser Altimeter and Mapping Camera System was included in the Apollo Lunar Orbital Experiment Missions. The backup system, never used in the Apollo Program, is available for use in the Lidar Test Experiments on the STS Orbital Flight Tests 2 and 4. Studies were performed to assess the problem associated with installation and operation of the Mapping Camera System in the STS. They were conducted on the photographic capabilities of the Mapping Camera System, its mechanical and electrical interface with the STS, documentation, operation and survivability in the expected environments, ground support equipment, test and field support.

  4. STS-111 Flight Day 8 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On Flight Day 8 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), the Leonardo Multi Purpose Logistics Module (MPLM) is shown from the outside of the ISS. The MPLM, used to transport goods to the station for the Expedition 5 crew, and to return goods used by the Expedition 4 crew, is being loaded and unloaded by crewmembers. Live video from within the Destiny Laboratory Module shows Whitson and Chang-Diaz. They have just completed the second of three reboosts planned for this mission, in each of which the station will gain an additional statutory mile in altitude. Following this there is an interview conducted by ground-based reporters with some members from each of the three crews, answering various questions on their respective missions including sleeping in space and conducting experiments. Video of Earth and space tools precedes a second interview much like the first, but with the crews in their entirety. Topics discussed include the feelings of Bursch and Walz on their breaking the US record for continual days spent in space. The video ends with footage of the Southern California coastline.

  5. STS-111 Flight Day 8 Highlights

    NASA Astrophysics Data System (ADS)

    2002-06-01

    On Flight Day 8 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), the Leonardo Multi Purpose Logistics Module (MPLM) is shown from the outside of the ISS. The MPLM, used to transport goods to the station for the Expedition 5 crew, and to return goods used by the Expedition 4 crew, is being loaded and unloaded by crewmembers. Live video from within the Destiny Laboratory Module shows Whitson and Chang-Diaz. They have just completed the second of three reboosts planned for this mission, in each of which the station will gain an additional statutory mile in altitude. Following this there is an interview conducted by ground-based reporters with some members from each of the three crews, answering various questions on their respective missions including sleeping in space and conducting experiments. Video of Earth and space tools precedes a second interview much like the first, but with the crews in their entirety. Topics discussed include the feelings of Bursch and Walz on their breaking the US record for continual days spent in space. The video ends with footage of the Southern California coastline.

  6. Data documentation for the bare soil experiment at the University of Arkansas, June - August 1980

    NASA Technical Reports Server (NTRS)

    Sadeghi, A. M.

    1984-01-01

    The primary objective of this study is to evaluate the relationships between soil moisture and reflectivity of a bare soil, using microwave techniques. A drainage experiment was conducted on a Captina silt loam in cooperation with personnel in the Electrical Engineering Department. Measurements included soil moisture pressures at various depths, neutron probe measurements, gravimetric moisture samples, and reflectivity of the soil surface at selected frequencies including 1.5 and 6.0 GHz and at the incident angle of 45 deg. All measurements were made in conjuction with that of reflectivity data.

  7. Experiential Collaborative Learning and Preferential Thinking

    NASA Astrophysics Data System (ADS)

    Volpentesta, Antonio P.; Ammirato, Salvatore; Sofo, Francesco

    The paper presents a Project-Based Learning (shortly, PBL) approach in a collaborative educational environment aimed to develop design ability and creativity of students coming from different engineering disciplines. Three collaborative learning experiences in product design were conducted in order to study their impact on preferred thinking styles of students. Using a thinking style inventory, pre- and post-survey data was collected and successively analyzed through ANOVA techniques. Statistically significant results showed students successfully developed empathy and an openness to multiple perspectives. Furthermore, data analysis confirms that the proposed collaborative learning experience positively contributes to increase awareness in students' thinking styles.

  8. KSC-2011-3468

    NASA Image and Video Library

    2011-05-12

    Cape Canaveral, Fla. -- Students participate in a high-altitude balloon experiment that's being conducted on the grounds of Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin

  9. KSC-2011-3469

    NASA Image and Video Library

    2011-05-12

    Cape Canaveral, Fla. -- Students participate in a high-altitude balloon experiment that's being conducted on the grounds of Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin

  10. KSC-2011-3466

    NASA Image and Video Library

    2011-05-12

    Cape Canaveral, Fla. -- Students listen intently as a laboratory technician describes the high-altitude balloon experiment that's being conducted on the grounds of Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin

  11. KSC-2011-3467

    NASA Image and Video Library

    2011-05-12

    Cape Canaveral, Fla. -- Students participate in a high-altitude balloon experiment that's being conducted on the grounds of Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin

  12. System testing of a production Ada (trademark) project: The GRODY study

    NASA Technical Reports Server (NTRS)

    Seigle, Jeffrey; Esker, Linda; Shi, Ying-Liang

    1990-01-01

    The use of the Ada language and design methodologies that utilize its features has a strong impact on all phases of the software development project lifecycle. At the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC), the Software Engineering Laboratory (SEL) conducted an experiment in parallel development of two flight dynamics systems in FORTRAN and Ada. The teams found some qualitative differences between the system test phases of the two projects. Although planning for system testing and conducting of tests were not generally affected by the use of Ada, the solving of problems found in system testing was generally facilitated by Ada constructs and design methodology. Most problems found in system testing were not due to difficulty with the language or methodology but to lack of experience with the application.

  13. Execution of Educational Mechanical Production Programs for School Children

    NASA Astrophysics Data System (ADS)

    Itoh, Nobuhide; Itoh, Goroh; Shibata, Takayuki

    The authors are conducting experience-based engineering educational programs for elementary and junior high school students with the aim to provide a chance for them to experience mechanical production. As part of this endeavor, we planned and conducted a program called “Fabrication of Original Magnet Plates by Casting” for elementary school students. This program included a course for leading nature laws and logical thinking method. Prior to the program, a preliminary program was applied to school teachers to get comments and to modify for the program accordingly. The children responded excellently to the production process which realizes their ideas, but it was found that the course on natural laws and logical methods need to be improved to draw their interest and attention. We will continue to plan more effective programs, deepening ties with the local community.

  14. Wakata in JPM

    NASA Image and Video Library

    2009-06-01

    ISS020-E-005881 (1 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, conducts the current periodic humidity check on the Cell Biology Experiment Facility (CBEF) in the Saibo Rack in the Kibo laboratory of the International Space Station. Wakata opened the facility’s door for wiping up any condensation inside the micro-G & 1G section, if present, and also secured floating fan mesh with Kapton tape.

  15. Large Tunable Delays in Fiber and On-Chip Via Conversion/Dispersion

    DTIC Science & Technology

    2013-05-01

    Venkataraman , Pablo Londero, and Alexander L. Gaeta School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA (Received...BHAGWAT, VENKATARAMAN , LONDERO, AND GAETA PHYSICAL REVIEW A 81, 053825 (2010) broadening occurs when fast-moving particles rapidly traverse the light...experiments conducted in bulk vapor cells 053825-3 SLEPKOV, BHAGWAT, VENKATARAMAN , LONDERO, AND GAETA PHYSICAL REVIEW A 81, 053825 (2010) require the two

  16. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-013914 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  17. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014615 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (top), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  18. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014147 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (foreground), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  19. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014536 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  20. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014444 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  1. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-015415 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson, Expedition 40 commander; and Reid Wiseman (partially obscured), flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  2. Department of Defense Energy Management Plan, 1980

    DTIC Science & Technology

    1980-07-01

    for Testing and Materials , and the Society of Automotive Engineers. Following successful corn- pletion of these tests , we will report the effect of...Shelf crude oil which we will exchange for military petroleum products. We plan to expand our access to government -owned crude oil thereafter as we gain...experience and as more crude oil becomes available. In early 1981 we will conduct a politico-military simulaton to test Defense contractual

  3. Development of a Scale-up Tool for Pervaporation Processes

    PubMed Central

    Thiess, Holger; Strube, Jochen

    2018-01-01

    In this study, an engineering tool for the design and optimization of pervaporation processes is developed based on physico-chemical modelling coupled with laboratory/mini-plant experiments. The model incorporates the solution-diffusion-mechanism, polarization effects (concentration and temperature), axial dispersion, pressure drop and the temperature drop in the feed channel due to vaporization of the permeating components. The permeance, being the key model parameter, was determined via dehydration experiments on a mini-plant scale for the binary mixtures ethanol/water and ethyl acetate/water. A second set of experimental data was utilized for the validation of the model for two chemical systems. The industrially relevant ternary mixture, ethanol/ethyl acetate/water, was investigated close to its azeotropic point and compared to a simulation conducted with the determined binary permeance data. Experimental and simulation data proved to agree very well for the investigated process conditions. In order to test the scalability of the developed engineering tool, large-scale data from an industrial pervaporation plant used for the dehydration of ethanol was compared to a process simulation conducted with the validated physico-chemical model. Since the membranes employed in both mini-plant and industrial scale were of the same type, the permeance data could be transferred. The comparison of the measured and simulated data proved the scalability of the derived model. PMID:29342956

  4. Model-Based Systems Engineering Pilot Program at NASA Langley

    NASA Technical Reports Server (NTRS)

    Vipavetz, Kevin G.; Murphy, Douglas G.; Infeld, Samatha I.

    2012-01-01

    NASA Langley Research Center conducted a pilot program to evaluate the benefits of using a Model-Based Systems Engineering (MBSE) approach during the early phase of the Materials International Space Station Experiment-X (MISSE-X) project. The goal of the pilot was to leverage MBSE tools and methods, including the Systems Modeling Language (SysML), to understand the net gain of utilizing this approach on a moderate size flight project. The System Requirements Review (SRR) success criteria were used to guide the work products desired from the pilot. This paper discusses the pilot project implementation, provides SysML model examples, identifies lessons learned, and describes plans for further use on MBSE on MISSE-X.

  5. Starting of rocket engine at conditions of simulated altitude using crude monoethylaniline and other fuels with mixed acid

    NASA Technical Reports Server (NTRS)

    Ladanyi, Dezso J; Sloop, John L; Humphrey, Jack C; Morrell, Gerald

    1950-01-01

    Experiments were conducted at sea level and pressure altitude of about 55,000 feet at various temperatures to determine starting characteristics of a commercial rocket engine using crude monoethylaniline and other fuels with mixed acid. With crude monoethylaniline, ignition difficulties were encountered at temperatures below about 20 degrees F. With mixed butyl mercaptans, water-white turpentine, and x-pinene, no starting difficulties were experienced at temperatures as low as minus 74 degrees F. Turpentine and x-pinene, however, sometimes left deposits on the injector face. With blends containing furfuryl alcohol and with other blends, difficulties were experienced either from appreciable deposits or from starting.

  6. Induction simulation of gas core nuclear engine

    NASA Technical Reports Server (NTRS)

    Poole, J. W.; Vogel, C. E.

    1973-01-01

    The design, construction and operation of an induction heated plasma device known as a combined principles simulator is discussed. This device incorporates the major design features of the gas core nuclear rocket engine such as solid feed, propellant seeding, propellant injection through the walls, and a transpiration cooled, choked flow nozzle. Both argon and nitrogen were used as propellant simulating material, and sodium was used for fuel simulating material. In addition, a number of experiments were conducted utilizing depleted uranium as the fuel. The test program revealed that satisfactory operation of this device can be accomplished over a range of operating conditions and provided additional data to confirm the validity of the gas core concept.

  7. Update on the NASA Glenn Propulsion Systems Lab Ice Crystal Cloud Characterization (2015, 2016)

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith; Bencic, Timothy; Ratvasky, Thomas

    2016-01-01

    NASA Glenn's Propulsion Systems Lab, an altitude engine test facility, was outfitted with a spray system to generate ice crystals in 2011. Turbine engines and driven rigs can experience ice crystal icing at flight altitudes, temperatures and Mach numbers. To support these tests, four ice crystal characterizations have been conducted in two different facility configurations. In addition, super-cooled liquid and mixed phase clouds have also been generated. This paper represents a work in progress. It will describe some of the 11-parameter calibration space, and how those parameters interact with each other, the instrumentation used to characterize the cloud and present a sample of the cloud characterization results.

  8. Investigation of a Moire Based Crack Detection Technique for Propulsion Health Monitoring

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Abudl-Aziz, Ali; Fralick, Gustave C.; Wrbanek, John D.

    2012-01-01

    The development of techniques for the health monitoring of the rotating components in gas turbine engines is of major interest to NASA s Aviation Safety Program. As part of this on-going effort several experiments utilizing a novel optical Moir based concept along with external blade tip clearance and shaft displacement instrumentation were conducted on a simulated turbine engine disk as a means of demonstrating a potential optical crack detection technique. A Moir pattern results from the overlap of two repetitive patterns with slightly different periods. With this technique, it is possible to detect very small differences in spacing and hence radial growth in a rotating disk due to a flaw such as a crack. The experiment involved etching a circular reference pattern on a subscale engine disk that had a 50.8 mm (2 in.) long notch machined into it to simulate a crack. The disk was operated at speeds up to 12 000 rpm and the Moir pattern due to the shift with respect to the reference pattern was monitored as a means of detecting the radial growth of the disk due to the defect. In addition, blade displacement data were acquired using external blade tip clearance and shaft displacement sensors as a means of confirming the data obtained from the optical technique. The results of the crack detection experiments and its associated analysis are presented in this paper.

  9. Acoustic emissions verification testing of International Space Station experiment racks at the NASA Glenn Research Center Acoustical Testing Laboratory

    NASA Astrophysics Data System (ADS)

    Akers, James C.; Passe, Paul J.; Cooper, Beth A.

    2005-09-01

    The Acoustical Testing Laboratory (ATL) at the NASA John H. Glenn Research Center (GRC) in Cleveland, OH, provides acoustic emission testing and noise control engineering services for a variety of specialized customers, particularly developers of equipment and science experiments manifested for NASA's manned space missions. The ATL's primary customer has been the Fluids and Combustion Facility (FCF), a multirack microgravity research facility being developed at GRC for the USA Laboratory Module of the International Space Station (ISS). Since opening in September 2000, ATL has conducted acoustic emission testing of components, subassemblies, and partially populated FCF engineering model racks. The culmination of this effort has been the acoustic emission verification tests on the FCF Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR), employing a procedure that incorporates ISO 11201 (``Acoustics-Noise emitted by machinery and equipment-Measurement of emission sound pressure levels at a work station and at other specified positions-Engineering method in an essentially free field over a reflecting plane''). This paper will provide an overview of the test methodology, software, and hardware developed to perform the acoustic emission verification tests on the CIR and FIR flight racks and lessons learned from these tests.

  10. Flight Stability and Control and Performance Results from the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Cobleigh, Brent R.; Cox, Timothy H.; Conners, Timothy R.; Iliff, Kenneth W.; Powers, Bruce G.

    1998-01-01

    The Linear Aerospike SR-71 Experiment (LASRE) is presently being conducted to test a 20-percent-scale version of the Linear Aerospike rocket engine. This rocket engine has been chosen to power the X-33 Single Stage to Orbit Technology Demonstrator Vehicle. The rocket engine was integrated into a lifting body configuration and mounted to the upper surface of an SR-71 aircraft. This paper presents stability and control results and performance results from the envelope expansion flight tests of the LASRE configuration up to Mach 1.8 and compares the results with wind tunnel predictions. Longitudinal stability and elevator control effectiveness were well-predicted from wind tunnel tests. Zero-lift pitching moment was mispredicted transonically. Directional stability, dihedral stability, and rudder effectiveness were overpredicted. The SR-71 handling qualities were never significantly impacted as a result of the missed predictions. Performance results confirmed the large amount of wind-tunnel-predicted transonic drag for the LASRE configuration. This drag increase made the performance of the vehicle so poor that acceleration through transonic Mach numbers could not be achieved on a hot day without depleting the available fuel.

  11. Propulsion Study for Small Transport Aircraft Technology (STAT)

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.

    1980-01-01

    Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.

  12. Summary of engineering-scale experiments for the Solar Detoxification of Water project

    NASA Astrophysics Data System (ADS)

    Pacheco, J. E.; Yellowhorse, L.

    1992-03-01

    This report contains a summary of large-scale experiments conducted at Sandia National Laboratories under the Solar Detoxification of Water project. The objectives of the work performed were to determine the potential of using solar radiation to destroy organic contaminants in water by photocatalysis and to develop the process and improve its performance. For these experiments, we used parabolic troughs to focus sunlight onto glass pipes mounted at the trough's focus. Water spiked with a contaminant and containing suspended titanium dioxide catalyst was pumped through the illuminated glass pipe, activating the catalyst with the ultraviolet portion of the solar spectrum. The activated catalyst creates oxidizers that attack and destroy the organics. Included in this report are a summary and discussion of the implications of experiments conducted to determine: the effect of process kinetics on the destruction of chlorinated solvents (such as trichloroethylene, perchloroethylene, trichloroethane, methylene chloride, chloroform and carbon tetrachloride), the enhancement due to added hydrogen peroxide, the optimal catalyst loading, the effect of light intensity, the inhibition due to bicarbonates, and catalyst issues.

  13. Socialization Experiences Resulting from Doctoral Engineering Teaching Assistantships

    ERIC Educational Resources Information Center

    Mena, Irene B.; Diefes-Dux, Heidi A.; Capobianco, Brenda M.

    2013-01-01

    The purpose of this study was to explore and characterize the types of socialization experiences that result from engineering teaching assistantships. Using situated learning and communities of practice as the theoretical framework, this study highlights the experiences of 28 engineering doctoral students who worked as engineering teaching…

  14. A fuzzy model of superelastic shape memory alloys for vibration control in civil engineering applications

    NASA Astrophysics Data System (ADS)

    Ozbulut, O. E.; Mir, C.; Moroni, M. O.; Sarrazin, M.; Roschke, P. N.

    2007-06-01

    Two experimental test programs are conducted to collect data and simulate the dynamic behavior of CuAlBe shape memory alloy (SMA) wires. First, in order to evaluate the effect of temperature changes on superelastic SMA wires, a large number of cyclic, sinusoidal, tensile tests are performed at 1 Hz. These tests are conducted in a controlled environment at 0, 25 and 50 °C with three different strain amplitudes. Second, in order to assess the dynamic effects of the material, a series of laboratory experiments is conducted on a shake table with a scale model of a three-story structure that is stiffened with SMA wires. Data from these experiments are used to create fuzzy inference systems (FISs) that can predict hysteretic behavior of CuAlBe wire. Both fuzzy models employ a total of three input variables (strain, strain-rate, and temperature or pre-stress) and an output variable (predicted stress). Gaussian membership functions are used to fuzzify data for each of the input and output variables. Values of the initially assigned membership functions are adjusted using a neural-fuzzy procedure to more accurately predict the correct stress level in the wires. Results of the trained FISs are validated using test results from experimental records that had not been previously used in the training procedure. Finally, a set of numerical simulations is conducted to illustrate practical use of these wires in a civil engineering application. The results reveal the applicability for structural vibration control of pseudoelastic CuAlBe wire whose highly nonlinear behavior is modeled by a simple, accurate, and computationally efficient FIS.

  15. Undergraduate engineering student experiences: Comparing sex, gender and switcher status

    NASA Astrophysics Data System (ADS)

    Fergen, Brenda Sue

    This dissertation explores undergraduate engineering experiences, comparing men with women and switchers with non-switchers. Factors related to a chilly academic climate and gender-role socialization are hypothesized to contribute to variations in men's and women's academic experiences and persistence rates. Both quantitative and qualitative data are utilized in an effort to triangulate the findings. Secondary survey data, acquired as result of a 1992 Academic Environment Survey, were utilized to test the hypothesis that sex is the most important predictor (i.e., demographic variable) of perceptions of academic climate. Regression analyses show that sex by itself is not always a significant determinant. However, when sex and college (engineering vs. other) are combined into dummy variables, they are statistically significant in models where sex was not significant alone. This finding indicates that looking at sex differences alone may be too simplistic. Thirty personal interviews were conducted with a random stratified sample of undergraduate students from the 1993 engineering cohort. The interview data indicate that differences in childhood socialization are important. With regard to persistence, differences in socialization are greater for switchers vs. non-switchers than men vs. women. Thus, gender-role socialization does not appear to play as prominent a role in women's persistence as past literature would indicate. This may be due to the self-selection process that occurs among women who choose to pursue engineering. Other aspects of childhood socialization such as parents' level of educational and occupation, students' high school academic preparation and knowledge of what to expect of college classes appear to be more important. In addition, there is evidence that, for women, male siblings play an important role in socialization. There is also evidence that women engineering students at Midwestern University face a chilly academic climate. The factors which appear to contribute the most to an inhospitable atmosphere include subtle behaviors on the part of faculty and administrators and blatant sexist, derogatory and hostile comments and jokes on the part of male undergraduate students. Personal interview data indicate continued resistance among some male administrators, faculty and students to women pursuing majors in engineering.

  16. Research on fuzzy PID control to electronic speed regulator

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-gang; Chen, Xue-hui; Zheng, Sheng-guo

    2007-12-01

    As an important part of diesel engine, the speed regulator plays an important role in stabilizing speed and improving engine's performance. Because there are so many model parameters of diesel-engine considered in traditional PID control and these parameters present non-linear characteristic.The method to adjust engine speed using traditional PID is not considered as a best way. Especially for the diesel-engine generator set. In this paper, the Fuzzy PID control strategy is proposed. Some problems about its utilization in electronic speed regulator are discussed. A mathematical model of electric control system for diesel-engine generator set is established and the way of the PID parameters in the model to affect the function of system is analyzed. And then it is proposed the differential coefficient must be applied in control design for reducing dynamic deviation of system and adjusting time. Based on the control theory, a study combined control with PID calculation together for turning fuzzy PID parameter is implemented. And also a simulation experiment about electronic speed regulator system was conducted using Matlab/Simulink and the Fuzzy-Toolbox. Compared with the traditional PID Algorithm, the simulated results presented obvious improvements in the instantaneous speed governing rate and steady state speed governing rate of diesel-engine generator set when the fuzzy logic control strategy used.

  17. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  18. Investigation of students' experiences of gendered cultures in engineering workplaces

    NASA Astrophysics Data System (ADS)

    Male, Sally A.; Gardner, Anne; Figueroa, Eugenia; Bennett, Dawn

    2018-05-01

    Women remain severely under-represented in engineering in Australia as in all Western countries. This limits the pool of talent, standpoints and approaches within the profession. Furthermore, this under-representation equates to restriction of the benefits of being an engineer mainly to men. Gendered workplace experiences have been found to contribute to women leaving the profession. In this study we explore students' experiences of gendered cultures in engineering workplaces, using interviews with a purposive sample of 13 students (4 male) recruited following a previous survey. Although the overall experience of workplace learning is positive for many students, male and female engineering students reported experiences consistent with masculine cultures. Educators and employers must proactively lead improvements to the culture in engineering workplaces, prepare students for gendered workplaces and support students to reflect during and after workplace experiences. The experiences presented here could be adapted to enhance inclusivity training.

  19. An Overview of NASA's SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft’s mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft’s flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT’s research systems and capabilities

  20. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  1. Learning from Fellow Engineering Students Who Have Current Professional Experience

    ERIC Educational Resources Information Center

    Davies, John W.; Rutherford, Ursula

    2012-01-01

    This paper presents an investigation of how experience-led content in an engineering degree can be strengthened by creating opportunities for engineering students to benefit from the knowledge, skills and resources of students with current professional experience. Students who study civil engineering part-time at Coventry University (while also…

  2. NOAA Atmospheric Sciences Modeling Division support to the US Environmental Protection Agency

    NASA Astrophysics Data System (ADS)

    Poole-Kober, Evelyn M.; Viebrock, Herbert J.

    1991-07-01

    During FY-1990, the Atmospheric Sciences Modeling Division provided meteorological research and operational support to the U.S. Environmental Protection Agency. Basic meteorological operational support consisted of applying dispersion models and conducting dispersion studies and model evaluations. The primary research effort was the development and evaluation of air quality simulation models using numerical and physical techniques supported by field studies. Modeling emphasis was on the dispersion of photochemical oxidants and particulate matter on urban and regional scales, dispersion in complex terrain, and the transport, transformation, and deposition of acidic materials. Highlights included expansion of the Regional Acid Deposition Model/Engineering Model family to consist of the Tagged Species Engineering Model, the Non-Depleting Model, and the Sulfate Tracking Model; completion of the Acid-MODES field study; completion of the RADM2.1 evaluation; completion of the atmospheric processes section of the National Acid Precipitation Assessment Program 1990 Integrated Assessment; conduct of the first field study to examine the transport and entrainment processes of convective clouds; development of a Regional Oxidant Model-Urban Airshed Model interface program; conduct of an international sodar intercomparison experiment; incorporation of building wake dispersion in numerical models; conduct of wind-tunnel simulations of stack-tip downwash; and initiation of the publication of SCRAM NEWS.

  3. Solar Stirling power generation - Systems analysis and preliminary tests

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.; Wu, Y.-C.; Moynihan, P. I.; Day, F. D., III

    1977-01-01

    The feasibility of an electric power generation system utilizing a sun-tracking parabolic concentrator and a Stirling engine/linear alternator is being evaluated. Performance predictions and cost analysis of a proposed large distributed system are discussed. Design details and preliminary test results are presented for a 9.5 ft diameter parabolic dish at the Jet Propulsion Laboratory (Caltech) Table Mountain Test Facility. Low temperature calorimetric measurements were conducted to evaluate the concentrator performance, and a helium flow system is being used to test the solar receiver at anticipated working fluid temperatures (up to 650 or 1200 C) to evaluate the receiver thermal performance. The receiver body is designed to adapt to a free-piston Stirling engine which powers a linear alternator assembly for direct electric power generation. During the next phase of the program, experiments with an engine and receiver integrated into the concentrator assembly are planned.

  4. Flight testing the Digital Electronic Engine Control (DEEC) A unique management experience

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.; Burcham, F. W., Jr.; Kock, B. M.

    1983-01-01

    The concept for the DEEC had its origin in the early 1970s. At that time it was recognized that the F100 engine performance, operability, reliability, and cost could be substantially improved by replacing the original mechanical/supervisory electronic control system with a full-authority digital control system. By 1978, the engine manufacturer had designed and initiated the procurement of flight-qualified control system hardware. As a precursor to an integrated controls program, a flight evaluation of the DEEC system on the F-15 aircraft was proposed. Questions regarding the management of the DEEC flight evaluation program are discussed along with the program elements, the technical results of the F-15 evaluation, and the impact of the flight evaluation on after-burning turbofan controls technology and its use in and application to military aircraft. The lessons learned through the conduct of the program are discussed.

  5. Application of Background Oriented Schlieren for Altitude Testing of Rocket Engines

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Stiegemeier, Benjamin R.

    2017-01-01

    A series of experiments was performed to determine the feasibility of using the Background Oriented Schlieren, BOS, flow visualization technique to image a simulated, small, rocket engine, plume under altitude test conditions. Testing was performed at the NASA Glenn Research Centers Altitude Combustion Stand, ACS, using nitrogen as the exhaust gas simulant. Due to limited optical access to the facility test capsule, all of the hardware required to conduct the BOS were located inside the vacuum chamber. During the test series 26 runs were performed using two different nozzle configurations with pressures in the test capsule around 0.3 psia. No problems were encountered during the test series resulting from the optical hardware being located in the test capsule and acceptable resolution images were captured. The test campaign demonstrated the ability of using the BOS technique for small, rocket engine, plume flow visualization during altitude testing.

  6. Gregory Merkel Tours Marshall Space Flight Center (MSFC)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Gregory A. Merkel (left), high school student from Springfield, Massachusetts, is pictured here with Harry Coons of the Marshall Space Flight Center (MSFC) during a visit to the center. Merkel was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year's Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  7. Skylab

    NASA Image and Video Library

    1972-06-02

    Berkley, California high school student, Jeanne L. Leventhal, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; and Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew during a tour of MSFC. Leventhal was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  8. Brian Dunlap Tours Marshall Space Flight Center (MSFC)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    W. Brain Dunlap (left), high school student from Youngstown, Ohio, is pictured here with Harry Coons of the Marshall Space Flight Center (MSFC) during a visit to the center. Dunlap was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year's Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  9. Hypogravity Research and Educational Parabolic Flight Activities Conducted in Barcelona: a new Hub of Innovation in Europe

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni; González, Daniel Ventura; López, David

    2016-12-01

    We report on different research and educational activities related to parabolic flights conducted in Barcelona since 2008. We use a CAP10B single-engine aerobatic aircraft flying out of Sabadell Airport and operating in visual flight conditions providing up to 8 seconds of hypogravity for each parabola. Aside from biomedical experiments being conducted, different student teams have flown in parabolic flights in the framework of the international contest `Barcelona Zero-G Challenge', and have published their results in relevant symposiums and scientific journals. The platform can certainly be a good testbed for a proof-of-concept before accessing other microgravity platforms, and has proved to be excellent for motivational student campaigns.

  10. Quantum-limited heat conduction over macroscopic distances

    PubMed Central

    Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko

    2016-01-01

    The emerging quantum technological apparatuses1, 2, such as the quantum computer3–6, call for extreme performance in thermal engineering7. Cold distant heat sinks are needed for the quantized electric degrees of freedom due to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance8–10. However, the short distance between the heat-exchanging bodies in the previous experiments11–14 hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics15–17 which provides a basis for the superconducting quantum computer18–21. Especially, our results facilitate remote cooling of nanoelectronic devices using far-away in-situ-tunable heat sinks22, 23. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics24, 25. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications26. PMID:27239219

  11. Results of Kirari optical communication demonstration experiments with NICT optical ground station (KODEN) aiming for future classical and quantum communications in space

    NASA Astrophysics Data System (ADS)

    Toyoshima, Morio; Takenaka, Hideki; Shoji, Yozo; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo

    2012-05-01

    Bi-directional ground-to-satellite laser communication experiments were successfully performed between the optical ground station developed by the National Institute of Information and Communications Technology (NICT), located in Koganei City in suburban Tokyo, and a low earth orbit (LEO) satellite, the "Kirari" Optical Inter-orbit Communications Engineering Test Satellite (OICETS). The experiments were conducted in cooperation with the Japan Aerospace Exploration Agency (JAXA), and called the Kirari Optical communication Demonstration Experiments with the NICT optical ground station (or KODEN). The ground-to-OICETS laser communication experiment was the first in-orbit demonstration involving the LEO satellite. The laser communication experiment was conducted since March 2006. The polarization characteristics of an artificial laser source in space, such as Stokes parameters, and the degree of polarization were measured through space-to-ground atmospheric transmission paths, which results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography on a global scale in the future. The Phase-5 experiment, international laser communications experiments were also successfully conducted with four optical ground stations located in the United States, Spain, Germany, and Japan from April 2009 to September 2009. The purpose of the Phase-5 experiment was to establish OICETS-to-ground laser communication links from the different optical ground stations and the statistical analyses such as the normalized power, scintillation index, probability density function, auto-covariance function, and power spectral density were performed. Thus the applicability of the satellite laser communications was demonstrated, aiming not only for geostationary earth orbit-LEO links but also for ground-to-LEO optical links. This paper presents the results of the KODEN experiments and mainly introduces the common analyses among the different optical ground stations.

  12. Flight test experience and controlled impact of a large, four-engine, remotely piloted airplane

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Horton, T. W.

    1985-01-01

    A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed.

  13. Space processing applications rocket project. SPAR 8

    NASA Technical Reports Server (NTRS)

    Chassay, R. P. (Editor)

    1984-01-01

    The Space Processing Applications Rocket Project (SPAR) VIII Final Report contains the engineering report prepared at the Marshall Space Flight Center (MSFC) as well as the three reports from the principal investigators. These reports also describe pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication, and testing, all of which are expected to contribute immeasurably to an improved comprehension of materials processing in space. This technical memorandum is directed entirely to the payload manifest flown in the eighth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled Glass Formation Experiment SPAR 74-42/1R, Glass Fining Experiment in Low-Gravity SPAR 77-13/1, and Dynamics of Liquid Bubbles SPAR Experiment 77-18/2.

  14. Utilization of electromigration in civil and environmental engineering--processes, transport rates and matrix changes.

    PubMed

    Ottosen, Lisbeth M; Christensen, Iben V; Rorig-Dalgård, Inge; Jensen, Pernille E; Hansen, Henrik K

    2008-07-01

    Electromigration (movement of ions in an applied electric field) is utilized for supply or extraction of ions from various porous materials within both civil and environmental engineering. In civil engineering, most research has been conducted on the removal of chlorides from concrete to hinder reinforcement corrosion while in environmental engineering remediation of heavy metal polluted soil is the issue most studied. Never the less, experiments have been conducted with utilization for several other materials and purposes within both engineering fields. Even though there are many topics of common interest in the use of electromigration for the two fields, there is no tradition for collaboration. The present paper is a review with the aim of pointing out areas of shared interest. Focus is laid on the purposes of the different processes, transport rates of various ions in different materials and on changes in the matrix itself. Desorption and dissolution of the target elements into ionic form is a key issue to most of the processes, and can be the limiting step. The removal rate is generally below 1 cm day(- 1), but it can be much less than 1 mm day(- 1) when desorption is slow and insufficient. Matrix changes occurs under the action of the applied electric field and it includes both physico-chemical and hydrological changes. Some of the solid phases is weathered and new can be formed. Increased fundamental understanding of the effects and side effects, when applying the electric field to a porous material, can lead to improvement of the known technologies and possibly to new applications.

  15. Understanding First Generation College Student Experiences and Interaction with Belongingness, Identity, and Social Capital: An Explanatory Mixed Method Study

    NASA Astrophysics Data System (ADS)

    Boone, Hank Joseph Reyes

    This master's thesis is a mixed method explanatory study focusing on First Generation College student's (FGS) engineering degree experiences. Constructs used to understand their experiences were future time perspective, belongingness, engineering identity, social capital, and social identity complexity. An upper level engineering students' communications class was surveyed at a western land grant institution. Analysis showed FGS had more engineering belongingness than peers having at least one parent graduate college. The qualitative population was then upper level engineering FGS who reported high belongingness. Data showed the five interview participants communicated belongingness in terms of engineering identity. They became an engineer when they had experiences using engineering knowledge. Participants often accessed parents and family to make academic and career decisions, but some accessed more individuals (i.e. professors, engineers, peers). Lastly, participants appeared to compartmentalize their FGS identity to outside the engineering classroom while they formed their engineering identity through the degree program.

  16. The physics of pulsed streamer discharge in high pressure air and applications to engine techonologies

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Hsu

    The goal of this dissertation is to study high pressure streamers in air and apply it to diesel engine technologies. Nanosecond scale pulsed high voltage discharges in air/fuel mixtures can generate radicals which in turn have been shown to improve combustion efficiency in gasoline fueled internal combustion engines. We are exploring the possibility to extend such transient plasma generation and expected radical species generation to the range of pressures encountered in compression-ignition (diesel) engines having compression ratios of ˜20:1, thereby improving lean burning efficiency and extending the range of lean combustion. At the beginning of this dissertation, research into streamer discharges is reviewed. Then, we conducted experiments of streamer propagation at high pressures, calculated the streamer velocity based on both optical and electrical measurements, and the similarity law was checked by analyzing the streamer velocity as a function of the reduced electric field, E/P. Our results showed that the similarity law is invalid, and an empirical scaling factor, E/√P, is obtained and verified by dimensional analysis. The equation derived from the dimensional analysis will be beneficial to proper electrode and pulse generator design for transient plasma assisted internal engine experiments. Along with the high pressure study, we applied such technique on diesel engine to improve the fuel efficiency and exhaust treatment. We observed a small effect of transient plasma on peak pressure, which implied that transient plasma has the capability to improve the fuel consumption. In addition, the NO can be reduced effectively by the same technique and the energy cost is 30 eV per NO molecule.

  17. Becoming an engineer: Doctoral women's perspectives on identity and learning in the culture of engineering

    NASA Astrophysics Data System (ADS)

    Wood, Shaunda L.

    Women face many obstacles in their academic careers but there is a gap in the research with regards to their perceptions of science and engineering education and how non/participation in the culture of engineering affects their identities. Moreover, little research has been conducted with female Ph.D. students especially with regard to the reasons they have continued their studies, and their level of satisfaction with their career and lives. This study was guided by the sociocultural approach and theories of learning and identity. Methodologically, the design adopted is a naturalistic qualitative inquiry using two open-ended interviews with participant verification after the first interview. The life history narratives (Mishler, 1999) obtained from the seven doctoral electrical and mechanical women engineers, at various stages in their programs, were the primary source of data. By examining the path of becoming a doctoral woman engineer, this study makes the educational experiences of women intelligible to the general public as well as policy makers. It gives voice to the women engineers whose perspectives are rarely heard in academic settings or mainstream society. The findings of the study lend insight to the importance and necessity of more inclusive engineering education, incorporating not only women's studies courses into the curriculum but anti-racism education as well as including the perspective of 'Other' people of difference. Moreover, multi-perspective approaches to increasing enrolment and retention of women in engineering were more effective and in keeping with addressing notions of 'difference' in engineering populations.

  18. From Paper to Production to Test: An Update on NASA's J-2X Engine for Exploration

    NASA Technical Reports Server (NTRS)

    Kynard, Michael

    2011-01-01

    The NASA/industry team responsible for developing the J-2X upper stage engine for the Space Launch System (SLS) Program has made significant progress toward moving beyond the design phase and into production, assembly, and test of development hardware. The J-2X engine exemplifies the SLS Program goal of using proven technology and experience from more than 50 years of United States spaceflight experience combined with modern manufacturing processes and approaches. It will power the second stage of the fully evolved SLS Program launch vehicle that will enable a return to human exploration of space beyond low earth orbit. Pratt & Whitney Rocketdyne (PWR) is under contract to develop and produce the engine, leveraging its flight-proven LH2/LOX, gas generator cycle J-2 and RS-68 engine capabilities, recent experience with the X-33 aerospike XRS-2200 engine, and development knowledge of the J-2S tap-off cycle engine. The J- 2X employs a gas generator operating cycle designed to produce 294,000 pounds of vacuum thrust in primary operating mode with its full nozzle extension. With a truncated nozzle extension suitable to support engine clustering on the stage, the nominal vacuum thrust level in primary mode is 285,000 pounds. It also has a secondary mode, during which it operates at 80 percent thrust by altering its mixture ratio. The J-2X development philosophy is based on proven hardware, an aggressive development schedule, and early risk reduction. NASA Marshall Space Flight Center (MSFC) and PWR began development of the J-2X in June 2006. The government/industry team of more than 600 people within NASA and PWR successfully completed the Critical Design Review (CDR) in November 2008, following extensive risk mitigation testing. Assembly of the first development engine was completed in May 2011 and the first engine test was conducted at the NASA Stennis Space Center (SSC), test stand A2, on 14 July 2011. Testing of the first development engine will continue through the autumn of 2011, be paused for test stand modifications to the passive diffuser, and then restart in the spring of 2012. This testing will be followed by specialized powerpack testing intended to examine the design and operating margins of the engine turbomachinery. The development plan beyond this point leads through more system-level, engine testing of several samples, analytical model validation activities, functional and performance verification, and then ultimate certification to support human spaceflight. This paper will discuss the J-2X development background, provide top-level information on design and development planning, and will explore some of the development challenges and mitigation activities pursued to date.

  19. Engineering Professional Development: Elementary Teachers' Self-efficacy and Sources of Self-efficacy

    NASA Astrophysics Data System (ADS)

    Webb, Donna Louise

    Currently, STEM (science, technology, engineering, and mathematics) is a popular buzz word in P-12 education as it represents a means to advance American competitiveness in the global economy. Proponents of the engineering component of STEM advocate additional benefits in teaching engineering, such as its capacity to engage students in collaboration, and to apply critical thinking, systems thinking, negotiation, and communication skills to solve real-life contextual problems. Establishing a strong foundation of engineering knowledge at a young age will provide students with internal motivation as it taps into their curiosity toward how things work, and it also prepares them for secondary science courses. Successful STEM education is often constrained by elementary teachers' low perception of self-efficacy to teach science and engineering. Elementary teachers with low self-efficacy in science are more likely to spend less instructional time teaching science, which suggests that teachers with little to no training in engineering might avoid teaching this topic. Therefore, the purpose of this study was twofold: (a) to examine the effects of engineering professional development on elementary (K-6) teachers' content and pedagogical content knowledge (PCK) and perceptions of self-efficacy to teach engineering, and (b) to identify and explain sources influencing self-efficacy. Professional development was conducted in a metropolitan area in the Pacific Northwest. Results revealed that after the engineering professional development, teachers experienced statistically significant gains in content, PCK, and self-efficacy to teach engineering. Increases in self-efficacy were mainly attributed to mastery experiences and cultivation of a growth mindset by embracing the engineering design process.

  20. Russian EVA 34

    NASA Image and Video Library

    2013-08-16

    ISS036-E-033400 (16 Aug. 2013) --- Russian cosmonaut Alexander Misurkin (lower left), Expedition 36 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the seven-hour, 29-minute spacewalk ? the longest ever conducted by a pair of Russian cosmonauts ? Misurkin and Fyodor Yurchikhin (out of frame) rigged cables for the future arrival of a Russian laboratory module and installed an experiment panel.

  1. Russian EVA 34

    NASA Image and Video Library

    2013-08-16

    ISS036-E-033402 (16 Aug. 2013) --- Russian cosmonaut Alexander Misurkin (lower left), Expedition 36 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the seven-hour, 29-minute spacewalk ? the longest ever conducted by a pair of Russian cosmonauts ? Misurkin and Fyodor Yurchikhin (out of frame) rigged cables for the future arrival of a Russian laboratory module and installed an experiment panel.

  2. Corps of Engineers National Automation Team (CENAT) Technology Transfer Test Bed (T(3)B) Demonstration of the Design 4D Program

    DTIC Science & Technology

    1989-11-01

    other design tools. RESULTS OF TEST/DEMONSTRATION: Training for the Design 4D Program was conducted at USACERL. Although nearly half of the test...subjects had difficulty with the prompts, their understanding of the program improved after experimenting with the commands. After training , most felt...Equipment Testing Process 3 TEST DISTRICT TRAINING ........................................... 10 Training Process Post Training Survey Post Training

  3. Cold Regions Test of Tracked and Wheeled Vehicles

    DTIC Science & Technology

    2015-12-11

    with CTIS setting in the Highway setting and Mud, Sand and Snow setting. (7) Conduct the trials a minimum of three times at each speed as stated in...lock brake system. Record the stopping distance data and record any slew from the centerline. Document if the vehicle experiences engine stall ...while operating in snow. The TOP includes guidance for snow as well as mud, sand , swamps, and wet clay. Most conventional wheeled vehicles cannot

  4. Missouri River Recovery Management Plan and Environmental Impact Statement

    DTIC Science & Technology

    2014-04-11

    Proficient in hydrologic and hydraulic engineering computer models, particularly ResSim and HEC - RAS ; working experience with large river systems including...to help study teams determine ecosystem responses to changes in the flow regime of a river or connected wetland. HEC -EFM analyses involve: 1...Description of the Model and How It Will Be Applied in the Study Approval Status HEC - RAS The function of this model is to conduct one-dimensional hydraulic

  5. Pettit works with the SLICE at the MSG in the U.S. Laboratory

    NASA Image and Video Library

    2012-03-09

    ISS030-E-128918 (9 March 2012) --- NASA astronaut Don Pettit, Expedition 30 flight engineer, works with the Structure and Liftoff In Combustion Experiment (SLICE) at the Microgravity Sciences Glovebox (MSG) in the Destiny laboratory of the International Space Station. Pettit conducted three sets of flame tests, followed by a fan calibration. This test will lead to increased efficiency and reduced pollutant emission for practical combustion devices.

  6. Corroded Anchor Structure Stability/Reliability (CAS_Stab-R) Software for Hydraulic Structures

    DTIC Science & Technology

    2017-12-01

    This report describes software that provides a probabilistic estimate of time -to-failure for a corroding anchor strand system. These anchor...stability to the structure. A series of unique pull-test experiments conducted by Ebeling et al. (2016) at the U.S. Army Engineer Research and...Reliability (CAS_Stab-R) produces probabilistic Remaining Anchor Life time estimates for anchor cables based upon the direct corrosion rate for the

  7. PILOT-SCALE EVALUATION OF ENGINEERED BARIER SYSTEMS FOR THE YUCCA MOUNTAIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.W. Webb; J.T. George; R.E. Finley

    This paper describes two quarter-scale experiments (1.4 m diameter) and associated numerical analyses on granular backfill engineered barrier systems in support of the Yucca Mountain Project for the potential repository. The two configurations include a sloped capillary barrier and a plain backfill. The tests involve application of dyed water as a constant line infiltration source along the top of the test set-up, monitoring water movement through the test, and measuring water exiting the experiments. A complete water balance estimate is made for each test, and observed water movement is compared with (1) detailed numerical analyses conducted using the TOUGH2 codemore » for unsaturated flow in porous media and (2) posttest observations. The results of the testing and analyses show that for the injection rates and configuration applied, the capillary barrier design diverts a significant amount of all injected water and the TOUGH2 pretest predictions show qualitative and quantitative agreement with the experimental data.« less

  8. Microgravity

    NASA Image and Video Library

    2004-04-15

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  9. Microgravity

    NASA Image and Video Library

    2004-04-15

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  10. Expedition 6 Crew Interviews: Don Pettit, Flight Engineer 2/ International Space Station (ISS) Science Officer (SO)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 6 member Don Pettit (Flight Engineer 2/ International Space Station (ISS) Science Officer (SO)) is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut and his career path. Pettit, who had been training as a backup crewmember, discusses the importance of training backups for ISS missions. He gives details on the goals and significance of the ISS, regarding experiments in various scientific disciplines such as the life sciences and physical sciences. Pettit also comments on the value of conducting experiments under microgravity. He also gives an overview of the ISS program to date, including the ongoing construction, international aspects, and the routines of ISS crewmembers who inhabit the station for four months at a time. He gives a cursory description of crew transfer procedures that will take place when STS-113 docks with ISS to drop off Pettit and the rest of Expedition 6, and retrieve the Expedition 5 crew.

  11. A liquid-metal filling system for pumped primary loop space reactors

    NASA Astrophysics Data System (ADS)

    Crandall, D. L.; Reed, W. C.

    Some concepts for the SP-100 space nuclear power reactor use liquid metal as the primary coolant in a pumped loop. Prior to filling ground engineering test articles or reactor systems, the liquid metal must be purified and circulated through the reactor primary system to remove contaminants. If not removed, these contaminants enhance corrosion and reduce reliability. A facility was designed and built to support Department of Energy Liquid Metal Fast Breeder Reactor tests conducted at the Idaho National Engineering Laboratory. This test program used liquid sodium to cool nuclear fuel in in-pile experiments; thus, a system was needed to store and purify sodium inventories and fill the experiment assemblies. This same system, with modifications and potential changeover to lithium or sodium-potassium (NaK), can be used in the Space Nuclear Power Reactor Program. This paper addresses the requirements, description, modifications, operation, and appropriateness of using this liquid-metal system to support the SP-100 space reactor program.

  12. Experiments in charge control at geosynchronous orbit - ATS-5 and ATS-6

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.

    1985-01-01

    In connection with existing theoretical concepts, it was difficult to explain the negative potentials found in sunlight, first on Applied Technology Satellite-5 (ATS-5) and then on ATS-6. The problem became important when an association between spacecraft charging and anomalies in spacecraft behavior was observed. A study of daylight charging phenomena on ATS-6 was conducted, and an investigation was performed with the objective to determine effective methods of charge control, taking into account the feasibility to utilize the ATS-5 and ATS-6 ion engines as current sources. In the present paper, data and analysis for the ion engine experiments on ATS-5 and ATS-6 are presented. It is shown that electron emission from a satellite with insulating surfaces is not an effective method of charge control because the increase in differential charging which results limits the effectiveness of electron emitters and increases the possibility of electrostatic discharges between surfaces at different potentials.

  13. WSF Biodiesel Demonstration Project Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington State University; University of Idaho; The Glosten Associates, Inc.

    2009-04-30

    In 2004, WSF canceled a biodiesel fuel test because of “product quality issues” that caused the fuel purifiers to clog. The cancelation of this test and the poor results negatively impacted the use of biodiesel in marine application in the Pacific Northwest. In 2006, The U.S. Department of Energy awarded the Puget Sound Clean Air Agency a grant to manage a scientific study investigating appropriate fuel specifications for biodiesel, fuel handling procedures and to conduct a fuel test using biodiesel fuels in WSF operations. The Agency put together a project team comprised of experts in fields of biodiesel research andmore » analysis, biodiesel production, marine engineering and WSF personnel. The team reviewed biodiesel technical papers, reviewed the 2004 fuel test results, designed a fuel test plan and provided technical assistance during the test. The research reviewed the available information on the 2004 fuel test and conducted mock laboratory experiments, but was not able to determine why the fuel filters clogged. The team then conducted a literature review and designed a fuel test plan. The team implemented a controlled introduction of biodiesel fuels to the test vessels while monitoring the environmental conditions on the vessels and checking fuel quality throughout the fuel distribution system. The fuel test was conducted on the same three vessels that participated in the canceled 2004 test using the same ferry routes. Each vessel used biodiesel produced from a different feedstock (i.e. soy, canola and yellow grease). The vessels all ran on ultra low sulfur diesel blended with biodiesel. The percentage of biodiesel was incrementally raised form from 5 to 20 percent. Once the vessels reached the 20 percent level, they continued at this blend ratio for the remainder of the test. Fuel samples were taken from the fuel manufacturer, during fueling operations and at several points onboard each vessel. WSF Engineers monitored the performance of the fuel systems and engines. Each test vessel did experience a microbial growth bloom that produced a build up of material in the fuel purifiers similar to material witnessed in the 2004 fuel test. A biocide was added with each fuel shipment and the problem subsided. In January of 2009, the WSF successfully completed an eleven month biodiesel fuel test using approximately 1,395,000 gallons of biodiesel blended fuels. The project demonstrated that biodiesel can be used successfully in marine vessels and that current ASTM specifications are satisfactory for marine vessels. Microbial growth in biodiesel diesel interface should be monitored. An inspection of the engines showed no signs of being negatively impacted by the test.« less

  14. Thermal Conductivity Enhancement by Optical Phonon Sub-Band Engineering of Nanostructures Based on C and BN

    DTIC Science & Technology

    2002-01-01

    Thermal Conductivity Enhancement by Optical Phono n Sub-Band Engineering of Nanostructures Based on C and BN DARPA CONTRACT MDA972-02-C-0044... Engineering in 3-D Nanostructures Based on C an d BN Nanotubes " 1.3.1a. Phonon dynamics and thermal properties of zigzag carbon nanotubes Content I...Conductivity. Enhancement by Optical Phonon Sub-Bands Engineering in 3-D Nanostructure s Based on C and BN Nanotubes " . Here, the dynamics of the heat

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, S.R.

    A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different frommore » the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences.« less

  16. A Study of Experience Credit for Professional Engineering Licensure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, M.A.

    2003-08-11

    Oak Ridge National Laboratory performed a study of experience credit for professional engineering licensure for the Department of Energy's Industrial Assessment Center (IAC) Program. One of the study's goals was to determine how state licensure boards grant experience credit for engineering licensure, particularly in regards to IAC experience and experience prior to graduation. Another goal involved passing IAC information to state licensure boards to allow the boards to become familiar with the program and determine if they would grant credit to IAC graduates. The National Council of Examiners for Engineers and Surveyors (NCEES) has adopted a document, the ''Model Law''.more » This document empowers states to create state engineering boards and oversee engineering licensure. The board can also interpret and adopt rules and regulations. The Model Law also gives a general ''process'' for engineering licensure, the ''Model Law Engineer''. The Model Law Engineer requires that an applicant for professional licensure, or professional engineering (PE) licensure, obtain a combination of formal education and professional experience and successfully complete the fundamentals of engineering (FE) and PE exams. The Model Law states that a PE applicant must obtain four years of ''acceptable'' engineering experience after graduation to be allowed to sit for the PE exam. Although the Model Law defines ''acceptable experience,'' it is somewhat open to interpretation, and state boards decide whether applicants have accumulated the necessary amount of experience. The Model Law also allows applicants one year of credit for postgraduate degrees as well as experience credit for teaching courses in engineering. The Model Law grants states the power to adopt and amend the bylaws and rules of the Model Law licensure process. It allows state boards the freedom to modify the experience requirements for professional licensure. This power has created variety in experience requirements, and licensure requirements can differ from state to state. Before this study began, six questions were developed to help document how state boards grant experience credit. Many of the questions were formulated to determine how states deal with teaching experience, postgraduate credit, experience prior to graduation, PE and FE waivers, and the licensure process in general. Data were collected from engineering licensure boards for each of the fifty states and the District of Columbia. Telephone interviews were the primary method of data collection, while email correspondence was also used to a lesser degree. Prior to contacting each board, the researchers attempted to review each state's licensure web site. Based on the data collected, several trends and patterns were identified. For example, there is a general trend away from offering credit for experience prior to graduation. The issue becomes a problem when a PE from one state attempts to gain a license in another state by comity or endorsement. Tennessee and Kansas have recently stopped offering this credit and Mississippi cautions applicants that it could be difficult to obtain licensure in other states.« less

  17. Effects of sonication radiation on oil recovery by ultrasonic waves stimulated water-flooding.

    PubMed

    Mohammadian, Erfan; Junin, Radzuan; Rahmani, Omeid; Idris, Ahmad Kamal

    2013-02-01

    Due to partial understanding of mechanisms involved in application of ultrasonic waves as enhanced oil recovery method, series of straight (normal), and ultrasonic stimulated water-flooding experiments were conducted on a long unconsolidated sand pack using ultrasonic transducers. Kerosene, vaseline, and SAE-10 (engine oil) were used as non-wet phase in the system. In addition, a series of fluid flow and temperature rise experiments were conducted using ultrasonic bath in order to enhance the understanding about contributing mechanisms. 3-16% increase in the recovery of water-flooding was observed. Emulsification, viscosity reduction, and cavitation were identified as contributing mechanisms. The findings of this study are expected to increase the insight to involving mechanisms which lead to improving the recovery of oil as a result of application of ultrasound waves. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Space engineering

    NASA Technical Reports Server (NTRS)

    Alexander, Harold L.

    1991-01-01

    Human productivity was studied for extravehicular tasks performed in microgravity, particularly including in-space assembly of truss structures and other large objects. Human factors research probed the anthropometric constraints imposed on microgravity task performance and the associated workstation design requirements. Anthropometric experiments included reach envelope tests conducted using the 3-D Acoustic Positioning System (3DAPS), which permitted measuring the range of reach possible for persons using foot restraints in neutral buoyancy, both with and without space suits. Much neutral buoyancy research was conducted using the support of water to simulate the weightlessness environment of space. It became clear over time that the anticipated EVA requirement associated with the Space Station and with in-space construction of interplanetary probes would heavily burden astronauts, and remotely operated robots (teleoperators) were increasingly considered to absorb the workload. Experience in human EVA productivity led naturally to teleoperation research into the remote performance of tasks through human controlled robots.

  19. Solar-Thermal Engine Testing

    NASA Technical Reports Server (NTRS)

    Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)

    2001-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle. collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (I(sub sp)). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemical vapor deposited (CVD) rhenium. The engine 'module' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to Supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine I(sub sp). In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational aspects of the engine and associated subsystems, and will include independent variation of both steady slate heat-exchanger temperature prior to thrust operation and nitrogen inlet pressure (flow rate) during thrust operation. Although the Shooting Star engines were designed as thermal-storage engines to accommodate mission parameters, they are fully capable of operating as scalable, direct-gain engines. Tests are conducted in both operational modes. Engine thrust and propellant flow rate will be measured and thereby I(sub sp). The objective of these tests is to investigate the effectiveness of the solar engine as a heat exchanger and a rocket. Of particular interest is the effectiveness of the support structure as a thermal insulator, the integrity of both the insulation system and the insulation containment system, the overall temperature distribution throughout the engine module, and the thermal power required to sustain steady state fluid temperatures at various flow rates.

  20. Involvement of African-American Girls in Science, Technology, Engineering, and Mathematics (STEM) Education

    NASA Astrophysics Data System (ADS)

    Nkere, Nsidi

    A qualitative case study was conducted by examining the perceptions of fifth-grade African American girls about their experiences with science, technology, engineering and mathematics (STEM) education and potential for STEM as a future career. As the United States suffers from waning participation across all demographics in STEM and a high level of underrepresentation of African American women in STEM, the proposed study examined data collected through open-ended interviews with fifth-grade African American girls to explore how their current experiences and perceptions might relate to the underrepresentation of African American women in the STEM fields. Participants were selected from Miracle Elementary School (pseudonym), and consisted of all five students in a small class of high-achieving fifth-grade girls. Data were collected through in-class observations and open-ended interviews, and were analyzed using computer content analysis. The most important key results threaded through the data were related to the importance and role of the teacher, the importance of math to students, the role of experimentation and discovery, and hands-on and personal experience. Future studies are encouraged to utilize longitudinal design to follow students from elementary to university level in an effort to develop and understand the perception, persistence, and experience of all girls in STEM programs.

Top