1979-12-01
Geologist Applied Engineering & Urban Geology Missouri Geological Survey May 6, 1974 Sheet 6, Appendix B For file Only DEAN LAKE SITE (Formerly Bray...time to point out these problems that you have been discussing. ,J. Hadley Williams Geologist and Chief Applied Engineering & Urban Geology Missouri...Geologist Applied Engineering & Urban Geology Missouri Geological Survey June 27, 1974 Sheet 9, Appendix B FOR FILE ONLY L • BRAYS LAKE RECONNAISSANCE PHELPS
Compendium of Abstracts on Statistical Applications in Geotechnical Engineering.
1983-09-01
research in the application of probabilistic and statistical methods to soil mechanics, rock mechanics, and engineering geology problems have grown markedly...probability, statistics, soil mechanics, rock mechanics, and engineering geology. 2. The purpose of this report is to make available to the U. S...Deformation Dynamic Response Analysis Seepage, Soil Permeability and Piping Earthquake Engineering, Seismology, Settlement and Heave Seismic Risk Analysis
Territories typification technique with use of statistical models
NASA Astrophysics Data System (ADS)
Galkin, V. I.; Rastegaev, A. V.; Seredin, V. V.; Andrianov, A. V.
2018-05-01
Territories typification is required for solution of many problems. The results of geological zoning received by means of various methods do not always agree. That is why the main goal of the research given is to develop a technique of obtaining a multidimensional standard classified indicator for geological zoning. In the course of the research, the probabilistic approach was used. In order to increase the reliability of geological information classification, the authors suggest using complex multidimensional probabilistic indicator P K as a criterion of the classification. The second criterion chosen is multidimensional standard classified indicator Z. These can serve as characteristics of classification in geological-engineering zoning. Above mentioned indicators P K and Z are in good correlation. Correlation coefficient values for the entire territory regardless of structural solidity equal r = 0.95 so each indicator can be used in geological-engineering zoning. The method suggested has been tested and the schematic map of zoning has been drawn.
ELECTRICAL TECHNIQUES FOR ENGINEERING APPLICATIONS.
Bisdorf, Robert J.
1985-01-01
Surface electrical geophysical methods have been used in such engineering applications as locating and delineating shallow gravel deposits, depth to bedrock, faults, clay zones, and other geological phenomena. Other engineering applications include determining water quality, tracing ground water contaminant plumes and locating dam seepages. Various methods and electrode arrays are employed to solve particular geological problems. The sensitivity of a particular method or electrode array depends upon the physics on which the method is based, the array geometry, the electrical contrast between the target and host materials, and the depth to the target. Each of the available electrical methods has its own particular advantages and applications which the paper discusses.
ERIC Educational Resources Information Center
Repine, Tom; Hemler, Deb; Lane, Duane
2003-01-01
Presents a problem-solving investigation on coal mining that integrates science and mathematics with geology. Engages students in a scenario in which they play the roles of geologists and mining engineers. (NB)
Slope Stability. CEGS Programs Publication Number 15.
ERIC Educational Resources Information Center
Pestrong, Raymond
Slope Stability is one in a series of single-topic problem modules intended for use in undergraduate and earth science courses. The module, also appropriate for use in undergraduate civil engineering and engineering geology courses, is a self-standing introduction to studies of slope stability. It has been designed to supplement standard…
Bayesian-information-gap decision theory with an application to CO 2 sequestration
O'Malley, D.; Vesselinov, V. V.
2015-09-04
Decisions related to subsurface engineering problems such as groundwater management, fossil fuel production, and geologic carbon sequestration are frequently challenging because of an overabundance of uncertainties (related to conceptualizations, parameters, observations, etc.). Because of the importance of these problems to agriculture, energy, and the climate (respectively), good decisions that are scientifically defensible must be made despite the uncertainties. We describe a general approach to making decisions for challenging problems such as these in the presence of severe uncertainties that combines probabilistic and non-probabilistic methods. The approach uses Bayesian sampling to assess parametric uncertainty and Information-Gap Decision Theory (IGDT) to addressmore » model inadequacy. The combined approach also resolves an issue that frequently arises when applying Bayesian methods to real-world engineering problems related to the enumeration of possible outcomes. In the case of zero non-probabilistic uncertainty, the method reduces to a Bayesian method. Lastly, to illustrate the approach, we apply it to a site-selection decision for geologic CO 2 sequestration.« less
The Diffusion Simulator - Teaching Geomorphic and Geologic Problems Visually.
ERIC Educational Resources Information Center
Gilbert, R.
1979-01-01
Describes a simple hydraulic simulator based on more complex models long used by engineers to develop approximate solutions. It allows students to visualize non-steady transfer, to apply a model to solve a problem, and to compare experimentally simulated information with calculated values. (Author/MA)
Stereographic Projection Techniques for Geologists and Civil Engineers
NASA Astrophysics Data System (ADS)
Lisle, Richard J.; Leyshon, Peter R.
2004-05-01
An essential tool in the fields of structural geology and geotechnics, stereographic projection allows three-dimensional orientation data to be represented and manipulated. This revised edition presents a basic introduction to the subject with examples, illustrations and exercises that encourage the student to visualize the problems in three dimensions. It will provide students of geology, rock mechanics, and geotechnical and civil engineering with an indispensable guide to the analysis and interpretation of field orientation data. Links to useful web resources and software programs are also provided. First Edition published by Butterworth-Heinemann (1996): 0-750-62450-7
APPALACHIAN FOLDS, LATERAL RAMPS, AND BASEMENT FAULTS: A MODERN ENGINEERING PROBLEM?
Pohn, Howard A.
1987-01-01
Field studies and analysis of radar data have shown that cross-strike faulting in the central and southern Appalachians has affected geologic structures at the surface. These basement faults appear to have been active through much of geologic time. Indeed, more than 45 percent of modern earthquakes occur along these narrow zones here termed 'lateral ramps. ' Because of this seismic activity, these lateral ramps are likely to be zones that are prone to slope failure. The engineer should be aware of the presence of such zones and the higher landslide potential along them.
11 things a geologist thinks an engineer should know about carbonate beaches
Halley, R.B.; ,
2000-01-01
A review is given on the geological aspects of carbonate beaches that a geologist thinks may be useful for an engineer. Though, Geologists not involved in engineering problems may find it difficult to know what an engineer should understand about carbonate beaches. Nevertheless, there are at least eleven topics that are potentially very useful for engineers to keep in mind. This paper emits the discussions of certain kinds of carbonate shorelines that are beyond the scope of engineering issues, and focuses on sand-sized coastal carbonate deposits.
Publications - PDF 99-24D | Alaska Division of Geological & Geophysical
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska ; Engineering; Engineering Geologic Map; Engineering Geology; Geologic Map; Geology; Land Subsidence; Landslide
ERIC Educational Resources Information Center
Discover, 1982
1982-01-01
Highlights scientific accomplishments in 1981. Focuses on space sciences, medicine, geology, chemistry, physics, zoology, paleontology, environmental problems, and genetics including such topics as the Space Shuttle, Mount St. Helen's endangered species, genetic engineering, and the scientists associated with these accomplishments. (JN)
Geologic and operational summary, COST No. 1 well, Georges Bank area, North Atlantic OCS
Amato, Roger V.; Bebout, John W.
1980-01-01
The first Continental Offshore Stratigraphic Test (COST) well on the U.S. North Atlantic Outer Continental Shelf (OCS) was drilled by Ocean Production Company between April 6 and July 26, 1976, and designated the COST No. G-l. Geological and engineering data obtained from this deep well in the Georges Bank Basin were used by the 31 participating companies and the U.S. Geological Survey (USGS) for evaluating the petroleum potential and possible drilling problems in the U.S. North Atlantic OCS area in preparation for Lease Sale 42 held on December 18, 1979.
MULTIPHASE FLOW AND TRANSPORT IN POROUS MEDIA
Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. n petroleum reservoir engineering efficient recovery of energy reserves is the principal goal. nfortuna...
USCS and the USDA Soil Classification System: Development of a Mapping Scheme
2015-03-01
important to human daily living. A variety of disciplines (geology, agriculture, engineering, etc.) require a sys- tematic categorization of soil, detailing...it is often important to also con- sider parameters that indicate soil strength. Two important properties used for engineering-related problems are...that many textural clas- sification systems were developed to meet specifics needs. In agriculture, textural classification is used to determine crop
Publications - AR 2010-C | Alaska Division of Geological & Geophysical
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content DGGS AR 2010-C Publication Details Title: Engineering Geology FY11 project descriptions Authors , Engineering Geology FY11 project descriptions, in DGGS Staff, Alaska Division of Geological & Geophysical
NASA Astrophysics Data System (ADS)
Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.
2017-11-01
The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.
NASA Technical Reports Server (NTRS)
Hurtado, J. M., Jr.; Bleacher, J. E.; Rice, J.; Young, K.; Garry, W. B.; Eppler, D.
2011-01-01
Since 1997, Desert Research and Technology Studies (D-RATS) has conducted hardware and operations tests in the Arizona desert that advance human and robotic planetary exploration capabilities. D-RATS 2010 (8/31-9/13) simulated geologic traverses through a terrain of cinder cones, lava flows, and underlying sedimentary units using a pair of crewed rovers and extravehicular activities (EVAs) for geologic fieldwork. There were two sets of crews, each consisting of an engineer/commander and an experienced field geologist drawn from the academic community. A major objective of D-RATS was to examine the functions of a science support team, the roles of geologist crewmembers, and protocols, tools, and technologies needed for effective data collection and sample documentation. Solutions to these problems must consider how terrestrial field geology must be adapted to geologic fieldwork during EVAs
Publications - AR 2011-C | Alaska Division of Geological & Geophysical
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content DGGS AR 2011-C Publication Details Title: Engineering Geology FY12 project descriptions Authors Combellick, R.A., 2012, Engineering Geology FY12 project descriptions, in DGGS Staff, Alaska Division of
Popularizing Geological Education among Civil Engineering Students
ERIC Educational Resources Information Center
Chen, Xiang-jun; Zhou, Ying
2012-01-01
The sustainable development of an economy and a society cannot be realized without the help of modern geoscience. Engineering geology knowledge is necessary on a civil engineering construction site to ensure the construction work goes smoothly. This paper first discusses the importance of geoscience, especially the study of engineering geology.…
Shrimer, Fred H.
2005-01-01
The supply of aggregates suitable for use in construction and maintenance of infrastructure in western North America is a continuing concern to the engineering and resources-management community. Steady population growth throughout the region has fueled demand for high-quality aggregates, in the face of rapid depletion of existing aggregate resources and slow and difficult permitting of new sources of traditional aggregate types. In addition to these challenges, the requirement for aggregates to meet various engineering standards continues to increase. In addition to their physical-mechanical properties, other performance characteristics of construction aggregates specifically depend on their mineralogy and texture. These properties can result in deleterious chemical reactions when aggregate is used in concrete mixes. When this chemical reaction-termed 'alkali-aggregate reaction' (AAR)-occurs, it can pose a major problem for concrete structures, reducing their service life and requiring expensive repair or even replacement of the concrete. AAR is thus to be avoided in order to promote the longevity of concrete structures and to ensure that public moneys invested in infrastructure are well spent. Because the AAR phenomenon is directly related to the mineral composition, texture, and petrogenesis of the rock particles that make up aggregates, an understanding of the relation between the geology and the performance of aggregates in concrete is important. In the Pacific Northwest, some aggregates have a moderate to high AAR potential, but many others have no or only a low AAR potential. Overall, AAR is not as widespread or serious a problem in the Pacific Northwest as in other regions of North America. The identification of reactive aggregates in the Pacific Northwest and the accurate prediction of their behavior in concrete continue to present challenges for the assessment and management of geologic resources to the owners and operators of pits and quarries and to the users of the concrete aggregates mined from these deposits. This situation is complicated by the length of time typically required for AAR to become noticeable in concrete construction in the Pacific Northwest, commonly on such a scale that other deterioration mechanisms may have masked the effects of AAR. Distinguishing between the effects of AAR and those related to other problems in concrete is important for understanding the nature and severity of AAR throughout the Pacific Northwest. Furthermore, developing an understanding of the extent of the problem will assist efforts to maximize the intelligent and stewardly use of aggregate resources in the Pacific Northwest. This chapter illustrates the current 'state of the art' of AAR studies in the Pacific Northwest, a region with a common geologic heritage as well as many distinct geologic elements. The optimal use of aggregates in the construction of concrete structures that will achieve their design life is possible through an understanding of the engineering and geologic properties of these aggregates and of their geologic setting.
Ground-water in the Austin area, Lander County, Nevada
Phoenix, David A.
1949-01-01
The U.S. Geological Survey, in cooperation with the State Engineer of Nevada, made a preliminary survey of ground-water conditions in the Austin area, Nev., during the period July 25 to 28, 1949. The purpose was to evaluate ground-water conditions with special reference to the quantity of ground water that might be available in the area--an adequate water supply has been a constant problem throughout the history of the Austin area. The investigation was made by the writer under the supervision of Thomas W. Robinson, district engineer, Ground Water Branch, U.S. Geological Survey. Material assistance was given in the field by local residents. Frank Bertrand, water commissioner, Thomas Peacock, county assessor, and George McGinnis, county commissioner, guided the writer to springs new utilized by the town of Austin and rendered other valuable field assistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, Boris; Birkholzer, Jens; Sassani, David
The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included inmore » the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.« less
Selective Guide to Literature on Engineering Geology. Engineering Literature Guides, Number 7.
ERIC Educational Resources Information Center
Mullen, Cecilia P., Comp.
This guide has been prepared for use by the undergraduate or graduate student in engineering geology. Because of the broad scope of the field, the major disciplines of soil mechanics, rock mechanics, and foundations are primarily emphasized. This document is a survey of information sources in engineering geology and is intended to identify those…
Six University Canada/US/Mexico exchange program in Earth Hazards (EHaz)
NASA Astrophysics Data System (ADS)
Stix, J.; Rose, W. I.
2005-12-01
This program is a consortium of six research-based universities in Canada, Mexico, and the U.S (Michigan Tech, Buffalo, McGill, Waterloo, UNAM and Colima) funded by the Department of education in the US and equivalent organizations in Canada and Mexico as part of the NAFTA agreement. The focus area for the mobility program is mitigation of geological natural hazards in North America. The consortium universities will exchange students and faculty in several engineering and science disciplines (e.g. environmental engineering, civil engineering, geological engineering, social sciences and geology) involved in the study of natural geological hazards. Students in the social sciences also will be exchanged, recognizing that the solution of natural hazards problems involves critical political, social, and economic aspects. Students will be mobilized among the participating universities through one- to two-semester visits and up to 60 more students will be mobilized via short-term, intensive courses. Student activities will consist of three stages: intensive language training, natural hazards coursework, and professional or research internships with local industries, agencies or at the host university. In each of the next three years there will be a joint advanced volcanology class run via videoconferencing and a three week field trip to areas of volcanological interest in Canada, US and Mexico. The course and field trip foci for the next three years are: 2006: Megaeruptions/ LongValley and Yellowstone; 2007: Volcanic edifice failure/ Cascades and Western Canada 2008: Convergent plate Boundary Volcanism/ Mexican Volcanic Belt Although the six universities will have first access to the exchange we are constructing ways for other volcanology programs to share the teleconference courses and field trips.
Modelling DC responses of 3D complex fracture networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beskardes, Gungor Didem; Weiss, Chester Joseph
Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.
Modelling DC responses of 3D complex fracture networks
Beskardes, Gungor Didem; Weiss, Chester Joseph
2018-03-01
Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.
Remote sensing of permafrost and geological hazards in Alaska
NASA Technical Reports Server (NTRS)
Ferrians, O. J., Jr. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The study of the ERTS-1 imagery of Alaska indicates the following: that areas of different topographic expression affecting the distribution and character of permafrost can be distinguished clearly; that on the Arctic North Slope, regional differences in the distribution and character of permafrost-related oriented thaw lakes can be observed; that the distribution of certain types of geologic materials having a significant effect on the character of permafrost can be delineated on a regional scale; and that the resolution of the imagery is adequate to identify large scale geologic hazards such as landslides, glacier-dammed lakes, aufeis fields, etc. The information concerning the distribution and character of permafrost and geologic hazards to the gained in accomplishing the objectives of this project will be an invaluable aid in solving engineering-geologic and environmental problems related to route and site selection for structures such as roads, railroads, pipelines, and large installations; to distribution of natural construction materials; and to construction and maintenance.
Environmental aspects of engineering geological mapping in the United States
Radbruch-Hall, Dorothy H.
1979-01-01
Many engineering geological maps at different scales have been prepared for various engineering and environmental purposes in regions of diverse geological conditions in the United States. They include maps of individual geological hazards and maps showing the effect of land development on the environment. An approach to assessing the environmental impact of land development that is used increasingly in the United States is the study of a single area by scientists from several disciplines, including geology. A study of this type has been made for the National Petroleum Reserve in northern Alaska. In the San Francisco Bay area, a technique has been worked out for evaluating the cost of different types of construction and land development in terms of the cost of a number of kinds of earth science factors. ?? 1979 International Association of Engineering Geology.
TRENDS IN ENGINEERING GEOLOGIC AND RELATED MAPPING.
Varnes, David J.; Keaton, Jeffrey R.
1983-01-01
Progress is reviewed that has been made during the period 1972-1982 in producing medium- and small-scale engineering geologic maps with a variety of content. Improved methods to obtain and present information are evolving. Standards concerning text and map content, soil and rock classification, and map symbols have been proposed. Application of geomorphological techniques in terrain evaluation has increased, as has the use of aerial photography and other remote sensing. Computers are being used to store, analyze, retrieve, and print both text and map information. Development of offshore resources, especially petroleum, has led to marked improvement and growth in marine engineering geology and geotechnology. Coordinated planning for societal needs has required broader scope and increased complexity of both engineering geologic and environmental geologic studies. Refs.
Earth Science Education in Sudan
NASA Astrophysics Data System (ADS)
Abdullatif, Osman M.; Farwa, Abdalla G.
1999-05-01
This paper describes Earth Science Education in Sudan, with particular emphasis on the University of Khartoum. The first geological department in Sudan was founded in 1958 in the University of Khartoum. In the 1980s, six more geological departments have been added in the newer universities. The types of courses offered include Diploma, B.Sc. (General), B.Sc. (Honours), M.Sc. and Ph.D. The Geology programmes are strongly supported by field work training and mapping. Final-year students follow specialised training in one of the following topics: hydrogeology, geophysics, economic geology, sedimentology and engineering geology. A graduation report, written in the final year, represents 30-40% of the total marks. The final assessment and grading are decided with the help of internal and external examiners. Entry into the Geology programmes is based on merit and performance. The number of students who graduate with Honours and become geologists is between 20% to 40% of the initial intake at the beginning of the second year. Employment opportunities are limited and are found mainly in the Government's geological offices, the universities and research centres, and private companies. The Department of Geology at the University of Khartoum has long-standing internal and external links with outside partners. This has been manifested in the training of staff members, the donation of teaching materials and laboratory facilities. The chief problems currently facing Earth Science Education in Sudan are underfunding, poor equipment, laboratory facilities and logistics. Other problems include a shortage of staff, absence of research, lack of supervision and emigration of staff members. Urgent measures are needed to assess and evaluate the status of Earth Science Education in terms of objectives, needs and difficulties encountered. Earth Science Education is expected to contribute significantly to the exploitation of mineral resources and socio-economic development in the Sudan.
Publications - PIR 2002-3 | Alaska Division of Geological & Geophysical
): Philip Smith Mountains Bibliographic Reference Stevens, D.S.P., 2014, Engineering-geologic map of the Digital Geospatial Data Philip Smith Mountains: Engineering-geologic map Data File Format File Size Info
1979-06-01
failure and other information. These reports were prepared by personnel from the Mis- souri Geology and Land Survey, Applied Engineering and Urban...34Report of the National Lead Stifling Basin Washout, Madison County, Missouri", Applied Engineering and Urban Geology, Geo- logy and Land Survey, 30...failure and other information are contained in reports by personnel from the Missouri Geology and Land Survey, Applied Engineering and Urban Geology
Ege, John R.; Leavesley, G.H.; Steele, G.S.; Weeks, J.B.
1978-01-01
The U.S. Geological Survey is cooperating with the U.S. Bureau of Mines in the selection of a site for a shaft and experimental mine to be constructed in the Piceance Creek basin, Rio Blanco County, Colo. The Piceance Creek basin, an asymmetric, northwest-trending large structural downwarp, is located approximately 40 km (25 mi) west of the town of Meeker in Rio Blanco County, Colo. The oil-shale, dawsonite, nahcolite, and halite deposits of the Piceance Creek basin occur in the lacustrine Green River Formation of Eocene age. In the basin the Green River Formation comprises three members. In ascending order, they are the Douglas Creek, the Garden Gulch, and the Parachute Creek Members, Four sites are presented for consideration and evaluated on geology and hydrology with respect to shale-oil economics. Evaluated criteria include: (1) stratigraphy, (2) size of site, (3) oil-shale yield, (4) representative quantities of the saline minerals dawsonite and nahcolite, which must be present with a minimum amount of halite, (5) thickness of a 'leached' saline zone, (6) geologic structure, (7) engineering characteristics of rock, (8) representative surface and ground-water conditions, with emphasis on waste disposal and dewatering, and (9) environmental considerations. Serious construction and support problems are anticipated in sinking a deep shaft in the Piceance Creek basin. The two major concerns will be dealing with incompetent rock and large inflow of saline ground water, particularly in the leached zone. Engineering support problems will include stabilizing and hardening the rock from which a certain amount of ground water has been removed. The relative suitability of the four potential oil-shale experimental shaft sites in the Piceance Creek basin has been considered on the basis of all available geologic, hydrologic, and engineering data; site 2 is preferred to sites 1, 3, and 4, The units in this report are presented in the form: metric (English). Both units of measurement are necessary as measurements were taken in English units, and most of the contracting agencies involved are using predominantly English units.
National Research Program of the Water Resources Division, U.S. Geological Survey, fiscal year 1987
Friedman, Linda C.; Donato, Christine N.
1988-01-01
The National Research Program (NRP) of the U.S. Geological Survey's Water Resources Division (WRD) had its beginnings in the late 1950's when "core research" was added as a line item to the Congressional budget. Since that time, the NRP has grown to encompass a broad spectrum of scientific investigations. The sciences of hydrology, mathematics, chemistry, physics, biology, geology, and engineering are used to gain a fundamental understanding of the processes that affect the availability, movement, and quality of the Nation's water resources. The knowledge gained and methods developed have great value to WRD's operational program. Results of the investigations conducted by the NRP are applicable not only to the solution of current water problems, but also to future issues, anticipated or unanticipated, that may affect the Nation's water resources.
National Research Program of the Water Resources Division, U. S. Geological Survey, Fiscal Year 1989
Eggers, JoAnn; Friedman, Linda C.
1989-01-01
The National Research Program (NRP) of the U.S. Geological Survey's Water Resources Division (WRD) had its beginnings in the late 1950's when "core research" was added as a line item to the Congressional budget. Since that time, the NRP has grown to encompass a broad spectrum of scientific investigations. The sciences of hydrology, mathematics, chemistry, physics, ecology, biology, geology, and engineering are used to gain a fundamental understanding of the processes that affect the availability, movement, and quality of the Nation's water resources. The knowledge gained and methods developed have great value to WRD's operational program. Results of the investigations conducted by the NRP are applicable not only to the solution of current water problems but also to future issues, anticipated or unanticipated, that may affect the Nation's water resources.
ERIC Educational Resources Information Center
Hatheway, Allen W.
1978-01-01
Engineering geology remains a potpourri of applied classical geology, and 1977 witnessed an upswing in demand for these services. Traditional foundation-related work was slight, but construction related to national needs increased briskly. Major cities turned to concerns of transit waste-water treatment and solid-waste disposal. (Author/MA)
North Dakota geology school receives major gift
NASA Astrophysics Data System (ADS)
Showstack, Randy
2012-10-01
Petroleum geology and related areas of study at the University of North Dakota (UND) received a huge financial boost with the announcement on 24 September of $14 million in private and public partnership funding. The university announced the naming of the Harold Hamm School of Geology and Geological Engineering, formerly a department within the College of Engineering and Mines, in recognition of $10 million provided as a gift by oilman Harold Hamm and Continental Resources, Inc. Hamm is the chair and chief executive officer of Continental, the largest leaseholder in the Bakken Play oil formation in North Dakota and Montana, and he is also an energy policy advisor to Republican presidential candidate Mitt Romney. UND also received $4 million from the Oil and Gas Research Program of the North Dakota Industrial Commission to support geology and geological engineering education and research.
Marschalko, Marian; Yilmaz, Işık; Fojtova, Lucie; Lamich, David; Bednarik, Martin
2013-01-01
This study deals with a methodical identification and evaluation of physical-mechanical properties of one genetic type of geological structure. This is represented by an engineering-geological zone of eolian sediments, which is regionally rather abundant. The paper contributes to a need to identify typical soil properties for widespread geological environments in a particular region and thus add to good engineering geologists and geotechnical engineers' awareness in the region. Such information is much required as it permits comparing results of newly conducted engineering-geological investigations and research with the results characteristic for the region in question. It is vital for engineering geologists and geotechnical engineers to be sufficiently informed on the foundation soil properties of widespread geological environments because of professionalism and higher quality of their work results. Comparing other loess sediment studies worldwide it was discovered that the physical properties of the most abundant clays of low to medium plasticity, sandy clays, and sands as foundation soils vary as for the plasticity index, porosity, natural water content, and bulk density to a certain extent but not as significantly as once expected. PMID:24391464
NASA Astrophysics Data System (ADS)
Ryżyński, Grzegorz; Nałęcz, Tomasz
2016-10-01
The efficient geological data management in Poland is necessary to support multilevel decision processes for government and local authorities in case of spatial planning, mineral resources and groundwater supply and the rational use of subsurface. Vast amount of geological information gathered in the digital archives and databases of Polish Geological Survey (PGS) is a basic resource for multi-scale national subsurface management. Data integration is the key factor to allow development of GIS and web tools for decision makers, however the main barrier for efficient geological information management is the heterogeneity of data in the resources of the Polish Geological Survey. Engineering-geological database is the first PGS thematic domain applied in the whole data integration plan. The solutions developed within this area will facilitate creation of procedures and standards for multilevel data management in PGS. Twenty years of experience in delivering digital engineering-geological mapping in 1:10 000 scale and archival geotechnical reports acquisition and digitisation allowed gathering of more than 300 thousands engineering-geological boreholes database as well as set of 10 thematic spatial layers (including foundation conditions map, depth to the first groundwater level, bedrock level, geohazards). Historically, the desktop approach was the source form of the geological-engineering data storage, resulting in multiple non-correlated interbase datasets. The need for creation of domain data model emerged and an object-oriented modelling (UML) scheme has been developed. The aim of the aforementioned development was to merge all datasets in one centralised Oracle server and prepare the unified spatial data structure for efficient web presentation and applications development. The presented approach will be the milestone toward creation of the Polish national standard for engineering-geological information management. The paper presents the approach and methodology of data unification, thematic vocabularies harmonisation, assumptions and results of data modelling as well as process of the integration of domain model with enterprise architecture implemented in PGS. Currently, there is no geological data standard in Poland. Lack of guidelines for borehole and spatial data management results in an increasing data dispersion as well as in growing barrier for multilevel data management and implementation of efficient decision support tools. Building the national geological data standard makes geotechnical information accessible to multiple institutions, universities, administration and research organisations and gather their data in the same, unified digital form according to the presented data model. Such approach is compliant with current digital trends and the idea of Spatial Data Infrastructure. Efficient geological data management is essential to support the sustainable development and the economic growth, as they allow implementation of geological information to assist the idea of Smart Cites, deliver information for Building Information Management (BIM) and support modern spatial planning. The engineering-geological domain data model presented in the paper is a scalable solution. Future implementation of developed procedures on other domains of PGS geological data is possible.
Overview of micro-dam reservoirs (MDR) in Tigray (northern Ethiopia): Challenges and benefits
NASA Astrophysics Data System (ADS)
Berhane, Gebremedhin; Gebreyohannes, Tesfamichael; Martens, Kristine; Walraevens, Kristine
2016-11-01
Water scarcity is a key factor in food security and sustainable livelihood in sub-Saharan Africa, particularly in East Africa. The problem is severe in many parts of Ethiopia where water plays a central role in the country's economy. To alleviate and curb water scarcity different water harvesting technologies were introduced in Ethiopia during the last two decades; nevertheless their sustainability and livelihood impacts are not well addressed. For the first time a complete and comprehensive inventory of micro-dam reservoirs (MDRs) in Tigray has been established including the geological background and currently observed problems. The inventory of 92 MDRs in Tigray was conducted using the direct field observational method, selected interviews and secondary data, to understand the overall situation of the schemes from engineering geological and geo-hydrological perspectives and its implication to sustainability and water availability. Analysis of the inventory shows that sustainability and livelihood impact of the water harvesting schemes are threatened by siltation, leakage, insufficient run-off, poor water management and structural damages on the dam body as well as on irrigation infrastructure and spillway. Basic statistical analysis showed that 61% of them are found to have siltation problems, 53% suffer from leakage, 22% from insufficient inflow, 25% have structural damages and 21% have spillway erosion problems. Furthermore, nearly 70% of the MDRs are founded on carbonate dominant sedimentary terrain at places with intrusion of dolerite sills/dykes and the problems of siltation and leakage are found to be extremely high in the MDRs located in such geological setting, as compared to those on crystalline metamorphic rocks. Lack of proper water management was observed in most of the reservoirs with irrigation practices. Future research and analysis on the causes of the bottlenecked problems and monitoring surveillance are recommended.
Geology of the Canyon Reservoir site on the Guadalupe River, Comal County, Texas
George, William O.; Welder, Frank A.
1955-01-01
In response to a request by Colonel Harry O. Fisher, District Engineer of the Fort Worth District of the Corps of Engineers, United States Army (letter of Dec. 13, 1954), a reconnaissance investigation was made of the geology of the Canyon (F-1) reservoir site on the Guadalupe River in Comal County, Tex. The purpose of the investigation was to study the geology in relation to possible leakage - particularly leakage of water that might then be lost from the drainage area of the Guadalupe River - and to add to the general knowledge of the ground-water hydrology of the San Antonio area. The dam (F-1) was originally designed for flood control and conservation only, with provision for the addition of a power unit if feasible. Since the completion of the investigation by the Corps of Engineers, the city of San Antonio has expressed an interest in the reservoir as a possible source of public water supply. The Corps of Engineers has made a thorough engineering and geologic study of the dam site (Corps of Engineers, 1950), which has Congressional approval. The geology and water resources of Comal County have been studied by George (1952). The rocks studied are those within the reservoir area and generally below the 1,000-foot contour as shown on the Smithson Valley quadrangle of the U.S. Geological Survey.
Technology transfer: Transportation
NASA Technical Reports Server (NTRS)
Anyos, T.; Lizak, R.; Merrifield, D.
1973-01-01
Standard Research Institute (SRI) has operated a NASA-sponsored team for four years. The SRI Team is concentrating on solving problems in the public transportation area and on developing methods for decreasing the time gap between the development and the marketing of new technology and for aiding the movement of knowledge across industrial, disciplinary, and regional boundaries. The SRI TAT has developed a methodology that includes adaptive engineering of the aerospace technology and commercialization when a market is indicated. The SRI Team has handled highway problems on a regional rather than a state basis, because many states in similar climatic or geologic regions have similar problems. Program exposure has been increased to encompass almost all of the fifty states.
A framework for assessing the uncertainty in wave energy delivery to targeted subsurface formations
NASA Astrophysics Data System (ADS)
Karve, Pranav M.; Kallivokas, Loukas F.; Manuel, Lance
2016-02-01
Stress wave stimulation of geological formations has potential applications in petroleum engineering, hydro-geology, and environmental engineering. The stimulation can be applied using wave sources whose spatio-temporal characteristics are designed to focus the emitted wave energy into the target region. Typically, the design process involves numerical simulations of the underlying wave physics, and assumes a perfect knowledge of the material properties and the overall geometry of the geostructure. In practice, however, precise knowledge of the properties of the geological formations is elusive, and quantification of the reliability of a deterministic approach is crucial for evaluating the technical and economical feasibility of the design. In this article, we discuss a methodology that could be used to quantify the uncertainty in the wave energy delivery. We formulate the wave propagation problem for a two-dimensional, layered, isotropic, elastic solid truncated using hybrid perfectly-matched-layers (PMLs), and containing a target elastic or poroelastic inclusion. We define a wave motion metric to quantify the amount of the delivered wave energy. We, then, treat the material properties of the layers as random variables, and perform a first-order uncertainty analysis of the formation to compute the probabilities of failure to achieve threshold values of the motion metric. We illustrate the uncertainty quantification procedure using synthetic data.
Publications - RI 2015-5 | Alaska Division of Geological & Geophysical
data 7.5 M Metadata - Read me Keywords Active Fault; Akutan; Coastal; Dutch Harbor; Earthquake ; Earthquake Related Slope Failure; Emergency Preparedness; Engineering; Engineering Geology; Fault
ERIC Educational Resources Information Center
Cochran, Wendell
1976-01-01
Presented is a review of papers presented at the 25th International Geological Congress held August 16-25, 1976, Sydney, Australia. Topics include precambrian geology, tectonics, biostratigraphy, geochemistry, quaternary geology, engineering geology, planetology, geological education, and stress environments. (SL)
Publications - PIR 2002-1D | Alaska Division of Geological & Geophysical
content DGGS PIR 2002-1D Publication Details Title: Engineering - geologic map of the Eagle A-1 Quadrangle please see our publication sales page for more information. Quadrangle(s): Eagle Bibliographic Reference Stevens, D.S.P., 2012, Engineering - geologic map of the Eagle A-1 Quadrangle, Fortymile mining district
NASA Astrophysics Data System (ADS)
Gaprindashvili, G.; Tsereteli, E.; Gaprindashvili, M.
2013-12-01
In the last decades of the XX century, protect the population from geological hazards, to maintain land and safe operation of the engineering facilities has become the most important social - economic, demographic, political and environmental problems for the whole world. Georgia, with its scales of origination of the natural-catastrophic processes (landslide, mudflow, rockfall, erosion and etc.), their re-occurrence and with the negative results inflicted by these processes to the population, agricultural lands and engineering objects, is one of the most complex mountainous region. The extremely sensitive conditions were conditioned by: 1. Activation of highly intense earthquakes; 2. Activation of the negative meteorological events provoking the disaster processes on the background of global climatic changes and their abnormally frequent occurrence (mostly increased atmospheric precipitations, temperature and humidity); 3. Large-scale Human impact on the environment. Following the problem urgency, a number of departmental and research institutions have made their operations more intense in the given direction within the limits of their competence. First of all, the activity of the Department of Geology of Georgia (which is at present included in the National Environmental Agency of the Ministry of Environment and Natural Resources Protection), which mapped, identified and cataloged the hazardous processes on the territory of the country and identified the spatial limits and developmental regularities of these processes for tens of years. The increased risk of Geological catastrophes in Georgia first of all is caused by insufficient information between society and responsible persons toward this event. The existed situation needs the base assessment of natural disasters level, the identification of events, to determine their caused reasons, to develop special maps in GIS system, and continuous functioning of geo monitoring researches for develop safety early warning system.
NASA Astrophysics Data System (ADS)
Gaprindashvili, George; Tsereteli, Emil; Gaprindashvili, Merab
2014-05-01
In the last decades of the XX century, protect the population from geological hazards, to maintain land and safe operation of the engineering facilities has become the most important social - economic, demographic, political and environmental problems for the whole world. Georgia, with its scales of origination of the natural-catastrophic processes (landslide, mudflow, rockfall, erosion and etc.), their re-occurrence and with the negative results inflicted by these processes to the population, agricultural lands and engineering objects, is one of the most complex mountainous region. The extremely sensitive conditions were conditioned by: 1. Activation of highly intense earthquakes; 2. Activation of the negative meteorological events provoking the disaster processes on the background of global climatic changes and their abnormally frequent occurrence (mostly increased atmospheric precipitations, temperature and humidity); 3. Large-scale Human impact on the environment. Following the problem urgency, a number of departmental and research institutions have made their operations more intense in the given direction within the limits of their competence. First of all, the activity of the Department of Geology of Georgia (which is at present included in the National Environmental Agency of the Ministry of Environment and Natural Resources Protection), which mapped, identified and cataloged the hazardous processes on the territory of the country and identified the spatial limits and developmental regularities of these processes for tens of years. The increased risk of Geological catastrophes in Georgia first of all is caused by insufficient information between society and responsible persons toward this event. The existed situation needs the base assessment of natural disasters level, the identification of events, to determine their caused reasons, to develop special maps in GIS system, and continuous functioning of geo monitoring researches for develop safety early warning system.
Publications - PDF 99-24B | Alaska Division of Geological & Geophysical
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska (6.4 M) Keywords Ar-Ar; Bedrock; Bedrock Geologic Map; Bedrock Geology; Economic Geology; Geochronology ; Geologic; Geologic Map; Geology; Gold; Lode; Plutonic; Plutonic Hosted; Porphyry; STATEMAP Project; Silver
Ground-water conditions in the central Virgin River basin, Utah
Cordova, R.M.; Sandberg, G.W.; McConkie, Wilson
1972-01-01
Water-rights problems have occurred in the central Virgin River basin and are expected to increase as development of the water resources increases. The Utah State Engineer needs a basic knowledge of ground-water conditions and of the relation of ground water to surface water as a first step to understanding and resolving the problems. Accordingly, the State Engineer requested the U. S. Geological Survey to make a ground-water investigation of the central Virgin River basin as part of the Statewide cooperative agreement with the Utah Department of Natural Resources. The investigation was begun July 1, 1968, and fieldwork was completed in August 1970. Detailed information was obtained for the principal aquifers and for recharge, movement, discharge, storage, utilization, and chemical quality of ground water. A progress report (Cordova, Sandberg, and McConkie, 1970) describes the general findings in the first year of the investigation.
Publications - RI 97-15D | Alaska Division of Geological & Geophysical
Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Coastal and River; Coastal and River Hazards; Construction Materials; Derivative; Engineering; Engineering
NASA Astrophysics Data System (ADS)
Mikeš, Daniel
2010-05-01
Theoretical geology Present day geology is mostly empirical of nature. I claim that geology is by nature complex and that the empirical approach is bound to fail. Let's consider the input to be the set of ambient conditions and the output to be the sedimentary rock record. I claim that the output can only be deduced from the input if the relation from input to output be known. The fundamental question is therefore the following: Can one predict the output from the input or can one predict the behaviour of a sedimentary system? If one can, than the empirical/deductive method has changes, if one can't than that method is bound to fail. The fundamental problem to solve is therefore the following: How to predict the behaviour of a sedimentary system? It is interesting to observe that this question is never asked and many a study is conducted by the empirical/deductive method; it seems that the empirical method has been accepted as being appropriate without question. It is, however, easy to argument that a sedimentary system is by nature complex and that several input parameters vary at the same time and that they can create similar output in the rock record. It follows trivially from these first principles that in such a case the deductive solution cannot be unique. At the same time several geological methods depart precisely from the assumption, that one particular variable is the dictator/driver and that the others are constant, even though the data do not support such an assumption. The method of "sequence stratigraphy" is a typical example of such a dogma. It can be easily argued that all the interpretation resulting from a method that is built on uncertain or wrong assumptions is erroneous. Still, this method has survived for many years, nonwithstanding all the critics it has received. This is just one example of the present day geological world and is not unique. Even the alternative methods criticising sequence stratigraphy actually depart from the same erroneous assumptions and do not solve the very fundamental issue that lies at the base of the problem. This problem is straighforward and obvious: a sedimentary system is inherently four-dimensional (3 spatial dimensions + 1 temporal dimension). Any method using an inferior number or dimensions is bound to fail to describe the evolution of a sedimentary system. It is indicative of the present day geological world that such fundamental issues be overlooked. The only reason for which one can appoint the socalled "rationality" in todays society. Simple "common sense" leads us to the conclusion that in this case the empirical method is bound to fail and the only method that can solve the problem is the theoretical approach. Reasoning that is completely trivial for the traditional exact sciences like physics and mathematics and applied sciences like engineering. However, not for geology, a science that was traditionally descriptive and jumped to empirical science, skipping the stage of theoretical science. I argue that the gap of theoretical geology is left open and needs to be filled. Every discipline in geology lacks a theoretical base. This base can only be filled by the theoretical/inductive approach and can impossibly be filled by the empirical/deductive approach. Once a critical mass of geologists realises this flaw in todays geology, we can start solving the fundamental problems in geology.
The use of remote sensing in solving Florida's geological and coastal engineering problems
NASA Technical Reports Server (NTRS)
Brooks, H. K.; Ruth, B. E.; Wang, Y. H.; Ferguson, R. L.
1977-01-01
LANDSAT imagery and NASA high altitude color infrared (CIR) photography were used to select suitable sites for sanitary landfill in Volusia County, Florida and to develop techniques for preventing sand deposits in the Clearwater inlet. Activities described include the acquisition of imagery, its analysis by the IMAGE 100 system, conventional photointerpretation, evaluation of existing data sources (vegetation, soil, and ground water maps), site investigations for ground truth, and preparation of displays for reports.
Mechanics of the Panama Canal slides
Becker, George F.
1917-01-01
Dr. Becker visited the Canal Zone in 1913 as a geologist of the United States Geological Survey and since that time has given the problem the benefit of his study. His appointment as a member of the committee of the National Academy of Sciences has made it appropriate for his conclusions, based upon his personal observations and already reported in part to the Canal Commission, to be stated for the benefit of his associates and other American scientists and engineers.
NASA Astrophysics Data System (ADS)
2014-08-01
XVIII International Scientific Symposium in honor of Academician M.A. Usov ''Problems of Geology and Subsurface Development'' (for students and young scientists) was organized under the guidance of the Ministry of Education and Science of the Russian Federation and the Russian Foundation for Basic Research. Being one of the oldest technical higher education institutions which trains specialists who contribute to scientific research in geosciences, The Institute of Natural Resources of National Research Tomsk Polytechnic University (TPU INR) was chosen to hold the symposium. In 2014 The Institute of Natural Resources celebrated its 113th anniversary. It was founded in 1901 by V.A. Obruchev, the first geologist in Siberia, member of USSR Academy of Sciences, Hero of Socialist Labor, and the first Laureate of the Lenin Prize. He was recognized all over the world as a prominent scientist in the area of geology. INR is the first institute of geological education and geosciences in the Asian part of Russia. Siberian Mining and Geological Schola, established by V.A. Obruchev and M.A. Usov, has been retaining its significance for discovery, exploration and development of mineral resources not only in Siberia, in the Far East and North-East of the country, but also in Central Asia. There are a lot of outstanding scientists, engineers and manufacturers among alumni of The Institute of Natural Resources. The institute is proud of M.A. Usov, the student and first postgraduate of V.A. Obruchev, first professor and academician in Siberia, whose name is associated with the development of the mining industry in Siberia; Academician K.I. Satpaev, the founder and first president of the Academy of Sciences of Kazakhstan; Professor N.N. Urvantsev, the discoverer of the unique Norilsk ore deposits in the north of East Siberia and Professor M.K. Korovin, who considered West Siberia deposits to be prospective for oil-gas exploration. There are over 35 000 graduates of the institute and more than 450 of them became explorers of mineral deposits including one Nobel laureate, 50 laureates of the Lenin and State Prizes, more than 250 researchers with DSc and PhD, 15 academicians and corresponding members of the USSR Academy of Sciences and five Heroes of Socialist Labor. Within the scope of the symposium there were 21 panels and workshop, being held over four days. The symposium was unique because it covered all scientific fields of geology and subsurface development: methods of prospecting and exploration for minerals and hydrocarbons, including space geological research and geoinformation systems in geology, as well as the ecological problems and integrated use of mineral resources, land management, natural resource law and economics. The students and young scientists of Russia, foreign and CIS countries participated in the symposium. The investigations presented at the symposium shed light on the latest achievements made by means of modern techniques and original methods of interpretation; the results of experimental studies and computer technologies in geology, oil and gas production and geoecology; the analysis of theoretical and experimental studies on various geological problems and environmental protection. The reports consider the vital issues and the latest achievements of stratigraphy, paleontology, tectonics, historical and regional geology, mineralogy, geochemistry, petrography, lithology, metallogeny, hydrogeology and engineering geology, geophysics, petroleum geology, oil and gas field development and processing of hydrocarbon and mineral resources, geoinformation systems (GIS) in geology, space geological research, oilfield equipment upgrading, modern techniques of mineral exploration, production, transportation and storage of oil and gas, drilling, mining engineering, geoecology, hydrogeoecology, environmental protection engineering, integrated use of mineral resources, land management, mining and natural resources law, and economical problems of mineral resources sectors in Russia and CIS countries. There is a special panel for those who make reports in English and German. The scientific significance of the reports is explained by new concepts and original ideas suggested by the authors. A number of studies introduce fundamentally new discoveries. The findings of the young scientists' investigations, in both fundamental sciences and experimental studies are significant for practical application, and further investigation might lead to writing a thesis for scientific degree. The authors of some reports gained patents and licenses for their discoveries. Within the scope of XVIII International Scientific Symposium there were 970 reports (including poster presentations) made by 1195 authors, among whom 293 and 90 came from other cities and foreign countries respectively. 90 participants from foreign countries and 293 of those who came from different cities of Russia. There were 1195 students and young scientists from Russia, CIS and foreign countries, who applied for the symposium with 970 reports, including 293 applications sent from other cities. Numbers of foreign participants equaled to 32, made up by representatives of 16 higher education institutions, scientific centres and industrial enterprises of 12 different cities. CIS countries were represented by 58 participants from 30 higher education institutions, scientific centres and industrial enterprises of 20 cities. The total number of Russian participants equaled to 206, who represented 78 higher education institutions, scientific centres and industrial companies of 48 cities. There were 677 reports made by students and researchers from Tomsk, including 647 declared by those of TPU. 73 participants presented their reports in English and German. 970 reports made within the scope of 21 panels and the round table embraced 827 presented by the speakers (including 677 by those from TPU) and 143 poster presentations analyzed by the experts. Nonresidents took an active part in the symposium having presented 150 reports. The reports of the symposium were made by students (655 participants), post-graduate students (180), researchers (82), engineers (30), young teachers (18) and schoolchildren (5). The organizations represented by the participants were higher education institutions (607), Russian Academy of Sciences (22), National Academy of Sciences (8), Research Institutes (18), industrial enterprises (10) and schools (5). The speakers who made 827 reports were students of bachelor and master degree programs (547, including 490 from TPU), post-graduate students and young researchers (130, including 80 from TPU) and five schoolchildren. The amount of those who attended different panels over the four days of the symposium consisted of 2010 people. Nine foreign countries (except for CIS) were represented by 32 reports made by participants from Germany, France, China, Italy, Poland, Ecuador, Iraq, Vietnam and Mongolia. Nine CIS countries were represented by 58 reports made by participants from National Academies of Sciences and Universities of Ukraine, Belarus, Kazakhstan, Latvia, Azerbaijan, Armenia, Uzbekistan, Kyrgyzstan and Tajikistan. Russian participants came from various areas of the country: in the east from Sakhalin, Petropavlovsk-Kamchatsky, Yuzhno-Sakhalinsk, Vladivostok, Blagoveshchensk, Krasnoyarsk, Chita, Irkutsk to Barnaul, Kemerovo, Novokuznetsk, and etc.; in the north from Mirny, Yakutsk, Neryungri, Magadan, Nizhnevartovsk, Khanty-Mansiysk, Nefteugansk to Tyumen, Ulan-Ude, Syktyvkar, and etc.; in the west from Minsk, Kiev, Moscow, St. Petersburg, Yekaterinburg to Samara, Kazan, Ufa, Perm, Novosibirsk; in the south from the cities of the Central Asian republics to Ivano-Frankovsk, Odessa, Novocherkassk, Simferopol, Novorossiysk, Vladikavkaz, Voronezh, Stavropol, Astrakhan, and etc. A great number of young people from Urals, Western and Eastern Siberia took an active part in the Symposium. CIS countries were presented by participants from Uzbekistan (Tashkent), Tajikistan (Dushanbe), Azerbaijan (Baku), Kazakhstan (Almaty, Semipalatinsk, Karaganda, Pavlodar), Belarus (Minsk, Gomel), Armenia (Yerevan, Gyumri), Ukraine (Kiev, Odessa, Ivano-Frankovsk, Dnepropetrovsk, Donetsk, etc.), Kyrgyzstan (Bishkek), Moldova (Chisinau). The students and young scientists from Tomsk representing Tomsk Polytechnic University, Tomsk State University, the Institute of Petroleum Geology and Geophysics (SB RAS) and other organizations and institutions took an active part in the symposium. The scientific results of the symposium were reflected in a special edition consisting of two volumes and available at (www.portal.tpu.ru/science/konf/pgon) The editorial board of the symposium and this volume of IOP Conference Series: Earth and Environmental Science consider the materials of the symposium to be interesting for researchers and young scientists of universities, research and academic institutes, academies of sciences and their branches, engineering and technical staff of ministries and government departments - for anyone who explores and develops the Earth subsurface. The editors of this volume acknowledge the administration of the Institute of Physics and its publishing house for the publication of the issue and administration of National Research Tomsk Polytechnic University, represented by the rector, professor P.S. Chubik. Executive Editor XVIII International Symposium ''Problems of Geology and Subsurface Development'' - 2014, PhD in Geology and Mineralogy, Associate Professor G.M. Ivanova
Presentations - Smith, J.R. and others, 2013 | Alaska Division of
Engineering Geology Alaska Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to (1.4 M) Keywords Coastal; Coastal and River; Engineering Geology Posters and Presentations; Seward
Research and implementation on 3D modeling of geological body
NASA Astrophysics Data System (ADS)
Niu, Lijuan; Li, Ligong; Zhu, Renyi; Huang, Man
2017-10-01
This study based on GIS thinking explores the combination of the mixed spatial data model and GIS model to build three-dimensional(3d) model of geological bodies in the Arc Engine platform, describes the interface and method used in the construction of 3d geological body in Arc Engine component platform in detail, and puts forward an indirect method which constructs a set of geological grid layers through Rigging interpolation by the borehole data and then converts it into the geological layers of TIN, which improves the defect in building the geological layers of TIN directly and makes it better to complete the simulation of the real geological layer. This study makes a useful attempt to build 3d model of the geological body based on the GIS, and provides a certain reference value for simulating geological bodies in 3d and constructing the digital system of underground space.
[Ecological and economic approaches to removing radioactively dangerous objects from service].
Korenkov, I P; Lashchenova, T N; Neveĭkin, P P; Shandala, N K; Veselov, E I; Maksimova, O A
2011-01-01
The paper considers major ecological and economic problems when removing radiation dangerous objects from service and rehabilitating the areas, which require their solution: the absence of specific guidelines for ranking the contaminated lands exposed to radioactive and chemical pollution from the potential risk to the population and environment; no clear criteria for ceasing area rehabilitation works; radiation exposure levels for the population living in the areas after rehabilitation; allowable levels of residual specific activity, and levels of heavy metals in soil, surface and underground water and bed sediment. The cost such works is the most important and decisive problem. A decision-making algorithm consisting of three main blocks: organizational-technical, engineering, geological and medicoecological measures is proposed to solve managerial, economic, and scientific problems.
Clarens, Andres F.; Peters, Catherine A.
2016-01-01
Abstract Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on “The science and innovation of emerging subsurface energy technologies,” provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others. PMID:28031695
Clarens, Andres F; Peters, Catherine A
2016-10-01
Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on "The science and innovation of emerging subsurface energy technologies," provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others.
Publications - PDF 99-24C | Alaska Division of Geological & Geophysical
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska :63,360 (6.7 M) Keywords Geologic Map; Geology; Geomorphology; Glacial; STATEMAP Project; Slope Instability; Surficial; Surficial Geologic Map; Surficial Geology Top of Page Department of Natural Resources
Publications - PDF 99-24A | Alaska Division of Geological & Geophysical
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Alaska, scale 1:63,360 (6.9 M) Keywords Ar-Ar; Bedrock; Bedrock Geology; Generalized; Geologic; Geologic Map; Geology; Gold; Lode; Non-Metals; Paleontology; Plutonic; Plutonic Hosted; STATEMAP Project
11 things a geologist thinks an engineer should know about carbonate beaches
Halley, Robert B.; Magoon, Orville T.; Robbins, Lisa L.; Ewing, Lesley
2002-01-01
This is a review of the geological aspects of carbonate beaches that a geologist thinks may be useful for an engineer. Classical geologic problems of carbonate beaches, for example how ancient examples are recognized in rock sequences, are of little interest to engineers. Geologists not involved in engineering problems may find it difficult to know what an engineer should understand about carbonate beaches. Nevertheless, there are at least eleven topics that are potentially very useful for engineers to keep in mind. These eleven are chosen with as much thought going into what has been omitted as has been given to the eleven included topics. Some qualifications are in order: First, this paper does not discuss certain kinds of carbonate shorelines that are beyond the scope of engineering issues. For example, this review does not discuss very high-energy carbonate boulder beaches. These beaches are comprised of pieces of carbonate material ganging in size from ten centimeters to meters. Typically, these are high-energy storm deposits formed from pieces of either eroded carbonate rock or other large carbonate pieces such as pieces of large corals. This paper focuses on sand-sized (0.0625–2.0 mm) coastal carbonate deposits. Second, offshore beaches will not be discussed. There are many carbonate beaches that form on banks or shoals exposed at low tide, but our discussion is confined to what most people think of when they go to some tropical island and/or resort and walk out to lay on the beach. Third, this paper does not consider mixed carbonate/quartz sand beaches. While mixed beaches are common, only the end member of purely carbonate sand beaches is considered. Fourth, there will be no order of preference of the eleven topics. And lastly, these eleven topics are not consensus items. These are simply one geologist s thoughts about the aspects of carbonate beaches that would be useful for engineering colleagues to keep in mind. Where possible, general reference is made to textbooks that will lead the reader to extensive literature on carbonate sediments. Several of the topics are not so broad as to have had a large general treatment in texts, and in those cases some original literature is cited.
Challenges of constructing salt cavern gas storage in China
NASA Astrophysics Data System (ADS)
Xia, Yan; Yuan, Guangjie; Ban, Fansheng; Zhuang, Xiaoqian; Li, Jingcui
2017-11-01
After more than ten years of research and engineering practice in salt cavern gas storage, the engineering technology of geology, drilling, leaching, completion, operation and monitoring system has been established. With the rapid growth of domestic consumption of natural gas, the requirement of underground gas storage is increasing. Because high-quality rock salt resources about 1000m depth are relatively scarce, the salt cavern gas storages will be built in deep rock salt. According to the current domestic conventional construction technical scheme, construction in deep salt formations will face many problems such as circulating pressure increasing, tubing blockage, deformation failure, higher completion risk and so on, caused by depth and the complex geological conditions. Considering these difficulties, the differences between current technical scheme and the construction scheme of twin well and big hole are analyzed, and the results show that the technical scheme of twin well and big hole have obvious advantages in reducing the circulating pressure loss, tubing blockage and failure risk, and they can be the alternative schemes to solve the technical difficulties of constructing salt cavern gas storages in the deep rock salt.
NASA Astrophysics Data System (ADS)
Jacquey, Antoine; Cacace, Mauro
2017-04-01
Utilization of the underground for energy-related purposes have received increasing attention in the last decades as a source for carbon-free energy and for safe storage solutions. Understanding the key processes controlling fluid and heat flow around geological discontinuities such as faults and fractures as well as their mechanical behaviours is therefore of interest in order to design safe and sustainable reservoir operations. These processes occur in a naturally complex geological setting, comprising natural or engineered discrete heterogeneities as faults and fractures, span a relatively large spectrum of temporal and spatial scales and they interact in a highly non-linear fashion. In this regard, numerical simulators have become necessary in geological studies to model coupled processes and complex geological geometries. In this study, we present a new simulator GOLEM, using multiphysics coupling to characterize geological reservoirs. In particular, special attention is given to discrete geological features such as faults and fractures. GOLEM is based on the Multiphysics Object-Oriented Simulation Environment (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly and in a tightly coupled manner on unstructured meshes which is of interest for the considered non-linear context. Governing equations in 3D for fluid flow, heat transfer (conductive and advective), saline transport as well as deformation (elastic and plastic) have been implemented into the GOLEM application. Coupling between rock deformation and fluid and heat flow is considered using theories of poroelasticity and thermoelasticity. Furthermore, considering material properties such as density and viscosity and transport properties such as porosity as dependent on the state variables (based on the International Association for the Properties of Water and Steam models) increase the coupling complexity of the problem. The GOLEM application aims therefore at integrating more physical processes observed in the field or in the laboratory to simulate more realistic scenarios. The use of high-level nonlinear solver technology allow us to tackle these complex multiphysics problems in three dimensions. Basic concepts behing the GOLEM simulator will be presented in this study as well as a few application examples to illustrate its main features.
Developing a Virtual Rock Deformation Laboratory
NASA Astrophysics Data System (ADS)
Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.
2012-12-01
Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In addition, some web based data collection tools are available to collect student feedback and opinions on their learning experience. The virtual laboratory is designed to be an online education tool that facilitates interactive learning.; Virtual Deformation Laboratory
Pereira, Dolores
2014-01-01
Many papers have been published related to the retention and advancement of women in sciences. Engineering geology is one of the professional areas where women have not yet broken the gender barrier. The research issues of this paper are focused on why female students “leak out” at the end of engineering geology studies, and what can be done to encourage them to complete their degrees with an engineering career in mind. The author has studied students’ preferences of the final year project required to complete their degree at the University of Salamanca (Salamanca, Spain). It has been found that most female students are choosing a more theoretical final project instead of a practical one relevant to professional employment, contrary to their male peers. Focus group meetings with the students showed that at the end of five years of engineering geology training, many female students, unsatisfied with the content of their courses, feel that their expectations had not been met. They often have preferences for traditional geology rather than applied branches of the subject. Also, they do not feel comfortable with future job prospects in the profession. From the findings of this research it is clear that tutoring and mentoring would be valuable from the beginning of studies to allow all students to become aware of the content and the potential outcomes of engineering geology studies. In the case of female students, it is particularly important for them to know from the very start that they are about to join what is still a man’s world but that they are capable of achieving just as much as men can in the profession. Most importantly, the involvement of more female engineers in professional engineering, including teaching duties, should serve as example and role models in students’ education and future careers. PMID:25216254
Pereira, Dolores
2014-09-11
Many papers have been published related to the retention and advancement of women in sciences. Engineering geology is one of the professional areas where women have not yet broken the gender barrier. The research issues of this paper are focused on why female students "leak out" at the end of engineering geology studies, and what can be done to encourage them to complete their degrees with an engineering career in mind. The author has studied students' preferences of the final year project required to complete their degree at the University of Salamanca (Salamanca, Spain). It has been found that most female students are choosing a more theoretical final project instead of a practical one relevant to professional employment, contrary to their male peers. Focus group meetings with the students showed that at the end of five years of engineering geology training, many female students, unsatisfied with the content of their courses, feel that their expectations had not been met. They often have preferences for traditional geology rather than applied branches of the subject. Also, they do not feel comfortable with future job prospects in the profession. From the findings of this research it is clear that tutoring and mentoring would be valuable from the beginning of studies to allow all students to become aware of the content and the potential outcomes of engineering geology studies. In the case of female students, it is particularly important for them to know from the very start that they are about to join what is still a man's world but that they are capable of achieving just as much as men can in the profession. Most importantly, the involvement of more female engineers in professional engineering, including teaching duties, should serve as example and role models in students' education and future careers.
Student Enrollment in Geoscience Departments. 1982-1983.
ERIC Educational Resources Information Center
American Geological Inst., Washington, DC.
Presented in table format are student enrollment data for geoscience disciplines at colleges and universities in the United States and Canada. Subfields for both countries include: geology; geophysics; oceanography; marine science; geological engineering; geophysical engineering; geochemistry; hydrology; mineralogy; paleontology; soil science;…
Mineral resources of the Trinity River tributary area in Texas and Oklahoma
Weissenborn, A. E.
1946-01-01
In March 1945 Colonel George R. Goethels, Chief of the Civil Works Division of the Corps of Engineers, requested the Director of the Geological Survey, United States Department of the Interior, to prepare a report on the mineral resource of the area that, according to economic studies made by the Corps of Engineers, would be affected by the canalization of the Trinity River to Fort Worth. As a consequence, the staff of the Geological Survey's Regional Office in Rolla, Mo., was assigned the task of preparing the desired information. A. E. Weissenborn, acting Regional Geologist, called on Major H. R. Norman, Division Engineer of the Corps of Engineers, U. S. Army, and discussed with him the purpose, scope, and form of the proposed report. Following this discussion, Dr. John T. Lonsdale, Director of the Bureau of Economic Geology of the University of Texas, at Mr. Weissenborn's request, agreed that the Bureau of Economic Geology should participate in the preparation of the report. My. Weissenborn also called on Robert H. Dott, Director of the Oklahoma State Geological Survey at Norman, Oklahoma. The Oklahoma Geological Survey was unable to participate in writing the report, but was very helpful in supplying published and unpublished or out-of-print information on the mineral resources of Oklahoma.
SEG and AAPG: common background, common problems, common future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larner, K.
1989-03-01
Today, products of the geophysical method are considered indispensable for geologic interpretation in petroleum exploration. Few exploration case histories today lack the evidence of seismic data upon which structural and stratigraphic interpretations have been constrained. Likewise, during the deep recession that exploration has been experiencing, exploration geophysicists are increasingly realizing that their tools have value only to the extent that they can yield geological and reservoir information that is more directly relevant to oil finding and field development than in the past. Geophysicists are now preoccupied with more than just their wavelets, static correction, and migration. As the papers inmore » this session indicate, geophysicists are extending their technology to estimate lithology, fluid content, monitoring of EOR efforts, and characterization and development of reservoirs. The three-dimensional seismic method, for example, is being brought right to the borehole with the use of the drill bit as the energy source. The futures of their two societies and their members are fully intertwined. Geologists and petroleum engineers who wish to gain considerably more information, cost-effectively, about their prospects, fields, and reservoirs must stay in touch with the exciting new developments from the geophysical community. Equally, geophysicists can maintain their relevance to oil finding only by staying closely in touch with developments in understanding of geology and the reservoir, and with the working interests and needs of geologists and petroleum engineers.« less
Radbruch-Hall, D. H.; Varnes, D.J.
1976-01-01
Landslides can cause seismic disturbances; landslides can also result from seismic disturbances, and earthquake-induced slides have caused loss of life in many countries. Slides can cause disastrous flooding, particularly when landslide dams across streams are breached, and flooding may trigger slides. Slope movement in general is a major process of the geologic environment that places constraints on engineering development. In order to understand and foresee both the causes and effects of slope movement, studies must be made on a regional scale, at individual sites, and in the laboratory. Areal studies - some embracing entire countries - have shown that certain geologic conditions on slopes facilitate landsliding; these conditions include intensely sheared rocks; poorly consolidated, fine-grained clastic rocks; hard fractured rocks underlain by less resistant rocks; or loose accumulations of fine-grained surface debris. Field investigations as well as mathematical- and physical-model studies are increasing our understanding of the mechanism of slope movement in fractured rock, and assist in arriving at practical solutions to landslide problems related to all kinds of land development for human use. Progressive failure of slopes has been studied in both soil and rock mechanics. New procedures have been developed to evaluate earthquake response of embankments and slopes. The finite element method of analysis is being extensively used in the calculation of slope stability in rock broken by joints, faults, and other discontinuities. ?? 1976 International Association of Engineering Geology.
NASA Technical Reports Server (NTRS)
Shafto, Michael G.; Remington, Roger W.; Trimble, Jay W.
1994-01-01
A case study is presented to illustrate some of the problems of applying cognitive science to complex human-machine systems. Disregard for facts about human cognition often undermines the safety, reliability, and cost-effectiveness of complex systems. Yet single-point methods (for example, better user-interface design), whether rooted in computer science or in experimental psychology, fall far short of addressing systems-level problems in a timely way using realistic resources. A model-based methodology is proposed for organizing and prioritizing the cognitive engineering effort, focusing appropriate expertise on major problems first, then moving to more sophisticated refinements if time and resources permit. This case study is based on a collaborative effort between the Human Factors Division at NASA-Ames and the Spaceborne Imaging Radar SIR-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) Project at the Jet Propulsion Laboratory (JPL), California institute of Technology. The first SIR-C/X-SAR Shuttle mission flew successfully in April, 1994. A series of such missions is planned to provide radar data to study Earth's ecosystems, climatic and geological processes, hydrologic cycle, and ocean circulation. In addition to JPL and NASA personnel, the SIR-C/X-SAR operations team included Scientists and engineers from the German and Italian space agencies.
Special Issue on Earth Science: The View From '76
ERIC Educational Resources Information Center
Geotimes, 1976
1976-01-01
Presents the latest developments concerning the following topics: astrogeology, coal, deep sea drilling project, engineering geology; environmental geology, exploration geophysics, geochemistry, geodynamics project, hydrology, industrial minerals, international geology, mapping, mathematical geology, metals, mineralogy, oil and gas, invertebrate…
NASA Astrophysics Data System (ADS)
Delvoie, S.; Radu, J.-P.; Ruthy, I.; Charlier, R.
2012-04-01
An engineering geological map can be defined as a geological map with a generalized representation of all the components of a geological environment which are strongly required for spatial planning, design, construction and maintenance of civil engineering buildings. In Wallonia (Belgium) 24 engineering geological maps have been developed between the 70s and the 90s at 1/5,000 or 1/10,000 scale covering some areas of the most industrialized and urbanized cities (Liège, Charleroi and Mons). They were based on soil and subsoil data point (boring, drilling, penetration test, geophysical test, outcrop…). Some displayed data present the depth (with isoheights) or the thickness (with isopachs) of the different subsoil layers up to about 50 m depth. Information about geomechanical properties of each subsoil layer, useful for engineers and urban planners, is also synthesized. However, these maps were built up only on paper and progressively needed to be updated with new soil and subsoil data. The Public Service of Wallonia and the University of Liège have recently initiated a study to evaluate the feasibility to develop engineering geological mapping with a computerized approach. Numerous and various data (about soil and subsoil) are stored into a georelational database (the geotechnical database - using Access, Microsoft®). All the data are geographically referenced. The database is linked to a GIS project (using ArcGIS, ESRI®). Both the database and GIS project consist of a powerful tool for spatial data management and analysis. This approach involves a methodology using interpolation methods to update the previous maps and to extent the coverage to new areas. The location (x, y, z) of each subsoil layer is then computed from data point. The geomechanical data of these layers are synthesized in an explanatory booklet joined to maps.
Publications - STATEMAP Project | Alaska Division of Geological &
., 2008, Surficial-geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska , Engineering - geologic map, Alaska Highway corridor, Delta Junction to Dot Lake, Alaska: Alaska Division of geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska Division of Geological
Publications - PDF 96-16 | Alaska Division of Geological & Geophysical
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska fbx_prelim_geology Shapefile 6.5 M Metadata - Read me Keywords Age Dates; Antimony; Ar-Ar; Bedrock; Bedrock Geology ; Birch Hill Sequence; Bismuth; Chatanika Terrane; Construction Materials; Derivative; Economic Geology
Publications - PDF 98-37B v. 1.1 | Alaska Division of Geological &
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska ) Digital Geospatial Data Digital Geospatial Data Tanana A-1 and A-2 bedrock geology Data File Format File ; Bedrock; Bedrock Geologic Map; Bedrock Geology; CIPW Norms; Cerium; Dome; Economic Geology; Faults
Constructing a Geology Ontology Using a Relational Database
NASA Astrophysics Data System (ADS)
Hou, W.; Yang, L.; Yin, S.; Ye, J.; Clarke, K.
2013-12-01
In geology community, the creation of a common geology ontology has become a useful means to solve problems of data integration, knowledge transformation and the interoperation of multi-source, heterogeneous and multiple scale geological data. Currently, human-computer interaction methods and relational database-based methods are the primary ontology construction methods. Some human-computer interaction methods such as the Geo-rule based method, the ontology life cycle method and the module design method have been proposed for applied geological ontologies. Essentially, the relational database-based method is a reverse engineering of abstracted semantic information from an existing database. The key is to construct rules for the transformation of database entities into the ontology. Relative to the human-computer interaction method, relational database-based methods can use existing resources and the stated semantic relationships among geological entities. However, two problems challenge the development and application. One is the transformation of multiple inheritances and nested relationships and their representation in an ontology. The other is that most of these methods do not measure the semantic retention of the transformation process. In this study, we focused on constructing a rule set to convert the semantics in a geological database into a geological ontology. According to the relational schema of a geological database, a conversion approach is presented to convert a geological spatial database to an OWL-based geological ontology, which is based on identifying semantics such as entities, relationships, inheritance relationships, nested relationships and cluster relationships. The semantic integrity of the transformation was verified using an inverse mapping process. In a geological ontology, an inheritance and union operations between superclass and subclass were used to present the nested relationship in a geochronology and the multiple inheritances relationship. Based on a Quaternary database of downtown of Foshan city, Guangdong Province, in Southern China, a geological ontology was constructed using the proposed method. To measure the maintenance of semantics in the conversation process and the results, an inverse mapping from the ontology to a relational database was tested based on a proposed conversation rule. The comparison of schema and entities and the reduction of tables between the inverse database and the original database illustrated that the proposed method retains the semantic information well during the conversation process. An application for abstracting sandstone information showed that semantic relationships among concepts in the geological database were successfully reorganized in the constructed ontology. Key words: geological ontology; geological spatial database; multiple inheritance; OWL Acknowledgement: This research is jointly funded by the Specialized Research Fund for the Doctoral Program of Higher Education of China (RFDP) (20100171120001), NSFC (41102207) and the Fundamental Research Funds for the Central Universities (12lgpy19).
Interpreting geologic maps for engineering purposes: Hollidaysburg quadrangle, Pennsylvania
,
1953-01-01
This set of maps has been prepared to show the kinds of information, useful to engineers, that can be derived from ordinary geologic maps. A few additional bits of information, drawn from other sources, are mentioned below. Some of the uses of such maps are well known; they are indispensable tools in the modern search for oil or ore deposits; they are the first essential step in unraveling the story of the earth we live on. Less well known, perhaps, is the fact that topographic and geologic maps contain many of the basic data needed for planning any engineering construction job, big or little. Any structure built by man must fit into the topographic and geologic environment shown on such maps. Moreover, most if not all construction jobs must be based on knowledge of the soils and waters, which also are intimately related to this same environment. The topographic map shows the shape of the land the hills and valleys, the streams and swamps, the man-made features such as roads, railroads, and towns. The geologic map shows the kinds and shapes of the rock bodies that form the land surface and that lie beneath it. These are the facts around which the engineer must build.
1978-11-01
Williams, Chief Applied Engineering & Urban Geology Geology & Land Survey October 8, 1976 I Chart 2-11 APPENDIX _______--row]h NO. 1 : UPS7TREAM FACE 01...be cut out as indicated by the maintenance people. Otherwise the dam looks to be in a very good condition. I Edwin E. Luzten, Geologist Applied ... Engineering & Urban Geology Missouri Geological Survey lJuly 1i, 1973 hI I Chart 2-7 I ... . , ---- -i- - 3~ i Mf itS 0 I C)E R S. BON D .1%A
NASA Astrophysics Data System (ADS)
Volkomirskaya, Liudmila; Gulevich, Oxana; Musalev, Dmitri
2013-04-01
The potentialities of ground-penetrating radar in the engineering geology using the radars GROT-12 and GROT-12E L.B. Volkomirskaya(1,2), O.A. Gulevich(1,2), D.N. Musalev(3) 1. IZMIRAN, 142190, Russia, Moscow, Troitsk, Kalugskoe 4 2. ZAO Timer, 142190, Russia, Moscow, Troitsk, Lesnaya str. 4B 3. OAO Belgorchemprom, Republic of Belarus, Minsk, Masherov str. 17 The article presents the potentialities of ground-penetrating radar in the engineering geology on the basis of the latest modifications of the GPR "GROT": the low-frequency GPR GROT-12 and the high-frequency GPR GROT-12E. The article gives technical specifications of the GPRs GROT-12 and GROT-12E and their particular characteristics that define them from analogues. The solutions of direct problems of ground penetrating radar on the basis of Maxwell's equations in general formulation with given wide-band signal source are confronted to experimental data received from different fields of the engineering geology, for example: 1. To secure mining in salt mines the method was adapted to locate in the working layers the investigating boreholes, fault lines, borders of displacement and blowout of productive layers, as well as working pits without access. 2. To monitor the reinforced concrete structures of airport runways the technology was worked out to collect and process GPR data so as to locate communications under the runways and examine basement condition. 3. To carry out the reconstruction of buildings and pre-project engineering geological works the GPR shooting technology was improved to process the examinations of the bearing capacity of soils and to locate lost communications. 4. To perform ecological monitoring of abandoned mines the technology of the GPR data collecting and processing was developed to assess the conditions of stowage materials in mouths of destroyed vertical mine shafts, the location of inclined mine shafts, the determination of hollow spaces and thinning zones, the localization of ground and mining waters, as well as the state of dumps (spoil tips). The dependence was investigated between the resolution, the exploration depth and the characteristics of GPR: the power and pulse length of transmitter, the digit capacity and frequency of the receiver, the construction of antennas. The article includes examples of usage of GROT-12 and GROT-12E in research at the depth 100 m and deeper in the salt mines in Starobinsk deposit, in the Sheremetyevo airport in Moscow, in the mining fields of Kuznetsk Basin, Donets Basin and Australia. The article presents a study of the required characteristics of ground-penetrating radars considering the given parameters of the exploration depth and digit capacity.
NASA Technical Reports Server (NTRS)
Head, J. W.; Belton, M.; Greeley, R.; Pieters, C.; Mcewen, A.; Neukum, G.; Mccord, T.
1993-01-01
The Lunar Scout Missions (payload: x-ray fluorescence spectrometer, high-resolution stereocamera, neutron spectrometer, gamma-ray spectrometer, imaging spectrometer, gravity experiment) will provide a global data set for the chemistry, mineralogy, geology, topography, and gravity of the Moon. These data will in turn provide an important baseline for the further scientific exploration of the Moon by all-purpose landers and micro-rovers, and sample return missions from sites shown to be of primary interest from the global orbital data. These data would clearly provide the basis for intelligent selection of sites for the establishment of lunar base sites for long-term scientific and resource exploration and engineering studies. The two recent Galileo encounters with the Moon (December, 1990 and December, 1992) illustrate how modern technology can be applied to significant lunar problems. We emphasize the regional results of the Galileo SSI to show the promise of geologic unit definition and characterization as an example of what can be done with the global coverage to be obtained by the Lunar Scout Missions.
About Us - Employment | Alaska Division of Geological & Geophysical Surveys
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska researching Alaska's geology and implementing technological tools to efficiently collect, interpret, publish
Geological Investigation and analysis in response to Earthquake Induced Landslide in West Sumatra
NASA Astrophysics Data System (ADS)
Karnawati, D.; Wilopo, W.; Salahudin, S.; Sudarno, I.; Burton, P.
2009-12-01
Substantial socio-economical loss occurred in response to the September 30. 2009 West Sumatra Earthquake with magnitude of 7.6. Damage of houses and engineered structures mostly occurred at the low land of alluvium sediments due to the ground amplification, whilst at the high land of mountain slopes several villages were buried by massive debris of rocks and soils. It was recorded that 1115 people died due to this disasters. Series of geological investigation was carried out by Geological Engineering Department of Gadjah Mada University, with the purpose to support the rehabilitation program. Based on this preliminary investigation it was identified that most of the house and engineered structural damages at the alluvial deposits mainly due to by the poor quality of such houses and engineered structures, which poorly resist the ground amplification, instead of due to the control of geological conditions. On the other hand, the existence and distribution of structural geology (faults and joints) at the mountaineous regions are significant in controlling the distribution of landslides, with the types of rock falls, debris flows and debris falls. Despite the landslide susceptibility mapping conducted by Geological Survey of Indonesia, more detailed investigation is required to be carried out in the region surrounding Maninjau Lake, in order to provide safer places for village relocation. Accordingly Gadjah Mada University in collaboration with the local university (Andalas University) as well as with the local Government of Agam Regency and the Geological Survey of Indonesia, serve the mission for conducting rather more detailed geological and landslide investigation. It is also crucial that the investigation (survey and mapping) on the social perception and expectation of local people living in this landslide susceptible area should also be carried out, to support the mitigation effort of any future potential earthquake induced landslides.
Publications - PIR 2004-3 | Alaska Division of Geological & Geophysical
) Keywords Alaska, State of; Alluvial Deposits; Amy Creek Assemblage; Amy Dolomite; Ar-Ar; Bison Fossils ; Cambrian; Caribou Fossils; Cascaden Ridge Unit; Cenozoic; Colluvial Deposits; Cretaceous; Devonian ; Engineering Geology; Eolian; Fox Fossils; Geochemistry; Geochronology; Geologic Hazards; Geologic Materials
ERIC Educational Resources Information Center
Hambrick, David Z.; Libarkin, Julie C.; Petcovic, Heather L.; Baker, Kathleen M.; Elkins, Joe; Callahan, Caitlin N.; Turner, Sheldon P.; Rench, Tara A.; LaDue, Nicole D.
2012-01-01
Sources of individual differences in scientific problem solving were investigated. Participants representing a wide range of experience in geology completed tests of visuospatial ability and geological knowledge, and performed a geological bedrock mapping task, in which they attempted to infer the geological structure of an area in the Tobacco…
NASA Astrophysics Data System (ADS)
Tobias, Sheila; Abel, Lynne S.
1990-09-01
In an effort to discover what makes the humanities difficult and unpopular with some science and engineering students, 14 Cornell faculty from the disciplines of chemistry, physics, applied mathematics, geology, materials science, and engineering were invited to become ``surrogate learners'' in a junior/senior level poetry seminar designed expressly for them. Their encounter with humanistic pedagogy and scholarship was meant to be an extension of ``Peer Perspectives on Science'' [see S. Tobias and R. R. Hake, ``Professors as physics students: What can they teach us?'' Am. J. Phys. 56, 786 (1988)]. The results challenge certain assumptions about differences between scholarship and pedagogy in the humanities and science (as regards ``certainty'' and models). But the experiment uncovered other problems that affect ``marketing'' the humanities to science and engineering students. Results are some additional insights into what makes science ``hard'' for humanities students and why physical science and engineering students have difficulty with and tend to avoid courses in literature, as well as into what can make humanities courses valuable for science students.
Hillslope hydrology and stability
Lu, Ning; Godt, Jonathan
2012-01-01
Landslides are caused by a failure of the mechanical balance within hillslopes. This balance is governed by two coupled physical processes: hydrological or subsurface flow and stress. The stabilizing strength of hillslope materials depends on effective stress, which is diminished by rainfall. This book presents a cutting-edge quantitative approach to understanding hydro-mechanical processes across variably saturated hillslope environments and to the study and prediction of rainfall-induced landslides. Topics covered include historic synthesis of hillslope geomorphology and hydrology, total and effective stress distributions, critical reviews of shear strength of hillslope materials and different bases for stability analysis. Exercises and homework problems are provided for students to engage with the theory in practice. This is an invaluable resource for graduate students and researchers in hydrology, geomorphology, engineering geology, geotechnical engineering and geomechanics and for professionals in the fields of civil and environmental engineering and natural hazard analysis.
Publications - MP 158 | Alaska Division of Geological & Geophysical Surveys
Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Alaska Deposits; Bluff; Coastal; Coastal Erosion; Depositional Environment; Dunes; Engineering Geology; Flood
Mining method selection by integrated AHP and PROMETHEE method.
Bogdanovic, Dejan; Nikolic, Djordje; Ilic, Ivana
2012-03-01
Selecting the best mining method among many alternatives is a multicriteria decision making problem. The aim of this paper is to demonstrate the implementation of an integrated approach that employs AHP and PROMETHEE together for selecting the most suitable mining method for the "Coka Marin" underground mine in Serbia. The related problem includes five possible mining methods and eleven criteria to evaluate them. Criteria are accurately chosen in order to cover the most important parameters that impact on the mining method selection, such as geological and geotechnical properties, economic parameters and geographical factors. The AHP is used to analyze the structure of the mining method selection problem and to determine weights of the criteria, and PROMETHEE method is used to obtain the final ranking and to make a sensitivity analysis by changing the weights. The results have shown that the proposed integrated method can be successfully used in solving mining engineering problems.
Application of remote sensor data to geologic analysis of the Bonanza test site Colorado
NASA Technical Reports Server (NTRS)
Lee, K. (Compiler); Butler, R. W.; Fisher, J. C.; Huntley, D.; Hulstrom, R. L.; Knepper, D. H., Jr.; Muhm, J. R.; Sawatzky, D. L.; Worman, K. E.; Wychgram, D.
1973-01-01
Research activities on geologic remote sensing applications for Colorado are summarized. Projects include: regional and detailed geologic mapping, surficial and engineering geology, fracture studies, uranium exploration, hydrology, and data reduction and enhancement. The acquisition of remote sensor data is also discussed.
Landslides and engineering geology of the Seattle, Washington, area
Baum, Rex L.; Godt, Jonathan W.; Highland, Lynn M.
2008-01-01
This volume brings together case studies and summary papers describing the application of state-of-the-art engineering geologic methods to landslide hazard analysis for the Seattle, Washington, area. An introductory chapter provides a thorough description of the Quaternary and bedrock geology of Seattle. Nine additional chapters review the history of landslide mapping in Seattle, present case studies of individual landslides, describe the results of spatial assessments of landslide hazard, discuss hydrologic controls on landsliding, and outline an early warning system for rainfall-induced landslides.
NASA Astrophysics Data System (ADS)
Cała, Marek; Borowski, Marek
2018-03-01
The AGH University of Science and Technology collaborates closely with other universities, economic units, governmental and local administrative bodies. International cooperation plays a very important role in the academic research. The AGH University of Science and Technology has signed many collaboration agreements. They aim at multidimensional cooperation in the fields of education and academic research. AGH UST has always focused on collaboration with business and industry. In recent years, the global economy is undergoing massive transformations, what creates new challenges to companies and educational institutions that cater to the needs of industry. The expansion of business enterprises is largely dependent on their employees' expertise, skills and levels of competence. Certified engineers are provided by universities. Therefore, the qualifications of the graduates are determined by the curriculum and teaching methods, as well as the available educational and research facilities. Of equal importance is the qualified academic staff. Human activities in the field of engineering require finding solutions to problems of various nature and magnitude. An engineer's work consists in the design, construction, modification and maintenance of useful devices, processes and systems, using scientific and technical knowledge. In order to design complex engineering solutions, an engineer uses his imagination, experience, analytical skills, logical reasoning and makes conscious use of his knowledge. At the Faculty of Mining and Geoengineering of the AGH University of Science and Technology in Cracow, 15 engineers from Vietnam are studying Mining and Geology at the second-cycle studies (specialization: mine ventilation). The solutions proposed in the field of the engineers' education guarantee that foreign students gain both engineering knowledge and problem-solving skills. Therefore, the study programme was complemented by a series of practical aspects.
The International Association for Promoting Geoethics: Mission, Organization, and Activities
NASA Astrophysics Data System (ADS)
Kieffer, S. W.; Peppoloni, S.; Di Capua, G.
2017-12-01
The International Association for Promoting Geoethics (IAPG) was founded in 2012, during the 34th IGC in Brisbane (Australia), to provide a multidisciplinary platform for widening the discussion and creating awareness about principles and problems of ethics as applied to the geosciences. It is a scientific, non-governmental, non-political, non-profit, non-party institution, headquartered at the Italian Institute of Geophysics and Volcanology in Rome, Italy. IAPG focuses on behaviors and practices where human activities interact with the Earth system, and deals with the ethical, social and cultural implications of geoscience knowledge, education, research, practice and communication. Its goal is to enhance awareness of the social role and responsibility of geoscientists in conducting their activities such as geoeducation, sustainability, and risk prevention. IAPG is a legally recognized non-profit association with members in 115 countries on 5 continents, and currently has 26 national sections. As of the date of this abstract, IAPG has been involved with approximately 70 international meetings (scientific conferences, symposia, seminars, workshops, expositions, etc.). Other activities range from exchanging information with newsletters, blogs, social networks and publications; promoting the creation of working groups and encouraging the participation of geoscientists within universities and professional associations for the development of geoethics themes; and cooperating with national and international organizations whose aims are complementary, e.g., International Union of Geological Sciences (IUGS), American Geosciences Institute (AGI), Geological Society of America (GSA), Geological Society of London (GSL), Geoscience Information in Africa - Network (GIRAF), American Geophysical Union (AGU), International Association for Engineering Geology and the Environment (IAEG), International Association of Hydrogeologists (IAH), Association of Environmental & Engineering Geologists (AEG), International Geoscience Education Organization (IGEO), etc. Finally, IAPG is involved in activities to disseminate geological knowledge in society through "ad hoc" events for the general public and courses for professionals and students. More about IAPG at www.geoethics.org.
Engineering Geology | Alaska Division of Geological & Geophysical Surveys
Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Highway and development of avalanche susceptibility and prediction models near Atigun Pass. Alaska coastal
10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH... and an engineered barrier system. (b) The engineered barrier system must be designed so that, working...
10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH... and an engineered barrier system. (b) The engineered barrier system must be designed so that, working...
10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH... and an engineered barrier system. (b) The engineered barrier system must be designed so that, working...
10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH... and an engineered barrier system. (b) The engineered barrier system must be designed so that, working...
NASA Astrophysics Data System (ADS)
Workman Ford, K.; Ford, K. R.
2013-12-01
Undergraduate introductory geology courses are required in many colleges nationwide as part of the general education requirement. As a result, a large portion of those students are non-majors and most are not science majors. Textbooks used in these courses are often extensive with respect to the amount of material covered which tends to be overwhelming to the average student. Thus, students often purchase the pricey textbook but turn to their smartphones, notebooks, and laptops for answers. Before the development of the internet, students spent many hours in libraries and with their textbooks organizing and retrieving information. However, new technologies in the 21st century have essentially replaced traditional textbooks with students turning to online search engines, such as Google, to study and to complete homework assignments. Presently, online search engines may be more intuitive, but what's going on in the background isn't intuitive at all, and few students have a clear understanding of how search engines operate. Effectively this leads to students without the conception of how to build an adequate search strategy independent of search engines. Often, students are directed to online encyclopedias that may have erroneous information. Here, we employ an alternative to traditional textbooks and online search engines by implementing a guidebook with electronic resources for online activities and homework assignments. The proposed guidebook is roughly modeled after the American Geosciences Institute's Geoscience Handbook: AGI Data Sheets 4th, revised edition, and will include diagrams, graphs, charts, and pictures of basic geologic principles, processes, and earth materials. Along with the information, each topic will have online resources including sites for general reading, specific assignments that require visiting scientifically sound websites (i.e., USGS, GSA, AGU, Science, Nature), online self-assessment activities, and Google Earth activities. In addition, some elements would include a critical thinking problem wherein students research a topic without specific online resources provided, and compare what they find to reputable resources. This process is likely to drive students to evaluate their sources in a more critical manner. Given that textbooks are costly and sometimes overwhelming for students compelling them to use online search engines, the idea of a guidebook that encompasses electronic resources may engage the students more effectively, leading to a more comprehensive understanding and appreciation of the geosciences.
National Research Program of the Water Resources Division, U.S. Geological Survey: Fiscal Year 1988
Friedman, Linda C.; Donato, Christine N.
1989-01-01
The National Research Program (NRP) of the US Geological Survey 's Water Resources Division (WRD) had its beginnings in the late 1950 's when ' core research ' was added as a line item to the Congressional budget. Since that time, the NRP has grown to encompass a broad spectrum of scientific investigations. The sciences of hydrology, mathematics, chemistry, physics, ecology, biology, geology, and engineering are used to gain a fundamental understanding of the processes that affect the availability, movement, and quality of the Nation 's water resources. The NRP is located principally in Reston, VA, Denver, CO, and Menlo Park , CA. The NRP is subdivided into six disciplines as follows: (1) Ecology; (2) Geomorphology and Sediment Transport; (3) Groundwater Chemistry; (4) Groundwater Hydrology; (5) Surface Water Chemistry; and (6) Surface Water Hydrology. The report provides current information about the NRP on an annual basis. Organized by the six research disciplines, the volume contains a summary of the problem, objective, approach, and progress for each project that was active during fiscal year 1988.
NASA Astrophysics Data System (ADS)
Vasant, P.; Ganesan, T.; Elamvazuthi, I.
2012-11-01
A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest A. Mancini
The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The models represent an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic models served as the framework for the simulations. The geologic-engineering models of the Appleton and Vocation Field reservoirs have been developed. These models are being tested. The geophysical interpretation for the paleotopographic feature being tested has been made, and the study of the data resulting from drilling of a well on this paleohigh is in progress. Numerous presentations on reservoir characterization and modeling at Appleton and Vocation Fields have been made at professional meetings and conferences and a short course on microbial reservoir characterization and modeling based on these fields has been prepared.« less
Publications - RI 2001-1D | Alaska Division of Geological & Geophysical
-geologic map of the Chulitna region, southcentral Alaska, scale 1:63,360 (16.0 M) Digital Geospatial Data Digital Geospatial Data Chulitna region engineering geology Data File Format File Size Info Download
West Virginia Geological Survey's role in siting fluidized bed combustion facilities
Smith, C.J.; King, Hobart M.; Ashton, K.C.; Kirstein, D.S.; McColloch, G.H.
1989-01-01
A project is presented which demonstrates the role of geology in planning and siting a fluidized bed combustion facility. Whenever a project includes natural resource utilization, cooperation between geologists and design engineers will provide an input that could and should save costs, similar to the one stated in our initial premise. Regardless of whether cost reductions stem from a better knowledge of fuel and sorbent availabilities, or a better understanding of the local hydrology, susceptibility to mine-subsidence, or other geologic hazards, the geological survey has a vital role in planning. Input to planning could help the fluidized-bed developer and design-engineer solve some economic questions and stretch the financial resources at their disposal.
GeoEnvironmental Education Through Multidisciplinary Research
NASA Astrophysics Data System (ADS)
Padilla, I. Y.; Hwang, S.
2007-12-01
The growing need to understand environmental and geological processes, their impacts, and solutions in a dynamic world requires a diverse, multidiscipline, and multicultural approach in science and engineering. In the last few years, faculty at the University of Puerto Rico, Mayagüez have engaged in education and training activities aimed at developing a critical mass of students that can address a wide range of geoenvironmental problems through multidisciplinary research. Students of diverse age, gender, culture, and academic disciplines addressing different research questions work together in a common space. Hierarchy assignments use senior students as primary mentors, but foster work at parallel levels that require sharing and developing knowledge and research resources. The activities have resulted in a significant increase in the number of diverse students in science and engineering areas related to the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treatmore » and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.« less
NASA Astrophysics Data System (ADS)
Gao, M.; Huang, S. T.; Wang, P.; Zhao, Y. A.; Wang, H. B.
2016-11-01
The geological disposal of high-level radioactive waste (hereinafter referred to "geological disposal") is a long-term, complex, and systematic scientific project, whose data and information resources in the research and development ((hereinafter referred to ”R&D”) process provide the significant support for R&D of geological disposal system, and lay a foundation for the long-term stability and safety assessment of repository site. However, the data related to the research and engineering in the sitting of the geological disposal repositories is more complicated (including multi-source, multi-dimension and changeable), the requirements for the data accuracy and comprehensive application has become much higher than before, which lead to the fact that the data model design of geo-information database for the disposal repository are facing more serious challenges. In the essay, data resources of the pre-selected areas of the repository has been comprehensive controlled and systematic analyzed. According to deeply understanding of the application requirements, the research work has made a solution for the key technical problems including reasonable classification system of multi-source data entity, complex logic relations and effective physical storage structures. The new solution has broken through data classification and conventional spatial data the organization model applied in the traditional industry, realized the data organization and integration with the unit of data entities and spatial relationship, which were independent, holonomic and with application significant features in HLW geological disposal. The reasonable, feasible and flexible data conceptual models, logical models and physical models have been established so as to ensure the effective integration and facilitate application development of multi-source data in pre-selected areas for geological disposal.
Publications - GMC 53C | Alaska Division of Geological & Geophysical
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Paleozoic through Tertiary sandstones, North Slope, Alaska Authors: Alaska Research Associates Publication through Tertiary sandstones, North Slope, Alaska: Alaska Division of Geological & Geophysical Surveys
Cross-disciplinary Undergraduate Research: A Case Study in Digital Mapping, western Ireland
NASA Astrophysics Data System (ADS)
Whitmeyer, S. J.; de Paor, D. G.; Nicoletti, J.; Rivera, M.; Santangelo, B.; Daniels, J.
2008-12-01
As digital mapping technology becomes ever more advanced, field geologists spend a greater proportion of time learning digital methods relative to analyzing rocks and structures. To explore potential solutions to the time commitment implicit in learning digital field methods, we paired James Madison University (JMU) geology majors (experienced in traditional field techniques) with Worcester Polytechnic Institute (WPI) engineering students (experienced in computer applications) during a four week summer mapping project in Connemara, western Ireland. The project consisted of approximately equal parts digital field mapping (directed by the geology students), and lab-based map assembly, evaluation and formatting for virtual 3D terrains (directed by the engineering students). Students collected geologic data in the field using ruggedized handheld computers (Trimble GeoExplorer® series) with ArcPAD® software. Lab work initially focused on building geologic maps in ArcGIS® from the digital field data and then progressed to developing Google Earth-based visualizations of field data and maps. Challenges included exporting GIS data, such as locations and attributes, to KML tags for viewing in Google Earth, which we accomplished using a Linux bash script written by one of our engineers - a task outside the comfort zone of the average geology major. We also attempted to expand the scope of Google Earth by using DEMs of present-day geologically-induced landforms as representative models for paleo-geographic reconstructions of the western Ireland field area. As our integrated approach to digital field work progressed, we found that our digital field mapping produced data at a faster rate than could be effectively managed during our allotted time for lab work. This likely reflected the more developed methodology for digital field data collection, as compared with our lab-based attempts to develop new methods for 3D visualization of geologic maps. However, this experiment in cross-disciplinary undergraduate research was a big success, with an enthusiastic interchange of expertise between undergraduate geology and engineering students that produced new, cutting-edge methods for visualizing geologic data and maps.
NASA Astrophysics Data System (ADS)
Chan, Y. C.; Shih, N. C.; Hsieh, Y. C.
2016-12-01
Geologic maps have provided fundamental information for many scientific and engineering applications in human societies. Geologic maps directly influence the reliability of research results or the robustness of engineering projects. In the past, geologic maps were mainly produced by field geologists through direct field investigations and 2D topographic maps. However, the quality of traditional geologic maps was significantly compromised by field conditions, particularly, when the map area is covered by heavy forest canopies. Recent developments in airborne LiDAR technology may virtually remove trees or buildings, thus, providing a useful data set for improving geological mapping. Because high-quality topographic information still needs to be interpreted in terms of geology, there are many fundamental questions regarding how to best apply the data set for high-resolution geological mapping. In this study, we aim to test the quality and reliability of high-resolution geologic maps produced by recent technological methods through an example from the fold-and-thrust belt in northern Taiwan. We performed the geological mapping by applying the LiDAR-derived DEM, self-developed program tools and many layers of relevant information at interactive 3D environments. Our mapping results indicate that the proposed methods will considerably improve the quality and consistency of the geologic maps. The study also shows that in order to gain consistent mapping results, future high-resolution geologic maps should be produced at interactive 3D environments on the basis of existing geologic maps.
34 CFR Appendix to Part 648 - Academic Areas
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Electronic, and Communications Engineering 14.11Engineering Mechanics 14.12Engineering Physics 14.13Engineering Science 14.14Environmental/Environmental Health Engineering 14.15Geological Engineering 14... Arts and Art Studies 50.09Music 51.Health Professions and Related Sciences 51.01Chiropractic (D.C., D.C...
Quaternary geologic map of the Winnipeg 4 degrees x 6 degrees quadrangle, United States and Canada
Fullerton, D. S.; Ringrose, S.M.; Clayton, Lee; Schreiner, B.T.; Goebel, J.E.
2000-01-01
The Quaternary Geologic Map of the Winnipeg 4? ? 6? Quadrangle, United States and Canada, is a component of the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series (Miscellaneous Investigations Series I-1420), an effort to produce 4? ? 6? Quaternary geologic maps, at 1:1 million scale, of the entire conterminous United States and adjacent Canada. The map and the accompanying text and supplemental illustrations provide a regional overview of the areal distributions and characteristics of surficial deposits and materials of Quaternary age (~1.8 Ma to present) in parts of North Dakota, Minnesota, Manitoba, and Saskatchewan. The map is not a map of soils as soils are recognized in agriculture. Rather, it is a map of soils as recognized in engineering geology, or of substrata or parent materials in which agricultural soils are formed. The map units are distinguished chiefly on the basis of (1)genesis (processes of origin) or environments of deposition: for example, sediments deposited primarily by glacial ice (glacial deposits or till), sediments deposited in lakes (lacustrine deposits), or sediments deposited by wind (eolian deposits); (2) age: for example, how long ago the deposits accumulated; (3) texture (grain size)of the deposits or materials; (4) composition (particle lithology) of the deposits or materials; (5) thickness; and (6) other physical, chemical, and engineering properties. Supplemental illustrations show (1) temporal correlation of the map units, (2) the areal relationships of late Wisconsin glacial ice lobes and sublobes, (3) temporal and spatial correlation of late Wisconsin glacial phases, readvance limits, and ice margin stillstands, (4) temporal and stratigraphic correlation of surface and subsurface glacial deposits in the Winnipeg quadrangle and in adjacent 4? ? 6? quadrangles, and (5) responsibility for state and province compilations. The database provides information related to geologic hazards (for example, materials that are characterized by expansive clay minerals; landslide deposits or landslide-prone deposits), natural resources (for example, sources of aggregate, peat, and clay; potential shallow sources of groundwater), and areas of environmental concern (for example, areas that are potentially suitable for specific ecosystem habitats; areas of potential soil and groundwater contamination). All of these aspects of the database relate directly to land use, management, and policy. The map, text, and accompanying illustrations provide a database of regional scope related to geologic history, climatic changes, the stratigraphic and chronologic frameworks of surface and subsurface deposits and materials of Quaternary age, and other problems and concerns.
Numerical Analysis on Seepage in the deep overburden CFRD
NASA Astrophysics Data System (ADS)
Zeyu, GUO; Junrui, CHAI; Yuan, QIN
2017-12-01
There are many problems in the construction of hydraulic structures on deep overburden because of its complex foundation structure and poor geological condition. Seepage failure is one of the main problems. The Combination of the seepage control system of the face rockfill dam and the deep overburden can effectively control the seepage of construction of the concrete face rockfill dam on the deep overburden. Widely used anti-seepage measures are horizontal blanket, waterproof wall, curtain grouting and so on, but the method, technique and its effect of seepage control still have many problems thus need further study. Due to the above considerations, Three-dimensional seepage field numerical analysis based on practical engineering case is conducted to study the seepage prevention effect under different seepage prevention methods, which is of great significance to the development of dam technology and the development of hydropower resources in China.
Geology of the Marble exploration hole 4, Nevada Test Site, Nye County, Nevada
McKeown, Francis Alexander; Wilmarth, Verl Richard
1959-01-01
This report summarizes the information obtained during preparation of the lithologic log of the core and presents results of chemical analyses of marble samples collected from surface near the drill hole. The report was prepared by the U.S. Geological Survey on behalf of the Albuquerque Operations Office, U.S. Atomic Energy Commission. The writers acknowledge the assistance of Mr. John Foster, drilling foreman for Minerals Engineering Company and Mr. Walter A. Johnson, field engineer for Holmes and Narver, Inc., the engineering-contracting firm.
1980-03-01
Charts 2-1 and 2-2, was prepared by Mr. Thomas J. Dean, Geologist, with the Missouri Department of Applied Engineering & Urban Geology. In the report... Applied Engineering & Urban Geology G oolo & Land Survey J o 8, 1976 TJD bh M: Howard Davis, 425 N. Highway 61, Perryville, MO 63775 Soil Conservation
Terrain Analysis Research Needs to Support Test and Evaluation at YPG: Workshop Report
2013-04-12
hydrology, modeling, geology , civil engineering, soil science), and representatives from the US Military Academy, and Strategic Planning, Test Resource...Other personnel included five DRI staff (representing expertise in hydrology, modeling, geology , civil engineering, soil science), and representatives...Defense The number of undergraduates funded by your agreement who graduated during this period and will receive scholarships or fellowships for further
NASA Astrophysics Data System (ADS)
Faybishenko, Boris; Witherspoon, Paul A.; Gale, John
How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geoscientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.
Chemical Effect on Wellbore Instability of Nahr Umr Shale
Nie, Zhen
2013-01-01
Wellbore instability is one of the major problems that hamper the drilling speed in Halfaya Oilfield. Comprehensive analysis of geological and engineering data indicates that Halfaya Oilfield features fractured shale in the Nahr Umr Formation. Complex accidents such as wellbore collapse and sticking emerged frequently in this formation. Tests and theoretical analysis revealed that wellbore instability in the Halfaya Oilfield was influenced by chemical effect of fractured shale and the formation water with high ionic concentration. The influence of three types of drilling fluids on the rock mechanical properties of Nahr Umr Shale is tested, and time-dependent collapse pressure is calculated. Finally, we put forward engineering countermeasures for safety drilling in Halfaya Oilfield and point out that increasing the ionic concentration and improving the sealing capacity of the drilling fluid are the way to keep the wellbore stable. PMID:24282391
Chemical effect on wellbore instability of Nahr Umr Shale.
Yu, Baohua; Yan, Chuanliang; Nie, Zhen
2013-01-01
Wellbore instability is one of the major problems that hamper the drilling speed in Halfaya Oilfield. Comprehensive analysis of geological and engineering data indicates that Halfaya Oilfield features fractured shale in the Nahr Umr Formation. Complex accidents such as wellbore collapse and sticking emerged frequently in this formation. Tests and theoretical analysis revealed that wellbore instability in the Halfaya Oilfield was influenced by chemical effect of fractured shale and the formation water with high ionic concentration. The influence of three types of drilling fluids on the rock mechanical properties of Nahr Umr Shale is tested, and time-dependent collapse pressure is calculated. Finally, we put forward engineering countermeasures for safety drilling in Halfaya Oilfield and point out that increasing the ionic concentration and improving the sealing capacity of the drilling fluid are the way to keep the wellbore stable.
Divisions of geologic time (Bookmark)
,
2012-05-03
DescriptionThis bookmark, designed for use with U.S. Geological Survey activities at the second USA Science and Engineering Festival (April 26–29, 2012), is adapted from the more detailed Fact Sheet 2010–3059 "Divisions of Geologic Time." The information that it presents is widely sought by educators and students.
Alaska Division of Geological and Geophysical Surveys
; Divison of Geological & Geophysical Surveys> Engineering Geology Coastal Hazards Alaska's extensive shorelines are incompletely mapped and under-instrumented for the evaluation of coastal dynamics. The Coastal communities Updates to the Alaska Coastal Profile Tool including data in Norton Sound and St. Lawrence Island
Hambrick, David Z; Libarkin, Julie C; Petcovic, Heather L; Baker, Kathleen M; Elkins, Joe; Callahan, Caitlin N; Turner, Sheldon P; Rench, Tara A; Ladue, Nicole D
2012-08-01
Sources of individual differences in scientific problem solving were investigated. Participants representing a wide range of experience in geology completed tests of visuospatial ability and geological knowledge, and performed a geological bedrock mapping task, in which they attempted to infer the geological structure of an area in the Tobacco Root Mountains of Montana. A Visuospatial Ability × Geological Knowledge interaction was found, such that visuospatial ability positively predicted mapping performance at low, but not high, levels of geological knowledge. This finding suggests that high levels of domain knowledge may sometimes enable circumvention of performance limitations associated with cognitive abilities. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
Undergraduate environmental engineering education in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, C.; Bero, B.N.
1999-07-01
In this paper, the development process, present situations, causes of improvement, and trends of higher education of environmental engineering in China are discussed. Several education modes in environmental engineering in China are also presented. The development process can be divided into three stages: the beginning stage, the expansion stage, and the modification stage. The 1970's and early 1980's wake of environmental consciousness and serious pollution situation in China resulted in about 20 universities setting up an environmental engineering specialty. The late 1980's and middle 1990's job opportunities for undergraduates in China resulted in many universities' creation of the environmental engineeringmore » specialty from specialties such as geography, geology, hydrology, mining engineering, and mineral separation engineering where job opportunities were stagnant. At present, adjustment and improvement of environmental engineering education are urgently required because of the excessive increase of undergraduate number, change of job opportunities and implementation of five-work-day system in China. Other problems include how to determine the ratio of social science courses to engineering science courses, how to determine the relationship of fundamental and applied courses, and how to determine the specialized direction. Hunan University, as a typical university conferring an accredited Bachelor degree in Environmental Engineering in four academic years in China, has been improving the instruction schedule for undergraduate education in environmental engineering. The curricula of the three phases for undergraduates of environmental engineering specialty at Hunan University are presented as a case study.« less
NASA Astrophysics Data System (ADS)
Yarbrough, L. D.; Katzenstein, K.
2012-12-01
Exposing students to active and local examples of physical geologic processes is beneficial to the learning process. Students typically respond with interest to examples that use state-of-the-art technologies to investigate local or regional phenomena. For lower cognitive level of learning (e.g. knowledge, comprehension, and application), the use of "close-to-home" examples ensures that students better understand concepts. By providing these examples, the students may already have a familiarity or can easily visit the location. Furthermore, these local and regional examples help students to offer quickly other examples of similar phenomena. Investigation of these examples using normal photographic techniques, as well as a more sophisticated 3-D Light Detection And Ranging (LiDAR) (AKA Terrestrial Laser Scanning or TLS) system, allows students to gain a better understanding of the scale and the mechanics of the geologic processes and hazards. The systems are used for research, teaching and outreach efforts and depending on departmental policies can be accessible to students are various learning levels. TLS systems can yield scans at sub-centimeter resolution and contain surface reflectance of targets. These systems can serve a number of learning goals that are essential for training geoscientists and engineers. While querying the data to answer geotechnical or geomorphologic related questions, students will develop skills using large, spatial databases. The upper cognitive level of learning (e.g. analysis, synthesis, and evaluation) is also promoted by using a subset of the data and correlating the physical geologic process of stream bank erosion and rock slope failures with mathematical and computer models using the scanned data. Students use the examples and laboratory exercises to help build their engineering judgment skills with Earth materials. The students learn not only applications of math and engineering science but also the economic and social implication of designed engineering solutions. These course learning modules were developed for traditional geological engineering courses delivered on campus, for more intensive field work courses and online-based asynchronous course delivery.
Airborne remote sensors applied to engineering geology and civil works design investigations
NASA Technical Reports Server (NTRS)
Gelnett, R. H.
1975-01-01
The usefulness of various airborne remote sensing systems in the detection and identification of regional and specific geologic structural features that may affect the design and location of engineering structures on major civil works projects is evaluated. The Butler Valley Dam and Blue Lake Project in northern California was selected as a demonstration site. Findings derived from the interpretation of various kinds of imagery used are given.
Geomodels of coseismic landslides environments in Central Chile.
NASA Astrophysics Data System (ADS)
Serey, A.; Sepulveda, S. A.; Murphy, W.; Petley, D. N.
2017-12-01
Landslides are a major source of fatalities and damage during strong earthquakes in mountain areas. Detailed geomodels of coseismic landslides environments are essential parts of seismic landslide hazard analyses. The development of a site specific geological model is required, based on consideration of the regional and local geological and geomorphological history and the current ground surface conditions. An engineering geological model is any approximation of the geological conditions, at varying scales, created for the purpose of solving an engineering problem. In our case, the objective is the development of a methodology for earthquake-induced landslide hazard assessment applicable to urban/territorial planning and disaster prevention strategies assessment at a regional scale adapted for the Chilean tectonic conditions. We have developed the only 2 complete inventories of landslides triggered by earthquakes in Chile. The first from the Mw 6.2, shallow crustal Aysén earthquake in 2007. Second one from the Mw 8.8, megathrust subduction Maule earthquake in 2010. From the comparison of these 2 inventories with others from abroad, as well as analysis of large, prehistoric landslide inventories proposed as likely induced by seismic activity we have determined topographic, geomorphological, geological and seismic controlling factors in the occurrence of earthquake-triggered landslides. With the information collected we have defined different environments for generation of coseismic landslides based on the construction of geomodels. As a result we have built several geomodels in the Santiago Cordillera in central Chile (33°S), based upon the San Ramón Fault, a west-vergent reverse fault that outcrops at the edge of Santiago basin recently found to be active and a likely source of seismic activity in the future, with potential of triggering landslides in the Santiago mountain front as well as inland into the Mapocho and Maipo Cordilleran valleys. In conclusion these geomodels are a powerful tool for earthquake-induced landslide hazard assessment. As an implication we can identify landslide-prone areas, distinguish different seismic scenarios and describe related potential hazards, including burial and river damming by large rock slides and rock avalanches.
NASA Astrophysics Data System (ADS)
Ivanova, G. M.
2015-11-01
XIX International Scientific Symposium in honor of Academician M.A. Usov ''Problems of Geology and Subsurface Development'' (for students and young scientists) was organized under the guidance of the Ministry of Education and Science of the Russian Federation and the Russian Foundation for Fundamental Research within the National Research Tomsk Polytechnic University (NR TPU). TPU is one of the oldest technical higher education institutions in Russia, training specialists in the domain of geoscience and enhancing their further research in this area. The Institute of Natural Resources, National Research Tomsk Polytechnic University (INR TPU) was chosen to hold the International Scientific Symposium. In 2015 the Institute of Natural Resources celebrated its 114th anniversary. It was founded by V.A. Obruchev in 1901, first Siberian geologist, member of USSR Academy of Sciences, Hero of Socialist Labor, and first Laureate of the Lenin Prize. He was recognized as a prominent scientist in the area of geology all over the world. INR is the first institute of geological education and geosciences in Asian Russia. Even today the Siberian Mining and Geological School, established by V.A. Obruchev and M.A. Usov, has retained its significance in the discovery, exploration and development of mineral resources not only in Siberia, the Far East and North-East of Russia, but also in Central Asia. There are numerous outstanding scientists and engineers among alumni of The Institute of Natural Resources. The institute is proud of such outstanding people as: M.A. Usov, student and first postgraduate of V.A. Obruchev, first professor and academician in Siberia, whose name is associated with the mining industry in Siberia; Academician K.I. Satpaev, founder and first president of the Academy of Sciences of Kazakhstan; Professor N.N. Urvantsev, discoverer of the unique Norilsk ore deposits in the North of East Siberia and Professor M.K. Korovin, who, in the 30s of the 20th century, considered West Siberia deposits to be prospective in hydrocarbons. There are over 35,000 graduates of the institute, 450 of whom became explorers of mineral deposits including one Nobel laureate, 50 laureates of Lenin and State Prizes, more than 250 doctors (DSc) and 1600 associate professors (PhD), 15 academicians and corresponding members of the USSR Academy of Sciences and five Heroes of Socialist Labor. Within the framework of the XIX International Scientific Symposium, there were 21 panels and workshops in four days. The Symposium was unique in the fact that it embraced all scientific fields of geology and subsurface development, including mineral and hydrocarbon prospecting and exploration methods, space geological research and geoinformation systems, as well as ecological problems of the planet and humanity, rational utilization of mineral resources, land management, natural resource law and economics. Another important issue was technology application in mineral resource exploitation. The participants were students, post graduates, Master degree students and young scientists from Russia, foreign and CIS countries. The research issues presented at the Symposium highlighted the latest achievements via modern technology and comprehensive interpretation methods; revealed the experimental research results and computer technology in geology and geoecology; provided the analysis of theoretical and experimental research on various geological and environmental protection problems. The reports embraced the vital issues and latest scientific achievements in stratigraphy, paleontology, tectonics, historical and regional geology, mineralogy, geochemistry, petrography, lithology, metallogeny, hydrogeology and engineering geology, geophysics, petroleum geology, oil and gas field development and processing of hydrocarbon and mineral resources, geoinformation systems (GIS) in geology, geospace research, oilfield equipment upgrading; modern technological achievements in mineral exploration, oil and gas production, transportation and storage, drilling, mining engineering, geoecology, hydrogeoecology, environmental protection engineering, rational utilization of mineral resources, land management, mining and natural resources law, and economical problems of mineral resource sectors in Russia and CIS countries. There was a special panel for those who wanted to present reports in English and / or German. The presented reports were of scientific importance due to the fact that new concepts and original ideas were suggested by the authors. A number of research topics introduced fundamentally new discoveries. There is also a practical aspect: the findings of the young scientists' research, both fundamental and experimental, could result in DSc and PhD theses. Some authors were granted patents and licenses for their significant discoveries. Within the framework of the XIX International Scientific Symposium, 1020 reports were presented (including poster presentations), including 262 non-residents from other cities and 52 from foreign countries (22- non-CIS countries and 30-CIS countries, correspondingly). All in all, 1250 students and young scientists from Russia, CIS countries and foreign countries (52 to be exact) participated in this Symposium. More than 262 submission applications were sent from other cities. The number of participants was diverse and numerous: non-CIS countries (12 cities), 22 from 16 universities, R&D organizations; CIS countries (15 cities)- 30 from 30 universities, R&D organizations; Russia (48 cities) - 968, including 210 non-residents from 78 universities, R&D organizations; and Tomsk 758 of which 710 were from TPU. It should be mentioned that 54 participants presented their reports in English and German. Within the 21 different panels and RT 810 reports were presented (including 690 from TPU) of 1020 submitted reports, as well as 210 poster presentations. Nonresidents actively participated in the Symposium - 110 reports. The status of the participants was: students -694, post-graduates- 190, researchers - 80, engineers - 32, young teachers- 20, and 4 school-students. The representatives of different organizations were as follows: higher education institutions - 954, Russian Academy of Science - 24, National Academy of Science -7, R&D Institutes - 20, industrial enterprises -11 and schools -4. Of the 810 presented reports (690 -TPU) there were: 646 students and master degree students (including 608 from TPU), 160 post-graduates and young researchers (including 82 from TPU) and 4 school students. During the 4-day Symposium more than 1900 people attended 21 different panels. Twelve non-CIS countries presented 22 reports: Germany, Great Britain, Netherlands, Switzerland, Mexico, France, China, Italy, Vietnam, Mongolia, New Zealand and Nigeria. Seven CIS countries presented 30 reports: National Academies of Sciences and Universities of Belarus, Kazakhstan, Latvia, Armenia, Uzbekistan, Kyrgyzstan and Tajikistan. Russian participants came from various areas of the country: in the east from Sakhalin, Petropavlovsk- Kamchatsky, Yuzhno-Sakhalinsk, Vladivostok, Blagoveshchensk, Krasnoyarsk, Chita, Irkutsk to Barnaul, Kemerovo, Novokuznetsk, and etc.; in the north from Mirny, Yakutsk, Neryungri, Magadan, Nizhnevartovsk, Khanty-Mansiysk, Nefteugansk to Tyumen, Ulan-Ude, Syktyvkar, and etc.; in the west from Minsk, Kiev, Moscow, St. Petersburg, Yekaterinburg to Samara, Kazan, Ufa, Perm, Novosibirsk;in the south from the cities of the Central Asian republics to Ivano-Frankovsk, Odessa, Novocherkassk, Simferopol, Novorossiysk, Vladikavkaz, Voronezh, Stavropol, Astrakhan, and etc. A great number of young people from Urals, Western and Eastern Siberia took an active part in the Symposium. CIS countries were presented by participants from Uzbekistan (Tashkent), Tajikistan (Dushanbe), Azerbaijan (Baku), Kazakhstan (Almaty, Semipalatinsk, Karaganda, Pavlodar), Belarus (Minsk, Gomel), Armenia (Yerevan, Gyumri), Ukraine (Kiev, Odessa, Ivano-Frankovsk, Dnepropetrovsk, Donetsk, etc.), Kyrgyzstan (Bishkek), Moldova (Chisinau). The students and young scientists from Tomsk representing Tomsk Polytechnic University, Tomsk State University, the Institute of Petroleum Geology and Geophysics (SB RAS) and other organizations and institutions took an active part in the symposium. The research results of the Symposium can be found in a two-volume edition which is available at http://portal.tpu.ru/science/konf/usovma/eng and /or www.usovma.tpu.ru The Editorial Boards of this Symposium and IOP Conference Series: Earth and Environmental Science consider that the articles would be of great interest for university researchers and young scientists, research and academic institutes, academies of sciences and their branches, engineering and technical staff of ministries and government departments - for those who explore and develop the Earth subsurface. Many people have contributed in a variety of ways in the preparation of this edition. We would like to thank the administration of the Institute of Physics and Professor P.S. Chubik, Rector of National Research Tomsk Polytechnic University.
The United States Geological Survey in Alaska: Accomplishments during 1976
Blean, Kathleen M.
1977-01-01
United States Geological Survey projects in Alaska include a wide range of topics of economic and scientific interest. Studies in 1976 include economic geology, regional geology, stratigraphy, environmental geology, engineering geology, hydrology, and marine geology. Discussions of the findings or, in some instances, narratives of the course of the investigations are grouped in eight subdivisions corresponding to the six major onshore geographic regions, the offshore projects, and projects that are statewide in scope. Locations of the study areas are shown. In addition, many reports and maps covering various aspects of the geology and mineral and water resources of the State were published. These publications are listed. (Woodard-USGS)
Verma, M.K.; Bird, K.J.
2005-01-01
The geology and reservoir-engineering data were integrated in the 2002 U.S. Geological Survey assessment of the National Petroleum Reserve in Alaska (NPRA). VVhereas geology defined the analog pools and fields and provided the basic information on sizes and numbers of hypothesized petroleum accumulations, reservoir engineering helped develop necessary equations and correlations, which allowed the determination of reservoir parameters for better quantification of in-place petroleum volumes and recoverable reserves. Seismic- and sequence-stratigraphic study of the NPRA resulted in identification of 24 plays. Depth ranges in these 24 plays, however, were typically greater than depth ranges of analog plays for which there were available data, necessitating the need for establishing correlations. The basic parameters required were pressure, temperature, oil and gas formation volume factors, liquid/gas ratios for the associated and nonassociated gas, and recovery factors. Finally, the re sults of U.S. Geological Survey deposit simulation were used in carrying out an economic evaluation, which has been separately published. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.
Davis, G.H.
1957-01-01
At the request of the United States Forest Service, the Ground Water Branch of the United Stated Geological Survey made a reconnaissance of the geologic features and water resources of the Dora Belle Campground in Sierra National Forest on the shore of Shaver Lake, Fresno County, California. Basically, the water-supply problem at Dora Belle Campground is that the present supply obtained from a spring is not adequate to meet the present summer demand, and is of poor quality. Plans call for a considerable increase in camping facilities.. This, it is imperative that the present supply be augmented or, preferably, be replaced entirely. the Forest Service estimated the future peak demand to be about 25,00 gallons per day. On October 28, 1957, the writer examined the are in the company of C. H. Fankboner, Assistant Forest Engineer, Sierra National Forest, and Ben Dix, Construction and Maintenance Foreman, Pine Ridge District. Field work, done on October 28th and 29th, consisted of a brief geologic reconnaissance to determine the rock types and geologic structure, and a hydrologic reconnaissance consisting of a partial inventory of water walls and springs in the vicinity of the campground. A spring box near the western edge of Bell Diamond Meadow was pumped out with a Forest Service pump truck to determine its rate of recovery and potential production.
A multidisciplinary Earth science research program in China
NASA Astrophysics Data System (ADS)
Dong, Shuwen; Li, Tingdong; Gao, Rui; Hou, Hesheng; Li, Yingkang; Zhang, Shihong; Keller, G. Randy; Liu, Mian
2011-09-01
Because China occupies a large and geologically complex region of central and eastern Asia, the country may hold the keys to resolving many basic problems in the Earth sciences, such as how continental collision with India produced China's interconnected array of large intraplate structures, and what links exist between these structures and natural resources. To learn more, the Chinese government has launched SinoProbe, a major research initiative focusing on multidisciplinary imaging of the three-dimensional (3-D) structure and composition of the Chinese continental lithosphere and its evolution through geologic history. This effort is also motivated by China's need for a comprehensive and systematic evaluation of its natural resources and a better understanding of potential geohazards. SinoProbe is funded by the Chinese Ministry of Finance, managed by the Chinese Ministry of Land and Resources, and organized by the Chinese Academy of Geological Sciences. More than 960 investigators and engineers are currently involved with the program, not counting international collaborators. Most of them are affiliated with the Chinese Academy of Geological Sciences, the Chinese Academy of Sciences, the Ministry of Education (i.e., universities), and the China Earthquake Administration. The initial phase of the program (2008-2012), with funding equivalent to about US$164 million, is testing the feasibility of new technologies in geophysical and geochemical exploration and deep continental drilling by focusing on a series of profiles (Figure 1).
Geological Survey research 1981
,
1982-01-01
This U.S. Geological Survey activities report includes a summary of 1981 fiscal year scientific and economic results accompanied by a list of geologic, hydrologic, and cartographic investigations in progress. The summary of results includes: (1) Mineral, (2) Water resources, (3) Engineering geology and hydrology, (4) Regional geology, (5) Principles and processes, (6) Laboratory and field methods, (7) Topographic surveys and mapping, (8) Management of resources on public lands, (9) Land information and analysis, and (10) Investigations in other countries. Also included are lists of investigations in progress.
Publications - RDF 2015-5 | Alaska Division of Geological & Geophysical
Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska
Publications - RI 2009-2 | Alaska Division of Geological & Geophysical
Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska
Publications - MP 142 | Alaska Division of Geological & Geophysical Surveys
Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum
Publications - RDF 2016-3 | Alaska Division of Geological & Geophysical
Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska
Publications - SR 70 | Alaska Division of Geological & Geophysical Surveys
Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum
Publications - MP 38 | Alaska Division of Geological & Geophysical Surveys
Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum
Publications - SR 45 | Alaska Division of Geological & Geophysical Surveys
Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum
Publications - RDF 2016-5 | Alaska Division of Geological & Geophysical
Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska
Publications - MP 43 | Alaska Division of Geological & Geophysical Surveys
Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum
Publications - MP 149 | Alaska Division of Geological & Geophysical Surveys
Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum
Publications - RDF 2014-22 | Alaska Division of Geological & Geophysical
Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska
Mississippi River Headwaters Lakes in Minnesota. Feasibility Study. Appendices.
1982-09-01
CONTENTS ITEM PAGE INTRODUCTION A-1 PROBLEM 1 - HEADWATERS LAKES OPERATING PLANS A-1 BACKGROUND A-1 GEOLOGY AND SOILS A-3 STREAM CHARACTERISTICS A- 7...HEADWATERS LAKES A-134 BACKGROUND A- 134 GEOLOGY AND SOILS A-135 HYDROLOGY AND HYDRAULIC STUDIES A- 135 COST ESTIMATE A- 142 RECOMMENDED ACT ION A...143 PLATE SUMMARY A-144 PROBLEM 3 - EROSION PROBLEMS DOWNSTREAM OF POKEGAMA DAM A-158 BACKGROUND A- 158 GEOLOGY AND SOILS A- 158 HYDROLOGY AND HYDRAULIC
Taylor, G.H.; Thomas, H.E.
1938-01-01
A summary of past investigations in Utah and a description of the work done during the 1934-36 biennium are included in the State Engineer’s Twentieth Biennial Report (pp. 91-106). Co-operative investigation with the State Engineer, begun on July 1, 1935, has been continued during the past biennium. To provide for this work, the 1935 Utah State Legislature appropriated \\$10,000 to the State Engineer, this sum being matched by the U. S. Geological Survey during the biennium ending June 30, 1937. During its 1937 session the State Legislature appropriated \\$5000 for continuation of co-operative work in underground waters. An equal sum was provided by the U. S. Geological Survey and investigations have continued during the fiscal year ending June 30, 1938.
A Forward Glimpse into Inverse Problems through a Geology Example
ERIC Educational Resources Information Center
Winkel, Brian J.
2012-01-01
This paper describes a forward approach to an inverse problem related to detecting the nature of geological substrata which makes use of optimization techniques in a multivariable calculus setting. The true nature of the related inverse problem is highlighted. (Contains 2 figures.)
The United States Geological Survey in Alaska: Organization and status of programs in 1977
Blean, Kathleen M.
1977-01-01
United States Geological Survey projects in Alaska include a wide range of topics of economic and scientific interest. Studies in 1976 include economic geology, regional geology, stratigraphy, environmental geology, engineering geology, hydrology, and marine geology. Discussions of the findings or, in some instances, narratives of the course of the investigations are grouped in eight subdivisions corresponding to the six major onshore geographic regions, the offshore projects, and projects that are statewide in scope. Locations of the study areas are shown. In addition, many reports and maps covering various aspects of the geology and mineral and water resources of the State were published. These publications are listed. (Woodard-USGS)
Evaluating Variability and Uncertainty of Geological Strength Index at a Specific Site
NASA Astrophysics Data System (ADS)
Wang, Yu; Aladejare, Adeyemi Emman
2016-09-01
Geological Strength Index (GSI) is an important parameter for estimating rock mass properties. GSI can be estimated from quantitative GSI chart, as an alternative to the direct observational method which requires vast geological experience of rock. GSI chart was developed from past observations and engineering experience, with either empiricism or some theoretical simplifications. The GSI chart thereby contains model uncertainty which arises from its development. The presence of such model uncertainty affects the GSI estimated from GSI chart at a specific site; it is, therefore, imperative to quantify and incorporate the model uncertainty during GSI estimation from the GSI chart. A major challenge for quantifying the GSI chart model uncertainty is a lack of the original datasets that have been used to develop the GSI chart, since the GSI chart was developed from past experience without referring to specific datasets. This paper intends to tackle this problem by developing a Bayesian approach for quantifying the model uncertainty in GSI chart when using it to estimate GSI at a specific site. The model uncertainty in the GSI chart and the inherent spatial variability in GSI are modeled explicitly in the Bayesian approach. The Bayesian approach generates equivalent samples of GSI from the integrated knowledge of GSI chart, prior knowledge and observation data available from site investigation. Equations are derived for the Bayesian approach, and the proposed approach is illustrated using data from a drill and blast tunnel project. The proposed approach effectively tackles the problem of how to quantify the model uncertainty that arises from using GSI chart for characterization of site-specific GSI in a transparent manner.
Geological Survey research 1976
,
1976-01-01
This U.S. Geological Survey activities report includes a summary of recent (1976 fiscal year) scientific and economic results accompanied by a list of geologic and hydrologic investigations in progress and a report on the status of topographic mapping. The summary of results includes: (1) Mineral resources, Water resources, (2) Engineering geology and hydrology, (3) Regional geology, (4) Principles and processes, (5) Laboratory and field methods, (6) Topographic surveys and mapping, (7) Management of resources on public lands, (8) Land information and analysis, and (9) Investigations in other countries. Also included are lists of cooperating agencies and Geological Survey offices. (Woodard-USGS)
Geological Survey research 1978
,
1978-01-01
This U.S. Geological Survey activities report includes a summary of 1978 fiscal year scientific and economic results accompanied by a list of geologic and hydrologic investigations in progress and a report on the status of topographic mapping. The summary of results includes: (1) Mineral and water resources, (2) Engineering geology and hydrology, (3) Regional geology, (4) Principles and processes, (5) Laboratory and field methods, (6) Topographic surveys and mapping, (7) Management of resources on public lands, (8) Land information and analysis, and (9) Investigations in other countries. Also included are lists of cooperating agencies and Geological Survey offices. (Woodard-USGS)
Publications - RI 2016-2 | Alaska Division of Geological & Geophysical
Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in ; Bathymetry; Coastal; Coastal and River; Earthquake Related Slope Failure; Emergency Preparedness; Engineering
Eastern Siberia terrain intelligence
,
1942-01-01
The following folio of terrain intelligence maps, charts and explanatory tables represent an attempt to bring together available data on natural physical conditions such as will affect military operations in Eastern Siberia. The area covered is the easternmost section of the U.S.S.R.; that is the area east of the Yenisei River. Each map and accompanying table is devoted· to a specialized set of problems; together they cover such subjects as geology, construction materials, mineral fuels, terrain, water supply, rivers and climate. The data is somewhat generalized due to the scale of treatment as well as to the scarcity of basic data. Each of the maps are rated as to reliability according to the reliability scale on the following page. Considerable of the data shown is of an interpretative nature, although precise data from literature was used wherever possible. The maps and tables were compiled by a special group from the United States Geological Survey in cooperation with the Intelligence Branch of the Office, Chief of Engineers, War Department.
Publications - RDF 2008-2 v. 1.0.1 | Alaska Division of Geological &
Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska
Nichols, Thomas C.; Collins, Donley S.; Davidson, Richard R.
1986-01-01
A geotechnical investigation of the Pierre Shale near Hayes, South Dakota, was conducted by the U. S. Geological Survey as a basis for evaluating problems in deep excavations into that formation. The physical and mechanical properties of the shale were determined through use of core holes drilled to a maximum depth of 184 m. In situ borehole determinations included a gravimeter survey, pressuremeter testing, thermal profile measurements, and borehole velocity measurements. Onsite and offsite laboratory measurements included rebound measurements, sonic velocity measurements of shear and primary waves, X-ray mineralogy and major element determinations, size analyses, fracture analyses, fabric analyses, and determination of thermal properties. The properties of the clay shale indicate problems that may be encountered in excavation and use of deep underground facilities.
NASA Astrophysics Data System (ADS)
Kulchyzkyy, A.; Serebryannyy, Y.; Tretyak, K.; Trevogo, I.; Zadoroznnyy, V.
2009-04-01
Terebliya-Riksk diversion power station is located on two levels ( with difference of 180m ) of south mountainside of Ukrainian Carpathians and separate parts of this power station lie inside rock. Therefore influential parameters of it's stability are geological, tectonic and hydrogeological conditions in complex. Monitoring of intensity and nature of displacements of flow ( pressure) pipe and other objects of power station with geoditic methods indicates that fluctuations of water-level in reservoir caused bouth by natural and artificial efects are of great influence on objects mentioned. Based on geodetical high-precision observations made by LeicaTPS 1201 robotic total station short-periodic components of fundamental vibrations which result in their destructive deformation were determined. Mathematical apparatus ( which uses function of Fourie series and theory of cinematic coefficients ) for displacements determinations of pressure pipe was disigned. Complex of engineering-geological surveys gave an opportunity to define the origin of macro- and micro- geodynamics movements of Terebliya-Riksk diversion power station region. Engineering-geological conditions which influence on power station structure most of all were determined as following : small foldings and cleavage areas appearances, also fluctuations of level of underground water (refered to hydrogeological conditions). Periodic micro-displacemets appearances ( which operate on reducing-stretching scheme) fixed on power station structure are turned to be in direct relation on to what exend reservoir is filled up. Permanent macro- displacements appearances ( which operates in north-west direction ) fixed on pressure pipe are the result sum of residual micro-displacements caused by return periodic movements and are determined by structure-geological, engineering-geological and tectonic conditions.
1979-08-24
Diablo Baseline and Meridian references: (1) Fugro field measurements (1979) (2) Nevada State Engineers Office (1979) (3) Robinson, Thordarson , and...3) Robinson, Thordarson , and Beetem (1967) (4) Rush (1968) (5) Rush and Schroer (1970) (6) U. S. Geological Survey (1971) (7) U. S. Geological Survey...and Meridian references (1) Fugro field measurements (1979) (2) Nevada State Engineers Office (1979) (3) Robinson, Thordarson , and Beetem (1967) (4
Quaternary Geologic Map of the Regina 4 Degrees x 6 Degrees Quadrangle, United States and Canada
Fullerton, David S.; Christiansen, Earl A.; Schreiner, Bryan T.; Colton, Roger B.; Clayton, Lee; Bush, Charles A.; Fullerton, David S.
2007-01-01
For scientific purposes, the map differentiates Quaternary surficial deposits and materials on the basis of clast lithology or composition, matrix texture or particle size, structure, genesis, stratigraphic relations, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the 'Description of Map Units'. Deposits of some constructional landforms, such as end moraines, are distinguished as map units. Deposits of erosional landforms, such as outwash terraces, are not distinguished, although glaciofluvial, ice-contact, fluvial, and lacustrine deposits that are mapped may be terraced. Differentiation of sequences of fluvial and glaciofluvial deposits at this scale is not possible. For practical purposes, the map is a surficial materials map. Materials are distinguished on the basis of lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized and classified in pedology or agronomy. Rather, it is a generalized map of soils as recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed. As a materials map, it serves as a base from which a variety of maps for use in planning engineering, land-use planning, or land-management projects can be derived and from which a variety of maps relating to earth surface processes and Quaternary geologic history can be derived.
Seismic methods are the most commonly conducted geophysical surveys for engineering investigations. Seismic refraction provides engineers and geologists with the most basic of geologic data via simple procedures with common equipment.
Students' Problem Solving Approaches for Developing Geologic Models in the Field
ERIC Educational Resources Information Center
Balliet, Russell N.; Riggs, Eric M.; Maltese, Adam V.
2015-01-01
Understanding how geologists conduct fieldwork through analysis of problem solving has significant potential impact on field instruction methods within geology and other science fields. Recent work has highlighted many aspects of fieldwork, but the problem solving behaviors displayed by geologists during fieldwork and the associated cognitive…
NASA Astrophysics Data System (ADS)
Mitarai, Namiko; Nori, Franco
2006-04-01
Most studies on granular physics have focused on dry granular media, with no liquids between the grains. However, in geology and many real world applications (e.g. food processing, pharmaceuticals, ceramics, civil engineering, construction, and many industrial applications), liquid is present between the grains. This produces inter-grain cohesion and drastically modifies the mechanical properties of the granular media (e.g. the surface angle can be larger than 90 degrees). Here we present a review of the mechanical properties of wet granular media, with particular emphasis on the effect of cohesion. We also list several open problems that might motivate future studies in this exciting but mostly unexplored field.
44 CFR 60.4 - Flood plain management criteria for mudslide (i.e., mudflow)-prone areas.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., that (i) a site investigation and further review be made by persons qualified in geology and soils... submitted for all corrective measures, accompanied by supporting soils engineering and geology reports...
44 CFR 60.4 - Flood plain management criteria for mudslide (i.e., mudflow)-prone areas.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., that (i) a site investigation and further review be made by persons qualified in geology and soils... submitted for all corrective measures, accompanied by supporting soils engineering and geology reports...
44 CFR 60.4 - Flood plain management criteria for mudslide (i.e., mudflow)-prone areas.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., that (i) a site investigation and further review be made by persons qualified in geology and soils... submitted for all corrective measures, accompanied by supporting soils engineering and geology reports...
44 CFR 60.4 - Flood plain management criteria for mudslide (i.e., mudflow)-prone areas.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., that (i) a site investigation and further review be made by persons qualified in geology and soils... submitted for all corrective measures, accompanied by supporting soils engineering and geology reports...
Publications - RDF 2016-6 v. 1.1 | Alaska Division of Geological &
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska 345.0 K Metadata - Read me Keywords Alaska Range; Analyses; Analyses and Sampling; Analytical Lab
NASA Technical Reports Server (NTRS)
1991-01-01
The proceedings contain papers discussing the state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing, along with the research and development activities aimed at increasing the future capabilities of this technology. The following topics are addressed: spectral geology, U.S. and international hydrocarbon exporation, radar and thermal infrared remote sensing, engineering geology and hydrogeology, mineral exploration, remote sensing for marine and environmental applications, image processing and analysis, geobotanical remote sensing, and data integration and geographic information systems. Particular attention is given to spectral alteration mapping with imaging spectrometers, mapping the coastal plain of the Congo with airborne digital radar, applications of remote sensing techniques to the assessment of dam safety, remote sensing of ferric iron minerals as guides for gold exploration, principal component analysis for alteration mappping, and the application of remote sensing techniques for gold prospecting in the north Fujian province.
Geoscience techniques for engineering assessment of Oman to India pipeline route
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baerenwald, P.D.; Mullee, J.E.; Campbell, K.J.
1996-12-31
A variety of geoscience techniques were used to define soil conditions and evaluate geologic processes in order to develop design criteria for complex segments of the proposed Oman to Indian pipeline route. Geophysical survey data, seafloor cores, ROV observation of the seafloor, and oceanographic measurements were the principal field data collected. Geotechnical soil testing, and X-ray radiography, detailed geologic logging, and C-14 age dating of cores were carried out. The diverse sets of field data and lab test results were integrated by a multi-disciplined team of geoscientists and engineers to develop geologic and soil models, soil design criteria, a turbidmore » flow model, and seafloor stability models. The integrated approach used here is applicable to other complex areas where seafloor stability needs to be assessed or design criteria need to be developed for active geologic processes.« less
Seismic methods are the most commonly conducted geophysical surveys for engineering investigations. Seismic refraction provides engineers and geologists with the most basic of geologic data via simple procedures with common equipment.
Quality of surface water in the Sevier Lake basin, Utah
Hahl, D.C.; Cabell, R.E.
1965-01-01
Few data are available on the quality of surface waters in the Sevier Lake basin. Because of the need for information not only on the chemical-quality but also on the other water-quality characteristics of the basin, the U.S. Geological Survey, as part of its cooperative program with the Utah State Engineer, evaluated the available data in 1963. Based on this evaluation, a reconnaissance was designed to obtain some of the needed water-quality information. To extend the applicability of the basic information, the Utah State Engineer, the Utah State Department of Health, the Water Commissioner for the Sevier River, and the Soil Conservation Service and Forest Service of the U.S. Department of Agriculture assisted in the planning and in the selection of sampling sites.This report presents the results of the data-collection phase of the reconnaissance. A companion interpretive report will be prepared later. The data were collected primarily by the U.S. Geological Survey as part of its cooperative programs with the State Engineer of Utah and the Utah Geological and Mineralogical Survey. The work was under the supervision of R. H. Langford, district chemist of the Quality of Water Branch, Water Resources Division, U.S. Geological Survey.
NASA Astrophysics Data System (ADS)
Tang, Peipei; Wang, Chengjing; Dai, Xiaoxia
2016-04-01
In this paper, we propose a majorized Newton-CG augmented Lagrangian-based finite element method for 3D elastic frictionless contact problems. In this scheme, we discretize the restoration problem via the finite element method and reformulate it to a constrained optimization problem. Then we apply the majorized Newton-CG augmented Lagrangian method to solve the optimization problem, which is very suitable for the ill-conditioned case. Numerical results demonstrate that the proposed method is a very efficient algorithm for various large-scale 3D restorations of geological models, especially for the restoration of geological models with complicated faults.
Managing geological uncertainty in CO2-EOR reservoir assessments
NASA Astrophysics Data System (ADS)
Welkenhuysen, Kris; Piessens, Kris
2014-05-01
Recently the European Parliament has agreed that an atlas for the storage potential of CO2 is of high importance to have a successful commercial introduction of CCS (CO2 capture and geological storage) technology in Europe. CO2-enhanced oil recovery (CO2-EOR) is often proposed as a promising business case for CCS, and likely has a high potential in the North Sea region. Traditional economic assessments for CO2-EOR largely neglect the geological reality of reservoir uncertainties because these are difficult to introduce realistically in such calculations. There is indeed a gap between the outcome of a reservoir simulation and the input values for e.g. cost-benefit evaluations, especially where it concerns uncertainty. The approach outlined here is to turn the procedure around, and to start from which geological data is typically (or minimally) requested for an economic assessment. Thereafter it is evaluated how this data can realistically be provided by geologists and reservoir engineers. For the storage of CO2 these parameters are total and yearly CO2 injection capacity, and containment or potential on leakage. Specifically for the EOR operation, two additional parameters can be defined: the EOR ratio, or the ratio of recovered oil over injected CO2, and the CO2 recycling ratio of CO2 that is reproduced after breakthrough at the production well. A critical but typically estimated parameter for CO2-EOR projects is the EOR ratio, taken in this brief outline as an example. The EOR ratio depends mainly on local geology (e.g. injection per well), field design (e.g. number of wells), and time. Costs related to engineering can be estimated fairly good, given some uncertainty range. The problem is usually to reliably estimate the geological parameters that define the EOR ratio. Reliable data is only available from (onshore) CO2-EOR projects in the US. Published studies for the North Sea generally refer to these data in a simplified form, without uncertainty ranges, and are therefore not suited for cost-benefit analysis. They likely result in too optimistic results because onshore configurations are cheaper and different. We propose to translate the detailed US data to the North Sea, retaining their uncertainty ranges. In a first step, a general cost correction can be applied to account for costs specific to the EU and the offshore setting. In a second step site-specific data, including laboratory tests and reservoir modelling, are used to further adapt the EOR ratio values taking into account all available geological reservoir-specific knowledge. And lastly, an evaluation of the field configuration will have an influence on both the cost and local geology dimension, because e.g. horizontal drilling is needed (cost) to improve injectivity (geology). As such, a dataset of the EOR field is obtained which contains all aspects and their uncertainty ranges. With these, a geologically realistic basis is obtained for further cost-benefit analysis of a specific field, where the uncertainties are accounted for using a stochastic evaluation. Such ad-hoc evaluation of geological parameters will provide a better assessment of the CO2-EOR potential of the North Sea oil fields.
ERIC Educational Resources Information Center
Jones, Thomas A.
1983-01-01
Mathematical techniques used to solve geological problems are briefly discussed (including comments on use of geostatistics). Highlights of conferences/meetings and conference papers in mathematical geology are also provided. (JN)
Industry and Academic Consortium for Computer Based Subsurface Geology Laboratory
NASA Astrophysics Data System (ADS)
Brown, A. L.; Nunn, J. A.; Sears, S. O.
2008-12-01
Twenty two licenses for Petrel Software acquired through a grant from Schlumberger are being used to redesign the laboratory portion of Subsurface Geology at Louisiana State University. The course redesign is a cooperative effort between LSU's Geology and Geophysics and Petroleum Engineering Departments and Schlumberger's Technical Training Division. In spring 2008, two laboratory sections were taught with 22 students in each section. The class contained geology majors, petroleum engineering majors, and geology graduate students. Limited enrollments and 3 hour labs make it possible to incorporate hands-on visualization, animation, manipulation of data and images, and access to geological data available online. 24/7 access to the laboratory and step by step instructions for Petrel exercises strongly promoted peer instruction and individual learning. Goals of the course redesign include: enhancing visualization of earth materials; strengthening student's ability to acquire, manage, and interpret multifaceted geological information; fostering critical thinking, the scientific method; improving student communication skills; providing cross training between geologists and engineers and increasing the quantity, quality, and diversity of students pursuing Earth Science and Petroleum Engineering careers. IT resources available in the laboratory provide students with sophisticated visualization tools, allowing them to switch between 2-D and 3-D reconstructions more seamlessly, and enabling them to manipulate larger integrated data-sets, thus permitting more time for critical thinking and hypothesis testing. IT resources also enable faculty and students to simultaneously work with the software to visually interrogate a 3D data set and immediately test hypothesis formulated in class. Preliminary evaluation of class results indicate that students found MS-Windows based Petrel easy to learn. By the end of the semester, students were able to not only map horizons and faults using seismic and well data but also compute volumetrics. Exam results indicated that while students could complete sophisticated exercises using the software, their understanding of key concepts such as conservation of volume in a palinspastic reconstruction or association of structures with a particular stress regime was limited. Future classes will incorporate more paper and pencil exercises to illustrate basic concepts. The equipment, software, and exercises developed will be used in additional upper level undergraduate and graduate classes.
Geologic map of the Calamity Mesa quadrangle, Colorado
Cater, Fred W.
1955-01-01
The series of Geologic Quadrangle Maps of the United States continues the series of quadrangle maps begun with the folios of the Geologic Atlas of the United States, which were published from 1894 to 1945. The present series consists of geologic maps, supplemented where possible by structure sections, columnar sections, and other graphic means of presenting geologic data, and accompanied by a brief explanatory text to make the maps useful for general scientific and economic purposes. Full description and interpretation of the geology of the areas shown on these maps are reserved for publication in other channels, such as the Bulletins and Professional Papers of the Geological Survey. Separate maps of the same areas, covering bedrock, surficial, engineering, and other phases of geology, may be published in the geologic quadrangle map series.
Assessing and Addressing Students' Scientific Literacy Needs in Physical Geology
NASA Astrophysics Data System (ADS)
Campbell-Stone, E. A.; Myers, J. D.
2005-12-01
Exacting excellence equally from university students around the globe can be accomplished by providing all students with necessary background tools to achieve mastery of their courses, even if those tools are not part of normal content. As instructors we hope to see our students grasp the substance of our courses, make mental connections between course material and practical applications, and use this knowledge to make informed decisions as citizens. Yet many educators have found that students enter university-level introductory courses in mathematics, science and engineering without adequate academic preparation. As part of a FIPSE-funded project at the University of Wyoming, the instructors of the Physical Geology course have taken a new approach to tackling the problem of lack of scientific/mathematic skills in incoming students. Instead of assuming that students should already know or will learn these skills on their own, they assess students' needs and provide them the opportunity to master scientific literacies as they learn geologic content. In the introductory geology course, instructors identified two categories of literacies, or basic skills that are necessary for academic success and citizen participation. Fundamental literacies include performing simple quantitative calculations, making qualitative assessments, and reading and analyzing tables and graphs. Technical literacies are those specific to understanding geology, and comprise the ability to read maps, visualize changes through time, and conceptualize in three dimensions. Because these skills are most easily taught in lab, the in-house lab manual was rewritten to be both literacy- and content-based. Early labs include simple exercises addressing literacies in the context of geological science, and each subsequent lab repeats exposure to literacies, but at increasing levels of difficulty. Resources available to assist students with literacy mastery include individual instruction, a detailed appendix to the lab manual explaining simple tasks such as converting units, and web-based resources. To document the progress of this program, students take pre- and post-course surveys assessing their grasp of the literacies. The surveys gather data on demographics, background, level of interest, level of confidence, understanding, and willingness to complete additional problem sets. This information has been integral in identifying areas of greatest weakness, least interest, and in gauging how backgrounds, expectations, and students' confidence affect their performance.
Dynamics of Fluids and Transport in Fractured Rock
NASA Astrophysics Data System (ADS)
Faybishenko, Boris; Witherspoon, Paul A.; Gale, John
How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geo-scientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.
A multiscale model of distributed fracture and permeability in solids in all-round compression
NASA Astrophysics Data System (ADS)
De Bellis, Maria Laura; Della Vecchia, Gabriele; Ortiz, Michael; Pandolfi, Anna
2017-07-01
We present a microstructural model of permeability in fractured solids, where the fractures are described in terms of recursive families of parallel, equidistant cohesive faults. Faults originate upon the attainment of tensile or shear strength in the undamaged material. Secondary faults may form in a hierarchical organization, creating a complex network of connected fractures that modify the permeability of the solid. The undamaged solid may possess initial porosity and permeability. The particular geometry of the superposed micro-faults lends itself to an explicit analytical quantification of the porosity and permeability of the damaged material. The model is the finite kinematics version of a recently proposed porous material model, applied with success to the simulation of laboratory tests and excavation problems [De Bellis, M. L., Della Vecchia, G., Ortiz, M., Pandolfi, A., 2016. A linearized porous brittle damage material model with distributed frictional-cohesive faults. Engineering Geology 215, 10-24. Cited By 0. 10.1016/j.enggeo.2016.10.010]. The extension adds over and above the linearized kinematics version for problems characterized by large deformations localized in narrow zones, while the remainder of the solid undergoes small deformations, as typically observed in soil and rock mechanics problems. The approach is particularly appealing as a means of modeling a wide scope of engineering problems, ranging from the prevention of water or gas outburst into underground mines, to the prediction of the integrity of reservoirs for CO2 sequestration or hazardous waste storage, to hydraulic fracturing processes.
An embodied perspective on expertise in solving the problem of making a geologic map
NASA Astrophysics Data System (ADS)
Callahan, Caitlin Norah
The task of constructing a geologic map is a cognitively and physically demanding field-based problem. The map produced is understood to be an individual's two-dimensional interpretation or mental model of the three-dimensional underlying geology. A popular view within the geoscience community is that teaching students how to make a geologic map is valuable for preparing them to deal with disparate and incomplete data sets, for helping them develop problem-solving skills, and for acquiring expertise in geology. Few previous studies have focused specifically on expertise in geologic mapping. Drawing from literature related to expertise, to problem solving, and to mental models, two overarching research questions were identified: How do geologists of different levels of expertise constrain and solve an ill-structured problem such as making a geologic map? How do geologists address the uncertainties inherent to the processes and interpretations involved in solving a geologic mapping problem? These questions were answered using a methodology that captured the physical actions, expressed thoughts, and navigation paths of geologists as they made a geologic map. Eight geologists, from novice to expert, wore a head-mounted video camera with an attached microphone to record those actions and thoughts, creating "video logs" while in the field. The video logs were also time-stamped, which allowed the visual and audio data to be synchronized with the GPS data that tracked participants' movements in the field. Analysis of the video logs yielded evidence that all eight participants expressed thoughts that reflected the process of becoming mentally situated in the mapping task (e.g. relating between distance on a map and distance in three-dimensional space); the prominence of several of these early thoughts waned in the expressed thoughts later in the day. All participants collected several types of data while in the field; novices, however, did so more continuously throughout the day whereas the experts collected more of their data earlier in the day. Experts and novices also differed in that experts focused more on evaluating certainty in their interpretations; the novices focused more on evaluating the certainty of their observations and sense of location.
Estimated sediment deposition in Lake Corpus Christi, Texas, 1972-85
Leibbrand, Norman F.
1987-01-01
Some difference was found in comparison of the results of the U.S. Geological Survey (Water Resources Division) study and the McCaughan and Etheridge Consulting Engineers study. Total sediment outflow from Lake Corpus Christi was estimated at 177 acre-feet (dry) by the Geological Survey and 1,070 acre-feet (dry) by McCaughan and Etheridge Consulting Engineers. This difference may be due to construction of a new dam, completed in 1958, that is higher and inundated the old dam.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-26
... disciplines: North Slope traditional and local knowledge, landscape ecology, petroleum engineering, civil engineering, geology, sociology, cultural anthropology, economics, ornithology, oceanography, fisheries...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-11
... disciplines: North Slope traditional and local knowledge, landscape ecology, petroleum engineering, civil engineering, geology, sociology, cultural anthropology, economics, ornithology, oceanography, fisheries...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., search and rescue, law enforcement, aeronautical research, or biological or geological resource..., and which would normally require major repair or replacement of the affected component. Engine failure or damage limited to an engine if only one engine fails or is damaged, bent fairings or cowling...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., search and rescue, law enforcement, aeronautical research, or biological or geological resource..., and which would normally require major repair or replacement of the affected component. Engine failure or damage limited to an engine if only one engine fails or is damaged, bent fairings or cowling...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., search and rescue, law enforcement, aeronautical research, or biological or geological resource..., and which would normally require major repair or replacement of the affected component. Engine failure or damage limited to an engine if only one engine fails or is damaged, bent fairings or cowling...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., search and rescue, law enforcement, aeronautical research, or biological or geological resource..., and which would normally require major repair or replacement of the affected component. Engine failure or damage limited to an engine if only one engine fails or is damaged, bent fairings or cowling...
The Use of Mini-projects in the Teaching of Geotechnics to Civil Engineering Undergraduates.
ERIC Educational Resources Information Center
Anderson, W. F.; And Others
1985-01-01
Geotechnics (which encompasses soil and rock mechanics, engineering geology, foundation design, and ground engineering methods) is a major component of virtually all civil engineering courses. Show how mini-projects are used to teach this subject. Format of projects, development of presentation skills, and assessment considerations are discussed.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huff, Kathryn D.
Component level and system level abstraction of detailed computational geologic repository models have resulted in four rapid computational models of hydrologic radionuclide transport at varying levels of detail. Those models are described, as is their implementation in Cyder, a software library of interchangeable radionuclide transport models appropriate for representing natural and engineered barrier components of generic geology repository concepts. A proof of principle demonstration was also conducted in which these models were used to represent the natural and engineered barrier components of a repository concept in a reducing, homogenous, generic geology. This base case demonstrates integration of the Cyder openmore » source library with the Cyclus computational fuel cycle systems analysis platform to facilitate calculation of repository performance metrics with respect to fuel cycle choices. (authors)« less
2016-03-01
ER D C/ G SL T R- 16 -7 The Influences of Geologic Depositional Environments on Sand Boil Development, Tara Wildlife Lodge Area in...client/default. ERDC/GSL TR-16-7 March 2016 The Influences of Geologic Depositional Environments on Sand Boil Development, Tara Wildlife Lodge...Army Corps of Engineers Washington, DC 20314-1000 ERDC/GSL TR-16-7 ii Abstract A comprehensive study of the subsurface geology in the Tara Wildlife
Health benefits of geologic materials and geologic processes
Finkelman, R.B.
2006-01-01
The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.
Geologic and operational summary, COST No. G-2 well, Georges Bank area, North Atlantic OCS
Amato, Roger V.; Simonis, Edvardas K.
1980-01-01
The Continental Offshore Stratigraphic Test (COST) No. G-2 well is the second deep well to be drilled in the Georges Bank Basin and the third in a series of COST wells on the Atlantic Outer Continental Shelf (OCS). The G-2 was drilled by Ocean Production Company, acting as the operator for 19 participating companies between January 6 and August 30, 1977. The semisubmersible rig Ocean Victory was used to drill the well to a depth of 21,874 feet at a location 132 statute miles east-southeast of Nantucket Island in 272 feet of water. An earlier deep Stratigraphic test, the COST No. G-l well, was drilled 42 statute miles west of the G-2 well, to a depth of 16,071 feet in 1976 (fig. 1). Geological and engineering data obtained from the well were used by companies and the U.S. Geological Survey (USGS) for evaluating the petroleum potential and possible drilling problems in the U.S. North Atlantic OCS area in preparation for lease sale 42 held on December 18, 1979. The Stratigraphic test was intentionally drilled away from any potential petroleum-bearing feature, but in a block bordering several tracts that were included in the sale area.
Application of Microtremor Array Analysis to Estimate the Bedrock Depth in the Beijing Plain area
NASA Astrophysics Data System (ADS)
Xu, P.; Ling, S.; Liu, J.; Su, W.
2013-12-01
With the rapid expansion of large cities around the world, urban geological survey provides key information regarding resource development and urban construction. Among the major cities of the world, China's capital city Beijing is among the largest cities possessing complex geological structures. The urban geological survey and study in Beijing involves the following aspects: (1) estimating the thickness of the Cenozoic deposit; (2) mapping the three-dimensional structure of the underlying bedrock, as well as its relations to faults and tectonic settings; and (3) assessing the capacity of the city's geological resources in order to support its urban development and operation safety. The geological study of Beijing in general was also intended to provide basic data regarding the urban development and appraisal of engineering and environment geological conditions, as well as underground space resources. In this work, we utilized the microtremor exploration method to estimate the thickness of the bedrock depth, in order to delineate the geological interfaces and improve the accuracy of the bedrock depth map. The microtremor observation sites were located in the Beijing Plain area. Traditional geophysical or geological survey methods were not effective in these areas due to the heavy traffic and dense buildings in the highly-populated urban area. The microtremor exploration method is a Rayleigh-wave inversion technique which extracts its phase velocity dispersion curve from the vertical component of the microtremor array records using the spatial autocorrelation (SPAC) method, then inverts the shear-wave velocity structure. A triple-circular array was adopted for acquiring microtremor data, with the observation radius in ranging from 40 to 300 m, properly adjusted depending on the geological conditions (depth of the bedrock). The collected microtremor data are used to: (1) estimation of phase velocities of Rayleigh-wave from the vertical components of the microtremor records using the SPAC method, and (2) inversion to establish the S-wave velocity structure. Our inversion results show a thick Cenozoic sedimentation in the Fengtai Sag. The bedrock depth is 1510 m at C04-1 and 1575 m at D04-1. In contrast, the Cenozoic sediments are only 193 m thick at E12-1 and 236 m thick at E12-3, indicating very thin Cenozoic sedimentation in the Laiguangying High structural unit. The bedrock at the Houshayu Sag with a depth of 691 m at E16-1 and 875 m at F16-1, respectively, seems to fall somewhere in the middle. The difference between the bedrock depth at the Fengtai Sag and that at the Laiguangying High is as high as 1300 m. This was interpreted as a resulting of a slip along the Taiyanggong fault. On the other hand, the Nankou-Sunhe faulting resulted in a bedrock depth difference of approximately 500 m between the Laiguangying High and Houshayu Sag to the northeast. These results of the bedrock surface depth and its difference in various tectonic units in the Beijing plain area outlined by this article are consistent with both the existing geological data and previous interpretations. The information is deemed very useful for understanding the geological structures, regional tectonics and practical geotechnical problems involved in civil geological engineering in and around Beijing City.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
... disciplines: North Slope traditional and local knowledge, landscape ecology, petroleum engineering, civil engineering, geology, botany, hydrology, limnology, habitat biology, wildlife biology, biometrics, sociology...
Object-Oriented Programming When Developing Software in Geology and Geophysics
NASA Astrophysics Data System (ADS)
Ahmadulin, R. K.; Bakanovskaya, L. N.
2017-01-01
The paper reviews the role of object-oriented programming when developing software in geology and geophysics. Main stages have been identified at which it is worthwhile to apply principles of object-oriented programming when developing software in geology and geophysics. The research was based on a number of problems solved in Geology and Petroleum Production Institute. Distinctive features of these problems are given and areas of application of the object-oriented approach are identified. Developing applications in the sphere of geology and geophysics has shown that the process of creating such products is simplified due to the use of object-oriented programming, firstly when designing structures for data storage and graphical user interfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, E.S.
1988-01-01
An introduction to geophysical methods used to explore for natural resources and to survey earth's geology is presented in this volume. It is suitable for second-and third-year undergraduate students majoring in geology or engineering and for professional engineering and for professional engineers and earth scientists without formal instruction in geophysics. The author assumes the reader is familiar with geometry, algebra, and trigonometry. Geophysical exploration includes seismic refraction and reflection surveying, electrical resistivity and electromagnetic field surveying, and geophysical well logging. Surveying operations are described in step-by-step procedures and are illustrated by practical examples. Computer-based methods of processing and interpreting datamore » as well as geographical methods are introduced.« less
Planning and design considerations in karst terrain
NASA Astrophysics Data System (ADS)
Fischer, J. A.; Greene, R. W.; Ottoson, R. S.; Graham, T. C.
1988-10-01
This article discusses the various steps that the authors feel are necessary to the successful progression of an engineered project sited in karst terrain. The procedures require a multidisciplined approach with liaison and cooperation among the various parties to the project. Initially, the prospective owner must have sufficient understanding of the potential engineering problems to incorporate the engineering geologist into the early stages of any planned acquisition. The first step in an investigation should include a review of the available geologic information, aerial photo interpretation, consultation with the State Geological Survey, and a geologic reconnaissance of the prospective site and surrounding area. A go-no-go decision as to purchase can often been made at an early time. Although, in some instances, more study is needed for a particularly intriguing property. The second stage should consider the various planning alternatives that are feasible based upon the limited available information. At this stage planning/purchase decisions can be made as to purchasing options, value of the property, design constraints, and the possible economic penalties that could be associated with the potential site construction. Various planning and construction alternatives should be considered in this phase of the work. The third stage should include a site investigation program of moderate size, consisting of test pits and/or exploratory borings. The borings should be drilled using water as the drilling fluid, with an experienced crew and qualified technical inspection. The authors find the use of geophysical techniques can be extremely misleading unless used in conjunction with exploratory drilling. Successful evaluations using geophysical procedures occur only under ideal conditions. The geotechnical viability of the plan and preliminary design should be investigated in the fourth phase. Additionally, the physical parameters required for the design of structures founded atop cavities can be obtained at this time. Several support schemes which incorporate cavity roof thickness, rock strength, and cavity space are discussed. Possible construction procedures include excavation and dental concrete, grouting, piers or piles to sound rock, or moving to another area. The relative economies of these procedures are discussed in relation to the size and depth of the soil or rock cavity, possible future cavity formation, magnitude of loading and acceptable safety factors.
NASA Astrophysics Data System (ADS)
Vasquez, D. A.; Swift, J. N.; Tan, S.; Darrah, T. H.
2013-12-01
The integration of precise geochemical analyses with quantitative engineering modeling into an interactive GIS system allows for a sophisticated and efficient method of reservoir engineering and characterization. Geographic Information Systems (GIS) is utilized as an advanced technique for oil field reservoir analysis by combining field engineering and geological/geochemical spatial datasets with the available systematic modeling and mapping methods to integrate the information into a spatially correlated first-hand approach in defining surface and subsurface characteristics. Three key methods of analysis include: 1) Geostatistical modeling to create a static and volumetric 3-dimensional representation of the geological body, 2) Numerical modeling to develop a dynamic and interactive 2-dimensional model of fluid flow across the reservoir and 3) Noble gas geochemistry to further define the physical conditions, components and history of the geologic system. Results thus far include using engineering algorithms for interpolating electrical well log properties across the field (spontaneous potential, resistivity) yielding a highly accurate and high-resolution 3D model of rock properties. Results so far also include using numerical finite difference methods (crank-nicholson) to solve for equations describing the distribution of pressure across field yielding a 2D simulation model of fluid flow across reservoir. Ongoing noble gas geochemistry results will also include determination of the source, thermal maturity and the extent/style of fluid migration (connectivity, continuity and directionality). Future work will include developing an inverse engineering algorithm to model for permeability, porosity and water saturation.This combination of new and efficient technological and analytical capabilities is geared to provide a better understanding of the field geology and hydrocarbon dynamics system with applications to determine the presence of hydrocarbon pay zones (or other reserves) and improve oil field management (e.g. perforating, drilling, EOR and reserves estimation)
Knowledge Engineering Approach to the Geotectonic Discourse
NASA Astrophysics Data System (ADS)
Pshenichny, Cyril
2014-05-01
The intellectual challenge of geotectonics is, and always was, much harder than that of most of the sciences: geotectonics has to say much when there is objectively not too much to say. As the target of study (the genesis of regional and planetary geological structures) is vast and multidisciplinary and is more or less generic for many geological disciplines, its more or less complete description is practically inachievable. Hence, the normal pathway of natural-scientific research - first acquire data, then draw conclusion - unlikely can be the case here. Geotectonics does quite the opposite; its approach is purely abductive: first to suggest a conceptualization (hypothesis) based on some external grounds (either general planetary/cosmic/philosophic/religious considerations, or based on experience gained from research of other structures/regions/planets) and then to acquire data that either support or refute it. In fact, geotectonics defines the context for data acquisition, and hence, the paradigm for the entire body of geology. Being an obvious necessity for a descriptive science, this nevertheless creates a number of threats: • Like any people, scientists like simplicity and unity, and therefore a single geotectonic hypothesis may seem preferable once based on the data available at the moment and oppress other views which may acquire evidence in the future; • As impartial data acquisition is rather a myth than reality even in most of the natural sciences, in a study like geology this process becomes strongly biased by the reigning hypothesis and controlled to supply only supportive evidence; • It becomes collectively agreed that any, or great many, domains of geological knowledge are determined by a geotectonic concept, which is, in turn, offered by a reigning hypothesis (sometimes reclassified as theory) - e.g., exploration geologists must involve the global geotectonic terminology in their technical reports on assessment of mineral or hydrocarbon resources, sessions and conferences are entitled like "Geochemical signatures of postcollisional magmas" thus assuming that the concept of collision (i) has been proven to reflect the reality and (ii) surely has something to do with geochemistry of rocks; tectonic terminology becomes a ubiquitous language with no warranty of its correctness and appropriateness to the case. These issues fall into the scope of the field defined as reasoning research in the geosciences (Pshenichny, 2002; 2003). One of its main tools is knowledge engineering (Feigenbaum, 1984). As has been suggested by Anokhin and Longhinos (2013), knowledge engineering, especially its dynamic part being rapidly evolving now, may offer remedies to handle the abovementioned problems. The following solutions will be reported: • Development of an integrated geotectonic context and language shared by the community that follow contrasting geotectonic views; making concepts more or less inter-hypothesis; studying the "anatomy and physiology" of geotectonic hypotheses and fixing the points of concordance, compatibility and disagreement, computation of logical probabilities of the views given a number of hypotheses (Pshenichny, 2004); • Constructing the ontologies, conceptual graphs and event bushes for data acquisition to impartially define the semantics of data and data provenance in geology; • Building the ensembles of event bushes for related domains of geological knowledge (petrology, volcanology, sedimentology and others) to track the actual influence of geotectonic concepts and views on the geo-knowledge. Following these lines of research would create a better environment for flourishing of scientific thought in geology and makes it more efficient and operative in responding to its traditional tasks (impartial geological mapping, mineral and hydrocarbon exploration, geological education and knowledge transfer) and challenges of nowadays such as natural hazard assessment, sustainable regional development, and so forth. Moreover, this would make a significant contribution to creation of a knowledge-based society that is seen as one of the key priorities of Europe and the civilization in general.
PUMa - modelling the groundwater flow in Baltic Sedimentary Basin
NASA Astrophysics Data System (ADS)
Kalvane, G.; Marnica, A.; Bethers, U.
2012-04-01
In 2009-2012 at University of Latvia and Latvia University of Agriculture project "Establishment of interdisciplinary scientist group and modelling system for groundwater research" is implemented financed by the European Social Fund. The aim of the project is to develop groundwater research in Latvia by establishing interdisciplinary research group and modelling system covering groundwater flow in the Baltic Sedimentary Basin. Researchers from fields like geology, chemistry, mathematical modelling, physics and environmental engineering are involved in the project. The modelling system is used as a platform for addressing scientific problems such as: (1) large-scale groundwater flow in Baltic Sedimentary Basin and impact of human activities on it; (2) the evolution of groundwater flow since the last glaciation and subglacial groundwater recharge; (3) the effects of climate changes on shallow groundwater and interaction of hydrographical network and groundwater; (4) new programming approaches for groundwater modelling. Within the frame of the project most accessible geological information such as description of geological wells, geological maps and results of seismic profiling in Latvia as well as Estonia and Lithuania are collected and integrated into modelling system. For example data form more then 40 thousands wells are directly used to automatically generate the geological structure of the model. Additionally a groundwater sampling campaign is undertaken. Contents of CFC, stabile isotopes of O and H and radiocarbon are the most significant parameters of groundwater that are established in unprecedented scale for Latvia. The most important modelling results will be published in web as a data set. Project number: 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060. Project web-site: www.puma.lu.lv
Determination of the Basin Structure Beneath European Side of Istanbul
NASA Astrophysics Data System (ADS)
Karabulut, Savas; Cengiz Cinku, Mulla; Thomas, Michael; Lamontagne, Maurice
2016-04-01
Istanbul (near North Anatolian Fault Zone:NAFZ, Turkey) is located in northern part of Sea of Marmara, an area that has been influenced by possible Marmara Earthquakes. The general geology of Istanbul divided into two stratigraphic unit such as sedimentary (from Oligocene to Quaternary Deposits) and bedrock (Paleozoic and Eocene). The bedrock units consists of sand stone, clay stone to Paleozoic age and limestone to Eocene age and sedimentary unit consist of sand, clay, mil and gravel from Oligocene to Quaternary age. Earthquake disaster mitigation studies divided into two important phases, too. Firstly, earthquake, soil and engineering structure problems identify for investigation area, later on strategic emergency plan can prepare for these problems. Soil amplification play important role the disaster mitigation and the site effect analysis and basin structure is also a key parameter for determining of site effect. Some geophysical, geological and geotechnical measurements are requeired to defined this relationship. Istanbul Megacity has been waiting possible Marmara Earthquake and their related results. In order to defined to possible damage potential related to site effect, gravity measurements carried out for determining to geological structure, basin geometry and faults in Istanbul. Gravity data were collected at 640 sites by using a Scientrex CG-5 Autogravity meter Standard corrections applied to the gravity data include those for instrumental drift, Earth tides and latitude, and the free-air and Bouguer corrections. The corrected gravity data were imported into a Geosoft database to create a grid and map of the Bouguer gravity anomaly (grid cell size of 200 m). As a previously results, we determined some lineminants, faults and basins beneath Istanbul City. Especially, orientation of faults were NW-SE direction and some basin structures determined on between Buyukcekmece and Kucukcekmece Lake.
Overview of landslide problems, research, and mitigation, Cincinnati, Ohio, area
Baum, Rex L.; Johnson, Arvid M.
1996-01-01
Landslides cause much damage to property throughout the metropolitan area of Cincinnati, Ohio. Most landslides occur in unconsolidated deposits, including colluvium, till, glacial lake clays, and man-made fill derived from colluvium and glacial deposits. Landslides in thin colluvium are widespread on steeper slopes that wall the valleys of the Ohio River and its tributaries. Abundant landslides also form in thick colluvium on flatter slopes, especially where the colluvium has been disturbed by earthwork. Unusual block glides and block-extrusion glides form where till rests on lake clay. Through the years, knowledge of the distribution and causes of landslides has increased as a result of many investigations. This knowledge became part of the basis for landslide mitigation programs adopted by the City of Cincinnati and Hamilton County, Ohio. In 1974 the Cincinnati City Council passed an excavation and fill ordinance to help reduce landslide damage in areas of new construction. In 1989 following much additional study, Cincinnati created a geotechnical office within its Department of Public Works. The office, which is staffed by a geotechnical engineer, an engineering geologist, and two technicians, carries out a mitigation program. Since 1989, members of the geotechnical staff have worked in several ways to reduce landslide damage in the city; their work includes engineering-geologic mapping of selected parts of the city, inspection of retaining walls that impact public right-of-way, review of proposed construction in hillside areas, inspecting and arranging for repair of landslide areas that affect city property, and compiling geologic and geotechnical data on landslide areas within the city. In 1990, Hamilton County also adopted an excavation and fill ordinance to help reduce the damage due to landslides in areas of new construction.
Geology Field Trips as Performance Evaluations
ERIC Educational Resources Information Center
Bentley, Callan
2009-01-01
One of the most important goals the author has for students in his introductory-level physical geology course is to give them the conceptual skills for solving geologic problems on their own. He wants students to leave his course as individuals who can use their knowledge of geologic processes and logic to figure out the extended geologic history…
Summary of records of surface waters of Texas, 1898-1937
Ellsworth, Clarence E.
1939-01-01
The first gaging station In Texas urns established on the Rio Grande at El Paso on May 10, 1889, under the provisions of the Act of Congress of October 2, 1888, which authorized the organization of the Irrigation Survey by the United States Geological Survey. A few miscellaneous measurements of streams In central Texas, between Del Rio and Austin, were made, by C. C. Babb of the Geological Survey in 1894, 1895, and 1896. In 1897 T. U. Taylor, professor of civil engineering at the University of Texas, at Austin, began a systematic study for the Geological Survey of as many of the principal streams as the limited funds would permit. In the same year the American section of the International Water Commission began collecting records of flow of the Rio Grande in Texas. Records for the Rio Grande and some of its tributaries from 1897 to 1913, inclusive, collected by that commission under the immediate direction of W. W. Follett, United States consulting engineer, are contained in Geological Survey Water-supply Paper 358. It was not until 1915, when the State Legislature appropriated funds for stream measurement investigations by the Texas Board of Water Engineers, that a substantial beginning toward the systematic collection of stream-flow records was made. The work has been continued and enlarged gradually so that records have been collected at about 230 stations in Texas. In September 1937 86 gaging stations were being maintained in Texas by the Geological Survey and the cooperating agencies. Many miscellaneous discharge measurements have been made at other points. The records collected by the Geological Survey from 1889 to 1937 are now scattered through more than 50 reports, many of which are out of print.
Developing Connectivist Schemas for Geological and Geomorphological Education
NASA Astrophysics Data System (ADS)
Whalley, B.
2012-12-01
Teaching geology is difficult; students need to grasp changes in time over three dimensions. Furthermore, the scales and rates of change in four dimensions may vary over several orders of magnitude. Geological explanations incorporate ideas from physics, chemistry, biology and engineering, lectures and textbooks provide a basic framework but they need to be amplified by laboratories and fieldwork involving active student participation and engagement. Being shown named 'things' is only a start to being able to being able to inculcate geological thinking that requires a wide and focused viewpoints. Kastens and Ishikawa (2006) suggested five aspects of thinking geologically, summarised as: 1. Observing, describing, recording, communicating geologically entities (ie basic cognitive skills) 2. (mentally) manipulating these entities 3. interpreting them via causal relationships 4. predicting other aspects using the basic knowledge (to create new knowledge) 5. using cognitive strategies to develop new ways of interpreting gained knowledge. These steps can be used follow the sequence from 'known' through 'need to know' to using knowledge to gain better geologic explanation, taken as enquiry-based or problem solving modes of education. These follow ideas from Dewey though Sternberg's 'thinking styles' and Siemens' connectivist approaches. Implementation of this basic schema needs to be structured for students in a complex geological world in line with Edelson's (2006) 'learning for' framework. In a geomorphological setting, this has been done by showing students how to interpret a landscape (landform, section etc) practice their skills and thus gain confidence with a tutor at hand. A web-based device, 'Virtorial' provides scenarios for students to practice interpretation (or even be assessed with). A cognitive tool is provided for landscape interpretation by division into the recognition of 'Materials' (rock, sediments etc), Processes (slope, glacial processes etc) and 'Geometry' (what it looks like). These components provide basic metadata for any landform in a landscape. Thus, the recognition of a landform means much more than a feature; the metadata provide contexts that can be used for interpretation in the field or laboratory, individually or in discussion groups, distance or field learning environments.
Selected topics of fluid mechanics
Kindsvater, Carl E.
1958-01-01
The fundamental equations of fluid mechanics are specific expressions of the principles of motion which are ascribed to Isaac Newton. Thus, the equations which form the framework of applied fluid mechanics or hydraulics are, in addition to the equation of continuity, the Newtonian equations of energy and momentum. These basic relationships are also the foundations of river hydraulics. The fundamental equations are developed in this report with sufficient rigor to support critical examinations of their applicability to most problems met by hydraulic engineers of the Water Resources Division of the United States Geological Survey. Physical concepts are emphasized, and mathematical procedures are the simplest consistent with the specific requirements of the derivations. In lieu of numerical examples, analogies, and alternative procedures, this treatment stresses a brief methodical exposition of the essential principles. An important objective of this report is to prepare the user to read the literature of the science. Thus, it begins With a basic vocabulary of technical symbols, terms, and concepts. Throughout, emphasis is placed on the language of modern fluid mechanics as it pertains to hydraulic engineering. The basic differential and integral equations of simple fluid motion are derived, and these equations are, in turn, used to describe the essential characteristics of hydrostatics and piezometry. The one-dimensional equations of continuity and motion are defined and are used to derive the general discharge equation. The flow net is described as a means of demonstrating significant characteristics of two-dimensional irrotational flow patterns. A typical flow net is examined in detail. The influence of fluid viscosity is described as an obstacle to the derivation of general, integral equations of motion. It is observed that the part played by viscosity is one which is usually dependent on experimental evaluation. It follows that the dimensionless ratios known as the Euler, Froude, Reynolds, Weber, and Cauchy numbers are defined as essential tools for interpreting and using experimental data. The derivations of the energy and momentum equations are treated in detail. One-dimensional equations for steady nonuniform flow are developed, and the restrictions applicable to the equations are emphasized. Conditions of uniform and gradually varied flow are discussed, and the origin of the Chezy equation is examined in relation to both the energy and the momentum equations. The inadequacy of all uniform-flow equations as a means of describing gradually varied flow is explained. Thus, one of the definitive problems of river hydraulics is analyzed in the light of present knowledge. This report is the outgrowth of a series of short schools conducted during the spring and summer of 1953 for engineers of the Surface Water Branch, Water Resources Division, U. S. Geological Survey. The topics considered are essentially the same as the topics selected for inclusion in the schools. However, in order that they might serve better as a guide and outline for informal study, the arrangement of the writer's original lecture notes has been considerably altered. The purpose of the report, like the purpose of the schools which inspired it, is to build a simple but strong framework of the fundamentals of fluid mechanics. It is believed that this framework is capable of supporting a detailed analysis of most of the practical problems met by the engineers of the Geological Survey. It is hoped that the least accomplishment of this work will be to inspire the reader with the confidence and desire to read more of the recent and current technical literature of modern fluid mechanics.
Lessons from Natural Analog Studies for Geologic Disposal of High-Level Nuclear Waste (Invited)
NASA Astrophysics Data System (ADS)
Murphy, W. M.
2009-12-01
For over fifty years natural analog studies have provided lessons addressing scientific, technical, and social problems concerning geologic disposal of high-level nuclear waste. Idealized concepts for permanent disposal environments evolved from an understanding of the geological, geochemical and hydrological characteristics of analogous rocks including natural salt deposits (as advocated by the US National Academy of Sciences in 1957), ancient cratonic rocks (as investigated at Lac du Bonnet, Canada, Aspö, Sweden, and Vienne, France), and marine sedimentary rock formations (as studied at Mol, Belgium, and Bure, France). Additional multidisciplinary studies have been conducted at natural sites that bear characteristics analogous to potential repository systems, notably at natural uranium (and thorium) deposits including Poços de Caldas, Brazil, Alligator Rivers, Australia, Peña Blanca, Mexico, and Oklo, Gabon. Researchers of natural analogs for geologic disposal have addressed technical uncertainties regarding processes that have transpired over large time and space scales, which are generally inaccessible to laboratory studies. Principal questions for nuclear waste disposal include the geochemical stability and alteration rates of radionuclide bearing minerals and the mechanisms and rates of transport of radionuclides in groundwater. In their most direct applications, natural analogs studies have been devoted to testing specific models for repository performance and the experimental data that support those models. Parameters used in predictive performance assessment modeling have been compared to natural system data, including mineral solubilities, sorption coefficients, diffusion rates, and colloid transport properties. For example, the rate of uraninite oxidation and the natural paragenesis of uranium mineral alteration at Peña Blanca have been compared favorably to results of experimental studies of spent fuel alteration related to the proposed repository at Yucca Mountain, Nevada, USA. These results generally bracket repository conditions between natural and experimental systems providing confidence in the understanding of expected processes. Also, the conceptual bases and numerical techniques for modeling unsaturated zone contaminant transport over periods of thousands of years at Yucca Mountain were tested by modeling the observable record of metal transport from archaeological artifacts buried in Holocene tuff at Akrotiri, Greece. Geologically episodic mineral alteration and contaminant transport have been documented using radioisotope data in numerous analog systems providing insights for the interpretation and validity of predictive models for long term repository performance. The applicability and value of natural analog studies to understanding geologic disposal systems is a persistent question. As proposed disposal sites become increasingly well defined by site characterization and engineering design, the strengths and weaknesses of analogies can be assessed. Confidence in predictive models for complex geologic and engineered phenomena can be enhanced through multiple lines of investigation including studies of natural analog systems.
The interoperability skill of the Geographic Portal of the ISPRA - Geological Survey of Italy
NASA Astrophysics Data System (ADS)
Pia Congi, Maria; Campo, Valentina; Cipolloni, Carlo; Delogu, Daniela; Ventura, Renato; Battaglini, Loredana
2010-05-01
The Geographic Portal of Geological Survey of Italy (ISPRA) available at http://serviziogeologico.apat.it/Portal was planning according to standard criteria of the INSPIRE directive. ArcIMS services and at the same time WMS and WFS services had been realized to satisfy the different clients. For each database and web-services the metadata had been wrote in agreement with the ISO 19115. The management architecture of the portal allow it to encode the clients input and output requests both in ArcXML and in GML language. The web-applications and web-services had been realized for each database owner of Land Protection and Georesources Department concerning the geological map at the scale 1:50.000 (CARG Project) and 1:100.000, the IFFI landslide inventory, the boreholes due Law 464/84, the large-scale geological map and all the raster format maps. The portal thus far published is at the experimental stage but through the development of a new graphical interface achieves the final version. The WMS and WFS services including metadata will be re-designed. The validity of the methodology and the applied standards allow to look ahead to the growing developments. In addition to this it must be borne in mind that the capacity of the new geological standard language (GeoSciML), which is already incorporated in the web-services deployed, will be allow a better display and query of the geological data according to the interoperability. The characteristics of the geological data demand for the cartographic mapping specific libraries of symbols not yet available in a WMS service. This is an other aspect regards the standards of the geological informations. Therefore at the moment were carried out: - a library of geological symbols to be used for printing, with a sketch of system colors and a library for displaying data on video, which almost completely solves the problems of the coverage point and area data (also directed) but that still introduces problems for the linear data (solutions: ArcIMS services from Arcmap projects or a specific SLD implementation for WMS services); - an update of "Guidelines for the supply of geological data" in a short time will be published; - the Geological Survey of Italy is officially involved in the IUGS-CGI working group for the processing and experimentation on the new GeoSciML language with the WMS/WFS services. The availability of geographic informations occurs through the metadata that can be distributed online so that search engines can find them through specialized research. The collected metadata in catalogs are structured in a standard (ISO 19135). The catalogs are a ‘common' interface to locate, view and query data and metadata services, web services and other resources. Then, while working in a growing sector of the environmental knowledgement the focus is to collect the participation of other subjects that contribute to the enrichment of the informative content available, so as to be able to arrive to a real portal of national interest especially in case of disaster management.
Tsunami Elevation Predictions for American Samoa.
1980-09-01
tide gauge of Pago Pago after the earthquake of May 13, 1953 in Costa Rica . (Microfische Collec- tion of Tsunami Mareograms 1952-1975) July 13, 1952...34 Engineering Geology Case Histories, Geological Society of America, No. 8. Chandrasekhar, S. 1943. Reviews of Modern Physics, 15:1-89. Chen, H. S., and...Scientific abstracts and indexes relevant to earthquakes, tsunamis, and geology were also reviewed. Since there are no cumulative indexes available in most
1980-01-01
November 1976. 11. Ohio State University, Electroscience Laboratory, Electromagnetic Pulse Sounding for Geological Surveying with Application in Rock...Peters, L. and Moffatt, D. L., Electromagnetic Pulse Sounding for Geological Surveying with Application in Rock Mechanics and Rapid Excavation... Electromagnetic Pulse Sounding for Geolog- ical Surveying with Application in Rock Mechanics and Rapid Excava- tion Program, Ohio State University, Report
Selected water-resources activities of the U.S. Geological Survey in New England in 2017
Weiskel, Peter K.
2017-06-22
The New England Water Science Center of the U.S. Geological Survey (USGS) is headquartered in Pembroke, New Hampshire, with offices in East Hartford, Connecticut; Augusta, Maine; Northborough, Massachusetts; and Montpelier, Vermont. The areas of expertise covered by the water science center’s staff of 130 include aquatic biology, chemistry, geographic information systems, geology, hydrologic sciences and engineering, and water use.
Test drilling in the upper Sevier River drainage basin, Garfield and Piute Counties, Utah
Feltis, R.D.; Robinson, G.B. Jr.
1963-01-01
A test-drilling program was conducted by the U.S. Geological Survey in the upper Sevier River drainage basin (fig. 1) in the summer of 1962. The program was part of a ground-water investigation made in cooperation with the Utah State Engineer. The drilling was financed cooperatively through the State Engineer by the U.S. Geological Survey, Garfield, Piute, Sevier, Sanpete, and Millard Counties, and various water users within those counties. Drilling began in May and continued through September 1962, and 21 test holes were drilled.
10 CFR 100.23 - Geologic and seismic siting criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Earthquake Ground Motion, and to permit adequate engineering solutions to actual or potential geologic and..., earthquake recurrence rates, fault geometry and slip rates, site foundation material, and seismically induced... Earthquake Ground Motion for the site, the potential for surface tectonic and nontectonic deformations, the...
10 CFR 100.23 - Geologic and seismic siting criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Earthquake Ground Motion, and to permit adequate engineering solutions to actual or potential geologic and..., earthquake recurrence rates, fault geometry and slip rates, site foundation material, and seismically induced... Earthquake Ground Motion for the site, the potential for surface tectonic and nontectonic deformations, the...
10 CFR 100.23 - Geologic and seismic siting criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Earthquake Ground Motion, and to permit adequate engineering solutions to actual or potential geologic and..., earthquake recurrence rates, fault geometry and slip rates, site foundation material, and seismically induced... Earthquake Ground Motion for the site, the potential for surface tectonic and nontectonic deformations, the...
Map showing landslide susceptibility in Prince Georges County, Maryland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomeroy, J.S.
1989-01-01
Prince Georges County was identified during a statewide investigation of landslide susceptibility (MF-2048) as the county with the most serious slope-stability problems. This map uses a ranking system ranging from 1 (nil to very low susceptibility) to 4 (moderate to severe susceptibility). Geologic factors and precipitation are major elements in the initiation of landslides in the county. The Potomac Group and the Marlboro Clay are the most slideprone units. This map should enable users to make a rapid, generalized evaluation of the potential for mass movement. Planners, engineers, soil scientists, geologist, university faculty, and elected officials should find it usefulmore » in the assessment of slope hazards for county-wide analyses.« less
Synthetic geology - Exploring the "what if?" in geology
NASA Astrophysics Data System (ADS)
Klump, J. F.; Robertson, J.
2015-12-01
The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.
3D subsurface geological modeling using GIS, remote sensing, and boreholes data
NASA Astrophysics Data System (ADS)
Kavoura, Katerina; Konstantopoulou, Maria; Kyriou, Aggeliki; Nikolakopoulos, Konstantinos G.; Sabatakakis, Nikolaos; Depountis, Nikolaos
2016-08-01
The current paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes and the 1:5000 engineering geological maps were digitized and implemented in a GIS platform for a three - dimensional subsurface model evaluation. The study is located at the North part of Peloponnese along the new national road.
NASA Astrophysics Data System (ADS)
Asanuma, H.; Muraoka, H.; Tsuchiya, N.; Ito, H.
2013-12-01
Development using Engineered Geothermal System (EGS) technologies is considered to be the best solution to the problems of the localized distribution of geothermal resources. However, it is considered that a number of problems, including low water recovery rate, difficulty in design of the reservoir, and induced earthquake, would appear in Japanese EGS. These problems in the development of EGS reservoirs cannot be readily solved in Japan because they are intrinsically related to the physical characteristics and tectonic setting of the brittle rock mass. Therefore, we have initiated the Japan Beyond-Brittle Project (JBBP), which will take a multidisciplinary scientific approach, including geology, geochemistry, geophysics, water-rock interactions, rock mechanics, seismology, drilling technology, well-logging technology, and reservoir engineering. The science and technology required for the creation and control of geothermal reservoirs in superheated rocks in the ductile zone is at the frontier of modern research in most of the related disciplines. Solutions to the associated problems will not easily be found without international collaboration among researchers and engineers. For this reason, in March, 2013 we held a five-day ICDP-supported workshop in Japan to review and discuss various scientific and technological issues related to the JBBP. Throughout the discussions at the workshop on characteristics of the beyond-brittle rock mass and creation and control of EGS reservoirs in the ductile zone, it has concluded that there are two end-member reservoir models that should be considered (Fig. 1). The JBBP reservoir type-1 would be created near the top of the brittle-ductile transition (BDT) and connected to pre-existing hydrothermal systems, which would increase productivity and provide sustainability. The JBBP reservoir type-2 would be hydraulically or thermally created beyond the BDT, where pre-existing fractures are less permeable, and would be hydraulically isolated from the hydrothermal system. Discussions on exploration/monitoring of the BDT rock mass and JBBP reservoirs, and engineering development have been also made in the workshop. We finally identified scientific/technological challenges for the JBBP and established roadmap and implementation plan. The workshop report is available at http://jbbp.kankyo.tohoku.ac.jp/jbbp Conceptual model of the JBBP
Sado, Edward V.; Fullerton, David S.; Goebel, Joseph E.; Ringrose, Susan M.; Edited and Integrated by Fullerton, David S.
1995-01-01
The Quaternary Geologic Map of the Lake of the Woods 4 deg x 6 deg Quadrangle, United States and Canada, was mapped as part of the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series (Miscellaneous Investigations Series I-1420, NM-15). The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is a product of collaboration of the Ontario Geological Survey, the Minnesota Geological Survey, the Manitoba Department of Energy and Mines, and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, separate maps and map explanations were prepared by the compilers. Second, the maps were combined, integrated, and supplemented by the editor. Map unit symbols were revised to a uniform system of classification and the map unit descriptions were prepared by the editor from information received from the compilers and from additional sources listed under Sources of Information. Diagrams accompanying the map were prepared by the editor. For scientific purposes, the map differentiates Quaternary surficial deposits on the basis of lithology or composition, texture or particle size, structure, genesis, stratigraphic relationships, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the description of map units. Deposits of some constructional landforms, such as kame moraine deposits, are distinguished as map units. Deposits of erosional landforms, such as outwash terraces, are not distinguished, although glaciofluvial, ice-contact, and lacustrine deposits that are mapped may be terraced. As a Quaternary geologic map, it serves as a base from which a variety of maps relating Quaternary geologic history can be derived. For practical purposes, the map is a surficial materials map. Materials are distinguished on the basis of lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized and classified in pedology or agronomy. Rather, it is a generalized map of soils as recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed. As a materials map, it serves as a base from which a variety of maps for use in planning engineering, land-use, or land-management projects can be derived.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, P.K.
A total of 48 papers were presented at the Engineering Geology and Geotechnical Engineering 30th Symposium. These papers are presented in this proceedings under the following headings: site characterization--Pocatello area; site characterization--Boise Area; site assessment; Idaho National Engineering Laboratory; geophysical methods; remediation; geotechnical engineering; and hydrogeology, northern and western Idaho. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.
Technical know-how relevant to planning of borehole investigation for fault characterization
NASA Astrophysics Data System (ADS)
Mizuno, T.; Takeuchi, R.; Tsuruta, T.; Matsuoka, T.; Kunimaru, T.; Saegusa, H.
2011-12-01
As part of the national R&D program for geological disposal of high-level radioactive waste (HLW), the broad scientific study of the deep geological environment, JAEA has established the Mizunami Underground Research Laboratory (MIU) in Central Japan as a generic underground research laboratory (URL) facility. The MIU Project focuses on the crystalline rocks. In the case of fractured rock, a fault is one of the major discontinuity structures which control the groundwater flow conditions. It is important to estimate geological, hydrogeological, hydrochemical and rock mechanical characteristics of faults, and then to evaluate its role in the engineering design of repository and the assessment of long-term safety of HLW disposal. Therefore, investigations for fault characterization have been performed to estimate its characteristics and to evaluate existing conceptual and/or numerical models of the geological environment in the MIU project. Investigations related to faults have been conducted based on the conventional concept that a fault consists of a "fault core (FC)" characterized by distribution of the faulted rocks and a "fractured zone (FZ)" along FC. With the progress of investigations, furthermore, it is clear that there is also a case in which an "altered zone (AZ)" characterized by alteration of host rocks to clay minerals can be developed around the FC. Intensity of alteration in AZ generally decreases with distance from the FC, and AZ transits to FZ. Therefore, the investigation program focusing on properties of AZ is required for revising the existing conceptual and/or numerical models of geological environment. In this study, procedures for planning of fault characterizations have been summarized based on the technical know-how learnt through the MIU Project for the development of Knowledge Management System performed by JAEA under a contract with the Ministry of Economy, Trade and Industry as part of its R&D supporting program for developing geological disposal technology in 2010. Taking into account the experience from the fault characterization in the MIU Project, an optimization procedure for investigation program is summarized as follows; 1) Definition of investigation aim, 2) Confirmation of current understanding of the geological environment, 3) Specification and prioritization of the data to be obtained 4) Selection of the methodology for obtaining the data, 5) Specification of sequence of the investigations, and 6) Establishment of drilling and casing program including optional cases and taking into account potential problems. Several geological conceptual models with uncertainty of geological structures were illustrated to define the investigation aim and to confirm the current uncertainties. These models were also available to establish optional cases by predicting the type and location of potential problems. The procedures and case study related to establishment of the investigation program are summarized in this study and can be available for site characterization works conducted by the implementing body (NUMO) in future candidate areas.
Staff - Simone Montayne | Alaska Division of Geological & Geophysical
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Preservation Workshop Professional Experience Metadata - Simone compiles all of the division's metadata files Professional Activities Website and database administrator for the Association of American State Geologists
Modeling uncertainty in producing natural gas from tight sands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chermak, J.M.; Dahl, C.A.; Patrick, R.H
1995-12-31
Since accurate geologic, petroleum engineering, and economic information are essential ingredients in making profitable production decisions for natural gas, we combine these ingredients in a dynamic framework to model natural gas reservoir production decisions. We begin with the certainty case before proceeding to consider how uncertainty might be incorporated in the decision process. Our production model uses dynamic optimal control to combine economic information with geological constraints to develop optimal production decisions. To incorporate uncertainty into the model, we develop probability distributions on geologic properties for the population of tight gas sand wells and perform a Monte Carlo study tomore » select a sample of wells. Geological production factors, completion factors, and financial information are combined into the hybrid economic-petroleum reservoir engineering model to determine the optimal production profile, initial gas stock, and net present value (NPV) for an individual well. To model the probability of the production abandonment decision, the NPV data is converted to a binary dependent variable. A logit model is used to model this decision as a function of the above geological and economic data to give probability relationships. Additional ways to incorporate uncertainty into the decision process include confidence intervals and utility theory.« less
Wang, Hanxun; Bai, Xueliang; Shi, Lei
2018-01-01
In general, exploitation of rock materials, such as limestone or granite exploitation, can cause serious damage to the environment near a mine area. With economic development and the ever-increasing demand for ore resources, mining activities have induced very serious environmental issues in China. Therefore, environmental restoration work around mines in China is urgently required. This study explores the Chuankou open-pit limestone quarry in Tongchuan City, Shaanxi Province, Northwest China, as the engineering case. The environmental issues caused by over 40 years of limestone exploitation, including land degradation, land occupation, dust pollution and potential geological disasters, were investigated. Combining the characteristics of this quarry with a summary of previous studies on environmental restoration work, this paper proposes a novel and systematic method that was comprehensively carried out through engineering and revegetation measures. The engineering measure, that is, the construction of an artificial slope by using local abandoned construction materials, solved the environmental problems in this quarry and provided site conditions favourable for revegetation. The revegetation measure restored the local ecosystem. This method provides both a new idea for the sustainable development of a mining area and a useful reference for analogous engineering cases. PMID:29892461
1992-10-01
older) Wisconsin glacial advance, known in Vermont as the Bennington Glacial Stade, glaciers advanced primarily from the northwest. A glacier lake formed...Internal Report 1088, Hanover, New Hampshire. Hadley, J.B., 1950, Geology of the Bradford-Thetford area, Orange County, Vermont , Bulletin No. 1, Vermont ...CRREL Section No.: 10 Revision No.: 2 Date: October 1992 Lyons, J.B. 1955, Geology of the Hanover Quadrangle, New Hampshire - Vermont , Geological
Conflation and integration of archived geologic maps and associated uncertainties
Shoberg, Thomas G.
2016-01-01
Old, archived geologic maps are often available with little or no associated metadata. This creates special problems in terms of extracting their data to use with a modern database. This research focuses on some problems and uncertainties associated with conflating older geologic maps in regions where modern geologic maps are, as yet, non-existent as well as vertically integrating the conflated maps with layers of modern GIS data (in this case, The National Map of the U.S. Geological Survey). Ste. Genevieve County, Missouri was chosen as the test area. It is covered by six archived geologic maps constructed in the years between 1928 and 1994. Conflating these maps results in a map that is internally consistent with these six maps, is digitally integrated with hydrography, elevation and orthoimagery data, and has a 95% confidence interval useful for further data set integration.
Electronic atlas of the Russian Arctic coastal zone: natural conditions and technogenic risk
NASA Astrophysics Data System (ADS)
Drozdov, D. S.; Rivkin, F. M.; Rachold, V.
2004-12-01
The Arctic coast is characterized by a diversity of geological-geomorphological structures and geocryological conditions, which are expected to respond differently to changes in the natural environment and in anthropogenic impacts. At present, oil fields are prospected and developed and permanent and temporary ports are constructed in the Arctic regions of Russia. Thus, profound understanding of the processes involved and measures of nature conservation for the coastal zone of the Arctic Seas are required. One of the main field of Arctic coastal investigations and database formation of coastal conditions is the mapping of the coasts. This poster presents a set of digital maps including geology, quaternary sediments, landscapes, engineering-geology, vegetation, geocryology and a series of regional sources, which have been selected to characterize the Russian Arctic coast. The area covered in this work includes the 200-km-wide band along the entire Russian Arctic coast from the Norwegian boundary in the west to the Bering Strait in the east. Methods included the collection of the majority of available hard copies of cartographic material and their digital formats and the transformation of these sources into a uniform digital graphic format. The atlas consists of environmental maps and maps of engineering-geological zoning. The set of environmental maps includes geology, quaternary sediments, landscapes and vegetation of the Russian Arctic coast at a scale of 1:4000000. The set of engineering-geocryological maps includes a map of engineering-geocryological zoning of the Russian Arctic coast, a map of the intensity of destructive coastal process and a map of industrial impact risk assessment ( 1:8000000 scale). Detailed mapping has been performed for key sites (at a scale of 1:100000) in order to enable more precise estimates of the intensity of destructive coastal process and industrial impact. The engineering-geocryological map of the Russian Arctic coast was compiled based on the analysis of geotechnical and geocryological conditions in the areas adjacent to the coastal band. Industrial impact assessment has been estimated differently for each engineering-geocryological region distinguished on the coast, considering technological features of construction and engineering facilities: aerial construction, highways and airdromes, underground (with positive and negative pipe temperatures) and surface pipelines and quarries. The atlas is being used as a base for the circum-Arctic segmentation of the coastline and the analyses of coastal dynamics within the Arctic Coastal Dynamics (ACD) Project. The work has been supported by INTAS (project number 01-2332).
Verma, Mahendra K.; Warwick, Peter D.
2011-01-01
The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2) and requested that the USGS estimate the "potential volumes of oil and gas recoverable by injection and sequestration of industrial carbon dioxide in potential sequestration formations" (121 Stat. 1711). The USGS developed a noneconomic, probability-based methodology to assess the Nation's technically assessable geologic storage resources available for sequestration of CO2 (Brennan and others, 2010) and is currently using the methodology to assess the Nation's CO2 geologic storage resources. Because the USGS has not developed a methodology to assess the potential volumes of technically recoverable hydrocarbons that could be produced by injection and sequestration of CO2, the Geologic Carbon Sequestration project initiated an effort in 2010 to develop a methodology for the assessment of the technically recoverable hydrocarbon potential in the sedimentary basins of the United States using enhanced oil recovery (EOR) techniques with CO2 (CO2-EOR). In collaboration with Stanford University, the USGS hosted a 2-day CO2-EOR workshop in May 2011, attended by 28 experts from academia, natural resource agencies and laboratories of the Federal Government, State and international geologic surveys, and representatives from the oil and gas industry. The geologic and the reservoir engineering and operations working groups formed during the workshop discussed various aspects of geology, reservoir engineering, and operations to make recommendations for the methodology.
Spatial Abilities of High-School Students in the Perception of Geologic Structures.
ERIC Educational Resources Information Center
Kali, Yael; Orion, Nir
1996-01-01
Characterizes specific spatial abilities required in geology studies through the examination of the performance of high school students in solving structural geology problems on the geologic spatial ability test (GeoSAT). Concludes that visual penetration ability and the ability to perceive the spatial configuration of the structure are…
New activities at the U.S. Geological Survey
McKelvey, Vincent E.
1974-01-01
As the Nation's principal source of information about the configuration of the land surface, the composition and structure of the rocks at and beneath the surface, the distribution and character of its energy, mineral, and water resources, and the nature of natural geologic processes, the U. S. Geological Survey focuses its work on some of the Nation's most critical problems. As the Survey tackles new problems with new techniques, it is fully aware of the resource needs and environmental pressures of an expanding economy and growing population.
Geophysical methods in Geology. Second edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, P.V.
This book presents an introduction to the methods of geophysics and their application to geological problems. The text emphasizes the broader aspects of geophysics, including the way in which geophysical methods help solve structural, correlational, and geochromological problems. Stress is laid on the principles and applications of methods rather than on instrumental techniques. This edition includes coverage of recent developments in geophysics and geology. New topics are introduced, including paleomagnetic methods, electromagnetic methods, microplate tectronics, and the use of multiple geophysical techniques.
Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L
2015-11-01
The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.
Gas Hydrates | Alaska Division of Geological & Geophysical Surveys
R&D Program USGS Energy Resources Program Industry and professional associations AAPG - Energy Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska collaboratively with federal, university, and industry researchers to assess Alaska's gas hydrate resource
Staff - Patricia E. Gallagher | Alaska Division of Geological & Geophysical
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Fairbanks and is currently working toward becoming a certified GIS professional. Position: GIS Analyst professional. Professional Experience 2013-present - Cartographer/GIS Analyst, State of Alaska, Division of
Alaska Tidal Datum Portal | Alaska Division of Geological & Geophysical
Engineering Geology Alaska Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Portal Unambiguous vertical datums in the coastal environment are critical to the evaluation of natural human life, property, and the coastal environment. January 2017 - Update Summary Alaska Tidal Datum
Publications - GMC 376 | Alaska Division of Geological & Geophysical
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska DGGS GMC 376 Publication Details Title: NWE Drill Logs for the Orange Hill Property, Nabesna Quadrangle , Alaska: 1973 and 1974 Drill holes No. 112 through No. 123 Authors: Northwest Explorations Publication
Publications - GMC 389 | Alaska Division of Geological & Geophysical
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska DGGS GMC 389 Publication Details Title: Core photographs, assay results, and 1988 drill logs from the Cominco DDH-1 through DDH-4 boreholes, Shadow Prospect, Tyonek Quadrangle, Alaska Authors: Millrock
Sado, Edward V.; Fullerton, David S.; Farrand, William R.; Edited and Integrated by Fullerton, David S.
1994-01-01
The Quaternary Geologic Map of the Lake Nipigon 4 degree x 6 degree Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is a product of collaboration of the Ontario Geological Survey, the University of Michigan, and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, separate maps and map explanations were prepared by the compilers. Second, the maps were combined, integrated, and supplemented by the editor. Map unit symbols were revised to a uniform system of classification and the map unit descriptions were prepared by the editor from information received from the compilers and from additional sources listed under Sources of Information. Diagrams accompanying the map were prepared by the editor. For scientific purposes, the map differentiates Quaternary surficial deposits on the basis of lithology or composition, texture or particle size, structure, genesis, stratigraphic relationships, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the map unit descriptions. Deposits of some constructional landforms, such as kame moraine deposits, are distinguished as map units. Deposits of erosional landforms, such as outwash terraces, are not distinguished, although glaciofluvial, ice-contact, and lacustrine deposits that are mapped may be terraced. As a Quaternary geologic map it serves as a base from which a variety of maps relating Quaternary geologic history can be derived. For practical purposes, the map is a surficial materials map. Materials are distinguished on the basis of lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized and classified in pedology or agronomy. Rather, it is a generalized map of soils as recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed. As a materials map it serves as a base from which a variety of maps for use in planning engineering, land use, or land management projects can be derived.
Judicious use of custom development in an open source component architecture
NASA Astrophysics Data System (ADS)
Bristol, S.; Latysh, N.; Long, D.; Tekell, S.; Allen, J.
2014-12-01
Modern software engineering is not as much programming from scratch as innovative assembly of existing components. Seamlessly integrating disparate components into scalable, performant architecture requires sound engineering craftsmanship and can often result in increased cost efficiency and accelerated capabilities if software teams focus their creativity on the edges of the problem space. ScienceBase is part of the U.S. Geological Survey scientific cyberinfrastructure, providing data and information management, distribution services, and analysis capabilities in a way that strives to follow this pattern. ScienceBase leverages open source NoSQL and relational databases, search indexing technology, spatial service engines, numerous libraries, and one proprietary but necessary software component in its architecture. The primary engineering focus is cohesive component interaction, including construction of a seamless Application Programming Interface (API) across all elements. The API allows researchers and software developers alike to leverage the infrastructure in unique, creative ways. Scaling the ScienceBase architecture and core API with increasing data volume (more databases) and complexity (integrated science problems) is a primary challenge addressed by judicious use of custom development in the component architecture. Other data management and informatics activities in the earth sciences have independently resolved to a similar design of reusing and building upon established technology and are working through similar issues for managing and developing information (e.g., U.S. Geoscience Information Network; NASA's Earth Observing System Clearing House; GSToRE at the University of New Mexico). Recent discussions facilitated through the Earth Science Information Partners are exploring potential avenues to exploit the implicit relationships between similar projects for explicit gains in our ability to more rapidly advance global scientific cyberinfrastructure.
Using analogy to learn about phenomena at scales outside human perception.
Resnick, Ilyse; Davatzes, Alexandra; Newcombe, Nora S; Shipley, Thomas F
2017-01-01
Understanding and reasoning about phenomena at scales outside human perception (for example, geologic time) is critical across science, technology, engineering, and mathematics. Thus, devising strong methods to support acquisition of reasoning at such scales is an important goal in science, technology, engineering, and mathematics education. In two experiments, we examine the use of analogical principles in learning about geologic time. Across both experiments we find that using a spatial analogy (for example, a time line) to make multiple alignments, and keeping all unrelated components of the analogy held constant (for example, keep the time line the same length), leads to better understanding of the magnitude of geologic time. Effective approaches also include hierarchically and progressively aligning scale information (Experiment 1) and active prediction in making alignments paired with immediate feedback (Experiments 1 and 2).
Interaction of Dams and Landslides--Case Studies and Mitigation
Schuster, Robert L.
2006-01-01
In the first half of the 20th century, engineering geology and geotechnical engineering were in their infancy, and dams were often built where landslides provided valley constrictions, often without expert site investigation. Only the most important projects were subjected to careful geologic examination. Thus, dams were often built without complete understanding of the possible geotechnical problems occurring in foundations or abutments. Most of these dams still exist, although many have undergone costly repairs because of stability or leakage problems. Today, however, every effort is made in the selection of damsites, including those sited on landslides, to provide foundations and abutments that are generally impervious and capable of withstanding the stresses imposed by the proposed dam and reservoir, and possible landslides. By means of a literature search, technical interviews, and field inventory, I have located 254 large (at least 10 m high) dams worldwide that directly interact with landslides; that is, they have been built on pre-existing landslides or have been subjected to landslide activity during or after construction. A table (Appendix table A) summarizes dam characteristics, landslide conditions, and remedial measures at each of the dams. Of the 254 dams, 164 are earthfill, 23 are rockfill, and 18 are earthfill-rockfill; these are flexible dam types that generally perform better on the possibly unstable foundations provided by landslides than do more rigid concrete dams. Any pre-existing landslides that might impinge on the foundation or abutments of a dam should be carefully investigated. If a landslide is recognized in a dam foundation or abutment, the landslide deposits commonly are avoided in siting the dam or are removed during stripping of the dam foundation and abutment contacts. Contrarily, it has often been found to be technically feasible and economically desirable to site and construct dams on known landslides or on the remnants of these features. In these cases, proven preventive and remedial measures have been used to ensure the stability of the foundations and abutments, and to reduce seepage to acceptable levels.
Ground water supplies of the Camden area, New Jersey
Thompson, David G.
1932-01-01
The observations on which the report is based were made in the period from July 1, 1923, to the date of writing the report, in the early part of 1928.1 The continuing observations have been confined essentially to the well fields of the Camden Water Department. Certain data in regard to other well fields within a radius of 10 miles of Camden, collected by F. Clark Rule under the direction of the writer in the summer of 1923, and other data obtained from the files of the Department of Conservation and Development are also included in so far as they bear on the problems under consideration. The City of Camden has cooperated heartily through C. P. Sherwood, formerly director of the Department of Streets and Public Improvements, his successor, W. D. Sayrs, Jr., James H. Long, maintenance engineer of the Water Department, and David B. Owen, chief engineer of the Morris pumping station. Much valuable information has been furnished by the Layne-New York Co., which, during the period of the investigation, replaced nearly all the old-type wells of the Camden system with those of the most modern type. The investigation was under the immediate supervision of H. T. Critchlow, then chief of the Division of Waters of the Department of Conservation and Development, and O.E. Meinzer, geologist in charge of the Division of Ground Water of the United States Geological Survey. The late Dr. M. W. Twitchell, assistant State geologist, was consulted on phases relating to the stratigraphy. A number of analyses of water have been made by C. S. Howard, of the United States Geological Survey, and advice in regard to problems arising from the mineral character of the water has been given by W. D. Collins, chemist in charge of the Division of Quality of Water of the same organization. Thanks are also due to those of the other water departments and private well owners in the area who have furnished information.
NASA Technical Reports Server (NTRS)
Head, James W.; Hurwitz, D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil
2008-01-01
The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by perspectives from the Archean record of the Earth, to gain new insight into both. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. We have problems on which progress might be made through comparison. Here we present the major goals of the geological mapping of the V-1 Snegurochka Planitia Quadrangle, and themes that could provide important insights into both planets:
NASA Astrophysics Data System (ADS)
Zhang, Hanyu; Liu, Huaishan; Wu, Shiguo; Sun, Jin; Yang, Chaoqun; Xie, Yangbing; Chen, Chuanxu; Gao, Jinwei; Wang, Jiliang
2018-02-01
Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure (HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques (PPTs). To improve the accuracy of geopressure prediction in HTHP hydrocarbon reservoirs offshore Hainan Island, we made a comprehensive summary of current PPTs to identify existing problems and challenges by analyzing the global distribution of HTHP hydrocarbon reservoirs, the research status of PPTs, and the geologic setting and its HTHP formation mechanism. Our research results indicate that the HTHP formation mechanism in the study area is caused by multiple factors, including rapid loading, diapir intrusions, hydrocarbon generation, and the thermal expansion of pore fluids. Due to this multi-factor interaction, a cloud of HTHP hydrocarbon reservoirs has developed in the Ying-Qiong Basin, but only traditional PPTs have been implemented, based on the assumption of conditions that do not conform to the actual geologic environment, e.g., Bellotti's law and Eaton's law. In this paper, we focus on these issues, identify some challenges and solutions, and call for further PPT research to address the drawbacks of previous works and meet the challenges associated with the deepwater technology gap. In this way, we hope to contribute to the improved accuracy of geopressure prediction prior to drilling and provide support for future HTHP drilling offshore Hainan Island.
GPR survey, as one of the best geophysical methods for social and industrial needs
NASA Astrophysics Data System (ADS)
Chernov, Anatolii
2016-04-01
This paper is about ways and methods of applying non-invasive geophysical method - Ground penetrating radar (GPR) survey in different spheres of science, industry, social life and culture. Author would like to show that geological methods could be widely used for solving great variety of industrial, human safety and other problems. In that article, we take GPR survey as an example of such useful geophysical methods. It is a fact that investigation of near surface underground medium is important process, which influence on development of different spheres of science and social life: investigation of near surface geology (layering, spreading of rock types, identification of voids, etc.), hydrogeology (depth to water horizons, their thickness), preparation step for construction of roads and buildings (civil geology, engineering geology), investigation of cultural heritage (burial places, building remains,...), ecological investigations (land slides, variation in underground water level, etc.), glaciology. These tasks can be solved by geological methods, but as usual, geophysical survey takes a lot of time and energy (especially electric current and resistivity methods, seismic survey). Author claims that GPR survey can be performed faster than other geophysical surveys and results of GPR survey are informative enough to make proper conclusions. Some problems even cannot be solved without GPR. For example, identification of burial place (one of author's research objects): results of magnetic and electric resistivity tomography survey do not contain enough information to identify burial place, but according to anomalies on GPR survey radarograms, presence of burial place can be proven. Identification of voids and non-magnetic objects also hardly can be done by another non-invasive geophysics surveys and GPR is applicable for that purpose. GPR can be applied for monitoring of dangerous processes in geological medium under roads, buildings, parks and other places of human activity. Monitoring of such hazards as landslides, underground erosion, variation in ground water level can help prevent dangerous processes with destructive consequences, which can result in peoples' injuries and even death. Moreover, GPR can be used in other spheres of life, where investigation of hidden (under or behind conductive for electromagnetic wave material) objects is needed: rescue operations (finding of people after natural and human-made disasters under snow, under debris of building material); military purpose (security systems, identification of people presence through walls, doors, ground etc.). Author work on algorithms (first of all for VIY GPRs (http://viy.ua/)), which will help more precisely find objects of interest on radarograms and even solve inverse problem of geophysics. According to information in that article, geophysical methods can be widely used to solve great variety of tasks and help to investigate humans' past (researches of cultural heritage) and provide information to create safe and comfortable future (preventing of natural hazards and better planning of construction).
ERIC Educational Resources Information Center
Riggs, Eric M.; Lieder, Christopher C.; Ballliet, Russell
2009-01-01
Field instruction is a critical piece of undergraduate geoscience majors' education, and fieldwork remains a major part of the work of professional geologists. Despite the central importance of field education, there exists relatively little educational research exploring how students learn to solve problems in geological fieldwork. This study…
NASA Astrophysics Data System (ADS)
Li, A.; Tsai, F. T. C.; Jafari, N.; Chen, Q. J.; Bentley, S. J.
2017-12-01
A vast area of river deltaic wetlands stretches across southern Louisiana coast. The wetlands are suffering from a high rate of land loss, which increasingly threats coastal community and energy infrastructure. A regional stratigraphic framework of the delta plain is now imperative to answer scientific questions (such as how the delta plain grows and decays?) and to provide information to coastal protection and restoration projects (such as marsh creation and construction of levees and floodwalls). Through years, subsurface investigations in Louisiana have been conducted by state and federal agencies (Louisiana Department of Natural Resources, United States Geological Survey, United States Army Corps of Engineers, etc.), research institutes (Louisiana Geological Survey, LSU Coastal Studies Institute, etc.), engineering firms, and oil-gas companies. This has resulted in the availability of various types of data, including geological, geotechnical, and geophysical data. However, it is challenging to integrate different types of data and construct three-dimensional stratigraphy models in regional scale. In this study, a set of geostatistical methods were used to tackle this problem. An ordinary kriging method was used to regionalize continuous data, such as grain size, water content, liquid limit, plasticity index, and cone penetrometer tests (CPTs). Indicator kriging and multiple indicator kriging methods were used to regionalize categorized data, such as soil classification. A compositional kriging method was used to regionalize compositional data, such as soil composition (fractions of sand, silt and clay). Stratigraphy models were constructed for three cases in the coastal zone: (1) Inner Harbor Navigation Canal (IHNC) area: soil classification and soil behavior type (SBT) stratigraphies were constructed using ordinary kriging; (2) Middle Barataria Bay area: a soil classification stratigraphy was constructed using multiple indicator kriging; (3) Lower Barataria Bay and Lower Breton Sound areas: a soil texture stratigraphy was constructed using soil compositional data and compositional kriging. Cross sections were extracted from the three-dimensional stratigraphy models to reveal spatial distributions of different stratigraphic features.
NASA Astrophysics Data System (ADS)
Qi, Wufu; Cheng, Xianfeng; Huang, Qianrui
2017-12-01
Tourism development of Yunnan geoparks keeps in the stage of “sightseeing tour” and the real “popular science tourism” keeps in the explorative stage, thus it has a series of problems, such as uncorrelation between tourist attractions and geology, uncorrelation between geologic observation spot and tourism, and insufficient scientificity of commentary, etc. By aiming at these problems, corresponding countermeasures and suggestion were proposed.
Publications - GMC 390 | Alaska Division of Geological & Geophysical
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska DGGS GMC 390 Publication Details Title: Drill logs (1987) from the Cominco Upper Discovery DDH-1 and Lower Discovery DDH-1 through DDH-5 boreholes, Mt. Estelle Prospect, Tyonek Quadrangle, Alaska Authors
Probabilistic Rock Slope Engineering.
1984-06-01
4 U rmy Corps PROBABILISTIC ROCK SLOPE ENGINEERING by Stanley M. Miller jGeotechnical Engineer 509 E. Calle Avenue Tucson, Arizona 85705 Co N 00 IFI...NUMBERS Geological Engineer CW71 1ork Unit 31755 509 E. Calle Avenue, Tucson, Arizona 85705 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE...communication, J. P. Sa,.-1Iy, Inspiration Consolidated Copper Co., Inspiration, Ariz., 1980. Personal communication, R. D. Call, Pincock, Allen, and
NASA Astrophysics Data System (ADS)
Jin, H.; Hao, J.; Chang, X.
2009-12-01
The proposed China-Russia Crude Oil Pipeline (CRCOP), 813 mm in diameter, is designed to transport 603,000 barrels of Siberian crude oil per day using conventional burial across 1,030 km of frozen-ground. About 500 boreholes, with depths of 5 to 20 m, were drilled and cored for analyses, and the frozen-ground conditions were evaluated. After detailed surveys and analyses of the permafrost conditions along the pipeline route, a conventional burial construction mode at a nominal depth of 1.5 m was adopted. This paper discusses the principles and criteria for the zonation and assessment of the frozen-ground environments and conditions of engineering geology for the design, construction, operation of the pipeline system based on an extensive and in-depth summary and analysis of the survey and exploration data. Full consideration of the characteristics of pipelining crude oil at ambient temperatures in the permafrost regions and the interactive processes between the pipeline and foundation soils were taken into account. Two zones of frozen-ground environment and conditions of engineering geology, i. e. seasonally-frozen-ground and permafrost, were defined on the basis of the regional distribution and differentiations in frozen-ground environments and conditions. Then, four subzones of the permafrost zone were classified according to the areal extent, taking into consideration the temperatures and thicknesses of permafrost, as well as changes in vegetation coverage. In the four subzones, 151 sections of engineering geology were categorized according to the ice/moisture contents of the permafrost, as well as the classes of frost-heaving and thaw-settlement potentials. These 151 sections are comprehensively summarized into four types for engineering construction and operation: good, fair, poor, and very poor, for overall conditions of engineering geology. The zonation, assessment principles and criteria have been applied in the design of the pipeline. They have also been used as the scientific bases for the construction, environmental management, operation and maintenance/contingency plans
Large-Scale Digital Geologic Map Databases and Reports of the North Coal District in Afghanistan
Hare, Trent M.; Davis, Philip A.; Nigh, Devon; Skinner, James A.; SanFilipo, John R.; Bolm, Karen S.; Fortezzo, Corey M.; Galuszka, Donna; Stettner, William R.; Sultani, Shafiqullah; Nader, Billal
2008-01-01
This report describes the Afghanistan coal resource maps and associated databases that have been digitally captured and maps that have been thus far converted to GIS databases. Several maps by V/O Technoexport, USSR (VOTU) and Bundesanstalt fur Bodenforschung (BGR), Hannover, Germany, are captured here. Most of the historical coal exploration is concentrated in north-central Afghanistan, a region referred to as the 'North Coal District', and almost all of the coal-related maps found Afghanistan Geological Survey (AGS) archives to date cover various locations within that district as shown in the index map. Most of the maps included herein were originally scanned during U.S. Geological Survey (USGS) site visits to Kabul in November 2004 and February 2006. The scanning was performed using equipment purchased by U.S. Agency for International Development (USAID) and U.S. Trade and Development Agency (USTDA) and installed at the AGS by USGS. Many of these maps and associated reports exist as single unpublished copies in the AGS archives, so these efforts served not only to provide a basis for digital capturing, but also as a means for preserving these rare geologic maps and reports. The data included herein represent most of the coal-related reports and maps that are available in the AGS archives. This report excludes the limited cases when a significant portion of a report's text could not be located, but it does not exclude reports with missing plates. The vector files are released using the Environmental Systems Research Institute (ESRI) Personal Geodatabase, ESRI shapefile vector format, and the open Geography Markup Language (GML) format. Scanned images are available in JPEG and, when rectified, GeoTIFF format. The authors wish to acknowledge the contributions made by the staff of the AGS Records and Coal Departments whose valuable assistance made it possible to locate and catalogue the data provided herein. We especially acknowledge the efforts of particular members of the coal team: Engineer Saifuddin Aminy (Team Leader); Engineer Gul Pacha Azizi; Engineer Abdul Haq Barakati; Engineer Abdul Basir; Engineer Mohammad Daoud; Engineer Abdullah Ebadi; Engineer Abdul Ahad Omaid; Engineer Spozmy; and Engineer Shapary Tokhi. The ongoing efforts of Engineer Mir M. Atiq Kazimi (Team leader); Engineer M. Anwar Housinzada; and Engineer Shereen Agha of the AGS Records Department to organize and catalogue the AGS material were invaluable in locating and preserving these data. The efforts of the entire AGS staff to personally preserve these data during war time, in the absence of virtually any supporting infrastructure, was truly remarkable. The efforts by the British Geological Survey (BGS) to assist the AGS in archiving these data, and the personal assistance provided by BGS (notably Robert McIntosh), to the USGS teams were also appreciated. The logistical support provided by the U.S. Embassy in Kabul, particularly the Afghanistan Reconstruction Group, was critical to the success of the USGS teams while in Afghanistan. Finally, the efforts of the Minister of the Ministry of Mines and Industries (M. Ibrahim Adel) to support the USGS coal resource assessment in Afghanistan, in both his current and former role as President of the Mines Affairs Department was vital to this effort.
Crosscutting Development- EVA Tools and Geology Sample Acquisition
NASA Technical Reports Server (NTRS)
2011-01-01
Exploration to all destinations has at one time or another involved the acquisition and return of samples and context data. Gathered at the summit of the highest mountain, the floor of the deepest sea, or the ice of a polar surface, samples and their value (both scientific and symbolic) have been a mainstay of Earthly exploration. In manned spaceflight exploration, the gathering of samples and their contextual information has continued. With the extension of collecting activities to spaceflight destinations comes the need for geology tools and equipment uniquely designed for use by suited crew members in radically different environments from conventional field geology. Beginning with the first Apollo Lunar Surface Extravehicular Activity (EVA), EVA Geology Tools were successfully used to enable the exploration and scientific sample gathering objectives of the lunar crew members. These early designs were a step in the evolution of Field Geology equipment, and the evolution continues today. Contemporary efforts seek to build upon and extend the knowledge gained in not only the Apollo program but a wealth of terrestrial field geology methods and hardware that have continued to evolve since the last lunar surface EVA. This paper is presented with intentional focus on documenting the continuing evolution and growing body of knowledge for both engineering and science team members seeking to further the development of EVA Geology. Recent engineering development and field testing efforts of EVA Geology equipment for surface EVA applications are presented, including the 2010 Desert Research and Technology Studies (Desert RATs) field trial. An executive summary of findings will also be presented, detailing efforts recommended for exotic sample acquisition and pre-return curation development regardless of planetary or microgravity destination.
1983-05-31
ANALYSIS OF SEABED STABILITY AT THE NORFOLK OCEAN DISPOSAL SITE PART 1: GEOLOGICAL ANALYSIS U LU D George F. Oertel, Principal Investigator i- Final Report...eC.it ,ie _. _ r. .. .... All e d !t-o i’~$ ~- - - • ° . .. • : " . o . . . , . . ... - . • , .. . . . . . kkN 4. 18. parameters, diver reconnaissance of...For the period ending September 30, 1982 Prepared for the Department of the Army Norfolk District, Corps of Engineers 803 Front Street D I *Norfolk
Hawaii Beach Monitoring Program: Beach Profile Data
Gibbs, Ann E.; Richmond, Bruce M.; Fletcher, Charles H.; Hillman, Kindra P.
2001-01-01
Coastal erosion is widespread and locally severe in Hawaii and other low-latitude areas. Typical erosion rates in Hawaii are in the range of 15 to 30 cm/yr (0.5 to 1 ft/yr; Hwang, 1981; Sea Engineering, Inc., 1988; Makai Ocean Engineering, Inc. and Sea Engineering, Inc.,1991). Recent studies on Oahu (Fletcher et al., 1997; Coyne et al., 1996) have shown that nearly 24%, or 27.5 km (17.1 mi) of an original 115 km (71.6 mi) of sandy shoreline (1940's) has been either significantly narrowed (17.2 km; 10.7 mi) or lost (10.3 km; 6.4 mi). Nearly one-quarter of the islands' beaches have been significantly degraded over the last half-century and all shorelines have been affected to some degree. Oahu shorelines are by far the most studied, however, beach loss has been identified on the other islands as well, with nearly 13 km (8 mi) of beach likely lost due to shoreline hardening on Maui (Makai Engineering, Inc. and Sea Engineering, Inc., 1991). Causes of coastal erosion and beach loss in Hawaii are numerous but, unfortunately, poorly understood and rarely quantified. Construction of shoreline protection structures limits coastal land loss, but does not alleviate beach loss and may actually accelerate the problem by prohibiting sediment deposition in front of the structures. Other factors contributing to beach loss include: a) reduced sediment supply; b) large storms; and, c) sea-level rise. Reduction in sand supply, either from landward or seaward (primarily reef) sources, can have a myriad of causes. Obvious causes such as beach sand mining and emplacement of structures that interrupt natural sediment transport pathways or prevent access to backbeach sand deposits, remove sediment from the active littoral system. More complex issues of sediment supply can be related to reef health and carbonate production which, in turn, may be linked to changes in water quality. Second, the accumulated effect of large storms is to transport sediment beyond the littoral system. Third, rising sea level leads to a natural landward migration of the shoreline. Dramatic examples of coastal erosion, such as houses and roads falling into the sea, are rare in Hawaii, but the impact of erosion is still very serious. The signs of erosion are much more subtle and typically start as a "temporary" hardening structure designed to mitigate an immediate problem which, eventually, results in a proliferation of structures along a stretch of coast. The natural ability of the sandy shoreline to respond to changes in wave climate is lost. The overall goals of this study are to document the coastal erosion history in Hawaii, determine the causal factors of that erosion, provide high-quality data for other "end-users" in applied studies (i.e. coastal engineers, planners, and managers), and increase our general understanding of low-latitude coastal geologic development. This project involves close cooperation between the USGS Coastal and Marine Geology Program and the University of Hawaii.
Introductory Geological Mapwork--An Active Learning Classroom
ERIC Educational Resources Information Center
Drennan, Gillian R.; Evans, Mary Y.
2011-01-01
First year Geology students at the University of the Witwatersrand experience problems with both three-dimensional and "four-dimensional" (or time) visualization when attempting to interpret geological maps. These difficulties have been addressed by the introduction of hands-on modeling exercises, which allow students to construct…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest A. Mancini
The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been essentially completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The model represents an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic model served as the framework for the simulations. A technology workshop on reservoir characterization and modeling at Appleton and Vocation Fields was conducted to transfer the results of the project to the petroleum industry.« less
Regional Geology Web Map Application Development: Javascript v2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Glenn
This is a milestone report for the FY2017 continuation of the Spent Fuel, Storage, and Waste, Technology (SFSWT) program (formerly Used Fuel Disposal (UFD) program) development of the Regional Geology Web Mapping Application by the Idaho National Laboratory Geospatial Science and Engineering group. This application was developed for general public use and is an interactive web-based application built in Javascript to visualize, reference, and analyze US pertinent geological features of the SFSWT program. This tool is a version upgrade from Adobe FLEX technology. It is designed to facilitate informed decision making of the geology of continental US relevant to themore » SFSWT program.« less
Arizona Geology Trip - February 25-28, 2008
NASA Technical Reports Server (NTRS)
Thomas, Gretchen A.; Ross, Amy J.
2008-01-01
A variety of hardware developers, crew, mission planners, and headquarters personnel traveled to Gila Bend, Arizona, in February 2008 for a CxP Lunar Surface Systems Team geology experience. Participating in this field trip were the CxP Space Suit System (EC5) leads: Thomas (PLSS) and Ross (PGS), who presented the activities and findings learned from being in the field during this KC. As for the design of a new spacesuit system, this allowed the engineers to understand the demands this type of activity will have on NASA's hardware, systems, and planning efforts. The engineers also experienced the methods and tools required for lunar surface activity.
42 CFR 65a.4 - What are the program requirements?
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Basic biological, chemical, and/or physical methods to reduce the amount and toxicity of these... occupational health and safety and in public health and engineering aspects of hazardous waste control; and/or (2) Graduate training in the geosciences, including hydrogeology, geological engineering, geophysics...
42 CFR 65a.4 - What are the program requirements?
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Basic biological, chemical, and/or physical methods to reduce the amount and toxicity of these... occupational health and safety and in public health and engineering aspects of hazardous waste control; and/or (2) Graduate training in the geosciences, including hydrogeology, geological engineering, geophysics...
42 CFR 65a.4 - What are the program requirements?
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Basic biological, chemical, and/or physical methods to reduce the amount and toxicity of these... occupational health and safety and in public health and engineering aspects of hazardous waste control; and/or (2) Graduate training in the geosciences, including hydrogeology, geological engineering, geophysics...
42 CFR 65a.4 - What are the program requirements?
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Basic biological, chemical, and/or physical methods to reduce the amount and toxicity of these... occupational health and safety and in public health and engineering aspects of hazardous waste control; and/or (2) Graduate training in the geosciences, including hydrogeology, geological engineering, geophysics...
42 CFR 65a.4 - What are the program requirements?
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Basic biological, chemical, and/or physical methods to reduce the amount and toxicity of these... occupational health and safety and in public health and engineering aspects of hazardous waste control; and/or (2) Graduate training in the geosciences, including hydrogeology, geological engineering, geophysics...
Geologic Setting of Mosul Dam and Its Engineering Implications
2007-09-01
thought that an increase in vol- ume, produced during alteration of interbedded anhydrite to gypsum, generated sufficient pressure to fracture the...construction.. ..................................................................23 Figure 8. Geologic sections with water- pressure test values and...contains fragments or clasts of limestone, dolomite , or larger pieces of insoluble rocks of collapsed material. The upper portion of the accumulation
Publications - GMC 388 | Alaska Division of Geological & Geophysical
DGGS GMC 388 Publication Details Title: Core photographs of the Cominco DDH-1 through DDH-4 boreholes the Cominco DDH-1 through DDH-4 boreholes, NAP Cu-Zn Prospect, Dillingham Quadrangle, Alaska: Alaska Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska
Publications - GMC 387 | Alaska Division of Geological & Geophysical
Resources, 2011, Core descriptions and assay results from the Cominco DDH-1 through DDH-5 boreholes, NAP Cu Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska DGGS GMC 387 Publication Details Title: Core descriptions and assay results from the Cominco DDH-1
Some Expected Mechanical Characteristics of Lunar Dust: A Geological View
NASA Technical Reports Server (NTRS)
Rickman, Doug; Street, Kenneth W.
2008-01-01
The engineering properties of the lunar regolith reflect aspects of the original parent rock and the consequences of hypervelocity meteor bombardment. Compared to the Earth the geologic nature of the lunar regolith is quite distinct. On scales relevant to machinery, heterogeneity with respect to size and composition is much higher. But the total range in composition is much more restricted. Both facts have implications for predictions of properties, such as abrasion, which will be required by design engineers for constructing equipment for lunar use. Abrasion is related to hardness and hardness is a commonly measured property for both minerals and engineering materials. Although different hardness scales are routinely employed for minerals and engineering materials, a significant amount of literature is available relating the two. In this paper we discuss how to relate hardness to abrasion for the design of lunar equipment. We also indicate how abundant the various mineral phases are and typical size distributions for lunar regolith.
ERIC Educational Resources Information Center
Wilson, Meredith
2012-01-01
Geologic field trips are among the most beneficial learning experiences for students as they engage the topic of geology, but they are also difficult environments to maximize learning. This action research study explored one facet of the problems associated with teaching geology in the field by attempting to improve the transition of undergraduate…
NASA Astrophysics Data System (ADS)
Zhu, Boqin
2015-08-01
The purpose of using unmanned aerial vehicle (UAV) remote sensing application in Five-hundred-meter aperture spherical telescope (FAST) project is to dynamically record the construction process with high resolution image, monitor the environmental impact, and provide services for local environmental protection and the reserve immigrants. This paper introduces the use of UAV remote sensing system and the course design and implementation for the FAST site. Through the analysis of the time series data, we found that: (1) since the year 2012, the project has been widely carried out; (2) till 2013, the internal project begun to take shape;(3) engineering excavation scope was kept stable in 2014, and the initial scale of the FAST engineering construction has emerged as in the meantime, the vegetation recovery went well on the bare soil area; (4) in 2015, none environmental problems caused by engineering construction and other engineering geological disaster were found in the work area through the image interpretation of UAV images. This paper also suggested that the UAV technology need some improvements to fulfill the requirements of surveying and mapping specification., including a new data acquisition and processing measures assigned with the background of highly diverse elevation, usage of telephoto camera, hierarchical photography with different flying height, and adjustment with terrain using the joint empty three settlement method.
Implicit Three-Dimensional Geo-Modelling Based on HRBF Surface
NASA Astrophysics Data System (ADS)
Gou, J.; Zhou, W.; Wu, L.
2016-10-01
Three-dimensional (3D) geological models are important representations of the results of regional geological surveys. However, the process of constructing 3D geological models from two-dimensional (2D) geological elements remains difficult and time-consuming. This paper proposes a method of migrating from 2D elements to 3D models. First, the geological interfaces were constructed using the Hermite Radial Basis Function (HRBF) to interpolate the boundaries and attitude data. Then, the subsurface geological bodies were extracted from the spatial map area using the Boolean method between the HRBF surface and the fundamental body. Finally, the top surfaces of the geological bodies were constructed by coupling the geological boundaries to digital elevation models. Based on this workflow, a prototype system was developed, and typical geological structures (e.g., folds, faults, and strata) were simulated. Geological modes were constructed through this workflow based on realistic regional geological survey data. For extended applications in 3D modelling of other kinds of geo-objects, mining ore body models and urban geotechnical engineering stratum models were constructed by this method from drill-hole data. The model construction process was rapid, and the resulting models accorded with the constraints of the original data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.
2011-02-01
This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs,more » and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.« less
D Geological Framework Models as a Teaching Aid for Geoscience
NASA Astrophysics Data System (ADS)
Kessler, H.; Ward, E.; Geological ModelsTeaching Project Team
2010-12-01
3D geological models have great potential as a resource for universities when teaching foundation geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for all students of geology. Today’s earth science students use a variety of skills and processes during their learning experience including the application of schema’s, spatial thinking, image construction, detecting patterns, memorising figures, mental manipulation and interpretation, making predictions and deducing the orientation of themselves and the rocks. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth. Learning issues faced by students may also be encountered by experts, policy managers, and stakeholders when dealing with environmental problems. Therefore educational research of student learning in earth science may also improve environmental decision making. 3D geological framework models enhance the learning of Geosciences because they: ● enable a student to observe, manipulate and interpret geology; in particular the models instantly convert two-dimensional geology (maps, boreholes and cross-sections) into three dimensions which is a notoriously difficult geospatial skill to acquire. ● can be orientated to whatever the user finds comfortable and most aids recognition and interpretation. ● can be used either to teach geosciences to complete beginners or add to experienced students body of knowledge (whatever point that may be at). Models could therefore be packaged as a complete educational journey or students and tutor can select certain areas of the model or educational material to incorporate it into an existing area of the syllabus such as a field trip, project work or a certain taxing geological concept such as dip and strike. ● can easily be utilised by students unable to attend university conventionally (illness or disability), distance learning students or for extra curricular activities and continuing professional development courses. ● can be used repeatedly and in such a way as to continually build on geoscience aspects - this practice will improve the student’s geospatial skills. ● can be compared with that seen directly in the field which aids the student in recognising particular patterns or sequences. It also demonstrates how different and complex geology looks in the field and thus how important it is not to rely on models alone. ● are interactive and the accompanying educational material is engaging, dealing with authentic, contemporary scientific problems meaning the student will have to ask questions, think critically and solve problems. ● can often be more practical and better financial alternatives to some teaching methods currently employed. ● incorporate strategies where students first explore, are then introduced to terminology and concepts, finally students apply their knowledge to different, but related problems. This can be further reinforced and explored with fellow students.
Publications - Search Help | Alaska Division of Geological & Geophysical
main content Publications Search Help General Hints The search engine will retrieve those publications publication's title is known, enter those words in the title input box. The search engine will look for all of .). Publication Year The search engine will retrieve all publication years by default. Select one publication year
ERIC Educational Resources Information Center
White, Stan M.
1979-01-01
Drilling during 1978 focused on three major geologic problems: the nature and origin of the oceanic crust, the nature and geologic history of the active continental margins, and the oceanic paleoenvironment. (Author/BB)
Cressman, Earle Rupert; Noger, Martin C.
1981-01-01
In 1960, the U.S. Geological Survey and the Kentucky Geological Survey began a program to map the State geologically at a scale of 1:24,000 and to publish the maps as 707 U.S. Geological Survey Geologic Quadrangle Maps. Fieldwork was completed by the spring of 1977, and all maps were published by December 1978. Geologic mapping of the State was proposed by the Kentucky Society of Professional Engineers in 1959. Wallace W. Hagan, Director and State Geologist of the Kentucky Geological Survey, and Preston McGrain, Assistant State Geologist, promoted support for the proposal among organizations such as Chambers of Commerce, industrial associations, professional societies, and among members of the State government. It was also arranged for the U.S. Geological Survey to supply mapping personnel and to publish the maps; the cost would be shared equally by the two organizations. Members of the U.S. Geological Survey assigned to the program were organized as the Branch of Kentucky Geology. Branch headquarters, including an editorial staff, was at Lexington, Ky., but actual mapping was conducted from 18 field offices distributed throughout the State. The Publications Division of the U.S. Geological Survey established a cartographic office at Lexington to prepare the maps for publication. About 260 people, including more than 200 professionals, were assigned to the Branch of Kentucky Geology by the U.S. Geological Survey at one time or another. The most geologists assigned any one year was 61. To complete the mapping and ancillary studies, 661 professional man-years were required, compared with an original estimate of 600 man-years. A wide variety of field methods were used, but most geologists relied on the surveying altimeter to obtain elevations. Surface data were supplemented by drill-hole records, and several dozen shallow diamond-drill holes were drilled to aid the mapping. Geologists generally scribed their own maps, with a consequent saving of publication costs. Paleontologists and stratigraphers of the U.S. Geological Survey cooperated closely with the program. Paleontologic studies were concentrated in the Ordovician of central Kentucky, the Pennsylvanian of eastern and western Kentucky, and the Mesozoic and Cenozoic of westernmost Kentucky. In addition to financial support, the Kentucky Geological Survey provided economic data, stratigraphic support, and drillhole records to the field offices. Geologists of the State Survey made subsurface structural interpretations, constructed bedrock topography maps, and mapped several quadrangles. Some of the problems encountered were the inadequacy of much of the existing stratigraphic nomenclature, the uneven quality of some of the mapping, and the effects of relative isolation on the professional development of some of the geologists. The program cost a total of $20,927,500. In terms of 1960 dollars, it cost $16,035,000; this compares with an original estimate of $12,000,000. Although it is difficult to place a monetary value on the geologic mapping, the program has contributed to newly discovered mineral wealth, jobs, and money saved by government and industry. The maps are used widely in the exploration for coal, oil and gas, fluorspar, limestone, and clay. The maps are also used in planning highways and locations of dams, in evaluating foundation and excavation conditions, in preparing environmental impact statements, and in land-use planning.
Engineering students' experiences and perceptions of workplace problem solving
NASA Astrophysics Data System (ADS)
Pan, Rui
In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.
NASA Astrophysics Data System (ADS)
Chiessi, Vittorio; D'Orefice, Maurizio; Scarascia Mugnozza, Gabriele; Vitale, Valerio; Cannese, Christian
2010-07-01
This paper describes the results of a rockfall hazard assessment for the village of San Quirico (Abruzzo region, Italy) based on an engineering-geological model. After the collection of geological, geomechanical, and geomorphological data, the rockfall hazard assessment was performed based on two separate approaches: i) simulation of detachment of rock blocks and their downhill movement using a GIS; and ii) application of geostatistical techniques to the analysis of georeferenced observations of previously fallen blocks, in order to assess the probability of arrival of blocks due to potential future collapses. The results show that the trajectographic analysis is significantly influenced by the input parameters, with particular reference to the coefficients of restitution values. In order to solve this problem, the model was calibrated based on repeated field observations. The geostatistical approach is useful because it gives the best estimation of point-source phenomena such as rockfalls; however, the sensitivity of results to basic assumptions, e.g. assessment of variograms and choice of a threshold value, may be problematic. Consequently, interpolations derived from different variograms have been used and compared among them; hence, those showing the lowest errors were adopted. The data sets which were statistically analysed are relevant to both kinetic energy and surveyed rock blocks in the accumulation area. The obtained maps highlight areas susceptible to rock block arrivals, and show that the area accommodating the new settlement of S. Quirico Village has the highest level of hazard according to both probabilistic and deterministic methods.
Geological considerations in hazardouswaste disposal
NASA Astrophysics Data System (ADS)
Cartwright, K.; Gilkeson, R. H.; Johnson, T. M.
1981-12-01
Present regulations assume that long-term isolation of hazardous wastes — including toxic chemical, biological, radioactive, flammable and explosive wastes — may be effected by disposal in landfills that have liners of very low hydraulic conductivity. In reality, total isolation of wastes in humid areas is not possible; some migration of leachate from wastes buried in the gound will always occur. Regulations should provide performance standards applicable on a site-by-site basis rather than rigid criteria for site selection and design. The performance standards should take into account several factors: (1) the categories, segregation, degradation and toxicity of the wastes; (2) the site hydrogeology, which governs the direction and rate of contaminant transport; (3) the attenuation of contaminants by geochemical interactions with geologic materials; and (4) the release rate of unattenuated pollutants to surface or groundwater. An adequate monitoring system is essential. The system should both test the extent to which the operation of the site meets performance standards and provide sufficient warning of pollution problems to allow implementation of remedial measures. In recent years there has been a trend away from numerous, small disposal sites toward fewer and larger sites. The size of a disposal site should be based on the attenuation capacity of the geologic material, which has a finite, though generally not well-defined, limit. For slowly degradable wastes, engineered sites with leachate-collection systems appear to be only a temporary solution since the leachate collected will also require final disposal.
Geological considerations in hazardouswaste disposal
Cartwright, K.; Gilkeson, R.H.; Johnson, T.M.
1981-01-01
Present regulations assume that long-term isolation of hazardous wastes - including toxic chemical, biological, radioactive, flammable and explosive wastes - may be effected by disposal in landfills that have liners of very low hydraulic conductivity. In reality, total isolation of wastes in humid areas is not possible; some migration of leachate from wastes buried in the gound will always occur. Regulations should provide performance standards applicable on a site-by-site basis rather than rigid criteria for site selection and design. The performance standards should take into account several factors: (1) the categories, segregation, degradation and toxicity of the wastes; (2) the site hydrogeology, which governs the direction and rate of contaminant transport; (3) the attenuation of contaminants by geochemical interactions with geologic materials; and (4) the release rate of unattenuated pollutants to surface or groundwater. An adequate monitoring system is essential. The system should both test the extent to which the operation of the site meets performance standards and provide sufficient warning of pollution problems to allow implementation of remedial measures. In recent years there has been a trend away from numerous, small disposal sites toward fewer and larger sites. The size of a disposal site should be based on the attenuation capacity of the geologic material, which has a finite, though generally not well-defined, limit. For slowly degradable wastes, engineered sites with leachate-collection systems appear to be only a temporary solution since the leachate collected will also require final disposal. ?? 1981.
Geological Time, Biological Events and the Learning Transfer Problem
ERIC Educational Resources Information Center
Johnson, Claudia C.; Middendorf, Joan; Rehrey, George; Dalkilic, Mehmet M.; Cassidy, Keely
2014-01-01
Comprehension of geologic time does not come easily, especially for students who are studying the earth sciences for the first time. This project investigated the potential success of two teaching interventions that were designed to help non-science majors enrolled in an introductory geology class gain a richer conceptual understanding of the…
Rock mechanics. Practical use in civil engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, S.
1985-01-01
Because of the recent development of computer technology, a systematic analysis of the stability and behavior of rock is gradually progressing as rock mechanics. Although its progress is still behind that of engineering geology, the book aims to contribute to the systematization of the subject. Examples of design are given.
NASA Astrophysics Data System (ADS)
Young, Kelsey; Hurtado, José M.; Bleacher, Jacob E.; Brent Garry, W.; Bleisath, Scott; Buffington, Jesse; Rice, James W.
2013-10-01
The tools used by crews while on extravehicular activity during future missions to other bodies in the Solar System will be a combination of traditional geologic field tools (e.g. hammers, rakes, sample bags) and state-of-the-art technologies (e.g. high definition cameras, digital situational awareness devices, and new geologic tools). In the 2010 Desert Research and Technology Studies (RATS) field test, four crews, each consisting of an astronaut/engineer and field geologist, tested and evaluated various technologies during two weeks of simulated spacewalks in the San Francisco volcanic field, Arizona. These tools consisted of both Apollo-style field geology tools and modern technological equipment not used during the six Apollo lunar landings. The underlying exploration driver for this field test was to establish the protocols and technology needed for an eventual manned mission to an asteroid, the Moon, or Mars. The authors of this paper represent Desert RATS geologist crewmembers as well as two engineers who worked on technology development. Here we present an evaluation and assessment of these tools and technologies based on our first-hand experience of using them during the analog field test. We intend this to serve as a basis for continued development of technologies and protocols used for conducting planetary field geology as the Solar System exploration community moves forward into the next generation of planetary surface exploration.
The Energy Lands Program of the U.S. Geological Survey, fiscal year 1976
Maberry, John O.
1978-01-01
The Energy Lands Program of the U.S. Geological Survey comprises several projects that conduct basic and interpretive earth-science investigations into the environmental aspects of energy-resource recovery, transmission, and conversion. More than half the coal reserves of the United States occur west of the Mississippi River; therefore, the program concentrates mostly on coal-producing regions in the Western interior. Additional studies involve the oil-shale region in Colorado, Wyoming, and Utah, and coal-related work in Alaska and Appalachia. The work is done both by USGS personnel and under USGS grants and contracts through the Energy Lands Program to universities, State Geological Surveys, and private individuals. Maps and reports characterizing many aspects of environmental earth science are being prepared for areas of Alaska, Montana, North Dakota, Wyoming, Utah, Colorado, New Mexico, Arizona, Oklahoma, Kansas, and Texas. Types of studies underway include bedrock, surficial, and interpretive geology; engineering geology, geochemistry of surface materials and plants; climatic conditions as they influence rehabilitation potential of mined lands; and feasibility of surface vs. underground mining. The purpose common to all investigations in the Energy Lands Program is to provide timely earth-science information for use by managers, policy-makers, engineers, scientists, planners, and others, in order to contribute to an environmentally sound, orderly, and safe development of the energy resources of the Nation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Sheng; Santamarina, J. Carlos
Fine-grained sediments host more than 90 percent of global gas hydrate accumulation. However, hydrate formation in clay-dominated sediments is less understood and characterized than other types of hydrate occurrence. There is an inadequate understanding of hydrate formation mechanisms, segregation structures, hydrate lens topology, system connectivity, and physical macro-scale properties of clay-dominated hydrate-bearing sediments. This situation hinders further analyses of the global carbon budget as well as engineering challenges/solutions related to hydrate instability and production. This project studies hydrate-bearing clay-dominated sediments with emphasis on the enhanced fundamental understanding of hydrate formation and resulting morphology, the development laboratory techniques to emulate naturalmore » hydrate formations, the assessment of analytical tools to predict physical properties, the evaluation of engineering and geological implications, and the advanced understanding of gas production potential from finegrained sediments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyrak-Nolte, Laura J.
Carbonate reservoirs pose a scientific and engineering challenge to geophysical prediction and monitoring of fluid flow in the subsurface. Difficulties in interpreting hydrological, reservoir and other exploration data arise because carbonates are composed of a hierarchy of geological structures, constituents and processes that span a wide spectrum of length and time scales. What makes this problem particularly challenging is that length scales associated with physical structure and processes are often not discrete, but overlap, preventing the definition of discrete elements at one scale to become the building blocks of the next scale. This is particularly true for carbonates where complicatedmore » depositional environments, subsequent post-deposition diagenesis and geochemical interactions result in pores that vary in scale from submicron to centimeters to fractures, variation in fabric composition with fossils, minerals and cement, as well as variations in structural features (e.g., oriented inter- and intra layered - interlaced bedding and/or discontinuous rock units). In addition, this complexity is altered by natural and anthropogenic processes such as changes in stress, fluid content, reactive fluid flow, etc. Thus an accurate geophysical assessment of the flow behavior of carbonate reservoirs requires a fundamental understanding of the interplay of textural and structural features subjected to physical processes that affect and occur on various length and time scales. To address this complexity related to carbonates, a Hedberg conference on “Fundamental Controls on Flow in Carbonates” was held July 8 to 13, 2012, to bring together industry and academic scientists to stimulate innovative ideas that can accelerate research advances related to flow prediction and recovery in carbonate reservoirs. Participants included scientist and engineers from multiple disciplines (such as hydrology, structural geology, geochemistry, reservoir engineering, geophysics, geomechanics, numerical modeling, physical experiments, sedimentology, well-testing, statistics, mathematics, visualization, etc.) who encompass experience as well as the latest advances in these multi-faceted fields. One of the goals was to include early career scientists and engineers (post-doctoral fellows, assistant professors, etc.). With this grant 10 early career scientists and engineers were supported to attend the conference. This reports contains a brief overview of the conference and the list of support participants supported by this grant. Full details of the outcomes of the conference are given in the publication found in the Attachment section of this report.« less
ERIC Educational Resources Information Center
Özyurt, Özcan
2015-01-01
Problem solving is an indispensable part of engineering. Improving critical thinking dispositions for solving engineering problems is one of the objectives of engineering education. In this sense, knowing critical thinking and problem solving skills of engineering students is of importance for engineering education. This study aims to determine…
NASA Astrophysics Data System (ADS)
Habibi, Tahereh; Ruban, Dmitry A.
2017-09-01
The ideas of geological heritage and geological diversity have become very popular in the modern science. These are usually applied to geological domains or countries, provinces, districts, etc. Additionally, it appears to be sensible to assess heritage value of geological bodies. The review of the available knowledge and the field investigation of the Gachsaran Formation (lower Miocene) in southwest Iran permit to assign its features and the relevant phenomena to as much as 10 geological heritage types, namely stratigraphical, sedimentary, palaeontological, palaeogeographical, geomorphological, hydrogeological, engineering, structural, economical, and geohistorical types. The outstanding diversity of the features of this formation determines its high heritage value and the national rank. The geological heritage of the Gachsaran Formation is important to scientists, educators, and tourists. The Papoon and Abolhaiat sections of this formation are potential geological heritage sites, although these do not represent all above-mentioned types. The large territory, where the Gachsaran Formation outcrop, has a significant geoconservation and geotourism potential, and further inventory of geosites on this territory is necessary. Similar studies of geological bodies in North Africa and the Middle East can facilitate better understanding of the geological heritage of this vast territory.
Geostatistical regularization operators for geophysical inverse problems on irregular meshes
NASA Astrophysics Data System (ADS)
Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA
2018-05-01
Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.
A case study for a digital seabed database: Bohai Sea engineering geology database
NASA Astrophysics Data System (ADS)
Tianyun, Su; Shikui, Zhai; Baohua, Liu; Ruicai, Liang; Yanpeng, Zheng; Yong, Wang
2006-07-01
This paper discusses the designing plan of ORACLE-based Bohai Sea engineering geology database structure from requisition analysis, conceptual structure analysis, logical structure analysis, physical structure analysis and security designing. In the study, we used the object-oriented Unified Modeling Language (UML) to model the conceptual structure of the database and used the powerful function of data management which the object-oriented and relational database ORACLE provides to organize and manage the storage space and improve its security performance. By this means, the database can provide rapid and highly effective performance in data storage, maintenance and query to satisfy the application requisition of the Bohai Sea Oilfield Paradigm Area Information System.
Processes and controls in swelling anhydritic clay rocks
NASA Astrophysics Data System (ADS)
Mutschler, Thomas; Blum, Philipp; Butscher, Christoph
2015-04-01
Referring to the swelling of anhydritic clay rocks in tunneling, Leopold Müller-Salzburg noted in the third volume on tunneling of his fundamental text book on rock engineering that "a truly coherent explanation of these phenomena is still owing" (Müller-Salzburg 1978, p. 306). This valuation is still true after more than three decades of research in the field of swelling anhydritic clay rocks. One of the reasons is our limited knowledge of the processes involved in the swelling of such rocks, and of the geological, mineralogical, hydraulic, chemical and mechanical controls of the swelling. In this contribution, a review of processes in swelling anhydritic clay rocks and of associated controls is presented. Also numerical models that aim at simulating the swelling processes and controls are included in this review, and some of the remaining open questions are pointed out. By focusing on process-oriented work in this review, the presentation intends to stimulate further research across disciplines in the field of swelling anhydritic clay rocks to finally get a step further in managing the swelling problem in geotechnical engineering projects. Keywords: swelling; anhydritic clay rocks; review
NASA Astrophysics Data System (ADS)
Tynan, M. C.; Russell, G. P.; Perry, F.; Kelley, R.; Champenois, S. T.
2017-12-01
This global survey presents a synthesis of some notable geotechnical and engineering information reflected in four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies, sites, or disposal facilities; 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding deep underground "facilities", history, activities, and plans. In general, the interactive maps and database [http://gis.inl.gov/globalsites/] provide each facility's approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not all encompassing, it is a comprehensive review of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development as a communication tool applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.
Multidisciplinary analysis of Skylab photography for highway engineering purposes. [Maine
NASA Technical Reports Server (NTRS)
Stoeckeler, E. G.; Woodman, R. G. (Principal Investigator); Farrell, R. S.
1975-01-01
The author has identified the following significant results. The greatly increased resolution of ground features by Skylab as compared with LANDSAT is considered to be best in the S190B high resolution film, followed by S190A camera stations 4, 5, and 6 respectfully. Results of the study of vegetation damage sites using data derived from S190A film were disappointing. The major cause of detection problems is the graininess of the CIR film. Good results were achieved for the hydrology-land use study. Both camera systems gave better agreement with the ground truth than did LANDSAT imagery. Surficial geology and glacial landform areas were clearly visible in single scenes. Several previously unmapped or unknown features were detected, especially in eastern coastal Maine.
An overview of field-specific designs of microbial EOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, E.P.; Bala, G.A.; Fox, S.L.
1995-12-31
The selection and design of an MEOR process for application in a specific field involves geological, reservoir, and biological characterization. Microbially mediated oil recovery mechanisms (bigenic gas, biopolymers, and biosurfactants) are defined by the types of microorganisms used. The engineering and biological character of a given reservoir must be understood to correctly select a microbial system to enhance oil recovery. This paper discusses the methods used to evaluate three fields with distinct characteristics and production problems for the applicability of MEOR would not be applicable in two of the three fields considered. The development of a microbial oil recovery processmore » for the third field appeared promising. Development of a bacterial consortium capable of producing the desired metabolites was initiated, and field isolates were characterized.« less
Abstracts for the Planetary Geology Field Conference on Aeolian Processes
NASA Technical Reports Server (NTRS)
Greeley, R. (Editor); Black, D. (Editor)
1978-01-01
The Planetary Geology Field Conference on Aeolian Processes was organized at the request of the Planetary Geology Program office of the National Aeronautics and Space Administration to bring together geologists working on aeolian problems on earth and planetologists concerned with similar problems on the planets. Abstracts of papers presented at the conference are arranged herein by alphabetical order of the senior author. Papers fall into three broad categories: (1) Viking Orbiter and Viking Lander results on aeolian processes and/or landforms on Mars, (2) laboratory results on studies of aeolian processes, and (3) photogeology and field studies of aeolian processes on Earth.
The emerging Medical and Geological Association.
Finkelman, R.B.; Centeno, J.A.; Selinus, O.
2005-01-01
The impact on human health by natural materials such as water, rocks, and minerals has been known for thousands of years but there have been few systematic, multidisciplinary studies on the relationship between geologic materials and processes and human health (the field of study commonly referred to as medical geology). In the past few years, however, there has been a resurgence of interest in medical geology. Geoscientists working with medical researchers and public health scientists have made important contributions to understanding novel exposure pathways and causes of a wide range of environmental health problems such as: exposure to toxic levels of trace essential and non-essential elements such as arsenic and mercury; trace element deficiencies; exposure to natural dusts and to radioactivity; naturally occurring organic compounds in drinking water; volcanic emissions, etc. By linking with biomedical/public health researchers geoscientists are finally taking advantage of this age-old opportunity to help mitigate environmental health problems. The International Medical Geology Association has recently been formed to support this effort.
The Emerging Medical and Geological Association
Finkelman, Robert B; Centeno, Jose A; Selinus, Olle
2005-01-01
The impact on human health by natural materials such as water, rocks, and minerals has been known for thousands of years but there have been few systematic, multidisciplinary studies on the relationship between geologic materials and processes and human health (the field of study commonly referred to as medical geology). In the past few years, however, there has been a resurgence of interest in medical geology. Geoscientists working with medical researchers and public health scientists have made important contributions to understanding novel exposure pathways and causes of a wide range of environmental health problems such as: exposure to toxic levels of trace essential and non-essential elements such as arsenic and mercury; trace element deficiencies; exposure to natural dusts and to radioactivity; naturally occurring organic compounds in drinking water; volcanic emissions, etc. By linking with biomedical/public health researchers geoscientists are finally taking advantage of this age-old opportunity to help mitigate environmental health problems. The International Medical Geology Association has recently been formed to support this effort. PMID:16555612
Separating the Representation from the Science: Training Students in Comprehending 3D Diagrams
NASA Astrophysics Data System (ADS)
Bemis, K. G.; Silver, D.; Chiang, J.; Halpern, D.; Oh, K.; Tremaine, M.
2011-12-01
Studies of students taking first year geology and earth science courses at universities find that a remarkable number of them are confused by the three-dimensional representations used to explain the science [1]. Comprehension of these 3D representations has been found to be related to an individual's spatial ability [2]. A variety of interactive programs and animations have been created to help explain the diagrams to beginning students [3, 4]. This work has demonstrated comprehension improvement and removed a gender gap between male (high spatial) and female (low spatial) students [5]. However, not much research has examined what makes the 3D diagrams so hard to understand or attempted to build a theory for creating training designed to remove these difficulties. Our work has separated the science labeling and comprehension of the diagrams from the visualizations to examine how individuals mentally see the visualizations alone. In particular, we asked subjects to create a cross-sectional drawing of the internal structure of various 3D diagrams. We found that viewing planes (the coordinate system the designer applies to the diagram), cutting planes (the planes formed by the requested cross sections) and visual property planes (the planes formed by the prominent features of the diagram, e.g., a layer at an angle of 30 degrees to the top surface of the diagram) that deviated from a Cartesian coordinate system imposed by the viewer caused significant problems for subjects, in part because these deviations forced them to mentally re-orient their viewing perspective. Problems with deviations in all three types of plane were significantly harder than those deviating on one or two planes. Our results suggest training that does not focus on showing how the components of various 3D geologic formations are put together but rather training that guides students in re-orienting themselves to deviations that differ from their right-angle view of the world, e.g., by showing how a particular 3D visualization evolves from their Cartesian representation of the world. 1. Y. Kali and N. Orion, Spatial abilities of high-school students in the perception of geologic structures, Journal of Research in Science Teaching, 33, 4, 369-391, 1996. 2. A. Black, Spatial ability and earth science conceptual understanding, Journal of Geoscience Education, 53, 402-414, 2005 3. S. A. Sorby and B. J. Baartmans, The development and assessment of a course for enhancing the 3-D spatial visualization skills of first-year engineering students, Journal of Engineering Education Washington, 89, 301-308, 2000. 4. Y. Kali, N. Orion and E. Mazor, Software for assisting high-school students in the spatial perception of geological structures, Journal of Geoscience Education,45, 10-20, 1997. 5. D. Ben-Chaim. G. Lappan, and R. T. Houang, The effect of instruction on spatial visualization skills of middle school boys and girls, American Educational Research Journal, 25, 1, 51-71, 1988.
From creekology to geology: Finding and conserving oil on the Southern Plains, 1859--1930
NASA Astrophysics Data System (ADS)
Frehner, Brian
This dissertation tells the story of the oil industry's westward migration from Pennsylvania to the Southern Plains states of Kansas, Oklahoma, and Texas and how different environments in these regions influenced prospectors' methods for finding oil. Petroleum engineers, geologists, and businessmen take center stage throughout the narrative, and I emphasize how their biases, values, and interests influenced the kind of knowledge produced. At the heart of this story lay a contest between professional, university-trained engineers and geologists and so-called practical oil men, or "wildcatters," who received their training less formally from surveying the landscape. Although both groups performed field work in their search for oil, I explore how each learned very different information from that activity. Wildcatters met with so much success that the oil industry failed to take geologists seriously for approximately fifty years after 1860 when the Pennsylvania oil boom started, and I argue that the environment played an important role in this contest for authority between oil prospectors who learned their trade through hands-on experience and those who learned it primarily in the classroom. I continue this theme by showing how the environment actively influenced the growing acceptance of geologists as the oil industry migrated west and companies with interests in Kansas, Oklahoma, and Texas began hiring geologists and establishing their own geological research departments. A pioneer in the use of geology, Henry L. Doherty, controlled Cities Service holding company and dispatched an army of geologists who discovered significant oil strikes in these states. Doherty's embrace of university-trained experts led him to advocate conservation of oil on the basis of geological and engineering principles. Practical men in Oklahoma, however, recognized the need for conservation even earlier and succeeded in lobbying their state legislature for laws which proved effective long before geologists and engineers entered the industry en masse. I show how the political battle over conservation between practical men and petroleum engineers and geologists underscores the complex and decades-long relationship between the oil industry and the natural world.
Let us keep observing and play in sand boxes (Henry Darcy Medal Lecture)
NASA Astrophysics Data System (ADS)
Illangasekare, T. H.
2012-04-01
Henry Darcy was a civil engineer recognized for a number of technical achievements and scientific discoveries. The sand column experiments for which he is known revealed the linear relationship that exists between fluid motion and driving forces at low velocities. Freeze and Back (1983) stated, ''The experiments carried out by Darcy with the help of his assistant, Ritter, in Dijon, France in 1855 and 1856 represent the beginning of groundwater hydrology as a quantitative science." Because of the prominence given to this experiment, two important facts behind Darcy's contributions to subsurface hydrology have not received much attention. First, Darcy was not only a good engineer, but he was also a highly respected scientist whose knowledge of both the fundamentals of fluid mechanics and the natural world of geology led to better conceptualizing and quantifying of groundwater processes at relevant scales to solve practical problems. The experiments for which he is known may have already been conceived, based on his theoretical understanding, and the results were anticipated (Brown 2002). Second, Darcy, through his contributions with Dupuit, showed that they understood hydrologeology at a regional scale and developed methods for quantification at the scale of geologic stratum (Ritz and Bobek, 2008). The primary thesis of this talk is that scientific contributions such as the one Darcy made require appreciation and a thorough understanding of fundamental theory coupled with observation and recording of phenomena both in nature and in the laboratory. Along with all of the significant theoretical, mathematical modeling, and computational advances we have made in the last several decades, laboratory experiments designed to observe phenomena and processes for better insight, accurate data generation, and hypothesis development are critically important to make scientific and engineering advances to address some of the emerging and societally important problems in hydrology and water resources engineering. Kleinhans et al. (2010) convincingly argued the same point, noting, "Many major issues of hydrology are open to experimental investigation." Current and emerging problems with water supply and their hydrologic implications are associated with sustainability of water as a resource for global food production, clean water for potable use, protection of human health, and impacts and implications of global warming and climate change on water resources. This talk will address the subsurface hydrologic science issues that are central to these problems and the role laboratory experimentation can play in helping to advance the basic knowledge. Improved understanding of fundamental flow, transport, reactive, and biological processes that occur at the pore-scale and their manifestation at different modeling and observational scales will continue to advance the subsurface science. Challenges also come from the need to integrate porous media systems with bio-geochemical and atmospheric systems, requiring observing and quantifying complex phenomena across interfaces (e.g., fluid/fluid in pores to land/atmospheric in the field). This talk will discuss how carefully designed and theory driven experiments at various test scales can play a central role in providing answers to critical scientific questions and how they will help to fill knowledge gaps. It will also be shown that careful observations will lead to the refinement of existing theories or the development of new ones. Focusing on the subsurface, the need to keep observing through controlled laboratory experimentation in various test scales from small cells to large sand boxes will be emphasized. How the insights obtained from such experiments will complement modeling and field investigations are highlighted through examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witherspoon, P.A.
The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much newmore » technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.« less
Internet-based information system of digital geological data providing
NASA Astrophysics Data System (ADS)
Yuon, Egor; Soukhanov, Mikhail; Markov, Kirill
2015-04-01
One of the Russian Federal аgency of mineral resources problems is to provide the geological information which was delivered during the field operation for the means of federal budget. This information should be present in the current, conditional form. Before, the leading way of presenting geological information were paper geological maps, slices, borehole diagrams reports etc. Technologies of database construction, including distributed databases, technologies of construction of distributed information-analytical systems and Internet-technologies are intensively developing nowadays. Most of geological organizations create their own information systems without any possibility of integration into other systems of the same orientation. In 2012, specialists of VNIIgeosystem together with specialists of VSEGEI started the large project - creating the system of providing digital geological materials with using modern and perspective internet-technologies. The system is based on the web-server and the set of special programs, which allows users to efficiently get rasterized and vectorised geological materials. These materials are: geological maps of scale 1:1M, geological maps of scale 1:200 000 and 1:2 500 000, the fragments of seamless geological 1:1M maps, structural zoning maps inside the seamless fragments, the legends for State geological maps 1:200 000 and 1:1 000 000, full author's set of maps and also current materials for international projects «Atlas of geological maps for Circumpolar Arctic scale 1:5 000 000» and «Atlas of Geologic maps of central Asia and adjacent areas scale 1:2 500 000». The most interesting and functional block of the system - is the block of providing structured and well-formalized geological vector materials, based on Gosgeolkart database (NGKIS), managed by Oracle and the Internet-access is supported by web-subsystem NGKIS, which is currently based on MGS-Framework platform, developed by VNIIgeosystem. One of the leading elements is the web-service, which realizes the interaction of all parts of the system and controls whole the way of the request from the user to the database and back, adopted to the GeoSciML and EarthResourceML view. The experience of creation the Internet-based information system of digital geological data providing, and also previous works, including the developing of web-service of NGKIS-system, allows to tell, that technological realization of presenting Russian geological-cartographical data with using of international standards is possible. While realizing, it could be some difficulties, associated with geological material depth. Russian informational geological model is more deep and wide, than foreign. This means the main problem of using international standards and formats: Russian geological data presentation is possible only with decreasing the data detalisation. But, such a problem becomes not very important, if the service publishes also Russian vocabularies, not associated with international vocabularies. In this case, the international format could be the interchange format to change data between Russian users. The integration into the international projects reaches developing of the correlation schemes between Russian and foreign classificators and vocabularies.
2010-11-21
The number of undergraduates funded by your agreement who graduated during this period and will receive scholarships or fellowships for further... geology and engineering – to understand and predict the multiscale behaviour of granular materials. Several pioneering achievements have led to...breakage. Purpose of the Research We have recently established, in close collaboration with experimentalists (from geology , physics
Publications - GMC 273 | Alaska Division of Geological & Geophysical
holes received at the GMC (1 box, holes N1 through N8) of the INEXCO Mining Company Nikolai Project , holes N1 through N8) of the INEXCO Mining Company Nikolai Project, McCarthy, Alaska that consist of core Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska
Expert vs. novice: Problem decomposition/recomposition in engineering design
NASA Astrophysics Data System (ADS)
Song, Ting
The purpose of this research was to investigate the differences of using problem decomposition and problem recomposition among dyads of engineering experts, dyads of engineering seniors, and dyads of engineering freshmen. Fifty participants took part in this study. Ten were engineering design experts, 20 were engineering seniors, and 20 were engineering freshmen. Participants worked in dyads to complete an engineering design challenge within an hour. The entire design process was video and audio recorded. After the design session, members participated in a group interview. This study used protocol analysis as the methodology. Video and audio data were transcribed, segmented, and coded. Two coding systems including the FBS ontology and "levels of the problem" were used in this study. A series of statistical techniques were used to analyze data. Interview data and participants' design sketches also worked as supplemental data to help answer the research questions. By analyzing the quantitative and qualitative data, it was found that students used less problem decomposition and problem recomposition than engineer experts in engineering design. This result implies that engineering education should place more importance on teaching problem decomposition and problem recomposition. Students were found to spend less cognitive effort when considering the problem as a whole and interactions between subsystems than engineer experts. In addition, students were also found to spend more cognitive effort when considering details of subsystems. These results showed that students tended to use dept-first decomposition and experts tended to use breadth-first decomposition in engineering design. The use of Function (F), Behavior (B), and Structure (S) among engineering experts, engineering seniors, and engineering freshmen was compared on three levels. Level 1 represents designers consider the problem as an integral whole, Level 2 represents designers consider interactions between subsystems, and Level 3 represents designers consider details of subsystems. The results showed that students used more S on Level 1 and 3 but they used less F on Level 1 than engineering experts. The results imply that engineering curriculum should improve the teaching of problem definition in engineering design because students need to understand the problem before solving it.
Volume I: Introduction and engineering aspects
Nicol, Allen H.; Flint, Delos E.; Saplis, Raymond A.
1957-01-01
This series of military geology reports on Okinawa is part of the Corps of Engineers Post Hostilities Mapping Program. The purpose of this survey is twofold. The first is to collect scientific information through field study; the second is to publish it in a form that is usable by the United States Armed Forces and Civil Administrators.
ERIC Educational Resources Information Center
Song, Ting; Becker, Kurt; Gero, John; DeBerard, Scott; DeBerard, Oenardi; Reeve, Edward
2016-01-01
The authors investigated the differences in using problem decomposition and problem recomposition between dyads of engineering experts, engineering seniors, and engineering freshmen. Participants worked in dyads to complete an engineering design challenge within 1 hour. The entire design process was video and audio recorded. After the design…
The role of the U.S. Geological Survey in Lake Michigan Diversion Accounting in Illinois, 1984-2010
Johnson, Kevin K.; Duncker, James J.; Jackson, P. Ryan
2012-01-01
The State of Illinois' annual withdrawl from Lake Michigan is limited by a U.S. Supreme Court decree. The U.S. Geological Survey (USGS) is responsible for monitoring flows in the Chicago area waterway system (CAWS) as part of the Lake Michigan Diversion Accounting (LMDA) overseen by the U.S. Army Corps of Engineers, Chicago District. Every five years, the USGS streamgage practices in the CAWS are reviewed by a committee of practicing engineers and academics to ensure that the best engineering practices are implemented in accordance with the U.S. Supreme Court decree and as part of LMDA. This report provides a perspective on the role of the USGS in LMDA from 1984 to 2010 including the responses to the review committees. Six technical review committees have been convened by the U.S. Corps of Engineers to evaluate the key components of LMDA especially the USGS streamgages within the CAWS. Any changes in streamgaging practices at CAWS gaging stations require detailed analysis to ensure the change will not adversely affect the ability of the USGS to accurately monitor flows.
Estimate of the Reliability in Geological Forecasts for Tunnels: Toward a Structured Approach
NASA Astrophysics Data System (ADS)
Perello, Paolo
2011-11-01
In tunnelling, a reliable geological model often allows providing an effective design and facing the construction phase without unpleasant surprises. A geological model can be considered reliable when it is a valid support to correctly foresee the rock mass behaviour, therefore preventing unexpected events during the excavation. The higher the model reliability, the lower the probability of unforeseen rock mass behaviour. Unfortunately, owing to different reasons, geological models are affected by uncertainties and a fully reliable knowledge of the rock mass is, in most cases, impossible. Therefore, estimating to which degree a geological model is reliable, becomes a primary requirement in order to save time and money and to adopt the appropriate construction strategy. The definition of the geological model reliability is often achieved by engineering geologists through an unstructured analytical process and variable criteria. This paper focusses on geological models for projects of linear underground structures and represents an effort to analyse and include in a conceptual framework the factors influencing such models. An empirical parametric procedure is then developed with the aim of obtaining an index called "geological model rating (GMR)", which can be used to provide a more standardised definition of a geological model reliability.
Outreach to Inspire Girls in Geology: A Recipe for Success (Invited)
NASA Astrophysics Data System (ADS)
Kekelis, L.
2010-12-01
Geology and engineering careers can seem very abstract to a young girl, especially to a girl who has no role model in technical fields. Many girls want to make the world a better place but don’t see how their interests connect with geology or engineering. Role models and field trips to worksites are instrumental in encouraging girls to consider careers in geoscience and engineering. The opportunities to see real-world applications of technology and meet with role models who work in technical fields are extremely impactful and can have a strong influence on a girl’s career path. Together we need to do a better job of communicating what geoscience and engineering have to offer girls and what girls have to offer these fields. This presentation will provide practical tips to help combat stereotypes, 2) share resources for outreach at one-day special events, summer camps, visits to the classroom and field trips to corporate sites and college campuses, and 3) highlight strategies for groups to work collaboratively in outreach. This presentation will help those currently involved in outreach who want to improve on existing efforts, along with those who have never done outreach and are interested in getting started. Techbridge will share a “recipe for success” for planning and hosting role model visits to the classroom and field trips. A case study of outreach by Chevron with Techbridge girls will be shared including the pre-event planning that made this event a success. Activities that make geology fun and friendly to girls and tips for dispelling stereotypes about careers in geology and engineering will also be shared. Participants will be invited to ask questions and share on topics of interest, such as “Challenges with outreach,” “How to get involved without burning out,” and “How to show your manager or organization that outreach is worth the effort.” We will also promote a candid discussion of the challenges that can arise along with way and how to overcome them. Participants will receive a copy of our role model outreach guide and CD toolkit, Get Involved. Make a Difference, developed by the Techbridge team. This guide includes practical tips and suggestions as well as successful case studies in outreach to K-12. These materials include sample icebreakers and hands-on activities, biographies of students and role models, questions to facilitate conversations between role models and students, scavenger hunts for tours, suggested schedule and timeline, evaluations, tips for success, and more.
Smart Interpretation - Application of Machine Learning in Geological Interpretation of AEM Data
NASA Astrophysics Data System (ADS)
Bach, T.; Gulbrandsen, M. L.; Jacobsen, R.; Pallesen, T. M.; Jørgensen, F.; Høyer, A. S.; Hansen, T. M.
2015-12-01
When using airborne geophysical measurements in e.g. groundwater mapping, an overwhelming amount of data is collected. Increasingly larger survey areas, denser data collection and limited resources, combines to an increasing problem of building geological models that use all the available data in a manner that is consistent with the geologists knowledge about the geology of the survey area. In the ERGO project, funded by The Danish National Advanced Technology Foundation, we address this problem, by developing new, usable tools, enabling the geologist utilize her geological knowledge directly in the interpretation of the AEM data, and thereby handle the large amount of data, In the project we have developed the mathematical basis for capturing geological expertise in a statistical model. Based on this, we have implemented new algorithms that have been operationalized and embedded in user friendly software. In this software, the machine learning algorithm, Smart Interpretation, enables the geologist to use the system as an assistant in the geological modelling process. As the software 'learns' the geology from the geologist, the system suggest new modelling features in the data. In this presentation we demonstrate the application of the results from the ERGO project, including the proposed modelling workflow utilized on a variety of data examples.
NASA Astrophysics Data System (ADS)
Ormand, C. J.; Shipley, T. F.; Dutrow, B. L.; Goodwin, L. B.; Hickson, T. A.; Tikoff, B.; Atit, K.; Gagnier, K. M.; Resnick, I.
2015-12-01
Spatial visualization is an essential skill in the STEM disciplines, including the geological sciences. Undergraduate students, including geoscience majors in upper-level courses, bring a wide range of spatial skill levels to the classroom. Students with weak spatial skills may struggle to understand fundamental concepts and to solve geological problems with a spatial component. However, spatial thinking skills are malleable. Using strategies that have emerged from cognitive science research, we developed a set of curricular materials that improve undergraduate geology majors' abilities to reason about 3D concepts and to solve spatially complex geological problems. Cognitive science research on spatial thinking demonstrates that predictive sketching, making visual comparisons, gesturing, and the use of analogy can be used to develop students' spatial thinking skills. We conducted a three-year study of the efficacy of these strategies in strengthening the spatial skills of students in core geology courses at three universities. Our methodology is a quasi-experimental quantitative design, utilizing pre- and post-tests of spatial thinking skills, assessments of spatial problem-solving skills, and a control group comprised of students not exposed to our new curricular materials. Students taught using the new curricular materials show improvement in spatial thinking skills. Further analysis of our data, to be completed prior to AGU, will answer additional questions about the relationship between spatial skills and academic performance, spatial skills and gender, spatial skills and confidence, and the impact of our curricular materials on students who are struggling academically. Teaching spatial thinking in the context of discipline-based exercises has the potential to transform undergraduate education in the geological sciences by removing one significant barrier to success.
Engineering geology considerations for park planning, Antelope Island State Park, Davis County, Utah
Hecker, Suzanne; Case, William F.; King, Jon K.; Willis, Grant C.
2000-01-01
Report: 00-1 In the mid-1980s, historically high levels of Great Salt Lake caused damage to park facilities on Antelope Island and destroyed the causeway linking the park to the mainland. Information on the engineering geology of Antelope Islandcan be used to improve park facilities and reduce the risk from geologic hazards and poor construction conditions. Certain characteristics of the geologic environment need to be considered in park planning. During wet cycles, Great Salt Lake may reach static levels of 4,217 feet (1,285.3 m), and wave- and wind-elevated levels locally may reach 6.5 feet (2 m) higher. A probabilistic assessment of the earthquake ground-shaking hazard along the Wasatch Front indicates that peak ground accelerations of approximately 0.20 to 0.30 g have a one-in-ten chance of being exceeded in 50 years on the island. A slope-failure hazard exists locally in colluvial and Lake Bonneville deposits, along the modern shore, and beneath cliffs. Flash-flood and debris-flow hazards exist on alluvial fans. Areas in the southern two-thirds of the island may have a relatively high potential for radon emission. Particular soil types on the island may be expansive, compressible, erodible, impermeable, or susceptible to liquefaction or hydrocompaction. The distribution of most geologic hazards can be defined, and many locations on the island have conditions suitable for construction. Lacustrine sand and gravel deposits are wide-spread and have engineering characteristics that are generally favorable for foundations. However, facilities and roads built close to the modern shoreline may be susceptible to lake flooding and erosion, slope failures, shallow ground water, and burial by active sand dunes. Well-graded (poorly sorted) alluvial-fan deposits are generally most suitable for wastewater disposal, although they may be subject to flooding or be underlain by low-permeability, fine-grained lacustrine deposits.
Directions of the US Geological Survey Landslide Hazards Reduction Program
Wieczorek, G.F.
1993-01-01
The US Geological Survey (USGS) Landslide Hazards Reduction Program includes studies of landslide process and prediction, landslide susceptibility and risk mapping, landslide recurrence and slope evolution, and research application and technology transfer. Studies of landslide processes have been recently conducted in Virginia, Utah, California, Alaska, and Hawaii, Landslide susceptibility maps provide a very important tool for landslide hazard reduction. The effects of engineering-geologic characteristics of rocks, seismic activity, short and long-term climatic change on landslide recurrence are under study. Detailed measurement of movement and deformation has begun on some active landslides. -from Author
Working for a not-for-Profit Research and Development Organization in the Earth Sciences
NASA Astrophysics Data System (ADS)
McKague, h L
2001-12-01
The Southwest Research Institute (SwRI) is an independent not-for-profit applied engineering and physical sciences research and development organization. This means that SwRI owes no allegiance to organizations other than its clients. As a not-for-profit organization, SwRI reinvests its net income into the organization to improve, strengthen, and expand facilities and to support internal research and development projects. Located in San Antonio, Texas, on 1200 acres, SwRI employs nearly 2800 staff and occupies nearly 2,000,000 square feet of office space. Its business is about equally divided between commercial and government clients, most of whom have specific scientific and technical problems that need to be solved in a timely, cost-effective manner. Governmental clients include local, state, and federal agencies and foreign governments. Commercial clients include local, national, and international businesses. Earth science disciplines at SwRI include geology, geophysics, hydrology, geochemistry, rock mechanics, mining engineering, and natural hazard assessment. Our overall approach is to systematically examine client problems and develop solutions that may include field work, laboratory work, numerical modeling, or some combination of these approaches. This method of problem solving places a strong emphasis on interdisciplinary teamwork. The work environment at SwRI strikes a balance among the freedom to attack technically important problems, consistent support to professional development, and a strong commitment to meeting client's deadlines and goals. Real problems with real consequences are routinely solved on a tight schedule. The diversity of clients gives exposure to an extraordinarily wide range of problems. Successful employees have sound technical backgrounds, are flexible in accommodating varying clients needs, bring creativity and energy to problem solving and applications of technologies, can work on multiple tasks in parallel, and can communicate clearly with clients and other team members. Professional development is supported through encouragement of continuing education, as well as publication and presentation of professional work. An overview of the earth science staff and work at SwRI can be found at http://www.swri.edu/4org/d20/d20home.htm
NASA Technical Reports Server (NTRS)
Stewart, R. K.; Sabins, F. F., Jr.; Rowan, L. C.; Short, N. M.
1975-01-01
Papers from private industry reporting applications of remote sensing to oil and gas exploration were presented. Digitally processed LANDSAT images were successfully employed in several geologic interpretations. A growing interest in digital image processing among the geologic user community was shown. The papers covered a wide geographic range and a wide technical and application range. Topics included: (1) oil and gas exploration, by use of radar and multisensor studies as well as by use of LANDSAT imagery or LANDSAT digital data, (2) mineral exploration, by mapping from LANDSAT and Skylab imagery and by LANDSAT digital processing, (3) geothermal energy studies with Skylab imagery, (4) environmental and engineering geology, by use of radar or LANDSAT and Skylab imagery, (5) regional mapping and interpretation, and digital and spectral methods.
FY 1999 Laboratory Directed Research and Development annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
PJ Hughes
2000-06-13
A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.
Electrochemical stabilization as a means of preventing ground failure in railroads
Solntzev, D.I.; Sorkov, V.S.; Sokoloff, V.P.
1947-01-01
Laboratory and field data on electrochemical stabilization of clays, by three Russian authors, are here presented in translation. Abstracts of the Russian papers were published in May 1947 issue of the Engineering News Record (pp. 100-101). There exists also a small body of literature, in German and English, dealing with the electrochemical stabilization and related subjects. Elements of the electrochemical process were patented by Casagrande in Germany, shortly before the last war. Results of the Russians and of others, including the German patent, appear to be sound and interesting accordingly. Mechanism of the electrochemical stabilization, however, appears to be surmised rather than established. Unless the mechanism of such stabilization is understood in detail, little progress may be expected in field applications of the electrochemical method. Electroosmosis, a poorly reversible coagulation of the soil colloids, and introduction of exchangeable aluminum into the clay complex have been given credit for the ground-stabilizing effects of direct electrical current. Much remains to be done, as the reader may see, in developing further the theory of the method. A critical study is indicated, in this connection, by agencies or individuals qualified and equipped for basic research in soil physics. Optimum schedules for field treatments need be ascertained with particular care, to suit any given kind of material and environment. A wide range of variation in such schedules, is most certainly to be encountered in dealing with materials as diverse in their composition and properties as are clays. Any generalization on relationships between soil, electrolytes, moisture, and current could be premature if based on the Russian work alone. Stabilization of ground is a major engineering geologic problem of national interest. Needless to say, perhaps, that failures are to be expected, in laboratory and in the field, in this as well as in any other kind of research. To minimize probabilities of such failures, it may be recommended that investigators develop the electrochemical stabilization problem not merely against the relatively narrow background of soil mechanics, but with a certain feeling for geology, mineralogy, pedology, soil physics, and soil chemistry.
Karstic Phenomena Susceptibility Map of MÉXICO
NASA Astrophysics Data System (ADS)
Espinasa-Pereña, R.
2013-05-01
Approximately 20% of the territory of México is underlain by karstifiable rocks, mostly limestones and in lesser proportions gypsum. The majority of these rocks are distributed along the eastern and southern Sierra Madre, the state of Chiapas and the Yucatán peninsula. Differences in geological structure, climate and geomorphic history have resulted in a great variety of karstic landscapes and types of forms. Several important population centers, including large cities with several million inhabitants and numerous smaller towns are built on karstic terrains and obtain their water supplies from karstic aquifers and/or dispose of their waste products on this type of terrain. Severe problems of waste disposal and aquifer contamination have occurred. Additionally, numerous instances of catastrophic collapse and formation of karstic sinkholes have been registered in the Mexican territory, which have affected many communities, roads and other infrastructure, and have even cost several lives. Lack of knowledge of the special characteristics of karstic terrains and their distribution has compounded these problems. As a first approach to these issues, the existing map of Mexican karst (Espinasa-Pereña, 2007) was modified according to the geotechnical classification proposed by Waltham & Fookes (2003). An important consideration taken into account is the difference in speed of development of karstic features depending on lithology, which makes karst developed in gypsum much more hazardous than limestone karst, and also the degree of soil coverage and the types of sinkholes developed on the cover. Also taken in consideration are the differences between karst developed in the Sierra Madre, with rocks highly deformed and fractured, and karst developed on the Yucatán peninsula with almost negligible deformation of the rocks. The resulting map will be useful to Civil Protection authorities as a tool in prognosticating possible affectations due to karstic phenomena. References: ESPINASA-PEREÑA, R., 2007, "El Karst de México", Mapa NA III 3, in Coll-Hurtado, A., Coord., "Nuevo Atlas Nacional de México", Instituto de Geografía, Universidad Nacional Autónoma de México. WALTHAM, A.C. and FOOKES, P.G., 2003, Engineering classification of karst ground conditions, Quarterly Journal of Engineering Geology and Hydrology, Vol. 36, pp. 101-118.
A Century of Geology-Curriculum Response to Society: A Case Study at Oregon State University
NASA Astrophysics Data System (ADS)
Grunder, A.; Johnson, J. A.
2014-12-01
Over the past century, the geology curriculum at Oregon State University has remained constant in some areas and changed in others in response to internal (faculty and university) and external (economic, and intellectual) drivers. A decadal summary of 100 years of the geology curriculum at Oregon State University reveals socio-economic patterns. From 1913, when the School of Mines was established, to 1932, when it was dismembered, the geology curriculum was designed in support mining engineering. In that time, the geology department (est. 1914) moved from the School of Mines to the School of Science. Several decades of paleontology-intensive curriculum followed under the leadership of noted paleontologist Earl Packard, as dean and chair. The curriculum transitioned from support of the oil industry in the 60s and 70s, with a strong field emphasis engendered by "Doc" Wilkinson, to increased structure and tectonics emphasis in response to the tectonic revolution under the leadership of structural geologist Robert Yeats. In the last few decades the program has grown diverse in environmental and climatic interests. The early curriculum required a three-course series in determinative mineralogy plus petrography and 3 courses in petrology (igneous, sedimentary and metamorphic), making a core of seven; we require 3 courses today. Like all students in the School of Mines, those with the geology specialization were required to take a field course in surveying and to spend several summer months working in the mining industry. This strong field tradition persisted through time with an introductory field methods class coupled with a summer field camp. The total number of weeks dedicated to field classes, excluding the work experience requirement, has varied from as high as 12 credit-hours to the present 6 (quarters basis). On the other hand, increased short field experiences are reflected by incorporation of more field trips in nearly all courses since the 80's, fostered by accessible transportation. General education courses delivered by geology faculty have mimicked these changes, from early service courses in basic geology for engineering, mining and agriculture to a diverse slate of courses from basic geology to natural hazards and climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spangler, Lee; Cunningham, Alfred; Barnhart, Elliot
2014-12-19
The Zero Emissions Research and Technology (ZERT) collaborative was formed to address basic science and engineering knowledge gaps relevant to geologic carbon sequestration. The original funding round of ZERT (ZERT I) identified and addressed many of these gaps. ZERT II has focused on specific science and technology areas identified in ZERT I that showed strong promise and needed greater effort to fully develop.
Applications of aerospace technology to petroleum exploration. Volume 1: Efforts and results
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1976-01-01
The feasibility of applying aerospace techniques to help solve significant problems in petroleum exploration is studied. Through contacts with petroleum industry and petroleum service industry, important petroleum exploration problems were identified. For each problem, areas of aerospace technology that might aid in its solution were also identified where possible. Topics selected for investigation include: seismic reflection systems; down-hole acoustic techniques; identification of geological analogies; drilling methods; remote geological sensing; and sea floor imaging and mapping. Specific areas of aerospace technology are applied to 21 concepts formulated from the topics of concern.
Geologic and tectonic characteristics of rockbursts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adushkin, V.V.; Charlamov, V.A.; Kondratyev, S.V.
1995-06-01
The modern mining enterprises have attained such scales of engineering activity that their direct influence to a rock massif and in series of cases to the region seismic regime doesn`t provoke any doubts. Excavation and removal of large volumes of rock mass, industrial explosions and other technological factors during long time can lead to the accumulation of man-made changes in rock massifs capable to cause catastrophic consequences. The stress state changes in considerable domains of massif create dangerous concentration of stresses at large geological heterogeneities - faults localized in the mining works zone. External influence can lead in that casemore » to such phenomena as tectonic rockbursts and man-made earthquakes. The rockbursts problem in world mining practice exists for more than two hundred years. So that its actuality not only doesn`t decrease but steadily mounts up as due to the mining works depth increase, enlargement of the useful minerals excavations volumes as due to the possibility of safe use of the rock massif potential energy for facilitating the mastering of the bowels of the Earth and for making that more cheap. The purpose of present work is to study the engineering activity influence to processes occurring in the upper part of Earth crust and in particular in a rock massif. The rock massif is treated in those studies as a geophysical medium - such approach takes into account the presence of block structure of medium and the continuous exchange of energy between parts of that structure. The idea ``geophysical medium`` is applied in geophysics sufficiently wide and stresses the difference of actual Earth crust and rock massifs from the continuous media models discussed in mechanics.« less
Comprehensive Cross-Training among STEM Disciplines in Geothermal Energy
NASA Astrophysics Data System (ADS)
Nunn, J. A.; Dutrow, B. L.
2012-12-01
One of the foremost areas of sustainability is society's need for energy. The US uses more energy per capita than any other country in the world with most of this energy coming from fossil fuels. With its link to climate change coupled with declining resources, renewable alternatives are being pursued. Given the high demand for energy, it is not a question of if these alternatives will be utilized but when and where. One of the "greenest" of the green technologies is geothermal energy. It is a renewable resource with a small environmental footprint. To educate advanced undergraduate and graduate students from across STEM disciplines in geothermal energy, a series of three distinct but linked and related courses are being developed and taught. Courses are focused on one of the STEM disciplines to provide students with essential discipline-specific knowledge and taught by different faculty members in the departments of geology, petroleum engineering and mathematics. These courses provide the foundation necessary for interdisciplinary research projects. The first course on Geologic Properties and Processes of Geothermal Energy was developed and taught in 2012. The class had an enrollment of 27 students including: 5 undergraduates and 4 graduate students in Geology, 12 undergraduates and two graduate students in Petroleum Engineering, and 4 non-matriculated undergraduate students. The course began with the essentials of heat and mass transfer, a common deficiency for all students, then progressed to the geologic materials of these systems: minerals, rocks and fluids. To provide students with first hand experience, two short research projects were embedded into the course. The first project involved analyses of cuttings from a well-studied geothermal system (Salton Sea, CA). Students were in teams consisting of both engineers and geologists. The first assignment was to identify minerals in the cuttings. They were then provided with XRD patterns for their cuttings to more precisely identify the mineralogy of the cuttings. Based on this data with depth, they were asked to predict an approximate temperature range and calculate various fluid parameters for these conditions. The second research project was completed individually, each student covered aspects of heat transport and geologic materials on a specific geothermal field of their choice, created a poster, and gave a brief oral presentation of the poster similar to what is done at scientific meetings. This not only helped students develop communication skills it also provide the class and the instructors information on the breath and diversity of geothermal projects already underway throughout the world and helped to improve critical thinking skills. Continued integration of our research and graduate training programs in Geology and Geophysics, Petroleum Engineering, and Mathematics will occur in 2012-2013. The Petroleum Engineering course will be offered in the fall semester of 2012 and the Mathematics class in the spring semester of 2013. Providing this three semester sequence of courses across the STEM disciplines promotes comprehensive cross-training among disciplines and provides a template for future directions of teaching sustainability across the disciplines.
NASA Astrophysics Data System (ADS)
Yongzhi, WANG; hui, WANG; Lixia, LIAO; Dongsen, LI
2017-02-01
In order to analyse the geological characteristics of salt rock and stability of salt caverns, rough three-dimensional (3D) models of salt rock stratum and the 3D models of salt caverns on study areas are built by 3D GIS spatial modeling technique. During implementing, multi-source data, such as basic geographic data, DEM, geological plane map, geological section map, engineering geological data, and sonar data are used. In this study, the 3D spatial analyzing and calculation methods, such as 3D GIS intersection detection method in three-dimensional space, Boolean operations between three-dimensional space entities, three-dimensional space grid discretization, are used to build 3D models on wall rock of salt caverns. Our methods can provide effective calculation models for numerical simulation and analysis of the creep characteristics of wall rock in salt caverns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tynan, Mark C.; Russell, Glenn P.; Perry, Frank V.
These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.:more » access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.« less
ERIC Educational Resources Information Center
Maddison, Tasha; Beneteau, Donna; Sokoloski, Brandy
2014-01-01
This case study describes the use of flipped teaching for information literacy instruction in a new course, "Drill, Blast, and Excavate GeoE 498," within the mining option for geological engineering (GeoE) students. These students will enter the mining industry with less discipline-specific knowledge than a student that graduated with a…
Geological Character and Mineral Resources of South Central Lake Erie.
1982-10-01
Presque Isle Peninsula, Erie , Pennsylvania , being conducted by the U.S. Army Engineer District...the Pennsylvania shoreline. Because of its position and morphology, Presque Isle acts as a natural offshore breakwater for Erie Harbor, blocking the...Research Center, Fort Belvoir, Va. (in preparation, 1982). U.S. ARMY ENGINEER DISTRICT, BUFFALO, " Presque Isle Peninsula, Erie , Pennsylvania ,"
Scholarship program to benefit future engineers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-02-01
ASDSO this year launched a new scholarship program for undergraduate students interested in dam safety engineering as a career. Two scholarships of $2,500 each will be granted to one junior and one senior, beginning with the 1993 school year. Students taking a full college course load and majoring in civil or agricultural engineering, geology, or a related field, were elgible. ASDSO, which plans to name the recipients by May 1993, received about two dozen applications for the scholarships.
ERIC Educational Resources Information Center
Lisitzin, Alexandre P.
Designed to serve as a complement to the Unesco Technical Papers in Marine Science, this report concentrates on theoretical and practical problems of geological mapping of the sea floor. An introduction is given to geological mapping procedures at continental margins as well as some practical recommendations taking as an example the African region…
Report of the Workshop on Geologic Applications of Remote Sensing to the Study of Sedimentary Basins
NASA Technical Reports Server (NTRS)
Lang, H. R. (Editor)
1985-01-01
The Workshop on Geologic Applications of Remote Sensing to the Study of Sedimentary Basins, held January 10 to 11, 1985 in Lakewood, Colorado, involved 43 geologists from industry, government, and academia. Disciplines represented ranged from vertebrate paleontology to geophysical modeling of continents. Deliberations focused on geologic problems related to the formation, stratigraphy, structure, and evolution of foreland basins in general, and to the Wind River/Bighorn Basin area of Wyoming in particular. Geological problems in the Wind River/Bighorn basin area that should be studied using state-of-the-art remote sensing methods were identified. These include: (1) establishing the stratigraphic sequence and mapping, correlating, and analyzing lithofacies of basin-filling strata in order to refine the chronology of basin sedimentation, and (2) mapping volcanic units, fracture patterns in basement rocks, and Tertiary-Holocene landforms in searches for surface manifestations of concealed structures in order to refine models of basin tectonics. Conventional geologic, topographic, geophysical, and borehole data should be utilized in these studies. Remote sensing methods developed in the Wind River/Bighorn Basin area should be applied in other basins.
ERIC Educational Resources Information Center
Journal of College Science Teaching, 1976
1976-01-01
Reports on many news items of importance to the scientist and educator. These include a new Engineering degree, building a biological culture analyser, remote satellite sensing in geologic exploration, and others. (GS)
Multiphase flow and transport in porous media
NASA Astrophysics Data System (ADS)
Parker, J. C.
1989-08-01
Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. In petroleum reservoir engineering, efficient recovery of energy reserves is the principal goal. Unfortunately, some of these hydrocarbons and other organic chemicals often find their way unwanted into the soils and groundwater supplies. Removal in the latter case is predicated on ensuring the public health and safety. In this paper, principles of modeling fluid flow in systems containing up to three fluid phases (namely, water, air, and organic liquid) are described. Solution of the governing equations for multiphase flow requires knowledge of functional relationships between fluid pressures, saturations, and permeabilities which may be formulated on the basis of conceptual models of fluid-porous media interactions. Mechanisms of transport in multicomponent multiphase systems in which species may partition between phases are also described, and the governing equations are presented for the case in which local phase equilibrium may be assumed. A number of hypothetical numerical problems are presented to illustrate the physical behavior of systems in which multiphase flow and transport arise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartshorn, K.G.
The Castilla and Chichimene NE fields, operated by Chevron, are located in the southern Llanos basin of Colombia. The Castilla field, with an estimated 2.3 billion BBLS OOIP, produces heavy 14{prime} API oil, while the Chichimene NE field with an estimated 480 MMBBLS OOIP, produces a lighter 20{prime} API oil. Production is from multiple sandstone reservoirs of the Tertiary San Fernando and the Cretaceous Guadalupe Formations, and from massive non-marine sands of the Cretaceous Une Formation. Early problems with water coning and high water cuts led to detailed geologic study and engineering simulation to determine the most effective methods ofmore » reservoir management. The fresh nature of the connate water made evaluation more complicated, but results of RST (Reservoir Saturation Tool) logging runs on producing wells support the conclusions of the simulation studies regarding the potential for vertical drainage of the reservoir. As a result, the massive sands of the Une Formation can be perforated in the upper portion of the reservoir only, still enabling effective drainage of the lower reservoir while reducing water production and coning problems.« less
Quality of water of the Colorado River in 1928-1930
Howard, C.S.
1932-01-01
This report gives the results obtained in the continuation of a study of the Colorado River begun in 1925.1 The analyses represent composites of daily samples collected by the observers at the gaging stations on the Colorado River at Cisco, Utah, and Lees Ferry and Grand Canyon, Ariz.; on the Green River at Green River, Utah; and on the San Juan River near Bluff, Utah. Analyses are given for samples collected about once a month from the Williams River at Planet, Ariz. The Arizona stations are operated under the direction of W. E. Dickinson, district engineer of the Geological Survey at Tucson, Ariz., and the Utah stations under the direction of A. B. Purton, district engineer of the Geological Survey at Salt Lake City, Utah. The average discharges given in Table 3 were calculated from data furnished by these district engineers. Complete discharge . data for this period will be published in the regular series of water-supply papers.
,
1981-01-01
Research in the WRD had its beginnings in the late 1950's when the "core research" line item was added to the Congressional budget. Since this time the Federal program has grown from a "basic sciences" program to one that includes a broad spectrum of basic and applied scientific investigations. Water resources research in WRD includes the study of water in all its phases and uses the basic sciences of mathematics, chemistry, physics, biology, geology and engineering to gain a fundamental understanding of the processes that affect the movement of water and its chemical constituents through hydrologic systems. The basic knowledge and methodologies derived from water resources research are applicable not only to the solution of current problems associated with the Nation's water resources, but also to anticipated hydrologic issues.
FROMS3D: New Software for 3-D Visualization of Fracture Network System in Fractured Rock Masses
NASA Astrophysics Data System (ADS)
Noh, Y. H.; Um, J. G.; Choi, Y.
2014-12-01
A new software (FROMS3D) is presented to visualize fracture network system in 3-D. The software consists of several modules that play roles in management of borehole and field fracture data, fracture network modelling, visualization of fracture geometry in 3-D and calculation and visualization of intersections and equivalent pipes between fractures. Intel Parallel Studio XE 2013, Visual Studio.NET 2010 and the open source VTK library were utilized as development tools to efficiently implement the modules and the graphical user interface of the software. The results have suggested that the developed software is effective in visualizing 3-D fracture network system, and can provide useful information to tackle the engineering geological problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.
NASA Astrophysics Data System (ADS)
More, Y. K.; Wankhede, S. P.; Patil, R. R.; Kulkarni, M. S.; Kumar, Munish; Moharil, S. V.
2016-05-01
Optically stimulated luminescence (OSL) originally developed for geological/archaeological dating, has been found very useful for diverse applications in the field of radiation dosimetry. There is still a scarcity of OSL materials with demonstrated properties suited to dosimetry applications. Progress on the development of OSL materials with engineered properties has been slow and most research has focused on the OSL characterization of existing materials. One of the reasons for availability of only a handful of OSL dosimetry materials with adequate properties is that they have to satisfy certain stringent conditions necessary for such applications. Especially, hygroscopic materials are considered totally unsuitable. The efforts were made in our laboratory to overcome this problem. It is shown here that "water-proof" dosimeters can be prepared from even hygroscopic materials such as NaCl.
NASA Technical Reports Server (NTRS)
Gibeaut, James C.; Gutierrez, Roberto; Slatton, K. Clint; Crawford, Melba M.
1996-01-01
The shapes and elevations of barrier islands may change dramatically over a short period of time such as during a storm. Even between storms, sediment is constantly shifting to and from these islands and between different areas of the islands at varying rates and in varying amounts. Coastal scientists and engineers, however, are currently unable to measure these changes occurring over an entire barrier island at once. This three-year project, which is funded by NASA and jointly conducted by the Bureau of Economic Geology and the Center for Space Research at The University of Texas at Austin, is designed to overcome this problem by developing the use of interferometry from airborne synthetic aperture radar (AIRSAR) to detect changes in coastal topography. Surrogate measures of topography observed in fully polarimetric AIRSAR are also being investigated.
Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage
Ji, Youjun; Zhang, Linzhi; Yue, Jiannan
2014-01-01
Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today. PMID:24707199
Examining Young Students' Problem Scoping in Engineering Design
ERIC Educational Resources Information Center
Watkins, Jessica; Spencer, Kathleen; Hammer, David
2014-01-01
Problem scoping--determining the nature and boundaries of a problem--is an essential aspect of the engineering design process. Some studies from engineering education suggest that beginning students tend to skip problem scoping or oversimplify a problem. However, the ways these studies often characterize students' problem scoping often do not…
Activist engineering: changing engineering practice by deploying praxis.
Karwat, Darshan M A; Eagle, Walter E; Wooldridge, Margaret S; Princen, Thomas E
2015-02-01
In this paper, we reflect on current notions of engineering practice by examining some of the motives for engineered solutions to the problem of climate change. We draw on fields such as science and technology studies, the philosophy of technology, and environmental ethics to highlight how dominant notions of apoliticism and ahistoricity are ingrained in contemporary engineering practice. We argue that a solely technological response to climate change does not question the social, political, and cultural tenet of infinite material growth, one of the root causes of climate change. In response to the contemporary engineering practice, we define an activist engineer as someone who not only can provide specific engineered solutions, but who also steps back from their work and tackles the question, What is the real problem and does this problem "require" an engineering intervention? Solving complex problems like climate change requires radical cultural change, and a significant obstacle is educating engineers about how to conceive of and create "authentic alternatives," that is, solutions that differ from the paradigm of "technologically improving" our way out of problems. As a means to realize radically new solutions, we investigate how engineers might (re)deploy the concept of praxis, which raises awareness in engineers of the inherent politics of technological design. Praxis empowers engineers with a more comprehensive understanding of problems, and thus transforms technologies, when appropriate, into more socially just and ecologically sensitive interventions. Most importantly, praxis also raises a radical alternative rarely considered-not "engineering a solution." Activist engineering offers a contrasting method to contemporary engineering practice and leads toward social justice and ecological protection through problem solving by asking not, How will we technologize our way out of the problems we face? but instead, What really needs to be done?
DATA ACQUISITION AND APPLICATIONS OF SIDE-LOOKING AIRBORNE RADAR IN THE U. S. GEOLOGICAL SURVEY.
Jones, John Edwin; Kover, Allan N.
1985-01-01
The Side-Looking Airborne Radar (SLAR) program encompasses a multi-discipline effort involving geologists, hydrologists, engineers, geographers, and cartographers of the U. S. Geological Survey (USGS). Since the program began in 1980, more than 520,000 square miles of aerial coverage of SLAR data in the conterminous United States and Alaska have been acquired or contracted for acquisition. The Geological Survey has supported more than 60 research and applications projects addressing the use of this technology in the earth sciences since 1980. These projects have included preparation of lithographic reproductions of SLAR mosaics, research to improve the cartographic uses of SLAR, research for use of SLAR in assessing earth hazards, and studies using SLAR for energy and mineral exploration through improved geologic mapping.
Contribution to Estimating Bearing Capacity of Pile in Clayey Soils
NASA Astrophysics Data System (ADS)
Drusa, Marián; Gago, Filip; Vlček, Jozef
2016-12-01
The estimation of real geotechnical parameters is key factor for safe and economic design of geotechnical structures. One of these are pile foundations, which require proper design and evaluation due to accessing more deep foundation soil and because remediation work of not bearable piles or broken piles is a crucial operation. For this reason, geotechnical field testing like cone penetration test (CPT), standard penetration (SPT) or dynamic penetration test (DP) are realized in order to receive continuous information about soil strata. Comparing with rotary core drilling type of survey with sampling, these methods are more progressive. From engineering geologist point of view, it is more important to know geological characterization of locality but geotechnical engineers have more interest above the real geotechnical parameters of foundation soils. The role of engineering geologist cannot be underestimated because important geological processes in origin or during history can explain behaviour of a geological environment. In effort to streamline the survey, investigation by penetration tests is done as it is able to provide enough information for designers. This paper deals with actual trends in pile foundation design; because there are no new standards and usable standards are very old. Estimation of the bearing capacity of a single pile can be demonstrated on the example of determination of the cone factor Nk from CPT testing. Then results were compared with other common methods.
V-TECS Guide for Automobile Engine Performance Technician.
ERIC Educational Resources Information Center
Meyer, Calvin F.; Benson, Robert T.
This guide is intended to assist teachers responsible for instructing future auto engine performance technicians. The following topics are covered: diagnosing engine performance problems, ignition system problems, fuel system problems, mechanically related performance problems, emission control system problems, and electronic control systems;…
A TAPS Interactive Multimedia Package to Solve Engineering Dynamics Problem
ERIC Educational Resources Information Center
Sidhu, S. Manjit; Selvanathan, N.
2005-01-01
Purpose: To expose engineering students to using modern technologies, such as multimedia packages, to learn, visualize and solve engineering problems, such as in mechanics dynamics. Design/methodology/approach: A multimedia problem-solving prototype package is developed to help students solve an engineering problem in a step-by-step approach. A…
Bikini scientific resurvey. Volume II. Report of the technical director. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1947-12-01
Contents: Island and Reef Geology; Submarine Geology; Drilling Operations; Radiobiology Studies; Reef and Lagoon Fishes; Pelagic Fishes; Taxonomy and Teratology of Fishes; Invertebrate Embryology; Vertebrate Embryology; Reef and Lagoon Algae; Chemical Effects of Organisms Upon Sea Water; The Insect Population; Marine Invertebrates; Land Animals; Plankton Studies; Counter-Room Activities; Radiochemical Analyses; Soils Chemistry; Low-Level Radiation Studies; Army Engineering Studies; Aerological Data; Bacteriological Investigations; Radiological Safety; Radiological Health; Technical Director's Summary.
Metropolitan Spokane Region Water Resources Study. Appendix B. Geology and Groundwater
1976-01-01
to develop and confirm map data. Engineering Geology. Large-scale (1:24,000) mapping of near- surface soil classification and drainage characteristics...of the great lava field. By the beginning of the Pleistocene Ice Age, a broad valley had developed at about 1600 feet altitude. This pre-glacial...has developed on re level basalt surfaces. In the southern and eastern portions of the study area, chemical alteration has caused deep decomposition
GEOLOGIC ASPECTS OF TIGHT GAS RESERVOIRS IN THE ROCKY MOUNTAIN REGION.
Spencer, Charles W.
1985-01-01
The authors describe some geologic characteristics of tight gas reservoirs in the Rocky Mountain region. These reservoirs usually have an in-situ permeability to gas of 0. 1 md or less and can be classified into four general geologic and engineering categories: (1) marginal marine blanket, (2) lenticular, (3) chalk, and (4) marine blanket shallow. Microscopic study of pore/permeability relationships indicates the existence of two varieties of tight reservoirs. One variety is tight because of the fine grain size of the rock. The second variety is tight because the rock is relatively tightly cemented and the pores are poorly connected by small pore throats and capillaries.
Oil, gas field growth projections: Wishful thinking or reality?
Attanasi, E.D.; Mast, R.F.; Root, D.H.
1999-01-01
The observed `field growth' for the period from 1992 through 1996 with the US Geological Survey's (USGS) predicted field growth for the same period are compared. Known field recovery of field size is defined as the sum of past cumulative field production and the field's proved reserves. Proved reserves are estimated quantities of hydrocarbons which geologic and engineering data demonstrate with reasonable certainty to recoverable from known fields under existing economic and operating conditions. Proved reserve estimates calculated with this definition are typically conservative. The modeling approach used by the USGS to characterize `field growth phenomena' is statistical rather that geologic in nature.
Physiography and Quaternary geology of the San Juan Mountains, Colorado
Atwood, Wallace W.; Mather, Kirtley F.
1932-01-01
appeared from time to time as folios"' of the Geologic Atlas and reports on the economic geology of the mining districts, published by the United States Geological Survey between 1899 and 1910. Gradually the concept of the geologic problems was changed. Instead of considering individual mining districts as the units of investigation it became apparent that the San Juan region must itself be the unit. In 1908 Mr. Cross drafted plans for the completion of the San Juan studies on this enlarged basis. His aim was to arrange for the publication of papers on different subjects rather than one huge monograph on the region as a whole.
NASA Astrophysics Data System (ADS)
1991-06-01
This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.
Winget, E.A.; Tirey, G.B.
1984-01-01
In December 1980, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (COE), conducted a seismic survey of the Mississippi River in the vicinity of Alton, Illinois, near St. Louis, Missouri (fig. 1). Seismic lines were run from the mouth of the Missouri River up the Mississippi River to a point approximately seven miles upriver from Lock and Dam No. 26 at Alton, Illinois (fig. 2a,b). Additional lines were run upriver from Lock and Dam No. 25 between the dam and River Mile 244, but these data are not reported because of mechanical problems with the larger sound-source equipment and inexact navigational control. The objective of the cooperative study was to utilize marine common-depth-point (CDP), digital, and multichannel techniques to locate a monoclinal flexure of the Cap au Gres Fault that earlier had been interpreted from land seismic data to be in the vicinity of Lock and Dam No 26 (Shannon and Wilson, 1980). A second objective was to demonstrate that the marine seismic system could be used for making relatively deep penetration seismic-reflection surveys on shallow (less than 10-m water depth) inland waterways that have organic sediment floors.
Teaching contact metamorphism, isograds, and mixed-volatile reactions: A suite-based approach
NASA Astrophysics Data System (ADS)
Peck, W. H.
2003-12-01
An important goal of teaching Introductory Petrology is to demonstrate how different kinds of approaches are integrated in studying petrologic problems. Depending on the goals of the study data used can be from the field, hand-sample, microscope, electron beam instrument, or mass spectrometer. A suite of samples with a known geographical and geological context can help students in drawing connections between different petrologic approaches, as the `geologic story' of the samples becomes a unifying theme. For teaching a unit on calc-silicates I use a suite of siliceous dolomite samples collected from the Ubehebe contact aureole (Death Valley, NV) as well as published data (Roselle et al., 1997; 1999) in a linked series of laboratory exercises and problem sets. The geology of the contact aureole is introduced in a three-hour laboratory exercise, where students identify the appearance of tremolite, forsterite, and periclase/brucite and the disappearance of quartz as the intrusion is approached. A concurrent problem set uses simplified mineral assemblage maps from the aureole. In the problem set students delineate isograds and determine the balanced metamorphic reactions by which the metamorphic minerals formed. Lecture material during this unit focuses on the physical properties of fluids in the crust and the mineralogical evidence for fluid-flow (with an emphasis on mixed-volatile reactions and T-XCO2 diagrams). A concrete field example helps focus student attention on the interrelation of disparate approaches by which petrologic problems addressed. The Ubehebe suite then becomes a unifying theme throughout the course: the specimens or regional geology are used in subsequent laboratories and lectures when introducing concepts such as grain nucleation and growth, reaction overstepping, and replacement textures. A virtual field trip of the Alta aureole, UT (using field photographs, maps, and photomicrographs) concludes the unit. The geology of the Alta aureole is similar to that of Ubehebe, and the virtual field trip acts as a review that emphases the general usefulness of the approaches discussed.
Solving a problem by using what you know: a physicist looks at a problem in ecology
NASA Astrophysics Data System (ADS)
Greenler, Robert
2015-08-01
Two philosophical ideas motivate this paper. The first is an answer to the question of what is an appropriate activity for a physicist. My answer is that an appropriate activity is anything where the tools of a physicist enable him or her to make a contribution to the solution of a significant problem. This may be obvious in areas that overlap physics (e.g. chemistry, engineering, geology) but also true in any endeavour where mathematical modelling may contribute insight to the solution of problems (e.g. timing of traffic lights, efficient ways to seat passengers on airplanes, whether it is better to walk or run in a rain shower). The second idea concerns an approach to problem solving. Before some people try to solve a problem, they think they first must learn everything that is known about the subject. However, sometimes an effective approach is to declare, ‘I’m going to solve this problem with what I know now!’ I see a relationship between this approach and the idea of back-of-the-envelope calculations, which many of us appreciate. Of course there are limitations to this method, but I believe that such an aggressive approach to a problem—uninfluenced by the methods everyone else has used—can be productive. This paper describes such an approach to a real-world problem, using only what is known by the teacher of the introductory, calculus-based physics course. The intent of this paper is to encourage students and teachers of physics to look for unconventional areas, outside of physics, where they might use the techniques they have learned to solve problems
Application of remote sensor data to geologic analysis of the Bonanza test site, Colorado
NASA Technical Reports Server (NTRS)
Lee, K. (Compiler)
1972-01-01
A variety of remote sensor data has aided geologic mapping in central Colorado. This report summarizes the application of sensor data to both regional and local geologic mapping and presents some conclusions on the practical use of remote sensing for solving geologic mapping problems. It is emphasized that this study was not conducted primarily to test or evaluate remote sensing systems or data, but, rather, to apply sensor data as an accessory tool for geologic mapping. The remote sensor data used were acquired by the NASA Earth Observations Aircraft Program. Conclusions reached on the utility of the various sensor data and interpretation techniques for geologic mapping were by-products of attempts to use them.
40 CFR 230.93 - General compensatory mitigation requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... available from sources such as wetland maps; soil surveys; U.S. Geological Survey topographic and hydrologic... the watershed, the district engineer must use appropriate quantitative assessment tools, where...
40 CFR 230.93 - General compensatory mitigation requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... available from sources such as wetland maps; soil surveys; U.S. Geological Survey topographic and hydrologic... the watershed, the district engineer must use appropriate quantitative assessment tools, where...
40 CFR 230.93 - General compensatory mitigation requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... available from sources such as wetland maps; soil surveys; U.S. Geological Survey topographic and hydrologic... the watershed, the district engineer must use appropriate quantitative assessment tools, where...
40 CFR 230.93 - General compensatory mitigation requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... available from sources such as wetland maps; soil surveys; U.S. Geological Survey topographic and hydrologic... the watershed, the district engineer must use appropriate quantitative assessment tools, where...
40 CFR 230.93 - General compensatory mitigation requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... available from sources such as wetland maps; soil surveys; U.S. Geological Survey topographic and hydrologic... the watershed, the district engineer must use appropriate quantitative assessment tools, where...
The composing process of technical writers: A preliminary study
NASA Technical Reports Server (NTRS)
Mair, D.; Roundy, N.
1981-01-01
The assumption that technical writers compose as do other writers is tested. The literature on the composing process, not limited to the pure or applied sciences, was reviewed, yielding three areas of general agreement. The composing process (1) consists of several stages, (2) is reflexive, and (3) may be mastered by means of strategies. Data on the ways technical writers compose were collected, and findings were related to the three areas of agreement. Questionnaires and interviews surveying 70 writers were used. The disciplines represented by these writers included civil, chemical, agricultural, geological, mechanical, electrical, and petroleum engineering, chemistry, hydrology, geology, and biology. Those providing consulting services, or performing research. No technical editors or professional writers were surveyed, only technicians, engineers, and researchers whose jobs involved composing reports. Three pedagogical implications are included.
Crovelli, R.A.
1988-01-01
The geologic appraisal model that is selected for a petroleum resource assessment depends upon purpose of the assessment, basic geologic assumptions of the area, type of available data, time available before deadlines, available human and financial resources, available computer facilities, and, most importantly, the available quantitative methodology with corresponding computer software and any new quantitative methodology that would have to be developed. Therefore, different resource assessment projects usually require different geologic models. Also, more than one geologic model might be needed in a single project for assessing different regions of the study or for cross-checking resource estimates of the area. Some geologic analyses used in the past for petroleum resource appraisal involved play analysis. The corresponding quantitative methodologies of these analyses usually consisted of Monte Carlo simulation techniques. A probabilistic system of petroleum resource appraisal for play analysis has been designed to meet the following requirements: (1) includes a variety of geologic models, (2) uses an analytic methodology instead of Monte Carlo simulation, (3) possesses the capacity to aggregate estimates from many areas that have been assessed by different geologic models, and (4) runs quickly on a microcomputer. Geologic models consist of four basic types: reservoir engineering, volumetric yield, field size, and direct assessment. Several case histories and present studies by the U.S. Geological Survey are discussed. ?? 1988 International Association for Mathematical Geology.
Optimizing Fracture Treatments in a Mississippian "Chat" Reservoir, South-Central Kansas
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. David Newell; Saibal Bhattacharya; Alan Byrnes
2005-10-01
This project is a collaboration of Woolsey Petroleum Corporation (a small independent operator) and the Kansas Geological Survey. The project will investigate geologic and engineering factors critical for designing hydraulic fracture treatments in Mississippian ''chat'' reservoirs. Mississippian reservoirs, including the chat, account for 159 million m3 (1 billion barrels) of the cumulative oil produced in Kansas. Mississippian reservoirs presently represent {approx}40% of the state's 5.6*106m3 (35 million barrels) annual production. Although geographically widespread, the ''chat'' is a heterogeneous reservoir composed of chert, cherty dolomite, and argillaceous limestone. Fractured chert with micro-moldic porosity is the best reservoir in this 18- tomore » 30-m-thick (60- to 100-ft) unit. The chat will be cored in an infill well in the Medicine Lodge North field (417,638 m3 [2,626,858 bbls] oil; 217,811,000 m3 [7,692,010 mcf] gas cumulative production; discovered 1954). The core and modern wireline logs will provide geological and petrophysical data for designing a fracture treatment. Optimum hydraulic fracturing design is poorly defined in the chat, with poor correlation of treatment size to production increase. To establish new geologic and petrophysical guidelines for these treatments, data from core petrophysics, wireline logs, and oil-field maps will be input to a fracture-treatment simulation program. Parameters will be established for optimal size of the treatment and geologic characteristics of the predicted fracturing. The fracturing will be performed and subsequent wellsite tests will ascertain the results for comparison to predictions. A reservoir simulation program will then predict the rate and volumetric increase in production. Comparison of the predicted increase in production with that of reality, and the hypothetical fracturing behavior of the reservoir with that of its actual behavior, will serve as tests of the geologic and petrophysical characterization of the oil field. After this feedback, a second well will be cored and logged, and procedure will be repeated to test characteristics determined to be critical for designing cost-effective fracture treatments. Most oil and gas production in Kansas, and that of the Midcontinent oil industry, is dominated by small companies. The overwhelming majority of these independent operators employ less than 20 people. These companies have limited scientific and engineering expertise and they are increasingly needing guidelines and technical examples that will help them to not be wasteful of their limited financial resources and petroleum reserves. To aid these operators, the technology transfer capabilities of the Kansas Geological Survey will disseminate the results of this study to the local, regional, and national oil industry. Internet access, seminars, presentations, and publications by Woolsey Petroleum Company and Kansas Geological Survey geologists and engineers are anticipated.« less
Development of an Engineering Soil Database
2017-12-27
systems such as agricultural and geological soil classifications and soil parameters. Tier 3 Data were converted into equivalent USCS classification...14 2.7 U.S. Department of Agriculture (USDA) textural soil classification ............................ 16 2.7.1 Properties of USDA textural...Defense ERDC U.S. Army Engineer Research and Development Center ESDB European Soil Database FAO Food and Agriculture Organization (of the United
Federal microcomputer software for urban hydrology
Jennings, Marshall E.; Smith, Roger H.; Jennings, Ross B.
1988-01-01
The purpose of this paper is to describe the development, availability, and general use of selected urban hydrology microcomputer software developed by: U.S. Soil Conservation Service (SCS); U.S. Army Corps of Engineers, Hydrologic Engineering Center (HEC); U.S. Environmental Protection Agency (EPA); and U.S. Geological Survey (USGS). The discussion is limited to software used for design and planning for urban stormwater flows.
Relation of ground water to stream flow at Battle Creek, Mich.
Eddy, G.E.; Ferris, J.G.
1950-01-01
This is a summary of statements made by G.E. Eddy, State Geologist of Michigan, and J.G. Ferris, district engineer, Ground Water Branch, U.S. Geological Survey, Lansing, Mich., in a conference during the fall of 1949 with John Spoden, Chief of the Maintenance and Fold Control Division of the district office of the Corps of Engineers, Milwaukee, Wis. The conference related to the probably effect on ground-water conditions at Battle Creek of flood-control measures proposed by the Corps of Engineers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gastaldo, R.A.
Titles and authors of Ph.D dissertations and M.S. theses are listed as completed or near completion in the following areas of study related to coal: botany (10), chemistry (10), community development (1), economics (1), electrical science and systems engineering (1), forestry (7), geography (2), geology (23), health education (2), mathematics (1), zoology (24), mining engineering (9), plant and soil science (4), political science (2), and thermal and environmental engineering (3).
Creating Interdisciplinary STEM Environments at the University of Nebraska at Omaha
NASA Astrophysics Data System (ADS)
Shuster, R. D.; Grandgenett, N. F.
2010-12-01
Effective, integrated and interdisciplinary STEM environments depend upon strong faculty collaboration. During the past decade, the University of Nebraska at Omaha (UNO) has put an emphasis on STEM faculty working together across departments, colleges, and the university system, as well as with local school systems. Supported by a University-wide Content and Pedagogy Committee and a new Office of STEM Education, faculty members have aggressively undertaken and evaluated various interdisciplinary STEM activities. This presentation will briefly describe three of these projects, including evaluation-related data and UNO support mechanisms. First, an interdisciplinary student research project has been developed involving our introductory geology and chemistry courses. The project includes collecting drinking water samples from around Omaha by geology students, the chemical analysis of drinking water by chemistry students, followed by water quality analysis of the chemical data by the geology students. Students learn about the scientific method, potential problems with project design, and limitations of interpretation of real data, while also applying knowledge learned in the class to this real world problem. This project reaches ~600 undergraduate students each year and requires close cooperation between faculty of the Chemistry and Geology programs. Evaluation data indicates that this project has had a positive impact on student attitude towards science in general and towards geology and chemistry in particular. The second project highlighted will be the Silicon Prairie Initiative for Robotics in Information Technology (SPIRIT). The SPIRIT project is a NSF funded collaboration between the UNO College of Education, the University of Nebraska at Lincoln College of Engineering, and local school systems. It strives to integrate the use of educational robotics and sensors in the teaching of STEM topics, particularly at the middle school and high school levels. The project has designed a flexible online curriculum that includes over 200 lessons with technical tutorials, assessments, and various resources. More than 250 teachers have been trained in extended workshops. Criterion-referenced test data of the students involved with these teachers have been encouraging. Further pilot test data also showed increases in positive STEM attitudes. The third project highlighted will be an interdisciplinary online Earth system science course for in-service teachers associated with the Earth System Science Education Alliance (ESSEA), which includes 42 universities across the U.S.. ESSEA instructional modules have been designed and shared by the participating institutions. UNO has been offering ESSEA coursework with participating faculty from Teacher Education (College of Education) and Geology (College of Arts & Sciences), writing ESSEA modules, and examining student feedback since 2004: involving more than 250 teachers, crossing a wide range of STEM-related teaching certifications. Project effectiveness has been examined by use of surveys, focus groups, and course products. By collaborating with colleagues across disciplines, colleges, and institutions, it is possible to have a positive impact on STEM education, through course offerings at UNO and through teacher professional development.
The optimized log interpretation method and sweet-spot prediction of gas-bearing shale reservoirs
NASA Astrophysics Data System (ADS)
Tan, Maojin; Bai, Ze; Xu, Jingjing
2017-04-01
Shale gas is one of the most important unconventional oil and gas resources, and its lithology and reservoir type are both different from conventional reservoirs [1,2]. "Where are shale reservoirs" "How to determine the hydrocarbon potential" "How to evaluate the reservoir quality", these are some key problems in front of geophysicists. These are sweet spots prediction and quantitative evaluation. As we known, sweet spots of organic shale include geological sweet spot and engineering sweet spot. Geophysical well logging can provide a lot of in-site formation information along the borehole, and all parameters describing the sweet spots of organic shale are attained by geophysical log interpretation[2]. Based on geological and petrophysical characteristics of gas shale, the log response characteristics of gas shales are summarized. Geological sweet spot includes hydrocarbon potential, porosity, fracture, water saturation and total gas content, which can be calculated by using wireline logs[3]. Firstly, the based-logging hydrocarbon potential evaluation is carried out, and the RBF neural network method is developed to estimate the total organic carbon content (TOC), which was proved more effective and suitable than empirical formula and ΔlogR methods [4]. Next, the optimized log interpretation is achieved by using model-searching, and the mineral concentrations of kerogen, clay, feldspar and pyrite and porosity are calculated. On the other hand, engineering sweet spot of shale refers to the rock physical properties and rock mechanism parameters. Some elastic properties including volume module, shear modulus and Poisson's ratio are correspondingly determined from log interpretation, and the brittleness index (BI), effective stress and pore pressure are also estimated. BI is one of the most important engineering sweet spot parameters. A large number of instances show that the summarized log responses can accurately identify the gas-bearing shale, and the proposed RBF method for TOC prediction has more suitable and flexibility. The mineral contents and porosity from the optimized log interpretation are in good agreement with core XRD experiment and other core experiments. In some polite wells of Jiaoshiba area, china, some parameters in Wufeng-Longmaxi formation are calculated, and geological and engineering sweet spots are finally determined. For the best sweet spot, TOC is about 6%, the porosity is about 8%,the volume of kerogen is about 3%, total gas content is 8m3/t, and the brittleness index is about 90%, and the minimum and maximum horizon stress are about 30MPa and 45 MPa. Therefore, the optimized log interpretation provide an important support for sweet spots prediction and quantitative evaluation of shale gas. References: [1] Sondergeld CH, Ambrose RJ, Rai CS, Moncrieff J. Micro-structure studies of gas shales: in SPE 2012; 131771: 150-166. [2] Ellis D V, Singer J M. 2012. Well Logging for Earth Scientists (2rd edition): Springer Press. [3]Fertl W H, Chillngar G V. 1988. Total organic carbon content determined from well logs: SPE formation evaluation, 407-419. [4] Tan M J, Liu Q, and Zhang S. 2002. A dynamic adaptive radial basis function approach for total organic carbon content prediction in organic shale. Geophysics, 2013, 78(6): 445-459. Acknowledgments: This paper is sponsored by National Natural Science Foundation of China (U1403191, 41172130), the Fundamental Research Funds for the Central Universities (292015209), and National Major Projects "Development of Major Oil& Gas Fields and Coal Bed Methane" (2016ZX05014-001).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, Ernest; Hadgu, Teklu; Greenberg, Harris
This report is one follow-on to a study of reference geologic disposal design concepts (Hardin et al. 2011a). Based on an analysis of maximum temperatures, that study concluded that certain disposal concepts would require extended decay storage prior to emplacement, or the use of small waste packages, or both. The study used nominal values for thermal properties of host geologic media and engineered materials, demonstrating the need for uncertainty analysis to support the conclusions. This report is a first step that identifies the input parameters of the maximum temperature calculation, surveys published data on measured values, uses an analytical approachmore » to determine which parameters are most important, and performs an example sensitivity analysis. Using results from this first step, temperature calculations planned for FY12 can focus on only the important parameters, and can use the uncertainty ranges reported here. The survey of published information on thermal properties of geologic media and engineered materials, is intended to be sufficient for use in generic calculations to evaluate the feasibility of reference disposal concepts. A full compendium of literature data is beyond the scope of this report. The term “uncertainty” is used here to represent both measurement uncertainty and spatial variability, or variability across host geologic units. For the most important parameters (e.g., buffer thermal conductivity) the extent of literature data surveyed samples these different forms of uncertainty and variability. Finally, this report is intended to be one chapter or section of a larger FY12 deliverable summarizing all the work on design concepts and thermal load management for geologic disposal (M3FT-12SN0804032, due 15Aug2012).« less
Creating global comparative analyses of tectonic rifts, monogenetic volcanism and inverted relief
NASA Astrophysics Data System (ADS)
van Wyk de Vries, Benjamin
2016-04-01
I have been all around the world, and to other planets and have travelled from the present to the Archaean and back to seek out the most significant tectonic rifts, monogenetic volcanoes and examples of inverted relief. I have done this to provide a broad foundation of the comparative analysis for the Chaîne des Puys - Limagne fault nomination to UNESCO world Heritage. This would have been an impossible task, if not for the cooperation of the scientific community and for Google Earth, Google Maps and academic search engines. In preparing global comparisons of geological features, these quite recently developed tools provide a powerful way to find and describe geological features. The ability to do scientific crowd sourcing, rapidly discussing with colleagues about features, allows large numbers of areas to be checked and the open GIS tools (such as Google Earth) allow a standardised description. Search engines also allow the literature on areas to be checked and compared. I will present a comparative study of rifts of the world, monogenetic volcanic field and inverted relief, integrated to analyse the full geological system represented by the Chaîne des Puys - Limagne fault. The analysis confirms that the site is an exceptional example of the first steps of continental drift in a mountain rift setting, and that this is necessarily seen through the combined landscape of tectonic, volcanic and geomorphic features. The analysis goes further to deepen the understanding of geological systems and stresses the need for more study on geological heritage using such a global and broad systems approach.
Teaching Problem-Solving Skills to Nuclear Engineering Students
ERIC Educational Resources Information Center
Waller, E.; Kaye, M. H.
2012-01-01
Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and…
The Alaska earthquake, March 27, 1964: lessons and conclusions
Eckel, Edwin B.
1970-01-01
One of the greatest earthquakes of all time struck south-central Alaska on March 27, 1964. Strong motion lasted longer than for most recorded earthquakes, and more land surface was dislocated, vertically and horizontally, than by any known previous temblor. Never before were so many effects on earth processes and on the works of man available for study by scientists and engineers over so great an area. The seismic vibrations, which directly or indirectly caused most of the damage, were but surface manifestations of a great geologic event-the dislocation of a huge segment of the crust along a deeply buried fault whose nature and even exact location are still subjects for speculation. Not only was the land surface tilted by the great tectonic event beneath it, with resultant seismic sea waves that traversed the entire Pacific, but an enormous mass of land and sea floor moved several tens of feet horizontally toward the Gulf of Alaska. Downslope mass movements of rock, earth, and snow were initiated. Subaqueous slides along lake shores and seacoasts, near-horizontal movements of mobilized soil (“landspreading”), and giant translatory slides in sensitive clay did the most damage and provided the most new knowledge as to the origin, mechanics, and possible means of control or avoidance of such movements. The slopes of most of the deltas that slid in 1964, and that produced destructive local waves, are still as steep or steeper than they were before the earthquake and hence would be unstable or metastable in the event of another great earthquake. Rockslide avalanches provided new evidence that such masses may travel on cushions of compressed air, but a widely held theory that glaciers surge after an earthquake has not been substantiated. Innumerable ground fissures, many of them marked by copious emissions of water, caused much damage in towns and along transportation routes. Vibration also consolidated loose granular materials. In some coastal areas, local subsidence was superimposed on regional tectonic subsidence to heighten the flooding damage. Ground and surface waters were measurably affected by the earthquake, not only in Alaska but throughout the world. Expectably, local geologic conditions largely controlled the extent of structural damage, whether caused directly by seismic vibrations or by secondary effects such as those just described. Intensity was greatest in areas underlain by thick saturated unconsolidated deposits, least on indurated bedrock or permanently frozen ground, and intermediate on coarse well-drained gravel, on morainal deposits, or on moderately indurated sedimentary rocks. Local and even regional geology also controlled the distribution and extent of the earthquake's effects on hydrologic systems. In the conterminous United States, for example, seiches in wells and bodies of surface water were controlled by geologic structures of regional dimension. Devastating as the earthquake was, it had many long-term beneficial effects. Many of these were socioeconomic or engineering in nature; others were of scientific value. Much new and corroborative basic geologic and hydrologic information was accumulated in the course of the earthquake studies, and many new or improved investigative techniques were developed. Chief among these, perhaps, were the recognition that lakes can be used as giant tiltmeters, the refinement of methods for measuring land-level changes by observing displacements of barnacles and other sessile organisms, and the relating of hydrology to seismology by worldwide study of hydroseisms in surface-water bodies and in wells. The geologic and hydrologic lessons learned from studies of the Alaska earthquake also lead directly to better definition of the research needed to further our understanding of earthquakes and of how to avoid or lessen the effects of future ones. Research is needed on the origins and mechanisms of earthquakes, on crustal structure, and on the generation of tsunamis and local waves. Better earthquake-hazard maps, based on improved knowledge of regional geology, fault behavior, and earthquake mechanisms, are needed for the entire country. Their preparation will require the close collaboration of engineers, seismologists, and geologists. Geologic maps of all inhabited places in earthquake-prone parts of the country are also needed by city planners and others, because the direct relationship between local geology and potential earthquake damage is now well understood. Improved and enlarged nets of earthquake-sensing instruments, sited in relation to known geology, are needed, as are many more geodetic and hydrographic measurements. Every large earthquake, wherever located, should be regarded as a full-scale laboratory experiment whose study can give scientific and engineering information unobtainable from any other source. Plans must be made before the event to insure staffing, funding, and coordination of effort for the scientific and engineering study of future earthquakes. Advice of earth scientists and engineers should be used in the decision-making processes involved in reconstruction after any future disastrous earthquake, as was done after the Alaska earthquake. The volume closes with a selected bibliography and a comprehensive index to the entire series of U.S. Geological Survey Professional Papers 541-546. This is the last in a series of six reports that the U.S. Geological Survey published on the results of a comprehensive geologic study that began, as a reconnaissance survey, within 24 hours after the March 27, 1964, Magnitude 9.2 Great Alaska Earthquake and extended, as detailed investigations, through several field seasons. The 1964 Great Alaska earthquake was the largest earthquake in the U.S. since 1700. Professional Paper 546, in 1 part, describes Lessons and Conclusions.
Trends and opportunities in seismology. [Asilomar, California, January 3--9, 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-01-01
Thirty-five experts in the fields of geology, geophysics, and engineering, from academia, government, and industry, were invited to participate in a workshop and address the many problems of national and global concern that require seismological expertise for their solutions. This report reviews the history, accomplishments, and status of seismology; assesses changing trends in seismological research and applications; and recommends future directions in the light of these changes and of the growing needs of society in areas in which seismology can make significant contributions. The first part of the volume discusses areas of opportunity (understanding earthquakes and reducing their hazards; exploration,more » energy, and resources; understanding the earth and planets) and realizing the benefits (the roles of Federal, state, and local governments, industry, and universities). The second part, Background and Progress, briefly considers each of the following topics: the birth and early growth of seismology, nuclear test monitoring and its scientific ramifications, instrumentation and data processing, geodynamics and plate tectonics, theoretical seismology, structure and composition of the earth, exploration seismology, seismic exploration for minerals, earthquake source mechanism studies, engineering seismology, strong ground motion and related earthquake hazards, volcanoes, tsunamis, planetary seismology, and international aspects of seismology. 26 figures. (RWR)« less
Not a Tsunami, Not a hurricane, Just an Opportunity!
NASA Astrophysics Data System (ADS)
Edsall, D. W.; Bunnell, J. E.
2005-12-01
It has long been recognized that human health can be affected by the geologic environment through either short-term or long-term exposure to naturally occurring toxic materials. Human health can also be affected by an excess or deficiency of certain trace elements. Spatial correlations between geology and health problems are used as evidence for cause and effect relationships. For example, the Goiter Belt in the upper Midwest and Great Lakes region is a result of an iodine deficiency. The USGS and other international organizations are pursuing studies of "medical geology," the science dealing with the relationship between natural geological factors and health in man and animals, and understanding the influence of ordinary environmental factors on the spatial and temporal distribution of diseases. An ideal population study cohort for a medical geology investigation would have been born and lived solely on a relatively isolated South Pacific Ocean atoll, reef or volcanic island. Such populations would not be as mobile as those from more developed societies, would eat a more restricted diet, would live in more direct contact with the natural environment and would only be subjected to chronic contamination by geologic materials due to a lack of industry and other sources of anthropogenic pollution. We are interested in establishing relationships with similar-minded professionals from a diversity of disciplines to collect and exchange the baseline geologic and public health data necessary to initiate a medical geology investigation of a select number of South Pacific Island populations. Such research could better prepare populations at risk of future environmentally-linked public health problems for more favorable outcomes.
Geologic studies in Alaska by the U.S. Geological Survey, 1988
Dover, James H.; Galloway, John P.
1989-01-01
This volume continues the annual series of U.S. Geological Survey (USGS) reports on geologic investigations in Alaska. Since 1975, when the first of these collections of short papers appeared under the title "The United States Geological Survey in Alaska: Accomplishments during 1975," the series has been published as USGS circulars. This bulletin departs from the circular style, in part to provide a more flexible format for longer reports with more depth of content, better documentation, and broader scope than is possible for circular articles.The 13 papers in this bulletin represent a sampling of research activities carried out in Alaska by the USGS over the past few years. The topics addressed range from mineral resource studies (including natural gas) and geochemistry, Quaternary geology, basic stratigraphic and structural problems, and the use of computer graphics in geologic map preparation, to the application of geochronology to regional tectonic problems. Geographic areas represented are numbered on figure 1 and include the North Slope (1) and Brooks Range (2, 3) of Arctic Alaska, Seward Peninsula (4), interior Alaska (5-9), and remote locations of the Alaska Peninsula (10, 11) and southeast Alaska (12, 13).Two bibliographies following the reports of investigations list (1) reports about Alaska in USGS publications released in 1988 and (2) reports about Alaska by USGS authors in publications outside the USGS in 1988. A bibliography and index of the short papers in past USGS circulars devoted to Geological Research and Accomplishments in Alaska (1975-1986) is published as USGS Open-File Report 87-420.
Evolution of a National Position Paper on Geological Education
ERIC Educational Resources Information Center
Paull, Richard A.
1978-01-01
Presents a preliminary position paper for future submission to the American Geological Institute (AGI). Addresses the problems of educating the decision-makers and lay public, improving earth science education in secondary schools, educating professional geoscientists, and continuing education and retraining of professional geologists. (MA)
Soller, David R.
1996-01-01
This report summarizes a technical review of USGS Open-File Report 95-525, 'Cartographic and Digital Standard for Geologic Map Information' and OFR 95-526 (diskettes containing digital representations of the standard symbols). If you are considering the purchase or use of those documents, you should read this report first. For some purposes, OFR 95-525 (the printed document) will prove to be an excellent resource. However, technical review identified significant problems with the two documents that will be addressed by various Federal and State committees composed of geologists and cartographers, as noted below. Therefore, the 2-year review period noted in OFR 95-525 is no longer applicable. Until those problems are resolved and formal standards are issued, you may consult the following World-Wide Web (WWW) site which contains information about development of geologic map standards: URL: http://ncgmp.usgs.gov/ngmdbproject/home.html
Methods for geochemical analysis
Baedecker, Philip A.
1987-01-01
The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.
A Geology Sampling System for Small Bodies
NASA Technical Reports Server (NTRS)
Naids, Adam J.; Hood, Anthony D.; Abell, Paul; Graff, Trevor; Buffington, Jesse
2016-01-01
Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are being discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a small body. Currently, the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.
A Geology Sampling System for Microgravity Bodies
NASA Technical Reports Server (NTRS)
Hood, Anthony; Naids, Adam
2016-01-01
Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are been discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a microgravity body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.
On a New Approach to Education about Ethics for Engineers at Meijou University
NASA Astrophysics Data System (ADS)
Fukaya, Minoru; Morimoto, Tsukasa; Kimura, Noritsugu
We propose a new approach to education of so called “engineering ethics”. This approach has two important elements in its teaching system. One is “problem-solving learning”, and the other is “discussion ability”. So far, engineering ethics started at the ethical standpoint. But we put the viewpoint of problem-solving learning at the educational base of engineering ethics. Because many problems have complicated structures, so if we want to solve them, we should discuss each other. Problem-solving ability and discussion ability, they help engineers to solve the complex problems in their social everyday life. Therefore, Meijo University names engineering ethics “ethics for engineers”. At Meijou University about 1300 students take classes in both ethics for engineers and environmental ethics for one year.
Using higher-level inquiry to improve spatial ability in an introductory geology course
NASA Astrophysics Data System (ADS)
Stevens, Lacey A.
Visuo-spatial skills, the ability to visually take in information and create a mental image are crucial for success in fields involving science, technology, engineering, and math (STEM) as well as fine arts. Unfortunately, due to a lack of curriculum focused on developing spatial skills, students enrolled in introductory college-level science courses tend to have difficulty with spatially-related activities. One of the best ways to engage students in science activities is through a learning and teaching strategy called inquiry. There are lower levels of inquiry wherein learning and problem-solving are guided by instructions and higher levels of inquiry wherein students have a greater degree of autonomy in learning and creating their own problem-solving strategy. A study involving 112 participants was conducted during the fall semester in 2014 at Bowling Green State University (BGSU) in an 1040 Introductory Geology Lab to determine if a new, high-level, inquiry-based lab would increase participants' spatial skills more than the traditional, low-level inquiry lab. The study also evaluated whether a higher level of inquiry differentially affected low versus high spatial ability participants. Participants were evaluated using a spatial ability assessment, and pre- and post-tests. The results of this study show that for 3-D to 2-D visualization, the higher-level inquiry lab increased participants' spatial ability more than the lower-level inquiry lab. For spatial rotational skills, all participants' spatial ability scores improved, regardless of the level of inquiry to which they were exposed. Low and high spatial ability participants were not differentially affected. This study demonstrates that a lab designed with a higher level of inquiry can increase students' spatial ability more than a lab with a low level of inquiry. A lab with a higher level of inquiry helped all participants, regardless of their initial spatial ability level. These findings show that curriculum that incorporates a high level of inquiry that integrates practice of spatial skills can increase students' spatial abilities in Geology-related coursework.
Environmental geology: Our professional public responsibility
Gerhard, L.C.; Brady, L.L.
1999-01-01
Conflicts between different interest groups for use of natural resources is one area where state geological surveys can provide assistance. A state geological survey working within the scientific constraints of specific issues can remain objective in its presentations and maintain the faith of both the conflicting interest groups and the public. One cannot vary from the objective view or you will quickly be criticized. Criticism can still occur from one side of a natural resource issue as your data might counter their views. However, the final decisions are almost always made in some legislators, or regulators, area of responsibility. The responsibility of the state geological survey is to provide the important data that will assist in making correct decisions. Should one party in the conflict become extreme in their demands, a potential compromise that is beneficial to both sides can be lost. In Kansas, the classical natural resource problem of resource/recreation in a populated area is presented as a case study. The state geological survey presented data on sand resources in the Kansas River and its valley in northeast Kansas. That information was important to both recreation and dredging interests where the political problem is a conflict of sand use as a construction material resource versus use of the alluvial river as an important recreation area, especially for canoeing. However, when a reasonable compromise was near completion in the Kansas Legislature one side, in a bold move to develop an advantage, ruined that potential for compromise.Conflicts between different interest groups for use of natural resources is one area where state geological surveys can provide assistance. A state geological survey working within the scientific constraints of specific issues can remain objective in its presentations and maintain the faith of both the conflicting interest groups and the public. In Kansas, the classical natural resource problem of resource/recreation in a populated area is presented as a case study. The state geological survey presented data on sand resources in the Kansas River and its valley in northeast Kansas. That information was important to both recreation and dredging interests.
Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, J P; Johnson, S M
2008-03-26
An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDECmore » now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.« less
Geological Mapping of Fortuna Tessera (V-2): Venus and Earth's Archean Process Comparisons
NASA Technical Reports Server (NTRS)
Head, James W.; Hurwitz,D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil
2008-01-01
The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by insight from the Archean record of the Earth, to gain new insight into the evolution of Venus and Earth's Archean. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and the surface of Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. Elsewhere we have addressed the nature of the Earth's Archean, the similarities to and differences from Venus, and the specific Venus and Earth-Archean problems on which progress might be made through comparison. Here we present the major goals of the Venus-Archean comparison and show how preliminary mapping of the geology of the V-2 Fortuna Tessera quadrangle is providing insight on these problems. We have identified five key themes and questions common to both the Archean and Venus, the assessment of which could provide important new insights into the history and processes of both planets.
NASA Astrophysics Data System (ADS)
Toke, N.; Johnson, A.; Nelson, K.
2010-12-01
Earthquakes are one of the most widely covered geologic processes by the media. As a result students, even at the middle school level, arrive in the classroom with preconceptions about the importance and hazards posed by earthquakes. Therefore earthquakes represent not only an attractive topic to engage students when introducing tectonics, but also a means to help students understand the relationships between geologic processes, society, and engineering solutions. Facilitating understanding of the fundamental connections between science and society is important for the preparation of future scientists and engineers as well as informed citizens. Here, we present a week-long lesson designed to be implemented in five one hour sessions with classes of ~30 students. It consists of two inquiry-based mapping investigations, motivational presentations, and short readings that describe fundamental models of plate tectonics, faults, and earthquakes. The readings also provide examples of engineering solutions such as the Alaskan oil pipeline which withstood multi-meter surface offset in the 2002 Denali Earthquake. The first inquiry-based investigation is a lesson on tectonic plates. Working in small groups, each group receives a different world map plotting both topography and one of the following data sets: GPS plate motion vectors, the locations and types of volcanoes, the location of types of earthquakes. Using these maps and an accompanying explanation of the data each group’s task is to map plate boundary locations. Each group then presents a ~10 minute summary of the type of data they used and their interpretation of the tectonic plates with a poster and their mapping results. Finally, the instructor will facilitate a class discussion about how the data types could be combined to understand more about plate boundaries. Using student interpretations of real data allows student misconceptions to become apparent. Throughout the exercise we record student preconceptions and post them to a bulletin board. During the tectonics unit we use these preconceptions as teaching tools. We also archive the misconceptions via a website which will be available for use by the broader geoscience education community. The second student investigation focuses on understanding the impact earthquakes have on nearby cities. We use the example of the 2009 southern San Andreas Fault (SAF) shakeout scenario. Students again break into groups. Each group is given an aspect of urban infrastructure to study relative to the underlying geology and location of nearby faults. Their goal is to uncover potential urban infrastructure issues related to a major earthquake on the SAF. For example students will map transportation ways crossing the fault, the location of hospitals relative to forecasted shaking hazards, the location of poverty-stricken areas relative to shaking hazards, and utilities relative to fault crossings. Again, students are tasked with explaining their investigation and analyses to the class with ample time for discussion about potential ways to solve problems identified through their investigations.
Reconnaissance Report on Coastal Erosion at Fort Ord, California.
1983-12-01
Granite Construction Company Monterey, Calif. Dr. Asbury Sallenger, Jr. U. S . Geological Survey Menlo Park, Calif. Yuchuek Hsia County of Monterey...Coastal Engineering Research Center U. S . Army Engineer Waterways Experiment Station P. 0. Box 631, Vicksburg, Miss. 39180 December 1983 Final Report...mnd Subettlo) S . TYPE OF REPORT & PERIOD COVERED RECONNAISSANCE REPORT ON COASTAL EROSION AT FORT Final Report ORD, CALIFORNIA 6. PERFORMING ORG
NASA Technical Reports Server (NTRS)
1988-01-01
Papers concerning remote sensing applications for exploration geology are presented, covering topics such as remote sensing technology, data availability, frontier exploration, and exploration in mature basins. Other topics include offshore applications, geobotany, mineral exploration, engineering and environmental applications, image processing, and prospects for future developments in remote sensing for exploration geology. Consideration is given to the use of data from Landsat, MSS, TM, SAR, short wavelength IR, the Geophysical Environmental Research Airborne Scanner, gas chromatography, sonar imaging, the Airborne Visible-IR Imaging Spectrometer, field spectrometry, airborne thermal IR scanners, SPOT, AVHRR, SIR, the Large Format camera, and multitimephase satellite photographs.
Soileau, Suzanna; Miller, Kirk
2013-01-01
The quality of the Nation’s water resources are vital to the health and well-being of both our communities and the natural landscapes we value. The U.S. Geological Survey investigates the occurrence, quantity, quality, distribution, and movement of surface water and groundwater and provides this information to engineers, scientists, managers, educators, and the general public. This information also supplements current (2013) and historical water data provided by the National Water Information System. The U.S. Geological Survey collects and shares data nationwide, but how those data are used is often site specific; this variety of data assists natural-resource managers in addressing unique, local, and regional challenges.
Langer, William H.; Van Gosen, Bradley S.; Arbogast, Belinda; Lindsey, David A.
2011-01-01
In April 2005, the U.S. Geological Survey (USGS) conducted field studies on the Wind River Indian Reservation, Wyoming, to inventory and evaluate sand and gravel deposits underlying river terraces on tribal lands along the Wind River. This report contains the results for 12 sites of sand and gravel deposits evaluated for their potential use as aggregate in Portland cement concrete, asphalt, and base course. The report provides the results of: * The USGS geologic studies and engineering tests. * A conclusion and recommendation for the best use of sand and gravel materials. * Calculations of available sand and gravel materials. * A scenic quality landscape inventory and evaluation.
PREFACE: Scientific and Technical Challenges in the Well Drilling Progress
NASA Astrophysics Data System (ADS)
2015-02-01
The Conference "Advanced Engineering Problems in Drilling" was devoted to the 60th anniversary of the Drilling Department, Institute of Natural Resources. Today this Department is the "descendant" of two existing departments - Mining Exploration Technology and Oil and Gas Drilling. It should be mentioned that this remarkable date is associated with the first graduation class of mining engineers in "Mining Exploration Technologies", as well as the 30th anniversary of the Oil and Gas Well Drilling Department. Anniversary is an excellent occasion to remember one's historical past. At the beginning of the last century within the Tomsk Technological Institute n.a. Emperor Nikolai II the Mining Department was established which soon embraced the Obruchev-Usov Mining-Geological School. This School became the parent of mining-geological education in the Asian region of Russia, as well as the successor of mining-geological science. It was and is today one of the leading schools in the spheres of mineral resources exploration, surveying and mining. 1927 is the year of the establishment of the Department of Technology in Mineral Exploration. SibGeokom (Western-Siberia branch of the Geological Committee) under the supervision of M.A. Usov obtained the first Krelis rotary boring drill. Prior to that only the Keystone cable drilling rig was used in exploration. It was I.A. Molchanov who was responsible for the development and implementation of new technology in the field of exploration. In the yard of SibGeokom (now it is Building № 6, Usov St.) the first drilling rig was mounted. This was the beginning of the first training courses for Krelis drilling foremen under the supervision of I.A. Molchanov. In 1931 I.A. Molchanov headed the Department of Exploration which was located in Building № 6. In the outside territory of this building a drilling site was launched, including Keystone cable drilling rig, CAM-500 drilling rig and others. In the Building itself, i.e. in one study room (now № 107), the floor was lowered to 2 m and a drilling rig was mounted where students could obtain practical skills in drilling. The Department of Exploration became the foundation of the future department of Mining Exploration Technologies. However, the Department of Exploration, headed by A.A. Belitshky from 1944, furthered its work in the research sphere of drilling (including such leading specialists as P.F. Palyanov, V.I. Molchanov, I.S. Mitushkin, V.M. Matrosov, V.P. Krendelev) and in 1949 a new speciality was introduced "Technologies in Mineral Exploration." In 1952 the graduate of Moscow Geological Institute (now Geological Institute, Russian Academy of Science) PhD. S.S. Sulakshin began working in this Department, and in 1954 headed the newly established Department of Technologies in Mineral Exploration and was its continuous Head for more than 32 years and during the last 60 years has been a close associate of this department. Due to his brilliant supervision, this Department flourished and during the last 20 years has been one of the top departments in Russian affliated departments. In 1962 within the framework of this Department a new speciality was introduced - Oil and Gas Well Drilling. 125 full-time and 50 part-time students were enrolled in the two above-mentioned specialities. As a result, there was a necessity to open a new independent department which was in 1984 (October 1). The Department of Oil and Gas Well Drilling was located in Building № 8 and then in Building № 15. The Department staff included graduates of the Department of Technologies in Mineral Exploration and was headed by Yu. L. Boyarko, one of the first graduates of this Department. Time passed by and life made its own adjustments which influenced the further existence of these two departments. Due to the decrease of exploration and development drilling scope the student enrollment in the two above-mentioned specialties also decreased many-fold. As a result the two departments - Technologies in Mineral Exploration and Technologies in Mineral Exploration were merged into one department. In 2003 the newly merged Department of Drilling was established within the Institute of Petroleum Engineering, now the Institute of Natural Resources and is located in Building № 6 where it began its life. During these 60 years more than 3000 specialists have graduated the Department of Drilling, many whom are highly-qualified and dedicated professionals. There is no doubt that this Conference involved comprehensive advanced engineering problems in drilling and issues on relevant personnel training. It is extremely important to understand how the 60-year progress and contribution in the field of drilling has left its trace in the history of this Department; and, that, now, it is necessary to move further and seek new and new horizons in drilling.
Rankin, Douglas W.
2018-04-20
The bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire, covers an area of approximately 73 square miles (189 square kilometers) in west-central New Hampshire. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. A large part of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Devonian sedimentary, volcanic, and plutonic rocks.The Bronson Hill anticlinorium is the apex of the Middle Ordovician to earliest-Silurian Bronson Hill magmatic arc that contains the Ammonoosuc Volcanics, Partridge Formation, and Oliverian Plutonic Suite, and extends from Maine, through western New Hampshire (down the eastern side of the Connecticut River), through southern New England to Long Island Sound. The deformed and partially eroded arc is locally overlain by a relatively thin Silurian section of metasedimentary rocks (Clough Quartzite and Fitch Formation) that thickens to the east. The Silurian section near Littleton is disconformably overlain by a thicker, Lower Devonian section that includes mostly metasedimentary and minor metavolcanic rocks of the Littleton Formation. The Bronson Hill anticlinorium is bisected by a series of northeast-southwest trending Mesozoic normal faults. Primarily among them is the steeply northwest-dipping Ammonoosuc fault that divides older and younger units (lower and upper sections) of the Ammonoosuc Volcanics. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of slate, phyllite, ironstone, chert, sandstone, and pelite. The Albee Formation underlies the Ammonoosuc Volcanics and is predominantly composed of interbedded metamorphosed sandstone, siltstone, and phyllite.During the Late Ordovician, a series of arc-related plutons intruded the Ammonoosuc Volcanics including the Moody Ledge pluton and the Scrag granite of Billings (1937). Subsequent plutonism related to the Acadian orogeny occurred after volcanism and deposition resulted in the Littleton Formation during the Late Devonian, including the intrusion of the Haverhill pluton and French Pond Granite found in the southern part of the map.This report consists of a geologic map and an online geographic information systems database that includes contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The geologic map is intended to serve as a foundation for applying geologic information to problems involving land use decisions, groundwater availability and quality, earth resources such as natural aggregate for construction, assessment of natural hazards, and engineering and environmental studies for waste disposal sites and construction projects.
NASA Astrophysics Data System (ADS)
Aldiss, Don; Haslam, Richard
2013-04-01
In parts of London, faulting introduces lateral heterogeneity to the local ground conditions, especially where construction works intercept the Palaeogene Lambeth Group. This brings difficulties to the compilation of a ground model that is fully consistent with the ground investigation data, and so to the design and construction of engineering works. However, because bedrock in the London area is rather uniform at outcrop, and is widely covered by Quaternary deposits, few faults are shown on the geological maps of the area. This paper discusses a successful resolution of this problem at a site in east central London, where tunnels for a new underground railway station are planned. A 3D geological model was used to provide an understanding of the local geological structure, in faulted Lambeth Group strata, that had not been possible by other commonly-used methods. This model includes seven previously unrecognised faults, with downthrows ranging from about 1 m to about 12 m. The model was constructed in the GSI3D geological modelling software using about 145 borehole records, including many legacy records, in an area of 850 m by 500 m. The basis of a GSI3D 3D geological model is a network of 2D cross-sections drawn by a geologist, generally connecting borehole positions (where the borehole records define the level of the geological units that are present), and outcrop and subcrop lines for those units (where shown by a geological map). When the lines tracing the base of each geological unit within the intersecting cross-sections are complete and mutually consistent, the software is used to generate TIN surfaces between those lines, so creating a 3D geological model. Even where a geological model is constructed as if no faults were present, changes in apparent dip between two data points within a single cross-section can indicate that a fault is present in that segment of the cross-section. If displacements of similar size with the same polarity are found in a series of adjacent cross-sections, the presence of a fault can be substantiated. If it is assumed that the fault is planar and vertical, then the pairs of constraining data points in each cross-section form a two-dimensional envelope within which the surface trace of the fault must lie. Generally, the broader the area of the model, the longer the envelope defined by the pairs of boreholes is, resulting in better constraint of the fault zone width and azimuth. Repetition or omission of the local stratigraphy in the constraining boreholes can demonstrate reverse or normal dip-slip motion. Even if this is not possible, borehole intercepts at the base of the youngest bedrock unit or at the top of the oldest bedrock unit can constrain the minimum angle of dip of the fault plane. Assessment of the maximum angle of dip requires intrusive investigation. This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an NERC copyright. This license does not conflict with the regulations of the Crown Copyright.
40 CFR 147.2904 - Area of review.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fixed radius of one-forth of a mile from the well, field or project. (b) The zone of endangering... through the use of an appropriate formula that addresses the relevant geologic, hydrologic, engineering...
40 CFR 147.2904 - Area of review.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fixed radius of one-forth of a mile from the well, field or project. (b) The zone of endangering... through the use of an appropriate formula that addresses the relevant geologic, hydrologic, engineering...
40 CFR 147.2904 - Area of review.
Code of Federal Regulations, 2013 CFR
2013-07-01
... fixed radius of one-forth of a mile from the well, field or project. (b) The zone of endangering... through the use of an appropriate formula that addresses the relevant geologic, hydrologic, engineering...
MGM - MS Reilly holds a container used in the MGM experiment
1998-03-04
S89-E-5328 (27 Jan 1998) --- This Electronic Still Camera (ESC) image shows astronaut James F. Reilly, mission specialist, holding the Mechanics of Granular Materials (MGM) experiment. The MGM experiment is aimed at understanding the behavior of granular materials, such as sand or salt, under very low confining pressure. This pressure is the force that keeps a granular material ?sticking together?. The experiment has applications in a wide range of fields, including earthquake engineering; coastal and off-shore engineering; mining; transportation of granular materials; soil erosion; the handling of granular materials such as grains and powders; off-road vehicles; geology of the Earth; and planetary geology and exploration. Findings from the experiment may lead to improved selection and preparation of building sites, better management of undeveloped land, and improved handling of materials in chemical, agricultural and other industries.
Wallace, R.E.; Bucknam, R.C.; Hanks, T.C.
1994-01-01
Two major construction projects of ancient times in China involved what today would be considered engineering geology. We describe an ancient canal system in Gaotai County, Gansu province that was possibly begun in the Han dynasty (206 BC-220 AD). The canal system heads at the Dasha River and extends northwestward for about 55 km to the City of Camels and Xusanwan village. Four parallel canals are present at the local site we examined. The canals were likely built primarily to transport water but may also have served as defensive military barriers. A second project involves trenches and berms along the north side of the Great Wall, clearly part of the Great Wall defensive system. This site is in Ningxia Autonomous Region near the town of Shizuishan. ?? 1994.
Cramer, C.H.; Kumar, A.
2003-01-01
Engineering seismoscope data collected at distances less than 300 km for the M 7.7 Bhuj, India, mainshock are compatible with ground-motion attenuation in eastern North America (ENA). The mainshock ground-motion data have been corrected to a common geological site condition using the factors of Joyner and Boore (2000) and a classification scheme of Quaternary or Tertiary sediments or rock. We then compare these data to ENA ground-motion attenuation relations. Despite uncertainties in recording method, geological site corrections, common tectonic setting, and the amount of regional seismic attenuation, the corrected Bhuj dataset agrees with the collective predictions by ENA ground-motion attenuation relations within a factor of 2. This level of agreement is within the dataset uncertainties and the normal variance for recorded earthquake ground motions.
NASA Astrophysics Data System (ADS)
William W. Fox, Jr., has been appointed director of the Cooperative Institute for Marine and Atmospheric Studies (CIMAS). He had been director of the Southeast Fisheries Center of the National Marine Fisheries Service since 1978. CIMAS was established in 1977 by the National Oceanic and Atmospheric Administration and the University of Miami.Seven of the 689 U.S. Fulbright Scholars for 1982-1983 are lecturing and conducting advanced research in geology in universities abroad. Brian Francis Farrell, a research assistant in planetary studies at Harvard University, is lecturing in oceanography at the University of Cambridge in England through June. William B. Fergusson, associate professor of civil engineering at Villanova University, will lecture in geology at the Kangwon National University in Korea until July. Ray Edward Ferrell, Jr., geology chairman at Louisiana State University in Baton Rouge, lectured and conducted research in marine geology at the University of Oslo in Norway. M. Allan Kays, professor of geology at the University of Oregon in Eugene, will conduct research in geology at the University of Copenhagen in Denmark through April. Richard Vernon McGehee, associate professor of health education at Southeastern Louisiana University (University Station campus), will be lecturing in geology at the University of Monrovia in Liberia through July. Bruce Warren Nelson, a professor of environmental studies at the University of Virginia in Charlottesville, will be lecturing in geology at the Universiti Malaya in Malaysia through April. Ronald Porter Willis, professor of geology at the University of Wisconsin—Eau Claire, will be lecturing in geology at the Seoul National University in Korea through July.
The geological thought process: A help in developing business instincts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epstein, S.A.
1995-09-01
Since the beginning of modern-day geology it has been understood that the present is the key to the past. However, when attempting to apply current geological models one discovers that there are no exact look-alikes. Thus, the geological discipline inherently accepts modifications, omissions, and relatively large margins of error compared with engineering. Geologists are comfortable in a world of non-unique solutions. Thus the experience in working with numerous geological settings is extremely critical in selecting the most reasonable geological interpretations, often by using a composite of specific models. One can not simply replace a dynamic geologist`s life-time of experiences andmore » geologic instinct with simply a book-smart young upstart. Petroleum corporations accept geologic risk and manage it by drilling numerous wells in various geological provenances. Oil corporations have attempted to quantify and manage risk by using Monte Carlo simulations, thus invoking a formal discipline of risk. The acceptance of risk, results in an asset allocation approach to investing. Asset allocators attempt to reduce volatility and risk, inherently understanding that in any specific time interval anything can happen. Dollar cost averaging significantly reduces market risk over time, however it requires discipline and commitment. The single most important ingredient to a successful investing plan is to assign a reasonable holding period. Historically, a majority of the investment community demands instant gratification causing unneeded anxiety and failure. As in geology nothing can replace experience.« less
Rating the strength of coal mine roof rocks. Information circular/1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molinda, G.M.; Mark, C.
1996-05-01
The Ferm pictoral classification of coal measure rocks is widely utilized in coalfield exploration. Although extremely useful as an alternative to conventional geologic description, no material properties are provided that would be suitable for engineering solutions. To remedy this problem, the USBM has tested over 30 common coal measure roof rock types for axial and bedding strength. More than 1,300 individual point load tests have been conducted on core from 8 different coal mines representing the full range of common coal measure rocks. The USBM core and roof exposure properties database has been merged with the picture classification to provide,more » for the first time, a simple, clear guide from field identification of core to the associated mechanical strength of the rock. For 33 of the most common roof rocks, the axial and diametral point load strength, as well as the ultimate unit rating, is overprinted onto the photograph.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
More, Y. K., E-mail: moreyogesh153@gmail.com; Moharil, S. V.; Wankhede, S. P.
Optically stimulated luminescence (OSL) originally developed for geological/archaeological dating, has been found very useful for diverse applications in the field of radiation dosimetry. There is still a scarcity of OSL materials with demonstrated properties suited to dosimetry applications. Progress on the development of OSL materials with engineered properties has been slow and most research has focused on the OSL characterization of existing materials. One of the reasons for availability of only a handful of OSL dosimetry materials with adequate properties is that they have to satisfy certain stringent conditions necessary for such applications. Especially, hygroscopic materials are considered totally unsuitable.more » The efforts were made in our laboratory to overcome this problem. It is shown here that “water-proof” dosimeters can be prepared from even hygroscopic materials such as NaCl.« less
NASA Astrophysics Data System (ADS)
The Council for International Exchange of Scholars still is accepting applications for geology lecturers for 1981-1982. Nominations already made are being processed; most scholars receiving awards will be notified in February or March, according to the Council.Available positions include one volcanic ash soils lecturer, Argentina; seismic analysis and antiseismic construction, Ecuador; geological engineering, Turkey; and petrology and/or optical mineralogy, Uganda. In addition, several positions are available for a lecturer in Liberia. For additional information, contact the Council, Suite 300, 11 Dupont Circle, Washington, D.C. 20036.
Earth Sciences annual report, 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younker, L.W.; Donohue, M.L.; Peterson, S.J.
1988-12-01
The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications.
NASA Technical Reports Server (NTRS)
Sweitzer, J. S.
1979-01-01
The geotechnical investigation was conducted in three disciplines: (1) geological field reconnaissance of the general area of proposed construction; (2) geophysical seismic refraction survey of the localized area surrounding the six proposed antenna sites, including shear wave velocity determination; and (3) detailed foundation engineering investigation of each of the six sites. The investigations indicate that the six sites selected are relatively free from geologic hazards which would inhibit the proposed construction or future antenna operations.
Prensky, Stephen E.
1987-01-01
This report includes over 1,350 individual citations as well as a first-author index. The purpose of this bibliography is twofold, 1) to provide a basic, first-stop resource on well logging which the non-specialist, i. e. , geoscientist, can consult and, 2) to provide a reference on geologic applications for the non-geoscientist, i. e. , log analyst or petroleum engineer, as well as for the geoscientist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honarpour, M.; Szpakiewicz, M.; Sharma, B.
This report covers the development of a generic approach to reservoir characterization, the preliminary studies leading to the selection of an appropriate depositional system for detailed study, the application of outcrop studies to quantified reservoir characterization, and the construction of a quantified geological/engineering model used to screen the effects and scales of various geological heterogeneities within a reservoir. These heterogeneities result in large production/residual oil saturation contrasts over small distances. 36 refs., 124 figs., 38 tabs.
NASA Technical Reports Server (NTRS)
Goetz, A. F. H.; Billingsley, F. C.
1974-01-01
Enhancements discussed include contrast stretching, multiratio color displays, Fourier plane operations to remove striping and boosting MTF response to enhance high spatial frequency content. The use of each technique in a specific application in the fields of geology, geomorphology and oceanography is demonstrated.
How the Apollo Program Changed the Geology of the Moon
ERIC Educational Resources Information Center
Smith, J. V.; Steele, I. M.
1973-01-01
Evaluates the effect of the Apollo program on the geology of the Moon to determine further study problems. Concludes that the National Aeronautics and Space Administration can provide excellent justification for its extension since human beings have the possibility of using the rocks in ways not currently conceived. (CC)
The Problem of Ensuring Reliability of Gas Turbine Engines
NASA Astrophysics Data System (ADS)
Nozhnitsky, Yu A.
2018-01-01
Requirements to advanced engines for civil aviation are discussing. Some significant problems of ensuring reliability of advanced gas turbine engines are mentioned. Special attention is paid to successful utilization of new materials and critical technologies. Also the problem of excluding failure of engine part due to low cycle or high cycle fatigue is discussing.
Dennis, P. E.; Maxey, G.B.; Thomas, H.E.
1946-01-01
The users of wells for irrigation in Pavant Valley, particularly in the Flowell district, have long been cognizant of their utter dependency upon ground water for livelihood, and were among the first in the State to make an organized effort to conserve supplies by prevention of waste. Since passage of the State ground-water law in 1935, the State Engineer has not approved applications for new wells in the areas of most concentrated development, and has deferred adjudication of existing water rights until adequate data concerning the ground-water resources become available. The investigation of ground-water resources in Pavant Valley was suggested by the State Engineer and constitutes one of a series that are being made in the important groundwater basins of Utah by the Federal Geological Survey in cooperation with the State Engineer. The investigation was under the general supervision of Oscar E. Meinzer, geologist in charge of the ground-water division of the Federal Geological Survey. H. E. Thomas, in charge of groundwater investigations in Utah, returned from military service overseas in time to assist in the completion of the manuscript, and edited the report.
Engineered Barrier System performance requirements systems study report. Revision 02
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balady, M.A.
This study evaluates the current design concept for the Engineered Barrier System (EBS), in concert with the current understanding of the geologic setting to assess whether enhancements to the required performance of the EBS are necessary. The performance assessment calculations are performed by coupling the EBS with the geologic setting based on the models (some of which were updated for this study) and assumptions used for the 1995 Total System Performance Assessment (TSPA). The need for enhancements is determined by comparing the performance assessment results against the EBS related performance requirements. Subsystem quantitative performance requirements related to the EBS includemore » the requirement to allow no more than 1% of the waste packages (WPs) to fail before 1,000 years after permanent closure of the repository, as well as a requirement to control the release rate of radionuclides from the EBS. The EBS performance enhancements considered included additional engineered components as well as evaluating additional performance available from existing design features but for which no performance credit is currently being taken.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witherspoon Editor, P.A.; Bodvarsson Editor, G.S.
The broad range of activities on radioactive waste isolation that are summarized in Table 1.1 provides a comprehensive picture of the operations that must be carried out in working with this problem. A comparison of these activities with those published in the two previous reviews shows the important progress that is being made in developing and applying the various technologies that have evolved over the past 20 years. There are two basic challenges in perfecting a system of radioactive waste isolation: choosing an appropriate geologic barrier and designing an effective engineered barrier. One of the most important developments that ismore » evident in a large number of the reports in this review is the recognition that a URL provides an excellent facility for investigating and characterizing a rock mass. Moreover, a URL, once developed, provides a convenient facility for two or more countries to conduct joint investigations. This review describes a number of cooperative projects that have been organized in Europe to take advantage of this kind of a facility in conducting research underground. Another critical development is the design of the waste canister (and its accessory equipment) for the engineered barrier. This design problem has been given considerable attention in a number of countries for several years, and some impressive results are described and illustrated in this review. The role of the public as a stakeholder in radioactive waste isolation has not always been fully appreciated. Solutions to the technical problems in characterizing a specific site have generally been obtained without difficulty, but procedures in the past in some countries did not always keep the public and local officials informed of the results. It will be noted in the following chapters that this procedure has caused some problems, especially when approval for a major component in a project was needed. It has been learned that a better way to handle this problem is to keep all stakeholders fully informed of project plans and hold periodic meetings to brief the public, especially in the vicinity of the selected site. This procedure has now been widely adopted and represents one of the most important developments in the Third Worldwide Review.« less
Teaching Introductory Geoscience: A Cutting Edge Workshop Report
NASA Astrophysics Data System (ADS)
Manduca, C.; Tewksbury, B.; Egger, A.; MacDonald, H.; Kirk, K.
2008-12-01
Introductory undergraduate courses play a pivotal role in the geosciences. They serve as recruiting grounds for majors and future professionals, provide relevant experiences in geoscience for pre-service teachers, and offer opportunities to influence future policy makers, business people, professionals, and citizens. An introductory course is also typically the only course in geoscience that most of our students will ever take. Because the role of introductory courses is pivotal in geoscience education, a workshop on Teaching Introductory Courses in the 21st Century was held in July 2008 as part of the On the Cutting Edge faculty development program. A website was also developed in conjunction with the workshop. One of the central themes of the workshop was the importance of considering the long-term impact a course should have on students. Ideally, courses can be designed with this impact in mind. Approaches include using the local geology to focus the course and illustrate concepts; designing a course for particular audience (such as Geology for Engineers); creating course features that help students understand and interpret geoscience in the news; and developing capstone projects to teach critical thinking and problem solving skills in a geologic context. Workshop participants also explored strategies for designing engaging activities including exploring with Google Earth, using real-world scenarios, connecting with popular media, or making use of campus features on local field trips. In addition, introductory courses can emphasize broad skills such as teaching the process of science, using quantitative reasoning and developing communication skills. Materials from the workshop as well as descriptions of more than 150 introductory courses and 350 introductory-level activities are available on the website: http://serc.carleton.edu/NAGTWorkshops/intro/index.html.
How To Solve Problems. For Success in Freshman Physics, Engineering, and Beyond. Third Edition.
ERIC Educational Resources Information Center
Scarl, Donald
To expertly solve engineering and science problems one needs to know science and engineering as well as have a tool kit of problem-solving methods. This book is about problem-solving methods: it presents the methods professional problem solvers use, explains why these methods have evolved, and shows how a student can make these methods his/her…
NASA Astrophysics Data System (ADS)
Pawar, R.
2016-12-01
Risk assessment and risk management of engineered geologic CO2 storage systems is an area of active investigation. The potential geologic CO2 storage systems currently under consideration are inherently heterogeneous and have limited to no characterization data. Effective risk management decisions to ensure safe, long-term CO2 storage requires assessing and quantifying risks while taking into account the uncertainties in a storage site's characteristics. The key decisions are typically related to definition of area of review, effective monitoring strategy and monitoring duration, potential of leakage and associated impacts, etc. A quantitative methodology for predicting a sequestration site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale geologic storage projects where projects will require quantitative assessments of potential long-term liabilities. An integrated assessment modeling (IAM) paradigm which treats a geologic CO2 storage site as a system made up of various linked subsystems can be used to predict long-term performance. The subsystems include storage reservoir, seals, potential leakage pathways (such as wellbores, natural fractures/faults) and receptors (such as shallow groundwater aquifers). CO2 movement within each of the subsystems and resulting interactions are captured through reduced order models (ROMs). The ROMs capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. The computational efficiency allows for performing Monte Carlo simulations necessary for quantitative probabilistic risk assessment. We have used the IAM to predict long-term performance of geologic CO2 sequestration systems and to answer questions related to probability of leakage of CO2 through wellbores, impact of CO2/brine leakage into shallow aquifer, etc. Answers to such questions are critical in making key risk management decisions. A systematic uncertainty quantification approach can been used to understand how uncertain parameters associated with different subsystems (e.g., reservoir permeability, wellbore cement permeability, wellbore density, etc.) impact the overall site performance predictions.
Optimizing longwall mine layouts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minkel, M.J.
1996-12-31
Before spending the time to design an underground mine in detail, the mining engineer should be assured of the economic viability of the location of the layout. This has historically been a trial-and-error, iterative process. Traditional underground mine planning usually bases the layout on the geological characteristics of a deposit such as minimum seam height, quality, and the absence of faults. Whether one attempts to make a decision manually. or use traditional mine planning software, the process works something like this: First you build geological model. Then you impose a {open_quotes}best guess{close_quotes} as to which geological layers will become partmore » of the mined product, or will influence mining. Next you place your design where you believe is the best location to make a mine. Then you select equipment which you believe will cost-effectively mine the area. Finally, you schedule your equipment selection through the design over the mine life, run financial analyses and see if the rate of return is acceptable. If the NPV is acceptable, the design is accepted. If the NPV is not acceptable, the engineer has to restart the cycle of redesigning the layout, rescheduling the equipment, and restudying the economics again.« less
Developing a state water plan: Ground-water conditions in Utah, spring of 1964
Arnow, Ted; Butler, R.G.; Mower, R.W.; Gates, Joseph S.; Cordova, R.M.; Carpenter, C.H.; Bjorklund, L.J.; Feltis, R.D.; Robinson, G.B. Jr.; Sandberg, G.W.
1964-01-01
This report is the first in a series of annual reports which will describe ground-water conditions in Utah. It was prepared cooperatively by the U.S. Geological Survey and the Utah Water and Power Board and was designed to provide the data for interested parties, such as legislators, administrators, and planners to keep abreast of changing ground-water conditions in the state. Because this report is the first of the series, it necessarily includes certain background and descriptive information which gives a broad general picture of ground-water conditions. Subsequent reports will discuss only changes that have taken place during the previous year.Many of the data used in the preparation of the report were collected by the Geological Survey in cooperation with the Utah State Engineer during past and continuing programs. The well-location map and some statistical information about numbers of wells in the State were prepared by digital computer from the Utah Resources Information System, University of Utah, utilizing records which were compiled largely from the files of the Utah State Engineer. R.E. Marsell, geological consultant to the Utah Water and Power Board, first suggested that this report be prepared.
Geologic map of the Great Smoky Mountains National Park region, Tennessee and North Carolina
Southworth, Scott; Schultz, Art; Aleinikoff, John N.; Merschat, Arthur J.
2012-01-01
The geology of the Great Smoky Mountains National Park region of Tennessee and North Carolina was studied from 1993 to 2003 as part of a cooperative investigation by the U.S. Geological Survey with the National Park Service (NPS). This work resulted in a 1:100,000-scale geologic map derived from mapping that was conducted at scales of 1:24,000 and 1:62,500. The geologic data are intended to support cooperative investigations with the NPS, the development of a new soil map by the Natural Resources Conservation Service, and the All Taxa Biodiversity Inventory. In response to a request by the NPS, we mapped previously unstudied areas, revised the geology where problems existed, and developed a map database for use in interdisciplinary research, land management, and interpretive programs for park visitors.
Dealing With Shallow-Water Flow in the Deepwater Gulf of Mexico
NASA Astrophysics Data System (ADS)
Ostermeier, R.
2006-05-01
Some of the Shell experience in dealing with the shallow-water flow problem in the Deepwater Gulf of Mexico (GOM) will be presented. The nature of the problem, including areal extent and over-pressuring mechanisms, will be discussed. Methods for sand prediction and shallow sediment and flow characterization will be reviewed. These include seismic techniques, the use of geo-technical wells, regional trends, and various MWD methods. Some examples of flow incidents with pertinent drilling issues, including well failures and abandonment, will be described. To address the shallow-water flow problem, Shell created a multi-disciplinary team of specialists in geology, geophysics, petrophysics, drilling, and civil engineering. The team developed several methodologies to deal with various aspects of the problem. These include regional trends and data bases, shallow seismic interpretation and sand prediction, well site and casing point selection, geo-technical well design and data interpretation, logging program design and interpretation, cementing design and fluids formulation, methods for remediation and mitigation of lost circulation, and so on. Shell's extensive Deepwater GOM drilling experience has lead to new understanding of the problem. Examples include delineation of trends in shallow water flow occurrence and severity, trends and departures in PP/FG, rock properties pertaining to seismic identification of sands, and so on. New knowledge has also been acquired through the use of geo-technical wells. One example is the observed rapid onset and growth of over-pressures below the mudline. Total trouble costs due to shallow water flow for all GOM operators almost certainly runs into the several hundred million dollars. Though the problem remains a concern, advances in our knowledge and understanding make it a problem that is manageable and not the "show stopper" once feared.
Short papers in geology, hydrology, and topography; Articles 1-59: Geological Survey Research 1962
,
1962-01-01
This collection of 59 short papers on subjects in the fields of geology, hydrology, topography, and related sciences is one of a, series to be relea~ed during the year as chapters of Professional Paper 450. The papers in this chapter report on the scientific and economic· results of current work by members of the Geologic, Topographic, and 'Vater Resources Division of the United States Geological Survey. Some of the pa.pers annom1ce new discoveries or present observations on problems of limited scope; other papers draw conclusions from more extensive or continuing investigations that in large part will be discussed in greater detail in reports to be published in the future.
Introduction to environmental engineering
NASA Astrophysics Data System (ADS)
Šalić, Anita; Zelić, Bruno
2018-02-01
Nowadays we can easily say that environmental engineering is truly an interdisciplinary science. Combining biology, ecology, geology, geography, mathematics, chemistry, agronomy, medicine, economy, etc. environmental engineering strives to use environmental understanding and advancements in technology to serve mankind by decreasing production of environmental hazards and the effects of those hazards already present in the soil, water, and air. Major activities of environmental engineer involve water supply, waste water and solid management, air and noise pollution control, environmental sustainability, environmental impact assessment, climate changes, etc. And all this with only one main goal - to prevent or reduce undesirable impacts of human activities on the environment. To ensure we all have tomorrow.
Applied evolutionary theories for engineering of secondary metabolic pathways.
Bachmann, Brian O
2016-12-01
An expanded definition of 'secondary metabolism' is emerging. Once the exclusive provenance of naturally occurring organisms, evolved over geological time scales, secondary metabolism increasingly encompasses molecules generated via human engineered biocatalysts and biosynthetic pathways. Many of the tools and strategies for enzyme and pathway engineering can find origins in evolutionary theories. This perspective presents an overview of selected proposed evolutionary strategies in the context of engineering secondary metabolism. In addition to the wealth of biocatalysts provided via secondary metabolic pathways, improving the understanding of biosynthetic pathway evolution will provide rich resources for methods to adapt to applied laboratory evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sumintadireja, Prihadi; Irawan, Diky
2017-06-01
Mud volcano remnants are identified in Surabaya and adjacent areas. The people in East Java based on historical report are custom and able to adjust with the natural phenomena within their areas. Sidoarjo mud volcano phenomena which coincident with drilling activity in 29 May 2006 is making people and government anxious for development a new infrastructure such as high rise building, toll road etc. An understanding of a geological hazard which can be single, sequential or combined events in their origin is the main key importance in subsurface imaging. Geological hazard can be identified by geophysical, geological, geotechnical method. The prompt selection of geophysical method to reveal subsurface condition is very important factor instead of survey design and field data acquisition. Revealing subsurface condition is very important information for site investigation consists of geological, geophysical and geotechnical data, whereas data analysis will help civil engineer design and calculate the construction safety.
A Geology Sampling System for Small Bodies
NASA Technical Reports Server (NTRS)
Hood, A. D.; Naids, A. J.; Graff, T.; Abell, P.
2015-01-01
Human exploration of Small Bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this Small Bodies category and some are being discussed as potential mission tar-gets. Obtaining geological samples for return to Earth will be a major objective for any mission to a Small Body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Furthermore, humans interacting with non-engineered surfaces in a microgravity environment poses unique challenges. In preparation for such missions, a team at the National Aeronautics and Space Administration (NASA) John-son Space Center (JSC) has been working to gain experience on how to safely obtain numerous sample types in such an environment. This abstract briefly summarizes the type of samples the science community is interested in, discusses an integrated geology sampling solution, and highlights some of the unique challenges associated with this type of exploration.
Definition of the Engineering Method.
ERIC Educational Resources Information Center
Koen, Billy Vaughn
In an effort to more clearly define the engineering method, this document attempts to draw distinctions between engineering and science. Part I, "Some Thoughts on Engineering," discusses strategies that engineers employ to solve problems, and the characteristics of the types of engineering problems. Part II, "The Principal Rule of the Engineering…
Not-so-inactive fault in Oklahoma
Spall, Henry
1986-01-01
In connection with a search for geologically quiet areas for sitting large engineering ventures such as dams and nuclear power plants, geologists have recently started looking at the Meers fault in southwestern Oklahoma with an intense interest.
ERIC Educational Resources Information Center
Grmela, Arnost; Rapantova, Nadia
The international TEMPUS (Trans-European Co-operating and Mobility Scheme for Higher Education between Central/Eastern Europe and European Union) project lasted from 1995-1997. In the framework of TEMPUS, a material and knowledge background was developed in order to ensure the education of the branch Geological Engineering with specialization in…
Paulson, Q.F.; Zimmerman, Tom V.; Langford, Russell H.
1965-01-01
The Two Medicine Irrigation Unit, on the Blackfeet Indian Reservation of northern Montana, is irrigated by water diverted from Two Medicine Creek. Waterlogging because of overapplication of water and locally inadequate subsurface drainage is a serious problem. This study was undertaken by the U.S. Geological Survey in cooperation with the U.S. Bureau of Indian Affairs to evaluate the problem and to suggest remedies. For this study, the geology was mapped, and data concerning 129 wells and test holes were gathered. The water level in 63 wells was measured periodically. Three test holes were drilled and 4 single-well and 1 multiple-well pump tests were made. Nineteen samples of ground water were collected and analyzed chemically, and applied irrigation water was analyzed periodically.
Geologic Map and Map Database of Eastern Sonoma and Western Napa Counties, California
Graymer, R.W.; Brabb, E.E.; Jones, D.L.; Barnes, J.; Nicholson, R.S.; Stamski, R.E.
2007-01-01
Introduction This report contains a new 1:100,000-scale geologic map, derived from a set of geologic map databases (Arc-Info coverages) containing information at 1:62,500-scale resolution, and a new description of the geologic map units and structural relations in the map area. Prepared as part of the San Francisco Bay Region Mapping Project, the study area includes the north-central part of the San Francisco Bay region, and forms the final piece of the effort to generate new, digital geologic maps and map databases for an area which includes Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Santa Cruz, Solano, and Sonoma Counties. Geologic mapping in Lake County in the north-central part of the map extent was not within the scope of the Project. The map and map database integrates both previously published reports and new geologic mapping and field checking by the authors (see Sources of Data index map on the map sheet or the Arc-Info coverage eswn-so and the textfile eswn-so.txt). This report contains new ideas about the geologic structures in the map area, including the active San Andreas Fault system, as well as the geologic units and their relations. Together, the map (or map database) and the unit descriptions in this report describe the composition, distribution, and orientation of geologic materials and structures within the study area at regional scale. Regional geologic information is important for analysis of earthquake shaking, liquifaction susceptibility, landslide susceptibility, engineering materials properties, mineral resources and hazards, as well as groundwater resources and hazards. These data also assist in answering questions about the geologic history and development of the California Coast Ranges.
Fundamental Problems of Lunar Research, Technical Solutions, and Priority Lunar Regions for Research
NASA Astrophysics Data System (ADS)
Ivanov, M. A.; Basilevsky, A. T.; Bricheva, S. S.; Guseva, E. N.; Demidov, N. E.; Zakharova, M.; Krasil'nikov, S. S.
2017-11-01
In this article, we discuss four fundamental scientific problems of lunar research: (1) lunar chronology, (2) the internal structure of the Moon, (3) the lunar polar regions, and (4) lunar volcanism. After formulating the scientific problems and their components, we proceed to outlining a list of technical solutions and priority lunar regions for research. Solving the listed problems requires investigations on the lunar surface using lunar rovers, which can deliver a set of analytical equipment to places where geological conditions are known from a detailed analysis of orbital information. The most critical research methods, which can answer some of the key questions, are analysis of local geological conditions from panoramic photographs, determination of the chemical, isotopic, and mineral composition of the soil, and deep seismic sounding. A preliminary list is given of lunar regions with high scientific priority.
NASA Astrophysics Data System (ADS)
Mutabaruka, Patrick; Kamrin, Ken
2018-04-01
A numerical method for particle-laden fluids interacting with a deformable solid domain and mobile rigid parts is proposed and implemented in a full engineering system. The fluid domain is modeled with a lattice Boltzmann representation, the particles and rigid parts are modeled with a discrete element representation, and the deformable solid domain is modeled using a Lagrangian mesh. The main issue of this work, since separately each of these methods is a mature tool, is to develop coupling and model-reduction approaches in order to efficiently simulate coupled problems of this nature, as in various geological and engineering applications. The lattice Boltzmann method incorporates a large eddy simulation technique using the Smagorinsky turbulence model. The discrete element method incorporates spherical and polyhedral particles for stiff contact interactions. A neo-Hookean hyperelastic model is used for the deformable solid. We provide a detailed description of how to couple the three solvers within a unified algorithm. The technique we propose for rubber modeling/coupling exploits a simplification that prevents having to solve a finite-element problem at each time step. We also developed a technique to reduce the domain size of the full system by replacing certain zones with quasi-analytic solutions, which act as effective boundary conditions for the lattice Boltzmann method. The major ingredients of the routine are separately validated. To demonstrate the coupled method in full, we simulate slurry flows in two kinds of piston valve geometries. The dynamics of the valve and slurry are studied and reported over a large range of input parameters.
Geologic utility of small-scale airphotos
NASA Technical Reports Server (NTRS)
Clark, M. M.
1969-01-01
The geologic value of small scale airphotos is emphasized by describing the application of high altitude oblique and 1:120,000 to 1:145,000 scale vertical airphotos to several geologic problems in California. These examples show that small-scale airphotos can be of use to geologists in the following ways: (1) high altitude, high oblique airphotos show vast areas in one view; and (2) vertical airphotos offer the most efficient method of discovering the major topographic features and structural and lithologic characteristics of terrain.
Ward, Lester Frank
1885-01-01
To understand the true force of the facts of paleobotany as arguments for geology it is essential that their full biologic significance be grasped. It has therefore been deemed proper, in this introduction to the several tabular and systematic statements which will make up the bulk of the volume and bear chiefly upon the geological aspect of the subject, to consider certain of the more important biologic questions, in addition to the specially geologic ones, and to discuss, from an historical and developmental standpoint, some of the leading problems of modern phytology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.
Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.
Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less
Developing Medical Geology in Uruguay: A Review
Mañay, Nelly
2010-01-01
Several disciplines like Environmental Toxicology, Epidemiology, Public Health and Geology have been the basis of the development of Medical Geology in Uruguay during the last decade. The knowledge and performance in environmental and health issues have been improved by joining similar aims research teams and experts from different institutions to face environmental problems dealing with the population’s exposure to metals and metalloids and their health impacts. Some of the Uruguayan Medical Geology examples are reviewed focusing on their multidisciplinary approach: Lead pollution and exposed children, selenium in critically ill patients, copper deficiency in cattle and arsenic risk assessment in ground water. Future actions are also presented. PMID:20623004
Developing medical geology in Uruguay: a review.
Mañay, Nelly
2010-05-01
Several disciplines like Environmental Toxicology, Epidemiology, Public Health and Geology have been the basis of the development of Medical Geology in Uruguay during the last decade. The knowledge and performance in environmental and health issues have been improved by joining similar aims research teams and experts from different institutions to face environmental problems dealing with the population's exposure to metals and metalloids and their health impacts. Some of the Uruguayan Medical Geology examples are reviewed focusing on their multidisciplinary approach: Lead pollution and exposed children, selenium in critically ill patients, copper deficiency in cattle and arsenic risk assessment in ground water. Future actions are also presented.
NASA Technical Reports Server (NTRS)
Stanley, C. W.; Hood, W. E.
1981-01-01
The U.S. Marine Corp (USMC) has been operating the only V/STOL attack aircraft in the western world since 1971. Some of the maintenance problems experienced are related to the unique V/STOL design criteria of the Pegasus engine. However, the major part of the required maintenance effort is found to involve the more conventional engine problems. A description of the aircraft engine is provided and the problems resulting from V/STOL design demands are examined. Attention is given to the fuel system control, the engine air bleed, foreign object damage to the hp compressor, and the engine exhaust system.
2013-01-01
Breginjski kot is among the most endangered seismic zones in Slovenia with the seismic hazard assessed to intensity IX MSK and the design ground acceleration of 0.250 g, both for 500-year return period. The most destructive was the 1976 Friuli Mw = 6.4 earthquake which had maximum intensity VIII-IX. Since the previous microzonation of the area was based solely on the basic geological map and did not include supplementary field research, we have performed a new soil classification of the area. First, a detailed engineering geological mapping in scale 1 : 5.000 was conducted. Mapped units were described in detail and some of them interpreted anew. Stiff sites are composed of hard to medium-hard rocks which were subjected to erosion mainly evoked by glacial and postglacial age. At that time a prominent topography was formed and different types of sediments were deposited in valleys by mass flows. A distinction between sediments and weathered rocks, their exact position, and thickness are of significant importance for microzonation. On the basis of geological mapping, a soil classification was carried out according to the Medvedev method (intensity increments) and the Eurocode 8 standard (soil factors) and two microzonation maps were prepared. The bulk of the studied area is covered by soft sediments and nine out of ten settlements are situated on them. The microzonation clearly points out the dependence of damage distribution in the case of 1976 Friuli earthquake to local site effects. PMID:24453884
Zoning method for environmental engineering geological patterns in underground coal mining areas.
Liu, Shiliang; Li, Wenping; Wang, Qiqing
2018-09-01
Environmental engineering geological patterns (EEGPs) are used to express the trend and intensity of eco-geological environment caused by mining in underground coal mining areas, a complex process controlled by multiple factors. A new zoning method for EEGPs was developed based on the variable-weight theory (VWT), where the weights of factors vary with their value. The method was applied to the Yushenfu mining area, Shaanxi, China. First, the mechanism of the EEGPs caused by mining was elucidated, and four types of EEGPs were proposed. Subsequently, 13 key control factors were selected from mining conditions, lithosphere, hydrosphere, ecosphere, and climatic conditions; their thematic maps were constructed using ArcGIS software and remote-sensing technologies. Then, a stimulation-punishment variable-weight model derived from the partition of basic evaluation unit of study area, construction of partition state-variable-weight vector, and determination of variable-weight interval was built to calculate the variable weights of each factor. On this basis, a zoning mathematical model of EEGPs was established, and the zoning results were analyzed. For comparison, the traditional constant-weight theory (CWT) was also applied to divide the EEGPs. Finally, the zoning results obtained using VWT and CWT were compared. The verification of field investigation indicates that VWT is more accurate and reliable than CWT. The zoning results are consistent with the actual situations and the key of planning design for the rational development of coal resources and protection of eco-geological environment. Copyright © 2018 Elsevier B.V. All rights reserved.
A Geospatial Information Grid Framework for Geological Survey.
Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong
2015-01-01
The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.
A Geospatial Information Grid Framework for Geological Survey
Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong
2015-01-01
The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper. PMID:26710255
Pareto joint inversion of 2D magnetotelluric and gravity data
NASA Astrophysics Data System (ADS)
Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek
2015-04-01
In this contribution, the first results of the "Innovative technology of petrophysical parameters estimation of geological media using joint inversion algorithms" project were described. At this stage of the development, Pareto joint inversion scheme for 2D MT and gravity data was used. Additionally, seismic data were provided to set some constrains for the inversion. Sharp Boundary Interface(SBI) approach and description model with set of polygons were used to limit the dimensionality of the solution space. The main engine was based on modified Particle Swarm Optimization(PSO). This algorithm was properly adapted to handle two or more target function at once. Additional algorithm was used to eliminate non- realistic solution proposals. Because PSO is a method of stochastic global optimization, it requires a lot of proposals to be evaluated to find a single Pareto solution and then compose a Pareto front. To optimize this stage parallel computing was used for both inversion engine and 2D MT forward solver. There are many advantages of proposed solution of joint inversion problems. First of all, Pareto scheme eliminates cumbersome rescaling of the target functions, that can highly affect the final solution. Secondly, the whole set of solution is created in one optimization run, providing a choice of the final solution. This choice can be based off qualitative data, that are usually very hard to be incorporated into the regular inversion schema. SBI parameterisation not only limits the problem of dimensionality, but also makes constraining of the solution easier. At this stage of work, decision to test the approach using MT and gravity data was made, because this combination is often used in practice. It is important to mention, that the general solution is not limited to this two methods and it is flexible enough to be used with more than two sources of data. Presented results were obtained for synthetic models, imitating real geological conditions, where interesting density distributions are relatively shallow and resistivity changes are related to deeper parts. This kind of conditions are well suited for joint inversion of MT and gravity data. In the next stage of the solution development of further code optimization and extensive tests for real data will be realized. Presented work was supported by Polish National Centre for Research and Development under the contract number POIG.01.04.00-12-279/13
Bunch, R.L.
1996-01-01
References to 898 water-resources publications are listed alphabetically by senior author and indexed by hydrographic-area name or other geographic features. Most of the publications were written between 1960 and 1995 by U.S. Geological Survey scientists and engineers of the Water Resources Division, Nevada District. Also included are references to publications by other Water Resources Division authors that deal with Nevada hydrology. References to publications written before 1960 are included to provide a historical perspective. The references include several types of Geological Survey book and map publications, as well as State-series reports, journal articles, conference and symposium papers, abstracts, and graduate- degree theses. Information on publication availability is provided also.
Ground-water data, Green River basin, Wyoming
Zimmerman, Everett Alfred; Collier, K.R.
1985-01-01
Hydrologic and geologic data collected by the U.S. Geological Survey as part of energy-related projects in the Green River basin of Wyoming are compiled from the files of the Geological Survey and the Wyoming State Engineer as of 1977. The data include well and spring location, well depth, casing diameter, type of lifts, type of power, use of water, rock type of producing zone, owner, and discharge for more than 1,600 sites. Analyses for common chemical constituents, trace elements, and radioactive chemicals are tabulated as well as water temperature and specific conductance measurement data. Lithologic logs of more than 300 wells, test holes, and measured sections constitute much of this report. County maps at a scale of 1:500 ,000 show the locations. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Joshua S.; Rautman, Christopher Arthur
The Bryan Mound salt dome, located near Freeport, Texas, is home to one of four underground crude oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Bryan Mound site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 20 oil-storage caverns at the site. Thismore » work provides an internally consistent geologic model of the Bryan Mound site that can be used in support of future work.« less
Drilling and testing of well 340, Fort Wingate Army Depot, McKinley County, New Mexico
Shomaker, John W.
1969-01-01
The U.S. Geological Survey was requested by Fort Wingate Army Depot to designate a well location, suggest construction and testing procedures, and provide continuing technical advice with respect to the drilling of a new production well. The location was determined during a brief preliminary study of the Depot's water supply which is summarized in a report transmitted to the Depot in April of 1968, and the Geological Survey's suggestions for construction and testing are contained in the specifications written by the Post Engineer at the Depot as part of the well-drilling contract. A representative of the the Geological Survey was present during most of the drilling and testing of the well.
Activities in Planetary Geology for the Physical and Earth Sciences.
ERIC Educational Resources Information Center
D'Alli, Richard, Ed.; Greely, Ronald, Ed.
The activities in this guide deal with concepts in planetary geology, but they can be generalized to illustrate broad problems in the earth sciences. They are designed to supplement or introduce topics usually encountered in earth science courses. The exercises, organized into independent units which can be presented in any order, are appropriate…
An Undergraduate Course in Legal Aspects of Geology.
ERIC Educational Resources Information Center
Tank, Ronald W.
1984-01-01
A seminar which uses a case history approach and the Socratic method to evaluate legal aspects of geology is described. Water rights law, mineral law, and legal aspects of landslides, subsidence, sedimentation, erosion, and submergence are discussed. Students deal with hypothetical problems and participate in group projects related to these areas.…
NASA Astrophysics Data System (ADS)
Demenev, A. G.
2018-02-01
The present work is devoted to analyze high-performance computing (HPC) infrastructure capabilities for aircraft engine aeroacoustics problems solving at Perm State University. We explore here the ability to develop new computational aeroacoustics methods/solvers for computer-aided engineering (CAE) systems to handle complicated industrial problems of engine noise prediction. Leading aircraft engine engineering company, including “UEC-Aviadvigatel” JSC (our industrial partners in Perm, Russia), require that methods/solvers to optimize geometry of aircraft engine for fan noise reduction. We analysed Perm State University HPC-hardware resources and software services to use efficiently. The performed results demonstrate that Perm State University HPC-infrastructure are mature enough to face out industrial-like problems of development CAE-system with HPC-method and CFD-solvers.
NASA Technical Reports Server (NTRS)
2006-01-01
Women in Science Conferences are designed to allow young women in grades 7 through 12 to learn first-hand about careers in science, mathematics, and technology from accomplished professional women. Results of an international science and mathematics study conducted in 2000 indicated that "children in the United States were among the leaders in the 4th grade assessment, but by high school graduation, they were almost last." Part of the problem is that many girls and young women in junior and senior high school lose interest in science and technological careers. The goal of the WIS-Conferences held at the University of Wyoming in Laramie, and at Central Wyoming College in Riverton, are to directly address this problem. The conferences will be a cooperative effort supported by local agencies, schools, and businesses, in addition to several state agencies. By presenting positive role models in the science, mathematics, and technological fields, we hope to encourage all students (especially young women and minorities) to pursue higher education and careers in mathematics and science. The workshop topics include: 1) Engineering; 2) Robotics; 3) Physics/Astronomy; 4) Geology; 5) Paleontology; 6) Remote Sensing (GPS/GIS); 7) Molecular Biology; 8) Veterinary Medicine; 9) Optometry; 10) Data Encryption; and 11) Wildlife Biology.
Beyond Darcy's law: The role of phase topology and ganglion dynamics for two-fluid flow
Armstrong, Ryan T.; McClure, James E.; Berrill, Mark A.; ...
2016-10-27
Relative permeability quantifies the ease at which immiscible phases flow through porous rock and is one of the most well known constitutive relationships for petroleum engineers. It however exhibits troubling dependencies on experimental conditions and is not a unique function of phase saturation as commonly accepted in industry practices. The problem lies in the multi-scale nature of the problem where underlying disequilibrium processes create anomalous macroscopic behavior. Here we show that relative permeability rate dependencies are explained by ganglion dynamic flow. We utilize fast X-ray micro-tomography and pore-scale simulations to identify unique flow regimes during the fractional flow of immisciblemore » phases and quantify the contribution of ganglion flux to the overall flux of non-wetting phase. We anticipate our approach to be the starting point for the development of sophisticated multi-scale flow models that directly link pore-scale parameters to macro-scale behavior. Such models will have a major impact on how we recover hydrocarbons from the subsurface, store sequestered CO 2 in geological formations, and remove non-aqueous environmental hazards from the vadose zone.« less
Teaching the geological subsurface with 3D models
NASA Astrophysics Data System (ADS)
Thorpe, Steve; Ward, Emma
2014-05-01
3D geological models have great potential as a resource when teaching geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for many students. Today's earth science students use a variety of skills and processes during their learning experience including spatial thinking, image construction, detecting patterns, making predictions and deducing the orientation of themselves. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth. The British Geological Survey (BGS) has been producing digital 3D geological models for over 10 years. The models produced are revolutionising the working practices, data standards and products of the BGS. Sharing our geoscience information with academia is highlighted throughout the BGS strategy as is instilling practical skills in future geoscience professionals, such as model building and interpretation. In 2009 a project was launched to investigate the potential of the models as a teaching resource. The study included justifying if and how the models help students to learn, how models have been used historically, and how other forms of modelling are being used today. BGS now produce 3D geological models for use by anyone teaching or learning geoscience. They incorporate educational strategies that will develop geospatial skills and alleviate potential problems that some students experience. They are contained within contemporary case studies and show standard geological concepts, structures, sedimentary rocks, cross sections and field techniques. 3D geological models of the Isle of Wight and Ingleborough along with accompanying education material and a video tutorial guide are currently available to the public on our website www.bgs.ac.uk. 2014 will see the launch of a further 5-6 models, each illustrating different geological locations, rock types and complexities. This poster aims to show the methodology and techniques for generating a 3D geological model. It will provide background information on the project and how these models can be used as a teaching resource, either in a formal classroom setting or as a distance learning tool. The model allows the student to take part in virtual fieldwork, by viewing the landscape in association with the geological structures and processes that have shaped it.
Earth Sciences Division annual report 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1991-06-01
This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriatemore » chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.« less
Rock mass classification system : transition from RMR to GSI.
DOT National Transportation Integrated Search
2013-11-01
The AASHTO LRFD Bridge Design Specifications is expected to replace the rock mass rating : (RMR) system with the Geological Strength Index (GSI) system for classifying and estimating : engineering properties of rock masses. This transition is motivat...
A finite-element model for moving contact line problems in immiscible two-phase flow
NASA Astrophysics Data System (ADS)
Kucala, Alec
2017-11-01
Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). The macroscale movement of the contact line is dependent on the molecular interactions occurring at the three-phase interface, however most MCL problems require resolution at the meso- and macro-scale. A phenomenological model must be developed to account for the microscale interactions, as resolving both the macro- and micro-scale would render most problems computationally intractable. Here, a model for the moving contact line is presented as a weak forcing term in the Navier-Stokes equation and applied directly at the location of the three-phase interface point. The moving interface is tracked with the level set method and discretized using the conformal decomposition finite element method (CDFEM), allowing for the surface tension and the wetting model to be computed at the exact interface location. A variety of verification test cases for simple two- and three-dimensional geometries are presented to validate the current MCL model, which can exhibit grid independence when a proper scaling for the slip length is chosen. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, Tonya; Maddi, Phillip
2012-08-01
The National Geothermal Academy (NGA) is an intensive 8-week overview of the different aspects involved in developing a geothermal project, hosted at University of Nevada, Reno. The class of 2012 was the second graduating class from the academy and included 21 students from nine states, as well as Saudi Arabia, Dominica, India, Trinidad, Mexico. The class consisted of people from a wide range of scholastic abilities from students pursuing a Bachelor’s or Master’s degrees, to entrepreneurs and professionals looking to improve their knowledge in the geothermal field. Students earned 6 credits, either undergraduate or graduate, in engineering or geology. Overall,more » the students of the NGA, although having diverse backgrounds in engineering, geology, finance, and other sciences, came together with a common passion to learn more about geothermal.« less
Industrial use of land observation satellite systems
NASA Technical Reports Server (NTRS)
Henderson, F. B., III
1984-01-01
The principal industrial users of land observation satellite systems are the geological industries; oil/gas, mining, and engineering/environmental companies. The primary system used is LANDSAT/MSS. Currently, use is also being made of the limited amounts of SKYLAB photography, SEASAT and SIR-A radar, and the new LANDSAT/TM data available. Although considered experimental, LANDSAT data is now used operationally by several hundred exploration and engineering companies worldwide as a vastly improved geological mapping tool to help direct more expensive geophysical and drilling phases, leading to more efficient decision-making and results. Future needs include global LANDSAT/TM; higher spatial resolution; stereo and radar; improved data handling, processing distribution and archiving systems, and integrated geographical information systems (GIS). For a promising future, governments must provide overall continuity (government and/or private sector) of such systems, insure continued government R and D, and commit to operating internationally under the civil Open Skies policy.
NASA Astrophysics Data System (ADS)
Choung, S.; Francis, A. J.; Um, W.; Choi, S.; Kim, S.; Park, J.; Kim, S.
2013-12-01
The countries that have generated nuclear power have facing problems on the disposal of accumulated radioactive wastes. Geological disposal method has been chosen in many countries including Korea. A safety issue after the closure of geological repository has been raised, because microbial activities lead overpressure in the underground facilities through gas production. In particular, biodegradable organic materials derived from low- and intermediate-level radioactive wastes play important role on microbial activities in the geological repository. This study performed large scale in-situ experiments using organic wastes and groundwater, and investigated geochemical alteration and microbial activities at early stage (~63 days) as representative of the period, after closure of the geological repository. The geochemical alteration controlled significantly the microorganism types and populations. Database of the biogeochemical alteration facilitates prediction of radionuclides' mobility and establishment of remedial strategy against unpredictable accidents and hazards at early stage right after closure of the geological repository.
Using Problem-Based Learning to Bring the Workplace into the Classroom
ERIC Educational Resources Information Center
Dadd, Kelsie A.
2009-01-01
A modified form of problem-based learning (PBL) with problems based on real workplace scenarios was trialled in a third year university class on Environmental Geology. Problems were developed in consultation with industry and based on their recent projects. These were then modified to allow for the shorter timeframe available, the less developed…
Group Design Problems in Engineering Design Graphics.
ERIC Educational Resources Information Center
Kelley, David
2001-01-01
Describes group design techniques used within the engineering design graphics sequence at Western Washington University. Engineering and design philosophies such as concurrent engineering place an emphasis on group collaboration for the solving of design problems. (Author/DDR)
Localized Smart-Interpretation
NASA Astrophysics Data System (ADS)
Lundh Gulbrandsen, Mats; Mejer Hansen, Thomas; Bach, Torben; Pallesen, Tom
2014-05-01
The complex task of setting up a geological model consists not only of combining available geological information into a conceptual plausible model, but also requires consistency with availably data, e.g. geophysical data. However, in many cases the direct geological information, e.g borehole samples, are very sparse, so in order to create a geological model, the geologist needs to rely on the geophysical data. The problem is however, that the amount of geophysical data in many cases are so vast that it is practically impossible to integrate all of them in the manual interpretation process. This means that a lot of the information available from the geophysical surveys are unexploited, which is a problem, due to the fact that the resulting geological model does not fulfill its full potential and hence are less trustworthy. We suggest an approach to geological modeling that 1. allow all geophysical data to be considered when building the geological model 2. is fast 3. allow quantification of geological modeling. The method is constructed to build a statistical model, f(d,m), describing the relation between what the geologists interpret, d, and what the geologist knows, m. The para- meter m reflects any available information that can be quantified, such as geophysical data, the result of a geophysical inversion, elevation maps, etc... The parameter d reflects an actual interpretation, such as for example the depth to the base of a ground water reservoir. First we infer a statistical model f(d,m), by examining sets of actual interpretations made by a geological expert, [d1, d2, ...], and the information used to perform the interpretation; [m1, m2, ...]. This makes it possible to quantify how the geological expert performs interpolation through f(d,m). As the geological expert proceeds interpreting, the number of interpreted datapoints from which the statistical model is inferred increases, and therefore the accuracy of the statistical model increases. When a model f(d,m) successfully has been inferred, we are able to simulate how the geological expert would perform an interpretation given some external information m, through f(d|m). We will demonstrate this method applied on geological interpretation and densely sampled airborne electromagnetic data. In short, our goal is to build a statistical model describing how a geological expert performs geological interpretation given some geophysical data. We then wish to use this statistical model to perform semi automatic interpretation, everywhere where such geophysical data exist, in a manner consistent with the choices made by a geological expert. Benefits of such a statistical model are that 1. it provides a quantification of how a geological expert performs interpretation based on available diverse data 2. all available geophysical information can be used 3. it allows much faster interpretation of large data sets.
McCartan, L.; Peper, J.D.; Bachman, L.J.; Horton, J. Wright
1999-01-01
Geologic map units contain much information about the mineralogy, chemistry, and physical attributes of the rocks mapped. This paper presents information from regional-scale geologic maps in Maryland and Virginia, which are in the southern part of the Chesapeake Bay watershed in the eastern United States. The geologic map information is discussed and analyzed in relation to water chemistry data from shallow wells and stream reaches in the area. Two environmental problems in the Chesapeake Bay watershed are used as test examples. The problems, high acidity and high nitrate concentrations in streams and rivers, tend to be mitigated by some rock and sediment types and not by others. Carbonate rocks (limestone, dolomite, and carbonate-cemented rocks) have the greatest capacity to neutralize acidic ground water and surface water in contact with them. Rocks and sediments having high carbon or sulfur contents (such as peat and black shale) potentially contribute the most toward denitrification of ground water and surface water in contact with them. Rocks and sediments that are composed mostly of quartz, feldspar, and light-colored clay (rocks such as granite and sandstone, sediments such as sand and gravel) tend not to alter the chemistry of waters that are in contact with them. The testing of relationships between regionally mapped geologic units and water chemistry is in a preliminary stage, and initial results are encouraging.Geologic map units contain much information about the mineralogy, chemistry, and physical attributes of the rocks mapped. This paper presents information from regional-scale geologic maps in Maryland and Virginia, which are in the southern part of the Chesapeake Bay watershed in the eastern United States. The geologic map information is discussed and analyzed in relation to water chemistry data from shallow wells and stream reaches in the area. Two environmental problems in the Chesapeake Bay watershed are used as test examples. The problems, high acidity and high nitrate concentrations in streams and rivers, tend to be mitigated by some rock and sediment types and not by others. Carbonate rocks (limestone, dolomite, and carbonate-cemented rocks) have the greatest capacity to neutralize acidic ground water and surface water in contact with them. Rocks and sediments having high carbon or sulfur contents (such as peat and black shale) potentially contribute the most toward denitrification of ground water and surface water in contact with them. Rocks and sediments that are composed mostly of quartz, feldspar, and light-colored clay (rocks such as granite and sandstone, sediments such as sand and gravel) tend not to alter the chemistry of waters that are in contact with them. The testing of relationships between regionally mapped geologic units and water chemistry is in a preliminary stage, and initial results are encouraging.
,
1963-01-01
This collection of 60 short papers on subjects in the fields of geology, hydrology, topography, and related sciences is the last of a series released as chapters of Professional Paper 450. The papers in this chapter report on the scientific and economic results of current work by members of the Conservation, Geologic, Topographic, and Water Resources Divisions of the United States Geological Survey. Some of the papers announce new discoveries or present observations on problems of limited scope; other papers draw conclusions from more extensive or continuing investigations that in large part will be discussed in greater detail in reports to be published in the future.Chapter A of this series presents a synopsis of results from a wide range of work done during the 1962 fiscal year.
ERIC Educational Resources Information Center
Heylen, Christel; Smet, Marc; Buelens, Hermans; Sloten, Jos Vander
2007-01-01
A present-day engineer has a large scientific knowledge; he is a team-player, eloquent communicator and life-long learner. At the Katholieke Universiteit Leuven, the course "Problem Solving and Engineering Design" introduces engineering students from the first semester onwards into real engineering practice and teamwork. Working in small…
A Simulated Research Problem for Undergraduate Metamorphic Petrology.
ERIC Educational Resources Information Center
Amenta, Roddy V.
1984-01-01
Presents a laboratory problem in metamorphic petrology designed to simulate a research experience. The problem deals with data on scales ranging from a geologic map to hand specimens to thin sections. Student analysis includes identifying metamorphic index minerals, locating their isograds on the map, and determining the folding sequence. (BC)
Projected Commercial Maritime Activity in the Western Arctic
1977-10-01
for Polar Icebreaking 1967. Coast GuarC, U.S., Office of Engineering, Life Cycle Costs of Diesel Electric Propulsion Plants for a 20,000 SHP Polar...Dynamics, Electric Boat Division, Program Plan for Arctic Offshore Drilling System. 1970. Geological Survey, U.S., Mineral and Water Resources of Alaska...Port and Ocean EngineerLng under Arctic Conditions, Vol. I, Trondheim, Norway: Terhnical Institute of ’Norway, Page 37 Weeks, W. F. and Frankenstein
40 CFR 89.102 - Effective dates, optional inclusion, flexibility for equipment manufacturers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... exemptions for technical or engineering hardship. You may request additional engine allowances under... technical or engineering problems that prevent you from meeting the requirements of this part. You must show... your engine supplier to design products. (iii) Describe the engineering or technical problems causing...
40 CFR 89.102 - Effective dates, optional inclusion, flexibility for equipment manufacturers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... exemptions for technical or engineering hardship. You may request additional engine allowances under... technical or engineering problems that prevent you from meeting the requirements of this part. You must show... your engine supplier to design products. (iii) Describe the engineering or technical problems causing...
40 CFR 89.102 - Effective dates, optional inclusion, flexibility for equipment manufacturers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... exemptions for technical or engineering hardship. You may request additional engine allowances under... technical or engineering problems that prevent you from meeting the requirements of this part. You must show... your engine supplier to design products. (iii) Describe the engineering or technical problems causing...
Research perspectives in the field of ground penetrating radars in Armenia
NASA Astrophysics Data System (ADS)
Baghdasaryan, Hovik; Knyazyan, Tamara; Hovhannisyan, Tamara
2014-05-01
Armenia is a country located in a very complicated region from geophysical point of view. It is situated on a cross of several tectonic plates and a lot of dormant volcanoes. The main danger is earthquakes and the last big disaster was in 1988 in the northwest part of contemporary Armenia. As a consequence, the main direction of geophysical research is directed towards monitoring and data analysis of seismic activity. National Academy of Sciences of Armenia is conducting these activities in the Institute of Geological Sciences and in the Institute of Geophysics and Engineering Seismology. Research in the field of ground penetrating radars is considered in Armenia as an advanced and perspective complement to the already exploiting research tools. The previous achievements of Armenia in the fields of radiophysics, antenna measurements, laser physics and existing relevant research would permit to initiate new promising area of research in the direction of theory and experiments of ground penetrating radars. One of the key problems in the operation of ground penetrating radars is correct analysis of peculiarities of electromagnetic wave interaction with different layers of the earth. For this, the well-known methods of electromagnetic boundary problem solutions are applied. In addition to the existing methods our research group of Fiber Optics Communication Laboratory at the State Engineering University of Armenia declares its interest in exploring the possibilities of new non-traditional method of boundary problems solution for electromagnetic wave interaction with the ground. This new method for solving boundary problems of electrodynamics is called the method of single expression (MSE) [1-3]. The distinctive feature of this method is denial from the presentation of wave equation's solution in the form of counter-propagating waves, i.e. denial from the superposition principal application. This permits to solve linear and nonlinear (field intensity-dependent) problems with the same exactness, without any approximations. It is favourable also since in solution of boundary problems in the MSE there is no necessity in applying absorbing boundary conditions at the model edges by terminating the computational domain. In the MSE the computational process starts from the rear side of any multilayer structure that ensures the uniqueness of problem solution without application of any artificial absorbing boundary conditions. Previous success of the MSE application in optical domain gives us confidence in successful extension of this method's use for solution of different problems related to electromagnetic wave interaction with the layers of the earth and buried objects in the ground. This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." 1. H.V. Baghdasaryan, T.M. Knyazyan, 'Problem of Plane EM Wave Self-action in Multilayer Structure: an Exact Solution', Optical and Quantum Electronics, vol. 31, 1999, pp.1059-1072. 2. H.V. Baghdasaryan, T.M. Knyazyan, 'Modelling of strongly nonlinear sinusoidal Bragg gratings by the Method of Single Expression', Optical and Quantum Electronics, vol. 32, 2000, pp. 869-883. 3. H.V. Baghdasaryan, 'Basics of the Method of Single Expression: New Approach for Solving Boundary Problems in Classical Electrodynamics', Yerevan, Chartaraget, 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-01
Detailed investigations of geologic, geomorphic, and seismic conditions at the Bodo Canyon disposal site were conducted. The purpose of these investigations was basic site characterization and identification of potential geologic hazards that could affect long-term site stability. Subsequent engineering studies, such as analyses of hydrologic and liquefaction hazards, used the data developed in these studies. The geomorphic analysis was employed in the design of effective erosion protection. Studies of the regional and local seismotectonic setting, which included a detailed search for possible capable faults within a 65 kilometer radius of the site, provided the basis for seismic design parameters. Themore » scope of work performed included the following: Compilation and analysis of previous published and unpublished geologic literature and maps; Review of historical and instrumental earthquake data; Review of site-specific subsurface geologic data, including lithologic and geophysical logs of exploratory boreholes advanced in the site area; Photogeologic interpretations of existing conventional aerial photographs; and, Ground reconnaissance and mapping of the site region.« less
Chemistry and the Internal Combustion Engine II: Pollution Problems.
ERIC Educational Resources Information Center
Hunt, C. B.
1979-01-01
Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)
Map showing potential metal-mine drainage hazards in Colorado, based on mineral-deposit geology
Plumlee, Geoffrey S.; Streufert, Randall K.; Smith, Kathleen S.; Smith, Steven M.; Wallace, Alan R.; Toth, Margo I.; Nash, J. Thomas; Robinson, Rob A.; Ficklin, Walter H.; Lee, Gregory K.
1995-01-01
This map, compiled by the U.S. Geological Survey (USGS) in cooperation with the Colorado Geological Survey (CGS) and the U. S. Bureau of Land Management (BLM), shows potential mine-drainage hazards that may exist in Colorado metal-mining districts, as indicated by the geologic characteristics of the mineral deposits that occur in the respective districts. It was designed to demonstrate how geologic and geochemical information can be used on a regional scale to help assess the potential for mining-related and natural drainage problems in mining districts, unmined mineralized areas, and surrounding watersheds. The map also provides information on the distribution of different mineral deposit types across Colorado. A GIS (Geographic Information System) format was used to integrate geologic, geochemical, water-quality, climate, landuse, and ecological data from diverse sources. Likely mine-drainage signatures were defined for each mining district based on: (1) a review of the geologic characteristics of the mining district, including mineralogy, trace-element content, host-rock lithology, and wallrock alteration, and; (2) results of site specific studies on the geologic controls on mine-drainage composition.
Methodology of remote sensing data interpretation and geological applications. [Brazil
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Veneziani, P.; Dosanjos, C. E.
1982-01-01
Elements of photointerpretation discussed include the analysis of photographic texture and structure as well as film tonality. The method used is based on conventional techniques developed for interpreting aerial black and white photographs. By defining the properties which characterize the form and individuality of dual images, homologous zones can be identified. Guy's logic method (1966) was adapted and used on functions of resolution, scale, and spectral characteristics of remotely sensed products. Applications of LANDSAT imagery are discussed for regional geological mapping, mineral exploration, hydrogeology, and geotechnical engineering in Brazil.
1979-10-31
construction is to be carried on in the vicinity. 34 - - -- - Figure 13 - Geologic Interpretation of Part of the Upper Amazon Basin ( Peru ) Figure 14 - Radar...and how to proceed still remains under review. Likely some of you are aware of the concept called the National Oceanic Satellite System. It would serve...radar to emphasize the surface evidence of underground geological phenomena has proved itself of great value. Figure 13 shows an area in the upper Amazon
Calibration of water-velocity meters
Kaehrle, William R.; Bowie, James E.
1988-01-01
The U.S. Geological Survey, Department of the Interior, as part of its responsibility to appraise the quantity of water resources in the United States, maintains facilities for the calibration of water-velocity meters at the Gulf Coast Hydroscience Center's Hydraulic Laboratory Facility, NSTL, Mississippi. These meters are used in hydrologic studies by the Geological Survey, U.S. Army Corps of Engineers, U.S. Department of Energy, state agencies, universities, and others in the public and private sector. This paper describes calibration facilities, types of water-velocity meters calibrated, and calibration standards, methods and results.
The Problem of Technical Progress and Mineral Resources
ERIC Educational Resources Information Center
Lukashev, Konstantin I.
1974-01-01
Examines the estimates of known potential reserves of the major raw materials, future sources therof, the geological and technological problems associated with these, the manufacture of artifical minerals, and international cooperation in this sphere. (Author/GS)
Proceedings of Denver GeoTech '92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, C.A.
1992-01-01
This book contains proceedings of Denver Geo Tech '92. Topics covered include: practical ways to use microcomputers and workstations in geology, geophysics, environmental concerns, petroleum engineering, mining, hydrogeology, reclamation, microcomputers, state-of-the-art information on computer hardware, software, and services.
Foundations of geophysics. [College textbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheidegger, A.E.
1976-01-01
The following subjects are covered/: geography, geodesy, and geology; seismology, gravity, and the Earth's interior; magnetic and electrical properties of the earth; thermicity of the earth and related subjects; tectonophysics; geophysical exploration; geohydrology; physical oceanography; physical meteorology; and engineering geophysics. (MHR)
Air Force-Wide Needs for Science, Technology, Engineering, and Mathematics (STEM) Academic Degrees
2014-01-01
8217landscape’architecture’(0807),’geology’(1350),’fire’prevention’engr’(0804),’hydrology’(1315),’public’utilities’specialist’(1130),’ botany (0430
Harmonisation of geological data to support geohazard mapping: the case of eENVplus project
NASA Astrophysics Data System (ADS)
Cipolloni, Carlo; Krivic, Matija; Novak, Matevž; Pantaloni, Marco; Šinigoj, Jasna
2014-05-01
In the eENVplus project, which aims is to unlock huge amounts of environmental datamanaged by the national and regional environmental agencies and other public and private organisations, we have developed a cross-border pilot on the geological data harmonisation through the integration and harmonisation of existing services. The pilot analyses the methodology and results of the OneGeology-Europe project, elaborated at the scale of 1:1M, to point out difficulties and unsolved problems highlighted during the project. This preliminary analysis is followed by a comparison of two geological maps provided by the neighbouring countries with the objective to compare and define the geometric and semantic anomalous contacts between geological polygons and lines in the maps. This phase will be followed by a detailed scale geological map analysis aimed to solve the anomalies identified in the previous phase. The two Geological Surveys involved into the pilot will discuss the problems highlighted during this phase. Subsequently the semantic description will be redefined and the geometry of the polygons in geological maps will be redrawn or adjusted according to a lithostratigraphic approach that takes in account the homogeneity of age, lithology, depositional environment and consolidation degree of geological units. The two Geological Surveys have decided to apply the harmonisation process on two different dataset: the first is represented by the Geological Map at the scale of 1:1,000,000, partially harmonised within the OneGeology-Europe project that will be re-aligned with GE INSPIRE data model to produce data and services compliant with INSPIRE target schema. The main target of Geological Surveys is to produce data and web services compliant with the wider international schema, where there are more options to provide data, with specific attributes that are important to obtain the geohazard map as in the case of this pilot project; therefore we have decided to apply GeoSciML 3.2 schema to the dataset that represents Geological Map at the scale of 1:100,000. Within the pilot will be realised two main geohazard examples with a semi-automatized procedure based on a specific tool component integrated in the client: a landslide susceptibility map and a potential flooding map. In this work we want to present the first results obtained with use case geo-processing procedure in the first test phase, where we have developed a dataset compliant with GE INSPIRE to perform the landslide and flooding susceptibility maps.
Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology.
Dvořák, Pavel; Nikel, Pablo I; Damborský, Jiří; de Lorenzo, Víctor
2017-11-15
Elimination or mitigation of the toxic effects of chemical waste released to the environment by industrial and urban activities relies largely on the catalytic activities of microorganisms-specifically bacteria. Given their capacity to evolve rapidly, they have the biochemical power to tackle a large number of molecules mobilized from their geological repositories through human action (e.g., hydrocarbons, heavy metals) or generated through chemical synthesis (e.g., xenobiotic compounds). Whereas naturally occurring microbes already have considerable ability to remove many environmental pollutants with no external intervention, the onset of genetic engineering in the 1980s allowed the possibility of rational design of bacteria to catabolize specific compounds, which could eventually be released into the environment as bioremediation agents. The complexity of this endeavour and the lack of fundamental knowledge nonetheless led to the virtual abandonment of such a recombinant DNA-based bioremediation only a decade later. In a twist of events, the last few years have witnessed the emergence of new systemic fields (including systems and synthetic biology, and metabolic engineering) that allow revisiting the same environmental pollution challenges through fresh and far more powerful approaches. The focus on contaminated sites and chemicals has been broadened by the phenomenal problems of anthropogenic emissions of greenhouse gases and the accumulation of plastic waste on a global scale. In this article, we analyze how contemporary systemic biology is helping to take the design of bioremediation agents back to the core of environmental biotechnology. We inspect a number of recent strategies for catabolic pathway construction and optimization and we bring them together by proposing an engineering workflow. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ponomarev, A. A.; Mamadaliev, R. A.; Semenova, T. V.
2016-10-01
The article presents a brief overview of the current state of computed tomography in the sphere of oil and gas production in Russia and in the world. Operation of computed microtomograph Skyscan 1172 is also provided, as well as personal examples of its application in solving geological problems.
ERIC Educational Resources Information Center
Burton, Erin Peters; Mattietti, G. K.
2011-01-01
In general, integration of spatial information can be difficult for students. To study students' spatial thinking and their self-efficacy of interpreting stratigraphic columns, we designed an exercise that asks college-level students to interpret problems on the principles of superposition, original horizontality and lateral continuity, and…
ERIC Educational Resources Information Center
King, Angela G.
2006-01-01
Teachers often struggle to excite students about geology, with most young people in today's technology-driven society being unfamiliar with rocks and minerals. Discussions centered on medical geology, the science that studies the link between normal environmental factors and geographical distribution of health problems, may help bridge the gap.…
NASA Astrophysics Data System (ADS)
Cook, Stefan C. W.; Kennedy, Ben M.; Villeneuve, Marlène C.
2018-01-01
Mt. Ruapehu, in the central North Island of New Zealand, hosts a hot acidic Crater Lake over the active volcanic vent with a surface elevation of c. 2530 m.a.s.l. Volcanic activity and other montane processes have previously resulted in catastrophic releases of some or all of the c. 10 Mm3 of water retained in the lake, creating serious hazards downstream. A major lahar in March 2007 exposed a 10 m high face representative of the rock units impounding the lake, providing an opportunity to conduct both field and laboratory analysis to characterise the rock mass conditions at the outlet to assess the stability of the outlet area. This paper presents an engineering geology model of Crater Lake outlet. Our model shows three andesitic geological units at the outlet, each with different geological histories and physical and mechanical properties, which impact its stability. Geotechnical methods used to characterise the outlet include laboratory testing of the strength, stiffness, porosity and unit weight, and field-based rock mass characterisation using the geological strength index (GSI) and rock mass rating (RMR). Field observations, geomorphology mapping, historic and contemporary photographs, and laboratory results are combined to create cross sections that provide key information for establishing the engineering geology model. The units are recognised in what is informally termed the Crater Lake Formation: i) The upper surface layer is a c. 2 m thick sub-horizontal dark grey lava unit (Armoured Lava Ledge) with sub-horizontal cooling joints spaced at 0.2 m to 2.0 m intervals. The intact rock has a porosity range of 15-27%, density range of 1723-2101 kg/m3, GSI range of 45-75, and unconfined compressive strength (UCS) range of 19-48 MPa. ii) Below this, and outcropping down the majority of the outlet waterfall is a poorly sorted breccia unit composed of block and matrix material (Lava Breccia). The blocks range from 0.1 m to 0.8 m in diameter with an average porosity of 21%, a density of 1956 kg/m3 and strength of 85 MPa. The matrix has soil-like properties with an estimated UCS of 1.5 MPa. iii) At the base of the waterfall, the material sharply transitions into a light grey, slightly weathered unit (Lower Grey Member). This lower unit has an irregular surface expression with sub-vertical discontinuities. Porosity is 6%, density is 2569 kg/m3, the GSI range is 65-75, and the UCS is 98 MPa. The engineering geology model portrays the relationships between the units in three dimensions, highlights key structures and takes into consideration the material source, transportation and depositional processes. Historical outlet photographs suggest past eruptive and glacial activities are both significant factors controlling the deposition and erosion of material at the outlet. The Lower Grey Member appears to be a sound material for the outlet and water fall to be founded on. The upper aa Armoured Lava Ledge currently has moderate strength and GSI, and is resistive, providing protection for the underlying weaker block and matrix unit, however, continued incision by the outlet stream will eventually expose the weaker block and matrix material of the Lava Breccia. Once exposed, the Lava Breccia could rapidly erode or fail down to the Lower Grey Member and could potentially release 1 Mm3 of hot, acidic Crater Lake water. We recommend that erosion rates for the upper Armoured Lava Ledge be established to aid in preparation for eventual rim breakout.
Field Courses for Volcanic Hazards Mapping at Parícutinand Jorullo Volcanoes (Mexico)
NASA Astrophysics Data System (ADS)
Victoria Morales, A.; Delgado Granados, H.; Roberge, J.; Farraz Montes, I. A.; Linares López, C.
2007-05-01
During the last decades, Mexico has suffered several geologic phenomena-related disasters. The eruption of El Chichón volcano in 1982 killed >2000 people and left a large number of homeless populations and severe economic damages. The best way to avoid and mitigate disasters and their effects is by making geologic hazards maps. In volcanic areas these maps should show in a simplified fashion, but based on the largest geologic background possible, the probable (or likely) distribution in time and space of the products related to a variety of volcanic processes and events, according to likely magnitude scenarios documented on actual events at a particular volcano or a different one with similar features to the volcano used for calibration and weighing geologic background. Construction of hazards maps requires compilation and acquisition of a large amount of geological data in order to obtain the physical parameters needed to calibrate and perform controlled simulation of volcanic events under different magnitude-scenarios in order to establish forecasts. These forecasts are needed by the authorities to plan human settlements, infrastructure, and economic development. The problem is that needs are overwhelmingly faster than the adjustments of university programs to include courses. At the Earth Science División of the Faculty of Engineering at the Universidad Nacional Autónoma de México, the students have a good background that permits to learn the methodologies for hazards map construction but no courses on hazards evaluations. Therefore, under the support of the university's Program to Support Innovation and Improvement of Teaching (PAPIME, Programa de Apoyo para la Innovación y Mejoramiento de la Enseñanza) a series of field-based intensive courses allow the Earth science students to learn what kind of data to acquire, how to record, and process in order to carry out hazards evaluations. This training ends with hazards maps that can be used immediately by the authorities after proper review by peers. This project has been running for two years and hazards maps for the region of Parícutin and Jorullo volcanoes have been carried out. The students have been applying their knowledge and got results in a very short time and at the same time socially very important.
NASA Astrophysics Data System (ADS)
Samper, J.; Mon, A.; Montenegro, L.; Naves, A.; Fernández, J.
2016-12-01
High-level radioactive waste disposal in a deep geological repository is based on a multibarrier concept which combines natural barriers such as the geological formation and artificial barriers such as metallic containers, bentonite and concrete buffers and sealing materials. The stability and performance of the bentonite barrier could be affected by the corrosion products at the canister-bentonite interface and the hyperalkaline conditions caused by the degradation of concrete at the bentonite-concrete interface. Additionally, the host clay formation could also be affected by the hyperalkaline plume at the concrete-clay interface. Here we present a nonisothermal reactive transport model of the long-term interactions of the compacted bentonite with the corrosion products of a carbon-steel canister and the concrete liner of the engineered barrier of a high-level radioactive waste repository in clay. This problem involves large pH changes with a hyperalkaline high-pH plume, complex mineral dissolution/precipitation patterns, cation exchange reactions and proton surface complexation. These reactions lead to large changes in porosity which can even lead to pore clogging. Model results show that magnetite, the main corrosion product, precipitates and reduces significantly the porosity of the bentonite near the canister. The degradation of the concrete liner leads to the precipitation of secondary minerals and the reduction of the porosity of the bentonite and the clay formation at their interfaces with the concrete liner. The zones affected by pore clogging at the canister-bentonite, bentonite-concrete and concrete-clay interfaces at 1 Ma are equal to 10, 25 and 25 mm thick, respectively. The results of our simulations share many of the features of the models reported by others for engineered barrier systems at similar chemical conditions, including: 1) Narrow alteration zones; and 2) Pore clogging at the canister-bentonite, bentonite-concrete and concrete-clay interfaces.
Development of seismic tomography software for hybrid supercomputers
NASA Astrophysics Data System (ADS)
Nikitin, Alexandr; Serdyukov, Alexandr; Duchkov, Anton
2015-04-01
Seismic tomography is a technique used for computing velocity model of geologic structure from first arrival travel times of seismic waves. The technique is used in processing of regional and global seismic data, in seismic exploration for prospecting and exploration of mineral and hydrocarbon deposits, and in seismic engineering for monitoring the condition of engineering structures and the surrounding host medium. As a consequence of development of seismic monitoring systems and increasing volume of seismic data, there is a growing need for new, more effective computational algorithms for use in seismic tomography applications with improved performance, accuracy and resolution. To achieve this goal, it is necessary to use modern high performance computing systems, such as supercomputers with hybrid architecture that use not only CPUs, but also accelerators and co-processors for computation. The goal of this research is the development of parallel seismic tomography algorithms and software package for such systems, to be used in processing of large volumes of seismic data (hundreds of gigabytes and more). These algorithms and software package will be optimized for the most common computing devices used in modern hybrid supercomputers, such as Intel Xeon CPUs, NVIDIA Tesla accelerators and Intel Xeon Phi co-processors. In this work, the following general scheme of seismic tomography is utilized. Using the eikonal equation solver, arrival times of seismic waves are computed based on assumed velocity model of geologic structure being analyzed. In order to solve the linearized inverse problem, tomographic matrix is computed that connects model adjustments with travel time residuals, and the resulting system of linear equations is regularized and solved to adjust the model. The effectiveness of parallel implementations of existing algorithms on target architectures is considered. During the first stage of this work, algorithms were developed for execution on supercomputers using multicore CPUs only, with preliminary performance tests showing good parallel efficiency on large numerical grids. Porting of the algorithms to hybrid supercomputers is currently ongoing.
Introductory Level Problems Illustrating Concepts in Pharmaceutical Engineering
ERIC Educational Resources Information Center
McIver, Keith; Whitaker, Kathryn; De Delva, Vladimir; Farrell, Stephanie; Savelski, Mariano J.; Slater, C. Stewart
2012-01-01
Textbook style problems including detailed solutions introducing pharmaceutical topics at the level of an introductory chemical engineering course have been created. The problems illustrate and teach subjects which students would learn if they were to pursue a career in pharmaceutical engineering, including the unique terminology of the field,…
Enhanced and Conventional Project-Based Learning in an Engineering Design Module
ERIC Educational Resources Information Center
Chua, K. J.; Yang, W. M.; Leo, H. L.
2014-01-01
Engineering education focuses chiefly on students' ability to solve problems. While most engineering students are proficient in solving paper questions, they may not be proficient at providing optimal solutions to pragmatic project-based problems that require systematic learning strategy, innovation, problem-solving, and execution. The…
Yucca Mountain, Nevada - A proposed geologic repository for high-level radioactive waste
Levich, R.A.; Stuckless, J.S.
2006-01-01
Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation. ?? 2007 Geological Society of America. All rights reserved.