Flow of GE90 Turbofan Engine Simulated
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1999-01-01
The objective of this task was to create and validate a three-dimensional model of the GE90 turbofan engine (General Electric) using the APNASA (average passage) flow code. This was a joint effort between GE Aircraft Engines and the NASA Lewis Research Center. The goal was to perform an aerodynamic analysis of the engine primary flow path, in under 24 hours of CPU time, on a parallel distributed workstation system. Enhancements were made to the APNASA Navier-Stokes code to make it faster and more robust and to allow for the analysis of more arbitrary geometry. The resulting simulation exploited the use of parallel computations by using two levels of parallelism, with extremely high efficiency.The primary flow path of the GE90 turbofan consists of a nacelle and inlet, 49 blade rows of turbomachinery, and an exhaust nozzle. Secondary flows entering and exiting the primary flow path-such as bleed, purge, and cooling flows-were modeled macroscopically as source terms to accurately simulate the engine. The information on these source terms came from detailed descriptions of the cooling flow and from thermodynamic cycle system simulations. These provided boundary condition data to the three-dimensional analysis. A simplified combustor was used to feed boundary conditions to the turbomachinery. Flow simulations of the fan, high-pressure compressor, and high- and low-pressure turbines were completed with the APNASA code.
NASA Astrophysics Data System (ADS)
Cevik, Mert
Tip clearance is the necessary small gap left between the moving rotor tip and stationary shroud of a turbomachine. In a compressor, the pressure driven flow through this gap, called tip clearance flow, has a major and generally detrimental impact on compressor performance (pressure ratio and efficiency) and aerodynamic stability (stall margin). The increase in tip clearance, either temporary during transient engine operations or permanent from wear, leads to a drop in compressor performance and aerodynamic stability which results in a fuel consumption increase and a reduced operating envelope for a gas turbine engine. While much research has looked into increasing compressor performance and stall margin at the design (minimum or nominal) tip clearance, very little attention has been paid for reducing the sensitivity of these parameters to tip clearance size increase. The development of technologies that address this issue will lead to aircraft engines whose performance and operating envelope are more robust to operational demands and wear. The current research is the second phase of a research programme to develop design strategies to reduce the sensitivity of axial compressor performance and aerodynamic stability to tip clearance. The first phase had focused on blade design strategies and had led to the discovery and explanation of two flow features that reduces tip sensitivity, namely increased incoming meridional momentum in the rotor tip region and reduction/elimination of double leakage. Double leakage is the flow that exits one tip clearance and enters the tip clearance of the adjacent blade instead of convecting downstream out of the rotor passage. This flow was shown to be very detrimental to compressor performance and stall margin. Two rotor design strategies involving sweep and tip stagger reduction were proposed and shown by CFD simulations to exploit these features to reduce sensitivity. As the second phase, the objectives of the current research project are to develop gas path design strategies for axial compressors to achieve the same goal, to assess their ability to be combined with desensitizing axial compressor blade design strategies and to be applied to non-axial compressors. The search for gas path design strategies was based on the exploitation of the two flow desensitizing features listed above. Two gas path design strategies were proposed and analyzed. The first was gas path contouring in the form of a concave gas path to increase incoming tip meridional momentum.
Engineering charge transport by heterostructuring solution-processed semiconductors
NASA Astrophysics Data System (ADS)
Voznyy, Oleksandr; Sutherland, Brandon R.; Ip, Alexander H.; Zhitomirsky, David; Sargent, Edward H.
2017-06-01
Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.
Current Trends on Medical and Pharmaceutical Applications of Inkjet Printing Technology.
Scoutaris, Nicolaos; Ross, Steven; Douroumis, Dennis
2016-08-01
Inkjet printing is an attractive material deposition and patterning technology that has received significant attention in the recent years. It has been exploited for novel applications including high throughput screening, pharmaceutical formulations, medical devices and implants. Moreover, inkjet printing has been implemented in cutting-edge 3D-printing healthcare areas such as tissue engineering and regenerative medicine. Recent inkjet advances enabled 3D printing of artificial cartilage and skin, or cell constructs for transplantation therapies. In the coming years inkjet printing is anticipated to revolutionize personalized medicine and push the innovation portfolio by offering new paths in patient - specific treatments.
Path Selection in the Growth of Wormholes
NASA Astrophysics Data System (ADS)
Yang, Yi; Bruns, Stefan; Stipp, Susan; Sørensen, Henning
2017-04-01
Spontaneous growth of wormholes in natural porous media often leads to generation of highly complex flow systems with fractal morphologies. Despite extensive investigations, the underpinning mechanism for path selection during wormholing remains elusive. Here we introduce the concept of cumulative surface (CS) and show that the trajectory of a growing wormhole is one with minimum CS. Theoretical analysis shows that the CS determines the position of the dissolution front. We then show, using numerical simulation based on greyscale data of the fine grained carbonate rock chalk, that the tip of an advancing pore always follows the migration of the most far reaching dissolution front determined from the CS. The predicted dissolution behavior was verified by experimental observation of wormhole growth in chalk using in situ microtomography. The results suggest that wormholing is deterministic in nature rather than stochastic. This insight sheds light on engineering of artificial flow systems in geologic formations by exploiting self-organization in natural porous materials.
Yu, Y T; Tuan, P H; Chang, K C; Hsieh, Y H; Huang, K F; Chen, Y F
2016-01-11
Broad-area vertical-cavity surface-emitting lasers (VCSELs) with different cavity sizes are experimentally exploited to manifest the influence of the finite confinement strength on the path-length distribution of quantum billiards. The subthreshold emission spectra of VCSELs are measured to obtain the path-length distributions by using the Fourier transform. It is verified that the number of the resonant peaks in the path-length distribution decreases with decreasing the confinement strength. Theoretical analyses for finite-potential quantum billiards are numerically performed to confirm that the mesoscopic phenomena of quantum billiards with finite confinement strength can be analogously revealed by using broad-area VCSELs.
An experimental analysis on OSPF-TE convergence time
NASA Astrophysics Data System (ADS)
Huang, S.; Kitayama, K.; Cugini, F.; Paolucci, F.; Giorgetti, A.; Valcarenghi, L.; Castoldi, P.
2008-11-01
Open shortest path first (OSPF) protocol is commonly used as an interior gateway protocol (IGP) in MPLS and generalized MPLS (GMPLS) networks to determine the topology over which label-switched paths (LSPs) can be established. Traffic-engineering extensions (network states such as link bandwidth information, available wavelengths, signal quality, etc) have been recently enabled in OSPF (henceforth, called OSPF-TE) to support shortest path first (SPF) tree calculation upon different purposes, thus possibly achieving optimal path computation and helping improve resource utilization efficiency. Adding these features into routing phase can exploit the OSPF robustness, and no additional network component is required to manage the traffic-engineering information. However, this traffic-engineering enhancement also complicates OSPF behavior. Since network states change frequently upon the dynamic trafficengineered LSP setup and release, the network is easily driven from a stable state to unstable operating regimes. In this paper, we focus on studying the OSPF-TE stability in terms of convergence time. Convergence time is referred to the time spent by the network to go back to steady states upon any network state change. An external observation method (based on black-box method) is employed to estimate the convergence time. Several experimental test-beds are developed to emulate dynamic LSP setup/release, re-routing upon single-link failure. The experimental results show that with OSPF-TE the network requires more time to converge compared to the conventional OSPF protocol without TE extension. Especially, in case of wavelength-routed optical network (WRON), introducing per wavelength availability and wavelength continuity constraint to OSPF-TE suffers severe convergence time and a large number of advertised link state advertisements (LSAs). Our study implies that long convergence time and large number of LSAs flooded in the network might cause scalability problems in OSPF-TE and impose limitations on OSPF-TE applications. New solutions to mitigate the s convergence time and to reduce the amount of state information are desired in the future.
On-chip generation of heralded photon-number states
NASA Astrophysics Data System (ADS)
Vergyris, Panagiotis; Meany, Thomas; Lunghi, Tommaso; Sauder, Gregory; Downes, James; Steel, M. J.; Withford, Michael J.; Alibart, Olivier; Tanzilli, Sébastien
2016-10-01
Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques, i.e., non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5 ± 8% and 95.0 ± 8%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits.
On-chip generation of heralded photon-number states
Vergyris, Panagiotis; Meany, Thomas; Lunghi, Tommaso; Sauder, Gregory; Downes, James; Steel, M. J.; Withford, Michael J.; Alibart, Olivier; Tanzilli, Sébastien
2016-01-01
Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques, i.e., non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5 ± 8% and 95.0 ± 8%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits. PMID:27775062
NASA Technical Reports Server (NTRS)
Armstrong, Jeffrey B.; Simon, Donald L.
2012-01-01
Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulations.Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulatns.
NASA Astrophysics Data System (ADS)
Dong, Keqiang; Zhang, Hong; Gao, You
2017-01-01
Identifying the mutual interaction in aero-engine gas path system is a crucial problem that facilitates the understanding of emerging structures in complex system. By employing the multiscale multifractal detrended cross-correlation analysis method to aero-engine gas path system, the cross-correlation characteristics between gas path system parameters are established. Further, we apply multiscale multifractal detrended cross-correlation distance matrix and minimum spanning tree to investigate the mutual interactions of gas path variables. The results can infer that the low-spool rotor speed (N1) and engine pressure ratio (EPR) are main gas path parameters. The application of proposed method contributes to promote our understanding of the internal mechanisms and structures of aero-engine dynamics.
Some Problems of Exploitation of Jet Turbine Aircraft Engines of Lot Polish Air Lines,
1977-04-26
CI ‘AD~AOII6 221 FOREIGN TECHNOLOGY DIV WR IGHT—PATTERSON AFB OHIO F/I 21/5SOME PROBLEMS OF EXPLOITATION OF JET TURBINE AIRCRAFT ENGINES O—CTC(U...EXPLOITATION OF JET TURBINE AIRCRAFT ENGINES OF LOT POLISH AIR LINE S By: Andrzej Slodownik English pages: 1~ Source: Technika Lotnicza I Astronautyczna...SOME PROBLEMS OF EXPLOITATION OF JET TURBINE AIRCRAFT ENGINES OF LOT POLISH AIR LINES Andrzej Slodownik , M. Eng . FTD— ID ( RS) I— 0 1475 — 77 I
75 FR 2057 - Airworthiness Directives; Airbus Model A340-200 and A340-300 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-14
... could lead to the loss of the load path for the forward engine mount and damage to other engine mount... loss of the load path for the forward engine mount and damage to other engine mount structures, which... loss of the load path for the forward engine mount and damage to other engine mount structures, which...
Coal slurry fuel supply and purge system
McDowell, Robert E.; Basic, Steven L.; Smith, Russel M.
1994-01-01
A coal slurry fuel supply and purge system for a locomotive engines is disclosed which includes a slurry recirculation path, a stand-by path for circulating slurry during idle or states of the engine when slurry fuel in not required by the engine, and an engine header fluid path connected to the stand-by path, for supplying and purging slurry fuel to and from fuel injectors. A controller controls the actuation of valves to facilitate supply and purge of slurry to and from the fuel injectors. A method for supplying and purging coal slurry in a compression ignition engine is disclosed which includes controlling fluid flow devices and valves in a plurality of fluid paths to facilitate continuous slurry recirculation and supply and purge of or slurry based on the operating state of the engine.
NASA Technical Reports Server (NTRS)
Simon, Donald L.
2010-01-01
Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-19
... System, for employees in the Scientific and Engineering career path hired into the Excepted and... Scientific and Engineering career path (classified as ``ZP''). The extended probationary period was an... period of up to three years for employees in the Scientific and Engineering career path hired into the...
NASA Astrophysics Data System (ADS)
Simone, Gabriele; Cordone, Roberto; Serapioni, Raul Paolo; Lecca, Michela
2017-05-01
Retinex theory estimates the human color sensation at any observed point by correcting its color based on the spatial arrangement of the colors in proximate regions. We revise two recent path-based, edge-aware Retinex implementations: Termite Retinex (TR) and Energy-driven Termite Retinex (ETR). As the original Retinex implementation, TR and ETR scan the neighborhood of any image pixel by paths and rescale their chromatic intensities by intensity levels computed by reworking the colors of the pixels on the paths. Our interest in TR and ETR is due to their unique, content-based scanning scheme, which uses the image edges to define the paths and exploits a swarm intelligence model for guiding the spatial exploration of the image. The exploration scheme of ETR has been showed to be particularly effective: its paths are local minima of an energy functional, designed to favor the sampling of image pixels highly relevant to color sensation. Nevertheless, since its computational complexity makes ETR poorly practicable, here we present a light version of it, named Light Energy-driven TR, and obtained from ETR by implementing a modified, optimized minimization procedure and by exploiting parallel computing.
Heralded amplification of path entangled quantum states
NASA Astrophysics Data System (ADS)
Monteiro, F.; Verbanis, E.; Caprara Vivoli, V.; Martin, A.; Gisin, N.; Zbinden, H.; Thew, R. T.
2017-06-01
Device-independent quantum key distribution (DI-QKD) represents one of the most fascinating challenges in quantum communication, exploiting concepts of fundamental physics, namely Bell tests of nonlocality, to ensure the security of a communication link. This requires the loophole-free violation of a Bell inequality, which is intrinsically difficult due to losses in fibre optic transmission channels. Heralded photon amplification (HPA) is a teleportation-based protocol that has been proposed as a means to overcome transmission loss for DI-QKD. Here we demonstrate HPA for path entangled states and characterise the entanglement before and after loss by exploiting a recently developed displacement-based detection scheme. We demonstrate that by exploiting HPA we are able to reliably maintain high fidelity entangled states over loss-equivalent distances of more than 50 km.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-24
... for all positions within the Scientific and Engineering (ZP) career path at the Pay Band III and above, for Nuclear Reactor Operator positions in the Scientific and Engineering Technician (ZT) career path... and Engineering Technician (ZT) career path at the Pay Band III and above, and for all positions in...
A study of interior noise levels, noise sources and transmission paths in light aircraft
NASA Technical Reports Server (NTRS)
Hayden, R. E.; Murray, B. S.; Theobald, M. A.
1983-01-01
The interior noise levels and spectral characteristics of 18 single-and twin-engine propeller-driven light aircraft, and source-path diagnosis of a single-engine aircraft which was considered representative of a large part of the fleet were studied. The purpose of the flight surveys was to measure internal noise levels and identify principal noise sources and paths under a carefully controlled and standardized set of flight procedures. The diagnostic tests consisted of flights and ground tests in which various parts of the aircraft, such as engine mounts, the engine compartment, exhaust pipe, individual panels, and the wing strut were instrumented to determine source levels and transmission path strengths using the transfer function technique. Predominant source and path combinations are identified. Experimental techniques are described. Data, transfer function calculations to derive source-path contributions to the cabin acoustic environment, and implications of the findings for noise control design are analyzed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-20
... NIST in the Scientific and Engineering (ZP) career path at the Pay Band III and above, for Nuclear Reactor Operator positions in the Scientific and Engineering (ZT) career path at Pay Band III and above..., for a period of one year for all positions within the Scientific and Engineering (ZP) career path at...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-13
... positions in NIST's Scientific and Engineering Technician (ZT) career path at the Pay Band III and above, and for all positions in NIST's Scientific and Engineering (ZP) career path at the Pay Band III and... Engineering (ZP) career path at the Pay Band III and above, for Nuclear Reactor Operator positions in the...
An Energy-Efficient and Robust Multipath Routing Protocol for Cognitive Radio Ad Hoc Networks.
Singh, Kishor; Moh, Sangman
2017-09-04
Routing in cognitive radio ad hoc networks (CRAHNs) is a daunting task owing to dynamic topology, intermittent connectivity, spectrum heterogeneity, and energy constraints. Other prominent aspects such as channel stability, path reliability, and route discovery frequency should also be exploited. Several routing protocols have been proposed for CRAHNs in the literature. By stressing on one of the aspects more than any other, however, they do not satisfy all requirements of throughput, energy efficiency, and robustness. In this paper, we propose an energy-efficient and robust multipath routing (ERMR) protocol for CRAHNs by considering all prominent aspects including residual energy and channel stability in design. Even when the current routing path fails, the alternative routing path is immediately utilized. In establishing primary and alternative routing paths, both residual energy and channel stability are exploited simultaneously. Our simulation study shows that the proposed ERMR outperforms the conventional protocol in terms of network throughput, packet delivery ratio, energy consumption, and end-to-end delay.
An Energy-Efficient and Robust Multipath Routing Protocol for Cognitive Radio Ad Hoc Networks
Singh, Kishor
2017-01-01
Routing in cognitive radio ad hoc networks (CRAHNs) is a daunting task owing to dynamic topology, intermittent connectivity, spectrum heterogeneity, and energy constraints. Other prominent aspects such as channel stability, path reliability, and route discovery frequency should also be exploited. Several routing protocols have been proposed for CRAHNs in the literature. By stressing on one of the aspects more than any other, however, they do not satisfy all requirements of throughput, energy efficiency, and robustness. In this paper, we propose an energy-efficient and robust multipath routing (ERMR) protocol for CRAHNs by considering all prominent aspects including residual energy and channel stability in design. Even when the current routing path fails, the alternative routing path is immediately utilized. In establishing primary and alternative routing paths, both residual energy and channel stability are exploited simultaneously. Our simulation study shows that the proposed ERMR outperforms the conventional protocol in terms of network throughput, packet delivery ratio, energy consumption, and end-to-end delay. PMID:28869551
Energy aware path planning in complex four dimensional environments
NASA Astrophysics Data System (ADS)
Chakrabarty, Anjan
This dissertation addresses the problem of energy-aware path planning for small autonomous vehicles. While small autonomous vehicles can perform missions that are too risky (or infeasible) for larger vehicles, the missions are limited by the amount of energy that can be carried on board the vehicle. Path planning techniques that either minimize energy consumption or exploit energy available in the environment can thus increase range and endurance. Path planning is complicated by significant spatial (and potentially temporal) variations in the environment. While the main focus is on autonomous aircraft, this research also addresses autonomous ground vehicles. Range and endurance of small unmanned aerial vehicles (UAVs) can be greatly improved by utilizing energy from the atmosphere. Wind can be exploited to minimize energy consumption of a small UAV. But wind, like any other atmospheric component , is a space and time varying phenomenon. To effectively use wind for long range missions, both exploration and exploitation of wind is critical. This research presents a kinematics based tree algorithm which efficiently handles the four dimensional (three spatial and time) path planning problem. The Kinematic Tree algorithm provides a sequence of waypoints, airspeeds, heading and bank angle commands for each segment of the path. The planner is shown to be resolution complete and computationally efficient. Global optimality of the cost function cannot be claimed, as energy is gained from the atmosphere, making the cost function inadmissible. However the Kinematic Tree is shown to be optimal up to resolution if the cost function is admissible. Simulation results show the efficacy of this planning method for a glider in complex real wind data. Simulation results verify that the planner is able to extract energy from the atmosphere enabling long range missions. The Kinematic Tree planning framework, developed to minimize energy consumption of UAVs, is applied for path planning in ground robots. In traditional path planning problem the focus is on obstacle avoidance and navigation. The optimal Kinematic Tree algorithm named Kinematic Tree* is shown to find optimal paths to reach the destination while avoiding obstacles. A more challenging path planning scenario arises for planning in complex terrain. This research shows how the Kinematic Tree* algorithm can be extended to find minimum energy paths for a ground vehicle in difficult mountainous terrain.
NASA Technical Reports Server (NTRS)
Hayden, Richard E.; Remington, Paul J.; Theobald, Mark A.; Wilby, John F.
1985-01-01
The sources and paths by which noise enters the cabin of a small single engine aircraft were determined through a combination of flight and laboratory tests. The primary sources of noise were found to be airborne noise from the propeller and engine casing, airborne noise from the engine exhaust, structureborne noise from the engine/propeller combination and noise associated with air flow over the fuselage. For the propeller, the primary airborne paths were through the firewall, windshield and roof. For the engine, the most important airborne path was through the firewall. Exhaust noise was found to enter the cabin primarily through the panels in the vicinity of the exhaust outlet although exhaust noise entering the cabin through the firewall is a distinct possibility. A number of noise control techniques were tried, including firewall stiffening to reduce engine and propeller airborne noise, to stage isolators and engine mounting spider stiffening to reduce structure-borne noise, and wheel well covers to reduce air flow noise.
Li, Bai; Gong, Li-gang; Yang, Wen-lun
2014-01-01
Unmanned combat aerial vehicles (UCAVs) have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC) algorithm improved by a balance-evolution strategy (BES) is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.
Towards Internet QoS provisioning based on generic distributed QoS adaptive routing engine.
Haikal, Amira Y; Badawy, M; Ali, Hesham A
2014-01-01
Increasing efficiency and quality demands of modern Internet technologies drive today's network engineers to seek to provide quality of service (QoS). Internet QoS provisioning gives rise to several challenging issues. This paper introduces a generic distributed QoS adaptive routing engine (DQARE) architecture based on OSPFxQoS. The innovation of the proposed work in this paper is its undependability on the used QoS architectures and, moreover, splitting of the control strategy from data forwarding mechanisms, so we guarantee a set of absolute stable mechanisms on top of which Internet QoS can be built. DQARE architecture is furnished with three relevant traffic control schemes, namely, service differentiation, QoS routing, and traffic engineering. The main objective of this paper is to (i) provide a general configuration guideline for service differentiation, (ii) formalize the theoretical properties of different QoS routing algorithms and then introduce a QoS routing algorithm (QOPRA) based on dynamic programming technique, and (iii) propose QoS multipath forwarding (QMPF) model for paths diversity exploitation. NS2-based simulations proved the DQARE superiority in terms of delay, packet delivery ratio, throughput, and control overhead. Moreover, extensive simulations are used to compare the proposed QOPRA algorithm and QMPF model with their counterparts in the literature.
Towards Internet QoS Provisioning Based on Generic Distributed QoS Adaptive Routing Engine
Haikal, Amira Y.; Badawy, M.; Ali, Hesham A.
2014-01-01
Increasing efficiency and quality demands of modern Internet technologies drive today's network engineers to seek to provide quality of service (QoS). Internet QoS provisioning gives rise to several challenging issues. This paper introduces a generic distributed QoS adaptive routing engine (DQARE) architecture based on OSPFxQoS. The innovation of the proposed work in this paper is its undependability on the used QoS architectures and, moreover, splitting of the control strategy from data forwarding mechanisms, so we guarantee a set of absolute stable mechanisms on top of which Internet QoS can be built. DQARE architecture is furnished with three relevant traffic control schemes, namely, service differentiation, QoS routing, and traffic engineering. The main objective of this paper is to (i) provide a general configuration guideline for service differentiation, (ii) formalize the theoretical properties of different QoS routing algorithms and then introduce a QoS routing algorithm (QOPRA) based on dynamic programming technique, and (iii) propose QoS multipath forwarding (QMPF) model for paths diversity exploitation. NS2-based simulations proved the DQARE superiority in terms of delay, packet delivery ratio, throughput, and control overhead. Moreover, extensive simulations are used to compare the proposed QOPRA algorithm and QMPF model with their counterparts in the literature. PMID:25309955
Future hadron colliders: From physics perspectives to technology R&D
NASA Astrophysics Data System (ADS)
Barletta, William; Battaglia, Marco; Klute, Markus; Mangano, Michelangelo; Prestemon, Soren; Rossi, Lucio; Skands, Peter
2014-11-01
High energy hadron colliders have been instrumental to discoveries in particle physics at the energy frontier and their role as discovery machines will remain unchallenged for the foreseeable future. The full exploitation of the LHC is now the highest priority of the energy frontier collider program. This includes the high luminosity LHC project which is made possible by a successful technology-readiness program for Nb3Sn superconductor and magnet engineering based on long-term high-field magnet R&D programs. These programs open the path towards collisions with luminosity of 5×1034 cm-2 s-1 and represents the foundation to consider future proton colliders of higher energies. This paper discusses physics requirements, experimental conditions, technological aspects and design challenges for the development towards proton colliders of increasing energy and luminosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oglesby, Kenneth; Finsterle, Stefan; Zhang, Yingqi
2014-03-12
This project had two major areas of research for Engineered/ Enhanced Geothermal System (EGS) development - 1) study the potential benefits from using microholes (i.e., bores with diameters less than 10.16 centimeters/ 4 inches) and 2) study FLASH ASJ to drill/ install those microbores between a well and a fracture system. This included the methods and benefits of drilling vertical microholes for exploring the EGS reservoir and for installing multiple (forming an array of) laterals/ directional microholes for creating the in-reservoir heat exchange flow paths. Significant benefit was found in utilizing small microbore sized connecting bores for EGS efficiency andmore » project life. FLASH ASJ was deemed too complicated to optimally work in such deep reservoirs at this time.« less
Nonintrusive performance measurement of a gas turbine engine in real time
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, Upul P.; Claussen, Heiko
Performance of a gas turbine engine is monitored by computing a mass flow rate through the engine. Acoustic time-of-flight measurements are taken between acoustic transmitters and receivers in the flow path of the engine. The measurements are processed to determine average speeds of sound and gas flow velocities along those lines-of-sound. A volumetric flow rate in the flow path is computed using the gas flow velocities together with a representation of the flow path geometry. A gas density in the flow path is computed using the speeds of sound and a measured static pressure. The mass flow rate is calculatedmore » from the gas density and the volumetric flow rate.« less
NASA Astrophysics Data System (ADS)
Dong, Keqiang; Fan, Jie; Gao, You
2015-12-01
Identifying the mutual interaction is a crucial problem that facilitates the understanding of emerging structures in complex system. We here focus on aero-engine dynamic as an example of complex system. By applying the detrended cross-correlation analysis (DCCA) coefficient method to aero-engine gas path system, we find that the low-spool rotor speed (N1) and high-spool rotor speed (N2) fluctuation series exhibit cross-correlation characteristic. Further, we employ detrended cross-correlation coefficient matrix and rooted tree to investigate the mutual interactions of other gas path variables. The results can infer that the exhaust gas temperature (EGT), N1, N2, fuel flow (WF) and engine pressure ratio (EPR) are main gas path parameters.
Planning paths through a spatial hierarchy - Eliminating stair-stepping effects
NASA Technical Reports Server (NTRS)
Slack, Marc G.
1989-01-01
Stair-stepping effects are a result of the loss of spatial continuity resulting from the decomposition of space into a grid. This paper presents a path planning algorithm which eliminates stair-stepping effects induced by the grid-based spatial representation. The algorithm exploits a hierarchical spatial model to efficiently plan paths for a mobile robot operating in dynamic domains. The spatial model and path planning algorithm map to a parallel machine, allowing the system to operate incrementally, thereby accounting for unexpected events in the operating space.
Codeless GPS Applications to Multi-Path: CGAMP
NASA Technical Reports Server (NTRS)
Macdoran, P. F.; Miller, R. B.; Jenkins, D.; Lemmon, J.; Gold, K.; Schreiner, W.; Snyder, G.
1990-01-01
Cordless Global Positioning System (GPS) Applications to Multi-Path (CGAMP) is meeting the challenge of exploiting the L-band signals from the Global Positioning System (GPS) satellites for the measurement of the impulse response of radio transmission channels over space-Earth paths. This approach was originally suggested by E. K. Smith and has been pursued by J. Lemmon, without an affordable implementation being identifiable. In addition to the high cost of a suitable P code correlating GPS receiver, there is also the major impediment of the often announced Department of Defense policy of selective availability/anti-spoof (SA/AS) that clouds reliable access to the wideband (20 MHz) P channel of the GPS signals without cryptographic access. A technique proposed by MacDoran utilizes codeless methods for exploiting the P channel signals implemented by the use of a pair of antennas and cross correlation signal detection.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., landing gear retraction must not be initiated until the airplane is airborne. (c) During the takeoff path... three-engine airplanes; (iii) 1.7 percent for four-engine airplanes; and (4) Except for gear retraction...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
... and Engineering (ZP) career path at the Pay Band III and above, for Nuclear Reactor Operator positions in the Scientific and Engineering Technician (ZT) career path at Pay Band III and above, and for all... FR 54604), OPM concurred that all occupations in the ZP career path at the band III and above...
Laser vibrometry exploitation for vehicle identification
NASA Astrophysics Data System (ADS)
Nolan, Adam; Lingg, Andrew; Goley, Steve; Sigmund, Kevin; Kangas, Scott
2014-06-01
Vibration signatures sensed from distant vehicles using laser vibrometry systems provide valuable information that may be used to help identify key vehicle features such as engine type, engine speed, and number of cylinders. Through the use of physics models of the vibration phenomenology, features are chosen to support classification algorithms. Various individual exploitation algorithms were developed using these models to classify vibration signatures into engine type (piston vs. turbine), engine configuration (Inline 4 vs. Inline 6 vs. V6 vs. V8 vs. V12) and vehicle type. The results of these algorithms will be presented for an 8 class problem. Finally, the benefits of using a factor graph representation to link these independent algorithms together will be presented which constructs a classification hierarchy for the vibration exploitation problem.
Harmonic Fourier beads method for studying rare events on rugged energy surfaces.
Khavrutskii, Ilja V; Arora, Karunesh; Brooks, Charles L
2006-11-07
We present a robust, distributable method for computing minimum free energy paths of large molecular systems with rugged energy landscapes. The method, which we call harmonic Fourier beads (HFB), exploits the Fourier representation of a path in an appropriate coordinate space and proceeds iteratively by evolving a discrete set of harmonically restrained path points-beads-to generate positions for the next path. The HFB method does not require explicit knowledge of the free energy to locate the path. To compute the free energy profile along the final path we employ an umbrella sampling method in two generalized dimensions. The proposed HFB method is anticipated to aid the study of rare events in biomolecular systems. Its utility is demonstrated with an application to conformational isomerization of the alanine dipeptide in gas phase.
Traffic engineering and regenerator placement in GMPLS networks with restoration
NASA Astrophysics Data System (ADS)
Yetginer, Emre; Karasan, Ezhan
2002-07-01
In this paper we study regenerator placement and traffic engineering of restorable paths in Generalized Multipro-tocol Label Switching (GMPLS) networks. Regenerators are necessary in optical networks due to transmission impairments. We study a network architecture where there are regenerators at selected nodes and we propose two heuristic algorithms for the regenerator placement problem. Performances of these algorithms in terms of required number of regenerators and computational complexity are evaluated. In this network architecture with sparse regeneration, offline computation of working and restoration paths is studied with bandwidth reservation and path rerouting as the restoration scheme. We study two approaches for selecting working and restoration paths from a set of candidate paths and formulate each method as an Integer Linear Programming (ILP) prob-lem. Traffic uncertainty model is developed in order to compare these methods based on their robustness with respect to changing traffic patterns. Traffic engineering methods are compared based on number of additional demands due to traffic uncertainty that can be carried. Regenerator placement algorithms are also evaluated from a traffic engineering point of view.
Spider monkey ranging patterns in Mexican subtropical forest: do travel routes reflect planning?
Valero, Alejandra; Byrne, Richard W
2007-07-01
Although it is well known that frugivorous spider monkeys (Ateles geoffroyi yucatanensis) occupy large home ranges, travelling long distances to reach highly productive resources, little is known of how they move between feeding sites. A 11 month study of spider monkey ranging patterns was carried out at the Otochma'ax Yetel Kooh reserve, Yucatán, Mexico. We followed single individuals for as long as possible each day and recorded the routes travelled with the help of a GPS (Global Positioning System) device; the 11 independently moving individuals of a group were targeted as focal subjects. Travel paths were composed of highly linear segments, each typically ending at a place where some resource was exploited. Linearity of segments did not differ between individuals, and most of the highly linear paths that led to food resources were much longer than the estimate visibility in the woodland canopy. Monkeys do not generally continue in the same ranging direction after exploiting a resource: travel paths are likely to deviate at the site of resource exploitation rather than between such sites. However, during the harshest months of the year consecutive route segments were more likely to retain the same direction of overall movement. Together, these findings suggest that while moving between feeding sites, spider monkeys use spatial memory to guide travel, and even plan more than one resource site in advance.
Creative foraging: An experimental paradigm for studying exploration and discovery
Mayo, Avraham E.; Mayo, Ruth; Rozenkrantz, Liron; Tendler, Avichai; Alon, Uri; Noy, Lior
2017-01-01
Creative exploration is central to science, art and cognitive development. However, research on creative exploration is limited by a lack of high-resolution automated paradigms. To address this, we present such an automated paradigm, the creative foraging game, in which people search for novel and valuable solutions in a large and well-defined space made of all possible shapes made of ten connected squares. Players discovered shape categories such as digits, letters, and airplanes as well as more abstract categories. They exploited each category, then dropped it to explore once again, and so on. Aligned with a prediction of optimal foraging theory (OFT), during exploration phases, people moved along meandering paths that are about three times longer than the shortest paths between shapes; when exploiting a category of related shapes, they moved along the shortest paths. The moment of discovery of a new category was usually done at a non-prototypical and ambiguous shape, which can serve as an experimental proxy for creative leaps. People showed individual differences in their search patterns, along a continuum between two strategies: a mercurial quick-to-discover/quick-to-drop strategy and a thorough slow-to-discover/slow-to-drop strategy. Contrary to optimal foraging theory, players leave exploitation to explore again far before categories are depleted. This paradigm opens the way for automated high-resolution study of creative exploration. PMID:28767668
Vincent, Julian F V
2003-01-01
Biomimetics is seen as a path from biology to engineering. The only path from engineering to biology in current use is the application of engineering concepts and models to biological systems. However, there is another pathway: the verification of biological mechanisms by manufacture, leading to an iterative process between biology and engineering in which the new understanding that the engineering implementation of a biological system can bring is fed back into biology, allowing a more complete and certain understanding and the possibility of further revelations for application in engineering. This is a pathway as yet unformalized, and one that offers the possibility that engineers can also be scientists. PMID:14561351
Mach-Zehnder interferometry using broken symmetry quantum Hall edges in graphene
NASA Astrophysics Data System (ADS)
Wei, Di; van der Sar, Toeno; Sanchez-Yamagishi, Javier; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo; Halperin, Bertrand; Yacoby, Amir
Graphene has emerged as a unique platform for studying electron optics, particularly in the presence of a magnetic field. Here, we engineer a Mach-Zehnder interferometer using quantum Hall edge states that co-propagate along a single gate-defined NP interface. We use encapsulated monolayer graphene, clean enough to lift the four-fold spin and valley degeneracy. In order to create two separate co-propagating paths, we exploit the suppression of edge state scattering along gate defined edges, and use scattering sites at the ends of the NP interface to form our beam splitters. We observe conductance oscillations as a function of magnetic and electric field indicative of coherent transport, and measure values consistent with spin-selective scattering. We can tune our interferometer to regimes of high visibility (>98 %), surpassing the values reported for GaAs quantum-well Mach-Zehnder interferometers. These results demonstrate a promising method to observe interference between fractional charges in graphene.
Gu, Bing; Xu, Danfeng; Rui, Guanghao; Lian, Meng; Cui, Yiping; Zhan, Qiwen
2015-09-20
Generation of vectorial optical fields with arbitrary polarization distribution is of great interest in areas where exotic optical fields are desired. In this work, we experimentally demonstrate the versatile generation of linearly polarized vector fields, elliptically polarized vector fields, and circularly polarized vortex beams through introducing attenuators in a common-path interferometer. By means of Richards-Wolf vectorial diffraction method, the characteristics of the highly focused elliptically polarized vector fields are studied. The optical force and torque on a dielectric Rayleigh particle produced by these tightly focused vector fields are calculated and exploited for the stable trapping of dielectric Rayleigh particles. It is shown that the additional degree of freedom provided by the elliptically polarized vector field allows one to control the spatial structure of polarization, to engineer the focusing field, and to tailor the optical force and torque on a dielectric Rayleigh particle.
Injector with integrated resonator
Johnson, Thomas Edward; Ziminsky, Willy Steve; York, William David; Stevenson, Christian Xavier
2014-07-29
The system may include a turbine engine. The turbine engine may include a fuel nozzle. The fuel nozzle may include an air path. The fuel nozzle may also include a fuel path such that the fuel nozzle is in communication with a combustion zone of the turbine engine. Furthermore, the fuel nozzle may include a resonator. The resonator may be disposed in the fuel nozzle directly adjacent to the combustion zone.
Gas Path On-line Fault Diagnostics Using a Nonlinear Integrated Model for Gas Turbine Engines
NASA Astrophysics Data System (ADS)
Lu, Feng; Huang, Jin-quan; Ji, Chun-sheng; Zhang, Dong-dong; Jiao, Hua-bin
2014-08-01
Gas turbine engine gas path fault diagnosis is closely related technology that assists operators in managing the engine units. However, the performance gradual degradation is inevitable due to the usage, and it result in the model mismatch and then misdiagnosis by the popular model-based approach. In this paper, an on-line integrated architecture based on nonlinear model is developed for gas turbine engine anomaly detection and fault diagnosis over the course of the engine's life. These two engine models have different performance parameter update rate. One is the nonlinear real-time adaptive performance model with the spherical square-root unscented Kalman filter (SSR-UKF) producing performance estimates, and the other is a nonlinear baseline model for the measurement estimates. The fault detection and diagnosis logic is designed to discriminate sensor fault and component fault. This integration architecture is not only aware of long-term engine health degradation but also effective to detect gas path performance anomaly shifts while the engine continues to degrade. Compared to the existing architecture, the proposed approach has its benefit investigated in the experiment and analysis.
Engineering paradigms and anthropogenic global change
NASA Astrophysics Data System (ADS)
Bohle, Martin
2016-04-01
This essay discusses 'paradigms' as means to conceive anthropogenic global change. Humankind alters earth-systems because of the number of people, the patterns of consumption of resources, and the alterations of environments. This process of anthropogenic global change is a composite consisting of societal (in the 'noosphere') and natural (in the 'bio-geosphere') features. Engineering intercedes these features; e.g. observing stratospheric ozone depletion has led to understanding it as a collateral artefact of a particular set of engineering choices. Beyond any specific use-case, engineering works have a common function; e.g. civil-engineering intersects economic activity and geosphere. People conceive their actions in the noosphere including giving purpose to their engineering. The 'noosphere' is the ensemble of social, cultural or political concepts ('shared subjective mental insights') of people. Among people's concepts are the paradigms how to shape environments, production systems and consumption patterns given their societal preferences. In that context, engineering is a means to implement a given development path. Four paradigms currently are distinguishable how to make anthropogenic global change happening. Among the 'engineering paradigms' for anthropogenic global change, 'adaptation' is a paradigm for a business-as-usual scenario and steady development paths of societies. Applying this paradigm implies to forecast the change to come, to appropriately design engineering works, and to maintain as far as possible the current production and consumption patterns. An alternative would be to adjust incrementally development paths of societies, namely to 'dovetail' anthropogenic and natural fluxes of matter and energy. To apply that paradigm research has to identify 'natural boundaries', how to modify production and consumption patterns, and how to tackle process in the noosphere to render alterations of common development paths acceptable. A further alternative, the paradigm of 'ecomodernism' implies to accentuate some of the current development paths of societies with the goal to 'decouple' anthropogenic and natural fluxes of matter and energy. Applying the paradigm 'geoengineering', engineering works shall 'modulate' natural fluxes of matter to counter the effect of anthropogenic fluxes of matter instead to alter the development paths of societies. Thus, anthropogenic global change is a composite process in which engineering intercedes the 'noosphere' and in the 'bio-geosphere'. Paradigms 'how to engineering earth systems' reflect different concepts ('shared subjective insights') how to combine knowledge with use, function and purpose. Currently, four paradigms are distinguishable how to engineer anthropogenic global change. They convene recipes human activity and bio-geosphere should intersect.
A hybrid quantum eraser scheme for characterization of free-space and fiber communication channels
NASA Astrophysics Data System (ADS)
Nape, Isaac; Kyeremah, Charlotte; Vallés, Adam; Rosales-Guzmán, Carmelo; Buah-Bassuah, Paul K.; Forbes, Andrew
2018-02-01
We demonstrate a simple projective measurement based on the quantum eraser concept that can be used to characterize the disturbances of any communication channel. Quantum erasers are commonly implemented as spatially separated path interferometric schemes. Here we exploit the advantages of redefining the which-path information in terms of spatial modes, replacing physical paths with abstract paths of orbital angular momentum (OAM). Remarkably, vector modes (natural modes of free-space and fiber) have a non-separable feature of spin-orbit coupled states, equivalent to the description of two independently marked paths. We explore the effects of fiber perturbations by probing a step-index optical fiber channel with a vector mode, relevant to high-order spatial mode encoding of information for ultra-fast fiber communications.
Structureborne noise investigations of a twin engine aircraft
NASA Technical Reports Server (NTRS)
Garrelick, J. M.; Cole, J. E., III; Martini, K.
1986-01-01
The interior noise of aircraft powered by advanced turbo-prop concepts is likely to have nonnegligible contributions from structureborne paths, these paths being those involving propeller loads transmitted to the structures of the lifting surfaces. As a means of examining these paths, structural measurements have been performed on a small twin-engine aircraft, and in addition analytical models of the structure have been developed. In this paper results from both portions of this study are presented.
Benchmarking Gas Path Diagnostic Methods: A Public Approach
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Bird, Jeff; Davison, Craig; Volponi, Al; Iverson, R. Eugene
2008-01-01
Recent technology reviews have identified the need for objective assessments of engine health management (EHM) technology. The need is two-fold: technology developers require relevant data and problems to design and validate new algorithms and techniques while engine system integrators and operators need practical tools to direct development and then evaluate the effectiveness of proposed solutions. This paper presents a publicly available gas path diagnostic benchmark problem that has been developed by the Propulsion and Power Systems Panel of The Technical Cooperation Program (TTCP) to help address these needs. The problem is coded in MATLAB (The MathWorks, Inc.) and coupled with a non-linear turbofan engine simulation to produce "snap-shot" measurements, with relevant noise levels, as if collected from a fleet of engines over their lifetime of use. Each engine within the fleet will experience unique operating and deterioration profiles, and may encounter randomly occurring relevant gas path faults including sensor, actuator and component faults. The challenge to the EHM community is to develop gas path diagnostic algorithms to reliably perform fault detection and isolation. An example solution to the benchmark problem is provided along with associated evaluation metrics. A plan is presented to disseminate this benchmark problem to the engine health management technical community and invite technology solutions.
NASA Astrophysics Data System (ADS)
Motes, Keith R.; Olson, Jonathan P.; Rabeaux, Evan J.; Dowling, Jonathan P.; Olson, S. Jay; Rohde, Peter P.
2015-05-01
Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place—typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer—fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection—is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.
Motes, Keith R; Olson, Jonathan P; Rabeaux, Evan J; Dowling, Jonathan P; Olson, S Jay; Rohde, Peter P
2015-05-01
Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place--typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer--fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection--is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.
Women and Men of the Engineering Path: A Model for Analyses of Undergraduate Careers.
ERIC Educational Resources Information Center
Adelman, Clifford
This monograph provides college academic administrators, institutional researchers, professional and learned societies, and academic advisors with information to improve understanding of the paths students take through engineering programs in higher education. The evidence used in this study comes principally from the 11-year college transcript…
Apparatus for separating particles utilizing engineered acoustic contrast capture particles
Kaduchak, Gregory; Ward, Michael D
2014-10-21
An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.
Apparatus for separating particles utilizing engineered acoustic contrast capture particles
Kaduchak, Gregory [Los Alamos, NM; Ward, Michael D [Los Alamos, NM
2011-12-27
An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.
NASA Astrophysics Data System (ADS)
Tully, D.; Jacobs, B.
2010-08-01
This study focused on a population of female engineering students, probing the influences of their secondary school experience on their choice to pursue an engineering course of study at university. The motivating question is: Do unique opportunities exist in an all-female secondary school mathematics classroom, which impact a young woman's self-perception of her mathematics ability as well as promote a positive path towards an engineering-based university major? Using both qualitative and quantitative data collection instruments, this study examined a sample of Australian engineering students enrolled at the University of Technology, Sydney (UTS). Demographic statistics show that 40% of UTS' female engineering student population attended a single-gender secondary school, indicating a potential influence of school type (single-gender) on engineering enrolment patterns. Female students were primarily motivated to pursue a post secondary engineering path because of a self-belief that they are good at mathematics. In contrast, male students were more influenced by positive male role models of family members who are practising engineers. In measures of self- perception of mathematical skill and ability, female students from single-gender schools outscored their male engineering counterparts. Additionally, female students seem to benefit from verbal encouragement, contextualisation, same gender problem-solving groups and same gender classroom dynamics.
Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers.
Cao, Yingchun; Jin, Wei; Ho, Lut Hoi; Liu, Zhibo
2012-01-15
We demonstrate gas detection based on evanescent-wave photoacoustic (PA) spectroscopy with tapered optical fibers. Evanescent-field instead of open-path absorption is exploited for PA generation, and a quartz tuning fork is used for PA detection. A tapered optical fiber with a diameter down to the wavelength scale demonstrates detection sensitivity similar to an open-path system but with the advantages of easier optical alignment, smaller insertion loss, and multiplexing capability.
Diakunchak, Ihor S.
2013-03-05
A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.
Rankine cycle load limiting through use of a recuperator bypass
Ernst, Timothy C.
2011-08-16
A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.
NASA Astrophysics Data System (ADS)
Wang, Ruichen; Lu, Jingyang; Xu, Yiran; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik
2018-05-01
Due to the progressive expansion of public mobile networks and the dramatic growth of the number of wireless users in recent years, researchers are motivated to study the radio propagation in urban environments and develop reliable and fast path loss prediction models. During last decades, different types of propagation models are developed for urban scenario path loss predictions such as the Hata model and the COST 231 model. In this paper, the path loss prediction model is thoroughly investigated using machine learning approaches. Different non-linear feature selection methods are deployed and investigated to reduce the computational complexity. The simulation results are provided to demonstratethe validity of the machine learning based path loss prediction engine, which can correctly determine the signal propagation in a wireless urban setting.
Hartmann, R C; Peters, O A; de Figueiredo, J A P; Rossi-Fedele, G
2018-04-28
The role and effect of glide path preparation in root canal treatment remain controversial. This systematic review aims to compare apical transportation and canal centring of different glide path preparation techniques, with or without subsequent engine-driven root canal preparation. A database search in PubMed, PubMed Central, Embase, Scopus, EBSCO Dentistry & Oral Sciences Source and Virtual Health Library was conducted, using appropriate key words to identify the effect of glide path preparation (or its absence) on apical transportation and canal centring. An assessment for the risk of bias in included studies was carried out. Amongst 2146 studies, 18 satisfied the inclusion criteria. Nine studies assessed glide path preparation per se, comparing apical transportation and canal centring of rotary systems and/or manual files; eleven further investigations examined the efficacy of the glide path prior to final canal preparation with different engine-driven systems. Risk of bias and other study design features with potential influence on study outcomes and clinical implications were assessed. Based on the available evidence, and within the limitation of the studies included, preparation of a glide path using rotary sequences performs similarly (in most of the component studies) or significantly better than manual preparation when assessing apical transportation or canal centring. When compared to the absence of a glide path, canal shaping following glide path preparation was of similar, or significantly better quality, in regard to apical transportation or canal centring. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaduchak, Gregory; Ward, Michael D.
An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minimamore » for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.« less
Apparatus for separating particles utilizing engineered acoustic contrast capture particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaduchak, Gregory; Ward, Michael D
An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minimamore » for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.« less
The Challenge of Characterizing Branching in Molecular Species.
1986-07-16
representing respectively paths of lengths two and three. Strictly speaking, a septuple rather than a pair should have been used to account for all the paths...same counts, are of fundmental importance in the study of isospectral graphs. These facts were exploited by the latter workers to establish a 1-1...case of the Hosoya index, Z(G), a composition principle was given [38] from which it was apparent that Z(G) depends on certain subgraphs of C for
Analytical modeling of the structureborne noise path on a small twin-engine aircraft
NASA Technical Reports Server (NTRS)
Cole, J. E., III; Stokes, A. Westagard; Garrelick, J. M.; Martini, K. F.
1988-01-01
The structureborne noise path of a six passenger twin-engine aircraft is analyzed. Models of the wing and fuselage structures as well as the interior acoustic space of the cabin are developed and used to evaluate sensitivity to structural and acoustic parameters. Different modeling approaches are used to examine aspects of the structureborne path. These approaches are guided by a number of considerations including the geometry of the structures, the frequency range of interest, and the tractability of the computations. Results of these approaches are compared with experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasquez, N.C.; Sarmiento, Z.F.
1986-07-01
After a geothermal well is completed, several tests and downhole measurements are conducted to help evaluate the subsurface fluid and reservoir properties intersected. From these tests, a conceptual model of the well can be developed by integrating data from the various parts of the field. This paper presents the completion techniques applied in geothermal wells, as well as the role of reservoir engineering science in delineating a field for development. Monitoring techniques and other reservoir engineering aspects of a field under exploitation are also discussed, with examples from the Philippines.
Characterization of a remote optical element with bi-photons
NASA Astrophysics Data System (ADS)
Puhlmann, D.; Henkel, C.; Heuer, A.; Pieplow, G.; Menzel, R.
2016-02-01
We present a simple setup that exploits the interference of entangled photon pairs. ‘Signal’ photons are sent through a Mach-Zehnder-like interferometer, while ‘idlers’ are detected in a variable polarization state. Two-photon interference (in coincidence detection) is observed with very high contrast and for significant time delays between signal and idler detection events. This is explained by quantum erasure of the polarization tag and a delayed choice protocol involving a non-local virtual polarizer. The phase of the two-photon fringes is scanned by varying the path length in the signal beam or by rotating a birefringent crystal in the idler beam. We exploit this to characterize one beam splitter of the signal photon interferometer (reflection and transmission amplitudes including losses), using only information about coincidences and control parameters in the idler path. This is possible because our bi-photon state saturates the Greenberger-Yelin-Englert inequality between contrast and predictability.
The MATCHIT Automaton: Exploiting Compartmentalization for the Synthesis of Branched Polymers
Weyland, Mathias S.; Fellermann, Harold; Hadorn, Maik; Sorek, Daniel; Lancet, Doron; Rasmussen, Steen; Füchslin, Rudolf M.
2013-01-01
We propose an automaton, a theoretical framework that demonstrates how to improve the yield of the synthesis of branched chemical polymer reactions. This is achieved by separating substeps of the path of synthesis into compartments. We use chemical containers (chemtainers) to carry the substances through a sequence of fixed successive compartments. We describe the automaton in mathematical terms and show how it can be configured automatically in order to synthesize a given branched polymer target. The algorithm we present finds an optimal path of synthesis in linear time. We discuss how the automaton models compartmentalized structures found in cells, such as the endoplasmic reticulum and the Golgi apparatus, and we show how this compartmentalization can be exploited for the synthesis of branched polymers such as oligosaccharides. Lastly, we show examples of artificial branched polymers and discuss how the automaton can be configured to synthesize them with maximal yield. PMID:24489601
A Graph-Based Impact Metric for Mitigating Lateral Movement Cyber Attacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purvine, Emilie AH; Johnson, John R.; Lo, Chaomei
Most cyber network attacks begin with an adversary gain- ing a foothold within the network and proceed with lateral movement until a desired goal is achieved. The mechanism by which lateral movement occurs varies but the basic signa- ture of hopping between hosts by exploiting vulnerabilities is the same. Because of the nature of the vulnerabilities typ- ically exploited, lateral movement is very difficult to detect and defend against. In this paper we define a dynamic reach- ability graph model of the network to discover possible paths that an adversary could take using different vulnerabilities, and how those paths evolvemore » over time. We use this reacha- bility graph to develop dynamic machine-level and network- level impact scores. Lateral movement mitigation strategies which make use of our impact scores are also discussed, and we detail an example using a freely available data set.« less
NASA Technical Reports Server (NTRS)
Rinehart, Aidan W.; Simon, Donald L.
2015-01-01
This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.
NASA Technical Reports Server (NTRS)
Rinehart, Aidan W.; Simon, Donald L.
2014-01-01
This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.
NASA Technical Reports Server (NTRS)
Veres, Joseph
2001-01-01
This report outlines the detailed simulation of Aircraft Turbofan Engine. The objectives were to develop a detailed flow model of a full turbofan engine that runs on parallel workstation clusters overnight and to develop an integrated system of codes for combustor design and analysis to enable significant reduction in design time and cost. The model will initially simulate the 3-D flow in the primary flow path including the flow and chemistry in the combustor, and ultimately result in a multidisciplinary model of the engine. The overnight 3-D simulation capability of the primary flow path in a complete engine will enable significant reduction in the design and development time of gas turbine engines. In addition, the NPSS (Numerical Propulsion System Simulation) multidisciplinary integration and analysis are discussed.
Diffractive paths for weak localization in quantum billiards
NASA Astrophysics Data System (ADS)
Březinová, Iva; Stampfer, Christoph; Wirtz, Ludger; Rotter, Stefan; Burgdörfer, Joachim
2008-04-01
We study the weak-localization effect in quantum transport through a clean ballistic cavity with regular classical dynamics. We address the question which paths account for the suppression of conductance through a system where disorder and chaos are absent. By exploiting both quantum and semiclassical methods, we unambiguously identify paths that are diffractively backscattered into the cavity (when approaching the lead mouths from the cavity interior) to play a key role. Diffractive scattering couples transmitted and reflected paths and is thus essential to reproduce the weak-localization peak in reflection and the corresponding antipeak in transmission. A comparison of semiclassical calculations featuring these diffractive paths yields good agreement with full quantum calculations and experimental data. Our theory provides system-specific predictions for the quantum regime of few open lead modes and can be expected to be relevant also for mixed as well as chaotic systems.
Dung beetles use the Milky Way for orientation.
Dacke, Marie; Baird, Emily; Byrne, Marcus; Scholtz, Clarke H; Warrant, Eric J
2013-02-18
When the moon is absent from the night sky, stars remain as celestial visual cues. Nonetheless, only birds, seals, and humans are known to use stars for orientation. African ball-rolling dung beetles exploit the sun, the moon, and the celestial polarization pattern to move along straight paths, away from the intense competition at the dung pile. Even on clear moonless nights, many beetles still manage to orientate along straight paths. This led us to hypothesize that dung beetles exploit the starry sky for orientation, a feat that has, to our knowledge, never been demonstrated in an insect. Here, we show that dung beetles transport their dung balls along straight paths under a starlit sky but lose this ability under overcast conditions. In a planetarium, the beetles orientate equally well when rolling under a full starlit sky as when only the Milky Way is present. The use of this bidirectional celestial cue for orientation has been proposed for vertebrates, spiders, and insects, but never proven. This finding represents the first convincing demonstration for the use of the starry sky for orientation in insects and provides the first documented use of the Milky Way for orientation in the animal kingdom. Copyright © 2013 Elsevier Ltd. All rights reserved.
Structural factoring approach for analyzing stochastic networks
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.; Shier, Douglas R.
1991-01-01
The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.
A Comparison of Hybrid Approaches for Turbofan Engine Gas Path Fault Diagnosis
NASA Astrophysics Data System (ADS)
Lu, Feng; Wang, Yafan; Huang, Jinquan; Wang, Qihang
2016-09-01
A hybrid diagnostic method utilizing Extended Kalman Filter (EKF) and Adaptive Genetic Algorithm (AGA) is presented for performance degradation estimation and sensor anomaly detection of turbofan engine. The EKF is used to estimate engine component performance degradation for gas path fault diagnosis. The AGA is introduced in the integrated architecture and applied for sensor bias detection. The contributions of this work are the comparisons of Kalman Filters (KF)-AGA algorithms and Neural Networks (NN)-AGA algorithms with a unified framework for gas path fault diagnosis. The NN needs to be trained off-line with a large number of prior fault mode data. When new fault mode occurs, estimation accuracy by the NN evidently decreases. However, the application of the Linearized Kalman Filter (LKF) and EKF will not be restricted in such case. The crossover factor and the mutation factor are adapted to the fitness function at each generation in the AGA, and it consumes less time to search for the optimal sensor bias value compared to the Genetic Algorithm (GA). In a word, we conclude that the hybrid EKF-AGA algorithm is the best choice for gas path fault diagnosis of turbofan engine among the algorithms discussed.
System and method for optimal load and source scheduling in context aware homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetty, Pradeep; Foslien Graber, Wendy; Mangsuli, Purnaprajna R.
A controller for controlling energy consumption in a home includes a constraints engine to define variables for multiple appliances in the home corresponding to various home modes and persona of an occupant of the home. A modeling engine models multiple paths of energy utilization of the multiple appliances to place the home into a desired state from a current context. An optimal scheduler receives the multiple paths of energy utilization and generates a schedule as a function of the multiple paths and a selected persona to place the home in a desired state.
NASA Astrophysics Data System (ADS)
Baier, Tobias; Dölger, Julia; Hardt, Steffen
2014-05-01
For a gas confined between surfaces held at different temperatures the velocity distribution shows a significant deviation from the Maxwell distribution when the mean free path of the molecules is comparable to or larger than the channel dimensions. If one of the surfaces is suitably structured, this nonequilibrium distribution can be exploited for momentum transfer in a tangential direction between the two surfaces. This opens up the possibility to extract work from the system which operates as a heat engine. Since both surfaces are held at constant temperatures, the mode of momentum transfer is different from the thermal creep flow that has gained more attention so far. This situation is studied in the limit of free-molecular flow for the case that an unstructured surface is allowed to move tangentially with respect to a structured surface. Parameter studies are conducted, and configurations with maximum thermodynamic efficiency are identified. Overall, it is shown that significant efficiencies can be obtained by tangential momentum transfer between structured surfaces.
Baier, Tobias; Dölger, Julia; Hardt, Steffen
2014-05-01
For a gas confined between surfaces held at different temperatures the velocity distribution shows a significant deviation from the Maxwell distribution when the mean free path of the molecules is comparable to or larger than the channel dimensions. If one of the surfaces is suitably structured, this nonequilibrium distribution can be exploited for momentum transfer in a tangential direction between the two surfaces. This opens up the possibility to extract work from the system which operates as a heat engine. Since both surfaces are held at constant temperatures, the mode of momentum transfer is different from the thermal creep flow that has gained more attention so far. This situation is studied in the limit of free-molecular flow for the case that an unstructured surface is allowed to move tangentially with respect to a structured surface. Parameter studies are conducted, and configurations with maximum thermodynamic efficiency are identified. Overall, it is shown that significant efficiencies can be obtained by tangential momentum transfer between structured surfaces.
Jiang, Zhi Hao; Turpin, Jeremy P.; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H.
2015-01-01
Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. PMID:26217054
Bioinspired magnetic reception and multimodal sensing.
Taylor, Brian K
2017-08-01
Several animals use Earth's magnetic field in concert with other sensor modes to accomplish navigational tasks ranging from local homing to continental scale migration. However, despite extensive research, animal magnetic reception remains poorly understood. Similarly, the Earth's magnetic field offers a signal that engineered systems can leverage to navigate in environments where man-made positioning systems such as GPS are either unavailable or unreliable. This work uses a behavioral strategy inspired by the migratory behavior of sea turtles to locate a magnetic goal and respond to wind when it is present. Sensing is performed using a number of distributed sensors. Based on existing theoretical biology considerations, data processing is performed using combinations of circles and ellipses to exploit the distributed sensing paradigm. Agent-based simulation results indicate that this approach is capable of using two separate magnetic properties to locate a goal from a variety of initial conditions in both noiseless and noisy sensory environments. The system's ability to locate the goal appears robust to noise at the cost of overall path length.
Lead absorption mechanisms in bacteria as strategies for lead bioremediation.
Tiquia-Arashiro, Sonia M
2018-05-08
Bacteria exhibit a number of metabolism-dependent and metabolism-independent processes for the uptake and accumulation of toxic metals. The removal of these metals from environmental sources such as soil, sludge, and wastewaters using microbe-based technologies provide an alternative for their recovery and remediation. Lead (Pb) is a pervasive metal in the environment that adversely affects all living organisms. Many aspects of metal-microbe interactions remain unexploited in biotechnology and further development and application is necessary, particularly to the problem of Pb release into the environment. Thus, this review provides a synopsis of the most important bacterial phenotypes and biochemical attributes that are instrumental in lead bioremediation, along with what is known of their genetic background that can be exploited or improved through genetic engineering. This review also highlights the potential of Pb-resistant bacteria in bringing about detoxification of Pb-contaminated terrestrial and aquatic systems in a highly sustainable and environmental friendly manner, and the existing challenges that still lie in the path to in situ and large-scale bioremediation.
Online Meta-data Collection and Monitoring Framework for the STAR Experiment at RHIC
NASA Astrophysics Data System (ADS)
Arkhipkin, D.; Lauret, J.; Betts, W.; Van Buren, G.
2012-12-01
The STAR Experiment further exploits scalable message-oriented model principles to achieve a high level of control over online data streams. In this paper we present an AMQP-powered Message Interface and Reliable Architecture framework (MIRA), which allows STAR to orchestrate the activities of Meta-data Collection, Monitoring, Online QA and several Run-Time and Data Acquisition system components in a very efficient manner. The very nature of the reliable message bus suggests parallel usage of multiple independent storage mechanisms for our meta-data. We describe our experience with a robust data-taking setup employing MySQL- and HyperTable-based archivers for meta-data processing. In addition, MIRA has an AJAX-enabled web GUI, which allows real-time visualisation of online process flow and detector subsystem states, and doubles as a sophisticated alarm system when combined with complex event processing engines like Esper, Borealis or Cayuga. The performance data and our planned path forward are based on our experience during the 2011-2012 running of STAR.
Emergent ultrafast phenomena in correlated oxides and heterostructures
NASA Astrophysics Data System (ADS)
Gandolfi, M.; Celardo, G. L.; Borgonovi, F.; Ferrini, G.; Avella, A.; Banfi, F.; Giannetti, C.
2017-03-01
The possibility of investigating the dynamics of solids on timescales faster than the thermalization of the internal degrees of freedom has disclosed novel non-equilibrium phenomena that have no counterpart at equilibrium. Transition metal oxides (TMOs) provide an interesting playground in which the correlations among the charges in the metal d-orbitals give rise to a wealth of intriguing electronic and thermodynamic properties involving the spin, charge, lattice and orbital orders. Furthermore, the physical properties of TMOs can be engineered at the atomic level, thus providing the platform to investigate the transport phenomena on timescales of the order of the intrinsic decoherence time of the charge excitations. Here, we review and discuss three paradigmatic examples of transient emerging properties that are expected to open new fields of research: (i) the creation of non-thermal magnetic states in spin-orbit Mott insulators; (ii) the possible exploitation of quantum paths for the transport and collection of charge excitations in heterostructures; (iii) the transient wave-like behavior of the temperature field in strongly anisotropic TMOs.
Using the Curriculum Vita To Study the Career Paths of Scientists and Engineers: An Assessment.
ERIC Educational Resources Information Center
Lane, Eliesh O'Neil; Dietz, James S.; Chompalov, Ivan; Bozeman, Barry; Park, Jongwon
The usefulness of the curriculum vita (CV) as a data source for examining the career paths of scientists and engineers was studied. CVs were obtained in response to an e-mail message sent to researchers working in the area of biotechnology who were funded by the National Science Foundation (55 responses) or listed as authors (industry only) in the…
NASA Astrophysics Data System (ADS)
Kemiche, Malik; Lhuillier, Jérémy; Callard, Ségolène; Monat, Christelle
2018-01-01
We exploit slow light (high ng) modes in planar photonic crystals in order to design a compact cavity, which provides an attractive path towards the miniaturization of near-infrared integrated fast pulsed lasers. By applying dispersion engineering techniques, we can design structures with a low dispersion, as needed by mode-locking operation. Our basic InP SiO2 heterostructure is robust and well suited to integrated laser applications. We show that an optimized 30 μm long cavity design yields 9 frequency-equidistant modes with a FSR of 178 GHz within a 11.5 nm bandwidth, which could potentially sustain the generation of optical pulses shorter than 700 fs. In addition, the numerically calculated quality factors of these modes are all above 10,000, making them suitable for reaching laser operation. Thanks to the use of a high group index (28), this cavity design is almost one order of magnitude shorter than standard rib-waveguide based mode-locked lasers. The use of slow light modes in planar photonic crystal based cavities thus relaxes the usual constraints that tightly link the device size and the quality (peak power, repetition rate) of the pulsed laser signal.
Considerations on Educating Engineers in Sustainability
ERIC Educational Resources Information Center
Boyle, Carol
2004-01-01
The teaching of sustainability to engineers will follow similar paths to that of environmental engineering. There is a strong feeling that environmental engineering is a discipline unto itself, requiring knowledge of chemistry, physics, biology, hydrology, toxicology, modelling and law. However, environmental engineering can also be encompassed…
ETR, TRA642. EASTWEST SECTION, LOOKING NORTH. PATH OF COOLING WATER ...
ETR, TRA-642. EAST-WEST SECTION, LOOKING NORTH. PATH OF COOLING WATER PIPE TUNNEL. WORKING AND STORAGE CANAL. SUB-PILE ROOM. CONTROL ROD ACCESS ROOM. FLOOR NAMES. (THIS WAS A CONCEPT DRAWING.) KAISER ETR-5528-MTR-642-A-5, 11/1955. INL INDEX NO. 532-0642-00-486-100913. REV. 0. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
A Foreign Object Damage Event Detector Data Fusion System for Turbofan Engines
NASA Technical Reports Server (NTRS)
Turso, James A.; Litt, Jonathan S.
2004-01-01
A Data Fusion System designed to provide a reliable assessment of the occurrence of Foreign Object Damage (FOD) in a turbofan engine is presented. The FOD-event feature level fusion scheme combines knowledge of shifts in engine gas path performance obtained using a Kalman filter, with bearing accelerometer signal features extracted via wavelet analysis, to positively identify a FOD event. A fuzzy inference system provides basic probability assignments (bpa) based on features extracted from the gas path analysis and bearing accelerometers to a fusion algorithm based on the Dempster-Shafer-Yager Theory of Evidence. Details are provided on the wavelet transforms used to extract the foreign object strike features from the noisy data and on the Kalman filter-based gas path analysis. The system is demonstrated using a turbofan engine combined-effects model (CEM), providing both gas path and rotor dynamic structural response, and is suitable for rapid-prototyping of control and diagnostic systems. The fusion of the disparate data can provide significantly more reliable detection of a FOD event than the use of either method alone. The use of fuzzy inference techniques combined with Dempster-Shafer-Yager Theory of Evidence provides a theoretical justification for drawing conclusions based on imprecise or incomplete data.
Two phase exhaust for internal combustion engine
Vuk, Carl T [Denver, IA
2011-11-29
An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.
Gas flow path for a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, Matthew D.; Charron, Richard C.; Snyder, Gary D.
A duct arrangement in a can annular gas turbine engine. The gas turbine engine has a gas delivery structure for delivering gases from a plurality of combustors to an annular chamber that extends circumferentially and is oriented concentric to a gas turbine engine longitudinal axis for delivering the gas flow to a first row of blades A gas flow path is formed by the duct arrangement between a respective combustor and the annular chamber for conveying gases from each combustor to the first row of turbine blades The duct arrangement includes at least one straight section having a centerline thatmore » is misaligned with a centerline of the combustor.« less
NASA Technical Reports Server (NTRS)
Oliver, Michael J.
2014-01-01
The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing would occur. The ice crystal icing event, an uncommanded reduction in thrust, was able to be turned on and off by manipulating cloud TWC. A flight test point where no ice crystal icing event occurred was also duplicated in PSL. Physics based computational tools were successfully used to predict tunnel settings to induce ice buildup along the low pressure compression system flow path for several test points at incrementally lower altitudes, demonstrating that development of ice crystal icing scaling laws is potentially feasible. Analysis of PSL test data showed that uncommanded reduction in thrust occurs during ice crystal cloud on operation prior to fan speed reduction. This supports previous findings that the reduction of thrust for this test article is due to ice buildup leading to a restricted airflow from either physical or aerodynamic blockage in the engine core flow path.
NASA Technical Reports Server (NTRS)
Oliver, Michael J.
2014-01-01
The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Clevleand, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSLthe first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing would occur. The ice crystal icing event, an uncommanded reduction in thrust, was able to be turned on and off by manipulating cloud TWC. A flight test point where no ice crystal icing event occurred was also duplicated in PSL. Physics based computational tools were successfully used to predict tunnel settings to induce ice buildup along the low pressure compression system flow path for several test points at incrementally lower altitudes, demonstrating that development of ice crystal icing scaling laws is potentially feasible. Analysis of PSL test data showed that uncommanded reduction in thrust occurs during ice crystal cloud on operation prior to fan speed reduction. This supports previous findings that the reduction of thrust for this test article is due to ice buildup leading to a restricted airflow from either physical or aerodynamic blockage in the engine core flow path.
A Comprehensive Study of Data Collection Schemes Using Mobile Sinks in Wireless Sensor Networks
Khan, Abdul Waheed; Abdullah, Abdul Hanan; Anisi, Mohammad Hossein; Bangash, Javed Iqbal
2014-01-01
Recently sink mobility has been exploited in numerous schemes to prolong the lifetime of wireless sensor networks (WSNs). Contrary to traditional WSNs where sensory data from sensor field is ultimately sent to a static sink, mobile sink-based approaches alleviate energy-holes issues thereby facilitating balanced energy consumption among nodes. In mobility scenarios, nodes need to keep track of the latest location of mobile sinks for data delivery. However, frequent propagation of sink topological updates undermines the energy conservation goal and therefore should be controlled. Furthermore, controlled propagation of sinks' topological updates affects the performance of routing strategies thereby increasing data delivery latency and reducing packet delivery ratios. This paper presents a taxonomy of various data collection/dissemination schemes that exploit sink mobility. Based on how sink mobility is exploited in the sensor field, we classify existing schemes into three classes, namely path constrained, path unconstrained, and controlled sink mobility-based schemes. We also organize existing schemes based on their primary goals and provide a comparative study to aid readers in selecting the appropriate scheme in accordance with their particular intended applications and network dynamics. Finally, we conclude our discussion with the identification of some unresolved issues in pursuit of data delivery to a mobile sink. PMID:24504107
Sikorsky Aircraft Advanced Rotorcraft Transmission (ART) program
NASA Technical Reports Server (NTRS)
Kish, Jules G.
1993-01-01
The objectives of the Advanced Rotorcraft Transmission program were to achieve a 25 percent weight reduction, a 10 dB noise reduction, and a 5,000 hour mean time between removals (MTBR). A three engine Army Cargo Aircraft (ACA) of 85,000 pounds gross weight was used as the baseline. Preliminary designs were conducted of split path and split torque transmissions to evaluate weight, reliability, and noise. A split path gearbox was determined to be 23 percent lighter, greater than 10 dB quieter, and almost four times more reliable than the baseline two stage planetary design. Detail design studies were conducted of the chosen split path configuration, and drawings were produced of a 1/2 size gearbox consisting of a single engine path of the split path section. Fabrication and testing was then conducted on the 1/2 size gearbox. The 1/2 size gearbox testing proved that the concept of the split path gearbox with high reduction ratio double helical output gear was sound. The improvements were attributed to extensive use of composites, spring clutches, advanced high hot hardness gear steels, the split path configuration itself, high reduction ratio, double helical gearing on the output stage, elastomeric load sharing devices, and elimination of accessory drives.
Rethinking exploitation: a process-centered account.
Jansen, Lynn A; Wall, Steven
2013-12-01
Exploitation has become an important topic in recent discussions of biomedical and research ethics. This is due in no small measure to the influence of Alan Wertheimer's path-breaking work on the subject. This paper presents some objections to Wertheimer's account of the concept. The objections attempt to show that his account places too much emphasis on outcome-based considerations and too little on process-based considerations. Building on these objections, the paper develops an alternative process-centered account of the concept. This alternative account of exploitation takes as its point of departure the broadly Kantian notion that it is wrong to use another as an instrument for the advancement of one's own ends. It sharpens this slippery notion and adds a number of refinements to it. The paper concludes by arguing that process-centered accounts of exploitation better illuminate the ethical challenges posed by research on human subjects than outcome-centered accounts.
Traffic-engineering-aware shortest-path routing and its application in IP-over-WDM networks [Invited
NASA Astrophysics Data System (ADS)
Lee, Youngseok; Mukherjee, Biswanath
2004-03-01
Single shortest-path routing is known to perform poorly for Internet traffic engineering (TE) where the typical optimization objective is to minimize the maximum link load. Splitting traffic uniformly over equal-cost multiple shortest paths in open shortest path first and intermediate system-intermediate system protocols does not always minimize the maximum link load when multiple paths are not carefully selected for the global traffic demand matrix. However, a TE-aware shortest path among all the equal-cost multiple shortest paths between each ingress-egress pair can be selected such that the maximum link load is significantly reduced. IP routers can use the globally optimal TE-aware shortest path without any change to existing routing protocols and without any serious configuration overhead. While calculating TE-aware shortest paths, the destination-based forwarding constraint at a node should be satisfied, because an IP router will forward a packet to the next hop toward the destination by looking up the destination prefix. We present a mathematical problem formulation for finding a set of TE-aware shortest paths for the given network as an integer linear program, and we propose a simple heuristic for solving large instances of the problem. Then we explore the usage of our proposed algorithm for the integrated TE method in IP-over-WDM networks. The proposed algorithm is evaluated through simulations in IP networks as well as in IP-over-WDM networks.
NASA Technical Reports Server (NTRS)
Oliver, Michael
2014-01-01
This presentation will be made at the 92nd AIAA Turbine Engine Testing Working Group (TETWoG), a semi-annual technical meeting of turbine engine testing professionals. The objective is to describe an effort by NASA to measure the water vapor content on the core airflow in a full scale turbine engine ice crystal icing test and to open a discussion with colleagues how to accurately conduct the measurement based on any previous collective experience with the procedure, instruments and nature of engine icing testing within the group. The presentation lays out the schematics of the location in the flow path from which the sample will be drawn, the plumbing to get it from the engine flow path to the sensor and several different water vapor measurement technologies that will be used: Tunable diode laser and infrared spectroscopy.
NASA Astrophysics Data System (ADS)
Varnhagen, Scott; Same, Adam; Remillard, Jesse; Park, Jae Wan
2011-03-01
Series plug-in hybrid electric vehicles of varying engine configuration and battery capacity are modeled using Advanced Vehicle Simulator (ADVISOR). The performance of these vehicles is analyzed on the bases of energy consumption and greenhouse gas emissions on the tank-to-wheel and well-to-wheel paths. Both city and highway driving conditions are considered during the simulation. When simulated on the well-to-wheel path, it is shown that the range extender with a Wankel rotary engine consumes less energy and emits fewer greenhouse gases compared to the other systems with reciprocating engines during many driving cycles. The rotary engine has a higher power-to-weight ratio and lower noise, vibration and harshness compared to conventional reciprocating engines, although performs less efficiently. The benefits of a Wankel engine make it an attractive option for use as a range extender in a plug-in hybrid electric vehicle.
Biosonar navigation above water II: exploiting mirror images.
Genzel, Daria; Hoffmann, Susanne; Prosch, Selina; Firzlaff, Uwe; Wiegrebe, Lutz
2015-02-15
As in vision, acoustic signals can be reflected by a smooth surface creating an acoustic mirror image. Water bodies represent the only naturally occurring horizontal and acoustically smooth surfaces. Echolocating bats flying over smooth water bodies encounter echo-acoustic mirror images of objects above the surface. Here, we combined an electrophysiological approach with a behavioral experimental paradigm to investigate whether bats can exploit echo-acoustic mirror images for navigation and how these mirrorlike echo-acoustic cues are encoded in their auditory cortex. In an obstacle-avoidance task where the obstacles could only be detected via their echo-acoustic mirror images, most bats spontaneously exploited these cues for navigation. Sonar ensonifications along the bats' flight path revealed conspicuous changes of the reflection patterns with slightly increased target strengths at relatively long echo delays corresponding to the longer acoustic paths from the mirrored obstacles. Recordings of cortical spatiotemporal response maps (STRMs) describe the tuning of a unit across the dimensions of elevation and time. The majority of cortical single and multiunits showed a special spatiotemporal pattern of excitatory areas in their STRM indicating a preference for echoes with (relative to the setup dimensions) long delays and, interestingly, from low elevations. This neural preference could effectively encode a reflection pattern as it would be perceived by an echolocating bat detecting an object mirrored from below. The current study provides both behavioral and neurophysiological evidence that echo-acoustic mirror images can be exploited by bats for obstacle avoidance. This capability effectively supports echo-acoustic navigation in highly cluttered natural habitats. Copyright © 2015 the American Physiological Society.
Laser ignition - Spark plug development and application in reciprocating engines
NASA Astrophysics Data System (ADS)
Pavel, Nicolaie; Bärwinkel, Mark; Heinz, Peter; Brüggemann, Dieter; Dearden, Geoff; Croitoru, Gabriela; Grigore, Oana Valeria
2018-03-01
Combustion is one of the most dominant energy conversion processes used in all areas of human life, but global concerns over exhaust gas pollution and greenhouse gas emission have stimulated further development of the process. Lean combustion and exhaust gas recirculation are approaches to improve the efficiency and to reduce pollutant emissions; however, such measures impede reliable ignition when applied to conventional ignition systems. Therefore, alternative ignition systems are a focus of scientific research. Amongst others, laser induced ignition seems an attractive method to improve the combustion process. In comparison with conventional ignition by electric spark plugs, laser ignition offers a number of potential benefits. Those most often discussed are: no quenching of the combustion flame kernel; the ability to deliver (laser) energy to any location of interest in the combustion chamber; the possibility of delivering the beam simultaneously to different positions, and the temporal control of ignition. If these advantages can be exploited in practice, the engine efficiency may be improved and reliable operation at lean air-fuel mixtures can be achieved, making feasible savings in fuel consumption and reduction in emission of exhaust gasses. Therefore, laser ignition can enable important new approaches to address global concerns about the environmental impact of continued use of reciprocating engines in vehicles and power plants, with the aim of diminishing pollutant levels in the atmosphere. The technology can also support increased use of electrification in powered transport, through its application to ignition of hybrid (electric-gas) engines, and the efficient combustion of advanced fuels. In this work, we review the progress made over the last years in laser ignition research, in particular that aimed towards realizing laser sources (or laser spark plugs) with dimensions and properties suitable for operating directly on an engine. The main envisaged solutions for positioning of the laser spark plug, i.e. placing it apart from or directly on the engine, are introduced. The path taken from the first solution proposed, to build a compact laser suitable for ignition, to the practical realization of a laser spark plug is described. Results obtained by ignition of automobile test engines, with laser devices that resemble classical spark plugs, are specifically discussed. It is emphasized that technological advances have brought this method of laser ignition close to the application and installation in automobiles powered by gasoline engines. Achievements made in the laser ignition of natural gas engines are outlined, as well as the utilization of laser ignition in other applications. Scientific and technical advances have allowed realization of laser devices with multiple (up to four) beam outputs, but many other important aspects (such as integration, thermal endurance or vibration strength) are still to be solved. Recent results of multi-beam ignition of a single-cylinder engine in a test bench set-up are encouraging and have led to increased research interest in this direction. A fundamental understanding of the processes involved in laser ignition is crucial in order to exploit the technology's full potential. Therefore, several measurement techniques, primarily optical types, used to characterize the laser ignition process are reviewed in this work.
Civil Engineering: Improving the Quality of Life.
ERIC Educational Resources Information Center
One Feather, Sandra
2002-01-01
American Indian civil engineers describe the educational paths that led them to their engineering careers, applications of civil engineering in reservation communities, necessary job skills, opportunities afforded by internship programs, continuing education, and the importance of early preparation in math and science. Addresses of 12 resource Web…
14 CFR 29.59 - Takeoff path: Category A.
Code of Federal Regulations, 2010 CFR
2010-01-01
... addition— (1) The takeoff path must remain clear of the height-velocity envelope established in accordance with § 29.87; (2) The rotorcraft must be flown to the engine failure point; at which point, the...
Women in engineering conference: capitalizing on today`s challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metz, S.S.; Martins, S.M.
This document contains the conference proceedings of the Women in Engineering Conference: Capitalizing on Today`s Challenges, held June 1-4, 1996 in Denver, Colorado. Topics included engineering and science education, career paths, workplace issues, and affirmative action.
Incorporating unnatural amino acids to engineer biocatalysts for industrial bioprocess applications.
Ravikumar, Yuvaraj; Nadarajan, Saravanan Prabhu; Hyeon Yoo, Tae; Lee, Chong-Soon; Yun, Hyungdon
2015-12-01
The bioprocess engineering with biocatalysts broadly spans its development and actual application of enzymes in an industrial context. Recently, both the use of bioprocess engineering and the development and employment of enzyme engineering techniques have been increasing rapidly. Importantly, engineering techniques that incorporate unnatural amino acids (UAAs) in vivo has begun to produce enzymes with greater stability and altered catalytic properties. Despite the growth of this technique, its potential value in bioprocess applications remains to be fully exploited. In this review, we explore the methodologies involved in UAA incorporation as well as ways to synthesize these UAAs. In addition, we summarize recent efforts to increase the yield of UAA engineered proteins in Escherichia coli and also the application of this tool in enzyme engineering. Furthermore, this protein engineering tool based on the incorporation of UAA can be used to develop immobilized enzymes that are ideal for bioprocess applications. Considering the potential of this tool and by exploiting these engineered enzymes, we expect the field of bioprocess engineering to open up new opportunities for biocatalysis in the near future. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
How Engineers Engineer: Lessons from My First Big Engineering Project
ERIC Educational Resources Information Center
Roman, Harry T.
2008-01-01
Little did the author realize how much his first engineering project would change his career path, but when it came, he was hooked forever on doing R&D-type engineering. In this article, the author takes the reader back to his first really important electrical engineering project. While the technology he worked on back then is antiquated by…
Method and apparatus for reducing cold-phase emissions by utilizing oxygen-enriched intake air
Poola, Ramesh B.; Sekar, Ramanujam R.; Stork, Kevin C.
1997-01-01
An oxygen-enriched air intake control system for an internal combustion engine includes air directing apparatus to control the air flow into the intake of the engine. During normal operation of the engine, ambient air flowing from an air filter of the engine flows through the air directing apparatus into the intake of the engine. In order to decrease the amount of carbon monoxide (CO) and hydrocarbon (HC) emissions that tend to be produced by the engine during a short period of time after the engine is started, the air directing apparatus diverts for a short period of time following the start up of the engine at least a portion of the ambient air from the air filter through a secondary path. The secondary path includes a selectively permeable membrane through which the diverted portion of the ambient air flows. The selectively permeable membrane separates nitrogen and oxygen from the diverted air so that oxygen enriched air containing from about 23% to 25% oxygen by volume is supplied to the intake of the engine.
Technical Path Evaluation for High Efficiency, Low Emission Natural Gas Engine
2002-05-01
Modeling and Mitigation for Large Bore Natural Gas Engines C. Evaluation of Technologies for Achieving High BMEP Levels in Natural Gas Engines D. Microfine ...Natural Gas Engines C. Evaluation of Technologies for Achieving High BMEP Levels in Natural Gas Engines D. Microfine Water Spray Injection for Knock...91 vi D. MICROFINE WATER SPRAY INJECTION FOR
NASA Astrophysics Data System (ADS)
Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio
2015-09-01
Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.
ERIC Educational Resources Information Center
Weighall, Anna R.
2008-01-01
Research with adults has shown that ambiguous spoken sentences are resolved efficiently, exploiting multiple cues--including referential context--to select the intended meaning. Paradoxically, children appear to be insensitive to referential cues when resolving ambiguous sentences, relying instead on statistical properties intrinsic to the…
Towards Quantifying Programmable Logic Controller Resilience Against Intentional Exploits
2012-03-22
may improve the SCADA system’s resilience against DoS and man-in-the-middle ( MITM ) attacks. DoS attacks may be mitigated by using the redundant...paths available on the network links. MITM attacks may be mitigated by the data integrity checks associated with the middleware. Figure 4 illustrates
Atlas Career Path Guidebook: Patterns and Common Practices in Systems Engineers’ Development
2018-01-16
Overview of Atlas Proficiency Model .............................................................................. 68 5.1.2. Math /Science/General... Math /Science/General Engineering ................................ 72 Figure 42. Distribution for individuals with highest proficiency self...assessment in Math /Science/General Engineering ..................................................................................... 73 Figure 43
Diesel engine exhaust oxidizer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kammel, R.A.
1992-06-16
This patent describes a diesel engine exhaust oxidizing device. It comprises: an enclosure having an inlet for receiving diesel engine exhaust, a main flow path through the enclosure to an outlet of the enclosure, a by-ass through the enclosure, and a microprocessor control means.
Laser beam propagation through a full scale aircraft turboprop engine exhaust
NASA Astrophysics Data System (ADS)
Henriksson, Markus; Gustafsson, Ove; Sjöqvist, Lars; Seiffer, Dirk; Wendelstein, Norbert
2010-10-01
The exhaust from engines introduces zones of extreme turbulence levels in local environments around aircraft. This may disturb the performance of aircraft mounted optical and laser systems. The turbulence distortion will be especially devastating for optical missile warning and laser based DIRCM systems used to protect manoeuvring aircraft against missile attacks, situations where the optical propagation path may come close to the engine exhaust. To study the extent of the turbulence zones caused by the engine exhaust and the strength of the effects on optical propagation through these zones a joint trial between Germany, the Netherlands, Sweden and the United Kingdom was performed using a medium sized military turboprop transport aircraft tethered to the ground at an airfield. This follows on earlier trials performed on a down-scaled jet-engine test rig. Laser beams were propagated along the axis of the aircraft at different distances relative to the engine exhaust and the spatial beam profiles and intensity scintillations were recorded with cameras and photodiodes. A second laser beam path was directed from underneath the loading ramp diagonally past one of the engines. The laser wavelengths used were 1.5 and 3.6 μm. In addition to spatial beam profile distortions temporal effects were investigated. Measurements were performed at different propeller speeds and at different distances from exhaust nozzle to the laser path. Significant increases in laser beam wander and long term beam radius were observed with the engine running. Corresponding increases were also registered in the scintillation index and the temporal fluctuations of the instantaneous power collected by the detector.
Fuel-optimal, low-thrust transfers between libration point orbits
NASA Astrophysics Data System (ADS)
Stuart, Jeffrey R.
Mission design requires the efficient management of spacecraft fuel to reduce mission cost, increase payload mass, and extend mission life. High efficiency, low-thrust propulsion devices potentially offer significant propellant reductions. Periodic orbits that exist in a multi-body regime and low-thrust transfers between these orbits can be applied in many potential mission scenarios, including scientific observation and communications missions as well as cargo transport. In light of the recent discovery of water ice in lunar craters, libration point orbits that support human missions within the Earth-Moon region are of particular interest. This investigation considers orbit transfer trajectories generated by a variable specific impulse, low-thrust engine with a primer-vector-based, fuel-optimizing transfer strategy. A multiple shooting procedure with analytical gradients yields rapid solutions and serves as the basis for an investigation into the trade space between flight time and consumption of fuel mass. Path and performance constraints can be included at node points along any thrust arc. Integration of invariant manifolds into the design strategy may also yield improved performance and greater fuel savings. The resultant transfers offer insight into the performance of the variable specific impulse engine and suggest novel implementations of conventional impulsive thrusters. Transfers incorporating invariant manifolds demonstrate the fuel savings and expand the mission design capabilities that are gained by exploiting system symmetry. A number of design applications are generated.
Intelligent Control and Health Monitoring. Chapter 3
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Kumar, Aditya; Mathews, H. Kirk; Rosenfeld, Taylor; Rybarik, Pavol; Viassolo, Daniel E.
2009-01-01
Advanced model-based control architecture overcomes the limitations state-of-the-art engine control and provides the potential of virtual sensors, for example for thrust and stall margin. "Tracking filters" are used to adapt the control parameters to actual conditions and to individual engines. For health monitoring standalone monitoring units will be used for on-board analysis to determine the general engine health and detect and isolate sudden faults. Adaptive models open up the possibility of adapting the control logic to maintain desired performance in the presence of engine degradation or to accommodate any faults. Improved and new sensors are required to allow sensing at stations within the engine gas path that are currently not instrumented due in part to the harsh conditions including high operating temperatures and to allow additional monitoring of vibration, mass flows and energy properties, exhaust gas composition, and gas path debris. The environmental and performance requirements for these sensors are summarized.
Lynch, William T
2015-10-01
The article examines and extends work bringing together engineering ethics and Science and Technology Studies, which had built upon Diane Vaughan's analysis of the Challenger shuttle accident as a test case. Reconsidering the use of her term "normalization of deviance," the article argues for a middle path between moralizing against and excusing away engineering practices contributing to engineering disaster. To explore an illustrative pedagogical case and to suggest avenues for constructive research developing this middle path, it examines the emergence of green chemistry and green engineering. Green chemistry began when Paul Anastas and John Warner developed a set of new rules for chemical synthesis that sought to learn from missed opportunities to avoid environmental damage in the twentieth century, an approach that was soon extended to engineering as well. Examination of tacit assumptions about historical counterfactuals in recent, interdisciplinary discussions of green chemistry illuminate competing views about the field's prospects. An integrated perspective is sought, addressing how both technical practice within chemistry and engineering and the influence of a wider "social movement" can play a role in remedying environmental problems.
NASA Astrophysics Data System (ADS)
Luo, X. W.; Xu, P.; Sun, C. W.; Jin, H.; Hou, R. J.; Leng, H. Y.; Zhu, S. N.
2017-06-01
Concurrent spontaneous parametric down-conversion (SPDC) processes have proved to be an appealing approach for engineering the path-entangled photonic state with designable and tunable spatial modes. In this work, we propose a general scheme to construct high-dimensional path entanglement and demonstrate the basic properties of concurrent SPDC processes from domain-engineered quadratic nonlinear photonic crystals, including the spatial modes and the photon flux, as well as the anisotropy of spatial correlation under noncollinear quasi-phase-matching geometry. The overall understanding about the performance of concurrent SPDC processes will give valuable references to the construction of compact path entanglement and the development of new types of photonic quantum technologies.
Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Cheng, Larry
2015-01-01
This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design.
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; ...
2015-11-27
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domainmore » thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.« less
A Minimum Path Algorithm Among 3D-Polyhedral Objects
NASA Astrophysics Data System (ADS)
Yeltekin, Aysin
1989-03-01
In this work we introduce a minimum path theorem for 3D case. We also develop an algorithm based on the theorem we prove. The algorithm will be implemented on the software package we develop using C language. The theorem we introduce states that; "Given the initial point I, final point F and S be the set of finite number of static obstacles then an optimal path P from I to F, such that PA S = 0 is composed of straight line segments which are perpendicular to the edge segments of the objects." We prove the theorem as well as we develop the following algorithm depending on the theorem to find the minimum path among 3D-polyhedral objects. The algorithm generates the point Qi on edge ei such that at Qi one can find the line which is perpendicular to the edge and the IF line. The algorithm iteratively provides a new set of initial points from Qi and exploits all possible paths. Then the algorithm chooses the minimum path among the possible ones. The flowchart of the program as well as the examination of its numerical properties are included.
Equalizing secondary path effects using the periodicity of fMRI acoustic noise.
Kannan, Govind; Milani, Ali A; Panahi, Issa; Briggs, Richard
2008-01-01
Non-minimum phase secondary path has a direct effect on achieving a desired noise attenuation level in active noise control (ANC) systems. The adaptive noise canceling filter is often a causal FIR filter which may not be able to sufficiently equalize the effect of a non-minimum phase secondary path, since in theory only a non-causal filter can equalize it. However a non-causal stable filter can be found to equalize the non-minimum phase effect of secondary path. Realization of non-causal stable filters requires knowledge of future values of input signal. In this paper we develop methods for equalizing the non-minimum phase property of the secondary path and improving the performance of an ANC system by exploiting the periodicity of fMRI acoustic noise. It has been shown that the scanner noise component is highly periodic and hence predictable which enables easy realization of non-causal filtering. Improvement in performance due to the proposed methods (with and without the equalizer) is shown for periodic fMRI acoustic noise.
ERIC Educational Resources Information Center
Cantu, Norma
2012-01-01
This essay outlines how the book, "Paths to Discovery: Autobiographies from Chicanas with Careers in Science, Mathematics, and Engineering" (Cantu, 2008) came about. I then use "testimonio" theory to analyze the narratives in this book as the data of a qualitative study, and I describe the general themes that the analysis highlights. I scrutinize…
Project Morpheus Main Engine Development and Preliminary Flight Testing
NASA Technical Reports Server (NTRS)
Morehead, Robert L.
2011-01-01
A LOX/Methane rocket engine was developed for a prototype terrestrial lander and then used to fly the lander at Johnson Space Center. The development path of this engine is outlined, including unique items such as variable acoustic damping and variable film cooling.
OVERVIEW OF NEUTRON MEASUREMENTS IN JET FUSION DEVICE.
Batistoni, P; Villari, R; Obryk, B; Packer, L W; Stamatelatos, I E; Popovichev, S; Colangeli, A; Colling, B; Fonnesu, N; Loreti, S; Klix, A; Klosowski, M; Malik, K; Naish, J; Pillon, M; Vasilopoulou, T; De Felice, P; Pimpinella, M; Quintieri, L
2017-10-05
The design and operation of ITER experimental fusion reactor requires the development of neutron measurement techniques and numerical tools to derive the fusion power and the radiation field in the device and in the surrounding areas. Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case in ITER and power plant studies. The required radiation transport calculations are extremely challenging because of the large physical extent of the reactor plant, the complexity of the geometry, and the combination of deep penetration and streaming paths. This article reports the experimental activities which are carried-out at JET to validate the neutronics measurements methods and numerical tools used in ITER and power plant design. A new deuterium-tritium campaign is proposed in 2019 at JET: the unique 14 MeV neutron yields produced will be exploited as much as possible to validate measurement techniques, codes, procedures and data currently used in ITER design thus reducing the related uncertainties and the associated risks in the machine operation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Jiang, Zhi Hao; Turpin, Jeremy P; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H
2015-08-28
Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Arena geometry and path shape: when rats travel in straight or in circuitous paths?
Yaski, Osnat; Portugali, Juval; Eilam, David
2011-12-01
We show here that the global geometry of the environment affects the shape of the paths of travel in rats. To examine this, individual rats were introduced into an unfamiliar arena. One group of rats (n=8) was tested in a square arena (2 m × 2 m), and the other group (n=8) in a round arena (2 m diameter). Testing was in a total darkness, since in the absence of visual information the geometry is not perceived immediately and the extraction of environment shape is slower. We found that while the level of the rats' activity did not seem to differ between both arenas, path shape differed significantly. When traveling along the perimeter, path shape basically followed the arena walls, with perimeter paths curving along the walls of the round arena, while being straight along the walls of the square arena. A similar impact of arena geometry was observed for travel away from the arena walls. Indeed, when the rats abandoned the arena walls to crosscut through the center of the arena, their center paths were circuitous in the round arena and relatively straight in the square arena. We suggest that the shapes of these paths are exploited for the same spatial task: returning back to a familiar location in the unsighted environment. Copyright © 2011 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Hacker, Michael; Crismond, David; Hecht, Deborah; Lomask, Michal
2017-01-01
This article is the first of a two-part series about Engineering for All (EfA), a $1.7M National Science Foundation-funded project, which introduces middle school students to engineering, not only as a career path, but as an endeavor with potential for doing social good. Engineering for All opens students' eyes to the role engineers play in…
Comparative dynamics in a health investment model.
Eisenring, C
1999-10-01
The method of comparative dynamics fully exploits the inter-temporal structure of optimal control models. I derive comparative dynamic results in a simplified demand for health model. The effect of a change in the depreciation rate on the optimal paths for health capital and investment in health is studied by use of a phase diagram.
Mixed-Initiative Development of Plans With Expressive Temporal Constraints
2007-06-14
added.m One technique that is commonly used in DTP solving, incremen- tal full-path consistency, exploits this property by maintaining a stack of the...Giordano. " M. Pollack was elected to the CRA (Computing Research Association) Board of Directors, 2007-2009. " M. Moffitt won the IBM 2007 Josef Raviv
ERIC Educational Resources Information Center
Fitzpatrick, John J.
2017-01-01
This paper questions if engineering educators are producing engineers that are accelerating humanity along an unsustainable path. Even though technology and engineering are important drivers in trying to move humanity towards an environmentally sustainable paradigm, the paper suggests that maybe the most important levers and challenges lie in the…
Developing the Next Generation of Science Data System Engineers
NASA Technical Reports Server (NTRS)
Moses, John F.; Behnke, Jeanne; Durachka, Christopher D.
2016-01-01
At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects.The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peermentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breadth of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multidiscipline science and practitioner communities expect to have access to all types of observational data.This paper describes an approach to defining career-path guidance for college-bound high school and undergraduate engineering students, junior and senior engineers from various disciplines.
Developing the Next Generation of Science Data System Engineers
NASA Astrophysics Data System (ADS)
Moses, J. F.; Durachka, C. D.; Behnke, J.
2015-12-01
At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects. The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peer mentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breath of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multi-discipline science and practitioner communities expect to have access to all types of observational data. This paper describes an approach to defining career-path guidance for college-bound high school and undergraduate engineering students, junior and senior engineers from various disciplines.
Morphology suggests noseleaf and pinnae cooperate to enhance bat echolocation.
Kuc, Roman
2010-11-01
A protruding noseleaf and concave pinna structures suggest that some bats may use these to enhance their echolocation capabilities. This paper considers two possible mechanisms that each exploit the combination of direct and delayed acoustic paths to achieve more complex emission or sensitivity echolocation patterns. The first is an emission mechanism, in which the protruding noseleaf vibrates to emit sound in both the forward and backward directions, and pinna structures reflect the backward emission to enhance the forward beam. The second is a reception mechanism, which has a direct echo path to the ear canal and a delayed path involving pinna structures reflecting onto the noseleaf and then into the ear canal. A model using Davis' Round-eared Bat illustrates that such direct and delayed acoustic paths provide target elevation cues. The model demonstrates the delayed pinna component can increase the on-axis emission strength, narrow the beam width, and sculpt frequency-dependent beam patterns useful for echolocation.
Harvey, J E; Reddy, S P; Phillips, R L
1996-07-20
The active illumination of a target through a turbulent medium with a monostatic transmitter-receiver results in a naturally occurring conjugate wave caused by reciprocal scattering paths that experience identical phase variations. This reciprocal path-scattering phenomenon produces an enhanced backscatter in the retroverse direction (precisely along the boresight of the pointing telescope). A dual aperture causes this intensity enhancement to take the form of Young's interference fringes. Interference fringes produced by the reciprocal path-scattering phenomenon are temporally stable even in the presence of time-varying turbulence. Choosing the width-to-separation ratio of the dual apertures appropriately and utilizing orthogonal polarizations to suppress the time-varying common-path scattered radiation allow one to achieve interferometric sensitivity in pointing accuracy through a random medium or turbulent atmosphere. Computer simulations are compared with laboratory experimental data. This new precision pointing and tracking technique has potential applications in ground-to-space laser communications, laser power beaming to satellites, and theater missile defense scenarios.
Wang, Hanxun; Bai, Xueliang; Shi, Lei
2018-01-01
In general, exploitation of rock materials, such as limestone or granite exploitation, can cause serious damage to the environment near a mine area. With economic development and the ever-increasing demand for ore resources, mining activities have induced very serious environmental issues in China. Therefore, environmental restoration work around mines in China is urgently required. This study explores the Chuankou open-pit limestone quarry in Tongchuan City, Shaanxi Province, Northwest China, as the engineering case. The environmental issues caused by over 40 years of limestone exploitation, including land degradation, land occupation, dust pollution and potential geological disasters, were investigated. Combining the characteristics of this quarry with a summary of previous studies on environmental restoration work, this paper proposes a novel and systematic method that was comprehensively carried out through engineering and revegetation measures. The engineering measure, that is, the construction of an artificial slope by using local abandoned construction materials, solved the environmental problems in this quarry and provided site conditions favourable for revegetation. The revegetation measure restored the local ecosystem. This method provides both a new idea for the sustainable development of a mining area and a useful reference for analogous engineering cases. PMID:29892461
NASA Technical Reports Server (NTRS)
Collins, Jacob
2008-01-01
This viewgraph presentation is a review of the career paths for chemicals engineer at NASA (specifically NASA Johnson Space Center.) The author uses his personal experience and history as an example of the possible career options.
Confronting Cyberterrorism with Cyber Deception
2003-12-01
break into computer systems. A further development in social engineering is the use of online translators and 41 relay telephony services that...allow social engineers to exploit and overcome language barriers [Ollmann, 2003]. Relay telephony services are online services provided by...open source media or actively seeking the information through unscrupulous means. - Desk checking - Social engineering - Dumpster diving
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-15
... loss of the spring beam load path and the possible separation of a strut and engine from the airplane... mid-pivot bolt assembly could result in the loss of the spring beam load path. Loss of the spring beam...-pivot bolt assembly, which could lead to loss of the spring beam load path and the possible separation...
NASA Technical Reports Server (NTRS)
Keesler, E. L.
1974-01-01
The functional paths of the Orbital Maneuver Subsystem (OMS) is defined. The operational flight instrumentation required for performance monitoring, fault detection, and annunciation is described. The OMS is a pressure fed rocket engine propulsion subsystem. One complete OMS shares each of the two auxiliary propulsion subsystem pods with a reaction control subsystem. Each OMS is composed of a pressurization system, a propellant tanking system, and a gimbaled rocket engine. The design, development, and operation of the system are explained. Diagrams of the system are provided.
Sources and characteristics of interior noise in general aviation aircraft
NASA Technical Reports Server (NTRS)
Catherines, J. J.; Jha, S. K.
1976-01-01
A field study was conducted to examine the interior noise characteristics of a general aviation aircraft. The goals were to identify the major noise sources and their relative contribution and to establish the noise transmission paths and their relative importance. Tests were performed on an aircraft operating under stationary conditions on the ground. Results show that the interior noise level of light aircraft is dominated by broadband, low frequencies (below 1,000 Hz). Both the propeller and the engine are dominant sources, however, the contribution from the propeller is significantly more than the engine at its fundamental blade passage frequency. The data suggest that the airborne path is more dominant than the structure-borne path in the transmission of broadband, low frequency noise which apparently results from the exhaust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiebe, David J.
A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) for receiving a gas flow from a respective combustor. A straight ceramic liner (40) may be inwardly disposed onto a metal outer shell (38) along the straight path segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems ismore » realizable since the liner can be readily removed and replaced as needed.« less
Proposal of leak path passivation for InGaN solar cells to reduce the leakage current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ke, E-mail: ke.wang@chiba-u.jp; Imai, Daichi; Kusakabe, Kazuhide
2016-01-25
We propose some general ways to passivate the leak paths in InGaN solar cells and report some experimental evidences of its effectiveness. By adopting an AlOx passivation process, the photovoltaic performances of GaN pn-junctions and InGaN solar cells, grown by molecular beam epitaxy, have been significantly improved. The open circuit voltage under 1 sun illumination increases from 1.46 to 2.26 V for a GaN pn junction, and from 0.95 to 1.27 V for an InGaN solar cell, demonstrating evidence of leak path passivation (LPP) by AlOx. The proposed LPP is expected to be a realistic way to exploit the potential of thickmore » and relaxed but defective InGaN for solar cell applications.« less
Probing Enzyme-Surface Interactions via Protein Engineering and Single-Molecule Techniques
2017-06-26
SECURITY CLASSIFICATION OF: The overall objective of this research was to exploit protein engineering and fluorescence single-molecule methods to... Engineering and Single-Molecule Techniques The views, opinions and/or findings contained in this report are those of the author(s) and should not...Status: Technology Transfer: Report Date: 1 FINAL REPORT Project Title: Probing Enzyme-Surface Interactions via Protein Engineering and
Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Rinehart, Aidan W.
2015-01-01
This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.
Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Rinehart, Aidan W.
2016-01-01
This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.
Geological hazard zonation in a marble exploitation area (Apuan Alps, Italy)
NASA Astrophysics Data System (ADS)
Francioni, M.; Salvini, R.; Riccucci, S.
2011-12-01
The present paper describes the hazard mapping of an exploitation area sited in the Apuan Alps marble district (Italy) carried out by the integration of various survey and analysis methodologies. The research, supported by the Massa and Carrara Local Sanitary Agency responsible for workplace health and safety activities, aimed to reduce the high degree hazard of rock fall caused by the presence of potentially unstable blocks located on slopes overhanging the marble quarries. The study of rocky fronts bases on the knowledge of both the structural setting and the physical-mechanical properties of intact material and its discontinuities. In this work the main difficulty in obtaining this information was the inaccessibility of the slope overhanging the area (up to 500 meters high). For this reason, the structural and geological-engineering surveys were integrated by outcomes from digital photogrammetry carried out through terrestrial stereoscopic photos acquired from an aerostatic balloon and a helicopter. In this way, it was possible to derive the geometrical characteristics of joints (such as discontinuities dip, dip direction, spacing and persistence), blocks volumes and slopes morphology also in inaccessible areas. This information, combined with data coming from the geological-engineering survey, was used to perform the stability analysis of the slope. Subsequently, using the topographic map at the scale of 1:2,000, the Digital Terrain Model (DTM) of the slopes and several topographic profiles along it were produced. Assuming that there is a good correspondence between travelling paths and maximum down slope angle, probable trajectories of rock fall along the slope were calculated on the DTM by means of a GIS procedure which utilizes the ArcHydro module of EsriTM ArcMap software. When performing such a 2D numerical modelling of rock falls, lateral dispersion of trajectories has often been hampered by the "a priori" choice of the travelling path. Such a choice can be assessed largely subjective and it leads to possible errors. Thus, rock fall hazard zonation needs spatially distributed analyses including a reliable modelling of lateral dispersion. In this research Conefall software, a freeware QuanterraTM code that estimates the potential run out areas by means of a "so-called" cone method, was used to compute the spatial distribution of rock falls frequency, velocities and kinetic energies. In this way, a modelling approach based on local morphologies was employed to assess the accuracy of the 2D analysis by profiles created "a priori" along the maximum down slope angle. Final results about slope stability and run out analysis allowed to create rock fall hazard map and to advise the most suitable protection works to mitigate the hazard in the most risky sites.
NASA Astrophysics Data System (ADS)
Kong, Changduk; Lim, Semyeong
2011-12-01
Recently, the health monitoring system of major gas path components of gas turbine uses mostly the model based method like the Gas Path Analysis (GPA). This method is to find quantity changes of component performance characteristic parameters such as isentropic efficiency and mass flow parameter by comparing between measured engine performance parameters such as temperatures, pressures, rotational speeds, fuel consumption, etc. and clean engine performance parameters without any engine faults which are calculated by the base engine performance model. Currently, the expert engine diagnostic systems using the artificial intelligent methods such as Neural Networks (NNs), Fuzzy Logic and Genetic Algorithms (GAs) have been studied to improve the model based method. Among them the NNs are mostly used to the engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base if there are large amount of learning data. In addition, it has a very complex structure for finding effectively single type faults or multiple type faults of gas path components. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measured performance data, and proposes a fault diagnostic system using the base engine performance model and the artificial intelligent methods such as Fuzzy logic and Neural Network. The proposed diagnostic system isolates firstly the faulted components using Fuzzy Logic, then quantifies faults of the identified components using the NN leaned by fault learning data base, which are obtained from the developed base performance model. In leaning the NN, the Feed Forward Back Propagation (FFBP) method is used. Finally, it is verified through several test examples that the component faults implanted arbitrarily in the engine are well isolated and quantified by the proposed diagnostic system.
Improving HybrID: How to best combine indirect and direct encoding in evolutionary algorithms.
Helms, Lucas; Clune, Jeff
2017-01-01
Many challenging engineering problems are regular, meaning solutions to one part of a problem can be reused to solve other parts. Evolutionary algorithms with indirect encoding perform better on regular problems because they reuse genomic information to create regular phenotypes. However, on problems that are mostly regular, but contain some irregularities, which describes most real-world problems, indirect encodings struggle to handle the irregularities, hurting performance. Direct encodings are better at producing irregular phenotypes, but cannot exploit regularity. An algorithm called HybrID combines the best of both: it first evolves with indirect encoding to exploit problem regularity, then switches to direct encoding to handle problem irregularity. While HybrID has been shown to outperform both indirect and direct encoding, its initial implementation required the manual specification of when to switch from indirect to direct encoding. In this paper, we test two new methods to improve HybrID by eliminating the need to manually specify this parameter. Auto-Switch-HybrID automatically switches from indirect to direct encoding when fitness stagnates. Offset-HybrID simultaneously evolves an indirect encoding with directly encoded offsets, eliminating the need to switch. We compare the original HybrID to these alternatives on three different problems with adjustable regularity. The results show that both Auto-Switch-HybrID and Offset-HybrID outperform the original HybrID on different types of problems, and thus offer more tools for researchers to solve challenging problems. The Offset-HybrID algorithm is particularly interesting because it suggests a path forward for automatically and simultaneously combining the best traits of indirect and direct encoding.
A global model for steady state and transient S.I. engine heat transfer studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohac, S.V.; Assanis, D.N.; Baker, D.M.
1996-09-01
A global, systems-level model which characterizes the thermal behavior of internal combustion engines is described in this paper. Based on resistor-capacitor thermal networks, either steady-state or transient thermal simulations can be performed. A two-zone, quasi-dimensional spark-ignition engine simulation is used to determine in-cylinder gas temperature and convection coefficients. Engine heat fluxes and component temperatures can subsequently be predicted from specification of general engine dimensions, materials, and operating conditions. Emphasis has been placed on minimizing the number of model inputs and keeping them as simple as possible to make the model practical and useful as an early design tool. The successmore » of the global model depends on properly scaling the general engine inputs to accurately model engine heat flow paths across families of engine designs. The development and validation of suitable, scalable submodels is described in detail in this paper. Simulation sub-models and overall system predictions are validated with data from two spark ignition engines. Several sensitivity studies are performed to determine the most significant heat transfer paths within the engine and exhaust system. Overall, it has been shown that the model is a powerful tool in predicting steady-state heat rejection and component temperatures, as well as transient component temperatures.« less
NASA Technical Reports Server (NTRS)
Taylor, C. M.; Bill, R. C.
1978-01-01
A ceramic/metallic aircraft gas turbine outer gas path seal designed for improved engine performance was studied. Transient temperature and stress profiles in a test seal geometry were determined by numerical analysis. During a simulated engine deceleration cycle from sea-level takeoff to idle conditions, the maximum seal temperature occurred below the seal surface, therefore the top layer of the seal was probably subjected to tensile stresses exceeding the modulus of rupture. In the stress analysis both two- and three-dimensional finite element computer programs were used. Predicted trends of the simpler and more easily usable two-dimensional element programs were borne out by the three-dimensional finite element program results.
NASA Astrophysics Data System (ADS)
Acri, Antonio; Offner, Guenter; Nijman, Eugene; Rejlek, Jan
2016-10-01
Noise legislations and the increasing customer demands determine the Noise Vibration and Harshness (NVH) development of modern commercial vehicles. In order to meet the stringent legislative requirements for the vehicle noise emission, exact knowledge of all vehicle noise sources and their acoustic behavior is required. Transfer path analysis (TPA) is a fairly well established technique for estimating and ranking individual low-frequency noise or vibration contributions via the different transmission paths. Transmission paths from different sources to target points of interest and their contributions can be analyzed by applying TPA. This technique is applied on test measurements, which can only be available on prototypes, at the end of the designing process. In order to overcome the limits of TPA, a numerical transfer path analysis methodology based on the substructuring of a multibody system is proposed in this paper. Being based on numerical simulation, this methodology can be performed starting from the first steps of the designing process. The main target of the proposed methodology is to get information of noise sources contributions of a dynamic system considering the possibility to have multiple forces contemporary acting on the system. The contributions of these forces are investigated with particular focus on distribute or moving forces. In this paper, the mathematical basics of the proposed methodology and its advantages in comparison with TPA will be discussed. Then, a dynamic system is investigated with a combination of two methods. Being based on the dynamic substructuring (DS) of the investigated model, the methodology proposed requires the evaluation of the contact forces at interfaces, which are computed with a flexible multi-body dynamic (FMBD) simulation. Then, the structure-borne noise paths are computed with the wave based method (WBM). As an example application a 4-cylinder engine is investigated and the proposed methodology is applied on the engine block. The aim is to get accurate and clear relationships between excitations and responses of the simulated dynamic system, analyzing the noise and vibrational sources inside a car engine, showing the main advantages of a numerical methodology.
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Engineer Joey Mercer reviews flight paths using the UAS traffic management research platform UTM coordinator app to verify and validate flight paths.
A User-Centric Adaptive Learning System for E-Learning 2.0
ERIC Educational Resources Information Center
Huang, Shiu-Li; Shiu, Jung-Hung
2012-01-01
The success of Web 2.0 inspires e-learning to evolve into e-learning 2.0, which exploits collective intelligence to achieve user-centric learning. However, searching for suitable learning paths and content for achieving a learning goal is time consuming and troublesome on e-learning 2.0 platforms. Therefore, introducing formal learning in these…
The Edge-Disjoint Path Problem on Random Graphs by Message-Passing.
Altarelli, Fabrizio; Braunstein, Alfredo; Dall'Asta, Luca; De Bacco, Caterina; Franz, Silvio
2015-01-01
We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length.
The Edge-Disjoint Path Problem on Random Graphs by Message-Passing
2015-01-01
We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length. PMID:26710102
NASA Systems Engineering Research Consortium: Defining the Path to Elegance in Systems
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Farrington, Phillip A.
2016-01-01
The NASA Systems Engineering Research Consortium was formed at the end of 2010 to study the approaches to producing elegant systems on a consistent basis. This has been a transformative study looking at the engineering and organizational basis of systems engineering. The consortium has engaged in a variety of research topics to determine the path to elegant systems. In the second year of the consortium, a systems engineering framework emerged which structured the approach to systems engineering and guided our research. This led in the third year to set of systems engineering postulates that the consortium is continuing to refine. The consortium has conducted several research projects that have contributed significantly to the understanding of systems engineering. The consortium has surveyed the application of the NASA 17 systems engineering processes, explored the physics and statistics of systems integration, and considered organizational aspects of systems engineering discipline integration. The systems integration methods have included system exergy analysis, Akaike Information Criteria (AIC), State Variable Analysis, Multidisciplinary Coupling Analysis (MCA), Multidisciplinary Design Optimization (MDO), System Cost Modelling, System Robustness, and Value Modelling. Organizational studies have included the variability of processes in change evaluations, margin management within the organization, information theory of board structures, social categorization of unintended consequences, and initial looks at applying cognitive science to systems engineering. Consortium members have also studied the bidirectional influence of policy and law with systems engineering.
NASA Systems Engineering Research Consortium: Defining the Path to Elegance in Systems
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Farrington, Phillip A.
2016-01-01
The NASA Systems Engineering Research Consortium was formed at the end of 2010 to study the approaches to producing elegant systems on a consistent basis. This has been a transformative study looking at the engineering and organizational basis of systems engineering. The consortium has engaged in a variety of research topics to determine the path to elegant systems. In the second year of the consortium, a systems engineering framework emerged which structured the approach to systems engineering and guided our research. This led in the third year to set of systems engineering postulates that the consortium is continuing to refine. The consortium has conducted several research projects that have contributed significantly to the understanding of systems engineering. The consortium has surveyed the application of the NASA 17 systems engineering processes, explored the physics and statistics of systems integration, and considered organizational aspects of systems engineering discipline integration. The systems integration methods have included system energy analysis, Akaike Information Criteria (AIC), State Variable Analysis, Multidisciplinary Coupling Analysis (MCA), Multidisciplinary Design Optimization (MDO), System Cost Modeling, System Robustness, and Value Modeling. Organizational studies have included the variability of processes in change evaluations, margin management within the organization, information theory of board structures, social categorization of unintended consequences, and initial looks at applying cognitive science to systems engineering. Consortium members have also studied the bidirectional influence of policy and law with systems engineering.
Lin, P.-S.; Chiou, B.; Abrahamson, N.; Walling, M.; Lee, C.-T.; Cheng, C.-T.
2011-01-01
In this study, we quantify the reduction in the standard deviation for empirical ground-motion prediction models by removing ergodic assumption.We partition the modeling error (residual) into five components, three of which represent the repeatable source-location-specific, site-specific, and path-specific deviations from the population mean. A variance estimation procedure of these error components is developed for use with a set of recordings from earthquakes not heavily clustered in space.With most source locations and propagation paths sampled only once, we opt to exploit the spatial correlation of residuals to estimate the variances associated with the path-specific and the source-location-specific deviations. The estimation procedure is applied to ground-motion amplitudes from 64 shallow earthquakes in Taiwan recorded at 285 sites with at least 10 recordings per site. The estimated variance components are used to quantify the reduction in aleatory variability that can be used in hazard analysis for a single site and for a single path. For peak ground acceleration and spectral accelerations at periods of 0.1, 0.3, 0.5, 1.0, and 3.0 s, we find that the singlesite standard deviations are 9%-14% smaller than the total standard deviation, whereas the single-path standard deviations are 39%-47% smaller.
Chargé, Pascal; Bazzi, Oussama; Ding, Yuehua
2018-01-01
A parametric scheme for spatially correlated sparse multiple-input multiple-output (MIMO) channel path delay estimation in scattering environments is presented in this paper. In MIMO outdoor communication scenarios, channel impulse responses (CIRs) of different transmit–receive antenna pairs are often supposed to be sparse due to a few significant scatterers, and share a common sparse pattern, such that path delays are assumed to be equal for every transmit–receive antenna pair. In some existing works, an exact common support condition is exploited, where the path delays are considered equal for every transmit–receive antenna pair, meanwhile ignoring the influence of scattering. A more realistic channel model is proposed in this paper, where due to scatterers in the environment, the received signals are modeled as clusters of multi-rays around a nominal or mean time delay at different antenna elements, resulting in a non-strictly exact common support phenomenon. A method for estimating the channel mean path delays is then derived based on the subspace approach, and the tracking of the effective dimension of the signal subspace that changes due to the wireless environment. The proposed method shows an improved channel mean path delays estimation performance in comparison with the conventional estimation methods. PMID:29734797
Mohydeen, Ali; Chargé, Pascal; Wang, Yide; Bazzi, Oussama; Ding, Yuehua
2018-05-06
A parametric scheme for spatially correlated sparse multiple-input multiple-output (MIMO) channel path delay estimation in scattering environments is presented in this paper. In MIMO outdoor communication scenarios, channel impulse responses (CIRs) of different transmit⁻receive antenna pairs are often supposed to be sparse due to a few significant scatterers, and share a common sparse pattern, such that path delays are assumed to be equal for every transmit⁻receive antenna pair. In some existing works, an exact common support condition is exploited, where the path delays are considered equal for every transmit⁻receive antenna pair, meanwhile ignoring the influence of scattering. A more realistic channel model is proposed in this paper, where due to scatterers in the environment, the received signals are modeled as clusters of multi-rays around a nominal or mean time delay at different antenna elements, resulting in a non-strictly exact common support phenomenon. A method for estimating the channel mean path delays is then derived based on the subspace approach, and the tracking of the effective dimension of the signal subspace that changes due to the wireless environment. The proposed method shows an improved channel mean path delays estimation performance in comparison with the conventional estimation methods.
minepath.org: a free interactive pathway analysis web server.
Koumakis, Lefteris; Roussos, Panos; Potamias, George
2017-07-03
( www.minepath.org ) is a web-based platform that elaborates on, and radically extends the identification of differentially expressed sub-paths in molecular pathways. Besides the network topology, the underlying MinePath algorithmic processes exploit exact gene-gene molecular relationships (e.g. activation, inhibition) and are able to identify differentially expressed pathway parts. Each pathway is decomposed into all its constituent sub-paths, which in turn are matched with corresponding gene expression profiles. The highly ranked, and phenotype inclined sub-paths are kept. Apart from the pathway analysis algorithm, the fundamental innovation of the MinePath web-server concerns its advanced visualization and interactive capabilities. To our knowledge, this is the first pathway analysis server that introduces and offers visualization of the underlying and active pathway regulatory mechanisms instead of genes. Other features include live interaction, immediate visualization of functional sub-paths per phenotype and dynamic linked annotations for the engaged genes and molecular relations. The user can download not only the results but also the corresponding web viewer framework of the performed analysis. This feature provides the flexibility to immediately publish results without publishing source/expression data, and get all the functionality of a web based pathway analysis viewer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Engineering Design vs. Artistic Design: Some Educational Consequences
ERIC Educational Resources Information Center
Eder, Wolfgang Ernst
2013-01-01
"Design" can be a noun, or a verb. Six paths for research into engineering design (as verb) are identified, they must be coordinated for internal consistency and plausibility. Design research tries to clarify design processes and their underlying theories--for designing in general, and for particular forms, e.g., design engineering. Theories are a…
32. ISOMETRIC VIEW OF PIPING PLAN, SHOWING PATH OF CONDUIT ...
32. ISOMETRIC VIEW OF PIPING PLAN, SHOWING PATH OF CONDUIT FROM CONTROL BUNKER TO SHIELDING TANK. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-P-1. INEL INDEX CODE NUMBER: 075 0701 60 851 151977. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiebe, David J.
A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) and an arcuate connecting segment (36). A respective straight metal liner (92) and an arcuate metal liner (94) may be each inwardly disposed onto a metal outer shell (38) along the straight path segment and the arcuate connecting segment (36) of the exit piece. Structural arrangements are provided to securely attach the respective liners in the presence of substantialmore » flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liners can be readily removed and replaced as needed.« less
Acoustic transducer in system for gas temperature measurement in gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, Upul P.; Claussen, Heiko
An apparatus for controlling operation of a gas turbine engine including at least one acoustic transmitter/receiver device located on a flow path boundary structure. The acoustic transmitter/receiver device includes an elongated sound passage defined by a surface of revolution having opposing first and second ends and a central axis extending between the first and second ends, an acoustic sound source located at the first end, and an acoustic receiver located within the sound passage between the first and second ends. The boundary structure includes an opening extending from outside the boundary structure to the flow path, and the second endmore » of the surface of revolution is affixed to the boundary structure at the opening for passage of acoustic signals between the sound passage and the flow path.« less
Sources and characteristics of interior noise in general aviation aircraft
NASA Technical Reports Server (NTRS)
Catherines, J. J.; Jha, S. K.
1976-01-01
A field study has been conducted to examine the interior noise characteristics of a general aviation aircraft. The purposes of the study were to identify the major noise sources and their relative contribution and to establish the noise transmission paths and their relative importance. Tests were performed on an aircraft operating under stationary conditions on the ground. The results show that the interior noise level of light aircraft is dominated by broadband, low frequencies (below 1,000 Hz). Both the propeller and the engine are dominant sources; however, the contribution from the propeller is significantly more than the engine at its fundamental blade passage frequency. The data suggests that the airborne path is more dominant than the structure-borne path in the transmission of broadband, low-frequency noise which apparently results from the exhaust.
NASA Astrophysics Data System (ADS)
Richter, Martin; Fingerhut, Benjamin P.
2017-06-01
The description of non-Markovian effects imposed by low frequency bath modes poses a persistent challenge for path integral based approaches like the iterative quasi-adiabatic propagator path integral (iQUAPI) method. We present a novel approximate method, termed mask assisted coarse graining of influence coefficients (MACGIC)-iQUAPI, that offers appealing computational savings due to substantial reduction of considered path segments for propagation. The method relies on an efficient path segment merging procedure via an intermediate coarse grained representation of Feynman-Vernon influence coefficients that exploits physical properties of system decoherence. The MACGIC-iQUAPI method allows us to access the regime of biological significant long-time bath memory on the order of hundred propagation time steps while retaining convergence to iQUAPI results. Numerical performance is demonstrated for a set of benchmark problems that cover bath assisted long range electron transfer, the transition from coherent to incoherent dynamics in a prototypical molecular dimer and excitation energy transfer in a 24-state model of the Fenna-Matthews-Olson trimer complex where in all cases excellent agreement with numerically exact reference data is obtained.
Pathway-engineering for highly-aligned block copolymer arrays
Choo, Youngwoo; Majewski, Paweł W.; Fukuto, Masafumi; ...
2017-12-06
While kinetic aspects of self-assembly can hinder ordering, non-equilibirum effects can also be exploited to enforce a particular kind of order. We develop a pathway-engineering approach, using it to select a particular arrangement of a block copolymer cylinder phase.
Pathway-engineering for highly-aligned block copolymer arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choo, Youngwoo; Majewski, Paweł W.; Fukuto, Masafumi
While kinetic aspects of self-assembly can hinder ordering, non-equilibirum effects can also be exploited to enforce a particular kind of order. We develop a pathway-engineering approach, using it to select a particular arrangement of a block copolymer cylinder phase.
The Need and Challenges for Distributed Engine Control
NASA Technical Reports Server (NTRS)
Culley, Dennis E.
2013-01-01
The presentation describes the challenges facing the turbine engine control system. These challenges are primarily driven by a dependence on commercial electronics and an increasingly severe environment on board the turbine engine. The need for distributed control is driven by the need to overcome these system constraints and develop a new growth path for control technology and, as a result, improved turbine engine performance.
Path generation algorithm for UML graphic modeling of aerospace test software
NASA Astrophysics Data System (ADS)
Qu, MingCheng; Wu, XiangHu; Tao, YongChao; Chen, Chao
2018-03-01
Aerospace traditional software testing engineers are based on their own work experience and communication with software development personnel to complete the description of the test software, manual writing test cases, time-consuming, inefficient, loopholes and more. Using the high reliability MBT tools developed by our company, the one-time modeling can automatically generate test case documents, which is efficient and accurate. UML model to describe the process accurately express the need to rely on the path is reached, the existing path generation algorithm are too simple, cannot be combined into a path and branch path with loop, or too cumbersome, too complicated arrangement generates a path is meaningless, for aerospace software testing is superfluous, I rely on our experience of ten load space, tailor developed a description of aerospace software UML graphics path generation algorithm.
Wilberg, Michael J; Wiedenmann, John R; Robinson, Jason M
2013-06-01
Autogenic ecosystem engineers are critically important parts of many marine and estuarine systems because of their substantial effect on ecosystem services. Oysters are of particular importance because of their capacity to modify coastal and estuarine habitats and the highly degraded status of their habitats worldwide. However, models to predict dynamics of ecosystem engineers have not previously included the effects of exploitation. We developed a linked population and habitat model for autogenic ecosystem engineers undergoing exploitation. We parameterized the model to represent eastern oyster (Crassostrea virginica) in upper Chesapeake Bay by selecting sets of parameter values that matched observed rates of change in abundance and habitat. We used the model to evaluate the effects of a range of management and restoration options including sustainability of historical fishing pressure, effectiveness of a newly enacted sanctuary program, and relative performance of two restoration approaches. In general, autogenic ecosystem engineers are expected to be substantially less resilient to fishing than an equivalent species that does not rely on itself for habitat. Historical fishing mortality rates in upper Chesapeake Bay for oysters were above the levels that would lead to extirpation. Reductions in fishing or closure of the fishery were projected to lead to long-term increases in abundance and habitat. For fisheries to become sustainable outside of sanctuaries, a substantial larval subsidy would be required from oysters within sanctuaries. Restoration efforts using high-relief reefs were predicted to allow recovery within a shorter period of time than low-relief reefs. Models such as ours, that allow for feedbacks between population and habitat dynamics, can be effective tools for guiding management and restoration of autogenic ecosystem engineers.
An Effective Evolutionary Approach for Bicriteria Shortest Path Routing Problems
NASA Astrophysics Data System (ADS)
Lin, Lin; Gen, Mitsuo
Routing problem is one of the important research issues in communication network fields. In this paper, we consider a bicriteria shortest path routing (bSPR) model dedicated to calculating nondominated paths for (1) the minimum total cost and (2) the minimum transmission delay. To solve this bSPR problem, we propose a new multiobjective genetic algorithm (moGA): (1) an efficient chromosome representation using the priority-based encoding method; (2) a new operator of GA parameters auto-tuning, which is adaptively regulation of exploration and exploitation based on the change of the average fitness of parents and offspring which is occurred at each generation; and (3) an interactive adaptive-weight fitness assignment mechanism is implemented that assigns weights to each objective and combines the weighted objectives into a single objective function. Numerical experiments with various scales of network design problems show the effectiveness and the efficiency of our approach by comparing with the recent researches.
Zhao, Tuo; Liu, Han
2016-01-01
We propose an accelerated path-following iterative shrinkage thresholding algorithm (APISTA) for solving high dimensional sparse nonconvex learning problems. The main difference between APISTA and the path-following iterative shrinkage thresholding algorithm (PISTA) is that APISTA exploits an additional coordinate descent subroutine to boost the computational performance. Such a modification, though simple, has profound impact: APISTA not only enjoys the same theoretical guarantee as that of PISTA, i.e., APISTA attains a linear rate of convergence to a unique sparse local optimum with good statistical properties, but also significantly outperforms PISTA in empirical benchmarks. As an application, we apply APISTA to solve a family of nonconvex optimization problems motivated by estimating sparse semiparametric graphical models. APISTA allows us to obtain new statistical recovery results which do not exist in the existing literature. Thorough numerical results are provided to back up our theory. PMID:28133430
Device for improved air and fuel distribution to a combustor
Laster, Walter R.; Schilp, Reinhard
2016-05-31
A flow conditioning device (30, 50, 70, 100, 150) for a can annular gas turbine engine, including a plurality of flow elements (32, 34, 52, 54, 72, 74, 102) disposed in a compressed air flow path (42, 60, 80, 114, 122) leading to a combustor (12), configured such that relative adjustment of at least one flow directing element (32, 52, 72, 110) with respect to an adjacent flow directing element (34, 54, 74, 112, 120) during operation of the gas turbine engine is effective to adjust a level of choking of the compressed air flow path (42, 60, 80, 114, 122).
NASA Technical Reports Server (NTRS)
Kirshten, P. M.; Black, S.; Pearson, R.
1979-01-01
The ESS-EDS and EDS-Sigma interfaces within the standalone engine simulator are described. The operation of these interfaces, including the definition and use of special function signals and data flow paths within them during data transfers, is presented along with detailed schematics and circuit layouts of the described equipment.
Finding geospatial pattern of unstructured data by clustering routes
NASA Astrophysics Data System (ADS)
Boustani, M.; Mattmann, C. A.; Ramirez, P.; Burke, W.
2016-12-01
Today the majority of data generated has a geospatial context to it. Either in attribute form as a latitude or longitude, or name of location or cross referenceable using other means such as an external gazetteer or location service. Our research is interested in exploiting geospatial location and context in unstructured data such as that found on the web in HTML pages, images, videos, documents, and other areas, and in structured information repositories found on intranets, in scientific environments, and otherwise. We are working together on the DARPA MEMEX project to exploit open source software tools such as the Lucene Geo Gazetteer, Apache Tika, Apache Lucene, and Apache OpenNLP, to automatically extract, and make meaning out of geospatial information. In particular, we are interested in unstructured descriptors e.g., a phone number, or a named entity, and the ability to automatically learn geospatial paths related to these descriptors. For example, a particular phone number may represent an entity that travels on a monthly basis, according to easily identifiable and somes more difficult to track patterns. We will present a set of automatic techniques to extract descriptors, and then to geospatially infer their paths across unstructured data.
Slotting Fins of Heat Exchangers to Provide Thermal Breaks
NASA Technical Reports Server (NTRS)
Scull, Timothy D.
2003-01-01
Heat exchangers that include slotted fins (in contradistinction to continuous fins) have been invented. The slotting of the fins provides thermal breaks that reduce thermal conduction along flow paths (longitudinal thermal conduction), which reduces heat-transfer efficiency. By increasing the ratio between transverse thermal conduction (the desired heat-transfer conduction) and longitudinal thermal conduction, slotting of the fins can be exploited to (1) increase heat-transfer efficiency (thereby reducing operating cost) for a given heat-exchanger length or to (2) reduce the length (thereby reducing the weight and/or cost) of the heat exchanger needed to obtain a given heat transfer efficiency. By reducing the length of a heat exchanger, one can reduce the pressure drop associated with the flow through it. In a case in which slotting enables the use of fins with thermal conductivity greater than could otherwise be tolerated on the basis of longitudinal thermal conduction, one can exploit the conductivity to make the fins longer (in the transverse direction) than they otherwise could be, thereby making it possible to make a heat exchanger that contains fewer channels and therefore, that weighs less, contains fewer potential leak paths, and can be constructed from fewer parts and, hence, reduced cost.
Santulli, Gaetano
2015-01-01
In his State of the Union address before both chambers of the US Congress, President Barack Obama called for increased investment in US infrastructure and research and announced the launch of a new Precision Medicine Initiative, aiming to accelerate biomedical discovery. Due to their well-established selectivity and specificity, microRNAs can represent a useful tool, both in diagnosis and therapy, in forging the path towards the achievement of precision medicine. This introductory chapter represents a guide for the Reader in examining the functional roles of microRNAs in the most diverse aspects of clinical practice, which will be explored in this third volume of the microRNA trilogy.
2016-01-01
In his State of the Union address before both chambers of the US Congress, President Barack Obama called for increased investment in US infrastructure and research and announced the launch of a new Precision Medicine Initiative, aiming to accelerate biomedical discovery. Due to their well-established selectivity and specificity, microRNAs can represent a useful tool, both in diagnosis and therapy, in forging the path towards the achievement of precision medicine. This introductory chapter represents a guide for the Reader in examining the functional roles of microRNAs in the most diverse aspects of clinical practice, which will be explored in this third volume of the microRNA trilogy. PMID:26663175
Tao, Yufeng; Xia, Wei; Wang, Ming; Guo, Dongmei; Hao, Hui
2017-02-06
Integration of phase manipulation and polarization multiplexing was introduced to self-mixing interferometry (SMI) for high-sensitive measurement. Light polarizations were used to increase measuring path number and predict manifold merits for potential applications. Laser source was studied as a microwave-photonic resonator optically-injected by double reflected lights on a two-feedback-factor analytical model. Independent external paths exploited magnesium-oxide doped lithium niobate crystals at perpendicular polarizations to transfer interferometric phases into amplitudes of harmonics. Theoretical resolutions reached angstrom level. By integrating two techniques, this SMI outperformed the conventional single-path SMIs by simultaneous dual-targets measurement on single laser tube with high sensitivity and low speckle noise. In experimental demonstration, by nonlinear filtering method, a custom-made phase-resolved algorithm real-time figured out instantaneous two-dimensional displacements with nanometer resolution. Experimental comparisons to lock-in technique and a commercial Ploytec-5000 laser Doppler velocity meter validated this two-path SMI in micron range without optical cross-talk. Moreover, accuracy subjected to slewing rates of crystals could be flexibly adjusted.
Gramatica, Ruggero; Di Matteo, T; Giorgetti, Stefano; Barbiani, Massimo; Bevec, Dorian; Aste, Tomaso
2014-01-01
We introduce a methodology to efficiently exploit natural-language expressed biomedical knowledge for repurposing existing drugs towards diseases for which they were not initially intended. Leveraging on developments in Computational Linguistics and Graph Theory, a methodology is defined to build a graph representation of knowledge, which is automatically analysed to discover hidden relations between any drug and any disease: these relations are specific paths among the biomedical entities of the graph, representing possible Modes of Action for any given pharmacological compound. We propose a measure for the likeliness of these paths based on a stochastic process on the graph. This measure depends on the abundance of indirect paths between a peptide and a disease, rather than solely on the strength of the shortest path connecting them. We provide real-world examples, showing how the method successfully retrieves known pathophysiological Mode of Action and finds new ones by meaningfully selecting and aggregating contributions from known bio-molecular interactions. Applications of this methodology are presented, and prove the efficacy of the method for selecting drugs as treatment options for rare diseases.
Conversion and control of an all-terrain vehicle for use as an autonomous mobile robot
NASA Astrophysics Data System (ADS)
Jacob, John S.; Gunderson, Robert W.; Fullmer, R. R.
1998-08-01
A systematic approach to ground vehicle automation is presented, combining low-level controls, trajectory generation and closed-loop path correction in an integrated system. Development of cooperative robotics for precision agriculture at Utah State University required the automation of a full-scale motorized vehicle. The Triton Predator 8- wheeled skid-steering all-terrain vehicle was selected for the project based on its ability to maneuver precisely and the simplicity of controlling the hydrostatic drivetrain. Low-level control was achieved by fitting an actuator on the engine throttle, actuators for the left and right drive controls, encoders on the left and right drive shafts to measure wheel speeds, and a signal pick-off on the alternator for measuring engine speed. Closed loop control maintains a desired engine speed and tracks left and right wheel speeds commands. A trajectory generator produces the wheel speed commands needed to steer the vehicle through a predetermined set of map coordinates. A planar trajectory through the points is computed by fitting a 2D cubic spline over each path segment while enforcing initial and final orientation constraints at segment endpoints. Acceleration and velocity profiles are computed for each trajectory segment, with the velocity over each segment dependent on turning radius. Left and right wheel speed setpoints are obtained by combining velocity and path curvature for each low-level timestep. The path correction algorithm uses GPS position and compass orientation information to adjust the wheel speed setpoints according to the 'crosstrack' and 'downtrack' errors and heading error. Nonlinear models of the engine and the skid-steering vehicle/ground interaction were developed for testing the integrated system in simulation. These test lead to several key design improvements which assisted final implementation on the vehicle.
[Application of extended exergy method in driving mechanism and efficiency of regional eco-economy].
Fan, Xin Gang; Mi, Wen Bao; Hou, Jing Wei
2017-01-01
To analyze social-economic causes of the regional ecological degradation, and avoid such problems as the complex circulation network and difficulty to identify laws caused by extended exergy analysis (EEA) previously applied at the national scale, this paper reduced spatial scale to the county scale and took Pengyang County in Ningxia as an example. Eco-economic system in Peng-yang County was divided into seven interrelated sectors. The exergy value of circulations in the eco-economic system including materials, labor and capital were calculated respectively to analyze the extended exergy characteristics of the driving sectors, factors and paths and evaluate their ecological efficiency. The results showed that agriculture and households were the main driving sectors of the eco-economic system in Pengyang County. The average exergy value of 31 flow paths among the sectors was 0.80 PJ. There were only 8 flow paths whose exergy values were higher than the average value. Eco-economic system in Pengyang County development was driven by two continuous flow paths, labor output of the households sector and demands of the households sector supported by other sectors. The mineral resources were massively exploited, and then directly exported to the outside, which could not promote the local development from the inside, but, on the contrary, increase the ecological environment pressure because of the over-exploitation. The eco-efficiency of Pengyang County in 2014 was 68.1%, almost equivalent to the by-level of the national scale at home and abroad ten years ago, mainly because of the lower eco-efficiencies of the service sector and households sector. EEA had the advantage of networking and structuring, could specify the sectors, factors and driven paths, and break through the bottleneck of driving mechanism research of the eco-economic system. EEA had certain adaptability to explore the operational principle and optimal pattern of the regional eco-economic system. Compared with the national scale, EEA at the regional scale could more easily identify the driving mechanism of eco-economic system, and could clearly guide the regional administrative department to reduce the ecological environment pressure.
Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Borguet, Sebastien; Leonard, Olivier; Zhang, Xiaodong (Frank)
2013-01-01
Recent technology reviews have identified the need for objective assessments of aircraft engine health management (EHM) technologies. To help address this issue, a gas path diagnostic benchmark problem has been created and made publicly available. This software tool, referred to as the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES), has been constructed based on feedback provided by the aircraft EHM community. It provides a standard benchmark problem enabling users to develop, evaluate and compare diagnostic methods. This paper will present an overview of ProDiMES along with a description of four gas path diagnostic methods developed and applied to the problem. These methods, which include analytical and empirical diagnostic techniques, will be described and associated blind-test-case metric results will be presented and compared. Lessons learned along with recommendations for improving the public benchmarking processes will also be presented and discussed.
Topographic Controls on Landslide and Debris-Flow Mobility
NASA Astrophysics Data System (ADS)
McCoy, S. W.; Pettitt, S.
2014-12-01
Regardless of whether a granular flow initiates from failure and liquefaction of a shallow landslide or from overland flow that entrains sediment to form a debris flow, the resulting flow poses hazards to downslope communities. Understanding controls on granular-flow mobility is critical for accurate hazard prediction. The topographic form of granular-flow paths can vary significantly across different steeplands and is one of the few flow-path properties that can be readily altered by engineered control structures such as closed-type check dams. We use grain-scale numerical modeling (discrete element method simulations) of free-surface, gravity-driven granular flows to investigate how different topographic profiles with the same mean slope and total relief can produce notable differences in flow mobility due to strong nonlinearities inherent to granular-flow dynamics. We describe how varying the profile shape from planar, to convex up, to concave up, as well how varying the number, size, and location of check dams along a flow path, changes flow velocity, thickness, discharge, energy dissipation, impact force and runout distance. Our preliminary results highlight an important path dependence for this nonlinear system, show that caution should be used when predicting flow dynamics from path-averaged properties, and provide some mechanics-based guidance for engineering control structures.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
This report addresses an opportunity to accelerate progress in virtually every branch of science and engineering concurrently, while also boosting the American economy as business firms also learn to exploit these new capabilities. The successful rapid advancement in both science and technology creates its own challenges, four of which are…
47 CFR 27.1164 - The cost-sharing formula.
Code of Federal Regulations, 2010 CFR
2010-10-01
... control equipment; engineering costs (design/path survey); installation; systems testing; FCC filing costs; site acquisition and civil works; zoning costs; training; disposal of old equipment; test equipment... a replacement system, such as equipment and engineering expenses. C may not exceed $250,000 per...
Space Nuclear Reactor Engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, David Irvin
We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.
Aircraft path planning for optimal imaging using dynamic cost functions
NASA Astrophysics Data System (ADS)
Christie, Gordon; Chaudhry, Haseeb; Kochersberger, Kevin
2015-05-01
Unmanned aircraft development has accelerated with recent technological improvements in sensing and communications, which has resulted in an "applications lag" for how these aircraft can best be utilized. The aircraft are becoming smaller, more maneuverable and have longer endurance to perform sensing and sampling missions, but operating them aggressively to exploit these capabilities has not been a primary focus in unmanned systems development. This paper addresses a means of aerial vehicle path planning to provide a realistic optimal path in acquiring imagery for structure from motion (SfM) reconstructions and performing radiation surveys. This method will allow SfM reconstructions to occur accurately and with minimal flight time so that the reconstructions can be executed efficiently. An assumption is made that we have 3D point cloud data available prior to the flight. A discrete set of scan lines are proposed for the given area that are scored based on visibility of the scene. Our approach finds a time-efficient path and calculates trajectories between scan lines and over obstacles encountered along those scan lines. Aircraft dynamics are incorporated into the path planning algorithm as dynamic cost functions to create optimal imaging paths in minimum time. Simulations of the path planning algorithm are shown for an urban environment. We also present our approach for image-based terrain mapping, which is able to efficiently perform a 3D reconstruction of a large area without the use of GPS data.
Combination probes for stagnation pressure and temperature measurements in gas turbine engines
NASA Astrophysics Data System (ADS)
Bonham, C.; Thorpe, S. J.; Erlund, M. N.; Stevenson, R. J.
2018-01-01
During gas turbine engine testing, steady-state gas-path stagnation pressures and temperatures are measured in order to calculate the efficiencies of the main components of turbomachinery. These measurements are acquired using fixed intrusive probes, which are installed at the inlet and outlet of each component at discrete point locations across the gas-path. The overall uncertainty in calculated component efficiency is sensitive to the accuracy of discrete point pressures and temperatures, as well as the spatial sampling across the gas-path. Both of these aspects of the measurement system must be considered if more accurate component efficiencies are to be determined. High accuracy has become increasingly important as engine manufacturers have begun to pursue small gains in component performance, which require efficiencies to be resolved to within less than ± 1% . This article reports on three new probe designs that have been developed in a response to this demand. The probes adopt a compact combination arrangement that facilitates up to twice the spatial coverage compared to individual stagnation pressure and temperature probes. The probes also utilise novel temperature sensors and high recovery factor shield designs that facilitate improvements in point measurement accuracy compared to standard Kiel probes used in engine testing. These changes allow efficiencies to be resolved within ± 1% over a wider range of conditions than is currently achievable with Kiel probes.
ERIC Educational Resources Information Center
Palit, Sukanchan
2016-01-01
Scientific vision and scientific understanding in today's world are in the path of new glory. Chemical Engineering science is witnessing drastic and rapid changes. The metamorphosis of human civilization in this century is faced with vicious challenges. Progress of Chemical Engineering science, the vision of technology and the broad chemical…
Fiber-reinforced ceramic composites for Earth-to-orbit rocket engine turbines
NASA Technical Reports Server (NTRS)
Brockmeyer, Jerry W.; Schnittgrund, Gary D.
1990-01-01
Fiber reinforced ceramic matrix composites (FRCMC) are emerging materials systems that offer potential for use in liquid rocket engines. Advantages of these materials in rocket engine turbomachinery include performance gain due to higher turbine inlet temperature, reduced launch costs, reduced maintenance with associated cost benefits, and reduced weight. This program was initiated to assess the state of FRCMC development and to propose a plan for their implementation into liquid rocket engine turbomachinery. A complete range of FRCMC materials was investigated relative to their development status and feasibility for use in the hot gas path of earth-to-orbit rocket engine turbomachinery. Of the candidate systems, carbon fiber-reinforced silicon carbide (C/SiC) offers the greatest near-term potential. Critical hot gas path components were identified, and the first stage inlet nozzle and turbine rotor of the fuel turbopump for the liquid oxygen/hydrogen Space Transportation Main Engine (STME) were selected for conceptual design and analysis. The critical issues associated with the use of FRCMC were identified. Turbine blades were designed, analyzed and fabricated. The Technology Development Plan, completed as Task 5 of this program, provides a course of action for resolution of these issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprague, Michael A.; Boldyrev, Stanislav; Fischer, Paul
This report details the impact exascale will bring to turbulent-flow simulations in applied science and technology. The need for accurate simulation of turbulent flows is evident across the DOE applied-science and engineering portfolios, including combustion, plasma physics, nuclear-reactor physics, wind energy, and atmospheric science. The workshop brought together experts in turbulent-flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants defined a research agenda and path forward that will enable scientists and engineers to continually leverage, engage, and direct advances in computational systems on the path to exascale computing.
NASA Astrophysics Data System (ADS)
Chen, Ye-Hong; Shi, Zhi-Cheng; Song, Jie; Xia, Yan
2018-02-01
In this paper, by invariant-based inverse engineering, we design classical driving fields to transfer quantum fluctuations between two suspended membranes in an optomechanical cavity system. The transfer can be quickly attained through a nonadiabatic evolution path determined by a so-called dynamical invariant. Such an evolution path allows one to optimize the occupancies of the unstable "intermediate" states; thus, the influence of cavity decays can be suppressed. Numerical simulation demonstrates that a perfect fluctuation transfer between two membranes can be rapidly achieved in one step, and the transfer is robust to both the amplitude noises and cavity decays.
NASA Astrophysics Data System (ADS)
Wang, Botao; Ünal, F. Nur; Eckardt, André
2018-06-01
The insertion of a local magnetic flux, as the one created by a thin solenoid, plays an important role in gedanken experiments of quantum Hall physics. By combining Floquet engineering of artificial magnetic fields with the ability of single-site addressing in quantum gas microscopes, we propose a scheme for the realization of such local solenoid-type magnetic fields in optical lattices. We show that it can be employed to manipulate and probe elementary excitations of a topological Chern insulator. This includes quantized adiabatic charge pumping along tailored paths inside the bulk, as well as the controlled population of edge modes.
Entrepreneurship for Creative Scientists
NASA Astrophysics Data System (ADS)
Parker, Dawood; Raghu, Surya; Brooks, Richard
2018-05-01
Through patenting and commercialization, scientists today can develop their work beyond a publication in a learned journal. Indeed, universities and governments are encouraging today's scientists and engineers to break their research out of the laboratory and into the commercial world. However, doing so is complicated and can be daunting for those more used to a research seminar than a board room. This book, written by experienced scientists and entrepreneurs, deals with businesses started by scientists based on innovation and sets out to clarify for scientists and engineers the steps necessary to take an idea along the path to commercialization and maximise the potential for success, regardless of the path taken.
NASA Technical Reports Server (NTRS)
2011-01-01
NASA is interested in developing technology that leads to more routine, safe, and affordable access to space. Access to space using airbreathing propulsion systems has potential to meet these objectives based on Airbreathing Access to Space (AAS) system studies. To this end, the NASA Fundamental Aeronautics Program (FAP) Hypersonic Project is conducting fundamental research on a Turbine Based Combined Cycle (TBCC) propulsion system. The TBCC being studied considers a dual flow-path inlet system. One flow-path includes variable geometry to regulate airflow to a turbine engine cycle. The turbine cycle provides propulsion from take-off to supersonic flight. The second flow-path supports a dual-mode scramjet (DMSJ) cycle which would be initiated at supersonic speed to further accelerate the vehicle to hypersonic speed. For a TBCC propulsion system to accelerate a vehicle from supersonic to hypersonic speed, a critical enabling technology is the ability to safely and effectively transition from the turbine to the DMSJ-referred to as mode transition. To experimentally test methods of mode transition, a Combined Cycle Engine (CCE) Large-scale Inlet testbed was designed with two flow paths-a low speed flow-path sized for a turbine cycle and a high speed flow-path designed for a DMSJ. This testbed system is identified as the CCE Large-Scale Inlet for Mode Transition studies (CCE-LIMX). The test plan for the CCE-LIMX in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel (10x10 SWT) is segmented into multiple phases. The first phase is a matrix of inlet characterization (IC) tests to evaluate the inlet performance and establish the mode transition schedule. The second phase is a matrix of dynamic system identification (SysID) experiments designed to support closed-loop control development at mode transition schedule operating points for the CCE-LIMX. The third phase includes a direct demonstration of controlled mode transition using a closed loop control system developed with the data obtained from the first two phases. Plans for a fourth phase include mode transition experiments with a turbine engine. This paper, focusing on the first two phases of experiments, presents developed operational and analysis tools for streamlined testing and data reduction procedures.
NASA Astrophysics Data System (ADS)
Lathabai, Hiran H.; Prabhakaran, Thara; Changat, Manoj
2015-07-01
Biotechnology, ever since its inception has had a huge impact on the society and its various applications have been intricately woven into the human web of life. Its evolution amidst all the other research realms vital to mankind is remarkable. In this paper, we intend to identify the radical innovations in Biotechnology for Engineering using network analyses. Centrality analysis and Path analysis are used for identifying important works. Existence of Flow Vergence effect in the scientific literature is revealed. Flow Vergence gradient, an arc metric derived from FV model, is utilised for Path analysis which detects pivotal papers of paradigm shift more accurately. A major paradigm shift has been identified in the business models of Biotechnology for Engineering - 'Capability to Connectivity' model. Evidence towards the adoption of business practices in BT firms by nanotechnology start-ups is also identified. The notion of critical divergence is introduced and the exhibition of interdisciplinary interaction in emerging fields due to critical divergence is discussed. Implications of above analyses which target: (i) Science and technology policy makers, (ii) industrialists and investors, (iii) researchers in academia as well as industry, are also discussed.
A Newtonian approach to extraordinarily strong negative refraction.
Yoon, Hosang; Yeung, Kitty Y M; Umansky, Vladimir; Ham, Donhee
2012-08-02
Metamaterials with negative refractive indices can manipulate electromagnetic waves in unusual ways, and can be used to achieve, for example, sub-diffraction-limit focusing, the bending of light in the 'wrong' direction, and reversed Doppler and Cerenkov effects. These counterintuitive and technologically useful behaviours have spurred considerable efforts to synthesize a broad array of negative-index metamaterials with engineered electric, magnetic or optical properties. Here we demonstrate another route to negative refraction by exploiting the inertia of electrons in semiconductor two-dimensional electron gases, collectively accelerated by electromagnetic waves according to Newton's second law of motion, where this acceleration effect manifests as kinetic inductance. Using kinetic inductance to attain negative refraction was theoretically proposed for three-dimensional metallic nanoparticles and seen experimentally with surface plasmons on the surface of a three-dimensional metal. The two-dimensional electron gas that we use at cryogenic temperatures has a larger kinetic inductance than three-dimensional metals, leading to extraordinarily strong negative refraction at gigahertz frequencies, with an index as large as -700. This pronounced negative refractive index and the corresponding reduction in the effective wavelength opens a path to miniaturization in the science and technology of negative refraction.
Leo Szilard In Physics and Information
NASA Astrophysics Data System (ADS)
Garwin, Richard
2014-03-01
The excellent biography by William Lanouette, ``Genius in the Shadows,'' tells it the way it was, incredible though it may seem. The 1972 ``Collected Works of Leo Szilard: Scientific Papers'' Bernard T. Feld and Getrude W. Szilard, Editors, gives the source material both published and unpublished. Szilard's path-breaking but initially little-noticed 1929 paper, ``On the Decrease of Entropy in a Thermodynamic System by the Intervention of Intelligent Beings'' spawned much subsequent research. It connected what we now call a bit of information with a quantity k ln 2 of entropy, and showed that the process of acquiring, exploiting, and resetting this information in a one-molecule engine must dissipate at least kT ln 2 of energy at temperature T. His 1925 paper, ``On the Extension of Phenomenological Thermodynamics to Fluctuation Phenomena,'' showed that fluctuations were consistent with and predicted from equilibrium thermodynamics and did not depend on atomistic theories. His work on physics and technology, demonstrated an astonishing range of interest, ingenuity, foresight, and practical sense. I illustrate this with several of his fundamental contributions nuclear physics, to the neutron chain reaction and to nuclear reactors, and also to electromagnetic pumping of liquid metals.
Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass
NASA Technical Reports Server (NTRS)
Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)
2016-01-01
A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.
U.S. Air Force Engineering and Services Hardware Requirements
DOT National Transportation Integrated Search
1991-04-01
This document proposes a path to meet the communications-computer systems (CSC) requirements of Air Force Engineering and Services (E and S) in the mid-to-late 1990s. It reflects the philosophies that guide E and S upper- level management as it carri...
14 CFR Appendix D to Part 25 - Appendix D to Part 25
Code of Federal Regulations, 2014 CFR
2014-01-01
..., electronic controls, pressurization system controls, and engine controls. (2) The accessibility and... considered: (1) Flight path control. (2) Collision avoidance. (3) Navigation. (4) Communications. (5) Operation and monitoring of aircraft engines and systems. (6) Command decisions. (b) Workload factors. The...
14 CFR Appendix D to Part 25 - Appendix D to Part 25
Code of Federal Regulations, 2010 CFR
2010-01-01
..., electronic controls, pressurization system controls, and engine controls. (2) The accessibility and... considered: (1) Flight path control. (2) Collision avoidance. (3) Navigation. (4) Communications. (5) Operation and monitoring of aircraft engines and systems. (6) Command decisions. (b) Workload factors. The...
14 CFR Appendix D to Part 25 - Appendix D to Part 25
Code of Federal Regulations, 2011 CFR
2011-01-01
..., electronic controls, pressurization system controls, and engine controls. (2) The accessibility and... considered: (1) Flight path control. (2) Collision avoidance. (3) Navigation. (4) Communications. (5) Operation and monitoring of aircraft engines and systems. (6) Command decisions. (b) Workload factors. The...
14 CFR Appendix D to Part 25 - Appendix D to Part 25
Code of Federal Regulations, 2012 CFR
2012-01-01
..., electronic controls, pressurization system controls, and engine controls. (2) The accessibility and... considered: (1) Flight path control. (2) Collision avoidance. (3) Navigation. (4) Communications. (5) Operation and monitoring of aircraft engines and systems. (6) Command decisions. (b) Workload factors. The...
NASA Technical Reports Server (NTRS)
McClinton, C.; Rondakov, A.; Semenov, V.; Kopehenov, V.
1991-01-01
NASA has contracted with the Central Institute of Aviation Motors CIAM to perform a flight test and ground test and provide a scramjet engine for ground test in the United States. The objective of this contract is to obtain ground to flight correlation for a supersonic combustion ramjet (scramjet) engine operating point at a Mach number of 6.5. This paper presents results from a flow path performance and thermal evaluation performed on the design proposed by the CIAM. This study shows that the engine will perform in the scramjet mode for stoichiometric operation at a flight Mach number of 6.5. Thermal assessment of the structure indicates that the combustor cooling liner will provide adequate cooling for a Mach number of 6.5 test condition and that optional material proposed by CIAM for the cowl leading-edge design are required to allow operation with or without a type IV shock-shock interaction.
Optical monitoring system for a turbine engine
Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay
2013-05-14
The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.
Experimental and analytical study of secondary path variations in active engine mounts
NASA Astrophysics Data System (ADS)
Hausberg, Fabian; Scheiblegger, Christian; Pfeffer, Peter; Plöchl, Manfred; Hecker, Simon; Rupp, Markus
2015-03-01
Active engine mounts (AEMs) provide an effective solution to further improve the acoustic and vibrational comfort of passenger cars. Typically, adaptive feedforward control algorithms, e.g., the filtered-x-least-mean-squares (FxLMS) algorithm, are applied to cancel disturbing engine vibrations. These algorithms require an accurate estimate of the AEM active dynamic characteristics, also known as the secondary path, in order to guarantee control performance and stability. This paper focuses on the experimental and theoretical study of secondary path variations in AEMs. The impact of three major influences, namely nonlinearity, change of preload and component temperature, on the AEM active dynamic characteristics is experimentally analyzed. The obtained test results are theoretically investigated with a linear AEM model which incorporates an appropriate description for elastomeric components. A special experimental set-up extends the model validation of the active dynamic characteristics to higher frequencies up to 400 Hz. The theoretical and experimental results show that significant secondary path variations are merely observed in the frequency range of the AEM actuator's resonance frequency. These variations mainly result from the change of the component temperature. As the stability of the algorithm is primarily affected by the actuator's resonance frequency, the findings of this paper facilitate the design of AEMs with simpler adaptive feedforward algorithms. From a practical point of view it may further be concluded that algorithmic countermeasures against instability are only necessary in the frequency range of the AEM actuator's resonance frequency.
Improving HybrID: How to best combine indirect and direct encoding in evolutionary algorithms
Helms, Lucas; Clune, Jeff
2017-01-01
Many challenging engineering problems are regular, meaning solutions to one part of a problem can be reused to solve other parts. Evolutionary algorithms with indirect encoding perform better on regular problems because they reuse genomic information to create regular phenotypes. However, on problems that are mostly regular, but contain some irregularities, which describes most real-world problems, indirect encodings struggle to handle the irregularities, hurting performance. Direct encodings are better at producing irregular phenotypes, but cannot exploit regularity. An algorithm called HybrID combines the best of both: it first evolves with indirect encoding to exploit problem regularity, then switches to direct encoding to handle problem irregularity. While HybrID has been shown to outperform both indirect and direct encoding, its initial implementation required the manual specification of when to switch from indirect to direct encoding. In this paper, we test two new methods to improve HybrID by eliminating the need to manually specify this parameter. Auto-Switch-HybrID automatically switches from indirect to direct encoding when fitness stagnates. Offset-HybrID simultaneously evolves an indirect encoding with directly encoded offsets, eliminating the need to switch. We compare the original HybrID to these alternatives on three different problems with adjustable regularity. The results show that both Auto-Switch-HybrID and Offset-HybrID outperform the original HybrID on different types of problems, and thus offer more tools for researchers to solve challenging problems. The Offset-HybrID algorithm is particularly interesting because it suggests a path forward for automatically and simultaneously combining the best traits of indirect and direct encoding. PMID:28334002
NVIDIA OptiX ray-tracing engine as a new tool for modelling medical imaging systems
NASA Astrophysics Data System (ADS)
Pietrzak, Jakub; Kacperski, Krzysztof; Cieślar, Marek
2015-03-01
The most accurate technique to model the X- and gamma radiation path through a numerically defined object is the Monte Carlo simulation which follows single photons according to their interaction probabilities. A simplified and much faster approach, which just integrates total interaction probabilities along selected paths, is known as ray tracing. Both techniques are used in medical imaging for simulating real imaging systems and as projectors required in iterative tomographic reconstruction algorithms. These approaches are ready for massive parallel implementation e.g. on Graphics Processing Units (GPU), which can greatly accelerate the computation time at a relatively low cost. In this paper we describe the application of the NVIDIA OptiX ray-tracing engine, popular in professional graphics and rendering applications, as a new powerful tool for X- and gamma ray-tracing in medical imaging. It allows the implementation of a variety of physical interactions of rays with pixel-, mesh- or nurbs-based objects, and recording any required quantities, like path integrals, interaction sites, deposited energies, and others. Using the OptiX engine we have implemented a code for rapid Monte Carlo simulations of Single Photon Emission Computed Tomography (SPECT) imaging, as well as the ray-tracing projector, which can be used in reconstruction algorithms. The engine generates efficient, scalable and optimized GPU code, ready to run on multi GPU heterogeneous systems. We have compared the results our simulations with the GATE package. With the OptiX engine the computation time of a Monte Carlo simulation can be reduced from days to minutes.
NASA Astrophysics Data System (ADS)
Cosso, Andrea; Russo, Francesco
2016-11-01
Functional Itô calculus was introduced in order to expand a functional F(t,Xṡ+t,Xt) depending on time t, past and present values of the process X. Another possibility to expand F(t,Xṡ+t,Xt) consists in considering the path Xṡ+t = {Xx+t,x ∈ [-T, 0]} as an element of the Banach space of continuous functions on C([-T, 0]) and to use Banach space stochastic calculus. The aim of this paper is threefold. (1) To reformulate functional Itô calculus, separating time and past, making use of the regularization procedures which match more naturally the notion of horizontal derivative which is one of the tools of that calculus. (2) To exploit this reformulation in order to discuss the (not obvious) relation between the functional and the Banach space approaches. (3) To study existence and uniqueness of smooth solutions to path-dependent partial differential equations which naturally arise in the study of functional Itô calculus. More precisely, we study a path-dependent equation of Kolmogorov type which is related to the window process of the solution to an Itô stochastic differential equation with path-dependent coefficients. We also study a semilinear version of that equation.
Firdaus, Ahmad; Anuar, Nor Badrul; Razak, Mohd Faizal Ab; Hashem, Ibrahim Abaker Targio; Bachok, Syafiq; Sangaiah, Arun Kumar
2018-05-04
The increasing demand for Android mobile devices and blockchain has motivated malware creators to develop mobile malware to compromise the blockchain. Although the blockchain is secure, attackers have managed to gain access into the blockchain as legal users, thereby comprising important and crucial information. Examples of mobile malware include root exploit, botnets, and Trojans and root exploit is one of the most dangerous malware. It compromises the operating system kernel in order to gain root privileges which are then used by attackers to bypass the security mechanisms, to gain complete control of the operating system, to install other possible types of malware to the devices, and finally, to steal victims' private keys linked to the blockchain. For the purpose of maximizing the security of the blockchain-based medical data management (BMDM), it is crucial to investigate the novel features and approaches contained in root exploit malware. This study proposes to use the bio-inspired method of practical swarm optimization (PSO) which automatically select the exclusive features that contain the novel android debug bridge (ADB). This study also adopts boosting (adaboost, realadaboost, logitboost, and multiboost) to enhance the machine learning prediction that detects unknown root exploit, and scrutinized three categories of features including (1) system command, (2) directory path and (3) code-based. The evaluation gathered from this study suggests a marked accuracy value of 93% with Logitboost in the simulation. Logitboost also helped to predicted all the root exploit samples in our developed system, the root exploit detection system (RODS).
47 CFR 27.1180 - The cost-sharing formula.
Code of Federal Regulations, 2010 CFR
2010-10-01
...); towers and/or modifications; back-up power equipment; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC filing costs; site acquisition and civil works... as equipment and engineering expenses. There is no cap on the actual costs of relocation. (c) An AWS...
Developing Air Force Systems Engineers - a Flight Path
2012-12-01
to viewing problems from different perspectives. Specialists generally see the world through the lens of their own specialty. To paraphrase Abraham ... Maslow : If all you have is a hammer, everything looks like a nail. Systems engineers are supposed to take a different approach to problem solving
As engineered metal-based nanomaterials become widely used in consumer and industrial products, the amount of these materials introduced into the environment by a variety of paths will increase. The concentration of metal associated with these engineered nanoparticles will be s...
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1990-01-01
General problems associated with on-board trajectory optimization, propulsion system cycle selection, and with the synthesis of guidance laws were addressed for an ascent to low-earth-orbit of an air-breathing single-stage-to-orbit vehicle. The NASA Generic Hypersonic Aerodynamic Model Example and the Langley Accelerator aerodynamic sets were acquired and implemented. Work related to the development of purely analytic aerodynamic models was also performed at a low level. A generic model of a multi-mode propulsion system was developed that includes turbojet, ramjet, scramjet, and rocket engine cycles. Provisions were made in the dynamic model for a component of thrust normal to the flight path. Computational results, which characterize the nonlinear sensitivity of scramjet performance to changes in vehicle angle of attack, were obtained and incorporated into the engine model. Additional trajectory constraints were introduced: maximum dynamic pressure; maximum aerodynamic heating rate per unit area; angle of attack and lift limits; and limits on acceleration both along and normal to the flight path. The remainder of the effort focused on required modifications to a previously derived algorithm when the model complexity cited above was added. In particular, analytic switching conditions were derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another for two cases: the case in which engine cycle operations can overlap, and the case in which engine cycle operations are mutually exclusive. The resulting guidance algorithm was implemented in software and exercised extensively. It was found that the approximations associated with the assumed time scale separation employed in this work are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to the very large thrust capability of scramjets in this Mach regime when sized to meet the requirement for ascent to orbit. By accounting for flight path angle and flight path angle rate in construction of the flight path over this Mach range, the resulting algorithm provides the means for rapid near-optimal trajectory generation and propulsion cycle selection over the entire Mach range from take-off to orbit.
ERIC Educational Resources Information Center
Hargrove, S. Keith
2015-01-01
The career pathways of deans in higher education seem to follow the traditional model in academia from a senior faculty position and/or department chair. This however may be different from deans in engineering education. The goal of this survey research is to assess the career paths of current Deans of Colleges/Schools of Engineering in the United…
ERIC Educational Resources Information Center
Tully, D.; Jacobs, B.
2010-01-01
This study focused on a population of female engineering students, probing the influences of their secondary school experience on their choice to pursue an engineering course of study at university. The motivating question is: Do unique opportunities exist in an all-female secondary school mathematics classroom, which impact a young woman's…
Topological Vulnerability Analysis
NASA Astrophysics Data System (ADS)
Jajodia, Sushil; Noel, Steven
Traditionally, network administrators rely on labor-intensive processes for tracking network configurations and vulnerabilities. This requires a great deal of expertise, and is error prone because of the complexity of networks and associated security data. The interdependencies of network vulnerabilities make traditional point-wise vulnerability analysis inadequate. We describe a Topological Vulnerability Analysis (TVA) approach that analyzes vulnerability dependencies and shows all possible attack paths into a network. From models of the network vulnerabilities and potential attacker exploits, we compute attack graphs that convey the impact of individual and combined vulnerabilities on overall security. TVA finds potential paths of vulnerability through a network, showing exactly how attackers may penetrate a network. From this, we identify key vulnerabilities and provide strategies for protection of critical network assets.
Engineering Knowledge for Assistive Living
NASA Astrophysics Data System (ADS)
Chen, Liming; Nugent, Chris
This paper introduces a knowledge based approach to assistive living in smart homes. It proposes a system architecture that makes use of knowledge in the lifecycle of assistive living. The paper describes ontology based knowledge engineering practices and discusses mechanisms for exploiting knowledge for activity recognition and assistance. It presents system implementation and experiments, and discusses initial results.
State Analysis: A Control Architecture View of Systems Engineering
NASA Technical Reports Server (NTRS)
Rasmussen, Robert D.
2005-01-01
A viewgraph presentation on the state analysis process is shown. The topics include: 1) Issues with growing complexity; 2) Limits of common practice; 3) Exploiting a control point of view; 4) A glimpse at the State Analysis process; 5) Synergy with model-based systems engineering; and 6) Bridging the systems to software gap.
Ceramic high pressure gas path seal
NASA Technical Reports Server (NTRS)
Liotta, G. C.
1987-01-01
Stage 1 ceramic shrouds (high pressure turbine gas path seal) were developed for the GE T700 turbine helicopter engine under the Army/NASA Contract NAS3-23174. This contract successfully proved the viability and benefits of a Stage 1 ceramic shroud for production application. Stage 1 ceramic shrouds were proven by extensive component and engine testing. This Stage 1 ceramic shroud, plasma sprayed ceramic (ZrOs-BY2O3) and bond coating (NiCrAlY) onto a cast metal backing, offers significant engine performance improvement. Due to the ceramic coating, the amount of cooling air required is reduced 20% resulting in a 0.5% increase in horsepower and a 0.3% decrease in specific fuel consumption. This is accomplished with a component which is lower in cost than the current production shroud. Stage 1 ceramic shrouds will be introduced into field service in late 1987.
NASA Astrophysics Data System (ADS)
Ballard, S.; Hipp, J. R.; Encarnacao, A.; Young, C. J.; Begnaud, M. L.; Phillips, W. S.
2012-12-01
Seismic event locations can be made more accurate and precise by computing predictions of seismic travel time through high fidelity 3D models of the wave speed in the Earth's interior. Given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we describe a methodology for accomplishing this by exploiting the full model covariance matrix and show examples of path-dependent travel time prediction uncertainty computed from SALSA3D, our global, seamless 3D tomographic P-velocity model. Typical global 3D models have on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes Tikhonov regularization terms) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiplication methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix, we solve for the travel-time covariance associated with arbitrary ray-paths by summing the model covariance along both ray paths. Setting the paths equal and taking the square root yields the travel prediction uncertainty for the single path.
Source Code Vulnerability Assessment Methodology
2008-09-01
Information Sciences Directorate’s (CISD) Center for Intrusion Detection Monitoring and Protection ( CIMP ) to reverse engineer tools captured by...application terminates. It is possible, however, to write past the buffer boundary in a controlled way such that the value for EIP can be overwritten with...vulnerability is widely known and has been exploited in the past . This work provides a proof-of-concept for the ARL/SLAD CAM and exploit development process
Avco Lycoming QCGAT program design cycle, demonstrated performance and emissions
NASA Technical Reports Server (NTRS)
Fogel, P.; Koschier, A.
1980-01-01
A high bypass ratio, twin spool turbofan engine of modular design which incorporates a front fan module driven by a modified LTS101 core engine was tested. The engine is housed in a nacelle incorporating full length fan ducting with sound treatment in both the inlet and fan discharge flow paths. Design goals of components and results of component tests are presented together with full engine test results. The rationale behind the combustor design selected for the engine is presented as well as the emissions test results. Total system (engine and nacelle) test results are included.
Graded-Index "Whispering-Gallery" Optical Microresonators
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Maleki, Lute; Iltchenko, Vladimir; Matsko, Andrey
2006-01-01
Graded-index-of-refraction dielectric optical microresonators have been proposed as a superior alternative to prior dielectric optical microresonators, which include microspheres and microtori wherein electromagnetic waves propagate along circumferential paths in "whispering-gallery" modes. The design and method of fabrication of the proposed microresonators would afford improved performance by exploiting a combination of the propagation characteristics of the whisperinggallery modes and the effect of a graded index of refraction on the modes.
QCL-based nonlinear sensing of independent targets dynamics.
Mezzapesa, F P; Columbo, L L; Dabbicco, M; Brambilla, M; Scamarcio, G
2014-03-10
We demonstrate a common-path interferometer to measure the independent displacement of multiple targets through nonlinear frequency mixing in a quantum-cascade laser (QCL). The sensing system exploits the unique stability of QCLs under strong optical feedback to access the intrinsic nonlinearity of the active medium. The experimental results using an external dual cavity are in excellent agreement with the numerical simulations based on the Lang-Kobayashi equations.
An analysis of microsystems development at Sandia National Laboratories
NASA Astrophysics Data System (ADS)
Herrera, Gilbert V.; Myers, David R.
2011-06-01
While Sandia initially was motivated to investigate emergent microsystem technology to miniaturize existing macroscale structures, present designs embody innovative approaches that directly exploit the fundamentally different material properties of a new technology at the micro- and nano-scale. Direct, hands-on experience with the emerging technology gave Sandia engineers insights that not only guided the evolution of the technology but also enabled them to address new applications that enlarged the customer base for the new technology. Sandia's early commitment to develop complex microsystems demonstrated the advantages that early adopters gain by developing an extensive design and process tool kit and a shared awareness of multiple approaches to achieve the multiple goals. As with any emergent technology, Sandia's program benefited from interactions with the larger technical community. However, custom development followed a spiral path of direct trial-and-error experience, analysis, quantification of materials properties at the micro- and nano-scale, evolution of design tools and process recipes, and an understanding of reliability factors and failure mechanisms even in extreme environments. The microsystems capability at Sandia relied on three key elements. The first was people: a mix of mechanical and semiconductor engineers, chemists, physical scientists, designers, and numerical analysts. The second was a unique facility that enabled the development of custom technologies without contaminating mainline product deliveries. The third was the arrival of specialized equipment as part of a Cooperative Research And Development Agreement (CRADA) enabled by the National Competitiveness Technology Transfer Act of 1989. Underpinning all these, the program was guided and sustained through the research and development phases by accomplishing intermediate milestones addressing direct mission needs.
Cascading Tesla Oscillating Flow Diode for Stirling Engine Gas Bearings
NASA Technical Reports Server (NTRS)
Dyson, Rodger
2012-01-01
Replacing the mechanical check-valve in a Stirling engine with a micromachined, non-moving-part flow diode eliminates moving parts and reduces the risk of microparticle clogging. At very small scales, helium gas has sufficient mass momentum that it can act as a flow controller in a similar way as a transistor can redirect electrical signals with a smaller bias signal. The innovation here forces helium gas to flow in predominantly one direction by offering a clear, straight-path microchannel in one direction of flow, but then through a sophisticated geometry, the reversed flow is forced through a tortuous path. This redirection is achieved by using microfluid channel flow to force the much larger main flow into this tortuous path. While microdiodes have been developed in the past, this innovation cascades Tesla diodes to create a much higher pressure in the gas bearing supply plenum. In addition, the special shape of the leaves captures loose particles that would otherwise clog the microchannel of the gas bearing pads.
Lent, Robert W; Sheu, Hung-Bin; Miller, Matthew J; Cusick, Megan E; Penn, Lee T; Truong, Nancy N
2018-01-01
We tested the interest and choice portion of social-cognitive career theory (SCCT; Lent, Brown, & Hackett, 1994) in the context of science, technology, engineering, and mathematics (STEM) domains. Data from 143 studies (including 196 independent samples) conducted over a 30-year period (1983 through 2013) were subjected to meta-analytic path analyses. The interest/choice model was found to fit the data well over all samples as well as within samples composed primarily of women and men and racial/ethnic minority and majority persons. The model also accounted for large portions of the variance in interests and choice goals within each path analysis. Despite the general predictive utility of SCCT across gender and racial/ethnic groups, we did find that several parameter estimates differed by group. We present both the group similarities and differences and consider their implications for future research, intervention, and theory refinement. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Ferraro, Mike S.; Mahon, Rita; Rabinovich, William S.; Murphy, James L.; Dexter, James L.; Clark, William R.; Waters, William D.; Vaccaro, Kenneth; Krejca, Brian D.
2017-02-01
Photodetectors in free space optical communication systems perform two functions: reception of data communication signals and position sensing for pointing, tracking, and stabilization. Traditionally, the optical receive path in an FSO system is split into separate paths for data detection and position sensing. The need for separate paths is a consequence of conflicting performance criteria between position sensitive detectors (PSD) and data detectors. Combining the functionality of both detector types requires that the combinational sensor not only have the bandwidth to support high data rate communication but the active area and spatial discrimination to accommodate position sensing. In this paper we present a large area, concentric five element impact ionization engineered avalanche photodiode array rated for bandwidths beyond 1GHz with a measured carrier ionization ratio of less than 0.1 at moderate APD gains. The integration of this array as a combinational sensor in an FSO system is discussed along with the development of a pointing and stabilization algorithm.
Parametric diagnosis of the adaptive gas path in the automatic control system of the aircraft engine
NASA Astrophysics Data System (ADS)
Kuznetsova, T. A.
2017-01-01
The paper dwells on the adaptive multimode mathematical model of the gas-turbine aircraft engine (GTE) embedded in the automatic control system (ACS). The mathematical model is based on the throttle performances, and is characterized by high accuracy of engine parameters identification in stationary and dynamic modes. The proposed on-board engine model is the state space linearized low-level simulation. The engine health is identified by the influence of the coefficient matrix. The influence coefficient is determined by the GTE high-level mathematical model based on measurements of gas-dynamic parameters. In the automatic control algorithm, the sum of squares of the deviation between the parameters of the mathematical model and real GTE is minimized. The proposed mathematical model is effectively used for gas path defects detecting in on-line GTE health monitoring. The accuracy of the on-board mathematical model embedded in ACS determines the quality of adaptive control and reliability of the engine. To improve the accuracy of identification solutions and sustainability provision, the numerical method of Monte Carlo was used. The parametric diagnostic algorithm based on the LPτ - sequence was developed and tested. Analysis of the results suggests that the application of the developed algorithms allows achieving higher identification accuracy and reliability than similar models used in practice.
General Aviation Interior Noise. Part 1; Source/Path Identification
NASA Technical Reports Server (NTRS)
Unruh, James F.; Till, Paul D.; Palumbo, Daniel L. (Technical Monitor)
2002-01-01
There were two primary objectives of the research effort reported herein. The first objective was to identify and evaluate noise source/path identification technology applicable to single engine propeller driven aircraft that can be used to identify interior noise sources originating from structure-borne engine/propeller vibration, airborne propeller transmission, airborne engine exhaust noise, and engine case radiation. The approach taken to identify the contributions of each of these possible sources was first to conduct a Principal Component Analysis (PCA) of an in-flight noise and vibration database acquired on a Cessna Model 182E aircraft. The second objective was to develop and evaluate advanced technology for noise source ranking of interior panel groups such as the aircraft windshield, instrument panel, firewall, and door/window panels within the cabin of a single engine propeller driven aircraft. The technology employed was that of Acoustic Holography (AH). AH was applied to the test aircraft by acquiring a series of in-flight microphone array measurements within the aircraft cabin and correlating the measurements via PCA. The source contributions of the various panel groups leading to the array measurements were then synthesized by solving the inverse problem using the boundary element model.
NASA Technical Reports Server (NTRS)
Volponi, Al; Simon, Donald L. (Technical Monitor)
2008-01-01
A key technological concept for producing reliable engine diagnostics and prognostics exploits the benefits of fusing sensor data, information, and/or processing algorithms. This report describes the development of a hybrid engine model for a propulsion gas turbine engine, which is the result of fusing two diverse modeling methodologies: a physics-based model approach and an empirical model approach. The report describes the process and methods involved in deriving and implementing a hybrid model configuration for a commercial turbofan engine. Among the intended uses for such a model is to enable real-time, on-board tracking of engine module performance changes and engine parameter synthesis for fault detection and accommodation.
Optimizing Department of Defense Acquisition Development Test and Evaluation Scheduling
2015-06-01
CPM Critical Path Method DOD Department of Defense DT&E development test and evaluation EMD engineering and manufacturing development GAMS...these, including the Program Evaluation Review Technique (PERT), the Critical Path Method ( CPM ), and the resource- constrained project-scheduling...problem (RCPSP). These are of particular interest to this thesis as the current scheduling method uses elements of the PERT/ CPM , and the test
133. ARAII SL1 burial ground. Shows gravel path from ARAII ...
133. ARA-II SL-1 burial ground. Shows gravel path from ARA-II compound to the burial ground, detail of security fence and entry gate, and sign "Danger radiation hazard." F. C. Torkelson Company 842-area-101-1. Date: October 1961. Ineel index code no. 059-0101-00-851-150723. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Memory alloy heat engine and method of operation
Johnson, Alfred Davis
1977-01-01
A heat engine and method of operation employing an alloy having a shape memory effect. A memory alloy element such as one or more wire loops are cyclically moved through a heat source, along a path toward a heat sink, through the heat sink and then along another path in counter-flow heat exchange relationship with the wire in the first path. The portion of the wire along the first path is caused to elongate to its trained length under minimum tension as it is cooled. The portion of the wire along the second path is caused to contract under maximum tension as it is heated. The resultant tension differential between the wires in the two paths is applied as a force through a distance to produce mechanical work. In one embodiment a first set of endless memory alloy wires are reeved in non-slip engagement between a pair of pulleys which are mounted for conjoint rotation within respective hot and cold reservoirs. Another set of endless memory alloy wires are reeved in non-slip engagement about another pair of pulleys which are mounted in the respective hot and cold reservoirs. The pulleys in the cold reservoir are of a larger diameter than those in the hot reservoir and the opposite reaches of the wires between the two sets of pulleys extend in closely spaced-apart relationship in counter-flow heat regenerator zones. The pulleys are turned to move the two sets of wires in opposite directions. The wires are stretched as they are cooled upon movement through the heat regenerator toward the cold reservoirs, and the wires contract as they are heated upon movement through the regenerator zones toward the hot reservoir. This contraction of wires exerts a larger torque on the greater diameter pulleys for turning the pulleys and supplying mechanical power. Means is provided for applying a variable tension to the wires. Phase change means is provided for controlling the angular phase of the pulleys of each set for purposes of start up procedure as well as for optimizing engine operation under varying conditions of load, speed and temperatures.
Service engineering for grid services in medicine and life science.
Weisbecker, Anette; Falkner, Jürgen
2009-01-01
Clearly defined services with appropriate business models are necessary in order to exploit the benefit of grid computing for industrial and academic users in medicine and life sciences. In the project Services@MediGRID the service engineering approach is used to develop those clearly defined grid services and to provide sustainable business models for their usage.
ERIC Educational Resources Information Center
Ornatowski, Cezar M.
1998-01-01
Examines the nature, extent, and rhetorical exploitation of the margins of indeterminacy in aircraft engine development and testing, focusing particularly on the role of technical documents in creating these margins and in the rhetorical transactions that transpired. Suggests the conditions and implications of these rhetorical transactions need to…
Peer Mentoring in Engineering: (Un)Shared Experience of Undergraduate Peer Mentors and Mentees
ERIC Educational Resources Information Center
Lim, Jae Hoon; MacLeod, Bailey P.; Tkacik, Peter T.; Dika, Sandra L.
2017-01-01
In this qualitative study, we explored the experiences of 26 engineering student mentors and mentees in a peer mentoring program. We found that mentors and mentees exploited the mentoring program's fluid structure and situated social relationships to enact a specific type of academic/professional goal and identity conducive to their entry to one…
The Status and Future of Aerospace Engineering Education in Turkey.
ERIC Educational Resources Information Center
Hale, Francis J.
There is no aerospace industry in Turkey, and the level of operational activity is low even though the potential for the exploitation of aviation is high. The government of Turkey hopes to establish an aircraft factory in conjunction with a foreign contractor and is aware of the need for aerospace engineering education. This paper describes the…
1996 Laboratory directed research and development annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.
This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.
Code of Federal Regulations, 2011 CFR
2011-07-01
... increasing knowledge or understanding in science and engineering. Applied research is defined as efforts that attempt to determine and exploit the potential of scientific discoveries or improvements in technology...
Metabolic engineering of yeast for lignocellulosic biofuel production.
Jin, Yong-Su; Cate, Jamie Hd
2017-12-01
Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimization of magnet end-winding geometry
NASA Astrophysics Data System (ADS)
Reusch, Michael F.; Weissenburger, Donald W.; Nearing, James C.
1994-03-01
A simple, almost entirely analytic, method for the optimization of stress-reduced magnet-end winding paths for ribbon-like superconducting cable is presented. This technique is based on characterization of these paths as developable surfaces, i.e., surfaces whose intrinsic geometry is flat. The method is applicable to winding mandrels of arbitrary geometry. Computational searches for optimal winding paths are easily implemented via the technique. Its application to the end configuration of cylindrical Superconducting Super Collider (SSC)-type magnets is discussed. The method may be useful for other engineering problems involving the placement of thin sheets of material.
Total energy based flight control system
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor)
1985-01-01
An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.
Functional integration of vertical flight path and speed control using energy principles
NASA Technical Reports Server (NTRS)
Lambregts, A. A.
1984-01-01
A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.
NASA Technical Reports Server (NTRS)
Foore, Larry; Ida, Nathan
2007-01-01
This study introduces the use of a modified Longley-Rice irregular terrain model and digital elevation data representative of an analogue lunar site for the prediction of RF path loss over the lunar surface. The results are validated by theoretical models and past Apollo studies. The model is used to approximate the path loss deviation from theoretical attenuation over a reflecting sphere. Analysis of the simulation results provides statistics on the fade depths for frequencies of interest, and correspondingly a method for determining the maximum range of communications for various coverage confidence intervals. Communication system engineers and mission planners are provided a link margin and path loss policy for communication frequencies of interest.
Markstein, Michele; Pitsouli, Chrysoula; Villalta, Christians; Celniker, Susan E; Perrimon, Norbert
2008-04-01
A major obstacle to creating precisely expressed transgenes lies in the epigenetic effects of the host chromatin that surrounds them. Here we present a strategy to overcome this problem, employing a Gal4-inducible luciferase assay to systematically quantify position effects of host chromatin and the ability of insulators to counteract these effects at phiC31 integration loci randomly distributed throughout the Drosophila genome. We identify loci that can be exploited to deliver precise doses of transgene expression to specific tissues. Moreover, we uncover a previously unrecognized property of the gypsy retrovirus insulator to boost gene expression to levels severalfold greater than at most or possibly all un-insulated loci, in every tissue tested. These findings provide the first opportunity to create a battery of transgenes that can be reliably expressed at high levels in virtually any tissue by integration at a single locus, and conversely, to engineer a controlled phenotypic allelic series by exploiting several loci. The generality of our approach makes it adaptable to other model systems to identify and modify loci for optimal transgene expression.
Multiscale/Multifunctional Probabilistic Composite Fatigue
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2010-01-01
A multilevel (multiscale/multifunctional) evaluation is demonstrated by applying it to three different sample problems. These problems include the probabilistic evaluation of a space shuttle main engine blade, an engine rotor and an aircraft wing. The results demonstrate that the blade will fail at the highest probability path, the engine two-stage rotor will fail by fracture at the rim and the aircraft wing will fail at 109 fatigue cycles with a probability of 0.9967.
A Hybrid Stochastic-Neuro-Fuzzy Model-Based System for In-Flight Gas Turbine Engine Diagnostics
2001-04-05
Margin (ADM) and (ii) Fault Detection Margin (FDM). Key Words: ANFIS, Engine Health Monitoring , Gas Path Analysis, and Stochastic Analysis Adaptive Network...The paper illustrates the application of a hybrid Stochastic- Fuzzy -Inference Model-Based System (StoFIS) to fault diagnostics and prognostics for both...operational history monitored on-line by the engine health management (EHM) system. To capture the complex functional relationships between different
Ruhlandt, A; Töpperwien, M; Krenkel, M; Mokso, R; Salditt, T
2017-07-26
We present an approach towards four dimensional (4d) movies of materials, showing dynamic processes within the entire 3d structure. The method is based on tomographic reconstruction on dynamically curved paths using a motion model estimated by optical flow techniques, considerably reducing the typical motion artefacts of dynamic tomography. At the same time we exploit x-ray phase contrast based on free propagation to enhance the signal from micron scale structure recorded with illumination times down to a millisecond (ms). The concept is demonstrated by observing the burning process of a match stick in 4d, using high speed synchrotron phase contrast x-ray tomography recordings. The resulting movies reveal the structural changes of the wood cells during the combustion.
Optimal path planning for video-guided smart munitions via multitarget tracking
NASA Astrophysics Data System (ADS)
Borkowski, Jeffrey M.; Vasquez, Juan R.
2006-05-01
An advent in the development of smart munitions entails autonomously modifying target selection during flight in order to maximize the value of the target being destroyed. A unique guidance law can be constructed that exploits both attribute and kinematic data obtained from an onboard video sensor. An optimal path planning algorithm has been developed with the goals of obstacle avoidance and maximizing the value of the target impacted by the munition. Target identification and classification provides a basis for target value which is used in conjunction with multi-target tracks to determine an optimal waypoint for the munition. A dynamically feasible trajectory is computed to provide constraints on the waypoint selection. Results demonstrate the ability of the autonomous system to avoid moving obstacles and revise target selection in flight.
An on-board near-optimal climb-dash energy management
NASA Technical Reports Server (NTRS)
Weston, A. R.; Cliff, E. M.; Kelley, H. J.
1982-01-01
On-board real time flight control is studied in order to develop algorithms which are simple enough to be used in practice, for a variety of missions involving three dimensional flight. The intercept mission in symmetric flight is emphasized. Extensive computation is required on the ground prior to the mission but the ensuing on-board exploitation is extremely simple. The scheme takes advantage of the boundary layer structure common in singular perturbations, arising with the multiple time scales appropriate to aircraft dynamics. Energy modelling of aircraft is used as the starting point for the analysis. In the symmetric case, a nominal path is generated which fairs into the dash or cruise state. Feedback coefficients are found as functions of the remaining energy to go (dash energy less current energy) along the nominal path.
Paths to Victory: Detailed Insurgency Case Studies
2013-01-01
insurgency with informers , spies, and double agents. Eager to snuff out insurgent cross-border sanctuaries, Spinola exe- cuted Operation Mal Verde, a ...fruit when Magaia was shot dead by a fellow FRELIMO fighter suspected of being a double agent working for the COIN force, a move that exploited the...established a network of informants in the local community and, to some degree, within the Clandestine Front as well. It also relied heavily on
Detection and Prevention of Android Malware Attempting to Root the Device
2014-03-01
detect the operation of malware trying to root the phone. This research aims to detect the Exploid, RageAgainstTheCage, and Gingerbreak exploits on...attackers can use malware to root the system. By placing sensors inside the critical paths, the research detected all 379 malware samples trying the root...zero false positive results. Unlike static signature detection at the application level, this research provides dynamic detection at the kernel level
NASA Technical Reports Server (NTRS)
Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)
1985-01-01
A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.
Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving
Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein
2016-01-01
Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. PMID:26924450
International Space Station: Transitional Platform for Moon and Mars
NASA Technical Reports Server (NTRS)
Greeniesen, Michael C.
2006-01-01
Humans on the path to Mars are employing the Space Station to better understand the Life Sciences issues during long duration space flight. In this phase the problems, for example, of bone loss, skeletal muscle atrophy and radiation will be prioritized for countermeasure development. This presentation will feature NASA's critical path to the Moon and Mars as the initial blueprint for addressing these Human Life Sciences challenges necessary to accomplish a successful Mars transit, surface exploration and return to Earth. A Moon base will be the test bed for resolving the engineering obstacles for later establishment of the Mars Crew Habitat. Current engineering concept scenarios for Moon and Mars bases plus Mars transit vehicles will receive the final focus.
Meet Your Future: An Interactive Panel on Industry Careers
NASA Astrophysics Data System (ADS)
Lambert, Steven
There will be a brief presentation showing some statistics about careers in physics followed by a panel discussion. The panelists are: Pavel Kornilovich, HP Inc., Senior Technologist Erik Lucero, Google Santa Barbara, Hardware Engineer Raja Rajasekaran, Toptica-USA, Western Regional Sales & Application Manager Tiffany Santos, Western Digital, Principal Research Engineer Krysta Svore, Microsoft, Principal Researcher & Research Manager Each panelist will introduce themselves and give a brief overview of their career path. We'll then open it up to audience participation. Bring your questions about working in the private sector: daily responsibilities, work environment, how to prepare for this path, making contacts, and anything else you'd like to hear about. We look forward to an interactive and lively session.
Program for impact testing of spar-shell fan blades, test report
NASA Technical Reports Server (NTRS)
Ravenhall, R.; Salemme, C. T.
1978-01-01
Six filament-wound, composite spar-shell fan blades were impact tested in a whirligig relative to foreign object damage resulting from ingestion of birds into the fan blades of a QCSEE-type engine. Four of the blades were tested by injecting a simulated two pound bird into the path of the rotating blade and two were tested by injecting a starling into the path of the blade.
Abradable compressor and turbine seals, volume 1. [for turbofan engines
NASA Technical Reports Server (NTRS)
Sundberg, D. V.; Dennis, R. E.; Hurst, L. G.
1979-01-01
The application and advantages of abradable coatings as gas-path seals in a general aviation turbine engine were evaluated for use on the high-pressure compressor, the high-pressure turbine, and the low-pressure turbine shrouds. Topics covered include: (1) the initial selection of candidate materials for interim full-scale engine testing; (2) interim engine testing of the initially selected materials and additional candidate materials; (3) the design of the component required to adapt the hardware to permit full-scale engine testing of the most promising materials; (4) finalization of the fabrication methods used in the manufacture of engine test hardware; and (5) the manufacture of the hardware necessary to support the final full-scale engine tests.
ERIC Educational Resources Information Center
Brittle, Seth W.; Baker, Joshua D.; Dorney, Kevin M.; Dagher, Jessica M.; Ebrahimian, Tala; Higgins, Steven R.; Pavel Sizemore, Ioana E.
2015-01-01
The increased worldwide exploitation of nanomaterials has reinforced the importance of introducing nanoscale aspects into the undergraduate and graduate curriculum. To meet this need, a novel nano-laboratory module was developed and successfully performed by science and engineering students. The main goal of the experiment was to accurately…
Tissue engineering strategies to study cartilage development, degeneration and regeneration.
Bhattacharjee, Maumita; Coburn, Jeannine; Centola, Matteo; Murab, Sumit; Barbero, Andrea; Kaplan, David L; Martin, Ivan; Ghosh, Sourabh
2015-04-01
Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm. Copyright © 2014 Elsevier B.V. All rights reserved.
Program For Engineering Electrical Connections
NASA Technical Reports Server (NTRS)
Billitti, Joseph W.
1990-01-01
DFACS is interactive multiuser computer-aided-engineering software tool for system-level electrical integration and cabling engineering. Purpose of program to provide engineering community with centralized data base for putting in and gaining access to data on functional definition of system, details of end-circuit pinouts in systems and subsystems, and data on wiring harnesses. Objective, to provide instantaneous single point of interchange of information, thus avoiding error-prone, time-consuming, and costly shuttling of data along multiple paths. Designed to operate on DEC VAX mini or micro computer using Version 5.0/03 of INGRES.
Effects of Temperature on the Performance of a Small Internal Combustion Engine at Altitude
2013-03-21
flexible diaphragm was attached to damp out pulses in the air flow pulsations . Their method of temperature control was electric heating of the intake air...42 Figure 14. Heat exchanger ................................................................................................ 45 Figure...15. Both liquid nitrogen lines from Dewar ............................................................ 45 Figure 16. Engine inlet flow path heat
Endochondral Priming: A Developmental Engineering Strategy for Bone Tissue Regeneration.
Freeman, Fiona E; McNamara, Laoise M
2017-04-01
Tissue engineering and regenerative medicine have significant potential to treat bone pathologies by exploiting the capacity for bone progenitors to grow and produce tissue constituents under specific biochemical and physical conditions. However, conventional tissue engineering approaches, which combine stem cells with biomaterial scaffolds, are limited as the constructs often degrade, due to a lack of vascularization, and lack the mechanical integrity to fulfill load bearing functions, and as such are not yet widely used for clinical treatment of large bone defects. Recent studies have proposed that in vitro tissue engineering approaches should strive to simulate in vivo bone developmental processes and, thereby, imitate natural factors governing cell differentiation and matrix production, following the paradigm recently defined as "developmental engineering." Although developmental engineering strategies have been recently developed that mimic specific aspects of the endochondral ossification bone formation process, these findings are not widely understood. Moreover, a critical comparison of these approaches to standard biomaterial-based bone tissue engineering has not yet been undertaken. For that reason, this article presents noteworthy experimental findings from researchers focusing on developing an endochondral-based developmental engineering strategy for bone tissue regeneration. These studies have established that in vitro approaches, which mimic certain aspects of the endochondral ossification process, namely the formation of the cartilage template and the vascularization of the cartilage template, can promote mineralization and vascularization to a certain extent both in vitro and in vivo. Finally, this article outlines specific experimental challenges that must be overcome to further exploit the biology of endochondral ossification and provide a tissue engineering construct for clinical treatment of large bone/nonunion defects and obviate the need for bone tissue graft.
Multi-Scale/Multi-Functional Probabilistic Composite Fatigue
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2008-01-01
A multi-level (multi-scale/multi-functional) evaluation is demonstrated by applying it to three different sample problems. These problems include the probabilistic evaluation of a space shuttle main engine blade, an engine rotor and an aircraft wing. The results demonstrate that the blade will fail at the highest probability path, the engine two-stage rotor will fail by fracture at the rim and the aircraft wing will fail at 109 fatigue cycles with a probability of 0.9967.
Advanced Subsonic Combustion Rig
NASA Technical Reports Server (NTRS)
Lee, Chi-Ming
1998-01-01
Researchers from the NASA Lewis Research Center have obtained the first combustion/emissions data under extreme future engine operating conditions. In Lewis' new world-class 60-atm combustor research facility--the Advanced Subsonic Combustion Rig (ASCR)--a flametube was used to conduct combustion experiments in environments as extreme as 900 psia and 3400 F. The greatest challenge for combustion researchers is the uncertainty of the effects of pressure on the formation of nitrogen oxides (NOx). Consequently, U.S. engine manufacturers are using these data to guide their future combustor designs. The flametube's metal housing has an inside diameter of 12 in. and a length of 10.5 in. The flametube can be used with a variety of different flow paths. Each flow path is lined with a high-temperature, castable refractory material (alumina) to minimize heat loss. Upstream of the flametube is the injector section, which has an inside diameter of 13 in. and a length of 0.5-in. It was designed to provide for quick changeovers. This flametube is being used to provide all U.S. engine manufacturers early assessments of advanced combustion concepts at full power conditions prior to engine production. To date, seven concepts from engine manufacturers have been evaluated and improved. This collaborated development can potentially give U.S. engine manufacturers the competitive advantage of being first in the market with advanced low-emission technologies.
Deep Question Answering for protein annotation
Gobeill, Julien; Gaudinat, Arnaud; Pasche, Emilie; Vishnyakova, Dina; Gaudet, Pascale; Bairoch, Amos; Ruch, Patrick
2015-01-01
Biomedical professionals have access to a huge amount of literature, but when they use a search engine, they often have to deal with too many documents to efficiently find the appropriate information in a reasonable time. In this perspective, question-answering (QA) engines are designed to display answers, which were automatically extracted from the retrieved documents. Standard QA engines in literature process a user question, then retrieve relevant documents and finally extract some possible answers out of these documents using various named-entity recognition processes. In our study, we try to answer complex genomics questions, which can be adequately answered only using Gene Ontology (GO) concepts. Such complex answers cannot be found using state-of-the-art dictionary- and redundancy-based QA engines. We compare the effectiveness of two dictionary-based classifiers for extracting correct GO answers from a large set of 100 retrieved abstracts per question. In the same way, we also investigate the power of GOCat, a GO supervised classifier. GOCat exploits the GOA database to propose GO concepts that were annotated by curators for similar abstracts. This approach is called deep QA, as it adds an original classification step, and exploits curated biological data to infer answers, which are not explicitly mentioned in the retrieved documents. We show that for complex answers such as protein functional descriptions, the redundancy phenomenon has a limited effect. Similarly usual dictionary-based approaches are relatively ineffective. In contrast, we demonstrate how existing curated data, beyond information extraction, can be exploited by a supervised classifier, such as GOCat, to massively improve both the quantity and the quality of the answers with a +100% improvement for both recall and precision. Database URL: http://eagl.unige.ch/DeepQA4PA/ PMID:26384372
Deep Question Answering for protein annotation.
Gobeill, Julien; Gaudinat, Arnaud; Pasche, Emilie; Vishnyakova, Dina; Gaudet, Pascale; Bairoch, Amos; Ruch, Patrick
2015-01-01
Biomedical professionals have access to a huge amount of literature, but when they use a search engine, they often have to deal with too many documents to efficiently find the appropriate information in a reasonable time. In this perspective, question-answering (QA) engines are designed to display answers, which were automatically extracted from the retrieved documents. Standard QA engines in literature process a user question, then retrieve relevant documents and finally extract some possible answers out of these documents using various named-entity recognition processes. In our study, we try to answer complex genomics questions, which can be adequately answered only using Gene Ontology (GO) concepts. Such complex answers cannot be found using state-of-the-art dictionary- and redundancy-based QA engines. We compare the effectiveness of two dictionary-based classifiers for extracting correct GO answers from a large set of 100 retrieved abstracts per question. In the same way, we also investigate the power of GOCat, a GO supervised classifier. GOCat exploits the GOA database to propose GO concepts that were annotated by curators for similar abstracts. This approach is called deep QA, as it adds an original classification step, and exploits curated biological data to infer answers, which are not explicitly mentioned in the retrieved documents. We show that for complex answers such as protein functional descriptions, the redundancy phenomenon has a limited effect. Similarly usual dictionary-based approaches are relatively ineffective. In contrast, we demonstrate how existing curated data, beyond information extraction, can be exploited by a supervised classifier, such as GOCat, to massively improve both the quantity and the quality of the answers with a +100% improvement for both recall and precision. Database URL: http://eagl.unige.ch/DeepQA4PA/. © The Author(s) 2015. Published by Oxford University Press.
Challenging data and workload management in CMS Computing with network-aware systems
NASA Astrophysics Data System (ADS)
D, Bonacorsi; T, Wildish
2014-06-01
After a successful first run at the LHC, and during the Long Shutdown (LS1) of the accelerator, the workload and data management sectors of the CMS Computing Model are entering into an operational review phase in order to concretely assess area of possible improvements and paths to exploit new promising technology trends. In particular, since the preparation activities for the LHC start, the Networks have constantly been of paramount importance for the execution of CMS workflows, exceeding the original expectations - as from the MONARC model - in terms of performance, stability and reliability. The low-latency transfers of PetaBytes of CMS data among dozens of WLCG Tiers worldwide using the PhEDEx dataset replication system is an example of the importance of reliable Networks. Another example is the exploitation of WAN data access over data federations in CMS. A new emerging area of work is the exploitation of Intelligent Network Services, including also bandwidth on demand concepts. In this paper, we will review the work done in CMS on this, and the next steps.
a Modified Genetic Algorithm for Finding Fuzzy Shortest Paths in Uncertain Networks
NASA Astrophysics Data System (ADS)
Heidari, A. A.; Delavar, M. R.
2016-06-01
In realistic network analysis, there are several uncertainties in the measurements and computation of the arcs and vertices. These uncertainties should also be considered in realizing the shortest path problem (SPP) due to the inherent fuzziness in the body of expert's knowledge. In this paper, we investigated the SPP under uncertainty to evaluate our modified genetic strategy. We improved the performance of genetic algorithm (GA) to investigate a class of shortest path problems on networks with vague arc weights. The solutions of the uncertain SPP with considering fuzzy path lengths are examined and compared in detail. As a robust metaheuristic, GA algorithm is modified and evaluated to tackle the fuzzy SPP (FSPP) with uncertain arcs. For this purpose, first, a dynamic operation is implemented to enrich the exploration/exploitation patterns of the conventional procedure and mitigate the premature convergence of GA technique. Then, the modified GA (MGA) strategy is used to resolve the FSPP. The attained results of the proposed strategy are compared to those of GA with regard to the cost, quality of paths and CPU times. Numerical instances are provided to demonstrate the success of the proposed MGA-FSPP strategy in comparison with GA. The simulations affirm that not only the proposed technique can outperform GA, but also the qualities of the paths are effectively improved. The results clarify that the competence of the proposed GA is preferred in view of quality quantities. The results also demonstrate that the proposed method can efficiently be utilized to handle FSPP in uncertain networks.
Systems Engineering Technical Authority: A Path to Mission Success
NASA Technical Reports Server (NTRS)
Andary, James F.; So, Maria M.; Breindel, Barry
2008-01-01
The systems engineering of space missions to study planet Earth has been an important focus of the National Aeronautics and Space Administration (NASA) since its inception. But all space missions are becoming increasingly complex and this fact, reinforced by some major mishaps, has caused NASA to reevaluate their approach to achieving safety and mission success. A new approach ensures that there are adequate checks and balances in place to maximize the probability of safety and mission success. To this end the agency created the concept of Technical Authority which identifies a key individual accountable and responsible for the technical integrity of a flight mission as well as a project-independent reporting path. At the Goddard Space Flight Center (GSFC) this responsibility ultimately begins with the Mission Systems Engineer (MSE) for each satellite mission. This paper discusses the Technical Authority process and then describes some unique steps that are being taken at the GSFC to support these MSEs in meeting their responsibilities.
Lan, Jin-Le; Liu, Yaochun; Lin, Yuan-Hua; Nan, Ce-Wen; Cai, Qing; Yang, Xiaoping
2015-01-01
The issue of how to improve the thermoelectric figure of merit (ZT) in oxide semiconductors has been challenging for more than 20 years. In this work, we report an effective path to substantial reduction in thermal conductivity and increment in carrier concentration, and thus a remarkable enhancement in the ZT value is achieved. The ZT value of In2O3 system was enhanced 4-fold by nanostructuing (nano-grains and nano-inclusions) and point defect engineering. The introduction of point defects in In2O3 results in a glass-like thermal conductivity. The lattice thermal conductivity could be reduced by 60%, and extraordinary low lattice thermal conductivity (1.2 W m−1 K−1 @ 973 K) below the amorphous limit was achieved. Our work paves a path for enhancing the ZT in oxides by both the nanosturcturing and the point defect engineering for better phonon-glasses and electron-crystal (PGEC) materials. PMID:25586762
Experimental Study of Split-Path Transmission Load Sharing
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.; Delgado, Irebert R.
1996-01-01
Split-path transmissions are promising, attractive alternatives to the common planetary transmissions for helicopters. The split-path design offers two parallel paths for transmitting torque from the engine to the rotor. Ideally, the transmitted torque is shared equally between the two load paths; however, because of manufacturing tolerances, the design must be sized to allow for other than equal load sharing. To study the effect of tolerances, experiments were conducted using the NASA split-path test gearbox. Two gearboxes, nominally identical except for manufacturing tolerances, were tested. The clocking angle was considered to be a design parameter and used to adjust the load sharing of an otherwise fixed design. The torque carried in each path was measured for a matrix of input torques and clocking angles. The data were used to determine the optimal value and a tolerance for the clocking angles such that the most heavily loaded split path carried no greater than 53 percent of an input shaft torque of 367 N-m. The range of clocking angles satisfying this condition was -0.0012 +/- 0.0007 rad for box 1 and -0.0023 +/- 0.0009 rad for box 2. This study indicates that split-path gearboxes can be used successfully in rotorcraft and can be manufactured with existing technology.
Exploiting the On-Campus Boiler House.
ERIC Educational Resources Information Center
Woods, Donald R.; And Others
1986-01-01
Shows how a university utility building ("boiler house") is used in a chemical engineering course for computer simulations, mathematical modeling and process problem exercises. Student projects involving the facility are also discussed. (JN)
Multi-pass cooling for turbine airfoils
Liang, George [Palm City, FL
2011-06-28
An airfoil for a turbine vane of a gas turbine engine. The airfoil includes an outer wall having pressure and suction sides, and a radially extending cooling cavity located between the pressure and suction sides. A plurality of partitions extend radially through the cooling cavity to define a plurality of interconnected cooling channels located at successive chordal locations through the cooling cavity. The cooling channels define a serpentine flow path extending in the chordal direction. Further, the cooling channels include a plurality of interconnected chambers and the chambers define a serpentine path extending in the radial direction within the serpentine path extending in the chordal direction.
Corrosion Issues for Ceramics in Gas Turbines
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Opila, Elizabeth J.; Tortorelli, Peter F.; More, Karren L.; Nickel, Klaus G.; Hirata, Takehiko; Yoshida, Makoto; Yuri, Isao
2000-01-01
The requirements for hot-gas-path materials in gas turbine engines are demanding. These materials must maintain high strength and creep resistance in a particularly aggressive environment. A typical gas turbine environment involves high temperatures, rapid gas flow rates, high pressures, and a complex mixture of aggressive gases. Figure 26.1 illustrates the requirements for components of an aircraft engine and critical issues [1]. Currently, heat engines are constructed of metal alloys, which meet these requirements within strict temperature limits. In order to extend these temperature limits, ceramic materials have been considered as potential engine materials, due to their high melting points and stability at high temperatures. These materials include oxides, carbides, borides, and nitrides. Interest in using these materials in engines appears to have begun in the 1940s with BeO-based porcelains [2]. During the 1950s, the efforts shifted to cermets. These were carbide-based materials intended to exploit the best properties of metals and ceramics. During the 1960s and 1970s, the silicon-based ceramics silicon carbide (SiC) and silicon nitride (Si3N4) were extensively developed. Although the desirable high-temperature properties of SiC and Si3N4 had long been known, consolidation of powders into component-sized bodies required the development of a series of specialized processing routes [3]. For SiC, the major consolidation routes are reaction bonding, hot-pressing, and sintering. The use of boron and carbon as additives which enable sintering was a particularly noteworthy advance [4]. For Si3N4 the major consolidation routes are reaction bonding and hot pressing [5]. Reaction-bonding involves nitridation of silicon powder. Hot pressing involves addition of various refractory oxides, such as magnesia (MgO), alumina (Al2O3), and yttria (y2O3). Variations on these processes include a number of routes including Hot Isostatic Pressing (HIP), gas-pressure sintering, sinter-HIPing, and Encapsulation-HIPing. It is important to note that each process involves the addition of secondary elements, which later were shown to dramatically influence oxidation and corrosion behavior. As dense bodies of silicon-based ceramics became more readily available, their desirable high temperature properties were confirmed. These materials retained strength to very high temperatures (i.e. 1300-1400 C). Further, they were lightweight and made from abundant materials. SiC and Si3N4 therefore emerged as leading ceramic candidates for components in heat engines, designed to operate at higher temperatures for better performance and fuel efficiency. The first US programs for ceramics in heat engines have been reviewed [6]. Selected programs on ceramic engine parts are summarized here in regard to their contributions to understanding the corrosion behavior of a heat engine environment.
The data-driven null models for information dissemination tree in social networks
NASA Astrophysics Data System (ADS)
Zhang, Zhiwei; Wang, Zhenyu
2017-10-01
For the purpose of detecting relatedness and co-occurrence between users, as well as the distribution features of nodes in spreading path of a social network, this paper explores topological characteristics of information dissemination trees (IDT) that can be employed indirectly to probe the information dissemination laws within social networks. Hence, three different null models of IDT are presented in this article, including the statistical-constrained 0-order IDT null model, the random-rewire-broken-edge 0-order IDT null model and the random-rewire-broken-edge 2-order IDT null model. These null models firstly generate the corresponding randomized copy of an actual IDT; then the extended significance profile, which is developed by adding the cascade ratio of information dissemination path, is exploited not only to evaluate degree correlation of two nodes associated with an edge, but also to assess the cascade ratio of different length of information dissemination paths. The experimental correspondences of the empirical analysis for several SinaWeibo IDTs and Twitter IDTs indicate that the IDT null models presented in this paper perform well in terms of degree correlation of nodes and dissemination path cascade ratio, which can be better to reveal the features of information dissemination and to fit the situation of real social networks.
Unified path integral approach to theories of diffusion-influenced reactions
NASA Astrophysics Data System (ADS)
Prüstel, Thorsten; Meier-Schellersheim, Martin
2017-08-01
Building on mathematical similarities between quantum mechanics and theories of diffusion-influenced reactions, we develop a general approach for computational modeling of diffusion-influenced reactions that is capable of capturing not only the classical Smoluchowski picture but also alternative theories, as is here exemplified by a volume reactivity model. In particular, we prove the path decomposition expansion of various Green's functions describing the irreversible and reversible reaction of an isolated pair of molecules. To this end, we exploit a connection between boundary value and interaction potential problems with δ - and δ'-function perturbation. We employ a known path-integral-based summation of a perturbation series to derive a number of exact identities relating propagators and survival probabilities satisfying different boundary conditions in a unified and systematic manner. Furthermore, we show how the path decomposition expansion represents the propagator as a product of three factors in the Laplace domain that correspond to quantities figuring prominently in stochastic spatially resolved simulation algorithms. This analysis will thus be useful for the interpretation of current and the design of future algorithms. Finally, we discuss the relation between the general approach and the theory of Brownian functionals and calculate the mean residence time for the case of irreversible and reversible reactions.
Structure-guided Protein Transition Modeling with a Probabilistic Roadmap Algorithm.
Maximova, Tatiana; Plaku, Erion; Shehu, Amarda
2016-07-07
Proteins are macromolecules in perpetual motion, switching between structural states to modulate their function. A detailed characterization of the precise yet complex relationship between protein structure, dynamics, and function requires elucidating transitions between functionally-relevant states. Doing so challenges both wet and dry laboratories, as protein dynamics involves disparate temporal scales. In this paper we present a novel, sampling-based algorithm to compute transition paths. The algorithm exploits two main ideas. First, it leverages known structures to initialize its search and define a reduced conformation space for rapid sampling. This is key to address the insufficient sampling issue suffered by sampling-based algorithms. Second, the algorithm embeds samples in a nearest-neighbor graph where transition paths can be efficiently computed via queries. The algorithm adapts the probabilistic roadmap framework that is popular in robot motion planning. In addition to efficiently computing lowest-cost paths between any given structures, the algorithm allows investigating hypotheses regarding the order of experimentally-known structures in a transition event. This novel contribution is likely to open up new venues of research. Detailed analysis is presented on multiple-basin proteins of relevance to human disease. Multiscaling and the AMBER ff14SB force field are used to obtain energetically-credible paths at atomistic detail.
NASA Astrophysics Data System (ADS)
Bellavista, Paolo; Giannelli, Carlo
The availability of heterogeneous wireless interfaces and of growing computing resources on widespread portable devices pushes for enabling innovative deployment scenarios where mobile nodes dynamically self-organize to offer Internet connectivity to their peers via dynamically established multi-hop multi-path opportunities. We claim the suitability of novel, mobility-aware, and application-layer middleware based on lightweight evaluation indicators to support the complexity of that scenario, involving heterogeneous wireless technologies over differentiated and statically unpredictable execution environments. To validate these claims, we have implemented an innovative middleware that manages the durability/throughput-aware formation and selection of different multi-hop paths simultaneously. This paper specifically focuses on how our middleware effectively exploits Bluetooth for multi-hop multi-path networking, by pointing out the crucial role of i) compliance with standard solutions to favor rapid deployment over off-the-shelf equipment and ii) the reduction of the usual overhead associated with some expensive Bluetooth operations, e.g., device inquiry. In particular, the paper shows how it is possible, on the one hand, to extend JSR-82 to portably access monitoring indicators for lightweight mobility/throughput estimations and, on the other hand, to reduce the time needed to update the set of available Bluetooth-based connectivity opportunities via approximated and lightweight forms of discovery.
NASA Astrophysics Data System (ADS)
Lubrica, Joel V.; Abiasen, Jovalson T.; Dolipas, Bretel B.; Ramos, Jennifer Lyn S.
2017-01-01
In this article, we present results of our endeavours as physics educators to facilitate and support pedagogical change and development in the educational system of a developing country, the Philippines. We have discovered that the interaction of junior high school (years 7-10) students with physics apparatus can influence students’ interest in pursuing a career in science, technology, engineering and mathematics (STEM). This assertion stems from self-reports of students who gave their views immediately after their exposure to interactive apparatus in their own school, outside of their usual lessons. Participants claimed that their interest in following a STEM career path was ‘greatly increased’ due to their exposure to these apparatus. This was true even for students who were intending to take a non-STEM career path. Thus, we recommend that, in settings that have constraints involving access to practical equipment, ways to introduce school level interactive physics apparatus to secondary school students be conducted in order to attract more students towards STEM courses. Possibly, policies encouraging this type of exposure should also be formulated.
Source Fingerprinting in Adobe PDF Files
2013-12-01
targeted, opportunistic attacks [2]. Figures from F -Secure for 2008–2010 indicate that anywhere from 28–61% of targeted attacks involved PDF exploits...digit byte offset into the file, a five-digit generation number, and either the character ‘ f ’ or ‘n’, indicating whether the object defined on that line...Walk through a path, extracting n-grams from files and associating # them with the directory that contains them. E.g., the file # ./my_docs/ foo
Electronic Commerce on the Internet.
1994-03-01
electronic commerce , where companies transact business spontaneously over the Internet. In restructuring its procurement processes, The Federal Government has a unique opportunity to exploit this electronic marketplace, and to influence its development in ways that benefit us all. This report describes a vision of the electronic marketplace, the requirements it must satisfy, an architecture for addressing those requirements, and a graceful migration path to the marketplace from current EDI technology and practice. It identifies five key concepts for government
Wei Liao; Rohr, Karl; Chang-Ki Kang; Zang-Hee Cho; Worz, Stefan
2016-01-01
We propose a novel hybrid approach for automatic 3D segmentation and quantification of high-resolution 7 Tesla magnetic resonance angiography (MRA) images of the human cerebral vasculature. Our approach consists of two main steps. First, a 3D model-based approach is used to segment and quantify thick vessels and most parts of thin vessels. Second, remaining vessel gaps of the first step in low-contrast and noisy regions are completed using a 3D minimal path approach, which exploits directional information. We present two novel minimal path approaches. The first is an explicit approach based on energy minimization using probabilistic sampling, and the second is an implicit approach based on fast marching with anisotropic directional prior. We conducted an extensive evaluation with over 2300 3D synthetic images and 40 real 3D 7 Tesla MRA images. Quantitative and qualitative evaluation shows that our approach achieves superior results compared with a previous minimal path approach. Furthermore, our approach was successfully used in two clinical studies on stroke and vascular dementia.
New Technique for Retrieving Liquid Water Path over Land using Satellite Microwave Observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deeter, M.N.; Vivekanandan, J.
2005-03-18
We present a new methodology for retrieving liquid water path over land using satellite microwave observations. As input, the technique exploits the Advanced Microwave Scanning Radiometer for earth observing plan (EOS) (AMSR-E) polarization-difference signals at 37 and 89 GHz. Regression analysis performed on model simulations indicates that over variable atmospheric and surface conditions the polarization-difference signals can be simply parameterized in terms of the surface emissivity polarization difference ({Delta}{var_epsilon}), surface temperature, liquid water path (LWP), and precipitable water vapor (PWV). The resulting polarization-difference parameterization (PDP) enables fast and direct (noniterative) retrievals of LWP with minimal requirements for ancillary data. Single-more » and dual-channel retrieval methods are described and demonstrated. Data gridding is used to reduce the effects of instrumental noise. The methodology is demonstrated using AMSR-E observations over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site during a six day period in November and December, 2003. Single- and dual-channel retrieval results mostly agree with ground-based microwave retrievals of LWP to within approximately 0.04 mm.« less
Cas9 gRNA engineering for genome editing, activation and repression
Kiani, Samira; Chavez, Alejandro; Tuttle, Marcelle; ...
2015-09-07
Here we demonstrate that by altering the length of Cas9-associated guide RNA(gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein.
Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.
Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein; Khademhosseini, Ali
2016-04-06
Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, microarchitecture, and mechanical properties of the fabrics play important roles in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2010 CFR
2010-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC filing costs; site acquisition and civil works; zoning costs; training; disposal of old equipment; test...
Analysis of the Sagnac interference imaging spectrometer with a variable optical path difference
NASA Astrophysics Data System (ADS)
Ai, Jingjing; Gao, Peng; Hu, Xiaochen; Zhang, Chunmin; Wang, Xia
2018-03-01
The Sagnac interference imaging spectrometer with a variable optical path difference (OPD) is proposed in this paper, which employs two wedge prisms coupled with a modified Sagnac interferometer, and produces a variable OPD through the moving wedge prism. Compared with the conventional imaging spectrometer, the Sagnac interference imaging spectrometer shows its advantages of miniaturization and insensitive to the non-uniform variation of the moving speed and the environment vibration. The exact expression of the OPD as a function of different parameters is derived, and the influences of the moving displacement, wedge angle and acute angles on the OPD are analyzed and discussed within the scope of engineering design. This study provides an important theoretical and practical guidance for the engineering of the Sagnac interference imaging spectrometer.
The potential and prospects of proximal remote sensing of arthropod pests.
Nansen, Christian
2016-04-01
Bench-top or proximal remote sensing applications are widely used as part of quality control and machine vision systems in commercial operations. In addition, these technologies are becoming increasingly important in insect systematics and studies of insect physiology and pest management. This paper provides a review and discussion of how proximal remote sensing may contribute valuable quantitative information regarding identification of species, assessment of insect responses to insecticides, insect host responses to parasitoids and performance of biological control agents. The future role of proximal remote sensing is discussed as an exciting path for novel paths of multidisciplinary research among entomologists and scientists from a wide range of other disciplines, including image processing engineers, medical engineers, research pharmacists and computer scientists. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Guiding bioprocess design by microbial ecology.
Volmer, Jan; Schmid, Andreas; Bühler, Bruno
2015-06-01
Industrial bioprocess development is driven by profitability and eco-efficiency. It profits from an early stage definition of process and biocatalyst design objectives. Microbial bioprocess environments can be considered as synthetic technical microbial ecosystems. Natural systems follow Darwinian evolution principles aiming at survival and reproduction. Technical systems objectives are eco-efficiency, productivity, and profitable production. Deciphering technical microbial ecology reveals differences and similarities of natural and technical systems objectives, which are discussed in this review in view of biocatalyst and process design and engineering strategies. Strategies for handling opposing objectives of natural and technical systems and for exploiting and engineering natural properties of microorganisms for technical systems are reviewed based on examples. This illustrates the relevance of considering microbial ecology for bioprocess design and the potential for exploitation by synthetic biology strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.
3D CAD: A Plus for STEM Education
ERIC Educational Resources Information Center
Planchard, Marie
2007-01-01
At some point in their education, pre-engineering students will take physics and/or calculus. For many freshmen who aren't certain about their career paths, taking these courses is a litmus test to determine whether they have the aptitude or desire to pursue an engineering degree. Therein lies the challenge for many students in the U.S. Science,…
ERIC Educational Resources Information Center
Medhurst, Laura L.
2005-01-01
An experiment developed from the Advanced Integrated Environmental Laboratory illustrates the differences in automobile exhaust before and after the engine is warmed, using gas-phase Fourier transform infrared spectroscopy (FTIR). The apparatus consists of an Avatar 360 FTIR spectrometer from Nicolet fitted with a variable path length gas cell,…
Methodology of Computer-Aided Design of Variable Guide Vanes of Aircraft Engines
ERIC Educational Resources Information Center
Falaleev, Sergei V.; Melentjev, Vladimir S.; Gvozdev, Alexander S.
2016-01-01
The paper presents a methodology which helps to avoid a great amount of costly experimental research. This methodology includes thermo-gas dynamic design of an engine and its mounts, the profiling of compressor flow path and cascade design of guide vanes. Employing a method elaborated by Howell, we provide a theoretical solution to the task of…
ERIC Educational Resources Information Center
Gustafsson, Peter; Jonsson, Gunnar; Enghag, Margareta
2015-01-01
The problem-solving process is investigated for five groups of students when solving context-rich problems in an introductory physics course included in an engineering programme. Through transcripts of their conversation, the paths in the problem-solving process have been traced and related to a general problem-solving model. All groups exhibit…
Optimal tuning of a confined Brownian information engine.
Park, Jong-Min; Lee, Jae Sung; Noh, Jae Dong
2016-03-01
A Brownian information engine is a device extracting mechanical work from a single heat bath by exploiting the information on the state of a Brownian particle immersed in the bath. As for engines, it is important to find the optimal operating condition that yields the maximum extracted work or power. The optimal condition for a Brownian information engine with a finite cycle time τ has been rarely studied because of the difficulty in finding the nonequilibrium steady state. In this study, we introduce a model for the Brownian information engine and develop an analytic formalism for its steady-state distribution for any τ. We find that the extracted work per engine cycle is maximum when τ approaches infinity, while the power is maximum when τ approaches zero.
NASA Astrophysics Data System (ADS)
Hipp, J. R.; Ballard, S.; Begnaud, M. L.; Encarnacao, A. V.; Young, C. J.; Phillips, W. S.
2015-12-01
Recently our combined SNL-LANL research team has succeeded in developing a global, seamless 3D tomographic P- and S-velocity model (SALSA3D) that provides superior first P and first S travel time predictions at both regional and teleseismic distances. However, given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we describe a methodology for accomplishing this by exploiting the full model covariance matrix and show examples of path-dependent travel time prediction uncertainty computed from our latest tomographic model. Typical global 3D SALSA3D models have on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes a prior model covariance constraint) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiplication methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix, we solve for the travel-time covariance associated with arbitrary ray-paths by summing the model covariance along both ray paths. Setting the paths equal and taking the square root yields the travel prediction uncertainty for the single path.
Construction and engineering of large biochemical pathways via DNA assembler
Shao, Zengyi; Zhao, Huimin
2015-01-01
Summary DNA assembler enables rapid construction and engineering of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use two examples including the zeaxanthin biosynthetic pathway and the aureothin biosynthetic gene cluster to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for construct design, pathway assembly, pathway confirmation, and functional analysis are shown. The protocol for fine genetic modifications such as site-directed mutagenesis for engineering the aureothin gene cluster is also illustrated. PMID:23996442
Manufacturing Cell Therapies Using Engineered Biomaterials.
Abdeen, Amr A; Saha, Krishanu
2017-10-01
Emerging manufacturing processes to generate regenerative advanced therapies can involve extensive genomic and/or epigenomic manipulation of autologous or allogeneic cells. These cell engineering processes need to be carefully controlled and standardized to maximize safety and efficacy in clinical trials. Engineered biomaterials with smart and tunable properties offer an intriguing tool to provide or deliver cues to retain stemness, direct differentiation, promote reprogramming, manipulate the genome, or select functional phenotypes. This review discusses the use of engineered biomaterials to control human cell manufacturing. Future work exploiting engineered biomaterials has the potential to generate manufacturing processes that produce standardized cells with well-defined critical quality attributes appropriate for clinical testing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biomimetics: determining engineering opportunities from nature
NASA Astrophysics Data System (ADS)
Fish, Frank E.
2009-08-01
The biomimetic approach seeks to incorporate designs based on biological organisms into engineered technologies. Biomimetics can be used to engineer machines that emulate the performance of organisms, particularly in instances where the organism's performance exceeds current mechanical technology or provides new directions to solve existing problems. For biologists, an adaptationist program has allowed for the identification of novel features of organisms based on engineering principles; whereas for engineers, identification of such novel features is necessary to exploit them for biomimetic development. Adaptations (leading edge tubercles to passively modify flow and high efficiency oscillatory propulsive systems) from marine animals demonstrate potential utility in the development of biomimetic products. Nature retains a store of untouched knowledge, which would be beneficial in advancing technology.
Engineering an FMN-based iLOV protein for the detection of arsenic ions.
Ravikumar, Yuvaraj; Nadarajan, Saravanan Prabhu; Lee, Chong-Soon; Yun, Hyungdon
2017-05-15
Over the past few decades, genetically encoded fluorescent proteins have been widely used as efficient probes to explore and investigate the roles of metal ions in biological processes. The discovery of small FMN-based fluorescent proteins, such as iLOV and FbFP, has enabled researchers to exploit these fluorescent reporter proteins for metal-sensing applications. In this study, we report the inherent binding properties of iLOV towards arsenic ions. The fluorescence quenching of iLOV was linearly related to the concentration of arsenic ions, and engineered proteins showed better sensitivity than the wild-type protein. Engineering key residues around the chromophore converted the iLOV protein into a highly sensitive sensor for As 3+ ions. iLOV N468S exhibited an improved binding affinity with a dissociation constant of 1.5 μM. Furthermore, the circular dichroism spectra indicated that the fluorescence quenching mechanism might be related to arsenic-protein complex formation. Thus, the reagentless sensing of arsenic can potentially be exploited to determine intracellular or environmental arsenic using a genetically encoded biosensing approach. Copyright © 2017 Elsevier Inc. All rights reserved.
Computing the total atmospheric refraction for real-time optical imaging sensor simulation
NASA Astrophysics Data System (ADS)
Olson, Richard F.
2015-05-01
Fast and accurate computation of light path deviation due to atmospheric refraction is an important requirement for real-time simulation of optical imaging sensor systems. A large body of existing literature covers various methods for application of Snell's Law to the light path ray tracing problem. This paper provides a discussion of the adaptation to real time simulation of atmospheric refraction ray tracing techniques used in mid-1980's LOWTRAN releases. The refraction ray trace algorithm published in a LOWTRAN-6 technical report by Kneizys (et. al.) has been coded in MATLAB for development, and in C-language for simulation use. To this published algorithm we have added tuning parameters for variable path segment lengths, and extensions for Earth grazing and exoatmospheric "near Earth" ray paths. Model atmosphere properties used to exercise the refraction algorithm were obtained from tables published in another LOWTRAN-6 related report. The LOWTRAN-6 based refraction model is applicable to atmospheric propagation at wavelengths in the IR and visible bands of the electromagnetic spectrum. It has been used during the past two years by engineers at the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) in support of several advanced imaging sensor simulations. Recently, a faster (but sufficiently accurate) method using Gauss-Chebyshev Quadrature integration for evaluating the refraction integral was adopted.
NASA Astrophysics Data System (ADS)
Wilson, C. E.; Keane, C. M.
2016-12-01
Students enter into geoscience graduate degree programs have specific expectations of the type of career they are working towards. Are the graduate degree programs effectively serving these students through the development of necessary skills and experiences for their desired career pathway? This question is of particular interest to parties like the National Science Foundation and other STEM agencies who are concerned about the optimal investment in the development of the science and engineering workforce. To address this question, investigation on the general trends of education and immediate career paths over time is needed. The National Science Foundation has been collecting data on education and career paths of science and engineering graduates for decades. Since 2013, AGI has been collecting data from geoscience graduates since 2013 on their education, skills development, and immediate plans after graduation through AGI's Geoscience Student Exit Survey. This presentation synthesizes the data from these two sources related to geoscience master's and doctoral graduates to look at education and career paths over time to see how they have changed over the past few decades, as well as look specifically at the immediate plans of recent graduates as they enter the geoscience workforce. This data will also give some indication of the development of skills gained from these programs through activities such as field work and research.
RetroPath2.0: A retrosynthesis workflow for metabolic engineers.
Delépine, Baudoin; Duigou, Thomas; Carbonell, Pablo; Faulon, Jean-Loup
2018-01-01
Synthetic biology applied to industrial biotechnology is transforming the way we produce chemicals. However, despite advances in the scale and scope of metabolic engineering, the research and development process still remains costly. In order to expand the chemical repertoire for the production of next generation compounds, a major engineering biology effort is required in the development of novel design tools that target chemical diversity through rapid and predictable protocols. Addressing that goal involves retrosynthesis approaches that explore the chemical biosynthetic space. However, the complexity associated with the large combinatorial retrosynthesis design space has often been recognized as the main challenge hindering the approach. Here, we provide RetroPath2.0, an automated open source workflow for retrosynthesis based on generalized reaction rules that perform the retrosynthesis search from chassis to target through an efficient and well-controlled protocol. Its easiness of use and the versatility of its applications make this tool a valuable addition to the biological engineer bench desk. We show through several examples the application of the workflow to biotechnological relevant problems, including the identification of alternative biosynthetic routes through enzyme promiscuity or the development of biosensors. We demonstrate in that way the ability of the workflow to streamline retrosynthesis pathway design and its major role in reshaping the design, build, test and learn pipeline by driving the process toward the objective of optimizing bioproduction. The RetroPath2.0 workflow is built using tools developed by the bioinformatics and cheminformatics community, because it is open source we anticipate community contributions will likely expand further the features of the workflow. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Identification and modification of dominant noise sources in diesel engines
NASA Astrophysics Data System (ADS)
Hayward, Michael D.
Determination of dominant noise sources in diesel engines is an integral step in the creation of quiet engines, but is a process which can involve an extensive series of expensive, time-consuming fired and motored tests. The goal of this research is to determine dominant noise source characteristics of a diesel engine in the near and far-fields with data from fewer tests than is currently required. Pre-conditioning and use of numerically robust methods to solve a set of cross-spectral density equations results in accurate calculation of the transfer paths between the near- and far-field measurement points. Application of singular value decomposition to an input cross-spectral matrix determines the spectral characteristics of a set of independent virtual sources, that, when scaled and added, result in the input cross spectral matrix. Each virtual source power spectral density is a singular value resulting from the decomposition performed over a range of frequencies. The complex relationship between virtual and physical sources is estimated through determination of virtual source contributions to each input measurement power spectral density. The method is made more user-friendly through use of a percentage contribution color plotting technique, where different normalizations can be used to help determine the presence of sources and the strengths of their contributions. Convolution of input measurements with the estimated path impulse responses results in a set of far-field components, to which the same singular value contribution plotting technique can be applied, thus allowing dominant noise source characteristics in the far-field to also be examined. Application of the methods presented results in determination of the spectral characteristics of dominant noise sources both in the near- and far-fields from one fired test, which significantly reduces the need for extensive fired and motored testing. Finally, it is shown that the far-field noise time history of a physically altered engine can be simulated through modification of singular values and recalculation of transfer paths between input and output measurements of previously recorded data.
LLMapReduce: Multi-Level Map-Reduce for High Performance Data Analysis
2016-05-23
LLMapReduce works with several schedulers such as SLURM, Grid Engine and LSF. Keywords—LLMapReduce; map-reduce; performance; scheduler; Grid Engine ...SLURM; LSF I. INTRODUCTION Large scale computing is currently dominated by four ecosystems: supercomputing, database, enterprise , and big data [1...interconnects [6]), High performance math libraries (e.g., BLAS [7, 8], LAPACK [9], ScaLAPACK [10]) designed to exploit special processing hardware, High
Exploiting the Automatic Dependent Surveillance-Broadcast System via False Target Injection
2012-03-01
THESIS Domenic Magazu III, Captain, USAF AFIT/GCO/ENG/12-07 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY...Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air...of GNU Radio, a Universal Software Radio Peripheral (USRP), and software developed by the author. The ability to generate, transmit, and insert
Rotational-path decomposition based recursive planning for spacecraft attitude reorientation
NASA Astrophysics Data System (ADS)
Xu, Rui; Wang, Hui; Xu, Wenming; Cui, Pingyuan; Zhu, Shengying
2018-02-01
The spacecraft reorientation is a common task in many space missions. With multiple pointing constraints, it is greatly difficult to solve the constrained spacecraft reorientation planning problem. To deal with this problem, an efficient rotational-path decomposition based recursive planning (RDRP) method is proposed in this paper. The uniform pointing-constraint-ignored attitude rotation planning process is designed to solve all rotations without considering pointing constraints. Then the whole path is checked node by node. If any pointing constraint is violated, the nearest critical increment approach will be used to generate feasible alternative nodes in the process of rotational-path decomposition. As the planning path of each subdivision may still violate pointing constraints, multiple decomposition is needed and the reorientation planning is designed as a recursive manner. Simulation results demonstrate the effectiveness of the proposed method. The proposed method has been successfully applied in two SPARK microsatellites to solve onboard constrained attitude reorientation planning problem, which were developed by the Shanghai Engineering Center for Microsatellites and launched on 22 December 2016.
ERIC Educational Resources Information Center
McGee, Ebony O.; Martin, Danny B.
2011-01-01
Stereotype management is introduced to explain high achievement and resilience among 23 Black mathematics and engineering college students. Characterized as a tactical response to ubiquitous forms of racism and racialized experiences across school and non-school contexts, stereotype management emerged along overlapping paths of racial, gender, and…
2014-03-26
This long expsoure photograph shows the flight path of the Soyuz TMA-12M rocket as it launches from the Baikonur Cosmodrome in Kazakhstan on Wednesday, March 26, 2014. The rocket is carrying Expedition 39 Soyuz Commander Alexander Skvortsov of the Russian Federal Space Agency, Roscosmos, Flight Engineer Steven Swanson of NASA, and Flight Engineer Oleg Artemyev of Roscosmos to the International Space Station. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
Jacob, H. G.
1972-01-01
An optimization method has been developed that computes the optimal open loop inputs for a dynamical system by observing only its output. The method reduces to static optimization by expressing the inputs as series of functions with parameters to be optimized. Since the method is not concerned with the details of the dynamical system to be optimized, it works for both linear and nonlinear systems. The method and the application to optimizing longitudinal landing paths for a STOL aircraft with an augmented wing are discussed. Noise, fuel, time, and path deviation minimizations are considered with and without angle of attack, acceleration excursion, flight path, endpoint, and other constraints.
MED-SUV final strategic issues
NASA Astrophysics Data System (ADS)
Spampinato, Letizia; Puglisi, Giuseppe; Sangianantoni, Agata
2016-04-01
Aside the scientific, technical and financial aspects managed by the "Project Management" Work Package (WP1), the great challenge and more time consuming task of this WP has surely been the definition and application of some strategic guidelines crucial to trace the project right path to its final success and for the project outcome sustainability after month 36. In particular, given that one of the main objectives of MED-SUV is that to be compliant with the GEO initiative, particularly concerning the data sharing, great efforts have been made by WP1 at first to define the MED-SUV Data Policy Guidelines, and currently to make it suitable for the EU Supersites. At present, WP1 is also dealing with the exploitation of the achieved foreground among the project's participant and to define a Memorandum of Understanding to sustain the monitoring systems and e-infrastructure developed in the project framework. Whilst the Data Policy guidelines document was implemented in the first year of MED-SUV, WP1 is now focused on the last deliverable 'Strategic and Legal deliverables', which includes the remaining issues. To the aim, WP1 has strategically separated the Exploitation of Foreground document preparation from the Memorandum of Understanding definition. The Exploitation of Foreground process has regarded the identification of Foreground, the exploitable results, the purpose of such Foreground, the collection of information from either the scientific community of MED-SUV or industrial participants; to this aim WP1 circulated an ad hoc questionnaire to put together information on (the) every kind of MED-SUV outcome, on their owners, on the kind of ownership (single/joint), on the outcome exploitation, and on proposals for its sustainability. While the first information will allow us to prepare the final Exploitation Agreement among the project's participant, the information on the exploitation of the outcome and likely sustainability proposals will contribute to the definition of the project Memorandum of Understanding for the maintenance of the developed instrumentation and of the MED-SUV e-infrastructure following the project end.
Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe
NASA Astrophysics Data System (ADS)
Skupinski, Robert C.; Tower, Leonard K.; Madi, Frank J.; Brusk, Kevin D.
1993-04-01
The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.
Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe
NASA Technical Reports Server (NTRS)
Skupinski, Robert C.; Tower, Leonard K.; Madi, Frank J.; Brusk, Kevin D.
1993-01-01
The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.
Object Based Systems Engineering
2011-10-17
practically impossible where the original SMEs are unavailable or lack perfect recall. 7. Capture the precious and transient logic behind this...complex system. References 1. FITCH, J. Exploiting Decision-to-Requirements Traceability, briefing to NDIA CMMI Conference, November, 2009 2
75 FR 51161 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... approach path indicator systems. By-pass taxiway and hold apron. Master plan update. Airfield signage... mandates. Concourse A and B. Overlay taxiway C and connectors. Engineer/design airfield signage...
Implementation of an Integrated On-Board Aircraft Engine Diagnostic Architecture
NASA Technical Reports Server (NTRS)
Armstrong, Jeffrey B.; Simon, Donald L.
2012-01-01
An on-board diagnostic architecture for aircraft turbofan engine performance trending, parameter estimation, and gas-path fault detection and isolation has been developed and evaluated in a simulation environment. The architecture incorporates two independent models: a realtime self-tuning performance model providing parameter estimates and a performance baseline model for diagnostic purposes reflecting long-term engine degradation trends. This architecture was evaluated using flight profiles generated from a nonlinear model with realistic fleet engine health degradation distributions and sensor noise. The architecture was found to produce acceptable estimates of engine health and unmeasured parameters, and the integrated diagnostic algorithms were able to perform correct fault isolation in approximately 70 percent of the tested cases
Engine Load Path Calculations - Project Neo
NASA Technical Reports Server (NTRS)
Fisher, Joseph
2014-01-01
A mathematical model of the engine and actuator geometry was developed and used to perform a static force analysis of the system with the engine at different pitch and yaw angles. This analysis yielded the direction and magnitude of the reaction forces at the mounting points of the engine and actuators. These data were used to validate the selection of the actuators installed in the system and to design a new spherical joint to mount the engine on the test fixture. To illustrate the motion of the system and to further interest in the project, a functional 3D printed version of the system was made, featuring the full mobility of the real system.
Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions.
Brandenberg, Oliver F; Fasan, Rudi; Arnold, Frances H
2017-10-01
The surge in reports of heme-dependent proteins as catalysts for abiotic, synthetically valuable carbene and nitrene transfer reactions dramatically illustrates the evolvability of the protein world and our nascent ability to exploit that for new enzyme chemistry. We highlight the latest additions to the hemoprotein-catalyzed reaction repertoire (including carbene Si-H and C-H insertions, Doyle-Kirmse reactions, aldehyde olefinations, azide-to-aldehyde conversions, and intermolecular nitrene C-H insertion) and show how different hemoprotein scaffolds offer varied reactivity and selectivity. Preparative-scale syntheses of pharmaceutically relevant compounds accomplished with these new catalysts are beginning to demonstrate their biotechnological relevance. Insights into the determinants of enzyme lifetime and product yield are providing generalizable cues for engineering heme-dependent proteins to further broaden the scope and utility of these non-natural activities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Molecular nanomagnets with switchable coupling for quantum simulation
Chiesa, Alessandro; Whitehead, George F. S.; Carretta, Stefano; ...
2014-12-11
Molecular nanomagnets are attractive candidate qubits because of their wide inter- and intra-molecular tunability. Uniform magnetic pulses could be exploited to implement one- and two-qubit gates in presence of a properly engineered pattern of interactions, but the synthesis of suitable and potentially scalable supramolecular complexes has proven a very hard task. Indeed, no quantum algorithms have ever been implemented, not even a proof-of-principle two-qubit gate. In this paper we show that the magnetic couplings in two supramolecular {Cr7Ni}-Ni-{Cr7Ni} assemblies can be chemically engineered to fit the above requisites for conditional gates with no need of local control. Microscopic parameters aremore » determined by a recently developed many-body ab-initio approach and used to simulate quantum gates. We find that these systems are optimal for proof-of-principle two-qubit experiments and can be exploited as building blocks of scalable architectures for quantum simulation.« less
Synthetic biology approaches: Towards sustainable exploitation of marine bioactive molecules.
Seghal Kiran, G; Ramasamy, Pasiyappazham; Sekar, Sivasankari; Ramu, Meenatchi; Hassan, Saqib; Ninawe, A S; Selvin, Joseph
2018-06-01
The discovery of genes responsible for the production of bioactive metabolites via metabolic pathways combined with the advances in synthetic biology tools, has allowed the establishment of numerous microbial cell factories, for instance the yeast cell factories, for the manufacture of highly useful metabolites from renewable biomass. Genome mining and metagenomics are two platforms provide base-line data for reconstruction of genomes and metabolomes which is based in the development of synthetic/semi-synthetic genomes for marine natural products discovery. Engineered biofilms are being innovated on synthetic biology platform using genetic circuits and cell signalling systems as represillators controlling biofilm formation. Recombineering is a process of homologous recombination mediated genetic engineering, includes insertion, deletion or modification of any sequence specifically. Although this discipline considered new to the scientific domain, this field has now developed as promising endeavor on the accomplishment of sustainable exploitation of marine natural products. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Valtonen, Katariina; Leppänen, Mauri
Governments worldwide are concerned for efficient production of services to customers. To improve quality of services and to make service production more efficient, information and communication technology (ICT) is largely exploited in public administration (PA). Succeeding in this exploitation calls for large-scale planning which embraces issues from strategic to technological level. In this planning the notion of enterprise architecture (EA) is commonly applied. One of the sub-architectures of EA is business architecture (BA). BA planning is challenging in PA due to a large number of stakeholders, a wide set of customers, and solid and hierarchical structures of organizations. To support EA planning in Finland, a project to engineer a government EA (GEA) method was launched. In this chapter, we analyze the discussions and outputs of the project workshops and reflect emerged issues on current e-government literature. We bring forth insights into and suggestions for government BA and its development.
Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering.
Fehér, Tamás; Planson, Anne-Gaëlle; Carbonell, Pablo; Fernández-Castané, Alfred; Grigoras, Ioana; Dariy, Ekaterina; Perret, Alain; Faulon, Jean-Loup
2014-11-01
Metabolic engineering has succeeded in biosynthesis of numerous commodity or high value compounds. However, the choice of pathways and enzymes used for production was many times made ad hoc, or required expert knowledge of the specific biochemical reactions. In order to rationalize the process of engineering producer strains, we developed the computer-aided design (CAD) tool RetroPath that explores and enumerates metabolic pathways connecting the endogenous metabolites of a chassis cell to the target compound. To experimentally validate our tool, we constructed 12 top-ranked enzyme combinations producing the flavonoid pinocembrin, four of which displayed significant yields. Namely, our tool queried the enzymes found in metabolic databases based on their annotated and predicted activities. Next, it ranked pathways based on the predicted efficiency of the available enzymes, the toxicity of the intermediate metabolites and the calculated maximum product flux. To implement the top-ranking pathway, our procedure narrowed down a list of nine million possible enzyme combinations to 12, a number easily assembled and tested. One round of metabolic network optimization based on RetroPath output further increased pinocembrin titers 17-fold. In total, 12 out of the 13 enzymes tested in this work displayed a relative performance that was in accordance with its predicted score. These results validate the ranking function of our CAD tool, and open the way to its utilization in the biosynthesis of novel compounds. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fast Response, Open-Celled Porous, Shape Memory Effect Actuators with Integrated Attachments
NASA Technical Reports Server (NTRS)
Jardine, Andrew Peter (Inventor)
2015-01-01
This invention relates to the exploitation of porous foam articles exhibiting the Shape Memory Effect as actuators. Each foam article is composed of a plurality of geometric shapes, such that some geometric shapes can fit snugly into or around rigid mating connectors that attach the Shape Memory foam article intimately into the load path between a static structure and a moveable structure. The foam is open-celled, composed of a plurality of interconnected struts whose mean diameter can vary from approximately 50 to 500 microns. Gases and fluids flowing through the foam transfer heat rapidly with the struts, providing rapid Shape Memory Effect transformations. Embodiments of porous foam articles as torsional actuators and approximately planar structures are disposed. Simple, integral connection systems exploiting the ability to supply large loads to a structure, and that can also supply hot and cold gases and fluids to effect rapid actuation are also disposed.
Six degree-of-freedom scanning supports and manipulators based on parallel robots
NASA Astrophysics Data System (ADS)
Comin, Fabio
1995-02-01
The exploitation of third generation SR sources heavily relies on accurate and stable positioning and scanning of samples and optical elements. In some cases, active feedback is also necessary. Normally, these tasks are carried out by serial addition of individual components, each of them providing a well-defined excursion path. On the contrary, the exploitation of the concept of parallel robots, structures in close cinematic chain, permits us to follow any given trajectory in the six-dimensional space with a large increase in accuracy and stiffness. At ESRF, the parallel robot architecture conceived some tens of years ago for flight simulators has been adapted to both actively align and operate optical elements of considerable weight and position small samples in ultrahigh vacuum. The performance of these devices gives results far superior to the initial specification and a variety of drive mechanisms are being developed to fit the different needs of the ESRF beamlines.
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Engineers Priya Venkatesan and Joey Mercer review flight paths using the UAS traffic management research platform at flight operations mission control at NASA’s UTM TCL2 test.
2018-04-01
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...2006. Since that time , SS-RICS has been the integration platform for many robotics algorithms using a variety of different disciplines from cognitive...voice recognition. Each noise level was run 10 times per gender, yielding 60 total runs. Two paths were chosen for testing (Paths A and B) of
Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States
2016-08-12
Performing Organization: The Pennsylvania State University Department of Aerospace Engineering 231C Hammond Building University Park, PA 16802 Attn...Plant Models Used in the Study The H-60 class model was developed and distributed by ART to both NAVAIR and Penn State research teams. The model...To) 07 109 I 201 4 tD 07 I 08 12016 ’t TITLE AND SUBTITLE Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States
NASA Astrophysics Data System (ADS)
Görgl, Richard; Brandstätter, Elmar
2017-01-01
The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser cladding and laser-based additive manufacturing are given.
Naturally occurring minichromosome platforms in chromosome engineering: an overview.
Raimondi, Elena
2011-01-01
Artificially modified chromosome vectors are non-integrating gene delivery platforms that can shuttle very large DNA fragments in various recipient cells: theoretically, no size limit exists for the chromosome segments that an engineered minichromosome can accommodate. Therefore, genetically manipulated chromosomes might be potentially ideal vector systems, especially when the complexity of higher eukaryotic genes is concerned. This review focuses on those chromosome vectors generated using spontaneously occurring small markers as starting material. The definition and manipulation of the centromere domain is one of the main obstacles in chromosome engineering: naturally occurring minichromosomes, due to their inherent small size, were helpful in defining some aspects of centromere function. In addition, several distinctive features of small marker chromosomes, like their appearance as supernumerary elements in otherwise normal karyotypes, have been successfully exploited to use them as gene delivery vectors. The key technologies employed for minichromosome engineering are: size reduction, gene targeting, and vector delivery in various recipient cells. In spite of the significant advances that have been recently achieved in all these fields, several unsolved problems limit the potential of artificially modified chromosomes. Still, these vector systems have been exploited in a number of applications where the investigation of the controlled expression of large DNA segments is needed. A typical example is the analysis of genes whose expression strictly depends on the chromosomal environment in which they are positioned, where engineered chromosomes can be envisaged as epigenetically regulated expression systems. A novel and exciting advance concerns the use of engineered minichromosomes to study the organization and dynamics of local chromatin structures.
Alternative Fuels DISI Engine Research ? Autoignition Metrics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjoberg, Carl Magnus Goran; Vuilleumier, David
Improved engine efficiency is required to comply with future fuel economy standards. Alternative fuels have the potential to enable more efficient engines while addressing concerns about energy security. This project contributes to the science base needed by industry to develop highly efficient direct injection spark igniton (DISI) engines that also beneficially exploit the different properties of alternative fuels. Here, the emphasis is on quantifying autoignition behavior for a range of spark-ignited engine conditions, including directly injected boosted conditions. The efficiency of stoichiometrically operated spark ignition engines is often limited by fuel-oxidizer end-gas autoignition, which can result in engine knock. Amore » fuel’s knock resistance is assessed empirically by the Research Octane Number (RON) and Motor Octane Number (MON) tests. By clarifying how these two tests relate to the autoignition behavior of conventional and alternative fuel formulations, fuel design guidelines for enhanced engine efficiency can be developed.« less
Non-genetic engineering of cells for drug delivery and cell-based therapy.
Wang, Qun; Cheng, Hao; Peng, Haisheng; Zhou, Hao; Li, Peter Y; Langer, Robert
2015-08-30
Cell-based therapy is a promising modality to address many unmet medical needs. In addition to genetic engineering, material-based, biochemical, and physical science-based approaches have emerged as novel approaches to modify cells. Non-genetic engineering of cells has been applied in delivering therapeutics to tissues, homing of cells to the bone marrow or inflammatory tissues, cancer imaging, immunotherapy, and remotely controlling cellular functions. This new strategy has unique advantages in disease therapy and is complementary to existing gene-based cell engineering approaches. A better understanding of cellular systems and different engineering methods will allow us to better exploit engineered cells in biomedicine. Here, we review non-genetic cell engineering techniques and applications of engineered cells, discuss the pros and cons of different methods, and provide our perspectives on future research directions. Copyright © 2014 Elsevier B.V. All rights reserved.
Proceedings of the Conference Arctic '85; Civil Engineering in the Artic offshore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, F.L.; Machemehl, J.L.
1985-01-01
Topics of the 1985 Conference included: Arctic construction, Arctic foundation, Arctic structures, and ocean effects. Arctic terminals and coastal offshore bases, protecting the Arctic environment, and probabilistic methods in Arctic offshore engineering were also discussed. Ice mechanics, marine pipelines in the Arctic, and the role of universities in training civil engineers for Arctic offshore development were highlighted. Sessions on remote sensing, surveying, and mapping were included, and offshore installations in the Bering Sea were discussed. Another topic of discussion was research in Civil Engineering for development of the Arctic offshore. The overall thrust of the conference was the application ofmore » Arctic offshore engineering principles and research in the field of oil and gas exploration and exploitation activity.« less
Dhamankar, Himanshu; Prather, Kristala L J
2011-08-01
The dwindling nature of petroleum and other fossil reserves has provided impetus towards microbial synthesis of fuels and value added chemicals from biomass-derived sugars as a renewable resource. Microbes have naturally evolved enzymes and pathways that can convert biomass into hundreds of unique chemical structures, a property that can be effectively exploited for their engineering into Microbial Chemical Factories (MCFs). De novo pathway engineering facilitates expansion of the repertoire of microbially synthesized compounds beyond natural products. In this review, we visit some recent successes in such novel pathway engineering and optimization, with particular emphasis on the selection and engineering of pathway enzymes and balancing of their accessory cofactors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Emulytics for Cyber-Enabled Physical Attack Scenarios: Interim LDRD Report of Year One Results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clem, John; Urias, Vincent; Atkins, William Dee
Sandia National Laboratories has funded the research and development of a new capability to interactively explore the effects of cyber exploits on the performance of physical protection systems. This informal, interim report of progress summarizes the project’s basis and year one (of two) accomplishments. It includes descriptions of confirmed cyber exploits against a representative testbed protection system and details the development of an emulytics capability to support live, virtual, and constructive experiments. This work will support stakeholders to better engineer, operate, and maintain reliable protection systems.
NASA Astrophysics Data System (ADS)
Abeywickrama, Sandu; Furdek, Marija; Monti, Paolo; Wosinska, Lena; Wong, Elaine
2016-12-01
Core network survivability affects the reliability performance of telecommunication networks and remains one of the most important network design considerations. This paper critically examines the benefits arising from utilizing dual-homing in the optical access networks to provide resource-efficient protection against link and node failures in the optical core segment. Four novel, heuristic-based RWA algorithms that provide dedicated path protection in networks with dual-homing are proposed and studied. These algorithms protect against different failure scenarios (i.e. single link or node failures) and are implemented with different optimization objectives (i.e., minimization of wavelength usage and path length). Results obtained through simulations and comparison with baseline architectures indicate that exploiting dual-homed architecture in the access segment can bring significant improvements in terms of core network resource usage, connection availability, and power consumption.
Experimental research made during a city cycle on the feasibility of electrically charged SI engines
NASA Astrophysics Data System (ADS)
Kocsis, Levente B.; Burnete, Nicolae
2014-06-01
The paper presents experimental research on performance improvements in a city cycle (operating mostly transient) of a compact class vehicle equipped with a turbocharged SI engine which had attached an electric charger, to improve engine response at low operational speeds. During tests, functional parameters, energy consumption of the electric charger and vehicle performances were measured while driving in two operating conditions: with active and inactive electric charger. The tests were carried out on a well-defined path, in the same driving style, by the same driver.
1981-08-01
or discharge paths of material over the end pulley of a conveyor are important to the proper design and function of discharge chutes , wear plates or...8217 ’iESL-TR-81-58 INVESTIGATION OF ENGINEERING AND DESIGN CONSIDERATIONS IN SELECTING CONVEYORS FOR DENSIFIED REFUSE-DERIVED FUEL (dRDF) AND dRDF: COAL...Engineering and Design Final Report Considerations in Selecting Conveyors for JUN 1980 - SEP 1981 Densified Refuse-Derived Fuel (dRDF) and 6. PERFORMING ORG
NASA Technical Reports Server (NTRS)
Toelle, Ronald (Compiler)
1995-01-01
A launch vehicle concept to deliver 20,000 lb of payload to a 100-nmi orbit has been defined. A new liquid oxygen/kerosene booster powered by an RD-180 engine was designed while using a slightly modified Centaur upper stage. The design, development, and test program met the imposed 40-mo schedule by elimination of major structural testing by increased factors of safety and concurrent engineering concepts. A growth path to attain 65,000 lb of payload is developed.
McDonald, Sarah K; Fleming, Karen G
2016-11-08
Hysteresis in equilibrium protein folding titrations is an experimental barrier that must be overcome to extract meaningful thermodynamic quantities. Traditional approaches to solving this problem involve testing a spectrum of solution conditions to find ones that achieve path independence. Through this procedure, a specific pH of 3.8 was required to achieve path independence for the water-to-bilayer equilibrium folding of outer membrane protein OmpLA. We hypothesized that the neutralization of negatively charged side chains (Asp and Glu) at pH 3.8 could be the physical basis for path-independent folding at this pH. To test this idea, we engineered variants of OmpLA with Asp → Asn and Glu → Gln mutations to neutralize the negative charges within various regions of the protein and tested for reversible folding at neutral pH. Although not fully resolved, our results show that these mutations in the periplasmic turns and extracellular loops are responsible for 60% of the hysteresis in wild-type folding. Overall, our study suggests that negative charges impact the folding hysteresis in outer membrane proteins and their neutralization may aid in protein engineering applications.
Foreign Object Damage Identification in Turbine Engines
NASA Technical Reports Server (NTRS)
Strack, William; Zhang, Desheng; Turso, James; Pavlik, William; Lopez, Isaac
2005-01-01
This report summarizes the collective work of a five-person team from different organizations examining the problem of detecting foreign object damage (FOD) events in turbofan engines from gas path thermodynamic and bearing accelerometer sensors, and determining the severity of damage to each component (diagnosis). Several detection and diagnostic approaches were investigated and a software tool (FODID) was developed to assist researchers detect/diagnose FOD events. These approaches include (1) fan efficiency deviation computed from upstream and downstream temperature/ pressure measurements, (2) gas path weighted least squares estimation of component health parameter deficiencies, (3) Kalman filter estimation of component health parameters, and (4) use of structural vibration signal processing to detect both large and small FOD events. The last three of these approaches require a significant amount of computation in conjunction with a physics-based analytic model of the underlying phenomenon the NPSS thermodynamic cycle code for approaches 1 to 3 and the DyRoBeS reduced-order rotor dynamics code for approach 4. A potential application of the FODID software tool, in addition to its detection/diagnosis role, is using its sensitivity results to help identify the best types of sensors and their optimum locations within the gas path, and similarly for bearing accelerometers.
HyPlane for Space Tourism and Business Transportation
NASA Astrophysics Data System (ADS)
Savino, R.
In the present work a preliminary study on a small hypersonic airplane for a long duration space tourism mission is presented. It is also consistent with a point-to-point medium range (5000-6000 km) hypersonic trip, in the frame of the "urgent business travel" market segment. The main ideas is to transfer technological solutions developed for aeronautical and space atmospheric re-entry systems to the design of such a hypersonic airplane. A winged vehicle characterized by high aerodynamic efficiency and able to manoeuvre along the flight path, in all aerodynamic regimes encountered, is taken into consideration. Rocket-Based Combined Cycle and Turbine-Based Combined Cycle engines are investigated to ensure higher performances in terms of flight duration and range. Different flight-paths are also considered, including sub-orbital parabolic trajectories and steady state hypersonic cruise. The former, in particular, takes advantage of the high aerodynamic efficiency during the unpowered phase, in combination with a periodic engine actuation, to guarantee a long duration oscillating flight path. These trajectories offer Space tourists the opportunity of extended missions, characterized by repeated periods of low-gravity at altitudes high enough to ensure a wide view of the Earth from Space.
Crash tests of four low-wing twin-engine airplanes with truss-reinforced fuselage structure
NASA Technical Reports Server (NTRS)
Williams, M. S.; Fasanella, E. L.
1982-01-01
Four six-place, low-wing, twin-engine, general aviation airplane test specimens were crash tested under controlled free flight conditions. All airplanes were impacted on a concrete test surface at a nomial flight path velocity of 27 m/sec. Two tests were conducted at a -15 deg flight path angle (0 deg pitch angle and 15 deg pitch angle), and two were conducted at a -30 deg flight path angle (-30 deg pitch angle). The average acceleration time histories (crash pulses) in the cabin area for each principal direction were calculated for each crash test. In addition, the peak floor accelerations were calculated for each test as a function of aircraft fuselage longitudinal station number. Anthropomorphic dummy accelerations were analyzed using the dynamic response index and severity index (SI) models. Parameters affecting the dummy restraint system were studied; these parameters included the effect of no upper torso restraint, measurement of the amount of inertia-reel strap pullout before locking, measurement of dummy chest forward motion, and loads in the restraints. With the SI model, the dummies with no shoulder harness received head impacts above the concussive threshold.
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Cheng, Larry
2015-01-01
This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.
What Can Pictures Tell Us About Web Pages? Improving Document Search Using Images.
Rodriguez-Vaamonde, Sergio; Torresani, Lorenzo; Fitzgibbon, Andrew W
2015-06-01
Traditional Web search engines do not use the images in the HTML pages to find relevant documents for a given query. Instead, they typically operate by computing a measure of agreement between the keywords provided by the user and only the text portion of each page. In this paper we study whether the content of the pictures appearing in a Web page can be used to enrich the semantic description of an HTML document and consequently boost the performance of a keyword-based search engine. We present a Web-scalable system that exploits a pure text-based search engine to find an initial set of candidate documents for a given query. Then, the candidate set is reranked using visual information extracted from the images contained in the pages. The resulting system retains the computational efficiency of traditional text-based search engines with only a small additional storage cost needed to encode the visual information. We test our approach on one of the TREC Million Query Track benchmarks where we show that the exploitation of visual content yields improvement in accuracies for two distinct text-based search engines, including the system with the best reported performance on this benchmark. We further validate our approach by collecting document relevance judgements on our search results using Amazon Mechanical Turk. The results of this experiment confirm the improvement in accuracy produced by our image-based reranker over a pure text-based system.
1990-06-01
reduction software , prior to converting all remaining test which requires internal compensation. T he r sidual effect is pressures to engineering units...Reduction Conversion of Millivolts to Engineering Units. Carrying out numerical integrations to obtain area and mass weighted averages for various...Performance Assessment of Aircraft Turbine Engines and Components (Les MWthodes Recommande’es pour la Mesure de la Pression et de ]a Temperature de la
Gramene database: navigating plant comparative genomics resources
USDA-ARS?s Scientific Manuscript database
Gramene (http://www.gramene.org) is an online, open source, curated resource for plant comparative genomics and pathway analysis designed to support researchers working in plant genomics, breeding, evolutionary biology, system biology, and metabolic engineering. It exploits phylogenetic relationship...
Co-development of manner and path concepts in language, action, and eye-gaze behavior.
Lohan, Katrin S; Griffiths, Sascha S; Sciutti, Alessandra; Partmann, Tim C; Rohlfing, Katharina J
2014-07-01
In order for artificial intelligent systems to interact naturally with human users, they need to be able to learn from human instructions when actions should be imitated. Human tutoring will typically consist of action demonstrations accompanied by speech. In the following, the characteristics of human tutoring during action demonstration will be examined. A special focus will be put on the distinction between two kinds of motion events: path-oriented actions and manner-oriented actions. Such a distinction is inspired by the literature pertaining to cognitive linguistics, which indicates that the human conceptual system can distinguish these two distinct types of motion. These two kinds of actions are described in language by more path-oriented or more manner-oriented utterances. In path-oriented utterances, the source, trajectory, or goal is emphasized, whereas in manner-oriented utterances the medium, velocity, or means of motion are highlighted. We examined a video corpus of adult-child interactions comprised of three age groups of children-pre-lexical, early lexical, and lexical-and two different tasks, one emphasizing manner more strongly and one emphasizing path more strongly. We analyzed the language and motion of the caregiver and the gazing behavior of the child to highlight the differences between the tutoring and the acquisition of the manner and path concepts. The results suggest that age is an important factor in the development of these action categories. The analysis of this corpus has also been exploited to develop an intelligent robotic behavior-the tutoring spotter system-able to emulate children's behaviors in a tutoring situation, with the aim of evoking in human subjects a natural and effective behavior in teaching to a robot. The findings related to the development of manner and path concepts have been used to implement new effective feedback strategies in the tutoring spotter system, which should provide improvements in human-robot interaction. Copyright © 2014 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Hipp, J. R.; Encarnacao, A.; Ballard, S.; Young, C. J.; Phillips, W. S.; Begnaud, M. L.
2011-12-01
Recently our combined SNL-LANL research team has succeeded in developing a global, seamless 3D tomographic P-velocity model (SALSA3D) that provides superior first P travel time predictions at both regional and teleseismic distances. However, given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we show a methodology for accomplishing this by exploiting the full model covariance matrix. Our model has on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes Tikhonov regularization terms) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiply methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix we solve for the travel-time covariance associated with arbitrary ray-paths by integrating the model covariance along both ray paths. Setting the paths equal gives variance for that path. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Technology Horizons: A Vision for Air Force Science and Technology 2010-30
2011-09-01
software, hardware, and networks, it is now recognized as en- compassing the entire system that couples information flow and decision processes across...acceleration, and scramjet cruise. Inward turning inlets and a dual- flow path design allow high volumetric efficiency, and high cruise speed provides...the same time, emerging “third- stream engine architectures” can enable constant-mass- flow engines that can provide further reductions in fuel
NASA Technical Reports Server (NTRS)
Anderson, Seth B.; Cooper, George E.; Faye, Alan E., Jr.
1959-01-01
A flight investigation was undertaken to determine the effect of a fully controllable thrust reverser on the flight characteristics of a single-engine jet airplane. Tests were made using a cylindrical target-type reverser actuated by a hydraulic cylinder through a "beep-type" cockpit control mounted at the base of the throttle. The thrust reverser was evaluated as an in-flight decelerating device, as a flight path control and airspeed control in landing approach, and as a braking device during the ground roll. Full deflection of the reverser for one reverser configuration resulted in a reverse thrust ratio of as much as 85 percent, which at maximum engine power corresponded to a reversed thrust of 5100 pounds. Use of the reverser in landing approach made possible a wide selection of approach angles, a large reduction in approach speed at steep approach angles, improved control of flight path angle, and more accuracy in hitting a given touchdown point. The use of the reverser as a speed brake at lower airspeeds was compromised by a longitudinal trim change. At the lower airspeeds and higher engine powers there was insufficient elevator power to overcome the nose-down trim change at full reverser deflection.
An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics
NASA Technical Reports Server (NTRS)
imon, Donald L.; Armstrong, Jeffrey B.
2012-01-01
A Kalman filter-based approach for integrated on-line aircraft engine performance estimation and gas path fault diagnostics is presented. This technique is specifically designed for underdetermined estimation problems where there are more unknown system parameters representing deterioration and faults than available sensor measurements. A previously developed methodology is applied to optimally design a Kalman filter to estimate a vector of tuning parameters, appropriately sized to enable estimation. The estimated tuning parameters can then be transformed into a larger vector of health parameters representing system performance deterioration and fault effects. The results of this study show that basing fault isolation decisions solely on the estimated health parameter vector does not provide ideal results. Furthermore, expanding the number of the health parameters to address additional gas path faults causes a decrease in the estimation accuracy of those health parameters representative of turbomachinery performance deterioration. However, improved fault isolation performance is demonstrated through direct analysis of the estimated tuning parameters produced by the Kalman filter. This was found to provide equivalent or superior accuracy compared to the conventional fault isolation approach based on the analysis of sensed engine outputs, while simplifying online implementation requirements. Results from the application of these techniques to an aircraft engine simulation are presented and discussed.
Fixed-topology Lorentzian triangulations: Quantum Regge Calculus in the Lorentzian domain
NASA Astrophysics Data System (ADS)
Tate, Kyle; Visser, Matt
2011-11-01
A key insight used in developing the theory of Causal Dynamical Triangu-lations (CDTs) is to use the causal (or light-cone) structure of Lorentzian manifolds to restrict the class of geometries appearing in the Quantum Gravity (QG) path integral. By exploiting this structure the models developed in CDTs differ from the analogous models developed in the Euclidean domain, models of (Euclidean) Dynamical Triangulations (DT), and the corresponding Lorentzian results are in many ways more "physical". In this paper we use this insight to formulate a Lorentzian signature model that is anal-ogous to the Quantum Regge Calculus (QRC) approach to Euclidean Quantum Gravity. We exploit another crucial fact about the structure of Lorentzian manifolds, namely that certain simplices are not constrained by the triangle inequalities present in Euclidean signa-ture. We show that this model is not related to QRC by a naive Wick rotation; this serves as another demonstration that the sum over Lorentzian geometries is not simply related to the sum over Euclidean geometries. By removing the triangle inequality constraints, there is more freedom to perform analytical calculations, and in addition numerical simulations are more computationally efficient. We first formulate the model in 1 + 1 dimensions, and derive scaling relations for the pure gravity path integral on the torus using two different measures. It appears relatively easy to generate "large" universes, both in spatial and temporal extent. In addition, loopto-loop amplitudes are discussed, and a transfer matrix is derived. We then also discuss the model in higher dimensions.
FAST Modularization Framework for Wind Turbine Simulation: Full-System Linearization
Jonkman, Jason M.; Jonkman, Bonnie J.
2016-10-03
The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well-established methods and tools for analyzing linear systems. Here, this paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.
FAST modularization framework for wind turbine simulation: full-system linearization
NASA Astrophysics Data System (ADS)
Jonkman, J. M.; Jonkman, B. J.
2016-09-01
The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well- established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.
Microbial fuel cells - Applications for generation of electrical power and beyond.
Mathuriya, Abhilasha Singh; Yakhmi, J V
2016-01-01
A Microbial Fuel Cell is a bioelectrochemical device that exploits metabolic activities of living microorganisms for generation of electric current. The usefulness and unique and exclusive architecture of this device has received wide attention recently of engineers and researchers of various disciplines such as microbiologists, chemical engineers, biotechnologists, environment engineers and mechanical engineers, and the subject of MFCs has thereby progressed as a well-developed technology. Sustained innovations and continuous development efforts have established the usefulness of MFCs towards many specialized and value-added applications beyond electricity generation, such as wastewater treatment and implantable body devices. This review is an attempt to provide an update on this rapidly growing technology.
Auditory Perception of Motor Vehicle Travel Paths
Ashmead, Daniel H.; Grantham, D. Wesley; Maloff, Erin S.; Hornsby, Benjamin; Nakamura, Takabun; Davis, Timothy J.; Pampel, Faith; Rushing, Erin G.
2012-01-01
Objective These experiments address concerns that motor vehicles in electric engine mode are so quiet that they pose a risk to pedestrians, especially those with visual impairments. Background The “quiet car” issue has focused on hybrid and electric vehicles, although it also applies to internal combustion engine vehicles. Previous research has focused on detectability of vehicles, mostly in quiet settings. Instead, we focused on the functional ability to perceive vehicle motion paths. Method Participants judged whether simulated vehicles were traveling straight or turning, with emphasis on the impact of background traffic sound. Results In quiet, listeners made the straight-or-turn judgment soon enough in the vehicle’s path to be useful for deciding whether to start crossing the street. This judgment is based largely on sound level cues rather than the spatial direction of the vehicle. With even moderate background traffic sound, the ability to tell straight from turn paths is severely compromised. The signal-to-noise ratio needed for the straight-or-turn judgment is much higher than that needed to detect a vehicle. Conclusion Although a requirement for a minimum vehicle sound level might enhance detection of vehicles in quiet settings, it is unlikely that this requirement would contribute to pedestrian awareness of vehicle movements in typical traffic settings with many vehicles present. Application The findings are relevant to deliberations by government agencies and automobile manufacturers about standards for minimum automobile sounds and, more generally, for solutions to pedestrians’ needs for information about traffic, especially for pedestrians with sensory impairments. PMID:22768645
Auditory perception of motor vehicle travel paths.
Ashmead, Daniel H; Grantham, D Wesley; Maloff, Erin S; Hornsby, Benjamin; Nakamura, Takabun; Davis, Timothy J; Pampel, Faith; Rushing, Erin G
2012-06-01
These experiments address concerns that motor vehicles in electric engine mode are so quiet that they pose a risk to pedestrians, especially those with visual impairments. The "quiet car" issue has focused on hybrid and electric vehicles, although it also applies to internal combustion engine vehicles. Previous research has focused on detectability of vehicles, mostly in quiet settings. Instead, we focused on the functional ability to perceive vehicle motion paths. Participants judged whether simulated vehicles were traveling straight or turning, with emphasis on the impact of background traffic sound. In quiet, listeners made the straight-or-turn judgment soon enough in the vehicle's path to be useful for deciding whether to start crossing the street. This judgment is based largely on sound level cues rather than the spatial direction of the vehicle. With even moderate background traffic sound, the ability to tell straight from turn paths is severely compromised. The signal-to-noise ratio needed for the straight-or-turn judgment is much higher than that needed to detect a vehicle. Although a requirement for a minimum vehicle sound level might enhance detection of vehicles in quiet settings, it is unlikely that this requirement would contribute to pedestrian awareness of vehicle movements in typical traffic settings with many vehicles present. The findings are relevant to deliberations by government agencies and automobile manufacturers about standards for minimum automobile sounds and, more generally, for solutions to pedestrians' needs for information about traffic, especially for pedestrians with sensory impairments.
NASA Astrophysics Data System (ADS)
Trolinger, James D.; Dioumaev, Andrei K.; Ziaee, Ali; Minniti, Marco; Dunn-Rankin, Derek
2017-08-01
This paper describes research that demonstrated gated, femtosecond, digital holography, enabling 3D microscopic viewing inside dense, almost opaque sprays, and providing a new and powerful diagnostics capability for viewing fuel atomization processes never seen before. The method works by exploiting the extremely short coherence and pulse length (approximately 30 micrometers in this implementation) provided by a femtosecond laser combined with digital holography to eliminate multiple and wide angle scattered light from particles surrounding the injection region, which normally obscures the image of interest. Photons that follow a path that differs in length by more than 30 micrometers from a straight path through the field to the sensor do not contribute to the holographic recording of photons that travel in a near straight path (ballistic and "snake" photons). To further enhance the method, off-axis digital holography was incorporated to enhance signal to noise ratio and image processing capability in reconstructed images by separating the conjugate images, which overlap and interfere in conventional in-line holography. This also enables digital holographic interferometry. Fundamental relationships and limitations were also examined. The project is a continuing collaboration between MetroLaser and the University of California, Irvine.
Engine System Loads Development for the Fastrac 60K Flight Engine
NASA Technical Reports Server (NTRS)
Frady, Greg; Christensen, Eric R.; Mims, Katherine; Harris, Don; Parks, Russell; Brunty, Joseph
2000-01-01
Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However, with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the new Fastrac engine program, the focus has been to reduce the cost to weight ratio; current structural dynamics analysis practices were tailored in order to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of Fastrac load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are discussed.
Academic satisfaction among Latino/a and White men and women engineering students.
Flores, Lisa Y; Navarro, Rachel L; Lee, Hang Shim; Addae, Dorothy A; Gonzalez, Rebecca; Luna, Laura L; Jacquez, Ricardo; Cooper, Sonya; Mitchell, Martha
2014-01-01
The current study tests a model of academic satisfaction in engineering based on Lent, Brown, and Hackett's (1994, 2000) social cognitive career theory among a sample of 527 engineering majors attending a Hispanic serving institution. The findings indicated that (a) an alternative bidirectional model fit the data for the full sample; (b) all of the hypothesized relations were significant for the full sample, except the path from engineering interests to goals; (c) social cognitive career theory predictors accounted for a significant amount of variance in engineering goals (26.6%) and academic satisfaction (45.1%); and (d) the model parameters did not vary across men and women or across Latino/a and White engineering undergraduate students. Implications for research and practice are discussed in relation to persistence in engineering among women and Latinos/as. (c) 2014 APA, all rights reserved.
Rankine cycle waste heat recovery system
Ernst, Timothy C.; Nelson, Christopher R.
2015-09-22
A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.
Engineering and Application of LOV2-based Photoswitches
Zimmerman, Seth Parker; Kuhlman, Brian; Yumerefendi, Hayretin
2017-01-01
Cellular optogenetic switches, a novel class of biological tools, have improved our understanding of biological phenomena that were previously intractable. While the design and engineering of these proteins has historically varied they are all based on borrowed elements from plant and bacterial photoreceptors. In general terms, each of the optogenetic switches designed to date exploits the endogenous light induced change in photoreceptor conformation while repurposing its effect to target a different biological phenomena. We focus on the well-characterized Light Oxygen Voltage 2 (LOV2) domain from Avena sativa phototropin 1 as our cornerstone for design. While the function of the LOV2 domain in the context of the phototropin protein is not fully elucidated, its thorough biophysical characterization as an isolated domain has created a strong foundation for engineering of photoswitches. In this chapter, we examine the biophysical characteristics of the LOV2 domain that may be exploited to produce an optogenetic protein and summarize previous design efforts to provide guidelines for an effective design. Furthermore, we provide protocols for assays including fluorescent polarization, phage display, and microscopy that are optimized for validating, improving, and using newly designed photoswitches. PMID:27586333
78 FR 68826 - Meeting of the National Commission on the Structure of the Air Force
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-15
... engineering and science and technology. --Projections and assumptions about future resource levels that will... another at multiple points in their career path without prejudice; Enhancing the total force through...
47 CFR 27.1164 - The cost-sharing formula.
Code of Federal Regulations, 2011 CFR
2011-10-01
... control equipment; engineering costs (design/path survey); installation; systems testing; FCC filing costs... plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. Increased recurring costs...
47 CFR 27.1164 - The cost-sharing formula.
Code of Federal Regulations, 2012 CFR
2012-10-01
... control equipment; engineering costs (design/path survey); installation; systems testing; FCC filing costs... plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. Increased recurring costs...
Gas turbine power plant with supersonic shock compression ramps
Lawlor, Shawn P [Bellevue, WA; Novaresi, Mark A [San Diego, CA; Cornelius, Charles C [Kirkland, WA
2008-10-14
A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, J.S.
Several factors in the development of the East Wilmington oil field by THUMS Long Beach Co. are described. These include: critical path scheduling, complex stratigraphy, reservoir engineering, drilling program, production methods, pressure maintenance, crude oil processing, automation, transportation facilities, service lines, and electrical facilities. The complexity and closely scheduled operational events interwoven in the THUMS project demands a method for the carefully planned sequence of jobs to be done, beginning with island construction up through routine production and to the LACT system. These demanding requirements necessitated the use of a critical path scheduling program. It was decided to use themore » program evaluation technique. This technique is used to assign responsibilities for individual assignments to time assignments, and to keep the overall program on schedule. The stratigraphy of East Wilmington complicates all engineering functions associated with recovery methods and reservoir evaluation. At least 5 major faults are anticipated.« less
Parabolic Flights @ Home. An Unmanned Air Vehicle for Short-Duration Low-Gravity Experiments
NASA Astrophysics Data System (ADS)
Hofmeister, Paul Gerke; Blum, Jürgen
2011-02-01
We developed an unmanned air vehicle (UAV) suitable for small parabolic-flight experiments. The flight speed of 100 m s - 1 is sufficient for zero-gravity parabolas of 16 s duration. The flight path's length of slightly more than 1 km and 400 m difference in altitude is suitable for ground controlled or supervised flights. Since this fits within the limits set for model aircraft, no additional clearance is required for operation. Our UAV provides a cost-effective platform readily available for low-g experiments, which can be performed locally without major preparation. A payload with a size of up to 0.9 ×0.3 ×0.3 m3 and a mass of ˜5 kg can be exposed to 0 g 0-5 g 0, with g 0 being the gravitational acceleration of the Earth. Flight-duration depends on the desired acceleration level, e.g. 17 s at 0.17 g 0 (lunar surface level) or 21 s at 0.38 g 0 (Martian surface level). The aircraft has a mass of 25 kg (including payload) and a wingspan of 2 m. It is powered by a jet engine with an exhaust speed of 450 m s - 1 providing a thrust of 180 N. The parabolic-flight curves are automated by exploiting the advantages of sophisticated micro-electronics to minimize acceleration errors.
Car companies look to generate power from waste heat
NASA Astrophysics Data System (ADS)
Schirber, Michael
2008-04-01
You might think that the steam engine is an outdated technology that had its heyday centuries ago, but in fact steam is once again a hot topic with vehicle manufacturers. Indeed, the next generation of hybrid cars and trucks may incorporate some form of steam power. Honda, for example, has just released details of a new prototype hybrid car that recharges its battery using a steam engine that exploits waste heat from the exhaust pipe.
Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants.
Miralles, Pola; Church, Tamara L; Harris, Andrew T
2012-09-04
To exploit the promised benefits of engineered nanomaterials, it is necessary to improve our knowledge of their bioavailability and toxicity. The interactions between engineered nanomaterials and vascular plants are of particular concern, as plants closely interact with soil, water, and the atmosphere, and constitute one of the main routes of exposure for higher species, i.e. accumulation through the food chain. A review of the current literature shows contradictory evidence on the phytotoxicity of engineered nanomaterials. The mechanisms by which engineered nanomaterials penetrate plants are not well understood, and further research on their interactions with vascular plants is required to enable the field of phytotoxicology to keep pace with that of nanotechnology, the rapid evolution of which constantly produces new materials and applications that accelerate the environmental release of nanomaterials.
Role of measurement in feedback-controlled quantum engines
NASA Astrophysics Data System (ADS)
Yi, Juyeon; Kim, Yong Woon
2018-01-01
In feedback controls, measurement is an essential step in designing protocols according to outcomes. For quantum mechanical systems, measurement has another effect; to supply energy to the measured system. We verify that in feedback-controlled quantum engines, measurement plays a dual role; not only as an auxiliary to perform feedback control but also as an energy supply to drive the engines. We consider a specific engine cycle exploiting feedback control followed by projective measurement and show that the maximum bound of the extractable work is set by both the efficacy of the feedback control and the energy change caused by projective measurement. We take a concrete example of an engine using an immobile spin-1/2 particle as a working substance and suggest two possible scenarios for work extraction.
Observability-based Local Path Planning and Collision Avoidance Using Bearing-only Measurements
2012-01-20
Clark N. Taylorb aDepartment of Electrical and Computer Engineering, Brigham Young University , Provo, Utah, 84602 bSensors Directorate, Air Force Research...NAME(S) AND ADDRESS(ES) Brigham Young University ,Department of Electrical and Computer Engineering,Provo,UT,84602 8. PERFORMING ORGANIZATION... vit is the measurement noise that is assumed to be a zero-mean Gaus- sian random variable. Based on the state transition model expressed by Eqs. (1
Sutton, Victoria R; Hauser, Susan E
2005-01-01
MD on Tap, a PDA application that searches and retrieves biomedical literature, is specifically designed for use by mobile healthcare professionals. With the goal of improving the usability of the application, a preliminary comparison was made of two search engines (PubMed and Essie) to determine which provided most efficient path to the desired clinically-relevant information.
2010-05-15
flow and decision processes across the air and space domains. It thus comprises traditional wired and fiber-optic computer networks based on...dual flow path design allow high volumetric efficiency, and high cruise speed provides significantly increased survivability. Vertical takeoff...emerging “third-stream engine architectures” can enable for constant mass flow engines that can provide further reductions in fuel consumption. A wide
Tool path strategy and cutting process monitoring in intelligent machining
NASA Astrophysics Data System (ADS)
Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei
2018-06-01
Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.
Supercontinuum generation in silicon waveguides relying on wave-breaking.
Castelló-Lurbe, David; Silvestre, Enrique
2015-10-05
Four-wave-mixing processes enabled during optical wave-breaking (OWB) are exploited in this paper for supercontinuum generation. Unlike conventional approaches based on OWB, phase-matching is achieved here for these nonlinear interactions, and, consequently, new frequency production becomes more efficient. We take advantage of this kind of pulse propagation to obtain numerically a coherent octave-spanning mid-infrared supercontinuum generation in a silicon waveguide pumping at telecom wavelengths in the normal dispersion regime. This scheme shows a feasible path to overcome limits imposed by two-photon absorption on spectral broadening in silicon waveguides.
Duality and symmetry lost in solid mechanics
NASA Astrophysics Data System (ADS)
Bui, Huy Duong
2008-01-01
Some conservation laws in Solids and Fracture Mechanics present a lack of symmetry between kinematic and dynamic variables. It is shown that Duality is the right tool to re-establish the symmetry between equations and variables and to provide conservation laws of the pure divergence type which provide true path independent integrals. The loss of symmetry of some energetic expressions is exploited to derive a new method for solving some inverse problems. In particular, the earthquake inverse problem is solved analytically. To cite this article: H.D. Bui, C. R. Mecanique 336 (2008).
78 FR 78944 - Meeting of the National Commission on the Structure of the Air Force
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... forces, civil engineering and science and technology. 1:40 p.m.--The Inexorable Resource Trend 1... into another at multiple points in their career path without prejudice: a. Enhancing the total force...
78 FR 66903 - Meeting of the National Commission on the Structure of the Air Force
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
... mission sets such as security forces, civil engineering and science and technology. -- Projections and... Airmen to move from any component into another at multiple points in their career path without prejudice...
40 CFR 92.114 - Exhaust gas and particulate sampling and analytical system.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (A) For diesel fueled and biodiesel fueled locomotives and engines, the wall temperature of the HC... fuels other than diesel or biodiesel, the heated components in the HC sample path shall be maintained at...
40 CFR 92.114 - Exhaust gas and particulate sampling and analytical system.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (A) For diesel fueled and biodiesel fueled locomotives and engines, the wall temperature of the HC... fuels other than diesel or biodiesel, the heated components in the HC sample path shall be maintained at...
40 CFR 92.114 - Exhaust gas and particulate sampling and analytical system.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (A) For diesel fueled and biodiesel fueled locomotives and engines, the wall temperature of the HC... fuels other than diesel or biodiesel, the heated components in the HC sample path shall be maintained at...
14 CFR 25.115 - Takeoff flight path.
Code of Federal Regulations, 2010 CFR
2010-01-01
... each point by a gradient of climb equal to— (1) 0.8 percent for two-engine airplanes; (2) 0.9 percent... reduction in climb gradient may be applied as an equivalent reduction in acceleration along that part of the...
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2014 CFR
2014-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2013 CFR
2013-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2012 CFR
2012-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2011 CFR
2011-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
NASA Technical Reports Server (NTRS)
Miller, Christopher R.
2008-01-01
The usage and integrated vehicle health management of the NASA C-17. Propulsion health management flight objectives for the aircraft include mapping of the High Pressure Compressor in order to calibrate a Pratt and Whitney engine model and the fusion of data collected from existing sensors and signals to develop models, analysis methods and information fusion algorithms. An additional health manage flight objective is to demonstrate that the Commercial Modular Aero-Propulsion Systems Simulation engine model can successfully execute in real time onboard the C-17 T-1 aircraft using engine and aircraft flight data as inputs. Future work will address aircraft durability and aging, airframe health management, and propulsion health management research in the areas of gas path and engine vibration.
Overview and Recent Accomplishments of Advanced Mirror Technology Development Phase 2 (AMTD-2)
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2015-01-01
AMTD uses a science-driven systems engineering approach to define & execute a long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Because we cannot predict the future, we are pursuing multiple technology paths including monolithic & segmented mirrors. Assembled outstanding team from academia, industry & government; experts in science & space telescope engineering. Derived engineering specifications from science measurement needs & implementation constraints. Maturing 6 critical technologies required to enable 4 to 8 meter UVOIR space telescope mirror assemblies for both general astrophysics & ultra-high contrast exoplanet imaging. AMTD achieving all its goals & accomplishing all its milestones.
Thermally driven electrokinetic energy conversion with liquid water microjets
Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; ...
2015-11-01
One goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.
Thermally driven electrokinetic energy conversion with liquid water microjets
NASA Astrophysics Data System (ADS)
Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; Saykally, Richard J.
2015-11-01
A goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.
Path planning during combustion mode switch
Jiang, Li; Ravi, Nikhil
2015-12-29
Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.
Development of natural gas rotary engines
NASA Astrophysics Data System (ADS)
Mack, J. R.
1991-08-01
Development of natural gas-fueled rotary engines was pursued on the parallel paths of converted Mazda automotive engines and of establishing technology and demonstration of a test model of a larger John Deer Technologies Incorporated (JDTI) rotary engine with power capability of 250 HP per power section for future production of multi-rotor engines with power ratings 250, 500, and 1000 HP and upward. Mazda engines were converted to natural gas and were characterized by a laboratory which was followed by nearly 12,000 hours of testing in three different field installations. To develop technology for the larger JDTI engine, laboratory and engine materials testing was accomplished. Extensive combustion analysis computer codes were modified, verified, and utilized to predict engine performance, to guide parameters for actual engine design, and to identify further improvements. A single rotor test engine of 5.8 liter displacement was designed for natural gas operation based on the JDTI 580 engine series. This engine was built and tested. It ran well and essentially achieved predicted performance. Lean combustion and low NOW emission were demonstrated.
Biofuel alternatives to ethanol: pumping the microbial well
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortman, J. L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila
Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has gener-ated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel mar-ket, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we reviewmore » advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.« less
Biofuel alternatives to ethanol: pumping the microbial well
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortman, J.L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila
2009-08-19
Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has generated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel market, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we reviewmore » advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.« less
Pericyte-targeting drug delivery and tissue engineering.
Kang, Eunah; Shin, Jong Wook
2016-01-01
Pericytes are contractile mural cells that wrap around the endothelial cells of capillaries and venules. Depending on the triggers by cellular signals, pericytes have specific functionality in tumor microenvironments, properties of potent stem cells, and plasticity in cellular pathology. These features of pericytes can be activated for the promotion or reduction of angiogenesis. Frontier studies have exploited pericyte-targeting drug delivery, using pericyte-specific peptides, small molecules, and DNA in tumor therapy. Moreover, the communication between pericytes and endothelial cells has been applied to the induction of vessel neoformation in tissue engineering. Pericytes may prove to be a novel target for tumor therapy and tissue engineering. The present paper specifically reviews pericyte-specific drug delivery and tissue engineering, allowing insight into the emerging research targeting pericytes.
Optimal Paths in Gliding Flight
NASA Astrophysics Data System (ADS)
Wolek, Artur
Underwater gliders are robust and long endurance ocean sampling platforms that are increasingly being deployed in coastal regions. This new environment is characterized by shallow waters and significant currents that can challenge the mobility of these efficient (but traditionally slow moving) vehicles. This dissertation aims to improve the performance of shallow water underwater gliders through path planning. The path planning problem is formulated for a dynamic particle (or "kinematic car") model. The objective is to identify the path which satisfies specified boundary conditions and minimizes a particular cost. Several cost functions are considered. The problem is addressed using optimal control theory. The length scales of interest for path planning are within a few turn radii. First, an approach is developed for planning minimum-time paths, for a fixed speed glider, that are sub-optimal but are guaranteed to be feasible in the presence of unknown time-varying currents. Next the minimum-time problem for a glider with speed controls, that may vary between the stall speed and the maximum speed, is solved. Last, optimal paths that minimize change in depth (equivalently, maximize range) are investigated. Recognizing that path planning alone cannot overcome all of the challenges associated with significant currents and shallow waters, the design of a novel underwater glider with improved capabilities is explored. A glider with a pneumatic buoyancy engine (allowing large, rapid buoyancy changes) and a cylindrical moving mass mechanism (generating large pitch and roll moments) is designed, manufactured, and tested to demonstrate potential improvements in speed and maneuverability.
Quantum optomechanical piston engines powered by heat
NASA Astrophysics Data System (ADS)
Mari, A.; Farace, A.; Giovannetti, V.
2015-09-01
We study two different models of optomechanical systems where a temperature gradient between two radiation baths is exploited for inducing self-sustained coherent oscillations of a mechanical resonator. From a thermodynamic perspective, such systems represent quantum instances of self-contained thermal machines converting heat into a periodic mechanical motion and thus they can be interpreted as nano-scale analogues of macroscopic piston engines. Our models are potentially suitable for testing fundamental aspects of quantum thermodynamics in the laboratory and for applications in energy efficient nanotechnology.
Integrating ecology into biotechnology.
McMahon, Katherine D; Martin, Hector Garcia; Hugenholtz, Philip
2007-06-01
New high-throughput culture-independent molecular tools are allowing the scientific community to characterize and understand the microbial communities underpinning environmental biotechnology processes in unprecedented ways. By creatively leveraging these new data sources, microbial ecology has the potential to transition from a purely descriptive to a predictive framework, in which ecological principles are integrated and exploited to engineer systems that are biologically optimized for the desired goal. But to achieve this goal, ecology, engineering and microbiology curricula need to be changed from the very root to better promote interdisciplinarity.
Nonlinear compression of temporal solitons in an optical waveguide via inverse engineering
NASA Astrophysics Data System (ADS)
Paul, Koushik; Sarma, Amarendra K.
2018-03-01
We propose a novel method based on the so-called shortcut-to-adiabatic passage techniques to achieve fast compression of temporal solitons in a nonlinear waveguide. We demonstrate that soliton compression could be achieved, in principle, at an arbitrarily small distance by inverse-engineering the pulse width and the nonlinearity of the medium. The proposed scheme could possibly be exploited for various short-distance communication protocols and may be even in nonlinear guided wave-optics devices and generation of ultrashort soliton pulses.
Concurrency in product realization
NASA Astrophysics Data System (ADS)
Kelly, Michael J.
1994-03-01
Technology per se does not provide a competitive advantage. Timely exploitation of technology is what gives the competitive edge, and this demands a major shift in the product development process and management of the industrial enterprise. `Teaming to win' is more than a management theme; it is the disciplined engineering practice that is essential to success in today's global marketplace. Teaming supports the concurrent engineering practices required to integrate the activities of people responsible for product realization through achievement of shorter development cycles, lower costs, and defect-free products.
Xu, Yan; Cai, Yanpeng; Sun, Tao; Yin, Xin'An; Tan, Qian
2017-06-30
An integrated indicator system was developed for determining synthetic environmental responses under multiple types of coastal reclamation engineering in the Yellow River estuary, China. Four types of coastal engineering works were analyzed, namely port construction, petroleum exploitation, fishery and aquaculture, and seawall defense. In addition, two areas with limited human disturbances were considered for comparison. From the weights of the response value for each indicator, port construction was determined to be the primary impact contributor among the four engineering works studies. Specifically, hydrodynamic conditions, ecological status, economic costs, and engineering intensity were on average 72.78%, 65.03%, 75.03%, and 66.35% higher than those of other engineering types. Furthermore, fishery and aquaculture impact on water quality was 42.51% higher than that of other engineering types, whereas seawall defense impact on landscape variation was 51.75% higher than that of other engineering types. The proposed indicator system may provide effective coastal management in future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wei, Kun; Ren, Bingyin
2018-02-13
In a future intelligent factory, a robotic manipulator must work efficiently and safely in a Human-Robot collaborative and dynamic unstructured environment. Autonomous path planning is the most important issue which must be resolved first in the process of improving robotic manipulator intelligence. Among the path-planning methods, the Rapidly Exploring Random Tree (RRT) algorithm based on random sampling has been widely applied in dynamic path planning for a high-dimensional robotic manipulator, especially in a complex environment because of its probability completeness, perfect expansion, and fast exploring speed over other planning methods. However, the existing RRT algorithm has a limitation in path planning for a robotic manipulator in a dynamic unstructured environment. Therefore, an autonomous obstacle avoidance dynamic path-planning method for a robotic manipulator based on an improved RRT algorithm, called Smoothly RRT (S-RRT), is proposed. This method that targets a directional node extends and can increase the sampling speed and efficiency of RRT dramatically. A path optimization strategy based on the maximum curvature constraint is presented to generate a smooth and curved continuous executable path for a robotic manipulator. Finally, the correctness, effectiveness, and practicability of the proposed method are demonstrated and validated via a MATLAB static simulation and a Robot Operating System (ROS) dynamic simulation environment as well as a real autonomous obstacle avoidance experiment in a dynamic unstructured environment for a robotic manipulator. The proposed method not only provides great practical engineering significance for a robotic manipulator's obstacle avoidance in an intelligent factory, but also theoretical reference value for other type of robots' path planning.
Photophoretic levitation of engineered aerosols for geoengineering
Keith, David W.
2010-01-01
Aerosols could be injected into the upper atmosphere to engineer the climate by scattering incident sunlight so as to produce a cooling tendency that may mitigate the risks posed by the accumulation of greenhouse gases. Analysis of climate engineering has focused on sulfate aerosols. Here I examine the possibility that engineered nanoparticles could exploit photophoretic forces, enabling more control over particle distribution and lifetime than is possible with sulfates, perhaps allowing climate engineering to be accomplished with fewer side effects. The use of electrostatic or magnetic materials enables a class of photophoretic forces not found in nature. Photophoretic levitation could loft particles above the stratosphere, reducing their capacity to interfere with ozone chemistry; and, by increasing particle lifetimes, it would reduce the need for continual replenishment of the aerosol. Moreover, particles might be engineered to drift poleward enabling albedo modification to be tailored to counter polar warming while minimizing the impact on equatorial climates. PMID:20823254
Photophoretic levitation of engineered aerosols for geoengineering.
Keith, David W
2010-09-21
Aerosols could be injected into the upper atmosphere to engineer the climate by scattering incident sunlight so as to produce a cooling tendency that may mitigate the risks posed by the accumulation of greenhouse gases. Analysis of climate engineering has focused on sulfate aerosols. Here I examine the possibility that engineered nanoparticles could exploit photophoretic forces, enabling more control over particle distribution and lifetime than is possible with sulfates, perhaps allowing climate engineering to be accomplished with fewer side effects. The use of electrostatic or magnetic materials enables a class of photophoretic forces not found in nature. Photophoretic levitation could loft particles above the stratosphere, reducing their capacity to interfere with ozone chemistry; and, by increasing particle lifetimes, it would reduce the need for continual replenishment of the aerosol. Moreover, particles might be engineered to drift poleward enabling albedo modification to be tailored to counter polar warming while minimizing the impact on equatorial climates.
Spying on photons with photons: quantum interference and information
NASA Astrophysics Data System (ADS)
Ataman, Stefan
2016-07-01
The quest to have both which-path knowledge and interference fringes in a double-slit experiment dates back to the inception of quantum mechanics (QM) and to the famous Einstein-Bohr debates. In this paper we propose and discuss an experiment able to spy on one photon's path with another photon. We modify the quantum state inside the interferometer as opposed to the traditional physical modification of the "wave-like" or "particle-like" experimental setup. We are able to show that it is the ability to harvest or not which-path information that finally limits the visibility of the interference pattern and not the "wave-like" or "particle-like" experimental setups. Remarkably, a full "particle-like" experimental setup is able to show interference fringes with 100% visibility if the quantum state is carefully engineered.
Singh, Kanwarpal; Reddy, Rohith; Sharma, Gargi; Verma, Yogesh; Gardecki, Joseph A; Tearney, Guillermo
2018-03-01
Endoscopic optical coherence tomography probes suffer from various artifacts due to dispersion imbalance and polarization mismatch between reference and sample arm light. Such artifacts can be minimized using a common path approach. In this work, we demonstrate a miniaturized common path probe for optical coherence tomography using an inline fiber mirror. A common path optical fiber probe suitable for performing high-resolution endoscopic optical coherence tomography imaging was developed. To achieve common path functionality, an inline fiber mirror was fabricated using a thin gold layer. A commercially available swept source engine was used to test the designed probe in a cadaver human coronary artery ex vivo. We achieved a sensitivity of 104 dB for this probe using a swept source optical coherence tomography system. To test the probe, images of a cadaver human coronary artery were obtained, demonstrating the quality that is comparable to those obtained by OCT systems with separate reference arms. Additionally, we demonstrate recovery of ranging depth by use of a Michelson interferometer in the detection path. We developed a miniaturized monolithic inline fiber mirror-based common path probe for optical coherence tomography. Owing to its simplicity, our design will be helpful in endoscopic applications that require high-resolution probes in a compact form factor while reducing system complexity. Lasers Surg. Med. 50:230-235, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Byars-Winston, Angela; Estrada, Yannine; Howard, Christina; Davis, Dalelia; Zalapa, Juan
2010-04-01
This study investigated the academic interests and goals of 223 African American, Latino/a, Southeast Asian, and Native American undergraduate students in two groups: biological science and engineering (S/E) majors. Using social cognitive career theory (Lent, Brown, & Hackett, 1994), we examined the relationships of social cognitive variables (math/science academic self-efficacy, math/science outcome expectations), along with the influence of ethnic variables (ethnic identity, other-group orientation) and perceptions of campus climate to their math/science interests and goal commitment to earn an S/E degree. Path analysis revealed that the hypothesized model provided good overall fit to the data, revealing significant relationships from outcome expectations to interests and to goals. Paths from academic self-efficacy to S/E goals and from interests to S/E goals varied for students in engineering and biological science. For both groups, other-group orientation was positively related to self-efficacy and support was found for an efficacy-mediated relationship between perceived campus climate and goals. Theoretical and practical implications of the study's findings are considered as well as future research directions.
Byars-Winston, Angela; Estrada, Yannine; Howard, Christina; Davis, Dalelia; Zalapa, Juan
2010-01-01
This study investigated the academic interests and goals of 223 African American, Latino/a, Southeast Asian, and Native American undergraduate students in two groups: biological science and engineering (S/E) majors. Using social cognitive career theory (Lent, Brown, & Hackett, 1994), we examined the relationships of social cognitive variables (math/science academic self-efficacy, math/science outcome expectations), along with the influence of ethnic variables (ethnic identity, other-group orientation) and perceptions of campus climate to their math/science interests and goal commitment to earn an S/E degree. Path analysis revealed that the hypothesized model provided good overall fit to the data, revealing significant relationships from outcome expectations to interests and to goals. Paths from academic self-efficacy to S/E goals and from interests to S/E goals varied for students in engineering and biological science. For both groups, other-group orientation was positively related to self-efficacy and support was found for an efficacy-mediated relationship between perceived campus climate and goals. Theoretical and practical implications of the study’s findings are considered as well as future research directions. PMID:20495610
A new method for incoherent combining of far-field laser beams based on multiple faculae recognition
NASA Astrophysics Data System (ADS)
Ye, Demao; Li, Sichao; Yan, Zhihui; Zhang, Zenan; Liu, Yuan
2018-03-01
Compared to coherent beam combining, incoherent beam combining can complete the output of high power laser beam with high efficiency, simple structure, low cost and high thermal damage resistance, and it is easy to realize in engineering. Higher target power is achieved by incoherent beam combination which using technology of multi-channel optical path correction. However, each channel forms a spot in the far field respectively, which cannot form higher laser power density with low overlap ratio of faculae. In order to improve the combat effectiveness of the system, it is necessary to overlap different faculae that improve the target energy density. Hence, a novel method for incoherent combining of far-field laser beams is present. The method compromises piezoelectric ceramic technology and evaluation algorithm of faculae coincidence degree which based on high precision multi-channel optical path correction. The results show that the faculae recognition algorithm is low-latency(less than 10ms), which can meet the needs of practical engineering. Furthermore, the real time focusing ability of far field faculae is improved which was beneficial to the engineering of high-energy laser weapon or other laser jamming systems.
Alternative path to hearing: photonic sonogram hearing aid
NASA Astrophysics Data System (ADS)
Hara, Elmer H.
2002-05-01
For those with total hearing loss, there are no direct remedies except for electronic (i.e. cochlear) implants. They are invasive and do not always function in a satisfactory manner. Although sign language opens the window to a rich culture but communication with the hearing world is hindered. Lip reading can bridge that gap but communication is not without some stress. Inability to detect possible life threatening situations outside the visual field also affects the quality of life for those without the ability to hear. If the hearing process is viewed from the point of system engineering, there is a sound source and air is the transmission medium to the ear. The hearing structure of the ear converts mechanical vibrations to electrical signals that are then transmitted through nerve paths to the section of the brain where sound signals are processed. In most cases of total hearing loss, the hearing structure of the ear is non-functional. A cochlear implant bypasses this hearing structure. It electronically converts sounds from the air into their frequency components and feeds them into transmission nerve paths to the brain as electrical signals. This system-engineering point of view suggests that other pathways to the brain might be explored. The following section considers the visual pathway.
The prospective opportunities offered by magnetic scaffolds for bone tissue engineering: a review
ORTOLANI, ALESSANDRO; BIANCHI, MICHELE; MOSCA, MASSIMILIANO; CARAVELLI, SILVIO; FUIANO, MARIO; MARCACCI, MAURILIO; RUSSO, ALESSANDRO
2016-01-01
Magnetic scaffolds are becoming increasingly attractive in tissue engineering, due to their ability to enhance bone tissue formation by attracting soluble factors, such as growth factors, hormones and polypeptides, directly to the implantation site, as well as their potential to improve the fixation and stability of the implant. Moreover, there is increasing evidence that the synergistic effects of magnetic scaffolds and magnetic fields can promote bone repair and regeneration. In this manuscript we review the recent innovations in bone tissue engineering that exploit magnetic biomaterials combined with static magnetic fields to enhance bone cell adhesion and proliferation, and thus bone tissue growth. PMID:28217659
State of Aircraft Turboshaft Engines by Means of Tribotechnical Diagnostic
NASA Astrophysics Data System (ADS)
Mihalčová, Janka
2018-03-01
The contribution describes concrete example of application of tribotechnical methods for the determination of the bearing wear state in aircraft turboshaft engines. Tribotechnical methods, which will be mentioned, deal with qualitative and quantitative characterization of particles occurred in oil. Here belong method optical emission spectrometry method with rotating disc electrode for determination of chemical elements concentration in oil. Method of optical particles counting for detection of particles distribution according to their scale, determination of their number and ferrographic analysis. Exploitation of these methods make it possible to determine quickly and correctly the friction regime and wearing of friction pair that is washed by oil in observed engines.
NASA Technical Reports Server (NTRS)
Bailey, P. G.
1977-01-01
Oxide-Dispersion-strengthened (ODS) Ni-Cr-Al alloy systems were exploited for turbine engine vanes which would be used for the space shuttle thermal protection system. Available commercial and developmental advanced ODS alloys were evaluated, and three were selected based on established vane property goals and manufacturing criteria. The selected alloys were evaluated in an engine test. Candidate alloys were screened by strength, thermal fatigue resistance, oxidation and sulfidation resistance. The Ni-16Cr (3 to 5)Al-ThO2 system was identified as having attractive high temperature oxidation resistance. Subsequent work also indicated exceptional sulfidation resistance for these alloys.
Electrical performances of pyroelectric bimetallic strip heat engines describing a Stirling cycle
NASA Astrophysics Data System (ADS)
Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.
2015-12-01
This paper deals with the analytical modeling of pyroelectric bimetallic strip heat engines. These devices are designed to exploit the snap-through of a thermo-mechanically bistable membrane to transform a part of the heat flowing through the membrane into mechanical energy and to convert it into electric energy by means of a piezoelectric layer deposited on the surface of the bistable membrane. In this paper, we describe the properties of these heat engines in the case when they complete a Stirling cycle, and we evaluate the performances (available energy, Carnot efficiency...) of these harvesters at the macro- and micro-scale.
Receding horizon online optimization for torque control of gasoline engines.
Kang, Mingxin; Shen, Tielong
2016-11-01
This paper proposes a model-based nonlinear receding horizon optimal control scheme for the engine torque tracking problem. The controller design directly employs the nonlinear model exploited based on mean-value modeling principle of engine systems without any linearizing reformation, and the online optimization is achieved by applying the Continuation/GMRES (generalized minimum residual) approach. Several receding horizon control schemes are designed to investigate the effects of the integral action and integral gain selection. Simulation analyses and experimental validations are implemented to demonstrate the real-time optimization performance and control effects of the proposed torque tracking controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Database Translator (DATALATOR) for Integrated Exploitation
2010-10-31
Modelling in Information Systems Engineering. 2007, Berlin : Springer, pp. 39-58. 2. Arnon Rosenthal, Len Seligman . Pragmatics and Open Problems for Inter...2004, Vol. 2938 . 21. Ahuja, S., N. Carriero and D. Gelemte,. Linda and friends. IEEE Computer. August 1986, pp. 26- 32. 40 Next Generation Software
An aerodynamic assessment of various supersonic fighter airplanes based on Soviet design concepts
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1983-01-01
The aerodynamic, stability, and control characteristics of several supersonic fighter airplane concepts were assessed. The configurations include fixed-wing airplanes having delta wings, swept wings, and trapezoidal wings, and variable wing-sweep airplanes. Each concept employs aft tail controls. The concepts vary from lightweight, single engine, air superiority, point interceptor, or ground attack types to larger twin-engine interceptor and reconnaissance designs. Results indicate that careful application of the transonic or supersonic area rule can provide nearly optimum shaping for minimum drag for a specified Mach number requirement. Through the proper location of components and the exploitation of interference flow fields, the concepts provide linear pitching moment characteristics, high control effectiveness, and reasonably small variations in aerodynamic center location with a resulting high potential for maneuvering capability. By careful attention to component shaping and location and through the exploitation of local flow fields, favorable roll-to-yaw ratios may result and a high degree of directional stability can be achieved.
Yadav, Vinod Kumar; Kumar, Akinchan; Mann, Anita; Aggarwal, Suruchi; Kumar, Maneesh; Roy, Sumitabho Deb; Pore, Subrata Kumar; Banerjee, Rajkumar; Mahesh Kumar, Jerald; Thakur, Ram Krishna; Chowdhury, Shantanu
2014-01-01
Building molecular correlates of drug resistance in cancer and exploiting them for therapeutic intervention remains a pressing clinical need. To identify factors that impact drug resistance herein we built a model that couples inherent cell-based response toward drugs with transcriptomes of resistant/sensitive cells. To test this model, we focused on a group of genes called metastasis suppressor genes (MSGs) that influence aggressiveness and metastatic potential of cancers. Interestingly, modeling of 84 000 drug response transcriptome combinations predicted multiple MSGs to be associated with resistance of different cell types and drugs. As a case study, on inducing MSG levels in a drug resistant breast cancer line resistance to anticancer drugs caerulomycin, camptothecin and topotecan decreased by more than 50-60%, in both culture conditions and also in tumors generated in mice, in contrast to control un-induced cells. To our knowledge, this is the first demonstration of engineered reversal of drug resistance in cancer cells based on a model that exploits inherent cellular response profiles.
The path to next generation biofuels: successes and challenges in the era of synthetic biology
2010-01-01
Volatility of oil prices along with major concerns about climate change, oil supply security and depleting reserves have sparked renewed interest in the production of fuels from renewable resources. Recent advances in synthetic biology provide new tools for metabolic engineers to direct their strategies and construct optimal biocatalysts for the sustainable production of biofuels. Metabolic engineering and synthetic biology efforts entailing the engineering of native and de novo pathways for conversion of biomass constituents to short-chain alcohols and advanced biofuels are herewith reviewed. In the foreseeable future, formal integration of functional genomics and systems biology with synthetic biology and metabolic engineering will undoubtedly support the discovery, characterization, and engineering of new metabolic routes and more efficient microbial systems for the production of biofuels. PMID:20089184
The Spectral Web of stationary plasma equilibria. I. General theory
NASA Astrophysics Data System (ADS)
Goedbloed, J. P.
2018-03-01
A new approach to computing the complex spectrum of magnetohydrodynamic waves and instabilities of moving plasmas is presented. It is based on the concept of the Spectral Web, exploiting the self-adjointness of the generalized Frieman-Rotenberg force operator, G, and the Doppler-Coriolis gradient operator parallel to the velocity, U. The problem is solved with an open boundary, where the complementary energy Wcom represents the amount of energy to be delivered to or extracted from the system to maintain a harmonic time-dependence. The eigenvalues are connected by a system of curves in the complex ω-plane, the solution path and the conjugate path (where Wcom is real or imaginary) which together constitute the Spectral Web, having a characteristic geometry that has to be clarified yet, but that has a deep physical significance. It is obtained by straightforward contour plotting of the two paths. The complex eigenvalues, within a specified rectangle of the complex ω-plane, are found by fast, reliable, and accurate iterations. Real and complex oscillation theorems, replacing the familiar tool of counting nodes of eigenfunctions, provide an associated mechanism of mode tracking along the two paths. The Spectral Web method is generalized to toroidal systems and extended to include a resistive wall by accounting for the dissipation in such a wall. It is applied in an accompanying Paper II [J. P. Goedbloed, Phys. Plasmas 25, 032110 (2018).] to a multitude of the basic fundamental instabilities operating in cylindrical plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Qi; Al-Shaer, Ehab; Chatterjee, Samrat
The Infrastructure Distributed Denial of Service (IDDoS) attacks continue to be one of the most devastating challenges facing cyber systems. The new generation of IDDoS attacks exploit the inherent weakness of cyber infrastructure including deterministic nature of routes, skew distribution of flows, and Internet ossification to discover the network critical links and launch highly stealthy flooding attacks that are not observable at the victim end. In this paper, first, we propose a new metric to quantitatively measure the potential susceptibility of any arbitrary target server or domain to stealthy IDDoS attacks, and es- timate the impact of such susceptibility onmore » enterprises. Second, we develop a proactive route mutation technique to minimize the susceptibility to these attacks by dynamically changing the flow paths periodically to invalidate the adversary knowledge about the network and avoid targeted critical links. Our proposed approach actively changes these network paths while satisfying security and qualify of service requirements. We present an integrated approach of proactive route mutation that combines both infrastructure-based mutation that is based on reconfiguration of switches and routers, and middle-box approach that uses an overlay of end-point proxies to construct a virtual network path free of critical links to reach a destination. We implemented the proactive path mutation technique on a Software Defined Network using the OpendDaylight controller to demonstrate a feasible deployment of this approach. Our evaluation validates the correctness, effectiveness, and scalability of the proposed approaches.« less
How Can Air Force Civil Engineers Use Expert Systems?
1988-09-01
Acknowledgements On this academic path called "thesis", many individuals have befriended me along the way. I would like to express my thanks to Maj James R...that provided their insight into civil engineering throughout the interviews: Col James G. Zody, Col Thomas E. Lollis, Col Joe L. Hicks, Col Nicholas A...training role" ( Basden , 1984: 63-64). Consultant. Using an expert system as a consultant, the non- specialist can obtain counsel, guidance, or information
Sutton, Victoria R.; Hauser, Susan E.
2005-01-01
MD on Tap, a PDA application that searches and retrieves biomedical literature, is specifically designed for use by mobile healthcare professionals. With the goal of improving the usability of the application, a preliminary comparison was made of two search engines (PubMed and Essie) to determine which provided most efficient path to the desired clinically-relevant information. PMID:16779415
Using Six Sigma to Accelerate the Adoption of CMMI for Optimal Results
2004-10-01
Findings Path forward © 2004 by Carnegie Mellon University Version 1.0 page 5 Carnegie Mellon S oftware Engineer ing Inst itute Software & IT Best...Related Technology ( COBIT ) Secondary priority • architecture best practices and Design for Six Sigma Primary audiences • Software Engineering Process Groups...itute Context of Findings While our focus was on CMMI, ITIL, and COBIT , we gathered information on other technologies “in play.” • The list included
Regional measurements of infrasound signals from ARIANE-5 engine tests in Southern Germany
NASA Astrophysics Data System (ADS)
Koch, K.
2012-04-01
A well-controlled source of repetitive infrasound emissions was previously identified and has been related to development and acceptance tests of the European Space Agencies ARIANE-5 main engine. The propulsion testing facility of the German Aerospace Agency (DLR) near Heilbronn, Southern Germany, is a distance of about 320 km away from the International Monitoring System (IMS) station IS26 in east-southeasterly direction. In the past, signals associated with these propulsion tests could normally be detected at IS26 during winter months, but not during summer months, reflecting the changes in atmospheric conditions between winter and summer. Over the last year, DLR has prepared to conduct a series of seven propulsion tests which started in November 2011; with interim times between tests of 3-4 weeks it will last until late March or early April 2012. With mobile infrasound recording equipment available at BGR we planned to record the infrasonic wavefield along the path to IS26 at regular distances starting as close as 20 km from the source. Our aim is to study sound propagation from direct paths mainly involving the tropospheric layer through the "zone of silence" to distances close to IS26, where paths through stratospheric layers are followed. Preliminary results show that during the relevant winter season direct path propagation can be observed to some 40 km from the propulsion test source, even at seismographic stations where the acoustic wave couples into the ground. The tests are also observed at IS26, and waveform duration and f-k-analysis confirm the signals to be associated with the GT-type propulsion tests.
Authentic scientific research in an international setting as a path toward higher education
NASA Astrophysics Data System (ADS)
Mladenov, N.; Palomo, M.; Casad, B.; Pietruschka, B.; Buckley, C.
2016-12-01
Studies have shown that undergraduate research opportunities foster student interest in research, encourage minority students to seek advanced degrees, and put students on a path toward higher education. It has been further suggested that engineering projects in international settings address issues of sustainability and promote a connection between engineering and social welfare that may compel students to seek future research opportunities. In this study, we explored the role that authentic research experiences in an international setting play in promoting higher education for students from groups typically under-represented in engineering and sciences. We hypothesized that the international context of the research experiences will provide undergraduate and graduate students with a global perspective of water reuse challenges and promote increased interest in pursuing a higher degree in engineering. Through the Sustainable Sanitation International Research Experiences for Students (IRES) Program, US students conducting research in Durban, South Africa in 2015 and 2016, were tasked with leading 6-week long research projects, collaborating with partners at the University of KwaZulu Natal, and producing papers and presentations for regional and international scientific conferences. All undergraduate participants were from groups under-represented in the sciences. Pre- and post-program survey results revealed that, after completing the program, participants of Cohort 1 had 1) greater research skills, 2) greater identification as an engineer, and 3) stronger intentions to pursue a PhD in engineering. Survey data were also used to evaluate comfort with cultural diversity before and after the international program and the effect of pairing US with South African student researchers. Our results indicate that students' awareness of societal needs and engineering challenges faced in Durban resulted in a positive impact on each student. The benefits gained from the international research experience have important implications for environmental engineering and other scientific fields in terms of inducing greater self-efficacy and fostering an interest in higher education for students from groups traditionally under-represented in the sciences.
Artificial intelligence-assisted occupational lung disease diagnosis.
Harber, P; McCoy, J M; Howard, K; Greer, D; Luo, J
1991-08-01
An artificial intelligence expert-based system for facilitating the clinical recognition of occupational and environmental factors in lung disease has been developed in a pilot fashion. It utilizes a knowledge representation scheme to capture relevant clinical knowledge into structures about specific objects (jobs, diseases, etc) and pairwise relations between objects. Quantifiers describe both the closeness of association and risk, as well as the degree of belief in the validity of a fact. An independent inference engine utilizes the knowledge, combining likelihoods and uncertainties to achieve estimates of likelihood factors for specific paths from work to illness. The system creates a series of "paths," linking work activities to disease outcomes. One path links a single period of work to a single possible disease outcome. In a preliminary trial, the number of "paths" from job to possible disease averaged 18 per subject in a general population and averaged 25 per subject in an asthmatic population. Artificial intelligence methods hold promise in the future to facilitate diagnosis in pulmonary and occupational medicine.
Women's decision to major in STEM fields
NASA Astrophysics Data System (ADS)
Conklin, Stephanie
This paper explores the lived experiences of high school female students who choose to enter into STEM fields, and describes the influencing factors which steered these women towards majors in computer science, engineering and biology. Utilizing phenomenological methodology, this study seeks to understand the essence of women's decisions to enter into STEM fields and further describe how the decision-making process varies for women in high female enrollment fields, like biology, as compared with low enrollment fields like, computer science and engineering. Using Bloom's 3-Stage Theory, this study analyzes how relationships, experiences and barriers influenced women towards, and possibly away, from STEM fields. An analysis of women's experiences highlight that support of family, sustained experience in a STEM program during high school as well as the presence of an influential teacher were all salient factors in steering women towards STEM fields. Participants explained that influential teacher worked individually with them, modified and extended assignments and also steered participants towards coursework and experiences. This study also identifies factors, like guidance counselors as well as personal challenges, which inhibited participant's path to STEM fields. Further, through analyzing all six participants' experiences, it is clear that a linear model, like Bloom's 3-Stage Model, with limited ability to include potential barriers inhibited the ability to capture the essence of each participant's decision-making process. Therefore, a revised model with no linear progression which allows for emerging factors, like personal challenges, has been proposed; this model focuses on how interest in STEM fields begins to develop and is honed and then mastered. This study also sought to identify key differences in the paths of female students pursuing different majors. The findings of this study suggest that the path to computer science and engineering is limited. Computer science majors faced few, if any, challenges, hoped to use computers as a tool to innovate and also participated in the same computer science program. For female engineering students, the essence of their experience focused on interaction at a young age with an expert in an engineering-related field as well as a strong desire to help solve world problems using engineering. These participants were able to articulate clearly future careers. In contrast, biology majors, faced more challenges and were undecided about their future career goals. These results suggest that a longitudinal study focused on women pursuing engineering and computer science fields is warranted; this will hopefully allow these findings to be substantiated and also for refinement of the revised theoretical model.
Cytochrome P450-mediated metabolic engineering: current progress and future challenges.
Renault, Hugues; Bassard, Jean-Etienne; Hamberger, Björn; Werck-Reichhart, Danièle
2014-06-01
Cytochromes P450 catalyze a broad range of regiospecific, stereospecific and irreversible steps in the biosynthetic routes of plant natural metabolites with important applications in pharmaceutical, cosmetic, fragrance and flavour, or polymer industries. They are consequently essential drivers for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing of plant genomes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
MODIFIED PATH METHODOLOGY FOR OBTAINING INTERVAL-SCALED POSTURAL ASSESSMENTS OF FARMWORKERS.
Garrison, Emma B; Dropkin, Jonathan; Russell, Rebecca; Jenkins, Paul
2018-01-29
Agricultural workers perform tasks that frequently require awkward and extreme postures that are associated with musculoskeletal disorders (MSDs). The PATH (Posture, Activity, Tools, Handling) system currently provides a sound methodology for quantifying workers' exposure to these awkward postures on an ordinal scale of measurement, which places restrictions on the choice of analytic methods. This study reports a modification of the PATH methodology that instead captures these postures as degrees of flexion, an interval-scaled measurement. Rather than making live observations in the field, as in PATH, the postural assessments were performed on photographs using ImageJ photo analysis software. Capturing the postures in photographs permitted more careful measurement of the degrees of flexion. The current PATH methodology requires that the observer in the field be trained in the use of PATH, whereas the single photographer used in this modification requires only sufficient training to maintain the proper camera angle. Ultimately, these interval-scale measurements could be combined with other quantitative measures, such as those produced by electromyograms (EMGs), to provide more sophisticated estimates of future risk for MSDs. Further, these data can provide a baseline from which the effects of interventions designed to reduce hazardous postures can be calculated with greater precision. Copyright© by the American Society of Agricultural Engineers.
The path from geoscience to road engineering: experience in Russia and Norway
NASA Astrophysics Data System (ADS)
Kuznetsova, Elena
2017-04-01
In the presentation I would like to talk about my personal path from taking the education in geoscience in Russia to getting job as a researcher in road engineering in Norway. I completed my master and PhD at one of the best universities of Russia before getting job in Norway, first at the research institute and the university after. What I noticed was the main different is the role of woman in the research and management positions. I feel that I have more rights and more opportunities for my career in Norway than as it was back in Russia. Road engineering does not sound as very "feminine" specialization, however I have many female colleagues who are doing great job and enjoying their work. I made a lot of observations of my female and male colleagues when it comes to do the laboratory and field work, and to have leadership and management positions. Time to time I am in contact with some former bosses or colleagues from my university in Russia and I see the huge difference with how the communication goes with them and with my colleagues here, in Norway. Few words about myself. I am 31 and I am working as a researcher at the Norwegian university of science and technology. I have 5 years of working experience after obtaining my PhD. My primary background is engineering geology and geocryology. Last 4 years I am working in the field of road construction engineering and one of my main responsibilities is managing the large research project financed by the Norwegian Research Council. During my working life I found a lot of advantages to be a woman in a men world of engineering.
Energy consumption of ProTaper Next X1 after glide path with PathFiles and ProGlider.
Berutti, Elio; Alovisi, Mario; Pastorelli, Michele Angelo; Chiandussi, Giorgio; Scotti, Nicola; Pasqualini, Damiano
2014-12-01
Instrument failure caused by excessive torsional stress can be controlled by creating a manual or mechanical glide path. The ProGlider single-file system (Dentsply Maillefer, Ballaigues, Switzerland) was recently introduced to perform a mechanical glide path. This study was designed to compare the effect of a glide path performed with PathFiles (Dentsply Maillefer) and ProGlider on torque, time, and pecking motion required for ProTaper Next X1 (Dentsply Maillefer) to reach the full working length in simulated root canals. Forty Endo Training Blocks (Dentsply Maillefer) were used. Twenty were prepared with a mechanical glide path using PathFiles 1 and 2 (the PathFile group), and 20 were prepared with a mechanical glide path using a ProGlider single file (the ProGlider group). All samples were shaped with ProTaper Next X1 driven by an endodontic motor connected to a digital wattmeter. The required torque for root canal instrumentation was analyzed by evaluating the electrical power consumption of the endodontic engine. Electric power consumption (mW/h), elapsed time (seconds), and number of pecking motions required to reach the full working length with ProTaper Next X1 were calculated. Differences among groups were analyzed with the parametric Student t test for independent data (P < .05). Elapsed time and electric power consumption were significantly different between groups (P = .0001 for both). ProGlider appears to perform more efficiently than PathFiles in decreasing electric power consumption of ProTaper Next X1 to reach the full working length. This study confirmed the ability of ProGlider to reduce stress in ProTaper Next X1 during shaping through a glide path and preliminary middle and coronal preflaring. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Jianlin; Zhang, Jiwei; Dai, Siqing; Di, Jianglei; Xi, Teli
2018-02-01
Surface plasmon microscopy (SPM) is widely applied for label-free detection of changes of refractive index and concentration, as well as mapping thin films in near field. Traditionally, the SPM systems are based on the detection of light intensity or phase changes. Here, we present two kinds of surface plasmon holographic microscopy (SPHM) systems for amplitude- and phase-contrast imaging simultaneously. Through recording off-axis holograms and numerical reconstruction, the complex amplitude distributions of surface plasmon resonance (SPR) images can be obtained. According to the Fresnel's formula, in a prism/ gold/ dielectric structure, the reflection phase shift is uniquely decided by refractive index of the dielectric. By measuring the phase shift difference of the reflected light exploiting prism-coupling SPHM system based on common-path interference configuration, monitoring tiny refractive index variation and imaging biological tissue are performed. Furthermore, to characterize the thin film thickness in near field, we employ a four-layer SPR model in which the third film layer is within the evanescent field. The complex reflection coefficient, including the reflectivity and reflection phase shift, is uniquely decided by the film thickness. By measuring the complex amplitude distributions of the SPR images exploiting objective-coupling SPHM system based on common-path interference configuration, the thickness distributions of thin films are mapped with sub-nanometer resolution theoretically. Owing to its high temporal stability, the recommended SPHMs show great potentials for monitoring tiny refractive index variations, imaging biological tissues and mapping thin films in near field with dynamic, nondestructive and full-field measurement capabilities in chemistry, biomedicine field, etc.
A fault-tolerant control architecture for unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Drozeski, Graham R.
Research has presented several approaches to achieve varying degrees of fault-tolerance in unmanned aircraft. Approaches in reconfigurable flight control are generally divided into two categories: those which incorporate multiple non-adaptive controllers and switch between them based on the output of a fault detection and identification element, and those that employ a single adaptive controller capable of compensating for a variety of fault modes. Regardless of the approach for reconfigurable flight control, certain fault modes dictate system restructuring in order to prevent a catastrophic failure. System restructuring enables active control of actuation not employed by the nominal system to recover controllability of the aircraft. After system restructuring, continued operation requires the generation of flight paths that adhere to an altered flight envelope. The control architecture developed in this research employs a multi-tiered hierarchy to allow unmanned aircraft to generate and track safe flight paths despite the occurrence of potentially catastrophic faults. The hierarchical architecture increases the level of autonomy of the system by integrating five functionalities with the baseline system: fault detection and identification, active system restructuring, reconfigurable flight control; reconfigurable path planning, and mission adaptation. Fault detection and identification algorithms continually monitor aircraft performance and issue fault declarations. When the severity of a fault exceeds the capability of the baseline flight controller, active system restructuring expands the controllability of the aircraft using unconventional control strategies not exploited by the baseline controller. Each of the reconfigurable flight controllers and the baseline controller employ a proven adaptive neural network control strategy. A reconfigurable path planner employs an adaptive model of the vehicle to re-shape the desired flight path. Generation of the revised flight path is posed as a linear program constrained by the response of the degraded system. Finally, a mission adaptation component estimates limitations on the closed-loop performance of the aircraft and adjusts the aircraft mission accordingly. A combination of simulation and flight test results using two unmanned helicopters validates the utility of the hierarchical architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarikurt, Sevil; Çakır, Deniz; Keçeli, Murat
The structural model ( i.e. adsorption site of oxygen atom on the surface of MXene) has a paramount impact on the electronic and thermoelectric properties of MXene crystals, which can be exploited to engineer the thermoelectric properties of these materials.
Sarikurt, Sevil; Çakır, Deniz; Keçeli, Murat; ...
2018-01-01
The structural model ( i.e. adsorption site of oxygen atom on the surface of MXene) has a paramount impact on the electronic and thermoelectric properties of MXene crystals, which can be exploited to engineer the thermoelectric properties of these materials.
DOT National Transportation Integrated Search
2008-12-01
Shortly after the 1994 Northridge Earthquake, Caltrans geotechnical engineers charged with developing site-specific : response spectra for high priority California bridges initiated a research project aimed at broadening their perspective : from simp...
Influences of system uncertainties on the numerical transfer path analysis of engine systems
NASA Astrophysics Data System (ADS)
Acri, A.; Nijman, E.; Acri, A.; Offner, G.
2017-10-01
Practical mechanical systems operate with some degree of uncertainty. In numerical models uncertainties can result from poorly known or variable parameters, from geometrical approximation, from discretization or numerical errors, from uncertain inputs or from rapidly changing forcing that can be best described in a stochastic framework. Recently, random matrix theory was introduced to take parameter uncertainties into account in numerical modeling problems. In particular in this paper, Wishart random matrix theory is applied on a multi-body dynamic system to generate random variations of the properties of system components. Multi-body dynamics is a powerful numerical tool largely implemented during the design of new engines. In this paper the influence of model parameter variability on the results obtained from the multi-body simulation of engine dynamics is investigated. The aim is to define a methodology to properly assess and rank system sources when dealing with uncertainties. Particular attention is paid to the influence of these uncertainties on the analysis and the assessment of the different engine vibration sources. Examples of the effects of different levels of uncertainties are illustrated by means of examples using a representative numerical powertrain model. A numerical transfer path analysis, based on system dynamic substructuring, is used to derive and assess the internal engine vibration sources. The results obtained from this analysis are used to derive correlations between parameter uncertainties and statistical distribution of results. The derived statistical information can be used to advance the knowledge of the multi-body analysis and the assessment of system sources when uncertainties in model parameters are considered.
Ferrer-Miralles, Neus; Rodríguez-Carmona, Escarlata; Corchero, José Luis; García-Fruitós, Elena; Vázquez, Esther; Villaverde, Antonio
2015-06-01
Lack of targeting and improper biodistribution are major flaws in current drug-based therapies that prevent reaching high local concentrations of the therapeutic agent. Such weaknesses impose the administration of high drug doses, resulting in undesired side effects, limited efficacy and enhanced production costs. Currently, missing nanosized containers, functionalized for specific cell targeting will be then highly convenient for the controlled delivery of both conventional and innovative drugs. In an attempt to fill this gap, health-focused nanotechnologies have put under screening a growing spectrum of materials as potential components of nanocages, whose properties can be tuned during fabrication. However, most of these materials pose severe biocompatibility concerns. We review in this study how proteins, the most versatile functional macromolecules, can be conveniently exploited and adapted by conventional genetic engineering as efficient building blocks of fully compatible nanoparticles for drug delivery and how selected biological activities can be recruited to mimic viral behavior during infection. Although engineering of protein self-assembling is still excluded from fully rational approaches, the exploitation of protein nano-assemblies occurring in nature and the direct manipulation of protein-protein contacts in bioinspired constructs open intriguing possibilities for further development. These methodologies empower the construction of new and potent vehicles that offer promise as true artificial viruses for efficient and safe nanomedical applications.
Bhateria, Manisha; Rachumallu, Ramakrishna; Singh, Rajbir; Bhatta, Rabi Sankar
2014-08-01
Erythrocytes (red blood cells [RBCs]) and artificial or synthetic delivery systems such as liposomes, nanoparticles (NPs) are the most investigated carrier systems. Herein, progress made from conventional approach of using RBC as delivery systems to novel approach of using synthetic delivery systems based on RBC properties will be reviewed. We aim to highlight both conventional and novel approaches of using RBCs as potential carrier system. Conventional approaches which include two main strategies are: i) directly loading therapeutic moieties in RBCs; and ii) coupling them with RBCs whereas novel approaches exploit structural, mechanical and biological properties of RBCs to design synthetic delivery systems through various engineering strategies. Initial attempts included coupling of antibodies to liposomes to specifically target RBCs. Knowledge obtained from several studies led to the development of RBC membrane derived liposomes (nanoerythrosomes), inspiring future application of RBC or its structural features in other attractive delivery systems (hydrogels, filomicelles, microcapsules, micro- and NPs) for even greater potential. In conclusion, this review dwells upon comparative analysis of various conventional and novel engineering strategies in developing RBC based drug delivery systems, diversifying their applications in arena of drug delivery. Regardless of the challenges in front of us, RBC based delivery systems offer an exciting approach of exploiting biological entities in a multitude of medical applications.
NASA Astrophysics Data System (ADS)
Hu, Fangjing; Lucyszyn, Stepan
2016-09-01
The thermal (emitted) infrared frequency bands (typically 20-40 and 60-100 THz) are best known for remote sensing applications that include temperature measurement (e.g. non-contacting thermometers and thermography), night vision and surveillance (e.g. ubiquitous motion sensing and target acquisition). This unregulated part of the electromagnetic spectrum also offers commercial opportunities for the development of short-range secure communications. The ` THz Torch' concept, which fundamentally exploits engineered blackbody radiation by partitioning thermally generated spectral radiance into pre-defined frequency channels, was recently demonstrated by the authors. The thermal radiation within each channel can be independently pulse-modulated, transmitted and detected, to create a robust form of short-range secure communications within the thermal infrared. In this paper, recent progress in the front-end enabling technologies associated with the THz Torch concept is reported. Fundamental limitations of this technology are discussed; possible engineering solutions for further improving the performance of such thermal-based wireless links are proposed and verified either experimentally or through numerical simulations. By exploring a raft of enabling technologies, significant enhancements to both data rate and transmission range can be expected. With good engineering solutions, the THz Torch concept can exploit nineteenth century physics with twentieth century multiplexing schemes for low-cost twenty-first century ubiquitous applications in security and defence.
NASA Astrophysics Data System (ADS)
Benaben, Frederick; Mu, Wenxin; Boissel-Dallier, Nicolas; Barthe-Delanoe, Anne-Marie; Zribi, Sarah; Pingaud, Herve
2015-08-01
The Mediation Information System Engineering project is currently finishing its second iteration (MISE 2.0). The main objective of this scientific project is to provide any emerging collaborative situation with methods and tools to deploy a Mediation Information System (MIS). MISE 2.0 aims at defining and designing a service-based platform, dedicated to initiating and supporting the interoperability of collaborative situations among potential partners. This MISE 2.0 platform implements a model-driven engineering approach to the design of a service-oriented MIS dedicated to supporting the collaborative situation. This approach is structured in three layers, each providing their own key innovative points: (i) the gathering of individual and collaborative knowledge to provide appropriate collaborative business behaviour (key point: knowledge management, including semantics, exploitation and capitalisation), (ii) deployment of a mediation information system able to computerise the previously deduced collaborative processes (key point: the automatic generation of collaborative workflows, including connection with existing devices or services) (iii) the management of the agility of the obtained collaborative network of organisations (key point: supervision of collaborative situations and relevant exploitation of the gathered data). MISE covers business issues (through BPM), technical issues (through an SOA) and agility issues of collaborative situations (through EDA).
Neurophysiology and neural engineering: a review.
Prochazka, Arthur
2017-08-01
Neurophysiology is the branch of physiology concerned with understanding the function of neural systems. Neural engineering (also known as neuroengineering) is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, enhance, or otherwise exploit the properties and functions of neural systems. In most cases neural engineering involves the development of an interface between electronic devices and living neural tissue. This review describes the origins of neural engineering, the explosive development of methods and devices commencing in the late 1950s, and the present-day devices that have resulted. The barriers to interfacing electronic devices with living neural tissues are many and varied, and consequently there have been numerous stops and starts along the way. Representative examples are discussed. None of this could have happened without a basic understanding of the relevant neurophysiology. I also consider examples of how neural engineering is repaying the debt to basic neurophysiology with new knowledge and insight. Copyright © 2017 the American Physiological Society.
National Aerospace Plane Engine Seals: High Temperature Seal Performance Evaluation
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.
1991-01-01
The key to the successful development of the single stage to orbit National Aerospace Plane (NASP) is the successful development of combined cycle ramjet/scramjet engines that can propel the vehicle to 17,000 mph to reach low Earth orbit. To achieve engine performance over this speed range, movable engine panels are used to tailor engine flow that require low leakage, high temperature seals around their perimeter. NASA-Lewis is developing a family of new high temperature seals to form effective barriers against leakage of extremely hot (greater than 2000 F), high pressure (up to 100 psi) flow path gases containing hydrogen and oxygen. Preventing backside leakage of these explosive gas mixtures is paramount in preventing the potential loss of the engine or the entire vehicle. Seal technology development accomplishments are described in the three main areas of concept development, test, and evaluation and analytical development.
Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process
NASA Astrophysics Data System (ADS)
Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.
2018-01-01
The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.
Lü, Xiao-Jing; Li, Ning; Weng, Chun-Sheng
2014-03-01
The effect detection of detonation exhaust can provide measurement data for exploring the formation mechanism of detonation, the promotion of detonation efficiency and the reduction of fuel waste. Based on tunable diode laser absorption spectroscopy technique combined with double optical path cross-correlation algorithm, the article raises the diagnosis method to realize the on-line testing of detonation exhaust velocity, temperature and H2O gas concentration. The double optical path testing system is designed and set up for the valveless pulse detonation engine with the diameter of 80 mm. By scanning H2O absorption lines of 1343nm with a high frequency of 50 kHz, the on-line detection of gas-liquid pulse detonation exhaust is realized. The results show that the optical testing system based on tunable diode laser absorption spectroscopy technique can capture the detailed characteristics of pulse detonation exhaust in the transient process of detonation. The duration of single detonation is 85 ms under laboratory conditions, among which supersonic injection time is 5.7 ms and subsonic injection time is 19.3 ms. The valveless pulse detonation engine used can work under frequency of 11 Hz. The velocity of detonation overflowing the detonation tube is 1,172 m x s(-1), the maximum temperature of detonation exhaust near the nozzle is 2 412 K. There is a transitory platform in the velocity curve as well as the temperature curve. H2O gas concentration changes between 0-7% during detonation under experimental conditions. The research can provide measurement data for the detonation process diagnosis and analysis, which is of significance to advance the detonation mechanism research and promote the research of pulse detonation engine control technology.
NASA Technical Reports Server (NTRS)
Thomas, Randy; Stueber, Thomas J.
2013-01-01
The System Identification (SysID) Rack is a real-time hardware-in-the-loop data acquisition (DAQ) and control instrument rack that was designed and built to support inlet testing in the NASA Glenn Research Center 10- by 10-Foot Supersonic Wind Tunnel. This instrument rack is used to support experiments on the Combined-Cycle Engine Large-Scale Inlet for Mode Transition Experiment (CCE? LIMX). The CCE?LIMX is a testbed for an integrated dual flow-path inlet configuration with the two flow paths in an over-and-under arrangement such that the high-speed flow path is located below the lowspeed flow path. The CCE?LIMX includes multiple actuators that are designed to redirect airflow from one flow path to the other; this action is referred to as "inlet mode transition." Multiple phases of experiments have been planned to support research that investigates inlet mode transition: inlet characterization (Phase-1) and system identification (Phase-2). The SysID Rack hardware design met the following requirements to support Phase-1 and Phase-2 experiments: safely and effectively move multiple actuators individually or synchronously; sample and save effector control and position sensor feedback signals; automate control of actuator positioning based on a mode transition schedule; sample and save pressure sensor signals; and perform DAQ and control processes operating at 2.5 KHz. This document describes the hardware components used to build the SysID Rack including their function, specifications, and system interface. Furthermore, provided in this document are a SysID Rack effectors signal list (signal flow); system identification experiment setup; illustrations indicating a typical SysID Rack experiment; and a SysID Rack performance overview for Phase-1 and Phase-2 experiments. The SysID Rack described in this document was a useful tool to meet the project objectives.
Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen
2018-03-18
Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio.
Applications of Temporal Graph Metrics to Real-World Networks
NASA Astrophysics Data System (ADS)
Tang, John; Leontiadis, Ilias; Scellato, Salvatore; Nicosia, Vincenzo; Mascolo, Cecilia; Musolesi, Mirco; Latora, Vito
Real world networks exhibit rich temporal information: friends are added and removed over time in online social networks; the seasons dictate the predator-prey relationship in food webs; and the propagation of a virus depends on the network of human contacts throughout the day. Recent studies have demonstrated that static network analysis is perhaps unsuitable in the study of real world network since static paths ignore time order, which, in turn, results in static shortest paths overestimating available links and underestimating their true corresponding lengths. Temporal extensions to centrality and efficiency metrics based on temporal shortest paths have also been proposed. Firstly, we analyse the roles of key individuals of a corporate network ranked according to temporal centrality within the context of a bankruptcy scandal; secondly, we present how such temporal metrics can be used to study the robustness of temporal networks in presence of random errors and intelligent attacks; thirdly, we study containment schemes for mobile phone malware which can spread via short range radio, similar to biological viruses; finally, we study how the temporal network structure of human interactions can be exploited to effectively immunise human populations. Through these applications we demonstrate that temporal metrics provide a more accurate and effective analysis of real-world networks compared to their static counterparts.
Perceptually Guided Photo Retargeting.
Xia, Yingjie; Zhang, Luming; Hong, Richang; Nie, Liqiang; Yan, Yan; Shao, Ling
2016-04-22
We propose perceptually guided photo retargeting, which shrinks a photo by simulating a human's process of sequentially perceiving visually/semantically important regions in a photo. In particular, we first project the local features (graphlets in this paper) onto a semantic space, wherein visual cues such as global spatial layout and rough geometric context are exploited. Thereafter, a sparsity-constrained learning algorithm is derived to select semantically representative graphlets of a photo, and the selecting process can be interpreted by a path which simulates how a human actively perceives semantics in a photo. Furthermore, we learn the prior distribution of such active graphlet paths (AGPs) from training photos that are marked as esthetically pleasing by multiple users. The learned priors enforce the corresponding AGP of a retargeted photo to be maximally similar to those from the training photos. On top of the retargeting model, we further design an online learning scheme to incrementally update the model with new photos that are esthetically pleasing. The online update module makes the algorithm less dependent on the number and contents of the initial training data. Experimental results show that: 1) the proposed AGP is over 90% consistent with human gaze shifting path, as verified by the eye-tracking data, and 2) the retargeting algorithm outperforms its competitors significantly, as AGP is more indicative of photo esthetics than conventional saliency maps.
Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen
2018-01-01
Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio. PMID:29562628
Ramos, A G; García-Garrido, V J; Mancho, A M; Wiggins, S; Coca, J; Glenn, S; Schofield, O; Kohut, J; Aragon, D; Kerfoot, J; Haskins, T; Miles, T; Haldeman, C; Strandskov, N; Allsup, B; Jones, C; Shapiro, J
2018-03-15
Transoceanic Gliders are Autonomous Underwater Vehicles (AUVs) for which there is a developing and expanding range of applications in open-seas research, technology and underwater clean transport. Mature glider autonomy, operating depth (0-1000 meters) and low energy consumption without a CO 2 footprint enable evolutionary access across ocean basins. Pursuant to the first successful transatlantic glider crossing in December 2009, the Challenger Mission has opened the door to long-term, long-distance routine transoceanic AUV missions. These vehicles, which glide through the water column between 0 and 1000 meters depth, are highly sensitive to the ocean current field. Consequently, it is essential to exploit the complex space-time structure of the ocean current field in order to plan a path that optimizes scientific payoff and navigation efficiency. This letter demonstrates the capability of dynamical system theory for achieving this goal by realizing the real-time navigation strategy for the transoceanic AUV named Silbo, which is a Slocum deep-glider (0-1000 m), that crossed the North Atlantic from April 2016 to March 2017. Path planning in real time based on this approach has facilitated an impressive speed up of the AUV to unprecedented velocities resulting in major battery savings on the mission, offering the potential for routine transoceanic long duration missions.
A Scalable Framework for CSI Feedback in FDD Massive MIMO via DL Path Aligning
NASA Astrophysics Data System (ADS)
Luo, Xiliang; Cai, Penghao; Zhang, Xiaoyu; Hu, Die; Shen, Cong
2017-09-01
Unlike the time-division duplexing (TDD) systems, the downlink (DL) and uplink (UL) channels are not reciprocal anymore in the case of frequency-division duplexing (FDD). However, some long-term parameters, e.g. the time delays and angles of arrival (AoAs) of the channel paths, still enjoy reciprocity. In this paper, by efficiently exploiting the aforementioned limited reciprocity, we address the DL channel state information (CSI) feedback in a practical wideband massive multiple-input multiple-output (MIMO) system operating in the FDD mode. With orthogonal frequency-division multiplexing (OFDM) waveform and assuming frequency-selective fading channels, we propose a scalable framework for the DL pilots design, DL CSI acquisition, and the corresponding CSI feedback in the UL. In particular, the base station (BS) can transmit the FFT-based pilots with the carefully-selected phase shifts. Then the user can rely on the so-called time-domain aggregate channel (TAC) to derive the feedback of reduced imensionality according to either its own knowledge about the statistics of the DL channels or the instruction from the serving BS. We demonstrate that each user can just feed back one scalar number per DL channel path for the BS to recover the DL CSIs. Comprehensive numerical results further corroborate our designs.
NASA Astrophysics Data System (ADS)
Shao, Zhongshi; Pi, Dechang; Shao, Weishi
2018-05-01
This article presents an effective estimation of distribution algorithm, named P-EDA, to solve the blocking flow-shop scheduling problem (BFSP) with the makespan criterion. In the P-EDA, a Nawaz-Enscore-Ham (NEH)-based heuristic and the random method are combined to generate the initial population. Based on several superior individuals provided by a modified linear rank selection, a probabilistic model is constructed to describe the probabilistic distribution of the promising solution space. The path relinking technique is incorporated into EDA to avoid blindness of the search and improve the convergence property. A modified referenced local search is designed to enhance the local exploitation. Moreover, a diversity-maintaining scheme is introduced into EDA to avoid deterioration of the population. Finally, the parameters of the proposed P-EDA are calibrated using a design of experiments approach. Simulation results and comparisons with some well-performing algorithms demonstrate the effectiveness of the P-EDA for solving BFSP.
BCL-2: Long and winding path from discovery to therapeutic target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenk, Robyn L.; Strasser, Andreas; Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010
In 1988, the BCL-2 protein was found to promote cancer by limiting cell death rather than enhancing proliferation. This discovery set the wheels in motion for an almost 30 year journey involving many international research teams that has recently culminated in the approval for a drug, ABT-199/venetoclax/Venclexta that targets this protein in the treatment of cancer. This review will describe the long and winding path from the discovery of this protein and understanding the fundamental process of apoptosis that BCL-2 and its numerous homologues control, through to its exploitation as a drug target that is set to have significant benefitmore » for cancer patients. - Highlights: • BCL-2 proteins control the intrinsic or mitochondrial pathway of apoptosis. • Defective apoptosis is a hallmark of cancer. • BH3-mimetics inhibit pro-survival BCL-2 proteins to induce cancer cell death. • ABT-199/venetoclax is approved for treatment of chronic lymphocytic leukaemia.« less
Van Nguyen; Javaid, Abdul Q; Weitnauer, Mary Ann
2014-01-01
We introduce the Spectrum-averaged Harmonic Path (SHAPA) algorithm for estimation of heart rate (HR) and respiration rate (RR) with Impulse Radio Ultrawideband (IR-UWB) radar. Periodic movement of human torso caused by respiration and heart beat induces fundamental frequencies and their harmonics at the respiration and heart rates. IR-UWB enables capture of these spectral components and frequency domain processing enables a low cost implementation. Most existing methods of identifying the fundamental component either in frequency or time domain to estimate the HR and/or RR lead to significant error if the fundamental is distorted or cancelled by interference. The SHAPA algorithm (1) takes advantage of the HR harmonics, where there is less interference, and (2) exploits the information in previous spectra to achieve more reliable and robust estimation of the fundamental frequency in the spectrum under consideration. Example experimental results for HR estimation demonstrate how our algorithm eliminates errors caused by interference and produces 16% to 60% more valid estimates.
Load-adaptive practical multi-channel communications in wireless sensor networks.
Islam, Md Shariful; Alam, Muhammad Mahbub; Hong, Choong Seon; Lee, Sungwon
2010-01-01
In recent years, a significant number of sensor node prototypes have been designed that provide communications in multiple channels. This multi-channel feature can be effectively exploited to increase the overall capacity and performance of wireless sensor networks (WSNs). In this paper, we present a multi-channel communications system for WSNs that is referred to as load-adaptive practical multi-channel communications (LPMC). LPMC estimates the active load of a channel at the sink since it has a more comprehensive view of the network behavior, and dynamically adds or removes channels based on the estimated load. LPMC updates the routing path to balance the loads of the channels. The nodes in a path use the same channel; therefore, they do not need to switch channels to receive or forward packets. LPMC has been evaluated through extensive simulations, and the results demonstrate that it can effectively increase the delivery ratio, network throughput, and channel utilization, and that it can decrease the end-to-end delay and energy consumption.
Automated path planning of the Payload Inspection and Processing System
NASA Technical Reports Server (NTRS)
Byers, Robert M.
1994-01-01
The Payload Changeout Room Inspection and Processing System (PIPS) is a highly redundant manipulator intended for performing tasks in the crowded and sensitive environment of the Space Shuttle Orbiter payload bay. Its dexterity will be exploited to maneuver the end effector in a workspace populated with obstacles. A method is described by which the end effector of a highly redundant manipulator is directed toward a target via a Lyapunov stability function. A cost function is constructed which represents the distance from the manipulator links to obstacles. Obstacles are avoided by causing the vector of joint parameters to move orthogonally to the gradient of the workspace cost function. A C language program implements the algorithm to generate a joint history. The resulting motion is graphically displayed using the Interactive Graphical Robot Instruction Program (IGRIP) produced by Deneb Robotics. The graphical simulation has the potential to be a useful tool in path planning for the PIPS in the Shuttle Payload Bay environment.
Stochastic DT-MRI connectivity mapping on the GPU.
McGraw, Tim; Nadar, Mariappan
2007-01-01
We present a method for stochastic fiber tract mapping from diffusion tensor MRI (DT-MRI) implemented on graphics hardware. From the simulated fibers we compute a connectivity map that gives an indication of the probability that two points in the dataset are connected by a neuronal fiber path. A Bayesian formulation of the fiber model is given and it is shown that the inversion method can be used to construct plausible connectivity. An implementation of this fiber model on the graphics processing unit (GPU) is presented. Since the fiber paths can be stochastically generated independently of one another, the algorithm is highly parallelizable. This allows us to exploit the data-parallel nature of the GPU fragment processors. We also present a framework for the connectivity computation on the GPU. Our implementation allows the user to interactively select regions of interest and observe the evolving connectivity results during computation. Results are presented from the stochastic generation of over 250,000 fiber steps per iteration at interactive frame rates on consumer-grade graphics hardware.
NASA Astrophysics Data System (ADS)
Mullen, Katharine M.
Human-technology integration is the replacement of human parts and extension of human capabilities with engineered devices and substrates. Its result is hybrid biological-artificial systems. We discuss here four categories of products furthering human-technology integration: wearable computers, pervasive computing environments, engineered tissues and organs, and prosthetics, and introduce examples of currently realized systems in each category. We then note that realization of a completely artificial sytem via the path of human-technology integration presents the prospect of empirical confirmation of an aware artificially embodied system.
Aircraft Energy Conservation during Airport Ground Operations
1982-03-01
minimized. The model can be run in a non -optimizing mode to simulate movements along pre-assigned taxi paths. 8-6 The model is also designed ...5.5 5.6 5.7 Engine Designation by Airline and Aircraft Type IAD 2-6 Engine Designation by Airline and Aircraft Type DCA 2-7 Fuel Flow Rates...B.2 CY 1979 Aircraft Operations at IAD and DCA Airports . . 3-5 B.3 1979 Scheduled and Non -Scheduled Departures from IAD by Aircraft Type and
HSCT noise reduction technology development at GE Aircraft Engines
NASA Technical Reports Server (NTRS)
Majjigi, Rudramuni K.
1992-01-01
The topics covered include the following: High Speed Civil Transport (HSCT) exhaust nozzle design approaches; GE aircraft engine (GEAE) HSCT acoustics research; 2DCD non-IVP suppressor ejector; key sensitivities from reference aircraft; acoustic experiments; aero-mixing experimental set-up; fluid shield nozzle; HSCT Mach 2.4 flade nozzle; noise prediction; nozzle concept for GE/Boeing joint test; scale model hot core flow path modified to prevent hub-choking CFL3-D solution; HSCT exhaust nozzle status; and key acoustic technology issues for HSCT's.
HSCT noise reduction technology development at GE Aircraft Engines
NASA Astrophysics Data System (ADS)
Majjigi, Rudramuni K.
1992-04-01
The topics covered include the following: High Speed Civil Transport (HSCT) exhaust nozzle design approaches; GE aircraft engine (GEAE) HSCT acoustics research; 2DCD non-IVP suppressor ejector; key sensitivities from reference aircraft; acoustic experiments; aero-mixing experimental set-up; fluid shield nozzle; HSCT Mach 2.4 flade nozzle; noise prediction; nozzle concept for GE/Boeing joint test; scale model hot core flow path modified to prevent hub-choking CFL3-D solution; HSCT exhaust nozzle status; and key acoustic technology issues for HSCT's.
1982-02-25
coordinated multidisciplinary study of both the architectural and engineering resources of the National Area. Both research b1 orientation and...South Fork just north of Rugby , and traveled through the site where Jamestown, Tennessee, now stands. A third trail, the Chickamauga Path, left the...Thomas Hughes (1881), the founder of the English colony of Rugby , Tennessee, described his neighbors in the Big South Fork area as mostly poor men
Real-time path planning and autonomous control for helicopter autorotation
NASA Astrophysics Data System (ADS)
Yomchinda, Thanan
Autorotation is a descending maneuver that can be used to recover helicopters in the event of total loss of engine power; however it is an extremely difficult and complex maneuver. The objective of this work is to develop a real-time system which provides full autonomous control for autorotation landing of helicopters. The work includes the development of an autorotation path planning method and integration of the path planner with a primary flight control system. The trajectory is divided into three parts: entry, descent and flare. Three different optimization algorithms are used to generate trajectories for each of these segments. The primary flight control is designed using a linear dynamic inversion control scheme, and a path following control law is developed to track the autorotation trajectories. Details of the path planning algorithm, trajectory following control law, and autonomous autorotation system implementation are presented. The integrated system is demonstrated in real-time high fidelity simulations. Results indicate feasibility of the capability of the algorithms to operate in real-time and of the integrated systems ability to provide safe autorotation landings. Preliminary simulations of autonomous autorotation on a small UAV are presented which will lead to a final hardware demonstration of the algorithms.
NASA Astrophysics Data System (ADS)
Lampert, Astrid; Hartmann, Jörg; Pätzold, Falk; Lobitz, Lennart; Hecker, Peter; Kohnert, Katrin; Larmanou, Eric; Serafimovich, Andrei; Sachs, Torsten
2018-05-01
To investigate if the LI-COR humidity sensor can be used as a replacement of the Lyman-alpha sensor for airborne applications, the measurement data of the Lyman-alpha and several LI-COR sensors are analysed in direct intercomparison flights on different airborne platforms. One vibration isolated closed-path and two non-isolated open-path LI-COR sensors were installed on a Dornier 128 twin engine turbo-prop aircraft. The closed-path sensor provided absolute values and fluctuations of the water vapour mixing ratio in good agreement with the Lyman-alpha. The signals of the two open-path sensors showed considerable high-frequency noise, and the absolute value of the mixing ratio was observed to drift with time in this vibrational environment. On the helicopter-towed sensor system Helipod, with very low vibration levels, the open-path LI-COR sensor agreed very well with the Lyman-alpha sensor over the entire frequency range up to 3 Hz. The results show that the LI-COR sensors are well suited for airborne measurements of humidity fluctuations, provided that a vibrationless environment is given, and this turns out to be more important than close sensor spacing.
SensiPath: computer-aided design of sensing-enabling metabolic pathways.
Delépine, Baudoin; Libis, Vincent; Carbonell, Pablo; Faulon, Jean-Loup
2016-07-08
Genetically-encoded biosensors offer a wide range of opportunities to develop advanced synthetic biology applications. Circuits with the ability of detecting and quantifying intracellular amounts of a compound of interest are central to whole-cell biosensors design for medical and environmental applications, and they also constitute essential parts for the selection and regulation of high-producer strains in metabolic engineering. However, the number of compounds that can be detected through natural mechanisms, like allosteric transcription factors, is limited; expanding the set of detectable compounds is therefore highly desirable. Here, we present the SensiPath web server, accessible at http://sensipath.micalis.fr SensiPath implements a strategy to enlarge the set of detectable compounds by screening for multi-step enzymatic transformations converting non-detectable compounds into detectable ones. The SensiPath approach is based on the encoding of reactions through signature descriptors to explore sensing-enabling metabolic pathways, which are putative biochemical transformations of the target compound leading to known effectors of transcription factors. In that way, SensiPath enlarges the design space by broadening the potential use of biosensors in synthetic biology applications. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Gas Turbine Engine Carbon Oil Seals Computerized Assembly
NASA Technical Reports Server (NTRS)
Lee, Robert
2006-01-01
In a bearing compartment there are a series of parts when assembled determine the location of the bearing and seal as related to the centerline of rotation. We see part datums that do not establish A coincident path from the bearing to the seal. High engine vibration can cause severe oil leakage. The inability of the seal to respond fast enough to the rotating element Radial Seal: Sensitive to housing air pressure Sensitive to seal runout ? Axial Seal: Very sensitive to seal perpendicularity to shaft. Goals include: 1) Repeatable assembly process; 2) Accurate assembly process; 3) Minimize seal runout; 4) Design to engine centerline of rotation, i.e. bearings.
SSME leak detection feasibility investigation by utilization of infrared sensor technology
NASA Technical Reports Server (NTRS)
Shohadaee, Ahmad A.; Crawford, Roger A.
1990-01-01
This investigation examined the potential of using state-of-the-art technology of infrared (IR) thermal imaging systems combined with computer, digital image processing and expert systems for Space Shuttle Main Engines (SSME) propellant path peak detection as an early warning system of imminent engine failure. A low-cost, laboratory experiment was devised and an experimental approach was established. The system was installed, checked out, and data were successfully acquired demonstrating the proof-of-concept. The conclusion from this investigation is that both numerical and experimental results indicate that the leak detection by using infrared sensor technology proved to be feasible for a rocket engine health monitoring system.
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2013-01-01
AMTD uses a science-driven systems engineering approach to define & execute a long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Because we cannot predict the future, we are pursuing multiple technology paths including monolithic & segmented mirrors. Assembled outstanding team from academia, industry & government; experts in science & space telescope engineering. Derived engineering specifications from science measurement needs & implementation constraints. Maturing 6 critical technologies required to enable 4 to 8 meter UVOIR space telescope mirror assemblies for both general astrophysics & ultra-high contrast exoplanet imaging. AMTD achieving all its goals & accomplishing all its milestones.
Software Engineering Research/Developer Collaborations in 2005
NASA Technical Reports Server (NTRS)
Pressburger, Tom
2006-01-01
In CY 2005, three collaborations between software engineering technology providers and NASA software development personnel deployed three software engineering technologies on NASA development projects (a different technology on each project). The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report. Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Also included is an acronym list.
Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; LaClair, Tim J; Daw, C Stuart
2014-01-01
We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends inmore » the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.« less
NASA Technical Reports Server (NTRS)
Novik, Dmitry A.; Tilton, James C.
1993-01-01
The compression, or efficient coding, of single band or multispectral still images is becoming an increasingly important topic. While lossy compression approaches can produce reconstructions that are visually close to the original, many scientific and engineering applications require exact (lossless) reconstructions. However, the most popular and efficient lossless compression techniques do not fully exploit the two-dimensional structural links existing in the image data. We describe here a general approach to lossless data compression that effectively exploits two-dimensional structural links of any length. After describing in detail two main variants on this scheme, we discuss experimental results.
Engineering Genetically Encoded FRET Sensors
Lindenburg, Laurens; Merkx, Maarten
2014-01-01
Förster Resonance Energy Transfer (FRET) between two fluorescent proteins can be exploited to create fully genetically encoded and thus subcellularly targetable sensors. FRET sensors report changes in energy transfer between a donor and an acceptor fluorescent protein that occur when an attached sensor domain undergoes a change in conformation in response to ligand binding. The design of sensitive FRET sensors remains challenging as there are few generally applicable design rules and each sensor must be optimized anew. In this review we discuss various strategies that address this shortcoming, including rational design approaches that exploit self-associating fluorescent domains and the directed evolution of FRET sensors using high-throughput screening. PMID:24991940
2015-09-30
Wireless Networks (WUWNet’14), Rome, Italy, Nov. 12 14, 2014. J. Preisig, “ Underwater Acoustic Communications: Enabling the Next Generation at the...on Wireless Communication. M. Pajovic, J. Preisig, “Performance Analytics and Optimal Design of Multichannel Equalizers for Underwater Acoustic Communications”, to appear in IEEE Journal of Oceanic Engineering. 6 ...Exploiting Structured Dependencies in the Design of Adaptive Algorithms for Underwater Communication Award #3
Paths of Improving the Technological Process of Manufacture of GTE Turbine Blades
NASA Astrophysics Data System (ADS)
Vdovin, R. A.; Smelov, V. G.; Bolotov, M. A.; Pronichev, N. D.
2016-08-01
The article provides an analysis of the problems at manufacture of blades of the turbine of gas-turbine engines and power stations is provided in article, and also paths of perfecting of technological process of manufacture of blades are offered. The analysis of the main systems of basing of blades in the course of machining and the control methods of the processed blades existing at the enterprises with the indication of merits and demerits is carried out. In work criteria in the form of the mathematical models of a spatial distribution of an allowance considering the uniform distribution of an allowance on a feather profile are developed. The considered methods allow to reduce percent of release of marriage and to reduce labor input when polishing path part of a feather of blades of the turbine.
Thermal Property Engineering: Exploiting the Properties of Ceramic Nanocomposites
2018-03-01
fluorescence peaks were too weak to observe. The fact that Nd peaks were observed, after only actively doping Er into the material, was unexpected but not...Shumbula PM, Ngila JC, Sikhwivhilu LM, Moutloali RM. Effects of precipitation temperature on nanoparticle surface area and antibacterial behaviour of Mg(OH
Android REST Client Application to View, Collect, and Exploit Video and Image Data
2013-09-01
Superresolution Image Reconstruction From a Sequence of Aliased Imagery. Applied Optics 2006, 45 (21), 5073–5085. 3, Driggers, R. G.; Krapels, K. A...Murrill, S.; Young, S. S.; Theilke, M.; Schuler, J. M. Superresolution Performance for Undersampled Imagers. Optical Engineering 2005, 44 (01). 4. Young
A Network of Automatic Control Web-Based Laboratories
ERIC Educational Resources Information Center
Vargas, Hector; Sanchez Moreno, J.; Jara, Carlos A.; Candelas, F. A.; Torres, Fernando; Dormido, Sebastian
2011-01-01
This article presents an innovative project in the context of remote experimentation applied to control engineering education. Specifically, the authors describe their experience regarding the analysis, design, development, and exploitation of web-based technologies within the scope of automatic control. This work is part of an inter-university…
Enzymatic synthesis of novel phloretin glucosides.
Pandey, Ramesh Prasad; Li, Tai Feng; Kim, Eun-Hee; Yamaguchi, Tokutaro; Park, Yong Il; Kim, Joong Su; Sohng, Jae Kyung
2013-06-01
A UDP-glycosyltransferase from Bacillus licheniformis was exploited for the glycosylation of phloretin. The in vitro glycosylation reaction confirmed the production of five phloretin glucosides, including three novel glucosides. Consequently, we demonstrated the application of the same glycosyltransferase for the efficient whole-cell biocatalysis of phloretin in engineered Escherichia coli.
Enzymatic Synthesis of Novel Phloretin Glucosides
Pandey, Ramesh Prasad; Li, Tai Feng; Kim, Eun-Hee; Yamaguchi, Tokutaro; Park, Yong Il; Kim, Joong Su
2013-01-01
A UDP-glycosyltransferase from Bacillus licheniformis was exploited for the glycosylation of phloretin. The in vitro glycosylation reaction confirmed the production of five phloretin glucosides, including three novel glucosides. Consequently, we demonstrated the application of the same glycosyltransferase for the efficient whole-cell biocatalysis of phloretin in engineered Escherichia coli. PMID:23542617
Unducted, counterrotating gearless front fan engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, J.B.
This patent describes a high bypass ratio gas turbine engine. It comprises a core engine effective for generating combustion gases passing through a main flow path; a power turbine aft of the core engine and including first and second counter rotatable interdigitated turbine blade rows, effective for counterrotating first and second drive shafts, respectively; an unducted fan section forward of the core engine including a first fan blade row connected to the first drive shaft and a second fan blade row axially spaced aftward from the first fan blade row and connected to the second drive shaft; and a boostermore » compressor axially positioned between the first and second fan blade rows and including first compressor blade rows connected to the first drive shaft and second compressor blade rows connected to the second drive shaft.« less
Shop test of the 501F; A 150 MW combustion turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Entenmann, D.T.; North, W.E.; Fukue, I.
1991-10-01
The 501F is a 150 MW-class 60 Hz engine jointly developed by Westinghouse Electric Corporation and Mitsubishi Heavy Industries, Ltd. This paper describes the full-load shop test program for the prototype engine, as carried out in Takasago, Japan. The shop test included a full range of operating conditions, from startup through full load at the 1260{degrees} C (2300{degrees} F) design turbine inlet temperature. The engine was prepared with more than 1500 instrumentation points to monitor flow path characteristics, metal temperatures, displacements, pressures, cooling circuit characteristics, strains, sound pressure levels, and exhaust emissions. The results of this shop test indicate themore » new 501F engine design and development effort to be highly successful. The engine exceeds power and overall efficiency expectations, thus verifying the new concepts and design improvements.« less
SSME to RS-25: Challenges of Adapting a Heritage Engine to a New Vehicle Architecture
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2015-01-01
A key constituent of the NASA Space Launch System (SLS) architecture is the RS-25 engine, also known as the Space Shuttle Main Engine (SSME). This engine was selected largely due to the maturity and extensive experience gained through 30-plus years of service. However, while the RS-25 is a highly mature system, simply unbolting it from the Space Shuttle and mounting it on the new SLS vehicle is not a "plug-and-play" operation. In addition to numerous technical integration and operational details, there were also hardware upgrades needed. While the magnitude of effort is less than that needed to develop a new clean-sheet engine system, this paper describes some of the expected and unexpected challenges encountered to date on the path to the first flight of SLS.
English and Work Experience for Professionals.
ERIC Educational Resources Information Center
Rubrecht, Penthes; Gillies, Ellen
1993-01-01
Discusses a course designed for professionals in engineering, architecture, and business administration who were displaced, unemployed, or underemployed. The course contained 3 components: 12 weeks of intensive language training geared to the profession and workplace, individualized counseling and career path development, and a 4-week work…
Characterizing Metal-Based Nanoparticles in Surface Water by Single-Particle ICPMS
Engineered metal-based nanomaterials are being used in increasing quantities in consumer and industrial products. These materials may be introduced into surface waters by a variety of paths depending on usage, and will be superimposed on concentrations of other particles containi...
Outcomes from the DOE Workshop on Turbulent Flow Simulation at the Exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprague, Michael; Boldyrev, Stanislav; Chang, Choong-Seock
This paper summarizes the outcomes from the Turbulent Flow Simulation at the Exascale: Opportunities and Challenges Workshop, which was held 4-5 August 2015, and was sponsored by the U.S. Department of Energy Office of Advanced Scientific Computing Research. The workshop objective was to define and describe the challenges and opportunities that computing at the exascale will bring to turbulent-flow simulations in applied science and technology. The need for accurate simulation of turbulent flows is evident across the U.S. Department of Energy applied-science and engineering portfolios, including combustion, plasma physics, nuclear-reactor physics, wind energy, and atmospheric science. The workshop brought togethermore » experts in turbulent-flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants defined a research agenda and path forward that will enable scientists and engineers to continually leverage, engage, and direct advances in computational systems on the path to exascale computing.« less
Interactive Spacecraft Trajectory Design Strategies Featuring Poincare Map Topology
NASA Astrophysics Data System (ADS)
Schlei, Wayne R.
Space exploration efforts are shifting towards inexpensive and more agile vehicles. Versatility regarding spacecraft trajectories refers to the agility to correct deviations from an intended path or even the ability to adapt the future path to a new destination--all with limited spaceflight resources (i.e., small DeltaV budgets). Trajectory design methods for such nimble vehicles incorporate equally versatile procedures that allow for rapid and interactive decision making while attempting to reduce Delta V budgets, leading to a versatile trajectory design platform. A versatile design paradigm requires the exploitation of Poincare map topology , or the interconnected web of dynamical structures, existing within the chaotic dynamics of multi-body gravitational models to outline low-Delta V transfer options residing nearby to a current path. This investigation details an autonomous procedure to extract the periodic orbits (topology nodes) and correlated asymptotic flow structures (or the invariant manifolds representing topology links). The autonomous process summarized in this investigation (termed PMATE) overcomes discontinuities on the Poincare section that arise in the applied multi-body model (the planar circular restricted three-body problem) and detects a wide variety of novel periodic orbits. New interactive capabilities deliver a visual analytics foundation for versatile spaceflight design, especially for initial guess generation and manipulation. Such interactive strategies include the selection of states and arcs from Poincare section visualizations and the capabilities to draw and drag trajectories to remove dependency on initial state input. Furthermore, immersive selection is expanded to cull invariant manifold structures, yielding low-DeltaV or even DeltaV-free transfers between periodic orbits. The application of interactive design strategies featuring a dense extraction of Poincare map topology is demonstrated for agile spaceflight with a simple spacecraft rerouting scenario incorporating a very limited Delta V budget. In the Earth-Moon system, a low-DeltaV transfer from low Earth orbit (LEO) to the distant retrograde orbit (DRO) vicinity is derived with interactive topology-based design tactics. Finally, Poincare map topology is exploited in the Saturn-Enceladus system to explore a possible ballistic capture scenario around Enceladus.
Modeling of a 10-km optical link exploiting power-over-fiber for cabled submarine observatories
NASA Astrophysics Data System (ADS)
Dimitriadou, Evangelia; Ghisa, Laura; Quintard, Véronique; Guégan, Mikael; Pérennou, André
2017-11-01
The modeling of the simultaneous propagation of high-power and bidirectional data along the same 10-km-long single-mode fiber is discussed. The intense signal carries the energy needed to supply an instrument in the context of cabled submarine observatories. The considered mathematical description takes into account the fiber's nonlinear behavior in terms of Raman and Brillouin scattering to describe spectral propagation in the static regime. By testing our model against measurements, its validity is evaluated. Preliminary results are promising and reveal the path to follow for its improvement.
Teleportation between distant qudits via scattering of mobile qubits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciccarello, Francesco; Zarcone, Michelangelo; Bose, Sougato
2010-04-15
We consider a one-dimensional structure where noninteracting spin-s scattering centers, such as quantum impurities or multilevel atoms, are embedded at given positions. We show that the injection into the structure of unpolarized flying qubits, such as electrons or photons, along with path detection suffice to accomplish spin-state teleportation between two centers via a third ancillary one. No action over the internal quantum state of both the spin-s particles and the flying qubits is required. The protocol enables the transfer of quantum information between well-separated static entities in nanostructures by exploiting a very low control mechanism, namely scattering.
Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review
Rosso, Stefano; Meneghello, Roberto; Concheri, Gianmaria
2018-01-01
Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed. PMID:29487626