Geotechnical engineering for ocean waste disposal. An introduction
Lee, Homa J.; Demars, Kenneth R.; Chaney, Ronald C.; ,
1990-01-01
As members of multidisciplinary teams, geotechnical engineers apply quantitative knowledge about the behavior of earth materials toward designing systems for disposing of wastes in the oceans and monitoring waste disposal sites. In dredge material disposal, geotechnical engineers assist in selecting disposal equipment, predict stable characteristics of dredge mounds, design mound caps, and predict erodibility of the material. In canister disposal, geotechnical engineers assist in specifying canister configurations, predict penetration depths into the seafloor, and predict and monitor canister performance following emplacement. With sewage outfalls, geotechnical engineers design foundation and anchor elements, estimate scour potential around the outfalls, and determine the stability of deposits made up of discharged material. With landfills, geotechnical engineers evaluate the stability and erodibility of margins and estimate settlement and cracking of the landfill mass. Geotechnical engineers also consider the influence that pollutants have on the engineering behavior of marine sediment and the extent to which changes in behavior affect the performance of structures founded on the sediment. In each of these roles, careful application of geotechnical engineering principles can contribute toward more efficient and environmentally safe waste disposal operations.
DOT National Transportation Integrated Search
1998-12-01
This manual was written to provide training on how to apply principles of geotechnical earthquake engineering to planning, design, and retrofit of highway facilities. Reproduced here are two chapters 4 and 8 in the settlement, respectively. These cha...
Enabling Geotechnical Data for Broader Use by the Spatial Data Infrastructures
ERIC Educational Resources Information Center
Zand, Amir Ghasem
2011-01-01
Geotechnical data are one of the most prevalent data types in civil engineering projects. The majority of the civil engineering projects that are in use today are designed using site-specific geotechnical data. The usage of geotechnical data is not limited to construction projects. This data is used in a wide range of applications, including…
The Use of Mini-projects in the Teaching of Geotechnics to Civil Engineering Undergraduates.
ERIC Educational Resources Information Center
Anderson, W. F.; And Others
1985-01-01
Geotechnics (which encompasses soil and rock mechanics, engineering geology, foundation design, and ground engineering methods) is a major component of virtually all civil engineering courses. Show how mini-projects are used to teach this subject. Format of projects, development of presentation skills, and assessment considerations are discussed.…
DOT National Transportation Integrated Search
2009-01-01
Due to uncertainty in the nature of soils, a systematic study of the performance of geotechnical structures and its match with predictions is extremely important. Therefore, considerable research effort is being devoted to geotechnical engineering th...
Geotechnical engineering in US elementary schools
NASA Astrophysics Data System (ADS)
Suescun-Florez, Eduardo; Iskander, Magued; Kapila, Vikram; Cain, Ryan
2013-06-01
This paper reports on the results of several geotechnical engineering-related science activities conducted with elementary-school students. Activities presented include soil permeability, contact stress, soil stratigraphy, shallow and deep foundations, and erosion in rivers. The permeability activity employed the LEGO NXT platform for data acquisition, the soil profile and foundations activity employed natural and transparent soils as well as LEGO-based foundation models, and the erosion activity utilised a 3D printer to assist with construction of building models. The activities seek to enhance students' academic achievement, excite them about geotechnical engineering, and motivate them to study science and math. Pre- and post-activity evaluations were conducted to assess both the suitability of the activities and the students' learning. Initial results show that students gain a reasonable understanding of engineering principles. Moreover, the geotechnical engineering activities provided students an opportunity to apply their math skills and science knowledge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, P.K.
A total of 48 papers were presented at the Engineering Geology and Geotechnical Engineering 30th Symposium. These papers are presented in this proceedings under the following headings: site characterization--Pocatello area; site characterization--Boise Area; site assessment; Idaho National Engineering Laboratory; geophysical methods; remediation; geotechnical engineering; and hydrogeology, northern and western Idaho. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.
ERIC Educational Resources Information Center
Pierce, Charles E.; Gassman, Sarah L.; Huffman, Jeffrey T.
2013-01-01
This paper describes the development, implementation, and assessment of instructional materials for geotechnical engineering concepts using the Environments for Fostering Effective Critical Thinking (EFFECTs) pedagogical framework. The central learning goals of engineering EFFECTs are to (i) improve the understanding and retention of a specific…
DOT National Transportation Integrated Search
2016-04-01
While structural engineering deals with mostly homogeneous manmade materials : (e.g., concrete and steel), geotechnical engineering typically involves highly varied : natural materials (e.g., soil and rock). As a result, high variance of the resistan...
Role to Be Played by Independent Geotechnical Supervision in the Foundation for Bridge Construction
NASA Astrophysics Data System (ADS)
Sobala, Dariusz; Rybak, Jarosław
2017-10-01
Some remarks concerning the necessity of employing an independent and over all ethical geotechnical survey were presented in the paper. Starting from the design phase, through the whole construction process, the importance of geotechnical engineer is stated in legal acts. Numerous testing technologies serve for the calibration of geotechnical technologies and allow for confirming the quality and capacity of piles. Special emphasis was payed to the involvement of scientifical and research institutions which can not only serve services but also can postprocess and methodize collected data. Such databases enable for new codes, methods and recommendations. Selection of deep foundations for bridge-type structures is most often dependent on complex geotechnical conditions, concentrated loads and constraints for pier displacements. Besides the last ones, prior to more common introduction of the design-construct system, could be a convenient justification for design engineer, who imposed deep foundation because he did not want or was not able to estimate the effect of pier settlement on civil engineering structure. The paper provides some notes about the need to engage a geotechnical supervising service of high competency and ethical quality during engineering and construction stages of foundations for bridge-type structures where legal requirements are of special consideration. Successive stages of projects are reviewed and research methods used for current calibration of geotechnical technologies and verification of geotechnical work quality are analysed. Special attention is given to potential involvement of independent R&D institutions which, apart from rendering specific services, also collect and systemize the research results thus enabling, in the long term, to revise engineering standards, instructions and guidelines.
2000 report on the value pricing pilot program
DOT National Transportation Integrated Search
1997-05-01
This document has been written to provide information on how to apply principles of geotechnical earthquake engineering to planning, design, and retrofit of highway facilities. Geotechnical earthquake engineering topics discussed in this document inc...
Civil engineering reference guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, F.S.
1986-01-01
The civil engineering reference guide contains the following: Structural theory. Structural steel design. Concrete design and construction. Wood design and construction. Bridge engineering. Geotechnical engineering. Water engineering. Environmental engineering. Surveying.
Quantitative analysis of spatial variability of geotechnical parameters
NASA Astrophysics Data System (ADS)
Fang, Xing
2018-04-01
Geotechnical parameters are the basic parameters of geotechnical engineering design, while the geotechnical parameters have strong regional characteristics. At the same time, the spatial variability of geotechnical parameters has been recognized. It is gradually introduced into the reliability analysis of geotechnical engineering. Based on the statistical theory of geostatistical spatial information, the spatial variability of geotechnical parameters is quantitatively analyzed. At the same time, the evaluation of geotechnical parameters and the correlation coefficient between geotechnical parameters are calculated. A residential district of Tianjin Survey Institute was selected as the research object. There are 68 boreholes in this area and 9 layers of mechanical stratification. The parameters are water content, natural gravity, void ratio, liquid limit, plasticity index, liquidity index, compressibility coefficient, compressive modulus, internal friction angle, cohesion and SP index. According to the principle of statistical correlation, the correlation coefficient of geotechnical parameters is calculated. According to the correlation coefficient, the law of geotechnical parameters is obtained.
Sustainable Development and Energy Geotechnology Potential Roles for Geotechnical Engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
FragaszyProgram Dire, Dr. R. J.; Santamarina, Carlos; Espinoza, N.
2011-01-01
The world is facing unprecedented challenges related to energy resources, global climate change, material use, and waste generation. Failure to address these challenges will inhibit the growth of the developing world and will negatively impact the standard of living and security of future generations in all nations. The solutions to these challenges will require multidisciplinary research across the social and physical sciences and engineering. Although perhaps not always recognized, geotechnical engineering expertise is critical to the solution of many energy and sustainability-related problems. Hence, geotechnical engineers and academicians have opportunity and responsibility to contribute to the solution of these worldwidemore » problems. Research will need to be extended to non-standard issues such as thermal properties of soils; sediment and rock response to extreme conditions and at very long time scales; coupled hydro-chemo-thermo-bio-mechanical processes; positive feedback systems; the development of discontinuities; biological modification of soil properties; spatial variability; and emergent phenomena. Clearly, the challenges facing geotechnical engineering in the future will require a much broader knowledge base than our traditional educational programs provide. The geotechnical engineering curricula, from undergraduate education through continuing professional education, must address the changing needs of a profession that will increasingly be engaged in alternative/renewable energy production; energy efficiency; sustainable design, enhanced and more efficient use of natural resources, waste management, and underground utilization.« less
Proceedings, Seminar on Probabilistic Methods in Geotechnical Engineering
NASA Astrophysics Data System (ADS)
Hynes-Griffin, M. E.; Buege, L. L.
1983-09-01
Contents: Applications of Probabilistic Methods in Geotechnical Engineering; Probabilistic Seismic and Geotechnical Evaluation at a Dam Site; Probabilistic Slope Stability Methodology; Probability of Liquefaction in a 3-D Soil Deposit; Probabilistic Design of Flood Levees; Probabilistic and Statistical Methods for Determining Rock Mass Deformability Beneath Foundations: An Overview; Simple Statistical Methodology for Evaluating Rock Mechanics Exploration Data; New Developments in Statistical Techniques for Analyzing Rock Slope Stability.
DOT National Transportation Integrated Search
1994-02-01
The report contains an assessment of existing port infrastructure related to United States-Mexico trade, planned infrastructure improvements, an identification of current trade and transportation flows, and an assessment of emerging trade corridors. ...
Geotechnical Engineering in US Elementary Schools
ERIC Educational Resources Information Center
Suescun-Florez, Eduardo; Iskander, Magued; Kapila, Vikram; Cain, Ryan
2013-01-01
This paper reports on the results of several geotechnical engineering-related science activities conducted with elementary-school students. Activities presented include soil permeability, contact stress, soil stratigraphy, shallow and deep foundations, and erosion in rivers. The permeability activity employed the LEGO NXT platform for data…
40 CFR 265.90 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... from the facility via the uppermost aquifer to water supply wells (domestic, industrial, or.... This demonstration must be certified by a qualified geologist or geotechnical engineer and must... geologist or geotechnical engineer, which satisfies the requirements of § 265.93(d)(3), for an alternate...
40 CFR 265.90 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... from the facility via the uppermost aquifer to water supply wells (domestic, industrial, or.... This demonstration must be certified by a qualified geologist or geotechnical engineer and must... geologist or geotechnical engineer, which satisfies the requirements of § 265.93(d)(3), for an alternate...
The Legacy of the 1948 Underseepage and Crevasse Maps, Lower Mississippi River Levees
2017-04-01
Julie R. Kelley Geotechnical and Structures Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180...and Julie R. Kelley Geotechnical and Structures Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg
Incorporating Learning Outcomes into an Introductory Geotechnical Engineering Course
ERIC Educational Resources Information Center
Fiegel, Gregg L.
2013-01-01
The article describes the process of incorporating a set of learning outcomes into a geotechnical engineering course. The outcomes were developed using Bloom's taxonomy and define the knowledge, skills, and abilities the students are expected to achieve upon completion of the course. Each outcome begins with an action-oriented verb corresponding…
DOT National Transportation Integrated Search
1995-01-01
In order to obtain regional perspective on the major problems and issues to be addressed, a series of nine regional round tables were convened across the nation. One of these was held in Norfolk, VA, on June 11, 1993. The primary focus of this meetin...
NASA Astrophysics Data System (ADS)
Akintorinwa, O. J.; Oluwole, S. T.
2018-06-01
For several decades, geophysical prospecting method coupled with geotechnical analysis has become increasingly useful in evaluating the subsurface for both pre and post engineering investigations. Shallow geophysical tool is often used alongside geotechnical method to evaluate subsurface soil for engineering study to obtain information which may include the subsurface lithology and their thicknesses, competence of the bedrock and depths to its upper interface, and competence of the material that make up the overburden, especially the shallow section which serves as host for foundations of engineering structures (Aina et al., 1996; Adewumi and Olorunfemi, 2005; and Idornigie et al., 2006). This information helps the engineers to correctly locate and design the foundation of engineering structures. The information also serves as guide to the choice of design and suitable materials needed for road construction (Akinlabi and Adeyemi, 2014). Lack of knowledge of the properties of subsurface may leads to the failure of most engineering structures. Therefore, it is of great importance to carry out a pre-construction investigation of a proposed site in order to ascertain the fitness of the host earth material.
Geotechnical behavior of the MSW in Tianziling landfill.
Zhu, Xiang-Rong; Jin, Jian-Min; Fang, Peng-Fei
2003-01-01
The valley shaped Tianziling landfill of Hangzhou in China built in 1991 to dispose of municipal solid waste (MSW) was designed for a service life of 13 years. The problem of waste landfill slope stability and expansion must be considered from the geotechnical engineering point of view, for which purpose, it is necessary to understand the geotechnical properties of the MSW in the landfill, some of whose physical properties were measured by common geotechnical tests, such as those on unit weight, water content, organic matter content, specific gravity, coefficient of permeability, compressibility, etc. The mechanical properties were studied by direct shear test, triaxial compression test, and static and dynamic penetration tests. Some strength parameters for engineering analysis were obtained.
Laboratory and Field Investigations of Small Crater Repair Technologies
2007-09-01
caps over debris backfill or specially placed or compacted backfill, structural systems to bridge craters, foamed crater backfills, and structural ...Jeb S. Tingle, and Timothy J. McCaffrey Geotechnical and Structures Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry...Engineer Research and Development Center (ERDC), Geotechnical and Structures Laboratory (GSL), Vicksburg, MS. The findings and recommendations presented
NASA Astrophysics Data System (ADS)
Schwarz, Ludwig; Eder, Stefan; Mattle, Bruno; Hammer, Helmut
Rising competitive pressure in the construction business, ever tighter schedules being set up by the clients and ongoing disputes between engineering geologists and civil engineers about the role of geotechnical engineers have - in the last few years - led to increasing discussions between engineers and geologists about the allocation of competences during the design process of underground structures. In the course of this debate, which is often polemic and anything but objective, important information is quite frequently lost - a development which may not only be to the disadvantage of the client but which may also do damage to the reputation of the professions involved. The design procedure of the new Austrian guideline for the geomechanical design of underground structures requires a close collaboration of geologists, geotechnical and civil engineers, yet without allocating competences. While preparing the tender documents for the first construction lot of the Northern feeder line of the Brenner base tunnel, the necessity of a close cooperation of the involved professions became apparent due to the complex geological situation encountered in the project area and the enormous amount of data available. Despite these difficult boundary conditions, the successful application of the guideline was last but not least the result of the joint efforts of the multidisciplinary design team.
Analysis of change orders in geotechnical engineering work at INDOT : [technical summary].
DOT National Transportation Integrated Search
2011-01-01
There was a perception at INDOT that the number of change orders connected with geotechnical work was excessive, and that, as a consequence, geotechnical projects were not completed on time or within budget. It was reported that INDOT construction pr...
NASA Astrophysics Data System (ADS)
Pieczyńska-Kozłowska, Joanna M.
2015-12-01
The design process in geotechnical engineering requires the most accurate mapping of soil. The difficulty lies in the spatial variability of soil parameters, which has been a site of investigation of many researches for many years. This study analyses the soil-modeling problem by suggesting two effective methods of acquiring information for modeling that consists of variability from cone penetration test (CPT). The first method has been used in geotechnical engineering, but the second one has not been associated with geotechnics so far. Both methods are applied to a case study in which the parameters of changes are estimated. The knowledge of the variability of parameters allows in a long term more effective estimation, for example, bearing capacity probability of failure.
Soil-Structure Interaction Study of Red River Lock and Dam No. 1 Subjected to Sediment Loading
1993-09-01
Sediment Loading by Robert M. Ebeling, Reed L. Mosher, Kevin Abraham Information Technology Laboratory John F. Peters Geotechnical Laboratory DTIC fl ELECTE...Robert M. Ebeling, Reed L. Mosher, Kevin Abraham Information Technology Laboratory John F. Peters Geotechnical Laboratory U.S. Army Corps of Engineers...Division (CAED), Informa- tion Technology Laboratory (ITL), Dr. Reed L. Mosher, Acting Chief, CAED, Mr. Kevin Abraham, Scientific and Engineering
In-Tank Processing (ITP) Geotechnical Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cumbest, R.J.
A geotechnical investigation has been completed for the In Tank Processing Facility (ITP) which consists of buildings 241-96H and 241-32H; and Tanks 241-948H, 241-949H, 241-950H, and 241-951H. The investigation consisted of a literature search for relevant technical data, field explorations, field and laboratory testing, and analyses. This document presents a summary of the scope and results to date of the investigations and engineering analyses for these facilities. A final geotechnical report, which will include a more detailed discussion and all associated boring logs, laboratory test results, and analyses will be issued in October 1994.The purpose of the investigation is tomore » obtain geotechnical information to evaluate the seismic performance of the foundation materials and embankme nts under and around the ITP. The geotechnical engineering objectives of the investigation are to: 1) define the subsurface stratigraphy, 2) obtain representative engineering properties of the subsurface materials, 3) assess the competence of the subsurface materials under static and dynamic loads, 4) derive properties for seismic soil-structure interaction analysis, 5) evaluate the areal and vertical extent of horizons that might cause dynamic settlement or instability, and 6) determine settlement at the foundation level of the tanks.« less
WisDOT geotechnical manual development.
DOT National Transportation Integrated Search
2015-02-01
The Wisconsin Department of Transportation currently has a Soils Manual and a Geotechnical Bulletin that provides some guidance : to Regional staff and consulting engineering firms on departmental policy and procedures. However, these two publication...
1979-08-24
Diablo Baseline and Meridian references: (1) Fugro field measurements (1979) (2) Nevada State Engineers Office (1979) (3) Robinson, Thordarson , and...3) Robinson, Thordarson , and Beetem (1967) (4) Rush (1968) (5) Rush and Schroer (1970) (6) U. S. Geological Survey (1971) (7) U. S. Geological Survey...and Meridian references (1) Fugro field measurements (1979) (2) Nevada State Engineers Office (1979) (3) Robinson, Thordarson , and Beetem (1967) (4
Contribution to Estimating Bearing Capacity of Pile in Clayey Soils
NASA Astrophysics Data System (ADS)
Drusa, Marián; Gago, Filip; Vlček, Jozef
2016-12-01
The estimation of real geotechnical parameters is key factor for safe and economic design of geotechnical structures. One of these are pile foundations, which require proper design and evaluation due to accessing more deep foundation soil and because remediation work of not bearable piles or broken piles is a crucial operation. For this reason, geotechnical field testing like cone penetration test (CPT), standard penetration (SPT) or dynamic penetration test (DP) are realized in order to receive continuous information about soil strata. Comparing with rotary core drilling type of survey with sampling, these methods are more progressive. From engineering geologist point of view, it is more important to know geological characterization of locality but geotechnical engineers have more interest above the real geotechnical parameters of foundation soils. The role of engineering geologist cannot be underestimated because important geological processes in origin or during history can explain behaviour of a geological environment. In effort to streamline the survey, investigation by penetration tests is done as it is able to provide enough information for designers. This paper deals with actual trends in pile foundation design; because there are no new standards and usable standards are very old. Estimation of the bearing capacity of a single pile can be demonstrated on the example of determination of the cone factor Nk from CPT testing. Then results were compared with other common methods.
Compendium of abstracts on statistical applications in geotechnical engineering
NASA Astrophysics Data System (ADS)
Hynes-Griffin, M. E.; Deer, G. W.
1983-09-01
The results of a literature search of geotechnical and statistical abstracts are presented in tables listing specific topics, title of the abstract, main author and the file number under which the abstract can be found.
Compendium of Abstracts on Statistical Applications in Geotechnical Engineering.
1983-09-01
research in the application of probabilistic and statistical methods to soil mechanics, rock mechanics, and engineering geology problems have grown markedly...probability, statistics, soil mechanics, rock mechanics, and engineering geology. 2. The purpose of this report is to make available to the U. S...Deformation Dynamic Response Analysis Seepage, Soil Permeability and Piping Earthquake Engineering, Seismology, Settlement and Heave Seismic Risk Analysis
Welcome to Pacific Earthquake Engineering Research Center - PEER
Triggering and Effects at Silty Soil Sites" - PEER Research Project Highlight: "Dissipative Base ; Upcoming Events More June 10-13, 2018 Geotechnical Earthquake Engineering and Soil Dynamics V 2018 - Call
On Unsaturated Soil Mechanics - Personal Views on Current Research
NASA Astrophysics Data System (ADS)
Pande, G. N.; Pietruszczak, S.
2015-09-01
This paper presents the authors' personal views on current research being conducted by various research groups around the world in the broad area of mechanics of unsaturated geomaterials in general and soils in particular. The topic is of interest to a wide spectrum of scientists and engineers working in diverse areas such as geology and geophysics, powder technology, agricultural, petroleum, chemical, geotechnical, civil, environmental and nuclear engineering. Even if we restrict ourselves to civil, geotechnical and environmental engineering, it is noted that a plethora of hypotheses as well as a number of empirical and semi-empirical relations have been introduced for describing the mechanics of unsaturated porous media. However, many of these proposed advances as well as methods of testing may lack sound theoretical basis.
Measuring in situ mechanical properties of pavement subgrade soils
DOT National Transportation Integrated Search
1999-01-01
This synthesis report will be of interest to pavement and geotechnical design and research engineers, geologists and engineering geologists, and similar laboratory personnel. It describes the current practice for measuring the in situ mechanical prop...
Progress in Geotechnical Dynamic Centrifuge Modeling.
1985-06-01
Engineer, 1932. 4. Pokrovsky, G.I., Centrifugal Model Testing, ONII Publishing House, 1935. 5. Arulanandan, K., Canclini , J., and Anandarajah, A...Philosophy. 21. Arulananaan, K., Canclini , J., and Anandarajah, A., "Simulation of Earthquate Motions in the Centrituge,"ASCE J. of the Geotechnical
Probabilistic Rock Slope Engineering.
1984-06-01
4 U rmy Corps PROBABILISTIC ROCK SLOPE ENGINEERING by Stanley M. Miller jGeotechnical Engineer 509 E. Calle Avenue Tucson, Arizona 85705 Co N 00 IFI...NUMBERS Geological Engineer CW71 1ork Unit 31755 509 E. Calle Avenue, Tucson, Arizona 85705 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE...communication, J. P. Sa,.-1Iy, Inspiration Consolidated Copper Co., Inspiration, Ariz., 1980. Personal communication, R. D. Call, Pincock, Allen, and
Lateral support systems and underpinning, volume III : construction methods.
DOT National Transportation Integrated Search
1976-04-01
This report provides current information and design guidelines on cut-and-cover tunneling for practicing engineers. The main emphasis is on the geotechnical aspects of engineering. Included in this volume is a state-of-the-art summary of displacement...
Lateral support systems and underpinning, volume II : design fundamentals.
DOT National Transportation Integrated Search
1976-04-01
This report provides current information and design guidelines on cut-and-cover : tunneling for practicing engineers. The main emphasis is on the geotechnical : aspects of engineering. Included in this volume is a state-of-the-art summary of : displa...
Lateral Support Systems And Underpinning. Volume II. Design Fundamentals
DOT National Transportation Integrated Search
1976-04-01
This report provides current information and design guidelines on cut-and-cover tunneling for practicing engineers. The main emphasis is on the geotechnical aspects of engineering. Included in this volume is a state-of-the-art summary of displacement...
Stereographic Projection Techniques for Geologists and Civil Engineers
NASA Astrophysics Data System (ADS)
Lisle, Richard J.; Leyshon, Peter R.
2004-05-01
An essential tool in the fields of structural geology and geotechnics, stereographic projection allows three-dimensional orientation data to be represented and manipulated. This revised edition presents a basic introduction to the subject with examples, illustrations and exercises that encourage the student to visualize the problems in three dimensions. It will provide students of geology, rock mechanics, and geotechnical and civil engineering with an indispensable guide to the analysis and interpretation of field orientation data. Links to useful web resources and software programs are also provided. First Edition published by Butterworth-Heinemann (1996): 0-750-62450-7
Marschalko, Marian; Yilmaz, Işık; Fojtova, Lucie; Lamich, David; Bednarik, Martin
2013-01-01
This study deals with a methodical identification and evaluation of physical-mechanical properties of one genetic type of geological structure. This is represented by an engineering-geological zone of eolian sediments, which is regionally rather abundant. The paper contributes to a need to identify typical soil properties for widespread geological environments in a particular region and thus add to good engineering geologists and geotechnical engineers' awareness in the region. Such information is much required as it permits comparing results of newly conducted engineering-geological investigations and research with the results characteristic for the region in question. It is vital for engineering geologists and geotechnical engineers to be sufficiently informed on the foundation soil properties of widespread geological environments because of professionalism and higher quality of their work results. Comparing other loess sediment studies worldwide it was discovered that the physical properties of the most abundant clays of low to medium plasticity, sandy clays, and sands as foundation soils vary as for the plasticity index, porosity, natural water content, and bulk density to a certain extent but not as significantly as once expected. PMID:24391464
GeoMO 2008--geotechnical earthquake engineering : site response.
DOT National Transportation Integrated Search
2008-10-01
The theme of GeoMO2008 has recently become of more interest to the Midwest civil engineering community due to the perceived earthquake risks and new code requirements. The constant seismic reminder for the New Madrid Seismic Zone and new USGS hazard ...
1981-08-01
approval. CARNEY M. TERZLAN, KDIBER Design Branch Engineering Division Water\\ontrol Brancr%.J Engineering Division ARAiQAST MANTESI, CHIRA Geotechnical...issued to Hayden, Harding & Buchanan, Inc. on 26 June 1981 by William E. Hodgson Jr., Colonel, Corps of Engineers. Contract No. DACW 33-80-C-0006 has been
Development Of International Data Standards For The COSMOS/PEER-LL Virtual Data Center
NASA Astrophysics Data System (ADS)
Swift, J. N.
2005-12-01
The COSMOS -PEER Lifelines Project 2L02 completed a Pilot Geotechnical Virtual Data Center (GVDC) system capable of both archiving geotechnical data and of disseminating data from multiple linked geotechnical databases. The Pilot GVDC system links geotechnical databases of four organizations: the California Geological Survey, Caltrans, PG&E, and the U. S. Geological Survey The System was presented and reviewed in the COSMOS-PEER Lifelines workshop on June 21 - 23, 2004, which was co-sponsored by the Federal Highway Administration (FHWA) and included participation by the United Kingdom Highways Agency (UKHA) , the Association of Geotechnical and Geoenvironmental Specialists in the United Kingdom (AGS), the United States Army Corp of Engineers (USACOE), Caltrans, United States Geological Survey (USGS), California Geological Survey (CGS), a number of state Departments of Transportation (DOTs), county building code officials, and representatives of academic institutions and private sector geotechnical companies. As of February 2005 COSMOS-PEER Lifelines Project 2L03 is currently funded to accomplish the following tasks: 1) expand the Pilot GVDC Geotechnical Data Dictionary and XML Schema to include data definitions and structures to describe in-situ measurements such as shear wave velocity profiles, and additional laboratory geotechnical test types; 2) participate in an international cooperative working group developing a single geotechnical data exchange standard that has broad international acceptance; and 3) upgrade the GVDC system to support corresponding exchange standard data dictionary and schema improvements. The new geophysical data structures being developed will include PS-logs, downhole geophysical logs, cross-hole velocity data, and velocity profiles derived using surface waves. A COSMOS-PEER Lifelines Geophysical Data Dictionary Working Committee constituted of experts in the development of data dictionary standards and experts in the specific data to be captured are presently working on this task. The international geotechnical data dictionary and schema development is a highly collaborative effort funded by a pooled fund study coordinated by state DOTs and FHWA. The technical development of the standards called DIGGS (Data Interchange for Geotechnical and Geoenvironmental Specialists) is lead by a team consisting of representatives from the University of Florida, Department of Civil Engineering (UF), AGS, Construction Industry Research and Information Association (CIRIA), UKHA, Ohio DOT, and COSMOS. The first draft of DIGGS is currently in preparation. A Geotechnical Management System Group (GMS group), composed of representatives from 13 State DOTs, FHWA, US EPA, USACOE, USGS and UKHA, oversees and approves the development of the standards. The ultimate goal of both COSMOS-PEER Lifelines Project 2L03 and the international GMS working group is to produce open and flexible, GML-compliant XML schema-based data structures and data dictionaries for review and approval by DOTs, other public agencies, and the international engineering and geoenvironmental community at large, leading to adoption of internationally accepted geotechnical and geophysical data transfer standards. Establishment of these standards is intended to significantly facilitate the accessibility and exchange of geotechnical information world wide.
NASA Astrophysics Data System (ADS)
Tynan, M. C.; Russell, G. P.; Perry, F.; Kelley, R.; Champenois, S. T.
2017-12-01
This global survey presents a synthesis of some notable geotechnical and engineering information reflected in four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies, sites, or disposal facilities; 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding deep underground "facilities", history, activities, and plans. In general, the interactive maps and database [http://gis.inl.gov/globalsites/] provide each facility's approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not all encompassing, it is a comprehensive review of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development as a communication tool applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.
PREFACE: International Symposium on Geohazards and Geomechanics (ISGG2015)
NASA Astrophysics Data System (ADS)
Utili, S.
2015-09-01
These Conference Proceedings contain the full papers in electronic format of the International Symposium on 'Geohazards and Geomechanics', held at University of Warwick, UK, on September 10-11, 2015. The Symposium brings together the complementary expertise of world leading groups carrying out research on the engineering assessment, prevention and mitigation of geohazards. A total of 58 papers, including 8 keynote lectures cover phenomena such as landslide initiation and propagation, debris flow, rockfalls, soil liquefaction, ground improvement, hazard zonation, risk mapping, floods and gas and leachates. The techniques reported in the papers to investigate geohazards involve numerical modeling (finite element method, discrete element method, material point method, meshless methods and particle methods), experimentation (laboratory experiments, centrifuge tests and field monitoring) and analytical simplified techniques. All the contributions in this volume have been peered reviewed according to rigorous international standards. However the authors take full responsibility for the content of their papers. Agreements are in place for the edition of a special issue dedicated to the Symposium in three international journals: Engineering Geology, Computational Particle Mechanics and International Journal of Geohazards and Environment. Authors of selected papers will be invited to submit an extended version of their work to these Journals that will independently assess the papers. The Symposium is supported by the Technical Committee 'Geo-mechanics from Micro to Macro' (TC105) of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE), 'Slope Stability in Engineering Practice' (TC208), 'Forensic Geotechnical Engineering' (TC302), the British Geotechnical Association and the EU FP7 IRSES project 'Geohazards and Geomechanics'. Also the organizers would like to thank all authors and their supporting institutions for their contributions. For any further enquiries or information on the conference proceedings please contact the organizer, Dr Stefano Utili, University of Warwick, s.utili@warwick.ac.uk.
Chang, Susan; Frankel, Arthur D.; Weaver, Craig S.
2014-01-01
On March 4, 2013, the City of Seattle and the U.S. Geological Survey (USGS) convened a workshop of 25 engineers and seismologists to provide recommendations to the City for the incorporation of amplification of earthquake ground shaking by the Seattle sedimentary basin in the design of tall buildings in Seattle. The workshop was initiated and organized by Susan Chang, a geotechnical engineer with the City of Seattle Department of Planning and Development, along with Art Frankel and Craig Weaver of the USGS. C.B. Crouse of URS Corporation, Seattle made key suggestions for the agenda. The USGS provided travel support for most of the out-of-town participants. The agenda and invited attendees are given in the appendix. The attendees included geotechnical and structural engineers working in Seattle, engineers with experience utilizing basin response factors in other regions, and seismologists who have studied basin response in a variety of locations. In this report, we summarize the technical presentations and the recommendations from the workshop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
A geotechnical study has been completed in H-Area for the In-Tank Precipitation Facility (ITP) and the balance of the H-Area Tank Farm (HTF) at the Savannah River Site (SRS) in South Carolina. The study consisted of subsurface field exploration, field and laboratory testing, and engineering analyses. The purpose of these investigations is to evaluate the overall stability of the H-Area tanks under static and dynamic conditions. The objectives of the study are to define the site-specific geological conditions at ITP and HTF, obtain engineering properties for the assessment of the stability of the native soils and embankment under static andmore » dynamic loads (i.e., slope stability, liquefaction potential, and potential settlements), and derive properties for soil-structure interaction studies. This document (Volume 5) contains the laboratory test results for the In-Tank Precipitation Facility (ITP) and H-Tank Farm (HTF) Geotechnical Report.« less
Geotechnical effects of the 2015 magnitude 7.8 Gorkha, Nepal, earthquake and aftershocks
Moss, Robb E. S.; Thompson, Eric M.; Kieffer, D Scott; Tiwari, Binod; Hashash, Youssef M A; Acharya, Indra; Adhikari, Basanta; Asimaki, Domniki; Clahan, Kevin B.; Collins, Brian D.; Dahal, Sachindra; Jibson, Randall W.; Khadka, Diwakar; Macdonald, Amy; Madugo, Chris L M; Mason, H Benjamin; Pehlivan, Menzer; Rayamajhi, Deepak; Uprety, Sital
2015-01-01
This article summarizes the geotechnical effects of the 25 April 2015 M 7.8 Gorkha, Nepal, earthquake and aftershocks, as documented by a reconnaissance team that undertook a broad engineering and scientific assessment of the damage and collected perishable data for future analysis. Brief descriptions are provided of ground shaking, surface fault rupture, landsliding, soil failure, and infrastructure performance. The goal of this reconnaissance effort, led by Geotechnical Extreme Events Reconnaissance, is to learn from earthquakes and mitigate hazards in future earthquakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tynan, Mark C.; Russell, Glenn P.; Perry, Frank V.
These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.:more » access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, William; Mondt, William
The purpose of this CRADA was to develop a useful and commercially viable version of ERT technology for use in the oil, mining, engineering, and geotechnical industries. The goals required to accomplish these tasks included (1) developing commercial-grade data-acquisition systems and data analysis software, and (2) completing transfer of the state-of-the-art know-how, held by LLNL scientists and engineers, to personnel at RIMtech, Inc.
Overview of landslide problems, research, and mitigation, Cincinnati, Ohio, area
Baum, Rex L.; Johnson, Arvid M.
1996-01-01
Landslides cause much damage to property throughout the metropolitan area of Cincinnati, Ohio. Most landslides occur in unconsolidated deposits, including colluvium, till, glacial lake clays, and man-made fill derived from colluvium and glacial deposits. Landslides in thin colluvium are widespread on steeper slopes that wall the valleys of the Ohio River and its tributaries. Abundant landslides also form in thick colluvium on flatter slopes, especially where the colluvium has been disturbed by earthwork. Unusual block glides and block-extrusion glides form where till rests on lake clay. Through the years, knowledge of the distribution and causes of landslides has increased as a result of many investigations. This knowledge became part of the basis for landslide mitigation programs adopted by the City of Cincinnati and Hamilton County, Ohio. In 1974 the Cincinnati City Council passed an excavation and fill ordinance to help reduce landslide damage in areas of new construction. In 1989 following much additional study, Cincinnati created a geotechnical office within its Department of Public Works. The office, which is staffed by a geotechnical engineer, an engineering geologist, and two technicians, carries out a mitigation program. Since 1989, members of the geotechnical staff have worked in several ways to reduce landslide damage in the city; their work includes engineering-geologic mapping of selected parts of the city, inspection of retaining walls that impact public right-of-way, review of proposed construction in hillside areas, inspecting and arranging for repair of landslide areas that affect city property, and compiling geologic and geotechnical data on landslide areas within the city. In 1990, Hamilton County also adopted an excavation and fill ordinance to help reduce the damage due to landslides in areas of new construction.
1993-11-01
objectives of the work unit. executing dredging projects. The disparities increase risk factors and thus the cost of such SUMMARY: The study identified the...geologists, environmental engineers, biologists, estimators, dredging equipment manufacturers, and dredging contractor personnel have methods for...changed dramatically. A major increase has occurred in the level of contract dredging. Environmental concerns, the consequences of the oil embargo of
Development of Site Characterization Simulator Specifications
1996-11-01
Jeff Farrar, Geotechnical Engineer with Earth Sciences Laboratory, Bureau of Reclamation; Jason Smolensky, Hydrogeologist at SRK-Canada, and Doctors Ed...Heyse and Mark Goltz , Department of Engineering and Environmental Management, Air Force Institute of Technology). Considering these discussions, the...Windows 3.1 or higher, 35mb, hard disk. Delta Research Corporation, Niceville FL. 139 Roberts, P.V., Goltz , M.N., and Mackay, D.M. 1986. A Natural
The influence of Stochastic perturbation of Geotechnical media On Electromagnetic tomography
NASA Astrophysics Data System (ADS)
Song, Lei; Yang, Weihao; Huangsonglei, Jiahui; Li, HaiPeng
2015-04-01
Electromagnetic tomography (CT) are commonly utilized in Civil engineering to detect the structure defects or geological anomalies. CT are generally recognized as a high precision geophysical method and the accuracy of CT are expected to be several centimeters and even to be several millimeters. Then, high frequency antenna with short wavelength are utilized commonly in Civil Engineering. As to the geotechnical media, stochastic perturbation of the EM parameters are inevitably exist in geological scales, in structure scales and in local scales, et al. In those cases, the geometric dimensionings of the target body, the EM wavelength and the accuracy expected might be of the same order. When the high frequency EM wave propagated in the stochastic geotechnical media, the GPR signal would be reflected not only from the target bodies but also from the stochastic perturbation of the background media. To detect the karst caves in dissolution fracture rock, one need to assess the influence of the stochastic distributed dissolution holes and fractures; to detect the void in a concrete structure, one should master the influence of the stochastic distributed stones, et al. In this paper, on the base of stochastic media discrete realizations, the authors try to evaluate quantificationally the influence of the stochastic perturbation of Geotechnical media by Radon/Iradon Transfer through full-combined Monte Carlo numerical simulation. It is found the stochastic noise is related with transfer angle, perturbing strength, angle interval, autocorrelation length, et al. And the quantitative formula of the accuracy of the electromagnetic tomography is also established, which could help on the precision estimation of GPR tomography in stochastic perturbation Geotechnical media. Key words: Stochastic Geotechnical Media; Electromagnetic Tomography; Radon/Iradon Transfer.
Reuse of coal mining wastes in civil engineering. Part 1: Properties of minestone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skarzynska, K.M.
1995-07-01
This review is intended to introduce the readers to the geotechnical properties of minestone obtained from various countries and to describe laboratory and field methods used to examine and evaluate such material. The contents of the paper consist of general information on the environmental consequences of coal mining, the origin of the by-product, and the classification of the material. Primary emphasis has been placed on describing the physical and mechanical properties with respect to geotechnical engineering. Characteristic properties, such as degradation, weathering, spontaneous heating, etc., are specific for this man-made soil and are discussed in relationship to civil engineering. Finally,more » the current and far-reaching effects of existing radioactivity is also presented. Preparation of the review is based on an extensive literature survey, as well as on the investigations of the author and practical applications. A general conclusion can be made from the reviewed data that a noticeable similarity does exist between the chemical, physical, and mechanical properties of minestone from different sources and countries. this is important because the research results and practical experience obtained in one country may then be applied to projects in another country. The review should be helpful in understanding the behavior of minestone during its transport for prospective utilization in different engineering projects. The author hopes that the information will be useful to those studying environmental, civil, and water engineering, as well as for designers and researchers investigating the potential use of this man-made (anthropogenic) soil in various fields of engineering.« less
Energy geotechnics: Advances in subsurface energy recovery, storage, exchange, and waste management
McCartney, John S.; Sanchez, Marcelo; Tomac, Ingrid
2016-02-17
Energy geotechnics involves the use of geotechnical principles to understand and engineer the coupled thermo-hydro-chemo-mechanical processes encountered in collecting, exchanging, storing, and protecting energy resources in the subsurface. In addition to research on these fundamental coupled processes and characterization of relevant material properties, applied research is being performed to develop analytical tools for the design and analysis of different geo-energy applications. In conclusion, the aims of this paper are to discuss the fundamental physics and constitutive models that are common to these different applications, and to summarize recent advances in the development of relevant analytical tools.
Energy geotechnics: Advances in subsurface energy recovery, storage, exchange, and waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCartney, John S.; Sanchez, Marcelo; Tomac, Ingrid
Energy geotechnics involves the use of geotechnical principles to understand and engineer the coupled thermo-hydro-chemo-mechanical processes encountered in collecting, exchanging, storing, and protecting energy resources in the subsurface. In addition to research on these fundamental coupled processes and characterization of relevant material properties, applied research is being performed to develop analytical tools for the design and analysis of different geo-energy applications. In conclusion, the aims of this paper are to discuss the fundamental physics and constitutive models that are common to these different applications, and to summarize recent advances in the development of relevant analytical tools.
Experimental assessment of aggregate surfacing materials.
DOT National Transportation Integrated Search
2007-06-30
"An extensive suite of geotechnical laboratory tests were conducted to quantify differences in : engineering properties of three crushed aggregates commonly used on Montana highway projects. The : material types are identified in the Montana Suppleme...
Geophysical testing of rock and its relationships to physical properties
DOT National Transportation Integrated Search
2011-02-01
Testing techniques were designed to characterize spatial variability in geotechnical engineering physical parameters of : rock formations. Standard methods using seismic waves, which are routinely used for shallow subsurface : investigation, have lim...
The growing importance of geo-scientists in the global oil field service industry
NASA Astrophysics Data System (ADS)
Schwartz, L.
2005-12-01
Schlumberger is often seen as a physics, chemistry and engineering company whose primary businesses are directional drilling, well logging, cementing, perforating and stimulation. However, in the future we see enormous potential for growth in the areas of seismic for reservoir monitoring, production services and project management. To succeed we will have to greatly strengthen our geo-technical workforce - geologists, geophysicists, drilling, reservoir and petroleum engineers. This will involve recruiting new graduates and developing their careers in addition to mid-career hiring. For the last 25 years, we have developed a culture of hiring in the countries where we work and of career development for employees of all nationalities. I will review our recruiting, training and university relations efforts and will discuss the adjustments we have made to effectively manage the growth of our geo-technical community.
7th international conference on case histories in geotechnical engineering.
DOT National Transportation Integrated Search
2013-08-01
Funding used to enhance objectives of conference and to present successful case histories of varied project, orally, in posters and in : proceedings. This will become a storehouse of knowledge for future reference.
International Conference of Applied Science and Technology for Infrastructure Engineering
NASA Astrophysics Data System (ADS)
Elvina Santoso, Shelvy; Hardianto, Ekky
2017-11-01
Preface: International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017. The International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017 has been scheduled and successfully taken place at Swiss-Bell Inn Hotel, Surabaya, Indonesia, on August 5th 2017 organized by Department of Civil Infrastructure Engineering, Faculty of Vocation, Institut Teknologi Sepuluh Nopember (ITS). This annual event aims to create synergies between government, private sectors; employers; practitioners; and academics. This conference has different theme each year and “MATERIAL FOR INFRASTUCTURE ENGINEERING” will be taken for this year’s main theme. In addition, we also provide a platform for various other sub-theme topic including but not limited to Geopolymer Concrete and Materials Technology, Structural Dynamics, Engineering, and Sustainability, Seismic Design and Control of Structural Vibrations, Innovative and Green Buildings, Project Management, Transportation and Highway Engineering, Geotechnical Engineering, Water Engineering and Resources Management, Surveying and Geospatial Engineering, Coastal Engineering, Geophysics, Energy, Electronic and Mechatronic, Industrial Process, and Data Mining. List of Organizers, Journal Editors, Steering Committee, International Scientific Committee, Chairman, Keynote Speakers are available in this pdf.
A study of geothermal prospects in the western United States
NASA Technical Reports Server (NTRS)
1975-01-01
The commercial development potential of 13 underdeveloped geothermal prospects in the Western United States was examined, and the prospects were ranked in order of relative potential for development on the basis of investment considerations. The following were considered in the ranking: geotechnical and engineering data, energy market accessibility, administrative constraints, and environmental and socio-economic factors. The primary ranking criterion is the unit cost of energy production expected from each prospect. Secondary criteria are administrative constraints, environmental factors and the quality of the geotechnical data.
NASA Technical Reports Server (NTRS)
Sweitzer, J. S.
1979-01-01
The geotechnical investigation was conducted in three disciplines: (1) geological field reconnaissance of the general area of proposed construction; (2) geophysical seismic refraction survey of the localized area surrounding the six proposed antenna sites, including shear wave velocity determination; and (3) detailed foundation engineering investigation of each of the six sites. The investigations indicate that the six sites selected are relatively free from geologic hazards which would inhibit the proposed construction or future antenna operations.
Data dictionary and formatting standard for dissemination of geotechnical data
Benoit, J.; Bobbitt, J.I.; Ponti, D.J.; Shimel, S.A.; ,
2004-01-01
A pilot system for archiving and web dissemination of geotechnical data collected and stored by various agencies is currently under development. Part of the scope of this project, sponsored by the Consortium of Organizations for Strong-Motion Observation Systems (COSMOS) and by the Pacific Earthquake Engineering Research Center (PEER) Lifelines Program, is the development of a data dictionary and formatting standard. This paper presents the data model along with the basic structure of the data dictionary tables for this pilot system.
NASA Astrophysics Data System (ADS)
Nikolakopoulos, Konstantinos; Depountis, Nikolaos; Vagenas, Nikolaos; Kavoura, Katerina; Vlaxaki, Eleni; Kelasidis, George; Sabatakakis, Nikolaos
2015-06-01
In this paper a specific example of the synergistic use of geotechnical survey, remote sensing data and GIS for rockfall risk evaluation is presented. The study area is located in Western Greece. Extensive rockfalls have been recorded along Patras - Ioannina highway just after the cable-stayed bridge of Rio-Antirrio, at Klokova site. The rockfalls include medium- sized limestone boulders with volume up to 1.5m3. A detailed engineering geological survey was conducted including rockmass characterization, laboratory testing and geological - geotechnical mapping. Many Rockfall trajectory simulations were done. Rockfall risk along the road was estimated using spatial analysis in a GIS environment.
Evolution of Dynamic Analysis in Geotechnical Earthquake Engineering
DOT National Transportation Integrated Search
1995-02-01
The Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 calls for a study of U.S. international border crossings. The objective of the study is to identify existing and emerging trade corridors and transportation subsystems that facilita...
Control of embankment settlement field verification on PCPT prediction methods.
DOT National Transportation Integrated Search
2011-07-01
Piezocone penetration tests (PCPT) have been widely used by geotechnical engineers for subsurface investigation and evaluation of different soil properties such as strength and deformation characteristics of the soil. This report focuses on the verif...
Control of embankment settlement field verification on PCPT prediction methods.
DOT National Transportation Integrated Search
2011-07-01
Piezocone penetration tests (PCPT) have been widely used by geotechnical engineers for subsurface : investigation and evaluation of different soil properties such as strength and deformation characteristics of the : soil. This report focuses on the v...
Geophysical methods for determining the geotechnical engineering properties of earth materials.
DOT National Transportation Integrated Search
2010-03-01
Surface and borehole geophysical methods exist to measure in-situ properties and structural : characteristics of earth materials. Application of such methods has demonstrated cost savings through : reduced design uncertainty and lower investigation c...
Ball, Lyndsay B.; Burton, Bethany L.; Powers, Michael H.; Asch, Theodore H.
2015-01-01
To characterize the extent and thickness of lithologic units that may have differing scour potential, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, has performed several geoelectrical surveys of the lower American River channel and flood plain between Cal Expo and the Rio Americano High School in east Sacramento, California. Additional geotechnical data have been collected by the U.S. Army Corps of Engineers and its contractors. Data resulting from these surveys have been compiled into similar database formats and converted to uniform geospatial datums and projections. These data have been visualized in a digital three-dimensional framework project that can be viewed using freely available software. These data facilitate a comprehensive analysis of the resistivity structure underlying the lower American River corridor and assist in levee system management.
Assessment and evaluation of engineering options at a low-level radioactive waste storage site
NASA Astrophysics Data System (ADS)
Kanehiro, B. Y.; Guvanasen, V.
1982-09-01
Solutions to hydrologic and geotechnical problems associated with existing disposal sites were sought and the efficiency of engineering options that were proposed to improve the integrity of such sites were evaluated. The Weldon Spring site is generally like other low-level nuclear waste sites, except that the wastes are primarily in the form of residues and contaminated rubble from the processing of uranium and thorium ores rather than industrial isotopes or mill tailings.
Modification of hydraulic conductivity in granular soils using waste materials.
Akbulut, S; Saglamer, A
2004-01-01
This paper evaluates the use of waste products such as silica fume and fly ash in modification of the granular soils in order to remove some environmental problems and create new useful findings in the field of engineering. It is known that silica fume and fly ash, as well as clay material, are used in geotechnical engineering because of their pozzolanic reactivity and fineness to improve the soil properties needed with respect to engineering purposes. The main objective of this research project was to investigate the use of these materials in geotechnical engineering and to improve the hydraulic properties of soils by means of grouting. For this reason, firstly, suitable grouts in suspension forms were prepared by using silica fume, fly ash, clay and cement in different percentages. The properties of these cement-based grouts were then determined to obtain the desired optimum values for grouting. After that, these grouts were penetrated into the soil samples under pressure. The experimental work indicates that these waste materials and clay improved the physical properties and the fluidity of the cement-based grouts and they also decreased the hydraulic conductivity of the grouted soil samples by sealing the voids of the soil. The results of this study have important findings concerning the use of these materials in soil treatment and the improvement of hydraulic conductivity of the soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, A.I.; Pettersson, C.B.
1988-01-01
Papers and discussions concerning the geotechnical applications of remote sensing and remote data transmission, sources of remotely sensed data, and glossaries of remote sensing and remote data transmission terms, acronyms, and abbreviations are presented. Aspects of remote sensing use covered include the significance of lineaments and their effects on ground-water systems, waste-site use and geotechnical characterization, the estimation of reservoir submerging losses using CIR aerial photographs, and satellite-based investigation of the significance of surficial deposits for surface mining operations. Other topics presented include the location of potential ground subsidence and collapse features in soluble carbonate rock, optical Fourier analysis ofmore » surface features of interest in geotechnical engineering, geotechnical applications of U.S. Government remote sensing programs, updating the data base for a Geographic Information System, the joint NASA/Geosat Test Case Project, the selection of remote data telemetry methods for geotechnical applications, the standardization of remote sensing data collection and transmission, and a comparison of airborne Goodyear electronic mapping system/SAR with satelliteborne Seasat/SAR radar imagery.« less
Petrovic, Igor
2016-09-01
The most viable option for biostabilisation of old sanitary landfills, filled with raw municipal solid waste, is the so-called bioreactor landfill. Even today, bioreactor landfills are viable options in many economically developing countries. However, in order to reduce the biodegradable component of landfilled waste, mechanical and biological treatment has become a widely accepted waste treatment technology, especially in more prosperous countries. Given that mechanical and biological treatment alters the geotechnical properties of raw waste material, the design of sanitary landfills which accepts mechanically and biologically treated waste, should be carried out with a distinct set of geotechnical parameters. However, under the assumption that 'waste is waste', some design engineers might be tempted to use geotechnical parameters of untreated raw municipal solid waste and mechanical and biological pre-treated municipal solid waste interchangeably. Therefore, to provide guidelines for use and to provide an aggregated source of this information, this mini-review provides comparisons of geotechnical parameters of mechanical and biological pre-treated waste and raw untreated waste at various decomposition stages. This comparison reveals reasonable correlations between the hydraulic conductivity values of untreated and mechanical and biological pre-treated municipal solid waste. It is recognised that particle size might have a significant influence on the hydraulic conductivity of both municipal solid waste types. However, the compression ratios and shear strengths of untreated and pre-treated municipal solid waste do not show such strong correlations. Furthermore, another emerging topic that requires appropriate attention is the recovery of resources that are embedded in old landfills. Therefore, the presented results provide a valuable tool for engineers designing landfills for mechanical and biological pre-treated waste or bioreactor landfills for untreated raw waste as well as planning landfill mining projects. © The Author(s) 2016.
Geotechnical Materials Database for Embankment Design and Construction
DOT National Transportation Integrated Search
2011-12-01
This project was focused on the assimilation of engineering properties of borrow soils across the state of : South Carolina. Extensive data on soils used for embankment construction were evaluated and compared : within Group A (Piedmont) and Group B ...
Improving design phase evaluations for high pile rebound sites : final report.
DOT National Transportation Integrated Search
2016-05-31
A testing program performed to help determine typical soils properties encountered during pile installation when high rebound : occurs produced a decision matrix for geotechnical engineers. High pile rebound (HPR) occurred at numerous sites in Florid...
Landslide hazard rating matrix and database : vol. 1 of 2.
DOT National Transportation Integrated Search
2007-12-01
The Office of Geotechnical Engineering (OGE) of the Ohio Department of Transportation (ODOT) : recognizes the need to develop a strategy to provide timely preventive maintenance to avoid on-set of : large or catastrophic slope failures. Furthermore, ...
Boring Information and Subsurface Data Base Package User’s Guide.
1984-09-01
Army Engineer Waterways Experiment Station Computer Application in’ Ceotechnical Labor o y mue lctosi cia Geotechnical Engineering P0 Box 631...l F -3 7F - 2 1Y 1 U 3. T. 2 F1’--I F 4 -FEST- F,-1rE *~7 1 . ESTR - I -IL’’ 1 2 A. T F- E:7 * 7 T)*i ES l 2) 1-’E M 6FI- I; 2 6 .D L fO.W -ELLYV
Evaluation of Cone Penetrometer Testing (CPT) for Use with Transportation Projects Phase 1
DOT National Transportation Integrated Search
2008-07-01
The ODOT Office of Geotechnical Engineering (OGE) currently uses conventional drilling methods (e.g., hollow stem auger, solid stem auger) to perform subsurface investigations in unconsolidated materials. These techniques have been used for decades a...
DOT National Transportation Integrated Search
2015-08-01
The seismic cone penetration test with pore pressure measurement (SCPTu) is a geotechnical investigation technique which : involves pushing a sensitized cone into the subsurface at a constant rate while continuously measuring tip resistance, sleeve :...
Sonar imaging of flooded subsurface voids phase I : proof of concept.
DOT National Transportation Integrated Search
2011-04-15
Damage to Ohio highways due to subsidence or collapse of subsurface voids is a serious problem : for the Office of Geotechnical Engineering (OGE) at the Ohio Department of Transportation : (ODOT). These voids have often resulted from past underground...
DOT National Transportation Integrated Search
2011-04-01
The ODOT Office of Geotechnical : Engineering (OGE) currently uses : conventional drilling methods (e.g., hollow : stem auger, solid stem auger) to perform : subsurface investigations in soil. These : techniques have been used for decades and : have ...
NASA Astrophysics Data System (ADS)
Pei, Hua-Fu; Yin, Jian-Hua; Jin, Wei
2013-09-01
Two kinds of innovative sensors based on optical fiber sensing technologies have been proposed and developed for measuring tilts and displacements in geotechnical structures. The newly developed tilt sensors are based on classical beam theory and were successfully used to measure the inclinations in a physical model test. The conventional inclinometers including in-place and portable types, as a key instrument, are very commonly used in geotechnical engineering. In this paper, fiber Bragg grating sensing technology is used to measure strains along a standard inclinometer casing and these strains are used to calculate the lateral and/or horizontal deflections of the casing using the beam theory and a finite difference method. Finally, the monitoring results are verified by laboratory tests.
Engineering uses of physics-based ground motion simulations
Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.
2014-01-01
This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.
Characteristics and engineering properties of residual soil of volcanic deposits
NASA Astrophysics Data System (ADS)
Wibawa, Y. S.; Sugiarti, K.; Soebowo, E.
2018-02-01
Residual soil knowledge of volcanic-sedimentary rock products provides important information on the soil bearing capacity and its engineering properties. The residual soil is the result of weathering commonly found in unsaturated conditions, having varied geotechnical characteristics at each level of weathering. This paper summarizes the results of the research from the basic engineering properties of residual soil of volcanic-sedimentary rocks from several different locations. The main engineering properties of residual soil such as specific gravity, porosity, grain size, clay content (X-Ray test) and soil shear strength are performed on volcanic rock deposits. The results show that the variation of the index and engineering properties and the microstructure properties of residual soil have the correlation between the depths of weathering levels. Pore volume and pore size distribution on weathered rock profiles can be used as an indication of weathering levels in the tropics.
Handbook for Marine Geotechnical Engineering
2012-02-01
height dictated by the chosen range. The returning acoustic signals are received by the same fish and transmitted by electrical or fiber optic cable......covered here, are required to predict penetrations in lithified sediments, coral, basalt , and other rock types. These special techniques are highly
DOT National Transportation Integrated Search
2008-12-01
Shortly after the 1994 Northridge Earthquake, Caltrans geotechnical engineers charged with developing site-specific : response spectra for high priority California bridges initiated a research project aimed at broadening their perspective : from simp...
NASA Astrophysics Data System (ADS)
Warren, Sean N.; Kallu, Raj R.; Barnard, Chase K.
2016-11-01
Underground gold mines in Nevada are exploiting increasingly deeper ore bodies comprised of weak to very weak rock masses. The Rock Mass Rating (RMR) classification system is widely used at underground gold mines in Nevada and is applicable in fair to good-quality rock masses, but is difficult to apply and loses reliability in very weak rock mass to soil-like material. Because very weak rock masses are transition materials that border engineering rock mass and soil classification systems, soil classification may sometimes be easier and more appropriate to provide insight into material behavior and properties. The Unified Soil Classification System (USCS) is the most likely choice for the classification of very weak rock mass to soil-like material because of its accepted use in tunnel engineering projects and its ability to predict soil-like material behavior underground. A correlation between the RMR and USCS systems was developed by comparing underground geotechnical RMR mapping to laboratory testing of bulk samples from the same locations, thereby assigning a numeric RMR value to the USCS classification that can be used in spreadsheet calculations and geostatistical analyses. The geotechnical classification system presented in this paper including a USCS-RMR correlation, RMR rating equations, and the Geo-Pick Strike Index is collectively introduced as the Weak Rock Mass Rating System (W-RMR). It is the authors' hope that this system will aid in the classification of weak rock masses and more usable design tools based on the RMR system. More broadly, the RMR-USCS correlation and the W-RMR system help define the transition between engineering soil and rock mass classification systems and may provide insight for geotechnical design in very weak rock masses.
Fiber-optic sensor applications in civil and geotechnical engineering
NASA Astrophysics Data System (ADS)
Habel, Wolfgang R.; Krebber, Katerina
2011-09-01
Different types of fiber-optic sensors based on glass or polymeric fibers are used to evaluate material behavior or to monitor the integrity and long-term stability of load-bearing structure components. Fiber-optic sensors have been established as a new and innovative measurement technology in very different fields, such as material science, civil engineering, light-weight structures, geotechnical areas as well as chemical and high-voltage substations. Very often, mechanical quantities such as deformation, strain or vibration are requested. However, measurement of chemical quantities in materials and structure components, such as pH value in steel reinforced concrete members also provides information about the integrity of concrete structures. A special fiber-optic chemical sensor for monitoring the alkaline state (pH value) of the cementitious matrix in steel-reinforced concrete structures with the purpose of early detection of corrosion-initiating factors is described. The paper presents the use of several fiber-optic sensor technologies in engineering. One example concerns the use of highly resolving concrete-embeddable fiber Fabry-Perot acoustic emission (AE) sensors for the assessment of the bearing behaviour of large concrete piles in existing foundations or during and after its installation. Another example concerns fiber Bragg grating (FBG) sensors attached to anchor steels (micro piles) to measure the strain distribution in loaded soil anchors. Polymer optical fibers (POF) can be — because of their high elasticity and high ultimate strain — well integrated into textiles to monitor their deformation behaviour. Such "intelligent" textiles are capable of monitoring displacement of soil or slopes, critical mechanical deformation in geotechnical structures (dikes, dams, and embankments) as well as in masonry structures during and after earthquakes.
Geotechnical engineering practices in Canada and Europe
DOT National Transportation Integrated Search
2011-12-01
This report describes Machine-to-Machine service architecture and how it is evolving over the next several years. Nearly 50 billion Machine-to-Machine (M2M) devices are predicted to be deployed by all sectors by 2025. The largest impediment to M2M de...
Micromechanical Behavior and Modelling of Granular Soil
1989-07-01
DiMaggio and Sandier 1971, Baladi and Rohani 1979). The problem of inherent (structural) anisotropy - especially important for 3 anisotropically...Republic of Germany. Baladi ,G.Y. and Rohani, B. (1979), "Elastic-Plastic Model for Saturated Sand," Journal of the Geotechnical Engineering Division, ASCE
Analysis of change orders in geotechnical engineering work at INDOT.
DOT National Transportation Integrated Search
2011-01-01
Change orders represent a cost to the State and to tax payers that is real and often extremely large because contractors tend to charge very large : amounts to any additional work that deviates from the work that was originally planned. Therefore, ef...
10 CFR 63.132 - Confirmation of geotechnical and design parameters.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Commission. (e) In situ monitoring of the thermomechanical response of the underground facility must be... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.132... engineered systems and components, must be identified in the performance confirmation plan. (d) These...
10 CFR 63.132 - Confirmation of geotechnical and design parameters.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Commission. (e) In situ monitoring of the thermomechanical response of the underground facility must be... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.132... engineered systems and components, must be identified in the performance confirmation plan. (d) These...
10 CFR 63.132 - Confirmation of geotechnical and design parameters.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Commission. (e) In situ monitoring of the thermomechanical response of the underground facility must be... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.132... engineered systems and components, must be identified in the performance confirmation plan. (d) These...
10 CFR 63.132 - Confirmation of geotechnical and design parameters.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Commission. (e) In situ monitoring of the thermomechanical response of the underground facility must be... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.132... engineered systems and components, must be identified in the performance confirmation plan. (d) These...
10 CFR 63.132 - Confirmation of geotechnical and design parameters.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Commission. (e) In situ monitoring of the thermomechanical response of the underground facility must be... IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.132... engineered systems and components, must be identified in the performance confirmation plan. (d) These...
Geotechnical properties of sediments from North Pacific and Northern Bermuda Rise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, A J; Laine, E P; Lipkin, J
1980-01-01
Studies of geotechnical properties for the Sub-seabed Disposal Program have been oriented toward sediment characterization related to effectiveness as a containment media and determination of detailed engineering behavior. Consolidation tests of the deeper samples in the North Pacific clays indicate that the sediment column is normally consolidated. The in-situ coefficient of permeability (k) within the cored depth of 25 meters is relatively constant at 10/sup -7/ cm/sec. Consolidated undrained (CIU) triaxial tests indicate stress-strain properties characteristic of saturated clays with effective angles of friction of 35/sup 0/ for smectite and 31/sup 0/ for illite. These results are being used inmore » computer modeling efforts. Some general geotechnical property data from the Bermuda Rise are also discussed.« less
Creep behavior of soil nail walls in high plasticity index (PI) soils : technical report.
DOT National Transportation Integrated Search
2017-04-01
An aspect of particular concern in the Geotechnical Engineering Circular No. 7: Soil Nail Walls (i.e., the soil : nail wall manual and construction guidelines) is the creep behavior of soil nail systems in high-plasticity : clays. This research proje...
30 CFR 585.645 - What must I include in my GAP?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) You must provide the following results of geophysical and geological surveys, hazards surveys, archaeological surveys (if required), and baseline collection studies (e.g., biological) with the supporting data... geotechnical survey with supporting data A description of all relevant seabed and engineering data and...
30 CFR 585.645 - What must I include in my GAP?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) You must provide the following results of geophysical and geological surveys, hazards surveys, archaeological surveys (if required), and baseline collection studies (e.g., biological) with the supporting data... geotechnical survey with supporting data A description of all relevant seabed and engineering data and...
30 CFR 585.645 - What must I include in my GAP?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) You must provide the following results of geophysical and geological surveys, hazards surveys, archaeological surveys (if required), and baseline collection studies (e.g., biological) with the supporting data... geotechnical survey with supporting data A description of all relevant seabed and engineering data and...
Estimating setup of driven piles into Louisiana clayey soils : tech summary.
DOT National Transportation Integrated Search
2009-11-01
Geotechnical engineers and researchers (Seed and Reese 1955, Long et al. 1999, and Bullock et al. 2005) have reported for many years : that the axial capacity of a driven pile may increase over time, which is usually referred to as pile setup or free...
Estimating Setup of Piles Driven into Louisiana Clayey Soils : Tech Summary
DOT National Transportation Integrated Search
2009-11-01
Geotechnical engineers and researchers (Seed and Reese 1955, Long et al. 1999, and Bullock et al. 2005) have reported for many years that the axial capacity of a driven pile may increase over time, which is usually referred to as pile setup or freeze...
DOT National Transportation Integrated Search
2013-06-01
The sedimentation behavior of fine grained soil is largely dependent on its pore fluid chemistry. Physicochemical properties of the : pore fluid, such as ionic strength and pH, could greatly influence the micro structure of kaolinite which in turn in...
NASA Astrophysics Data System (ADS)
Olayanju, G. M.; Mogaji, K. A.; Lim, H. S.; Ojo, T. S.
2017-06-01
The determination of parameters comprising exact depth to bedrock and its lithological type, lateral changes in lithology, and detection of fractures, cracks, or faults are essential to designing formidable foundations and assessing the integrity of civil engineering structures. In this study, soil and site characterization in a typical hard rock geologic terrain in southwestern Nigeria were carried out employing integrated geophysical and geotechnical techniques to address tragedies in civil engineering infrastructural development. The deployed geophysical measurements involved running both very low frequency electromagnetic (VLF-EM) and electrical resistivity methods (dipole-dipole imaging and vertical electrical sounding (VES) techniques) along the established traverses, while the latter technique entailed conducting geological laboratory sieve analysis and Atterberg limit-index tests upon the collected soil samples in the area. The results of the geophysical measurement, based on the interpreted VLF-EM and dipole-dipole data, revealed conductive zones and linear features interpreted as fractures/faults which endanger the foundations of public infrastructures. The delineation of four distinct geoelectric layers in the area—comprised of topsoil, lateritic/clayey substratum, weathered layer, and bedrock—were based on the VES results. Strong evidence, including high degree of decomposition and fracturing of underlying bedrock revealed by the VES results, confirmed the VLF-EM and dipole-dipole results. Furthermore, values in the range of 74.2%-77.8%, 55%-62.5%, 23.4%-24.5%, 7.7%-8.2%, 19.5%-22.4%, and 31.65%-38.25% were obtained for these geotechnical parameters viz soil percentage passing 0.075 mm sieve size, liquid limit, plasticity index, linear shrinkage, natural moisture content, and plastic limit, respectively, resulting from the geotechnical analysis of the soil samples. The comparatively analyzed geophysical and geotechnical results revealed a high weathering of charnockitic rocks resulting in plastic clay material mapped with a mean resistivity value of 73 Ohm-m, in conformity with the obtained geotechnical parameters, which failed to agree with the standard specification of subsoil foundation materials and which, in turn, can impact negatively on the foundational integrity of infrastructures. Based on these results, the area subsoils’ competence for foundation has been rated poor to low. This study has more widely demonstrated the effective application of integrative geophysical and geotechnical methods in the assessment of subsoil competence.
Geotechnical Investigation of the Potential Use of Shredded Scrap Tires in Soil Stabilization.
DOT National Transportation Integrated Search
1998-11-01
Silt-tire and clay-tire mixtures, containing 0% to 100% shredded tire material by weight, with tire chips ranging in size from 7mm-13mm, 13mm-25mm, and 25mm-38mm, were tested for a series of engineering properties including compaction characteristics...
Application of geotechnical data to resource planning in southeast Alaska.
W.L. Schroeder; D.N. Swanston
1987-01-01
Recent quantification of engineering properties and index values of dominant soil types in the Alexander Archipelago, southeast Alaska, have revealed consistent diagnostic characteristics useful to evaluating landslide risk and subgrade material stability before timber harvesting and low-volume road construction. Shear strength data are summarized and grouped by Soil...
DOT National Transportation Integrated Search
1997-05-01
This document presents a series of five design examples illustrating the principles and methods of geotechnical earthquake engineering and seismic design for highway facilities. These principles and methods are described in Volume I - Design Principl...
Soil variability in engineering applications
NASA Astrophysics Data System (ADS)
Vessia, Giovanna
2014-05-01
Natural geomaterials, as soils and rocks, show spatial variability and heterogeneity of physical and mechanical properties. They can be measured by in field and laboratory testing. The heterogeneity concerns different values of litho-technical parameters pertaining similar lithological units placed close to each other. On the contrary, the variability is inherent to the formation and evolution processes experienced by each geological units (homogeneous geomaterials on average) and captured as a spatial structure of fluctuation of physical property values about their mean trend, e.g. the unit weight, the hydraulic permeability, the friction angle, the cohesion, among others. The preceding spatial variations shall be managed by engineering models to accomplish reliable designing of structures and infrastructures. Materon (1962) introduced the Geostatistics as the most comprehensive tool to manage spatial correlation of parameter measures used in a wide range of earth science applications. In the field of the engineering geology, Vanmarcke (1977) developed the first pioneering attempts to describe and manage the inherent variability in geomaterials although Terzaghi (1943) already highlighted that spatial fluctuations of physical and mechanical parameters used in geotechnical designing cannot be neglected. A few years later, Mandelbrot (1983) and Turcotte (1986) interpreted the internal arrangement of geomaterial according to Fractal Theory. In the same years, Vanmarcke (1983) proposed the Random Field Theory providing mathematical tools to deal with inherent variability of each geological units or stratigraphic succession that can be resembled as one material. In this approach, measurement fluctuations of physical parameters are interpreted through the spatial variability structure consisting in the correlation function and the scale of fluctuation. Fenton and Griffiths (1992) combined random field simulation with the finite element method to produce the Random Finite Element Method (RFEM). This method has been used to investigate the random behavior of soils in the context of a variety of classical geotechnical problems. Afterward, some following studies collected the worldwide variability values of many technical parameters of soils (Phoon and Kulhawy 1999a) and their spatial correlation functions (Phoon and Kulhawy 1999b). In Italy, Cherubini et al. (2007) calculated the spatial variability structure of sandy and clayey soils from the standard cone penetration test readings. The large extent of the worldwide measured spatial variability of soils and rocks heavily affects the reliability of geotechnical designing as well as other uncertainties introduced by testing devices and engineering models. So far, several methods have been provided to deal with the preceding sources of uncertainties in engineering designing models (e.g. First Order Reliability Method, Second Order Reliability Method, Response Surface Method, High Dimensional Model Representation, etc.). Nowadays, the efforts in this field have been focusing on (1) measuring spatial variability of different rocks and soils and (2) developing numerical models that take into account the spatial variability as additional physical variable. References Cherubini C., Vessia G. and Pula W. 2007. Statistical soil characterization of Italian sites for reliability analyses. Proc. 2nd Int. Workshop. on Characterization and Engineering Properties of Natural Soils, 3-4: 2681-2706. Griffiths D.V. and Fenton G.A. 1993. Seepage beneath water retaining structures founded on spatially random soil, Géotechnique, 43(6): 577-587. Mandelbrot B.B. 1983. The Fractal Geometry of Nature. San Francisco: W H Freeman. Matheron G. 1962. Traité de Géostatistique appliquée. Tome 1, Editions Technip, Paris, 334 p. Phoon K.K. and Kulhawy F.H. 1999a. Characterization of geotechnical variability. Can Geotech J, 36(4): 612-624. Phoon K.K. and Kulhawy F.H. 1999b. Evaluation of geotechnical property variability. Can Geotech J, 36(4): 625-639. Terzaghi K. 1943. Theoretical Soil Mechanics. New York: John Wiley and Sons. Turcotte D.L. 1986. Fractals and fragmentation. J Geophys Res, 91: 1921-1926. Vanmarcke E.H. 1977. Probabilistic modeling of soil profiles. J Geotech Eng Div, ASCE, 103: 1227-1246. Vanmarcke E.H. 1983. Random fields: analysis and synthesis. MIT Press, Cambridge.
3D subsurface geological modeling using GIS, remote sensing, and boreholes data
NASA Astrophysics Data System (ADS)
Kavoura, Katerina; Konstantopoulou, Maria; Kyriou, Aggeliki; Nikolakopoulos, Konstantinos G.; Sabatakakis, Nikolaos; Depountis, Nikolaos
2016-08-01
The current paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes and the 1:5000 engineering geological maps were digitized and implemented in a GIS platform for a three - dimensional subsurface model evaluation. The study is located at the North part of Peloponnese along the new national road.
ERIC Educational Resources Information Center
El Shamy, Usama; Abdoun, Tarek; McMartin, Flora; Pando, Miguel A.
2013-01-01
We report the results of a pilot study aimed at developing, implementing, and assessing an educational module that integrates remote major research instrumentation into undergraduate classes. Specifically, this study employs Internet Web-based technologies to allow for real-time video monitoring and execution of cutting-edge experiments. The…
Revising a Design Course from a Lecture Approach to a Project-Based Learning Approach
ERIC Educational Resources Information Center
Kunberger, Tanya
2013-01-01
In order to develop the evaluative skills necessary for successful performance of design, a senior, Geotechnical Engineering course was revised to immerse students in the complexity of the design process utilising a project-based learning (PBL) approach to instruction. The student-centred approach stresses self-directed group learning, which…
Laboratory and Field Evaluation of In-Place Asphalt Recycling Technologies for Small Airfield Repair
2013-06-01
Mariely Mejías-Santiago and William D. Carruth Geotechnical and Structures Laboratory US Army Engineer Research and Development Center 3909 Halls...24. Pavement structure at Test Site 1. ....................................................................................... 28 Figure 25. Pavement... structure at ERDC test site. ................................................................................ 30 Figure 26. Heatwurx HWX-30 electric
DOT National Transportation Integrated Search
2013-12-01
The work completed in this project created a series of online lab modules that : transportation professionals could use as a reference to learn how to conduct, how to : interpret, and the applications of geotechnical lab tests used in practice to det...
NGA East | Pacific Earthquake Engineering Research Center (PEER)
the Geotechnical and Vertical WGs shown in Figure 1. The role of the different groups and participants essentially play the role of Resource Experts and the sub-award researchers and contractors play the role of Specialty Contractors. Some individuals from these two groups will also play a Proponent Expert role at
Catalog of Wargaming and Military Simulation Models
1989-09-01
and newly developed software models. This system currently (and will in the near term) supports battle force architecture design and evaluation...aborted air refuelings, or replacement aircraft. PLANNED IMPROVEMENTS AND MODIFICATIONS: Completion of model. INPUT: Input fields are required to...vehicle mobility evaluation model). PROPONENT: Mobility Systems Division, Geotechnical Laboratory, U.S. Army Engineer Waterways Experiment Station
ERIC Educational Resources Information Center
Donohue, Shane
2014-01-01
The use of audience response systems (ARSs) or "clickers" in higher education has increased over the recent years, predominantly owing to their ability to actively engage students, for promoting individual and group learning, and for providing instantaneous feedback to students and teachers. This paper describes how group-based ARS…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, J. M.
The Concrete and Materials Branch (CMB) of the Geotechnical and Structures Laboratory was requested to perform an analysis on concrete cores collected from the north and south walls of the H-Canyon Section 3 Personnel Tunel, Savannah River Site, Aiken, South Carolina to determine the cause of the lower than expected compressive strength. This study examined five cores provided to the ERDC by the Department of Energy. The cores were logged in as CMB No. 170051-1 to 170051-5 and subjected to petrographic examination, air void analysis, chemical sprays, scanning electron microscopy, and x-ray diffraction.
Liu, Lu-Wen; Zeng, Wei-Li; Zhu, Xiang-Fei; Wu, Jin-Quan; Lin, Zhao-Xiang
2014-03-01
In the present paper, the time evolution study on slip soils treated by different proportions of ionic soil stabilizer (ISS) water solution was conducted by the LIBS system and the relationship between the cation exchange and such engineering properties of reinforcing soil as plasticity index, cohesive force and coefficient of compressibility were analyzed. The results showed that the cation exchange velocity of the proportion of 1:200 ISS reinforcing soil is the fastest among the three proportions (1:100, 1:200 and 1:300) and the modification effect of engineering performance index is quite obvious. These studies provide an experimental basis for the ISS applied to curing project, and monitoring geotechnical engineering performance by LIBS technology also provides a new way of thinking for the curing project monitoring.
Construction Productivity Advancement Research (CPAR) Program.
1998-04-01
1981). "Laboratory study of hydraulic fracturing ," Journal of the Geotechnical Engineering Division, Proceedings of the American Society of Civil...Christi, TX. Yanagisawa and Komak Panah. (1994). "Two-dimensional study of hydraulic fracturing criteria in cohesive soils," Soils and Foundations...horizontal directional drilling process and the risk of hydraulic fracturing . Reasonable limits must be placed on maximum fluid pressures in the
Uncertainty Analysis for DAM Projects.
1987-09-01
overwhelming majority of articles published on the use of statistical methodology for geotechnical engineering focus on performance predictions and design ...Results of the present study do not support the adoption of more esoteric statistical procedures except on a special case basis or in research ...influence that recommended statistical procedures might have had on the Carters Project, had they been applied during planning and design phases
Hillslope hydrology and stability
Lu, Ning; Godt, Jonathan
2012-01-01
Landslides are caused by a failure of the mechanical balance within hillslopes. This balance is governed by two coupled physical processes: hydrological or subsurface flow and stress. The stabilizing strength of hillslope materials depends on effective stress, which is diminished by rainfall. This book presents a cutting-edge quantitative approach to understanding hydro-mechanical processes across variably saturated hillslope environments and to the study and prediction of rainfall-induced landslides. Topics covered include historic synthesis of hillslope geomorphology and hydrology, total and effective stress distributions, critical reviews of shear strength of hillslope materials and different bases for stability analysis. Exercises and homework problems are provided for students to engage with the theory in practice. This is an invaluable resource for graduate students and researchers in hydrology, geomorphology, engineering geology, geotechnical engineering and geomechanics and for professionals in the fields of civil and environmental engineering and natural hazard analysis.
Rock Slide Monitoring by Using TDR Inclinometers
NASA Astrophysics Data System (ADS)
Drusa, Marián; Bulko, Roman
2016-12-01
The geotechnical monitoring of the slope deformations is widespread at present time. In many geological localities and civil engineering construction areas, monitoring is a unique tool for controlling of negative factors and processes, also inform us about actual state of rock environment or interacting structures. It is necessary for risk assessment. In our case, geotechnical monitoring is controlling rockslide activity around in the future part of motorway. The construction of new highway route D1 from Bratislava to Košice crosses the territory which is affected by a massive rockslide close to Kraľovany village. There was a need to monitor the activity of a large unstable rockslide with deep shear planes. In this case of underground movement activity, the Department of Geotechnics of the University of Žilina installed inclinometers at the unstable area which worked on Time Domain Reflectometry (TDR) principle. Based on provided measurements, effectivity and suitability of TDR inclinometers for monitoring of deep underground movement activity is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Joshua S.; Rautman, Christopher Arthur
The Bryan Mound salt dome, located near Freeport, Texas, is home to one of four underground crude oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Bryan Mound site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 20 oil-storage caverns at the site. Thismore » work provides an internally consistent geologic model of the Bryan Mound site that can be used in support of future work.« less
Evolutionary-based approaches for determining the deviatoric stress of calcareous sands
NASA Astrophysics Data System (ADS)
Shahnazari, Habib; Tutunchian, Mohammad A.; Rezvani, Reza; Valizadeh, Fatemeh
2013-01-01
Many hydrocarbon reservoirs are located near oceans which are covered by calcareous deposits. These sediments consist mainly of the remains of marine plants or animals, so calcareous soils can have a wide variety of engineering properties. Due to their local expansion and considerable differences from terrigenous soils, the evaluation of engineering behaviors of calcareous sediments has been a major concern for geotechnical engineers in recent years. Deviatoric stress is one of the most important parameters directly affecting important shearing characteristics of soils. In this study, a dataset of experimental triaxial tests was gathered from two sources. First, the data of previous experimental studies from the literature were gathered. Then, a series of triaxial tests was performed on calcareous sands of the Persian Gulf to develop the dataset. This work resulted in a large database of experimental results on the maximum deviatoric stress of different calcareous sands. To demonstrate the capabilities of evolutionary-based approaches in modeling the deviatoric stress of calcareous sands, two promising variants of genetic programming (GP), multigene genetic programming (MGP) and gene expression programming (GEP), were applied to propose new predictive models. The models' input parameters were the physical and in-situ condition properties of soil and the output was the maximum deviatoric stress (i.e., the axial-deviator stress). The results of statistical analyses indicated the robustness of these models, and a parametric study was also conducted for further verification of the models, in which the resulting trends were consistent with the results of the experimental study. Finally, the proposed models were further simplified by applying a practical geotechnical correlation.
Application of Crushed Concrete in Geotechnical Engineering - Selected Issues
NASA Astrophysics Data System (ADS)
Kawalec, Jacek; Kwiecien, Slawomir; Pilipenko, Anton; Rybak, Jarosław
2017-12-01
The reuse of building materials becomes an important issue in sustainable engineering. As the technical requirements for civil engineering structures changes with time and the life time is limited, the need of building new objects meets the necessity of recycling of the existing ones. In the case of steel structures, the possibility of recycling is obvious, also in the case of wooden constructions, the possibility of “burning” solves the problem. The concrete waste is generated mainly as a result of the demolition and reconstruction of residential and industrial buildings. These types of waste are basically made from crushed rocks and cement minerals and contain non-hydrated cement particles in its composition. Concrete poses a lot of problems mainly for two reasons. It is difficult to crush, heavy and hard to transport and demanding in reuse. Different fractions (particle sizes) may be used for different purposes. Starting from very fine particles which can be used in concrete production, through regular 16-300 mm fractions used to form new fills and fill the mats, up to very irregular mixtures used to form stone columns by means of Impulse Compaction or in Dynamic Replacement. The presented study juxtaposes authors experience with crushed concrete used in civil engineering, mainly in geotechnical projects. Authors’ experiences comprise the application of crushed concrete in the new concrete production in Russia, changing pulverized bridge into the fill of mesh sacks, or mattresses used as an effective way to protect the shoreline and the New Orleans East land bridge after Katrina storm (forming a new shoreline better able to withstand wave actions), and finally the use of very irregular concrete fractions to form stone columns in week soils on the example of railway and road projects in Poland. Selected case studies are presented and summarized with regard to social, technical and economic issues including energy consumption needed for proposed technologies and dynamic impact of ground transmitted vibrations and noise.
Green, R.A.; Obermeier, S.F.; Olson, S.M.
2005-01-01
The greatest impediments to the widespread acceptance of back-calculated ground motion characteristics from paleoliquefaction studies typically stem from three uncertainties: (1) the significance of changes in the geotechnical properties of post-liquefied sediments (e.g., "aging" and density changes), (2) the selection of appropriate geotechnical soil indices from individual paleoliquefaction sites, and (3) the methodology for integration of back-calculated results of strength of shaking from individual paleoliquefaction sites into a regional assessment of paleoseismic strength of shaking. Presented herein are two case studies that illustrate the methods outlined by Olson et al. [Engineering Geology, this issue] for addressing these uncertainties. The first case study is for a site near Memphis, Tennessee, wherein cone penetration test data from side-by-side locations, one of liquefaction and the other of no liquefaction, are used to readily discern that the influence of post-liquefaction "aging" and density changes on the measured in situ soil indices is minimal. In the second case study, 12 sites that are at scattered locations in the Wabash Valley and that exhibit paleoliquefaction features are analyzed. The features are first provisionally attributed to the Vincennes Earthquake, which occurred around 6100 years BP, and are used to illustrate our proposed approach for selecting representative soil indices of the liquefied sediments. These indices are used in back-calculating the strength of shaking at the individual sites, the results from which are then incorporated into a regional assessment of the moment magnitude, M, of the Vincennes Earthquake. The regional assessment validated the provisional assumption that the paleoliquefaction features at the scattered sites were induced by the Vincennes Earthquake, in the main, which was determined to have M ??? 7.5. The uncertainties and assumptions used in the assessment are discussed in detail. ?? 2004 Elsevier B.V. All rights reserved.
1983-03-01
RESEARCH Title Author S Report 1: Mlcoravirmetrlc and Magnetic Surveys: Medford Cave Dwain K~ Sufer Sit Florida Report 2: Seismic Methodology. Medford...ERORMNGORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKS. PRFORINGAREA & WORK UNIT NUMBERS U. S. Army Engineer Waterways Experiment...Station *Geotechnical Laboratory CWIS Work Unit 31150 * P.O. Box 631, Vicksburg, Miss. 39180 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Engineering and Design: Geotechnical Analysis by the Finite Element Method
1995-07-31
of an Idealized ’Wet Clay’.” Nobari, E. S., Lee, K. L., and Duncan, J. M. Soil Mechanics, Wiesbaden I, 47-54. (1973). “ Hydraulic Fracturing in Zoned...nonsteady flow conditions - Pore pressures induced by loading under undrained conditions - Potential for cracking in embankment dams - Potential for hydraulic ... fracturing in embankment dams - Potential for hydraulic separation between concrete and soil - Settlements and horizontal movements b. Comparing
Terrain Mechanics and Modeling Research Program: Enhanced Vehicle Dynamics Module
2009-05-01
ER D C/ G SL T R- 09 -8 Terrain Mechanics and Modeling Research Program Enhanced Vehicle Dynamics Module Daniel C. Creighton, George...public release; distribution is unlimited. Terrain Mechanics and Modeling Research Program ERDC/GSL TR-09-8 May 2009 Enhanced Vehicle Dynamics...Module Daniel C. Creighton, George B. McKinley, and Randolph A. Jones Geotechnical and Structures Laboratory U.S. Army Engineer Research and
Permafrost, Seasonally Frozen Ground, Snow Cover and Vegetation in the USSR
1984-12-01
Snow Cover in Physical Geographic Processes (1948). He covered aspects of the dynamics of the snow cover, its properties and the connection between...Bigl, Research Physical Scientist, of the Geotechnical Research Branch, Experimental Engineering Division, un- der the general supervision of Dr...generalized from a detailed vegetation map in the volume Physical Geographic Atlas of the World (Gerasimov 1964), The tundra zone consists mostly of
Development of 1-D Shake Table Testing Facility for Liquefaction Studies
NASA Astrophysics Data System (ADS)
Unni, Kartha G.; Beena, K. S.; Mahesh, C.
2018-04-01
One of the major challenges researchers face in the field of earthquake geotechnical engineering in India is the high cost of laboratory infrastructure. Developing a reliable and low cost experimental set up is attempted in this research. The paper details the design and development of a uniaxial shake table and the data acquisition system with accelerometers and pore water pressure sensors which can be used for liquefaction studies.
Engineering Properties of Resin Modified Pavement (RMP) for Mechanistic Design
2000-03-01
conducted by personnel of the Airfields and Pavements Division (APD), Geotechnical Laboratory (GL), ERDC, Vicksburg, MS, during the period October 1995...mixture and resin modified portland cement grout are produced and placed separately . The RMP is typically a 50-mm-thick layer placed on top of a...military installations in the following years. The Federal Aviation Administration, also eager to develop an alternative paving material technology
Petavy, F; Ruban, V; Conil, P; Viau, J Y; Auriol, J C
2009-07-01
The aim of this research was to present a pilot plant for the treatment of stormwater sediments and to compare the decontamination rate to that obtained by landfarming. The possibilities for reuse of the treated sediments in civil engineering are also studied. Four sediments from retention/infiltration ponds or from street sweeping were studied. In each case organic matter (OM), total hydrocarbons (TH) and polycyclic aromatic hydrocarbons (PAH) were measured. Geotechnical tests were carried out to evaluate the reuse possibilities of the treated sediments. Treatment by means of the pilot plant was efficient at reducing TH and PAH concentrations: THs were reduced by 53-97% and PAHs were decreased by 60-95%. By comparison, a reduction of 45-75% in TH concentration is obtained with landfarming, whereas there is no significant decrease in PAHs. Furthermore, geotechnical tests showed that the treated fractions from the pilot plant can be reused as road embankments and as a capping layer. These results are most encouraging and show that stormwater sediments can valuably be reused after treatment in a pilot plant. Landfarming is less efficient but this technique could be used as a pretreatment in the case of high TH pollution.
NASA Astrophysics Data System (ADS)
Adewoyin, O. O.; Joshua, E. O.; Akinyemi, M. L.; Omeje, M.; Joel, E. S.
2017-05-01
Adequate knowledge of the geology and the structures of the subsurface would assist engineers in the best way to carry out constructions to avoid building collapse. In this study, near surface seismic refraction method was used to determine the geotechnical parameters of the subsurface, the results obtained were correlated with the result of borehole data drilled in the study area. The results of seismic refraction method delineated mostly two distinct layers with the first layer having the lower geotechnical parameters. It was observed that in the first layer, the Young’s modulus ranged from 0.168 to 0.458 GPa, shear modulus ranged between 0.068 and 0.185 GPa, the bulk modulus ranged between 0.106 and 0.287 GPa while the bearing capacity ranged from 0.083 to 0.139 MPa. On the other hand, in the second layer, the Young’s modulus ranged between 3.717 and 7.018 GPa, shear modulus ranged from 1.500 to 2.830 GPa while the bulk modulus ranged from 2.383 to 4.449 GPa. Significantly, the formation of the second layer appeared to be more competent than the first layer, therefore engineering construction in this geological setting is recommended to be founded on the second layer at depth ranging between 7 and 16 m.
[Geotechnical Board activities and funding]. [Annual] activites report, July 1, 1992--June 30, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smeallie, P.H.
1993-07-23
The Geotechnical Board, a part of the US National Research Council, which is the operating arm of the National Academy of Sciences and the National Academy of Engineering, serves to advise the federal government and others on issues where geotechnology can have an impact, such as environmental remediation and infrastructure development. The board met three times during the reporting period to review current projects and to initiate activities that move the knowledge base of geotechnology forward. The board operates with two long-standing national committees, the US National Committee for Rock Mechanics and the US National Committee on Tunneling Technology. Itmore » also conducts special studies at the request of the government. A list of attachments is given.« less
Experimental Study on Vacuum Dynamic Consolidation Treatment of Soft Soil Foundation
NASA Astrophysics Data System (ADS)
Fu-lai, Ni; Xin, Wen; Xiao-bin, Zhang; Wei, Li
2017-11-01
In view of the deficiency of the saturated silt clay foundation reinforced by the dynamic consolidation method, combination the project of soft foundation treatment test area in Tangshan, the reaserch analysed indexes, included groundwater level, pore water pressure, settlement about soil layer and so on, by use of field tests and indoor geotechnical tests, The results showed that the whole reinforcement effect with vacuum dynamic compaction method to blow fill foundation is obvious, due to the result of vacuum precipitation, generally, the excess pore water pressure can be dissipated by 90% above in 2 days around and the effective compaction coefficient can reached more than 0.9,the research work in soft foundation treatment engineering provide a new method and thought to similar engineering.
NASA Astrophysics Data System (ADS)
Ofomola, M. O.; Iserhien-Emekeme, R. E.; Okocha, F. O.; Adeoye, T. O.
2018-06-01
An integrated geophysical and geotechnical investigation has been carried out at site III of the Delta State University, Abraka, Nigeria. This took place in a bid to generate information on the competence of the soil in withstanding stress and strain emanating from overburden or pore pressure, swelling, cracking and other anthropogenic activity in relation to civil engineering and building structures. An electromagnetic method employing the very low frequency (VLF) technique, and electrical resistivity employing the Wenner and the vertical electrical sounding techniques were used for this study. Soil samples were also collected at depth for geotechnical analysis. Isoresistivity slices generated from the data of 33 VES stations at 1 m showed generally low resistivity values of subsurface earth materials, classified as clayey sand, sandy clay or clay, and ranging from 60-300 Ωm. However, at depths of 3 and 5 m, the result showed a generally high resistivity distribution with values ranging from 500-6000 Ωm, which is an indication of competent Earth materials of fine to coarse grain sand. The results of the liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction and clay content of the soil samples vary from 10%-17%, 18%-29%, 3%-15%, 45-95 KN m-2, 31°-35° and 14%-22% respectively. The low cohesion, low clay content and high angle of internal friction of the soil at the encountered depth makes it competent for engineering foundation. It is concluded that the subsoil in the area, starting at a depth of 3 m, is a competent material for hosting engineering structures.
MX Siting Investigation Geotechnical Siting Status Report. Volume I.
1978-06-21
and have moderate shear strength. GNU. HAl SUNAL, INC ENGINEERING AND GEOPHYSICAL PROPERTIES Int rrniatd.an. ungur . Aluvial Lacustrine /oNan gdotlS t...an unvarnished, active surface of sediment transport gra A53 stream channel and floodplain deposits. A52 - Unconsolidated to poorly consolidated sand...silt, and sandy gravel, with va c.0 A52 surface gravels forming isolated areas of desert pavement. This fan is in vario Cc surface of sediment
1989-06-30
Wright (USA) AAV. Shroff Epoxy Resin (rout System for Solutions to Traditional D.P. Am in (;eotechnical Problems. 5.66...echate Containment System -(eotechnical (U SA ) Considerations . .......................................................... 1577 W D .I. Finn Case...girders were set in place in the formed under co er of tne above ra iling system . clayey overburden by low-frequency vibro-driving methoo, then
Reconnaissance Report, Section 205 Chattooga River Trion, Georgia, Chattooga County
1991-07-01
magnitude, mb, of 7.5, at a distance of about 118 km, in the New Madrid source zone. The earthquake motions estimated to occur at Barkley from an...4: Liquefaction Susceptibility Evaluation and Post- Earthquake Strength Determination Volume 5: Stability Evaluation of Geotechnical Structures The...contributions from ORN. Mssrs. Ronald E. Wahl of Soil and Rock Mechanics Division, Richard S. Olsen, and Dr. M. E. Hynes of the Earthquake Engineering and
2013-03-01
Allen 1974, 1978; Bridge and Leeder 1979; Mackey and Bridge 1992) that computes synthetic stratigraphy for a floodplain cross section. The model...typical of that used to record and communicate geologic information for engineering applications. The computed stratigraphy differentiates between...belt dimensions measured for two well-studied river systems: (A) the Linge River within the Rhine-Meuse Delta , Netherlands, and (B) the Lower
1992-09-01
deformations in underground mines has been developed in Canada in cooperation with the Canada Centre for Mineral and Energy Technology ( CANMET ). The... technological developments in both geodetic and geotechnical instrumentation, at a cost one may achieve almost any, practically needed, instrumental...Due to the ever growing technological progress in all fields of engineering and, connected with it, the growing demand for higher accuracy, efficiency
Nichols, Thomas C.; Collins, Donley S.; Davidson, Richard R.
1986-01-01
A geotechnical investigation of the Pierre Shale near Hayes, South Dakota, was conducted by the U. S. Geological Survey as a basis for evaluating problems in deep excavations into that formation. The physical and mechanical properties of the shale were determined through use of core holes drilled to a maximum depth of 184 m. In situ borehole determinations included a gravimeter survey, pressuremeter testing, thermal profile measurements, and borehole velocity measurements. Onsite and offsite laboratory measurements included rebound measurements, sonic velocity measurements of shear and primary waves, X-ray mineralogy and major element determinations, size analyses, fracture analyses, fabric analyses, and determination of thermal properties. The properties of the clay shale indicate problems that may be encountered in excavation and use of deep underground facilities.
2016-06-01
for several cyanobacteria (Hu et al. 2003) as well as for EPS in clay soil (Nugent et al. 2009). The adhesion, water retention, and protective...exopolymers on the liquid limit of clays and its engineering applications. Transportation Research Record: Journal of the Transportation Research...Development of progressive failure in sensitive clay slopes. Canadian Geotechnical Journal 49: 782-795. Rushing, J. F., and J. K. Newman., 2010
“Wave - Particle Duality” and Soil Liquefaction in Geotechnical Engineering
NASA Astrophysics Data System (ADS)
Wang, Demin
2017-10-01
In the disaster situation of multi-earthquake, with the phenomenon of vibrating phenomenon and the occurrence of cracks in the surface soil, the collapse of the buildings on the ground are caused. The author tries to explain the phenomenon of earthquake disaster in this geotechnical engineering by using the wave-particle duality theory of sunlight. And proposed the sun in the physics of the already high frequency of the weak light superimposed into the low frequency of the low light wave volatility, once again superimposed, superimposed as a lower frequency of linear light, the energy from low to high. Sunlight from weak light into a strong sunlight, that is, the sun near the observation may be weak light or black sunspots is composed of black holes. By long distance, the convergence of light becomes into a dazzling luminous body. Light from the numerous light quantum and an energy line form a half-space infinite volatility curve, and the role of light plays under the linear form of particles. When the night is manifested of l black approaching unconnected light quantum. The author plays the earth as the sun, compared to the deep pressure of low-viscosity clay soil pore, water performance is complex. Similar to the surface of the sun’s spectrum, saturated silty sand is showed volatility, Ground surface high-energy clay showed particle properties. Particle performance is shear strength.
Determination of the Characteristic Values and Variation Ratio for Sensitive Soils
NASA Astrophysics Data System (ADS)
Milutinovici, Emilia; Mihailescu, Daniel
2017-12-01
In 2008, Romania adopted Eurocode 7, part II, regarding the geotechnical investigations - called SR EN1997-2/2008. However a previous standard already existed in Romania, by using the mathematical statistics in determination of the calculation values, the requirements of Eurocode can be taken into consideration. The setting of characteristics and calculations values of the geotechnical parameters was finally issued in Romania at the end of 2010 at standard NP122-2010 - “Norm regarding determination of the characteristic and calculation values of the geotechnical parameters”. This standard allows using of data already known from analysed area and setting the calculation values of geotechnical parameters. However, this possibility exist, it is not performed easy in Romania, considering that there isn’t any centralized system of information coming from the geotechnical studies performed for various objectives of private or national interests. Every company performing geotechnical studies tries to organize its own data base, but unfortunately none of them use existing centralized data. When determining the values of calculation, an important role is played by the variation ratio of the characteristic values of a geotechnical parameter. There are recommendations in the mentioned Norm, that could be taken into account, regarding the limits of the variation ratio, but these values are mentioned for Quaternary age soils only, normally consolidated, with a content of organic material < 5%. All of the difficult soils are excluded from the Norm even if they exist and affect the construction foundations on more than a half of the Romania’s surface. A type of difficult soil, extremely widespread on the Romania’s territory, is the contractile soil (with high swelling and contractions, very sensitive to the seasonal moisture variations). This type of material covers and influences the construction foundations in one over third of Romania’s territory. This work is proposing to be a step in determination of limits of the variation ratios for the contractile soils category, for the most used geotechnical parameters in the Romanian engineering practice, namely: the index of consistency and the cohesion.
NASA Astrophysics Data System (ADS)
Sumintadireja, Prihadi; Irawan, Diky
2017-06-01
Mud volcano remnants are identified in Surabaya and adjacent areas. The people in East Java based on historical report are custom and able to adjust with the natural phenomena within their areas. Sidoarjo mud volcano phenomena which coincident with drilling activity in 29 May 2006 is making people and government anxious for development a new infrastructure such as high rise building, toll road etc. An understanding of a geological hazard which can be single, sequential or combined events in their origin is the main key importance in subsurface imaging. Geological hazard can be identified by geophysical, geological, geotechnical method. The prompt selection of geophysical method to reveal subsurface condition is very important factor instead of survey design and field data acquisition. Revealing subsurface condition is very important information for site investigation consists of geological, geophysical and geotechnical data, whereas data analysis will help civil engineer design and calculate the construction safety.
Random vectors and spatial analysis by geostatistics for geotechnical applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, D.S.
1987-08-01
Geostatistics is extended to the spatial analysis of vector variables by defining the estimation variance and vector variogram in terms of the magnitude of difference vectors. Many random variables in geotechnology are in vectorial terms rather than scalars, and its structural analysis requires those sample variable interpolations to construct and characterize structural models. A better local estimator will result in greater quality of input models; geostatistics can provide such estimators; kriging estimators. The efficiency of geostatistics for vector variables is demonstrated in a case study of rock joint orientations in geological formations. The positive cross-validation encourages application of geostatistics tomore » spatial analysis of random vectors in geoscience as well as various geotechnical fields including optimum site characterization, rock mechanics for mining and civil structures, cavability analysis of block cavings, petroleum engineering, and hydrologic and hydraulic modelings.« less
Geotechnical aspects of the January 2003 Tecoma'n, Mexico, earthquake
Wartman, Joseph; Rodriguez-Marek, Adrian; Macari, Emir J.; Deaton, Scott; Ramirez-Reynaga, Marti'n; Ochoa, Carlos N.; Callan, Sean; Keefer, David; Repetto, Pedro; Ovando-Shelley, Efrai'n
2005-01-01
Ground failure was the most prominent geotechnical engineering feature of the 21 January 2003 Mw 7.6 Tecoma´n earthquake. Ground failure impacted structures, industrial facilities, roads, water supply canals, and other critical infrastructure in the state of Colima and in parts of the neighboring states of Jalisco and Michoaca´n. Landslides and soil liquefaction were the most common type of ground failure, followed by seismic compression of unsaturated materials. Reinforced earth structures generally performed well during the earthquake, though some structures experienced permanent lateral deformations up to 10 cm. Different ground improvement techniques had been used to enhance the liquefaction resistance of several sites in the region, all of which performed well and exhibited no signs of damage or significant ground deformation. Earth dams in the region experienced some degree of permanent deformation but remained fully functional after the earthquake.
Geotechnical characterization of some Indian fly ashes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, S.K.; Yudhbir
2005-10-01
This paper reports the findings of experimental studies with regard to some common engineering properties (e.g., grain size, specific gravity, compaction characteristics, and unconfined compression strength) of both low and high calcium fly ashes, to evaluate their suitability as embankment materials and reclamation fills. In addition, morphology, chemistry, and mineralogy of fly ashes are studied using scanning electron microscope, electron dispersive x-ray analyzer, x-ray diffractometer, and infrared absorption spectroscopy. In high calcium fly ash, mineralogical and chemical differences are observed for particles, {gt}75 {mu} m and the particles of {lt} 45 {mu} m size. The mode and duration of curingmore » significantly affect the strength and stress-strain behavior of fly ashes. The geotechnical properties of fly ash are governed by factors like lime content (CaO), iron content (Fe{sub 2}O{sub 3}) and loss on ignition. The distinct difference between self-hardening and pozzolanic reactivity has been emphasized.« less
Construction of high-rise buildings in the Far East of Russia
NASA Astrophysics Data System (ADS)
Kudryavtsev, Sergey; Bugunov, Semen; Pogulyaeva, Evgeniya; Peters, Anastasiya; Kotenko, Zhanna; Grigor'yev, Danil
2018-03-01
The construction of high-rise buildings on plate foundation in geotechnical conditions of the Russian Far East is a complicated problem. In this respect foundation engineering becomes rather essential. In order to set a firm foundation it is necessary to take into account the pressure distribution at the structure base, in homogeneity of building deformation, which is due to collaborative geotechnical calculations complicated by a number of factors: actual over-placement of soils, the complex geometry of the building under construction, spatial work of the foundation ground with consideration for physical nonlinearity, the influence of the stiffness of the superstructure (reinforced concrete framing) upon the development of foundation deformations, foundation performance (the performance of the bed plate under the building and stairwells), the origination of internal forces in the superstructure with differential settlement. The solution of spatial problems regarding the mutual interaction between buildings and foundations with account of the factors mentioned above is fully achievable via the application of numerical modeling methodology. The work makes a review of the results of high-rise plate building numerical modeling in geotechnical conditions of the Russian Far East by way of the example of Khabarovsk city.
Ye, X. W.; Su, Y. H.; Han, J. P.
2014-01-01
In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250
Ye, X W; Su, Y H; Han, J P
2014-01-01
In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.
Creating a Bio-Inspired Solution to Prevent Erosion
NASA Astrophysics Data System (ADS)
Reher, R.; Martinez, A.; Cola, J.; Frost, D.
2016-12-01
Through the study of geophysical sciences, lessons can be developed which allow for the introduction of bio-inspired design and art concepts to K-5 elementary students. Students are placed into an engineering mindset in which they must apply the concepts of bio-geotechnics to observe how we can use nature to prevent and abate erosion. Problems are staged for students using realistic engineering scenarios such as erosion prevention through biomimicry and the study of anchorage characteristics of root structures in regard to stability of soil. Specifically, a lesson is introduced where students research, learn, and present information about bio-inspired designs to understand these concepts. They lean how plant roots differ in size and shape to stabilize soil. In addition, students perform a series of hands-on experiments which demonstrate how bio-cements and roots can slow erosion.
1989-06-30
provide for all samples exceeded 1.25. Therefore, the easy identification of weathered rock and borrow material slakes very fast . shales that are relatively...the rate of slaking for both is very fast . Based on the slake I extend thanks to the following individuals in test, the rock durability is moderate...subsequently very mobile. The silts presence helped identify areas of floodwater deposition in Lodi Brook, indicate former intermittent tributary
Computer Applications to Geotechnical Engineering.
1983-08-01
embedment depths for signposts could be estimated. In association with the Outdoor Advertising Association of America , Professor Rutledge devised the...GWT =15 FEET .4FETY FACI.TCI =2 EC’L I-+ FEET 77 1 . 17 4 .- to 30 -4 -4psfr 107000 IwU - Z2. ,C F60- bEPs. .- 10- PC,: ((lX\\A A) A12 -. F * _ _ _ A7_...Design Manual, Outdoor Advertising Association of America , 1955. 4. Saghera, S. S., "Embedment Depth for Nonconstrained and Constrained Poles or
1982-12-01
Visual observations indi- cate that rock outcrops are generally infrequent. Pelagic deposition, dovnslope creep, slumping, and tur- bidity currents are...investigation. represents * major improvement in the current knowledge of the seafloor environment in the VIT region. In particular, it is the first...the VIT to supplement long-range planning of Navy ac- tivities in this area. This investigation represents a major improvement in the current knowledge
1983-09-01
al. (1981) was conducted on Copper City No. 2 tailings embankment damn near Miami, Arizona . Due to the extreme topographic relief in the area of the...mode of behavior and scale. ThiL dependency is summarized in the factor R. For example, circular shear instability as in a copper porphyry slope...OF THE PROBABILISTIC SLOPE STABILITY MODEL. . 32 6.1 DESCRIPTION OF COPPER CITY NUMBER 2 TAILINGS DAM . . 32 6.2 SUBSURFACE INVESTIGATION
Challenges in Construction Over Soft Soil - Case Studies in Malaysia
NASA Astrophysics Data System (ADS)
Mohamad, N. O.; Razali, C. E.; Hadi, A. A. A.; Som, P. P.; Eng, B. C.; Rusli, M. B.; Mohamad, F. R.
2016-07-01
Construction on soft ground area is a great challenge in the field of geotechnical engineering. Many engineering problems in the form of slope instability, bearing capacity failure or excessive settlement could occur either during or after the construction phase due to low shear strength and high compressibility of this soil. As main technical agencies responsible for implementation of development projects for Government of Malaysia, Public Works Department has vast experience in dealing with this problematic soil over the years. This paper discussed and elaborate on the engineering problems encountered in construction projects that have been carried out by PWD, namely Core Facilities Building of Polytechnic Kota Kinabalu in Sabah and Hospital Tengku Ampuan Rahimah Integration Quarters in Klang, Selangor. Instability of the ground during construction works had caused delay and cost overrun in completion of the project in Selangor, whereas occurrence of continuous post construction settlement had affected the integrity and serviceability of the building in Sabah. The causes of failure and proposed rehabilitation work for both projects also will be discussed in brief.
Construction of the bridge in the cavern in the Vrata tunnel (Croatia)
NASA Astrophysics Data System (ADS)
Garasic, Mladen; Sasa Kovacevic, Meho; Juric-Kacunic, Danijela
2010-05-01
In the Dinaric karst system in Croatia some 11500 speleological objects have been explored so far, more than 1000 of which were discovered during construction works. Such speleological objects without natural entrance on the terrain surface (which are called "caverns") have been discovered on the construction sites of the highways. Over the past twenty years they have been systematically investigated and treated. A special kind of remediation was conducted in the cavern's large hall of the "Vrata" tunnel on the Zagreb - Rijeka highway. Due to size, shape, cavern's position and hydrogeological parameters (fissured and karstified aquifers) within the karst system it was necessary to design and construct a 58 m bridge over the cavern. In addition, the cavern's vault had to be reinforced and stabilized, as the overburden was very thin. The beam-and -stringer grid with special anchors was used. The cavern's rehabilitation in the "Vrata" tunnel was a unique undertaking, and the bridge (without piers) is the cavern's longest bridge in the world. A speleological object of large dimensions was discovered in the "Vrata"tunnel's right tube on the Rijeka-Zagreb highway. Speleological, geotechnical, engineering geological and hydrogeological investigation works were carried out for the purpose of preservation the speleological object (cavern). On the basis of classification results of rock masses and conducted numerical analyses the support system for the cavern's vault stabilization was selected. The support system's elements include the beam-and-stringer grid constructed on the terrain's surface above the cavern, tendons and geotechnical anchors. To ensure stability of the speleological object, and to conduct the backward numerical analyses the measurement of vertical deformations from the terrain's surface along the rock's mass by means of sliding micrometers was undertaken. Backward numerical analyses combined with geotechnical measurements enable safer and more rational approach to design and construction of underground structures. They contribute to the knowledge on rock mass performance and to determination of its physical and mechanical parameters connecting them with rock classification results. The analyses are a great help in verification or modification of elements' features of primary support system. Tunnel and bridge in tunnel "Vrata" were opened for traffic in November 2008. Keywords: speleology, cave, Dinaric karst, Croatia, tunnel, karst phenomena, geotechnical engineering.
NASA Astrophysics Data System (ADS)
Ryżyński, Grzegorz; Nałęcz, Tomasz
2016-10-01
The efficient geological data management in Poland is necessary to support multilevel decision processes for government and local authorities in case of spatial planning, mineral resources and groundwater supply and the rational use of subsurface. Vast amount of geological information gathered in the digital archives and databases of Polish Geological Survey (PGS) is a basic resource for multi-scale national subsurface management. Data integration is the key factor to allow development of GIS and web tools for decision makers, however the main barrier for efficient geological information management is the heterogeneity of data in the resources of the Polish Geological Survey. Engineering-geological database is the first PGS thematic domain applied in the whole data integration plan. The solutions developed within this area will facilitate creation of procedures and standards for multilevel data management in PGS. Twenty years of experience in delivering digital engineering-geological mapping in 1:10 000 scale and archival geotechnical reports acquisition and digitisation allowed gathering of more than 300 thousands engineering-geological boreholes database as well as set of 10 thematic spatial layers (including foundation conditions map, depth to the first groundwater level, bedrock level, geohazards). Historically, the desktop approach was the source form of the geological-engineering data storage, resulting in multiple non-correlated interbase datasets. The need for creation of domain data model emerged and an object-oriented modelling (UML) scheme has been developed. The aim of the aforementioned development was to merge all datasets in one centralised Oracle server and prepare the unified spatial data structure for efficient web presentation and applications development. The presented approach will be the milestone toward creation of the Polish national standard for engineering-geological information management. The paper presents the approach and methodology of data unification, thematic vocabularies harmonisation, assumptions and results of data modelling as well as process of the integration of domain model with enterprise architecture implemented in PGS. Currently, there is no geological data standard in Poland. Lack of guidelines for borehole and spatial data management results in an increasing data dispersion as well as in growing barrier for multilevel data management and implementation of efficient decision support tools. Building the national geological data standard makes geotechnical information accessible to multiple institutions, universities, administration and research organisations and gather their data in the same, unified digital form according to the presented data model. Such approach is compliant with current digital trends and the idea of Spatial Data Infrastructure. Efficient geological data management is essential to support the sustainable development and the economic growth, as they allow implementation of geological information to assist the idea of Smart Cites, deliver information for Building Information Management (BIM) and support modern spatial planning. The engineering-geological domain data model presented in the paper is a scalable solution. Future implementation of developed procedures on other domains of PGS geological data is possible.
NASA Astrophysics Data System (ADS)
Bower, P.; Liddicoat (2), J.
2009-04-01
Brownfield Action (BA - http://www.brownfieldaction.org) is a web-based, interactive, three-dimensional digital space and learning simulation in which students form geotechnical consulting companies and work collaboratively to explore and solve problems in environmental forensics. BA is being used in the United States at 10 colleges and universities in earth, environmental, or engineering sciences undergraduate and graduate courses. As a semester-long activity or done in modular form for specific topics, BA encourages active learning that requires attention to detail, intuition, and positive interaction between peers that results in Phase 1 and Phase 2 Environmental Site Assessments. Besides use in higher education courses, BA also can be adapted for instruction to local, state, and federal governmental employees, and employees in industry where brownfields need to be investigated or require remediation.
Initial research on recycled tyre bales for road infrastructure applications
NASA Astrophysics Data System (ADS)
Duda, Aleksander; Sobala, Dariusz
2017-12-01
The paper reviews selected surveys carried out within the R&D project, co-financed with the European Regional Development Fund, called "ReUse - Innovative Recycling Materials, Enhancing the Sustainability of Bridge Facilities" (Innotech No. K3 / IN3 / 38/228116 / NCBiR / 15). The aim of the project and conducted research is to develop and implement innovative, cheap and environmentally-friendly recycled construction material in the form of tyre bales made from compressed used car tyres. This material is likely to be applied in civil engineering, especially in transport infrastructure, geotechnical and hydraulic engineering. New material is cheap and has unique properties such as low weight, high water permeability, high vibration and noise-damping capacity, low pressure coefficient values and other parameters that technically and economically allow it to replace natural aggregates. The extensive practical application of new material will facilitate the replacement of waste management methods with the environmentally friendly ones.
Machine learning in soil classification.
Bhattacharya, B; Solomatine, D P
2006-03-01
In a number of engineering problems, e.g. in geotechnics, petroleum engineering, etc. intervals of measured series data (signals) are to be attributed a class maintaining the constraint of contiguity and standard classification methods could be inadequate. Classification in this case needs involvement of an expert who observes the magnitude and trends of the signals in addition to any a priori information that might be available. In this paper, an approach for automating this classification procedure is presented. Firstly, a segmentation algorithm is developed and applied to segment the measured signals. Secondly, the salient features of these segments are extracted using boundary energy method. Based on the measured data and extracted features to assign classes to the segments classifiers are built; they employ Decision Trees, ANN and Support Vector Machines. The methodology was tested in classifying sub-surface soil using measured data from Cone Penetration Testing and satisfactory results were obtained.
Geoscience techniques for engineering assessment of Oman to India pipeline route
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baerenwald, P.D.; Mullee, J.E.; Campbell, K.J.
1996-12-31
A variety of geoscience techniques were used to define soil conditions and evaluate geologic processes in order to develop design criteria for complex segments of the proposed Oman to Indian pipeline route. Geophysical survey data, seafloor cores, ROV observation of the seafloor, and oceanographic measurements were the principal field data collected. Geotechnical soil testing, and X-ray radiography, detailed geologic logging, and C-14 age dating of cores were carried out. The diverse sets of field data and lab test results were integrated by a multi-disciplined team of geoscientists and engineers to develop geologic and soil models, soil design criteria, a turbidmore » flow model, and seafloor stability models. The integrated approach used here is applicable to other complex areas where seafloor stability needs to be assessed or design criteria need to be developed for active geologic processes.« less
NASA Astrophysics Data System (ADS)
Delvoie, S.; Radu, J.-P.; Ruthy, I.; Charlier, R.
2012-04-01
An engineering geological map can be defined as a geological map with a generalized representation of all the components of a geological environment which are strongly required for spatial planning, design, construction and maintenance of civil engineering buildings. In Wallonia (Belgium) 24 engineering geological maps have been developed between the 70s and the 90s at 1/5,000 or 1/10,000 scale covering some areas of the most industrialized and urbanized cities (Liège, Charleroi and Mons). They were based on soil and subsoil data point (boring, drilling, penetration test, geophysical test, outcrop…). Some displayed data present the depth (with isoheights) or the thickness (with isopachs) of the different subsoil layers up to about 50 m depth. Information about geomechanical properties of each subsoil layer, useful for engineers and urban planners, is also synthesized. However, these maps were built up only on paper and progressively needed to be updated with new soil and subsoil data. The Public Service of Wallonia and the University of Liège have recently initiated a study to evaluate the feasibility to develop engineering geological mapping with a computerized approach. Numerous and various data (about soil and subsoil) are stored into a georelational database (the geotechnical database - using Access, Microsoft®). All the data are geographically referenced. The database is linked to a GIS project (using ArcGIS, ESRI®). Both the database and GIS project consist of a powerful tool for spatial data management and analysis. This approach involves a methodology using interpolation methods to update the previous maps and to extent the coverage to new areas. The location (x, y, z) of each subsoil layer is then computed from data point. The geomechanical data of these layers are synthesized in an explanatory booklet joined to maps.
Gowthaman, Sivakumar; Nakashima, Kazunori; Kawasaki, Satoru
2018-04-04
Incorporating sustainable materials into geotechnical applications increases day by day due to the consideration of impacts on healthy geo-environment and future generations. The environmental issues associated with conventional synthetic materials such as cement, plastic-composites, steel and ashes necessitate alternative approaches in geotechnical engineering. Recently, natural fiber materials in place of synthetic material have gained momentum as an emulating soil-reinforcement technique in sustainable geotechnics. However, the natural fibers are innately different from such synthetic material whereas behavior of fiber-reinforced soil is influenced not only by physical-mechanical properties but also by biochemical properties. In the present review, the applicability of natural plant fibers as oriented distributed fiber-reinforced soil (ODFS) and randomly distributed fiber-reinforced soil (RDFS) are extensively discussed and emphasized the inspiration of RDFS based on the emerging trend. Review also attempts to explore the importance of biochemical composition of natural-fibers on the performance in subsoil reinforced conditions. The treatment methods which enhances the behavior and lifetime of fibers, are also presented. While outlining the current potential of fiber reinforcement technology, some key research gaps have been highlighted at their importance. Finally, the review briefly documents the future direction of the fiber reinforcement technology by associating bio-mediated technological line.
Gowthaman, Sivakumar; Nakashima, Kazunori; Kawasaki, Satoru
2018-01-01
Incorporating sustainable materials into geotechnical applications increases day by day due to the consideration of impacts on healthy geo-environment and future generations. The environmental issues associated with conventional synthetic materials such as cement, plastic-composites, steel and ashes necessitate alternative approaches in geotechnical engineering. Recently, natural fiber materials in place of synthetic material have gained momentum as an emulating soil-reinforcement technique in sustainable geotechnics. However, the natural fibers are innately different from such synthetic material whereas behavior of fiber-reinforced soil is influenced not only by physical-mechanical properties but also by biochemical properties. In the present review, the applicability of natural plant fibers as oriented distributed fiber-reinforced soil (ODFS) and randomly distributed fiber-reinforced soil (RDFS) are extensively discussed and emphasized the inspiration of RDFS based on the emerging trend. Review also attempts to explore the importance of biochemical composition of natural-fibers on the performance in subsoil reinforced conditions. The treatment methods which enhances the behavior and lifetime of fibers, are also presented. While outlining the current potential of fiber reinforcement technology, some key research gaps have been highlighted at their importance. Finally, the review briefly documents the future direction of the fiber reinforcement technology by associating bio-mediated technological line. PMID:29617285
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.
Methodology of remote sensing data interpretation and geological applications. [Brazil
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Veneziani, P.; Dosanjos, C. E.
1982-01-01
Elements of photointerpretation discussed include the analysis of photographic texture and structure as well as film tonality. The method used is based on conventional techniques developed for interpreting aerial black and white photographs. By defining the properties which characterize the form and individuality of dual images, homologous zones can be identified. Guy's logic method (1966) was adapted and used on functions of resolution, scale, and spectral characteristics of remotely sensed products. Applications of LANDSAT imagery are discussed for regional geological mapping, mineral exploration, hydrogeology, and geotechnical engineering in Brazil.
1982-01-01
The cyclicly changing axial stresses a . and a are leading to the dynamic stress path which loads the frozen soil [MN/m’) samples. It is obvious that...Fig. 5 are related to a sinoidal dynamic axial loading . Figure a sample temperature of T = -10*C, in 4 shows schematically a triaxial test re- Fig. 6...Czajkowski (1978), Behaviour of Fro-ry phase was not reached. zen Clay under Cyclic Axial Loading , Journal of the Geotechnical Engineer- ing Division
Lutenegger, A.J.; Hallberg, G.R.
1988-01-01
Lutenegger, A.J. and Hallberg, G.R., 1988. Stability of loess. Eng. Geol., 25: 247-261. The natural stability of loess soils can be related to fundamental geotechnical properties such as Atterberg limits, water content and void ratio. Field observations of unstable conditions in loess deposits in the upper midwest, U.S.A. show relationships between instability and the in situ moisture content and the liquidity index of the loess. Unstable loess can attain natural moisture contents equal to, or greater than, its liquid limit. Implications of these observations for applied engineering works are described. ?? 1988.
Rezaeian, Sanaz; Zhong, Peng; Hartzell, Stephen; Zareian, Farzin
2015-01-01
Simulated earthquake ground motions can be used in many recent engineering applications that require time series as input excitations. However, applicability and validation of simulations are subjects of debate in the seismological and engineering communities. We propose a validation methodology at the waveform level and directly based on characteristics that are expected to influence most structural and geotechnical response parameters. In particular, three time-dependent validation metrics are used to evaluate the evolving intensity, frequency, and bandwidth of a waveform. These validation metrics capture nonstationarities in intensity and frequency content of waveforms, making them ideal to address nonlinear response of structural systems. A two-component error vector is proposed to quantify the average and shape differences between these validation metrics for a simulated and recorded ground-motion pair. Because these metrics are directly related to the waveform characteristics, they provide easily interpretable feedback to seismologists for modifying their ground-motion simulation models. To further simplify the use and interpretation of these metrics for engineers, it is shown how six scalar key parameters, including duration, intensity, and predominant frequency, can be extracted from the validation metrics. The proposed validation methodology is a step forward in paving the road for utilization of simulated ground motions in engineering practice and is demonstrated using examples of recorded and simulated ground motions from the 1994 Northridge, California, earthquake.
Embedded Empiricisms in Soft Soil Technology
NASA Astrophysics Data System (ADS)
Wijeyesekera, D. C.; John, L. M. S. Alvin; Adnan, Z.
2016-07-01
Civil engineers of today are continuously challenged by innovative projects that push further the knowledge boundaries with conceptual and/or ingenious solutions leading to the realization of that once was considered impossible in the realms of geotechnology. Some of the forward developments rely on empirical methods embedded within soft soil technology and the spectral realms of engineering in its entirety. Empiricisms unlike folklore are not always shrouded in mysticism but can find scientific reasoning to justify them being adopted in design and tangible construction projects. This lecture therefore is an outline exposition of how empiricism has been integrally embedded in total empirical beginnings in the evolution of soft soil technology from the Renaissance time, through the developments of soil mechanics in the 19th century which in turn has paved the way to the rise of computational soil mechanics. Developments in computational soil mechanics has always embraced and are founded on a wide backdrop of empirical geoenvironment simulations. However, it is imperative that a competent geotechnical engineer needs postgraduate training combined with empiricism that is based on years of well- winnowed practical experience to fathom the diverseness and complexity of nature. However, experience being regarded more highly than expertise can, perhaps inadvertently, inhibit development and innovation.
Slope Reinforcement with the Utilization of the Coal Waste Anthropogenic Material
NASA Astrophysics Data System (ADS)
Gwóźdź-Lasoń, Monika
2017-10-01
The protection of the environment, including waste management, is one of the pillars of the policy of the Europe. The application which is presented in that paper tries to show a trans-disciplinary way to design geotechnical constructions - slope stability analysis. The generally accepted principles that the author presents are numerous modelling patterns of earth retaining walls as slope stabilization system. The paper constitutes an attempt to summarise and generalise earlier researches which involved FEM numeric procedures and the Z_Soil package. The design of anthropogenic soil used as a material for reinforced earth retaining walls, are not only of commercial but of environmental importance as well and consistent with the concept of sustainable development and the need to redevelop brownfield. This paper tries to show conceptual and empirical modelling approaches to slope stability system used in anthropogenic soil formation such as heaps, resulting from mining, with a special focus on urban areas of South of Poland and perspectives of anthropogenic materials application in geotechnical engineering are discussed.
Geotechnical reconnaissance of the 2002 Denali fault, Alaska, earthquake
Kayen, R.; Thompson, E.; Minasian, D.; Moss, R.E.S.; Collins, B.D.; Sitar, N.; Dreger, D.; Carver, G.
2004-01-01
The 2002 M7.9 Denali fault earthquake resulted in 340 km of ruptures along three separate faults, causing widespread liquefaction in the fluvial deposits of the alpine valleys of the Alaska Range and eastern lowlands of the Tanana River. Areas affected by liquefaction are largely confined to Holocene alluvial deposits, man-made embankments, and backfills. Liquefaction damage, sparse surrounding the fault rupture in the western region, was abundant and severe on the eastern rivers: the Robertson, Slana, Tok, Chisana, Nabesna and Tanana Rivers. Synthetic seismograms from a kinematic source model suggest that the eastern region of the rupture zone had elevated strong-motion levels due to rupture directivity, supporting observations of elevated geotechnical damage. We use augered soil samples and shear-wave velocity profiles made with a portable apparatus for the spectral analysis of surface waves (SASW) to characterize soil properties and stiffness at liquefaction sites and three trans-Alaska pipeline pump station accelerometer locations. ?? 2004, Earthquake Engineering Research Institute.
Hoang, Truong Minh; van Lap, Nguyen; Oanh, Ta Thi Kim; Jiro, Takemura
2016-11-01
The aim of the study was to characterize a variety of microstructure development-levels and geotechnical property sequences of the late Pleistocene-Holocene deposits in the Mekong River delta (MRD), and the paper furthermore discusses the influences of delta formation mechanisms on them. The survey associated the geotechnical engineering and the sedimentary geology of the late Pleistocene-Holocene deposits at five sites and also undifferentiated Pleistocene sediments. A cross-section which was rebuilt in the delta progradation-direction and between the Mekong and Bassac rivers represents the stratigraphy. Each sedimentary unit was formed under a different delta formation mechanism and revealed a typical geotechnical property sequence. The mechanical behaviors of the sediment succession in the tide-dominated delta with significant fluvial-activity and material source tend to be more cohesionless soils and strengths than those in the tide- and wave-dominated delta and even the coast. The particular tendency of the mechanical behavior of the deposit succession can be reasonably estimated from the delta formation mechanism. The characteristics of the clay minerals from the Mekong River produced the argillaceous soil which does not have extremely high plasticity. The microstructure development-levels are low to very high indicating how to choose hydraulic conductivity value, k, for estimating overconsolidation ratio, OCR, by the piezocone penetration tests (CPTU). The OCR of sediments in the delta types strangely change with depth but none less than 1. The post-depositional processes significantly influenced the microstructure development, particularly the dehydrating and oxidizing processes.
Moran, Anthony R; Hettiarachchi, Hiroshan
2011-07-01
Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.
Assessing the impact of preload on pyrite-rich sediment and groundwater quality.
Karikari-Yeboah, Ohene; Addai-Mensah, Jonas
2017-02-01
Pyrite-rich sediments would, invariably, undergo redox reactions which would lead to acidic aqueous environment containing solubilized toxic metal species. When such sediments are subjected to preload, a technique employed by geotechnical engineers to improve the load-bearing capacity of highly compressible formation, transient flow of pore water, accompanied by acidity transfer, would occur as a response. Despite the concomitant environmental and socio-economic significance, to date, there has been limited interdisciplinary research on the underpinning geotechnical engineering and geo-environmental science issues for pyrite-rich sediments under preload. In this study, we investigate the effect of pyrite-rich sediment pore water transfer under preload surcharge on the receiving environment and the impact on the groundwater speciation and quality. Sediment samples were obtained at close depth intervals from boreholes established within pristine areas and those subjected to the preload application. Soil and pore water samples were subjected to solid/solution speciation, moisture contents, soil pH and the Atterberg Limits' analyses using standard analytical techniques and methods. Standpipes were also installed in the boreholes for groundwater sampling and in situ monitoring of water quality parameters. It is shown that the imposition of preload surcharge over pyritic sediment created a reducing environment rich in SO 4 2- , iron oxide minerals and organic matter. This reducing environment fostered organic carbon catabolism to generate excess pyrite and bicarbonate alkalinity, which would invariably impact adversely on soil quality and plant growth. These were accompanied by increase in pH, dissolved Al, Ca, Mg and K species beneath the surcharge.
Moran, Anthony R.; Hettiarachchi, Hiroshan
2011-01-01
Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling. PMID:21845150
Strong Motion Recording in the United States
NASA Astrophysics Data System (ADS)
Archuleta, R. J.; Fletcher, J. B.; Shakal, A. F.
2014-12-01
The United States strong motion program began in 1932 when the Coast and Geodetic Survey (C&GS) installed eight strong motion accelerographs in California. During the March 1933 Long Beach earthquake, three of these produced the first strong motion records. With this success the C&GS expanded the number of accelerographs to 71 by 1964. With development of less expensive, mass-produced accelerographs the number of strong motion accelerographs expanded to ~575 by 1972. Responsibilities for operating the network and disseminating data were transferred to the National Oceanic and Atmospheric Administration in 1970 and then to the U.S. Geological Survey in 1973. In 1972 the California Legislature established the California Strong Motion Instrumentation Program (CSMIP). CSMIP operates accelerographs at 812 ground stations, with multi-channel accelerographs in 228 buildings, 125 lifelines and 37 geotechnical arrays, in California. The USGS and the ANSS effort operate accelerographs at 1584 ground stations, 96 buildings, 14 bridges, 70 dams, and 15 multi-channel geotechnical arrays. The USC Los Angeles array has 78 ground stations; UCSB operates 5 geotechnical arrays; other government and private institutions also operate accelerographs. Almost all accelerographs are now digital with a sampling rate of 200 Hz. Most of the strong motion data can be downloaded from the Center for Engineering Strong Motion Data (http://strongmotioncenter.org). As accelerographs have become more sophisticated, the concept of what constitutes strong motion has blurred because small earthquakes (M ~3) are well recorded on accelerometers as well as seismometers. However, when accelerations are over ~10%g and velocities over ~1 cm/s, the accelerometers remain on scale, providing the unclipped data necessary to analyze the ground motion and its consequences. Strong motion data are essential to the development of ground motion prediction equations, understanding structural response, performance based engineering, soil response, and inversions for earthquake rupture parameters. While an important number of stations have been installed, many areas of the US are significantly deficient, e.g., recordings were obtained from only 2 stations within 60 km of the Mineral earthquake that damaged the nation's capital and other areas.
Geotechnical zoning of urban foundations: Avilés case study (N Spain)
NASA Astrophysics Data System (ADS)
María Díaz-Díaz, Luis; Arias, Daniel; López-Fernández, Carlos; Pando, Luis
2014-05-01
The purpose of this paper is to carry out a geotechnical evaluation of the underground within an urban setting in relation to types of foundations, and particularly at expansion zones. The ultimate aim is to produce a foundation zonation map at the scale 1:10,000. Furthermore, a general methodology that way be extrapolated to other cities is proposed. This work focused on the city of Aviles like a case study; a medium-sized city which has significant industrial and port areas and singular equipment in its surroundings. This city is located in the Spanish north coast and spread out on both flanks of the Avilés stuary. This means that there are an important development of recent deposits that implies different geotechnical units with a highly variable behavior, generally poor. In contrast, the bedrock is more homogenous, formed by Permo-Triassic red clay and marl. Locally there are also outcrops of carbonates and conglomeratic Jurassic levels. Also, on the whole area is important to note the presence of heterogeneous anthropic deposits along the whole area as a consequence, mainly, of an intense industrial activity. Permo-Triassic clayey and marly materials imply special engineering issues in foundations as a consequence of their composition (likely weathering, presence of gypsum, low bearing capacity). Moreover, recent deposits (marine and alluvial origin) show different geotechnical behaviors depending on their geometry and grain size. Hence, many areas of the city are especially problematic when designing and implementing foundations. The methodology followed in this study consisted in elaborating a geological-geotechnical exhaustive survey of the urban underground on a scale of 1/10.000. Based on this, a multi criteria analysis of the identified geotechnical units was carried out taking into consideration all the lithological, geomorphological, hidrogeological and geotechnical aspects. Taken into account all of these criteria, a number of areas are defined based on their foundation conditions: i) good ground conditions (rocks: UCS > 25 MPa); ii) acceptable ground conditions (rocks: UCS 5-25 MPa); iii) bad ground conditions (soils and rocks: UCS < 5 MPa and sulfate rich soils) and iv) problematic ground conditions (special geological hazards). A foundation zonation map is a basic document for adequate land-use planning for instrastructures and edification, being useful to society, industrial and public sectors.
NASA Astrophysics Data System (ADS)
Dugar, Sumit; Dahal, Vaskar
2015-04-01
The foothills of Nepalese Himalayas located in the neotectonic mountain environment are among some of the most unstable and geomorphologically dynamic landscapes in the world. Young fold mountains in this region are characterized by complex tectonics that influence the occurrence of earthquakes, while climatic processes such as intense orographic rainfall often dictate the occurrence of floods and landslides. Development of linear infrastructures, such as roads, in mountainous terrain characterized by high relief and orogeny is considerably challenging where the complexity of landscape in steep and irregular topography, difficult ground conditions and weak geology, presents engineers and planners with numerous difficulties to construct and maintain mountain roads. Whilst application of engineering geology, geomorphic interpretation of terrain in terms of physiography and hydrology, and identification of geo-hazards along the road corridor is critical for long term operation of mountain roads, low-cost arterial roads in the Himalayan foothills generally fail to incorporate standard road slope engineering structures. This research provides unique insights on policy and governance issues in developing mountainous countries such as Nepal, where achieving a sound balance between sustainability and affordability is a major challenge for road construction. Road development in Nepal is a complex issue where socio-economic and political factors influence the budget allocation for road construction in rural hilly areas. Moreover, most mountain roads are constructed without any geological or geo-technical site investigations due to rampant corruption and lack of adequate engineering supervision. Despite having good examples of rural road construction practices such as the Dharan-Dhankuta Road in Eastern Nepal where comprehensive terrain-evaluation methods and geo-technical surveys led to an improved understanding of road construction, learnings from this project have not informed other road development schemes in Nepal. Geomorphological surveys and robust geo-hazard assessments that factor the spatial and temporal dimensions of the seismic, fluvial and sediment hazards along the road corridor are critical for sustainable development of mountain roads. However, scientific and technical research studies seldom inform mountain road development primarily due to lack of co-ordination between the respective government agencies, access to journal papers in developing countries and unwillingness to adopt novel interventions in rural road construction practices. These challenges are further exacerbated by weak governance and lack of proper policy enforcement that often leads to construction of poorly engineered roads, thereby increasing the risk of rural infrastructural damage from geo-hazards. Though there exists a disconnect between the science-policy-governance interface where information on geo-hazards is neglected in mountain road development due to lack of scientific research and government apathy, there is an opportunity to spur dialogue and sensitize these issues via trans-disciplinary approaches on disaster risk management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.
Modeling pellet impact drilling process
NASA Astrophysics Data System (ADS)
Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.
2016-03-01
The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.
1989-12-01
approval of the use of such commercial products. rrf .A’cierated croulon at a knickpoint produced by relatively I’vi sch argi slid unventing beneath...Report 4 of a Series Approved For Public Releae, Distilbution Unlimited Prepared for DEPARTMENT OF THE ARMY US Army Corps of Engineers Washington, DC...20314-1000 Under Civil Works Work Unit 32317 90 0.1 16 0 7 C The following two letters used as parl of the number designating technical reports of
US Army Corps of Engineers Reconnaissance Report: North Coast of Honduras Flooding,
1988-03-01
1,000 ’ Study Element O Sector Two Sector Six Coordination (Other Agencies, etc) $ 60 $ 40 $ 50 Institutional/Financial 30 10 30 " Agricultural...Socioeconnic 100 180 150 Hydrologic 80 130 110 Hydraulic 170 260 200 Geotechnical 130 100 90 , Structural 80 50 70 Cost Estimating 20 30 40 Surveys and...77- cc CC Ar 0~ , - .1i cr* 6 *1*, ~..tic Vt ’ e-4 rN. I- - B-10 ona- 20 T. n 10 7- tl o l I 40 - 30 - ~.ll 1 r- r. Fig B-" MEA MOTL
NASA Astrophysics Data System (ADS)
Donohue, Shane
2014-01-01
The use of audience response systems (ARSs) or 'clickers' in higher education has increased over the recent years, predominantly owing to their ability to actively engage students, for promoting individual and group learning, and for providing instantaneous feedback to students and teachers. This paper describes how group-based ARS quizzes have been integrated into an undergraduate civil engineering course on foundation design. Overall, the ARS summary quizzes were very well received by the students. Feedback obtained from the students indicates that the majority believed the group-based quizzes were useful activities, which helped to improve their understanding of course materials, encouraged self-assessment, and assisted preparation for their summative examination. Providing students with clickers does not, however, necessarily guarantee the class will be engaged with the activity. If an ARS activity is to be successful, careful planning and design must be carried out and modifications adopted where necessary, which should be informed by the literature and relevant student feedback.
Estimating the Wet-Rock P-Wave Velocity from the Dry-Rock P-Wave Velocity for Pyroclastic Rocks
NASA Astrophysics Data System (ADS)
Kahraman, Sair; Fener, Mustafa; Kilic, Cumhur Ozcan
2017-07-01
Seismic methods are widely used for the geotechnical investigations in volcanic areas or for the determination of the engineering properties of pyroclastic rocks in laboratory. Therefore, developing a relation between the wet- and dry-rock P-wave velocities will be helpful for engineers when evaluating the formation characteristics of pyroclastic rocks. To investigate the predictability of the wet-rock P-wave velocity from the dry-rock P-wave velocity for pyroclastic rocks P-wave velocity measurements were conducted on 27 different pyroclastic rocks. In addition, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann's and Wood's theories and it was seen that estimates for saturated P-wave velocity from the theories fit well measured data. For samples having values of less and greater than 20%, practical equations were derived for reliably estimating wet-rock P-wave velocity as function of dry-rock P-wave velocity.
Akkar, Sinan; Aldemir, A.; Askan, A.; Bakir, S.; Canbay, E.; Demirel, I.O.; Erberik, M.A.; Gulerce, Z.; Gulkan, Polat; Kalkan, Erol; Prakash, S.; Sandikkaya, M.A.; Sevilgen, V.; Ugurhan, B.; Yenier, E.
2011-01-01
An earthquake of MW = 6.1 occurred in the Elazığ region of eastern Turkey on 8 March 2010 at 02:32:34 UTC. The United States Geological Survey (USGS) reported the epicenter of the earthquake as 38.873°N-39.981°E with a focal depth of 12 km. Forty-two people lost their lives and 137 were injured during the event. The earthquake was reported to be on the left-lateral strike-slip east Anatolian fault (EAF), which is one of the two major active fault systems in Turkey. Teams from the Earthquake Engineering Research Center of the Middle East Technical University (EERC-METU) visited the earthquake area in the aftermath of the mainshock. Their reconnaissance observations were combined with interpretations of recorded ground motions for completeness. This article summarizes observations on building and ground damage in the area and provides a discussion of the recorded motions. No significant observations in terms of geotechnical engineering were made.
Stability numerical analysis of soil cave in karst area to drawdown of underground water level
NASA Astrophysics Data System (ADS)
Mo, Yizheng; Xiao, Rencheng; Deng, Zongwei
2018-05-01
With the underground water level falling, the reliable estimates of the stability and deformation characteristics of soil caves in karst region area are required for analysis used for engineering design. Aimed at this goal, combined with practical engineering and field geotechnical test, detail analysis on vertical maximum displacement of top, vertical maximum displacement of surface, maximum principal stress and maximum shear stress were conducted by finite element software, with an emphasis on two varying factors: the size and the depth of soil cave. The calculations on the soil cave show that, its stability of soil cave is affected by both the size and depth, and only when extending a certain limit, the collapse occurred along with the falling of underground water; Additionally, its maximum shear stress is in arch toes, and its deformation curve trend of maximum displacement is similar to the maximum shear stress, which further verified that the collapse of soil cave was mainly due to shear-failure.
NASA Astrophysics Data System (ADS)
Bhamidipati, Raghava A.
Gypsum rich soils are found in many parts of the world, particularly in arid and semi-arid regions. Most gypsum occurs in the form of evaporites, which are minerals that precipitate out of water due to a high rate of evaporation and a high mineral concentration. Gypsum rich soils make good foundation material under dry conditions but pose major engineering hazards when exposed to water. Gypsum acts as a weak cementing material and has a moderate solubility of about 2.5 g/liter. The dissolution of gypsum causes the soils to undergo unpredictable collapse settlement leading to severe structural damages. The damages incur heavy financial losses every year. The objective of this research was to use geophysical methods such as free-free resonant column testing and electrical resistivity testing to characterize gypsum rich soils based on the shear wave velocity and electrical resistivity values. The geophysical testing methods could provide quick, non-intrusive and cost-effective methodologies to screen sites known to contain gypsum deposits. Reconstituted specimens of ground gypsum and quartz sand were prepared in the laboratory with varying amounts of gypsum and tested. Additionally geotechnical tests such as direct shear strength tests and consolidation tests were conducted to estimate the shear strength parameters (drained friction angle and cohesion) and the collapse potential of the soils. The effect of gypsum content on the geophysical and geotechnical parameters of soil was of particular interest. It was found that gypsum content had an influence on the shear wave velocity but had minimal effect on electrical resistivity. The collapsibility and friction angle of the soil increased with increase in gypsum. The information derived from the geophysical and geotechnical tests was used to develop statistical design equations and correlations to estimate gypsum content and soil collapse potential.
NASA Astrophysics Data System (ADS)
Christ, J. A.; Mahbob, M.; Seely, G. E.; Ressler, S. J.
2007-12-01
Many developing countries suffer from substandard employment of environmental engineering and science principles, which leads to poor management of natural and cultural resources, increased public health concerns, and limitations on economic investment and growth. Thus, prior to the implementation of well-intentioned programs designed to promote development, methods for sustaining basic needs, which are the focus of most environmental engineering disciplines, must be designed into the social fabric of the developing culture. Education is a promising method for fostering this development across cultures. Recently, the US Air Force Academy (USAFA) partnered with the US Military Academy (USMA) to implement a Civil Engineering Program at the National Military Academy of Afghanistan (NMAA), Kabul, Afghanistan. This work will outline the process followed during course development, deployment, and implementation, paying particular attention to challenges and benefits at each stage in the process. This cooperation may serve as a model for future implementation of science, technology, engineering and mathematics education programs in developing countries. Consistent with US Civil Engineering programs, the NMAA Civil Engineering program introduces students to a broad range of introductory-level civil engineering subjects--environmental, hydraulic, geotechnical, structural, construction, and transportation engineering. Basic environmental engineering and science principles are addressed through the implementation of an introductory environmental engineering course. Course development followed a three-stage process: (1) course development by US faculty at their home institution, (2) imbedding of US Faculty at the NMAA, and (3) implementation of the course within the NMAA Civil Engineering curriculum using adjunct Afghan faculty hired from Kabul University. An existing environmental engineering course taught at USAFA was used as a model for course development. Although this existing course provided the necessary framework for the Afghan course, there were a number of challenges with tailoring the course material to the education level, experience, and needs of the Afghan students and faculty. These challenges were overcome, in part, during the imbedding process of US instructors within the NMAA faculty. On-site transfer of course material and knowledge proved a necessary step in the implementation of the course. The imbedding process enabled US instructors to discuss the course with current NMAA faculty and identify an implementation path that met the needs of the program while appreciating the uniqueness of the Afghan experience. Implementation of the course is on-going with reach-back capability for Afghan faculty to continue the mentoring relationship with their US colleagues. Challenges that arise during course implementation (e.g., wet lab deployments, field trip relevance) will be overcome and used as learning tools for future course offerings. Ultimately, this course will provide future leaders of Afghanistan with the educational tools to make informed environmental management decisions and will serve as a model for similar courses implemented throughout Afghanistan.
NASA Astrophysics Data System (ADS)
Yarbrough, L. D.; Katzenstein, K.
2012-12-01
Exposing students to active and local examples of physical geologic processes is beneficial to the learning process. Students typically respond with interest to examples that use state-of-the-art technologies to investigate local or regional phenomena. For lower cognitive level of learning (e.g. knowledge, comprehension, and application), the use of "close-to-home" examples ensures that students better understand concepts. By providing these examples, the students may already have a familiarity or can easily visit the location. Furthermore, these local and regional examples help students to offer quickly other examples of similar phenomena. Investigation of these examples using normal photographic techniques, as well as a more sophisticated 3-D Light Detection And Ranging (LiDAR) (AKA Terrestrial Laser Scanning or TLS) system, allows students to gain a better understanding of the scale and the mechanics of the geologic processes and hazards. The systems are used for research, teaching and outreach efforts and depending on departmental policies can be accessible to students are various learning levels. TLS systems can yield scans at sub-centimeter resolution and contain surface reflectance of targets. These systems can serve a number of learning goals that are essential for training geoscientists and engineers. While querying the data to answer geotechnical or geomorphologic related questions, students will develop skills using large, spatial databases. The upper cognitive level of learning (e.g. analysis, synthesis, and evaluation) is also promoted by using a subset of the data and correlating the physical geologic process of stream bank erosion and rock slope failures with mathematical and computer models using the scanned data. Students use the examples and laboratory exercises to help build their engineering judgment skills with Earth materials. The students learn not only applications of math and engineering science but also the economic and social implication of designed engineering solutions. These course learning modules were developed for traditional geological engineering courses delivered on campus, for more intensive field work courses and online-based asynchronous course delivery.
Geohazard assessment lifecycle for a natural gas pipeline project
NASA Astrophysics Data System (ADS)
Lekkakis, D.; Boone, M. D.; Strassburger, E.; Li, Z.; Duffy, W. P.
2015-09-01
This paper is a walkthrough of the geohazard risk assessment performed for the Front End Engineering Design (FEED) of a planned large-diameter natural gas pipeline, extending from Eastern Europe to Western Asia for a total length of approximately 1,850 km. The geohazards discussed herein include liquefaction-induced pipe buoyancy, cyclic softening, lateral spreading, slope instability, groundwater rise-induced pipe buoyancy, and karst. The geohazard risk assessment lifecycle was comprised of 4 stages: initially a desktop study was carried out to describe the geologic setting along the alignment and to conduct a preliminary assessment of the geohazards. The development of a comprehensive Digital Terrain Model topography and aerial photography data were fundamental in this process. Subsequently, field geohazard mapping was conducted with the deployment of 8 teams of geoprofessionals, to investigate the proposed major reroutes and delve into areas of poor or questionable data. During the third stage, a geotechnical subsurface site investigation was then executed based on the results of the above study and mapping efforts in order to obtain sufficient data tailored for risk quantification. Lastly, all gathered and processed information was overlain into a Geographical Information database towards a final determination of the critical reaches of the pipeline alignment. Input from Subject Matter Experts (SME) in the fields of landslides, karst and fluvial geomorphology was incorporated during the second and fourth stages of the assessment. Their experience in that particular geographical region was key to making appropriate decisions based on engineering judgment. As the design evolved through the above stages, the pipeline corridor was narrowed from a 2-km wide corridor, to a 500-m corridor and finally to a fixed alignment. Where the geohazard risk was high, rerouting of the pipeline was generally selected as a mitigation measure. In some cases of high uncertainty in the assessment, further exploration was proposed. In cases where rerouting was constrained, mitigation via structural measures was proposed. This paper further discusses the cost, schedule and resource challenges of planning and executing such a large-scale geotechnical investigation, the interfaces between the various disciplines involved during the assessment, the innovative tools employed for the field mapping, the classifications developed for mapping landslides, karst geology, and trench excavatability, determining liquefaction stretches and the process for the site localization of the Above Ground Installations (AGI). It finally discusses the objectives of the FEED study in terms of providing a route, a ± 20% project cost estimate and a schedule, and the additional engineering work foreseen to take place in the detailed engineering phase of the project.
NASA Astrophysics Data System (ADS)
Engel, P.; Schweimler, B.
2016-04-01
The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the Neubrandenburg University of Applied Sciences (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.
NASA Astrophysics Data System (ADS)
Wyjadłowski, Marek
2017-12-01
The constant development of geotechnical technologies imposes the necessity of monitoring techniques to provide a proper quality and the safe execution of geotechnical works. Several monitoring methods enable the preliminary design of work process and current control of hydrotechnical works (pile driving, sheet piling, ground improvement methods). Wave parameter measurements and/or continuous histogram recording of shocks and vibrations and its dynamic impact on engineering structures in the close vicinity of the building site enable the modification of the technology parameters, such as vibrator frequency or hammer drop height. Many examples of practical applications have already been published and provide a basis for the formulation of guidelines, for work on the following sites. In the current work the author's experience gained during sheet piling works for the reconstruction of City Channel in Wrocław (Poland) was presented. The examples chosen describe ways of proceedings in the case of new and old residential buildings where the concrete or masonry walls were exposed to vibrations and in the case of the hydrotechnical structures (sluices, bridges).
Application of Electrokinetic Stabilisation (EKS) Method for Soft Soil: A Review
NASA Astrophysics Data System (ADS)
Azhar, ATS; Azim, MAM; Syakeera, NN; Jefferson, IF; Rogers, CDF
2017-08-01
Soil properties such as low shear strength, excessive compression, collapsing behavior, high swell potential are some of the undesirable properties of soils in geotechnical engineering and those properties would cause severe distress to the structures. To solve these, an innovative stabilization of Electrokinetic (EKS) has been introduced. Electrokinetic is an applicable technique to transport charged particles and fluid in an electric potential. The EKS demonstrates changes in soil pH due to electrolysis reactions, water flow between the electrodes and migration of ions towards the cathode. This treatment has proven its efficiency in consolidating organic, peat and clayey silt as well as less expensive than other methods. Otherwise, this method also gives advantage by not disturbing site. The primary objective of this review is to discuss the application of electrokinetic and to investigate the current knowledge of electrokinetic in geotechnical application through a literature search and review, including consideration of certain aspects related to the soft soil application that may be relevant to the future study and at the same time addressing some key issues and their implications on soil behaviors.
Chen, Xun-Wen; Wong, James Tsz-Fung; Ng, Charles Wang-Wai; Wong, Ming-Hung
2016-04-01
Due to the increasing concerns on global warming, scarce land for agriculture, and contamination impacts on human health, biochar application is being considered as one of the possible measures for carbon sequestration, promoting higher crop yield and contamination remediation. Significant amount of researches focusing on these three aspects have been conducted during recent years. Biochar as a soil amendment is effective in promoting plant performance and sustainability, by enhancing nutrient bioavailability, contaminants immobilization, and microbial activities. The features of biochar in changing soil physical and biochemical properties are essential in affecting the sustainability of an ecosystem. Most studies showed positive results and considered biochar application as an effective and promising measure for above-mentioned interests. Bio-engineered man-made filled slope and landfill slope increasingly draw the attention of geologists and geotechnical engineers. With increasing number of filled slopes, sustainability, low maintenance, and stability are the major concerns. Biochar as a soil amendment changes the key factors and parameters in ecology (plant development, soil microbial community, nutrient/contaminant cycling, etc.) and slope engineering (soil weight, internal friction angle and cohesion, etc.). This paper reviews the studies on the production, physical and biochemical properties of biochar and suggests the potential areas requiring study in balancing ecology and man-made filled slope and landfill cover engineering. Biochar-amended soil should be considered as a new type of soil in terms of soil mechanics. Biochar performance depends on soil and biochar type which imposes challenges to generalize the research outcomes. Aging process and ecotoxicity studies of biochar are strongly required.
Stochastic ground motion simulation
Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan
2014-01-01
Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.
Chemo-mechanics of salt damage in stone.
Flatt, Robert J; Caruso, Francesco; Sanchez, Asel Maria Aguilar; Scherer, George W
2014-09-11
Many porous materials are damaged by pressure exerted by salt crystals growing in their pores. This is a serious issue in conservation science, geomorphology, geotechnical engineering and concrete materials science. In all cases, a central question is whether crystallization pressure will cause damage. Here we present an experiment in which the crystallization pressure and the pore saturation are varied in a controlled way. We demonstrate that a strain energy failure criterion can be used to predict when damage will occur. The experiment considered is the most widely used means to study the susceptibility to salt crystallization, so quantification of this test has far-reaching implications.
NASA Astrophysics Data System (ADS)
Grasso, S.; Maugeri, M.
After the Summit held in Washington on August 20-22 2001 to plan the first World Conference on the mitigation of Natural Hazards, a Group for the analysis of Natural Hazards within the Mediterranean area has been formed. The Group has so far determined the following hazards: (1) Seismic hazard (hazard for historical buildings included); (2) Hazard linked to the quantity and quality of water; (3) Landslide hazard; (4) Volcanic hazard. The analysis of such hazards implies the creation and the management of data banks, which can only be used if the data are properly geo-settled to allow a crossed use of them. The obtained results must be therefore represented on geo-settled maps. The present study is part of a research programme, namely "Detailed Scenarios and Actions for Seismic Prevention of Damage in the Urban Area of Catania", financed by the National Department for the Civil Protection and the National Research Council-National Group for the Defence Against Earthquakes (CNR-GNDT). Nowadays the south-eastern area of Sicily, called the "Iblea" seismic area of Sicily, is considered as one of the most intense seismic zones in Italy, based on the past and current seismic history and on the typology of civil buildings. Safety against earthquake hazards has two as pects: structural safety against potentially destructive dynamic forces and site safety related to geotechnical phenomena such as amplification, land sliding and soil liquefaction. So the correct evaluation of seismic hazard is highly affected by risk factors due to geological nature and geotechnical properties of soils. The effect of local geotechnical conditions on damages suffered by buildings under seismic conditions has been widely recognized, as it is demonstrated by the Manual for Zonation on Seismic Geotechnical Hazards edited by the International Society for Soil Mechanics and Geotechnical Engineering (TC4, 1999). The evaluation of local amplification effects may be carried out by means of either rigorous complex methods of analysis or qualitative procedures. A semi quantitative procedure based on the definition of the geotechnical hazard index has been applied for the zonation of the seismic geotechnical hazard of the city of Catania. In particular this procedure has been applied to define the influence of geotechnical properties of soil in a central area of the city of Catania, where some historical buildings of great importance are sited. It was also performed an investigation based on the inspection of more than one hundred historical ecclesiastical buildings of great importance, located in the city. Then, in order to identify the amplification effects due to the site conditions, a geotechnical survey form was prepared, to allow a semi quantitative evaluation of the seismic geotechnical hazard for all these historical buildings. In addition, to evaluate the foundation soil time -history response, a 1-D dynamic soil model was employed for all these buildings, considering the non linearity of soil behaviour. Using a GIS, a map of the seismic geotechnical hazard, of the liquefaction hazard and a preliminary map of the seismic hazard for the city of Catania have been obtained. From the analysis of obtained results it may be noticed that high hazard zones are mainly clayey sites
NASA Astrophysics Data System (ADS)
Faybishenko, Boris; Witherspoon, Paul A.; Gale, John
How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geoscientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.
Processes and controls in swelling anhydritic clay rocks
NASA Astrophysics Data System (ADS)
Mutschler, Thomas; Blum, Philipp; Butscher, Christoph
2015-04-01
Referring to the swelling of anhydritic clay rocks in tunneling, Leopold Müller-Salzburg noted in the third volume on tunneling of his fundamental text book on rock engineering that "a truly coherent explanation of these phenomena is still owing" (Müller-Salzburg 1978, p. 306). This valuation is still true after more than three decades of research in the field of swelling anhydritic clay rocks. One of the reasons is our limited knowledge of the processes involved in the swelling of such rocks, and of the geological, mineralogical, hydraulic, chemical and mechanical controls of the swelling. In this contribution, a review of processes in swelling anhydritic clay rocks and of associated controls is presented. Also numerical models that aim at simulating the swelling processes and controls are included in this review, and some of the remaining open questions are pointed out. By focusing on process-oriented work in this review, the presentation intends to stimulate further research across disciplines in the field of swelling anhydritic clay rocks to finally get a step further in managing the swelling problem in geotechnical engineering projects. Keywords: swelling; anhydritic clay rocks; review
Influence of the Soil Genesis on Physical and Mechanical Properties
Marschalko, Marian; Yilmaz, Işık; Fojtová, Lucie; Kubečka, Karel; Bouchal, Tomáš; Bednárik, Martin
2013-01-01
The paper deals with the influence of soil genesis on the physical-mechanical properties. The presented case study was conducted in the region of the Ostrava Basin where there is a varied genetic composition of the Quaternary geological structure on the underlying Neogeneous sediments which are sediments of analogous granulometry but different genesis. In this study, 7827 soil samples of an eolian, fluvial, glacial, and deluvial origin and their laboratory analyses results were used. The study identified different values in certain cases, mostly in coarser-grained foundation soils, such as sandy loam S4 (MS) and clayey sand F4 (CS). The soils of the fluvial origin manifest different values than other genetic types. Next, based on regression analyses, dependence was proved neither on the deposition depth (depth of samples) nor from the point of view of the individual foundation soil classes or the genetic types. The contribution of the paper is to point at the influence of genesis on the foundation soil properties so that engineering geologists and geotechnicians pay more attention to the genesis during engineering-geological and geotechnical investigations. PMID:23844398
PREFACE: 2nd International Conference on Innovative Materials, Structures and Technologies
NASA Astrophysics Data System (ADS)
Ručevskis, Sandris
2015-11-01
The 2nd International Conference on Innovative Materials, Structures and Technologies (IMST 2015) took place in Riga, Latvia from 30th September - 2nd October, 2015. The first event of the conference series, dedicated to the 150th anniversary of the Faculty of Civil Engineering of Riga Technical University, was held in 2013. Following the established tradition, the aim of the conference was to promote and discuss the latest results of industrial and academic research carried out in the following engineering fields: analysis and design of advanced structures and buildings; innovative, ecological and energy efficient building materials; maintenance, inspection and monitoring methods; construction technologies; structural management; sustainable and safe transport infrastructure; and geomatics and geotechnics. The conference provided an excellent opportunity for leading researchers, representatives of the industrial community, engineers, managers and students to share the latest achievements, discuss recent advances and highlight the current challenges. IMST 2015 attracted over 120 scientists from 24 countries. After rigorous reviewing, over 80 technical papers were accepted for publication in the conference proceedings. On behalf of the organizing committee I would like to thank all the speakers, authors, session chairs and reviewers for their efficient and timely effort. The 2nd International Conference on Innovative Materials, Structures and Technologies was organized by the Faculty of Civil Engineering of Riga Technical University with the support of the Latvia State Research Programme under the grant agreement "INNOVATIVE MATERIALS AND SMART TECHNOLOGIES FOR ENVIRONMENTAL SAFETY, IMATEH". I would like to express sincere gratitude to Juris Smirnovs, Dean of the Faculty of Civil Engineering, and Andris Chate, manager of the Latvia State Research Programme. Finally, I would like to thank all those who helped to make this event happen. Special thanks go to Diana Bajare, Laura Sele, Liga Radina and Jana Galilejeva for their major contribution to organizing the conference and to the literary editor Tatjana Smirnova and technical editor Daira Erdmane for their hard work on the conference proceedings.
The Q-Slope Method for Rock Slope Engineering
NASA Astrophysics Data System (ADS)
Bar, Neil; Barton, Nick
2017-12-01
Q-slope is an empirical rock slope engineering method for assessing the stability of excavated rock slopes in the field. Intended for use in reinforcement-free road or railway cuttings or in opencast mines, Q-slope allows geotechnical engineers to make potential adjustments to slope angles as rock mass conditions become apparent during construction. Through case studies across Asia, Australia, Central America, and Europe, a simple correlation between Q-slope and long-term stable slopes was established. Q-slope is designed such that it suggests stable, maintenance-free bench-face slope angles of, for instance, 40°-45°, 60°-65°, and 80°-85° with respective Q-slope values of approximately 0.1, 1.0, and 10. Q-slope was developed by supplementing the Q-system which has been extensively used for characterizing rock exposures, drill-core, and tunnels under construction for the last 40 years. The Q' parameters (RQD, J n, J a, and J r) remain unchanged in Q-slope. However, a new method for applying J r/ J a ratios to both sides of potential wedges is used, with relative orientation weightings for each side. The term J w, which is now termed J wice, takes into account long-term exposure to various climatic and environmental conditions such as intense erosive rainfall and ice-wedging effects. Slope-relevant SRF categories for slope surface conditions, stress-strength ratios, and major discontinuities such as faults, weakness zones, or joint swarms have also been incorporated. This paper discusses the applicability of the Q-slope method to slopes ranging from less than 5 m to more than 250 m in height in both civil and mining engineering projects.
QA/QC requirements for physical properties sampling and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Innis, B.E.
1993-07-21
This report presents results of an assessment of the available information concerning US Environmental Protection Agency (EPA) quality assurance/quality control (QA/QC) requirements and guidance applicable to sampling, handling, and analyzing physical parameter samples at Comprehensive Environmental Restoration, Compensation, and Liability Act (CERCLA) investigation sites. Geotechnical testing laboratories measure the following physical properties of soil and sediment samples collected during CERCLA remedial investigations (RI) at the Hanford Site: moisture content, grain size by sieve, grain size by hydrometer, specific gravity, bulk density/porosity, saturated hydraulic conductivity, moisture retention, unsaturated hydraulic conductivity, and permeability of rocks by flowing air. Geotechnical testing laboratories alsomore » measure the following chemical parameters of soil and sediment samples collected during Hanford Site CERCLA RI: calcium carbonate and saturated column leach testing. Physical parameter data are used for (1) characterization of vadose and saturated zone geology and hydrogeology, (2) selection of monitoring well screen sizes, (3) to support modeling and analysis of the vadose and saturated zones, and (4) for engineering design. The objectives of this report are to determine the QA/QC levels accepted in the EPA Region 10 for the sampling, handling, and analysis of soil samples for physical parameters during CERCLA RI.« less
NASA Astrophysics Data System (ADS)
Mayer, J. M.; Stead, D.
2017-04-01
With the increased drive towards deeper and more complex mine designs, geotechnical engineers are often forced to reconsider traditional deterministic design techniques in favour of probabilistic methods. These alternative techniques allow for the direct quantification of uncertainties within a risk and/or decision analysis framework. However, conventional probabilistic practices typically discretize geological materials into discrete, homogeneous domains, with attributes defined by spatially constant random variables, despite the fact that geological media display inherent heterogeneous spatial characteristics. This research directly simulates this phenomenon using a geostatistical approach, known as sequential Gaussian simulation. The method utilizes the variogram which imposes a degree of controlled spatial heterogeneity on the system. Simulations are constrained using data from the Ok Tedi mine site in Papua New Guinea and designed to randomly vary the geological strength index and uniaxial compressive strength using Monte Carlo techniques. Results suggest that conventional probabilistic techniques have a fundamental limitation compared to geostatistical approaches, as they fail to account for the spatial dependencies inherent to geotechnical datasets. This can result in erroneous model predictions, which are overly conservative when compared to the geostatistical results.
Development of regional liquefaction-induced deformation hazard maps
Rosinski, A.; Knudsen, K.-L.; Wu, J.; Seed, R.B.; Real, C.R.; ,
2004-01-01
This paper describes part of a project to assess the feasibility of producing regional (1:24,000-scale) liquefaction hazard maps that are based-on potential liquefaction-induced deformation. The study area is the central Santa Clara Valley, at the south end of San Francisco Bay in Central California. The information collected and used includes: a) detailed Quaternary geological mapping, b) over 650 geotechnical borings, c) probabilistic earthquake shaking information, and d) ground-water levels. Predictions of strain can be made using either empirical formulations or numerical simulations. In this project lateral spread displacements are estimated and new empirical relations to estimate future volumetric and shear strain are used. Geotechnical boring data to are used to: (a) develop isopach maps showing the thickness of sediment thatis likely to liquefy and deform under earthquake shaking; and (b) assess the variability in engineering properties within and between geologic map units. Preliminary results reveal that late Holocene deposits are likely to experience the greatest liquefaction-induced strains, while Holocene and late Pleistocene deposits are likely to experience significantly less horizontal and vertical strain in future earthquakes. Development of maps based on these analyses is feasible.
NASA Astrophysics Data System (ADS)
Jing, Wenjun; Zhao, Yan
2018-02-01
Stability is an important part of geotechnical engineering research. The operating experiences of underground storage caverns in salt rock all around the world show that the stability of the caverns is the key problem of safe operation. Currently, the combination of theoretical analysis and numerical simulation are the mainly adopts method of reserve stability analysis. This paper introduces the concept of risk into the stability analysis of underground geotechnical structure, and studies the instability of underground storage cavern in salt rock from the perspective of risk analysis. Firstly, the definition and classification of cavern instability risk is proposed, and the damage mechanism is analyzed from the mechanical angle. Then the main stability evaluating indicators of cavern instability risk are proposed, and an evaluation method of cavern instability risk is put forward. Finally, the established cavern instability risk assessment system is applied to the analysis and prediction of cavern instability risk after 30 years of operation in a proposed storage cavern group in the Huai’an salt mine. This research can provide a useful theoretical base for the safe operation and management of underground storage caverns in salt rock.
Effect of grain size distribution on stress-strain behavior of lunar soil simulants
NASA Astrophysics Data System (ADS)
Monkul, Mehmet Murat; Dacic, Amina
2017-08-01
Geotechnical behavior of the lunar soils is important for engineering analyses regarding various aspects of the future extraterrestrial settlement plans including lunar exploration and construction. Many lunar soil simulants had been produced so far, in order to resemble lunar soils and conduct such analyses. The goal of this study is to investigate how and to what extent the variations in the grain size distribution of different lunar soil simulants affect their shear strength and volume change behaviors, both of which are quite important for constitutive modeling and geotechnical design. Static simple shear tests were conducted on four lunar soil simulants that were reproduced in terms of original gradation characteristics. The results indicate that various gradational parameters, such as mean grain size, coefficient of uniformity and fines content influence the shear strength, the amount of volumetric dilatancy, and the rate of dilatancy of simulant specimens in different levels when they were compared at the same density or void ratio. The possible reasons behind such different levels of influence were also discussed by focusing on the initial fabric of specimens achieved before shearing and the interaction between silt and sand matrices in the simulants.
Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure.
Sas, Wojciech; Głuchowski, Andrzej; Radziemska, Maja; Dzięcioł, Justyna; Szymański, Alojzy
2015-07-30
Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young's modules E , and resilient modules M r showed that their values corresponding with requirements for subbase (principal or auxiliary) and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content) conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads' structures. Mechanical characterization was obtained by performing California bearing ratio (CBR) tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR) apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented.
Geotechnical centrifuge under construction
NASA Astrophysics Data System (ADS)
Richman, Barbara T.
Modifications are underway at the National Aeronautics and Space Administration (NASA) Ames Research Center in California to transform a centrifuge used in the Apollo space program to the largest geotechnical centrifuge in the free world. The centrifuge, to be finished in August and opened next January, following check out and tuning, will enable geoscientists to model stratigraphic features down to 275 m below the earth's surface. Scientists will be able to model processes that are coupled with body force loading, including earthquake response of earth structures and soil structure interaction; rubbled-bed behavior during in situ coal gasification or in oil shale in situ retorts; behavior of frozen soil; frost heave; behavior of offshore structures; wave-seabed interactions; explosive cratering; and blast-induced liquefaction.The centrifuge will have a load capacity of 900-g-tons (short); that is, it will be able to carry a net soil load of 3 short tons to a centripetal acceleration of 300 times the acceleration caused by gravity. Modified for a total cost of $2.4 million, the centrifuge will have an arm with a 7.6-m radius and a swinging platform or bucket at its end that will be able to carry a payload container measuring 2.1×2.1 m. An additional future input of $500,000 would enable the purchase of a larger bucket that could accommodate a load of up to 20 tons, according to Charles Babendreier, program director for geotechnical engineering at the National Science Foundation. Additional cooling for the motor would also be required. The centrifuge has the capability of accelerating the 20-ton load to 100 g.
Interaction of Dams and Landslides--Case Studies and Mitigation
Schuster, Robert L.
2006-01-01
In the first half of the 20th century, engineering geology and geotechnical engineering were in their infancy, and dams were often built where landslides provided valley constrictions, often without expert site investigation. Only the most important projects were subjected to careful geologic examination. Thus, dams were often built without complete understanding of the possible geotechnical problems occurring in foundations or abutments. Most of these dams still exist, although many have undergone costly repairs because of stability or leakage problems. Today, however, every effort is made in the selection of damsites, including those sited on landslides, to provide foundations and abutments that are generally impervious and capable of withstanding the stresses imposed by the proposed dam and reservoir, and possible landslides. By means of a literature search, technical interviews, and field inventory, I have located 254 large (at least 10 m high) dams worldwide that directly interact with landslides; that is, they have been built on pre-existing landslides or have been subjected to landslide activity during or after construction. A table (Appendix table A) summarizes dam characteristics, landslide conditions, and remedial measures at each of the dams. Of the 254 dams, 164 are earthfill, 23 are rockfill, and 18 are earthfill-rockfill; these are flexible dam types that generally perform better on the possibly unstable foundations provided by landslides than do more rigid concrete dams. Any pre-existing landslides that might impinge on the foundation or abutments of a dam should be carefully investigated. If a landslide is recognized in a dam foundation or abutment, the landslide deposits commonly are avoided in siting the dam or are removed during stripping of the dam foundation and abutment contacts. Contrarily, it has often been found to be technically feasible and economically desirable to site and construct dams on known landslides or on the remnants of these features. In these cases, proven preventive and remedial measures have been used to ensure the stability of the foundations and abutments, and to reduce seepage to acceptable levels.
NASA Astrophysics Data System (ADS)
yang, P.
2013-12-01
Experimental study of the effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid Ping Yang 1,2, Min-hui Wu2, Xue-wen Zhu2, Tao Deng2, Xue-qing Sun2 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092,China 2. Department of Geotechnical Engineering,Tongji University,Shanghai 200092,China Abstract The process of filtrate loss of low-solids drilling fluid was tested by changing the polyanionic cellulose content in low-solids drilling fluid. The effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid was analyzed. The test results showed that when time of filtration is same, the volume of filtrate loss decreases linearly with increasing polyanionic cellulose content. When polyanionic cellulose content is same, the rate of filtrate loss decreases nonlinearly with increasing time and the rate of filtrate loss will reach a stable value.The volume of filtrate loss in 7 to 8 minutes can reaches half of the total volume of filtrate loss. At the same time, the rate of filtrate loss of drilling fluid decreases nonlinearly with increasing viscosity.When the apparent viscosity is between 3.5~4.15 MPa.s, decrease speed of rate of filtrate loss of drilling fluid is quick. The results are helpful for characteristics evaluation of filtrate loss of drilling fluid and control of filtrate loss. Keyword Polyanionic Cellulose,Drilling Fluid,Process of Filtrate Loss Acknowledgments This investigation was supported by the National Natural Science Foundation of China (projects No. 41002093 and 41072205); the Fundamental Research Funds for the Central Universities; the Shanghai Leading Academic Discipline Project (project No. B308), Tongji University; and the Program for Young Excellent Talents, Tongji University. The authors are extremely grateful for the financial support from these five organizations.
Brief overview of the various families of grouts and their aplications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandts, A.
1989-04-01
It is difficult to maintain an up-to-date overview of all the grouts presently used on the international market. Better grouts are continuously developed and more formulators are making their appearance. Consequently, it is difficult to clearly define all of the products in the industry. This topic has been the subject of numerous papers and textbooks. Most authors, however, only focus on their fields of interest: applications in geotechnical, or rehabilitation, or seepage control in civil engineering, oil or mining industry. There has been a limited transfer of technology from one field to the other because of the enormous differences inmore » magnitude, site conditions and consequently the application techniques. The tools an engineer has are: his expertise in grouting and engineering background, equipment available or to be designed or modified to carry out a particular job, relevant data available from other sciences, and products with a variety of characteristics. This paper concentrates on product selection. The most suitable product for a particular project requires a good understanding of the general chemical and mechanical characteristics of the grout. The grouts have been classified into four categories for the purpose of this paper. There may be other methods of classification; however, this is only an attempt to help the industry with the selection of the most suitable grout for a given application. The four categories are: suspension grouts, chemical grouts, hot melts, and precipitation grouts. 1 fig.« less
Bonal, Niteesh Singh; Paramkusam, Bala Ramudu; Basudhar, Prabir Kumar
2018-06-05
The study aims to enhance the efficacy of surfactants using salt and multi-walled carbon nanotubes (MWCNT) for washing used engine oil (UEO) contaminated soil and compare the geotechnical properties of contaminated soil before and after washing (batch washing and soil washing). From batch washing of the contaminated soil the efficacy of the cleaning process is established. Contamination of soil with hydrocarbons present in UEO significantly affects its' engineering properties manifesting in no plasticity and low specific gravity; the corresponding optimum moisture content value is 6.42% while maximum dry density is 1.770 g/cc, which are considerably lower than those of the uncontaminated soil. The result also showed decrease in the values of cohesion intercept and increase in the friction angle values. The adopted soil washing technique resulted increase in specific gravity from 1.85 to 2.13 and cohesion from 0.443 to 1.04 kg/cm 2 and substantial decrease in the friction angle from 31.16° to 17.14° when washed with most efficient combination of SDS surfactant along with sodium meta-silicate (salt) and MWCNT. Effectiveness of the washing of contaminated soil by batch processing and soil washing techniques has been established qualitatively. The efficiency of surfactant treatment has been observed to be increased significantly by the addition of salt and MWCNT. Copyright © 2018 Elsevier B.V. All rights reserved.
Landsat 8 Multispectral and Pansharpened Imagery Processing on the Study of Civil Engineering Issues
NASA Astrophysics Data System (ADS)
Lazaridou, M. A.; Karagianni, A. Ch.
2016-06-01
Scientific and professional interests of civil engineering mainly include structures, hydraulics, geotechnical engineering, environment, and transportation issues. Topics included in the context of the above may concern urban environment issues, urban planning, hydrological modelling, study of hazards and road construction. Land cover information contributes significantly on the study of the above subjects. Land cover information can be acquired effectively by visual image interpretation of satellite imagery or after applying enhancement routines and also by imagery classification. The Landsat Data Continuity Mission (LDCM - Landsat 8) is the latest satellite in Landsat series, launched in February 2013. Landsat 8 medium spatial resolution multispectral imagery presents particular interest in extracting land cover, because of the fine spectral resolution, the radiometric quantization of 12bits, the capability of merging the high resolution panchromatic band of 15 meters with multispectral imagery of 30 meters as well as the policy of free data. In this paper, Landsat 8 multispectral and panchromatic imageries are being used, concerning surroundings of a lake in north-western Greece. Land cover information is extracted, using suitable digital image processing software. The rich spectral context of the multispectral image is combined with the high spatial resolution of the panchromatic image, applying image fusion - pansharpening, facilitating in this way visual image interpretation to delineate land cover. Further processing concerns supervised image classification. The classification of pansharpened image preceded multispectral image classification. Corresponding comparative considerations are also presented.
Dynamics of Fluids and Transport in Fractured Rock
NASA Astrophysics Data System (ADS)
Faybishenko, Boris; Witherspoon, Paul A.; Gale, John
How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geo-scientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.
NASA Astrophysics Data System (ADS)
Grussenmeyer, P.; Khalil, O. Al
2017-08-01
The paper presents photogrammetric archives from Aleppo (Syria), collected between 1999 and 2002 by the Committee for maintenance and restoration of the Great Mosque in partnership with the Engineering Unit of the University of Aleppo. During that period, terrestrial photogrammetric data and geodetic surveys of the Great Omayyad mosque were recorded for documentation purposes and geotechnical studies. During the recent war in Syria, the Mosque has unfortunately been seriously damaged and its minaret has been completely destroyed. The paper presents a summary of the documentation available from the past projects as well as solutions of 3D reconstruction based on the processing of the photogrammetric archives with the latest 3D image-based techniques.
NASA Astrophysics Data System (ADS)
Willsch, Reinhardt; Ecke, Wolfgang; Schwotzer, Gunter
2005-09-01
Different types of advanced optical fibre sensor systems using similar spectral interrogation principles and potential low-cost polychromator optoelectronic signal processing instrumentation will be presented, and examples of their industrial application are demonstrated. These are such sensors as multimode fibre based humidity, temperature, and pressure sensors with extrinsic microoptical Fabry-Perot transducers for process control in gas industry, UV absorption evanescent field sensors for organic pollution monitoring in groundwater, and single mode fibre Bragg grating (FBG) multiplexed strain & vibration and temperature sensor networks for structural health monitoring applications in electric power facilities, aerospace, railways, geotechnical and civil engineering. Recent results of current investigations applying FBGs and microstructured fibres for chemical sensing will be discussed.
NASA Astrophysics Data System (ADS)
Loupasakis, Constantinos; Tsangaratos, Paraskevas; Rozos, Dimitrios; Rondoyianni, Theodora; Vafidis, Antonis; Steiakakis, Emanouil; Agioutantis, Zacharias; Savvaidis, Alexandros; Soupios, Pantelis; Papadopoulos, Ioannis; Papadopoulos, Nikos; Sarris, Apostolos; Mangriotis, Maria-Dafni; Dikmen, Unal
2015-04-01
The near surface ground conditions are highly important for the design of civil constructions. These conditions determine primarily the ability of the foundation formations to bear loads, the stress - strain relations and the corresponding deformations, as well as the soil amplification and corresponding peak ground motion in case of dynamic loading. The static and dynamic geotechnical parameters as well as the ground-type/soil-category can be determined by combining geotechnical and geophysical methods, such as engineering geological surface mapping, geotechnical drilling, in situ and laboratory testing and geophysical investigations. The above mentioned methods were combined for the site characterization in selected sites of the Hellenic Accelerometric Network (HAN) in the area of Crete Island. The combination of the geotechnical and geophysical methods in thirteen (13) sites provided sufficient information about their limitations, setting up the minimum tests requirements in relation to the type of the geological formations. The reduced accuracy of the surface mapping in urban sites, the uncertainties introduced by the geophysical survey in sites with complex geology and the 1-D data provided by the geotechnical drills are some of the causes affecting the right order and the quantity of the necessary investigation methods. Through this study the gradual improvement on the accuracy of the site characterization data in regards to the applied investigation techniques is presented by providing characteristic examples from the total number of thirteen sites. As an example of the gradual improvement of the knowledge about the ground conditions the case of AGN1 strong motion station, located at Agios Nikolaos city (Eastern Crete), is briefly presented. According to the medium scale geological map of IGME the station was supposed to be founded over limestone. The detailed geological mapping reveled that a few meters of loose alluvial deposits occupy the area, expected to lay over the Neogene marly formations and the Mesozoic limestone, identified at the surrounding area. This changes the ground type to E instead of A, based on the EC8 classification. According the geophysical survey the Neogene formations extend down several meters and the mean Vs30 is 476m/s, increasing the rank of the ground type to B. Finally, the geotechnical drill reviled that the loose alluvial deposits extend down 13m containing two clearly identified layers of liquefiable loose sand. Below the alluvial deposits a thin layer (1,5m thick) of Neogene marly formations and the karstified limestone was located, as expected. So finally it was proved that the ground type category at the site is S2, setting up the geotechnical drills as the determinant investigation technique for this site. Besides the above described case, all selected examples present sufficiently the ability, the limitations and the right order of the investigation methods aiming to the site characterization. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES. Investing in knowledge society through the European Social Fund.
Dealing With Shallow-Water Flow in the Deepwater Gulf of Mexico
NASA Astrophysics Data System (ADS)
Ostermeier, R.
2006-05-01
Some of the Shell experience in dealing with the shallow-water flow problem in the Deepwater Gulf of Mexico (GOM) will be presented. The nature of the problem, including areal extent and over-pressuring mechanisms, will be discussed. Methods for sand prediction and shallow sediment and flow characterization will be reviewed. These include seismic techniques, the use of geo-technical wells, regional trends, and various MWD methods. Some examples of flow incidents with pertinent drilling issues, including well failures and abandonment, will be described. To address the shallow-water flow problem, Shell created a multi-disciplinary team of specialists in geology, geophysics, petrophysics, drilling, and civil engineering. The team developed several methodologies to deal with various aspects of the problem. These include regional trends and data bases, shallow seismic interpretation and sand prediction, well site and casing point selection, geo-technical well design and data interpretation, logging program design and interpretation, cementing design and fluids formulation, methods for remediation and mitigation of lost circulation, and so on. Shell's extensive Deepwater GOM drilling experience has lead to new understanding of the problem. Examples include delineation of trends in shallow water flow occurrence and severity, trends and departures in PP/FG, rock properties pertaining to seismic identification of sands, and so on. New knowledge has also been acquired through the use of geo-technical wells. One example is the observed rapid onset and growth of over-pressures below the mudline. Total trouble costs due to shallow water flow for all GOM operators almost certainly runs into the several hundred million dollars. Though the problem remains a concern, advances in our knowledge and understanding make it a problem that is manageable and not the "show stopper" once feared.
Venezuela offshore oil and gas production development: Past, present and future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez La Salvia, H.; Schwartz, E.; Contreras, M.
1995-12-01
This paper presents a short history of offshore oil and gas production in Venezuela starting in Lake Maracaibo in 1923. The main emphasis has been the results of the recent R and D and the exploratory offshore programs in areas like Orinoco Delta located in the Atlantic Ocean, Northeast and Northwest Venezuela in the Caribbean sea. In the R and D offshore program the main objectives were: (1) To establish the local environmental, oceanographical, geotechnical and seismicity conditions for the Venezuelan Continental Platform. (2) To give a technical support to the PDVSA Operating Affiliates during the exploratory programs including: (a)more » to develop accurate drilling vessel positioning systems; (b) evaluation of sea bottom geotechnical conditions for safely operating the jack-ups and drilling vessels involved in the exploratory wells and (c) to identify those areas which because of their special nature require further investigation to establish preliminary type of platforms required for the areas to be developed or to evaluate other solutions proposed by Foreign Consultant Engineering Companies to the PDVSA Operating Affiliated Companies. The main objective of PDVSA for the coming future will be to develop the North of Paria Gas Field through the initially named Christopher Columbus Project now Sucre Gas, S.A., a consortium conformed by LaGoven, S.A. Shell, Exxon and Mitsubishi. objective of this paper is to give an idea of the history of the Venezuelan Oil and Gas Offshore development giving emphasis to the results of the INTEVEP S.A. Red offshore program and to show some results of the particular characteristics of oceanographical, environmental, geotechnical and seismic conditions in the main areas evaluated during the exploratory program: Orinoco Delta, Gulf of Paria and North of Paria.« less
Reconsolidated Salt as a Geotechnical Barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Francis D.; Gadbury, Casey
Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to onemore » that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt repositories have the potential to isolate permanently vast inventories of radioactive and hazardous wastes.« less
Subsurface exploration using bucket auger borings and down-hole geologic inspection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scullin, C.M.
1994-03-01
The down-hole geologic inspection of 24 in. bucket auger borings has been a hands-on technique for collecting valuable geologic structural and lithologic detail in southern California investigations for over 35 yr. Although it has been used for all types of investigations for hillside urban development, it is of particular benefit in landslide investigations and evaluations. The benefits of down-hole geologic inspection during detailed mapping of large landslide complexes with multiple slide planes are discussed in this paper. Many of the geotechnical investigations of these massive landslide complexes have been very limited in their determinations of accurate landslide parameters and verymore » deficient in proper engineering analysis while based upon this limited data. This has resulted in many cases where the geotechnical consultant erroneously concludes that ancient landslides don't move and it is all right to build upon them, even though they have neither justified the landslide parameters, nor the slope stability or safety. Because this author and the many consultants contacted during the preparation of this paper were not aware of other publications regarding this method of collecting detailed geologic data, this author included the safety considerations, safety equipment, the cost and the Cal OSHA requirements for entering exploration shafts.« less
Statistical correlations of shear wave velocity and penetration resistance for soils
NASA Astrophysics Data System (ADS)
Dikmen, Ünal
2009-03-01
In this paper, the correlation between shear wave velocity and standard penetration test blow counts (SPT-N) is investigated. The study focused primarily on the correlation of SPT-N and shear wave velocity (Vs) for several soil categories: all soils, sand, silt and clay-type soils. New empirical formulae are suggested to correlate SPT-N and Vs, based on a dataset collected in a part of Eskişehir settlement in the western central Anatolia region of Turkey. The formulae are based on geotechnical soundings and active and passive seismic experiments. The new and previously suggested formulae showing correlations between uncorrected SPT-N and Vs have been compared and evaluated by using the same dataset. The results suggest that better correlations in estimation of Vs are acquired when the uncorrected blow counts are used. The blow count is a major parameter and the soil type has no significant influence on the results. In cohesive soils, the plasticity contents and, in non-cohesive soils except for gravels, the graded contents have no significant effect on the estimation of Vs. The results support most of the conclusions of earlier studies. These practical relationships developed between SPT-N and Vs should be used with caution in geotechnical engineering and should be checked against measured Vs.
Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure
Sas, Wojciech; Głuchowski, Andrzej; Radziemska, Maja; Dzięcioł, Justyna; Szymański, Alojzy
2015-01-01
Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young’s modules E, and resilient modules Mr showed that their values corresponding with requirements for subbase (principal or auxiliary) and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content) conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads’ structures. Mechanical characterization was obtained by performing California bearing ratio (CBR) tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR) apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented. PMID:28793477
Electronic atlas of the Russian Arctic coastal zone: natural conditions and technogenic risk
NASA Astrophysics Data System (ADS)
Drozdov, D. S.; Rivkin, F. M.; Rachold, V.
2004-12-01
The Arctic coast is characterized by a diversity of geological-geomorphological structures and geocryological conditions, which are expected to respond differently to changes in the natural environment and in anthropogenic impacts. At present, oil fields are prospected and developed and permanent and temporary ports are constructed in the Arctic regions of Russia. Thus, profound understanding of the processes involved and measures of nature conservation for the coastal zone of the Arctic Seas are required. One of the main field of Arctic coastal investigations and database formation of coastal conditions is the mapping of the coasts. This poster presents a set of digital maps including geology, quaternary sediments, landscapes, engineering-geology, vegetation, geocryology and a series of regional sources, which have been selected to characterize the Russian Arctic coast. The area covered in this work includes the 200-km-wide band along the entire Russian Arctic coast from the Norwegian boundary in the west to the Bering Strait in the east. Methods included the collection of the majority of available hard copies of cartographic material and their digital formats and the transformation of these sources into a uniform digital graphic format. The atlas consists of environmental maps and maps of engineering-geological zoning. The set of environmental maps includes geology, quaternary sediments, landscapes and vegetation of the Russian Arctic coast at a scale of 1:4000000. The set of engineering-geocryological maps includes a map of engineering-geocryological zoning of the Russian Arctic coast, a map of the intensity of destructive coastal process and a map of industrial impact risk assessment ( 1:8000000 scale). Detailed mapping has been performed for key sites (at a scale of 1:100000) in order to enable more precise estimates of the intensity of destructive coastal process and industrial impact. The engineering-geocryological map of the Russian Arctic coast was compiled based on the analysis of geotechnical and geocryological conditions in the areas adjacent to the coastal band. Industrial impact assessment has been estimated differently for each engineering-geocryological region distinguished on the coast, considering technological features of construction and engineering facilities: aerial construction, highways and airdromes, underground (with positive and negative pipe temperatures) and surface pipelines and quarries. The atlas is being used as a base for the circum-Arctic segmentation of the coastline and the analyses of coastal dynamics within the Arctic Coastal Dynamics (ACD) Project. The work has been supported by INTAS (project number 01-2332).
NASA Astrophysics Data System (ADS)
Adiat, K. A. N.; Akinlalu, A. A.; Adegoroye, A. A.
2017-06-01
In order to investigate the competence of the proposed road for pavement stability, geotechnical and geophysical investigations involving Land Magnetic, Very Low Frequency Electromagnetic (VLF-EM) and Electrical Resistivity methods were carried out along Akure-Ipinsa road Southwestern Nigeria. The magnetic profile was qualitatively and quantitatively interpreted to produce geomagnetic section that provides information on the basement topography and structural disposition beneath the proposed road. Similarly, the VLF-EM profile was equally interpreted to provide information on the possible occurrence of linear features beneath the study area. These linear features pose a potential risk to the proposed road as they are capable of undermining the stability of the pavement structure. The geoelectric parameters obtained from the quantitative interpretation of the VES data were used to generate geoelectric section. The geoelectric section generated shows that the study area was underlain by four geoelectric layers namely the topsoil, the weathered layer, the partly weathered/fractured basement and the fresh basement. The major part of the topsoil, which constitutes the subgrade, is characterized by relatively low resistivity values (<100 Ωm) suggestive of weak zones that are capable of undermining the stability of the proposed road. This therefore suggests that the layer is composed of incompetent materials that are unsuitable for engineering structures. Furthermore, fractured basement was also delineated beneath some portion of the proposed road. Since fracture is a weak zone, its presence can facilitate failure of the proposed road especially when it is occurring at shallow depth. The geotechnical results reveal that most of the investigated soil samples are clayey in nature. Integration of the results demonstrates that there is a good correlation between geophysical results and the geotechnical results. Furthermore, a vulnerability section that divided the road segments into three zones based on the degree of vulnerability was produced. These zones were high, moderate and low vulnerability zones. It is estimated that about 60% of the road segments constitutes moderate degree of vulnerability while 30% and 10% of the segments respectively constitute high and low degree of vulnerability.
X-ray CT analysis of pore structure in sand
NASA Astrophysics Data System (ADS)
Mukunoki, Toshifumi; Miyata, Yoshihisa; Mikami, Kazuaki; Shiota, Erika
2016-06-01
The development of microfocused X-ray computed tomography (CT) devices enables digital imaging analysis at the pore scale. The applications of these devices are diverse in soil mechanics, geotechnical and geoenvironmental engineering, petroleum engineering, and agricultural engineering. In particular, the imaging of the pore space in porous media has contributed to numerical simulations for single-phase and multiphase flows or contaminant transport through the pore structure as three-dimensional image data. These obtained results are affected by the pore diameter; therefore, it is necessary to verify the image preprocessing for the image analysis and to validate the pore diameters obtained from the CT image data. Moreover, it is meaningful to produce the physical parameters in a representative element volume (REV) and significant to define the dimension of the REV. This paper describes the underlying method of image processing and analysis and discusses the physical properties of Toyoura sand for the verification of the image analysis based on the definition of the REV. On the basis of the obtained verification results, a pore-diameter analysis can be conducted and validated by a comparison with the experimental work and image analysis. The pore diameter is deduced from Young-Laplace's law and a water retention test for the drainage process. The results from previous study and perforated-pore diameter originally proposed in this study, called the voxel-percolation method (VPM), are compared in this paper. In addition, the limitations of the REV, the definition of the pore diameter, and the effectiveness of the VPM for an assessment of the pore diameter are discussed.
NASA Astrophysics Data System (ADS)
Davies, C. W.; Davie, D. C.; Charles, D. A.
2015-12-01
Geological disposal of nuclear waste is being increasingly considered to deal with the growing volume of waste resulting from the nuclear legacy of numerous nations. Within the UK there is 650,000 cubic meters of waste safely stored and managed in near-surface interim facilities but with no conclusive permanent disposal route. A Geological Disposal Facility with incorporated Engineered Barrier Systems are currently being considered as a permanent waste management solution (Fig.1). This research focuses on the EBS bentonite buffer/waste canister interface, and experimentally replicates key environmental phases that would occur after canister emplacement. This progresses understanding of the temporal evolution of the EBS and the associated impact on its engineering, mineralogical and physicochemical state and considers any consequences for the EBS safety functions of containment and isolation. Correlation of engineering properties to the physicochemical state is the focus of this research. Changes to geotechnical properties such as Atterberg limits, swelling pressure and swelling kinetics are measured after laboratory exposure to THMC variables from interface and batch experiments. Factors affecting the barrier, post closure, include corrosion product interaction, precipitation of silica, near-field chemical environment, groundwater salinity and temperature. Results show that increasing groundwater salinity has a direct impact on the buffer, reducing swelling capacity and plasticity index by up to 80%. Similarly, thermal loading reduces swelling capacity by 23% and plasticity index by 5%. Bentonite/steel interaction studies show corrosion precipitates diffusing into compacted bentonite up to 3mm from the interface over a 4 month exposure (increasing with temperature), with reduction in swelling capacity in the affected zone, probably due to the development of poorly crystalline iron oxides. These results indicate that groundwater conditions, temperature and corrosion may affect the engineering performance of the bentonite buffer such that any interfaces between bentonite blocks that may be present immediately following buffer emplacement may persist in the longer term.
Baum, Rex L.; Godt, Jonathan W.; Highland, Lynn M.
2008-01-01
The idea for Landslides and Engineering Geology of the Seattle, Washington, Areagrew out of a major landslide disaster that occurred in the Puget Sound region at the beginning of 1997. Unusually heavy snowfall in late December 1996 followed by warm, intense rainfall on 31 December through 2 January 1997 produced hundreds of damaging landslides in communities surrounding Puget Sound. This disaster resulted in significant efforts of the local geotechnical community and local governments to repair the damage and to mitigate the effects of future landslides. The magnitude of the disaster attracted the attention of the U.S. Geological Survey (USGS), which was just beginning a large multihazards project for Puget Sound. The USGS immediately added a regional study of landslides to that project. Soon a partnership formed between the City of Seattle and the USGS to assess landslide hazards of Seattle.
Performance of San Fernando dams during 1994 Northridge earthquake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardet, J.P.; Davis, C.A.
1996-07-01
The 1994 Northridge and 1971 San Fernando Earthquakes subjected the Lower and Upper San Fernando Dams of the Van Norman Complex in the San Fernando Valley, Calif., to strong near-source ground motions. In 1994, these earth dams, which were out of service and retained only a few meters of water, extensively cracked and settled due to the liquefaction of their hydraulic fill. The Lower San Fernando Dam moved over 15 cm upstream as the hydraulic fill liquefied beneath its upstream slope. The Upper San Fernando Dam moved even more and deformed in a complicated three-dimensional pattern. The responses of themore » Lower and Upper San Fernando Dams during the 1994 Northridge Earthquake, although less significant than in 1971, provide the geotechnical engineering community with two useful case histories.« less
Difference in rockburst hazard in ore and coal mines
NASA Astrophysics Data System (ADS)
Lovchikov, AV
2018-03-01
In the Russian mining and engineering literature, in most cases, there is no difference in the assessment of the rockburst hazards in metal and coal mines. Nevertheless, it exists, in view of the difference in geological and geotechnical conditions of coal and ore deposits. Since ore deposits occur in the solid magmatic or metamorphic rock masses, the strongest induced earthquakes are much more powerful in ore mines than in coal mines. The main difference of rockbursting lies in the difference of natural stress state: gravity stress state in the coal fields and gravity-and-tectonic stress state in ore mines. The actual stresses are mostly vertical in the first case and horizontal in the second case, which conditions the difference in rockburst hazard in coal and ore mines.
A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys.
Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H Felix
2015-09-25
The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system's functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements.
Compressive Properties and Anti-Erosion Characteristics of Foam Concrete in Road Engineering
NASA Astrophysics Data System (ADS)
Li, Jinzhu; Huang, Hongxiang; Wang, Wenjun; Ding, Yifan
2018-01-01
To analyse the compression properties and anti-erosion characteristics of foam concrete, one dimensional compression tests were carried out using ring specimens of foam concrete, and unconfined compression tests were carried out using foam concrete specimens cured in different conditions. The results of one dimensional compression tests show that the compression curve of foam concrete has two critical points and three stages, which has significant difference with ordinary geotechnical materials such as soil. Based on the compression curve the compression modulus of each stage were determined. The results of erosion tests show that sea water has a slight influence on the long-term strength of foam concrete, while the sulphate solution has a significant influence on the long-term strength of foam concrete, which needs to pay more attention.
SH-wave refraction/reflection and site characterization
Wang, Z.; Street, R.L.; Woolery, E.W.; Madin, I.P.
2000-01-01
Traditionally, nonintrusive techniques used to characterize soils have been based on P-wave refraction/reflection methods. However, near-surface unconsolidated soils are oftentimes water-saturated, and when groundwater is present at a site, the velocity of the P-waves is more related to the compressibility of the pore water than to the matrix of the unconsolidated soils. Conversely, SH-waves are directly relatable to the soil matrix. This makes SH-wave refraction/reflection methods effective in site characterizations where groundwater is present. SH-wave methods have been used extensively in site characterization and subsurface imaging for earthquake hazard assessments in the central United States and western Oregon. Comparison of SH-wave investigations with geotechnical investigations shows that SH-wave refraction/reflection techniques are viable and cost-effective for engineering site characterization.
Helical piles: an innovative foundation design option for offshore wind turbines.
Byrne, B W; Houlsby, G T
2015-02-28
Offshore wind turbines play a key part in the renewable energy strategy in the UK and Europe as well as in other parts of the world (for example, China). The majority of current developments, certainly in UK waters, have taken place in relatively shallow water and close to shore. This limits the scale of the engineering to relatively simple structures, such as those using monopile foundations, and these have been the most common design to date, in UK waters. However, as larger turbines are designed, or they are placed in deeper water, it will be necessary to use multi-footing structures such as tripods or jackets. For these designs, the tension on the upwind footing becomes the critical design condition. Driven pile foundations could be used, as could suction-installed foundations. However, in this paper, we present another concept-the use of helical pile foundations. These foundations are routinely applied onshore where large tension capacities are required. However, for use offshore, a significant upscaling of the technology will be needed, particularly of the equipment required for installation of the piles. A clear understanding of the relevant geotechnical engineering will be needed if this upscaling is to be successful. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Engineering Characteristics of Chemically Treated Water-Repellent Kaolin
Choi, Youngmin; Choo, Hyunwook; Yun, Tae Sup; Lee, Changho; Lee, Woojin
2016-01-01
Water-repellent soils have a potential as alternative construction materials that will improve conventional geotechnical structures. In this study, the potential of chemically treated water-repellent kaolin clay as a landfill cover material is explored by examining its characteristics including hydraulic and mechanical properties. In order to provide water repellency to the kaolin clay, the surface of clay particle is modified with organosilanes in concentrations (CO) ranging from 0.5% to 10% by weight. As the CO increases, the specific gravity of treated clay tends to decrease, whereas the total organic carbon content of the treated clay tends to increase. The soil-water contact angle increases with an increase in CO until CO = 2.5%, and then maintains an almost constant value (≈134.0°). Resistance to water infiltration is improved by organosilane treatment under low hydrostatic pressure. However, water infiltration resistance under high hydrostatic pressure is reduced or exacerbated to the level of untreated clay. The maximum compacted dry weight density decreases with increasing CO. As the CO increases, the small strain shear modulus increases, whereas the effect of organosilane treatment on the constrained modulus is minimal. The results indicate that water-repellent kaolin clay possesses excellent engineering characteristics for a landfill cover material. PMID:28774098
MASW on the standard seismic prospective scale using full spread recording
NASA Astrophysics Data System (ADS)
Białas, Sebastian; Majdański, Mariusz; Trzeciak, Maciej; Gałczyński, Edward; Maksym, Andrzej
2015-04-01
The Multichannel Analysis of Surface Waves (MASW) is one of seismic survey methods that use the dispersion curve of surface waves in order to describe the stiffness of the surface. Is is used mainly for geotechnical engineering scale with total length of spread between 5 - 450 m and spread offset between 1 - 100 m, the hummer is the seismic source on this surveys. The standard procedure of MASW survey is: data acquisition, dispersion analysis and inversion of extracting dispersion curve to obtain the closest theoretical curve. The final result includes share-wave velocity (Vs) values at different depth along the surveyed lines. The main goal of this work is to expand this engineering method to the bigger scale with the length of standard prospecting spread of 20 km using 4.5 Hz version of vertical component geophones. The standard vibroseis and explosive method are used as the seismic source. The acquisition were conducted on the full spread all the time during each single shoot. The seismic data acquisition used for this analysis were carried out on the Braniewo 2014 project in north of Poland. The results achieved during standard MASW procedure says that this method can be used on much bigger scale as well. The different methodology of this analysis requires only much stronger seismic source.
Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST) Final Report
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Reeves, David M.; Abell, Paul A.; Asphaug, Erik; Abreu, Neyda M.; Bell, James F.; Bottke, William F.; Britt, Daniel T.; Campins, Humberto; Chodas, Paul W.;
2016-01-01
The Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST) was a two-month effort, chartered by NASA, to provide timely inputs for mission requirement formulation in support of the Asteroid Redirect Robotic Mission (ARRM) Requirements Closure Technical Interchange Meeting held December 15-16, 2015, to assist in developing an initial list of potential mission investigations, and to provide input on potential hosted payloads and partnerships. The FAST explored several aspects of potential science benefits and knowledge gain from the ARM. Expertise from the science, engineering, and technology communities was represented in exploring lines of inquiry related to key characteristics of the ARRM reference target asteroid (2008 EV5) for engineering design purposes. Specific areas of interest included target origin, spatial distribution and size of boulders, surface geotechnical properties, boulder physical properties, and considerations for boulder handling, crew safety, and containment. In order to increase knowledge gain potential from the mission, opportunities for partnerships and accompanying payloads were also investigated. Potential investigations could be conducted to reduce mission risks and increase knowledge return in the areas of science, planetary defense, asteroid resources and in-situ resource utilization, and capability and technology demonstrations. This report represents the FASTâ€"TM"s final product for the ARM.
The Evolving Role of Field and Laboratory Seismic Measurements in Geotechnical Engineering
NASA Astrophysics Data System (ADS)
Stokoe, K. H.
2017-12-01
The geotechnical engineering has been faced with the problem of characterizing geological materials for site-specific design in the built environment since the profession began. When one of the design requirements included determining the dynamic response of important and critical facilities to earthquake shaking or other types of dynamic loads, seismically-based measurements in the field and laboratory became important tools for direct characterization of the stiffnesses and energy dissipation (material damping) of these materials. In the 1960s, field seismic measurements using small-strain body waves were adapted from exploration geophysics. At the same time, laboratory measurements began using dynamic, torsional, resonant-column devices to measure shear stiffness and material damping in shear. The laboratory measurements also allowed parameters such as material type, confinement state, and nonlinear straining to be evaluated. Today, seismic measurements are widely used and evolving because: (1) the measurements have a strong theoretical basis, (2) they can be performed in the field and laboratory, thus forming an important link between these measurements, and (3) in recent developments in field testing involving surface waves, they are noninvasive which makes them cost effective in comparison to other methods. Active field seismic measurements are used today over depths ranging from about 5 to 1000 m. Examples of shear-wave velocity (VS) profiles evaluated using boreholes, penetrometers, suspension logging, and Rayleigh-type surface waves are presented. The VS measurements were performed in materials ranging from uncemented soil to unweathered rock. The coefficients of variation (COVs) in the VS profiles are generally less than 0.15 over sites with surface areas of 50 km2 or more as long as material types are not laterally mixed. Interestingly, the largest COVs often occur around layer boundaries which vary vertically. It is also interesting to observe how the stiffness of rock near the ground surface is generally overestimated. Finally, intact specimens of the geological materials recovered from many sites were tested dynamically in the laboratory. Values of VS measured in the field and laboratory are compared, and biases in VS at soil versus rock sites are shown to exhibit opposite trends.
NASA Astrophysics Data System (ADS)
Kavoura, K.; Kordouli, M.; Nikolakopoulos, K.; Elias, P.; Sykioti, O.; Tsagaris, V.; Drakatos, G.; Rondoyanni, Th.; Tsiambaos, G.; Sabatakakis, N.; Anastasopoulos, V.
2014-08-01
Landslide phenomena constitute a major geological hazard in Greece and especially in the western part of the country as a result of anthropogenic activities, growing urbanization and uncontrolled land - use. More frequent triggering events and increased susceptibility of the ground surface to instabilities as consequence of climate change impacts (continued deforestation mainly due to the devastating forest wildfires and extreme meteorological events) have also increased the landslide risk. The studied landslide occurrence named "Platanos" has been selected within the framework of "Landslide Vulnerability Model - LAVMO" project that aims at creating a persistently updated electronic platform assessing risks related with landslides. It is a coastal area situated between Korinthos and Patras at the northwestern part of the elongated graben of the Corinth Gulf. The paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes were digitized and implemented in a GIS platform with engineering geological maps for a three - dimensional subsurface model evaluation. This model is provided for being combined with inclinometer measurements for sliding surface location through the instability zone.
Harp, E.L.; Reid, M.E.; McKenna, J.P.; Michael, J.A.
2009-01-01
Loss of life and property caused by landslides triggered by extreme rainfall events demonstrates the need for landslide-hazard assessment in developing countries where recovery from such events often exceeds the country's resources. Mapping landslide hazards in developing countries where the need for landslide-hazard mitigation is great but the resources are few is a challenging, but not intractable problem. The minimum requirements for constructing a physically based landslide-hazard map from a landslide-triggering storm, using the simple methods we discuss, are: (1) an accurate mapped landslide inventory, (2) a slope map derived from a digital elevation model (DEM) or topographic map, and (3) material strength properties of the slopes involved. Provided that the landslide distribution from a triggering event can be documented and mapped, it is often possible to glean enough topographic and geologic information from existing databases to produce a reliable map that depicts landslide hazards from an extreme event. Most areas of the world have enough topographic information to provide digital elevation models from which to construct slope maps. In the likely event that engineering properties of slope materials are not available, reasonable estimates can be made with detailed field examination by engineering geologists or geotechnical engineers. Resulting landslide hazard maps can be used as tools to guide relocation and redevelopment, or, more likely, temporary relocation efforts during severe storm events such as hurricanes/typhoons to minimize loss of life and property. We illustrate these methods in two case studies of lethal landslides in developing countries: Tegucigalpa, Honduras (during Hurricane Mitch in 1998) and the Chuuk Islands, Micronesia (during Typhoon Chata'an in 2002).
A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys
Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H. Felix
2015-01-01
The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system’s functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements. PMID:26404270
Fines classification based on sensitivity to pore-fluid chemistry
Jang, Junbong; Santamarina, J. Carlos
2016-01-01
The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil “electrical sensitivity.” Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems.
NASA Astrophysics Data System (ADS)
Hallett, Paul; Ogden, Mike
2015-04-01
Soil biology has a fascinating capacity to manipulate pore structure by altering or overcoming hydrological and mechanical properties of soil. Many have postulated, quite rightly, that this capacity of soil biology to 'engineer' its habitat drives its diversity, improves competitiveness and increases resilience to external stresses. A large body of observational research has quantified pore structure evolution accompanied by the growth of organisms in soil. Specific compounds that are exuded by organisms or the biological structures they create have been isolated and found to correlate well with observed changes to pore structure or soil stability. This presentation will provide an overview of basic mechanical and hydrological properties of soil that are affected by biology, and consider missing data that are essential to model how they impact soil structure evolution. Major knowledge gaps that prevent progress will be identified and suggestions will be made of how research in this area should progress. We call for more research to gain a process based understanding of structure formation by biology, to complement observational studies of soil structure before and after imposed biological activity. Significant advancement has already been made in modelling soil stabilisation by plant roots, by combining data on root biomechanics, root-soil interactions and soil mechanical properties. Approaches for this work were developed from earlier materials science and geotechnical engineering research, and the same ethos should be adopted to model the impacts of other biological compounds. Fungal hyphae likely reinforce soils in a similar way to plant roots, with successful biomechanical measurements of these micron diameter structures achieved with micromechanical test frames. Extending root reinforcement models to fungi would not be a straightforward exercise, however, as interparticle bonding and changes to pore water caused by fungal exudates could have a major impact on structure formation and stability. Biological exudates from fungi, bacteria or roots have been found to decrease surface tension and increase viscosity of pore water, with observed impacts to soil strength and water retention. Modelling approaches developed in granular mechanics and geotechnical engineering could be built upon to incorporate biological transformations of hydrological and mechanical properties of soil. With new testing approaches, adapted from materials science, pore scale hydromechanical impacts from biological exudates can be quantified. The research can be complemented with model organisms with differences in biological structures (e.g. root hair mutants), exudation or other properties. Coupled with technological advances that provide 4D imaging of soil structure at relatively rapid capture rates, the potential opportunities to disentangle and model how biology drives soil structure evolution and stability are vast. By quantifying basic soil hydrological and mechanical processes that are driven by soil biology, unknown unknowns may also emerge, providing new insight into how soils function.
Geotechnical risk analysis by flat dilatometer (DMT)
NASA Astrophysics Data System (ADS)
Amoroso, Sara; Monaco, Paola
2015-04-01
In the last decades we have assisted at a massive migration from laboratory testing to in situ testing, to the point that, today, in situ testing is often the major part of a geotechnical investigation. The State of the Art indicates that direct-push in situ tests, such as the Cone Penetration Test (CPT) and the Flat Dilatometer Test (DMT), are fast and convenient in situ tests for routine site investigation. In most cases the DMT estimated parameters, in particular the undrained shear strength su and the constrained modulus M, are used with the common design methods of Geotechnical Engineering for evaluating bearing capacity, settlements etc. The paper focuses on the prediction of settlements of shallow foundations, that is probably the No. 1 application of the DMT, especially in sands, where undisturbed samples cannot be retrieved, and on the risk associated with their design. A compilation of documented case histories that compare DMT-predicted vs observed settlements, was collected by Monaco et al. (2006), indicating that, in general, the constrained modulus M can be considered a reasonable "operative modulus" (relevant to foundations in "working conditions") for settlement predictions based on the traditional linear elastic approach. Indeed, the use of a site investigation method, such as DMT, that improve the accuracy of design parameters, reduces risk, and the design can then center on the site's true soil variability without parasitic test variability. In this respect, Failmezger et al. (1999, 2015) suggested to introduce Beta probability distribution, that provides a realistic and useful description of variability for geotechnical design problems. The paper estimates Beta probability distribution in research sites where DMT tests and observed settlements are available. References Failmezger, R.A., Rom, D., Ziegler, S.R. (1999). "SPT? A better approach of characterizing residual soils using other in-situ tests", Behavioral Characterics of Residual Soils, B. Edelen, Ed., ASCE, Reston, VA, pp. 158-175. Failmezger, R.A., Till, P., Frizzell, J., Kight, S. (2015). "Redesign of shallow foundations using dilatometer tests-more case studies after DMT'06 conference", Proc. 2nd International Conference on the Flat Dilatometer, June 14-16 (paper accepted). Monaco, P., Totani, G., Calabrese, M. (2006). "DMT-predicted vs observed settlements: a review of the available experience". In "Flat Dilatometer Testing", Proc. 2nd International Conference on the Flat Dilatometer, Washington, D.C., USA, April 2-5, 244-252. R.A. Failmezger and J.B. Anderson (eds).
Hydro-dynamic and geotechnical effects in bridge scour processes
NASA Astrophysics Data System (ADS)
Radice, Alessio; Ballio, Francesco; Tran, Chau
2010-05-01
Local pier and abutment scour is a crucial topic in hydraulic engineering, due to the significant social and economical impact of bridge failure. Therefore, reliable tools for scour prediction are necessary for both design and vulnerability evaluation of the structures. In recent years, phenomenological studies of the local scour dynamics have been undertaken, to yield insight over the small scale mechanisms of the process. Experimental measurement and numerical modelling of the scouring flow field have shown the horseshoe vortex and the principal vortex as the most evident features of the flow pattern at piers and abutments, respectively. The vortex structure near the obstacles typically presents a high turbulence level compared to that of the incoming flow, and the temporal fluctuations in water velocity make the coherent vortical structures unstable in time. Furthermore, the statistical distributions of velocity values in junction flows often present a bimodal shape. The kinematics of the bottom grains reflects the unsteadiness of the flow pattern. Indeed, recent detailed measurements of particle motion in an abutment scour hole proved that a succession of opposite motion events takes place at several locations within the hole. Events of sediment motion directed away from the obstacles can be attributed to sediment pickup and transport by the turbulent flow field, whilst those with motion towards the abutment can be associated to sediment sliding along the slopes of the hole due to geotechnical instability. On a qualitative basis the presence of geotechnical effects is indeed relatively acknowledged. Despite the general agreement on the qualitative features of the scour process, a quantitative definition of the relevance of sliding for the sediment kinematics in a local scour process is still lacking. Therefore, the purpose of the present work has been to make a specific analysis of the different types of sediment motion events, aimed to a quantification of the relevance of sediment sliding for a proper process modelling. Two experimental configurations have been considered, namely a vertical-wall abutment and a circular pier. Attention has been focused on the well developed stages of the erosion process, where the grain instantaneous movements have been divided into two populations, namely the "turbulence-dominated" events (those in which the particle motion is triggered by the turbulent flow field) and the "gravity-dominated" events (those in which the particles slide along the slopes of the scour hole due to geotechnical instability). A relevant difference has been found between the dynamics of gravity-dominated and turbulence-dominated events. In addition, it has been found that the presence of geotechnical effects in the erosion hole may significantly alter the scour rate. Potential implications of the present results for the modelling of local scour processes have been discussed.
Li, Yong; Wang, Hanpeng; Zhu, Weishen; Li, Shucai; Liu, Jian
2015-08-31
Fiber Bragg Grating (FBG) sensors are comprehensively recognized as a structural stability monitoring device for all kinds of geo-materials by either embedding into or bonding onto the structural entities. The physical model in geotechnical engineering, which could accurately simulate the construction processes and the effects on the stability of underground caverns on the basis of satisfying the similarity principles, is an actual physical entity. Using a physical model test of underground caverns in Shuangjiangkou Hydropower Station, FBG sensors were used to determine how to model the small displacements of some key monitoring points in the large-scale physical model during excavation. In the process of building the test specimen, it is most successful to embed FBG sensors in the physical model through making an opening and adding some quick-set silicon. The experimental results show that the FBG sensor has higher measuring accuracy than other conventional sensors like electrical resistance strain gages and extensometers. The experimental results are also in good agreement with the numerical simulation results. In conclusion, FBG sensors could effectively measure small displacements of monitoring points in the whole process of the physical model test. The experimental results reveal the deformation and failure characteristics of the surrounding rock mass and make some guidance for the in situ engineering construction.
Li, Yong; Wang, Hanpeng; Zhu, Weishen; Li, Shucai; Liu, Jian
2015-01-01
Fiber Bragg Grating (FBG) sensors are comprehensively recognized as a structural stability monitoring device for all kinds of geo-materials by either embedding into or bonding onto the structural entities. The physical model in geotechnical engineering, which could accurately simulate the construction processes and the effects on the stability of underground caverns on the basis of satisfying the similarity principles, is an actual physical entity. Using a physical model test of underground caverns in Shuangjiangkou Hydropower Station, FBG sensors were used to determine how to model the small displacements of some key monitoring points in the large-scale physical model during excavation. In the process of building the test specimen, it is most successful to embed FBG sensors in the physical model through making an opening and adding some quick-set silicon. The experimental results show that the FBG sensor has higher measuring accuracy than other conventional sensors like electrical resistance strain gages and extensometers. The experimental results are also in good agreement with the numerical simulation results. In conclusion, FBG sensors could effectively measure small displacements of monitoring points in the whole process of the physical model test. The experimental results reveal the deformation and failure characteristics of the surrounding rock mass and make some guidance for the in situ engineering construction. PMID:26404287
Shallow subsurface structures and geotechnical characteristics of Tal El-Amarna area, middle Egypt
NASA Astrophysics Data System (ADS)
Toni, Mostafa; Hosny, Ahmed; Attia, Mohsen M.; Hassoup, Awad; El-Sharkawy, Amr
2013-12-01
The shallow seismic refraction profiling was carried out at 18 sites in Tal El-Amarna, which is a flat area on the eastern bank of the Nile River, 50 km south of El Minia Governorate, middle Egypt. The collected data are used to estimate the P-wave velocity and to delineate the near-surface ground model beneath the study area. This study is supported by the National Research Institute of Astronomy and Geophysics due to the historical interest of the Tal El-Amarna area as a famous tourist place where there exist many Pharaoh temples and tombs. This area is low seismically active, but it is probably of high vulnerability due to the influence of the local geological conditions on earthquake ground motion, as well as the presence of poor constructions in the absence of various issues such as building designs, quality of building materials, etc. Another dataset at the study area is obtained by multi-channel passive source (microtremor) measurements, which have been recorded at four arrays. The frequency-wavenumber (f-k) method was used to derive the dispersion curves from the raw signals at each array. The resulted dispersion curves were inverted using the neighborhood algorithm to obtain the shear and P-wave velocity models. The concluded Vs and Vp values provide a preliminary estimation of the geotechnical parameters and site classification for the shallow soil as they are of great interest in civil engineering applications.
NASA Astrophysics Data System (ADS)
Radhakrishnan, G.; Anjan Kumar, M.; Raju, G. V. R. Prasada
2017-12-01
Expansive soils are known to be problematic due to their nature and behavior. These soils show volume changes due to changes in moisture content, which cause distortions to structures constructed on them. Relentless efforts are being made all over the world to find solution to the problems of expansive soils. In the case of flexible pavements, unless the subgrade is appropriately treated during the construction stage, the maintenance cost will increase substantially due to deterioration. There are many methods of stabilising expansive subgrade soils. Chemical stabilisation is one such technique employed in improving the engineering properties of the expansive soil. Investigations on chemical stabilization of expansive soils revealed that conventionally used lime could be replaced by the chloride compound chemicals because of their ready dissolvability in water, ease of mixing with soil and supply of sufficient cations for ready cation exchange. The main objective of this work is to study the effectiveness of three chloride compound chemicals, ammonium chloride (NH4Cl), magnesium chloride (MgCl2) and aluminum chloride (AlCl3) on the geotechnical properties of an expansive soil. The chemicals content up to 2% were added to the soil and its effect on the index limits, swell pressure, compaction characteristics as well as California bearing ratio are studied. It was observed that aluminum chloride chemical content has a significantly higher influence than the other two chemicals and it could be recognized as an effective chemical stabilizer.
NASA Astrophysics Data System (ADS)
Hazreek, Z. A. M.; Rosli, S.; Fauziah, A.; Wijeyesekera, D. C.; Ashraf, M. I. M.; Faizal, T. B. M.; Kamarudin, A. F.; Rais, Y.; Dan, M. F. Md; Azhar, A. T. S.; Hafiz, Z. M.
2018-04-01
The efficiency of civil engineering structure require comprehensive geotechnical data obtained from site investigation. In the past, conventional site investigation was heavily related to drilling techniques thus suffer from several limitations such as time consuming, expensive and limited data collection. Consequently, this study presents determination of soil moisture content using laboratory experimental and field electrical resistivity values (ERV). Field and laboratory electrical resistivity (ER) test were performed using ABEM SAS4000 and Nilsson400 soil resistance meter. Soil sample used for resistivity test was tested for characterization test specifically on particle size distribution and moisture content test according to BS1377 (1990). Field ER data was processed using RES2DINV software while laboratory ER data was analyzed using SPSS and Excel software. Correlation of ERV and moisture content shows some medium relationship due to its r = 0.506. Moreover, coefficient of determination, R2 analyzed has demonstrate that the statistical correlation obtain was very good due to its R2 value of 0.9382. In order to determine soil moisture content based on statistical correlation (w = 110.68ρ-0.347), correction factor, C was established through laboratory and field ERV given as 19.27. Finally, this study has shown that soil basic geotechnical properties with particular reference to water content was applicably determined using integration of laboratory and field ERV data analysis thus able to compliment conventional approach due to its economic, fast and wider data coverage.
Cherokee Wind Energy Development - Feasibility and Pre-Construction Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, Andy
Cherokee Nation Businesses (CNB) received a grant from the US Department of Energy to explore feasibility and pursue development of a wind power generation facility on Cherokee land in north-central Oklahoma. This project followed several years of initial study exploring the possibility of commercial-scale wind power generation on primarily agricultural land owned by the Cherokee Nation. This project produced detailed analysis of the legal, financial and market viability of such generation facilities, and encompassed a full technical evaluation of the engineering, environmental, and geotechnical aspects of installing this capacity. During the course of this project, information gleaned from this explorationmore » changed CNB’s thinking about the best course of action for Cherokee participation in the development, eventually moving away from an equity-owner model and towards utilization of the land asset as a resource while mitigating Cherokee financial and operational risk.« less
Deep bore hole instrumentation along San Francisco Bay Bridges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakun, W.; Bowman, J.; Clymer, R.
1998-10-01
The Bay Bridges down hole network consists of sensors in bore holes that are drilled 100 ft. into bedrock around and in the San Francisco Bay. Between 2 and 8 instruments have been spaced along the Dumbarton, San Mateo, Bay, and San Rafael bridges. The instruments will provide multiple use data that is important to geotechnical, structural engineering, and seismological studies. The holes are between 100 and 1000 ft deep and were drilled by Caltrans. There are twenty- one sensor packages at fifteen sites. Extensive financial support is being contributed by Caltrans, UCB, LBL, LLNL-LDRD, U.C. Campus/Laboratory Collaboration (CLC) program,more » and USGS. The down hole instrument package contains a three component HS-1 seismometer and three orthogonal Wilcox 73 1 accelerometers, and is capable of recording a micro g from local M = 1.0 earthquakes to 0.5 g strong ground motion form large Bay Area earthquakes.« less
Moyle, Phillip R.; Wallis, John C.; Bliss, James D.; Bolm, Karen D.
2004-01-01
The U.S. Geological Survey (USGS) compiled a database of aggregate sites and geotechnical sample data for six counties - Ada, Boise, Canyon, Elmore, Gem, and Owyhee - in southwest Idaho as part of a series of studies in support of the Bureau of Land Management (BLM) planning process. Emphasis is placed on sand and gravel sites in deposits of the Boise River, Snake River, and other fluvial systems and in Neogene lacustrine deposits. Data were collected primarily from unpublished Idaho Transportation Department (ITD) records and BLM site descriptions, published Army Corps of Engineers (ACE) records, and USGS sampling data. The results of this study provides important information needed by land-use planners and resource managers, particularly in the BLM, to anticipate and plan for demand and development of sand and gravel and other mineral material resources on public lands in response to the urban growth in southwestern Idaho.
Thermo-hydro-mechanical-chemical processes in fractured-porous media: Benchmarks and examples
NASA Astrophysics Data System (ADS)
Kolditz, O.; Shao, H.; Görke, U.; Kalbacher, T.; Bauer, S.; McDermott, C. I.; Wang, W.
2012-12-01
The book comprises an assembly of benchmarks and examples for porous media mechanics collected over the last twenty years. Analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to many applications in environmental engineering, such as geological waste deposition, geothermal energy utilisation, carbon capture and storage, water resources management, hydrology, even climate change. In order to assess the feasibility as well as the safety of geotechnical applications, process-based modelling is the only tool to put numbers, i.e. to quantify future scenarios. This charges a huge responsibility concerning the reliability of computational tools. Benchmarking is an appropriate methodology to verify the quality of modelling tools based on best practices. Moreover, benchmarking and code comparison foster community efforts. The benchmark book is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation.
Iverson, Richard M.; LeVeque, Randall J.
2009-01-01
A recent workshop at the University of Washington focused on mathematical and computational aspects of modeling the dynamics of dense, gravity-driven mass movements such as rock avalanches and debris flows. About 30 participants came from seven countries and brought diverse backgrounds in geophysics; geology; physics; applied and computational mathematics; and civil, mechanical, and geotechnical engineering. The workshop was cosponsored by the U.S. Geological Survey Volcano Hazards Program, by the U.S. National Science Foundation through a Vertical Integration of Research and Education (VIGRE) in the Mathematical Sciences grant to the University of Washington, and by the Pacific Institute for the Mathematical Sciences. It began with a day of lectures open to the academic community at large and concluded with 2 days of focused discussions and collaborative work among the participants.
NASA Astrophysics Data System (ADS)
El Shamy, Usama; Abdoun, Tarek; McMartin, Flora; Pando, Miguel A.
2013-06-01
We report the results of a pilot study aimed at developing, implementing, and assessing an educational module that integrates remote major research instrumentation into undergraduate classes. Specifically, this study employs Internet Web-based technologies to allow for real-time video monitoring and execution of cutting-edge experiments. The students' activities within the module are centred on building a model of a shallow foundation on a sand deposit utilising a centrifuge facility and using this model for: (1) visual observation of the response of soil-foundation systems, (2) learning the use of instrumentation, (3) interpretation of acquired data, and (4) comparing experimental results to theoretical predictions. Testing a soil-foundation system helped the students identify the lab experiments needed to analyse and design the system. A survey was used to gauge students' perceptions of learning as a result of introducing the module, which were found to be positive.
NASA Astrophysics Data System (ADS)
Ashraf, M. A. M.; Kumar, N. S.; Yusoh, R.; Hazreek, Z. A. M.; Aziman, M.
2018-04-01
Site classification utilizing average shear wave velocity (Vs(30) up to 30 meters depth is a typical parameter. Numerous geophysical methods have been proposed for estimation of shear wave velocity by utilizing assortment of testing configuration, processing method, and inversion algorithm. Multichannel Analysis of Surface Wave (MASW) method is been rehearsed by numerous specialist and professional to geotechnical engineering for local site characterization and classification. This study aims to determine the site classification on soft and hard ground using MASW method. The subsurface classification was made utilizing National Earthquake Hazards Reduction Program (NERHP) and international Building Code (IBC) classification. Two sites are chosen to acquire the shear wave velocity which is in the state of Pulau Pinang for soft soil and Perlis for hard rock. Results recommend that MASW technique can be utilized to spatially calculate the distribution of shear wave velocity (Vs(30)) in soil and rock to characterize areas.
Mining method selection by integrated AHP and PROMETHEE method.
Bogdanovic, Dejan; Nikolic, Djordje; Ilic, Ivana
2012-03-01
Selecting the best mining method among many alternatives is a multicriteria decision making problem. The aim of this paper is to demonstrate the implementation of an integrated approach that employs AHP and PROMETHEE together for selecting the most suitable mining method for the "Coka Marin" underground mine in Serbia. The related problem includes five possible mining methods and eleven criteria to evaluate them. Criteria are accurately chosen in order to cover the most important parameters that impact on the mining method selection, such as geological and geotechnical properties, economic parameters and geographical factors. The AHP is used to analyze the structure of the mining method selection problem and to determine weights of the criteria, and PROMETHEE method is used to obtain the final ranking and to make a sensitivity analysis by changing the weights. The results have shown that the proposed integrated method can be successfully used in solving mining engineering problems.
Incorporating natural hazard assessments into municipal master-plans; case-studies from Israel
NASA Astrophysics Data System (ADS)
Katz, Oded
2010-05-01
The active Dead Sea Rift (DSR) runs along the length of Israel, making the entire state susceptible to earthquake-related hazards. Current building codes generally acknowledge seismic hazards and direct engineers towards earthquake-resistant structures. However, hazard mapping on a scale fit for municipal/governmental planning is subject to local initiative and is currently not mandatory as seems necessary. In the following, a few cases of seismic-hazard evaluation made by the Geological Survey of Israel are presented, emphasizing the reasons for their initiation and the way results were incorporated (or not). The first case is a seismic hazard qualitative micro-zonation invited by the municipality of Jerusalem as part of a new master plan. This work resulted in maps (1:50,000; GIS format) identifying areas prone to (1) amplification of seismic shaking due to site characteristics (outcrops of soft rocks or steep topography) and (2) sites with earthquake induced landslide (EILS) hazard. Results were validated using reports from the 1927, M=6.2 earthquake that originated along the DSR about 30km east of Jerusalem. Although the hazard maps were accepted by municipal authorities, practical use by geotechnical engineers working within the frame of the new master-plan was not significant. The main reason for that is apparently a difference of opinion between the city-engineers responsible for implementing the new master-plan and the geologists responsible of the hazard evaluation. The second case involves evaluation of EILS hazard for two towns located further north along the DSR, Zefat and Tiberias. Both were heavily damaged more than once by strong earthquakes in past centuries. Work was carried out as part of a governmental seismic-hazard reduction program. The results include maps (1:10,000 scales) of sites with high EILS hazard identified within city limits. Maps (in GIS format) were sent to city engineers with reports explaining the methods and results. As far as we know, widespread implementation of the maps within municipal master plans never came about, and there was no open discussion between city engineers and the Geological Survey. The main reasons apparently are (1) a lack, until recently, of mandatory building codes requiring incorporation of EILS hazard; (2) budget priorities; (3) failure to involve municipality personnel in planning and executing the EILS hazard evaluation. These cases demonstrate that for seismic hazard data to be incorporated and implemented within municipal master-plans there needs to be (1) active involvement of municipal officials and engineers from the early planning stages of the evaluation campaign, and (2) a-priori dedication of funds towards implementation of evaluation results.
Geotechnical applications of LiDAR pertaining to geomechanical evaluation and hazard identification
NASA Astrophysics Data System (ADS)
Lato, Matthew J.
Natural hazards related to ground movement that directly affect the safety of motorists and highway infrastructure include, but are not limited to, rockfalls, rockslides, debris flows, and landslides. This thesis specifically deals with the evaluation of rockfall hazards through the evaluation of LiDAR data. Light Detection And Ranging (LiDAR) is an imaging technology that can be used to delineate and evaluate geomechanically-controlled hazards. LiDAR has been adopted to conduct hazard evaluations pertaining to rockfall, rock-avalanches, debris flows, and landslides. Characteristics of LiDAR surveying, such as rapid data acquisition rates, mobile data collection, and high data densities, pose problems to traditional CAD or GIS-based mapping methods. New analyses methods, including tools specifically oriented to geomechanical analyses, are needed. The research completed in this thesis supports development of new methods, including improved survey techniques, innovative software workflows, and processing algorithms to aid in the detection and evaluation of geomechanically controlled rockfall hazards. The scientific research conducted between the years of 2006-2010, as presented in this thesis, are divided into five chapters, each of which has been published by or is under review by an international journal. The five research foci are: (i) geomechanical feature extraction and analysis using LiDAR data in active mining environments; (ii) engineered monitoring of rockfall hazards along transportation corridors: using mobile terrestrial LiDAR; (iii) optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rockmasses; (iv) location orientation bias when using static LiDAR data for geomechanical analysis; and (v) evaluating roadside rockmasses for rockfall hazards from LiDAR data: optimizing data collection and processing protocols. The research conducted pertaining to this thesis has direct and significant implications with respect to numerous engineering projects that are affected by geomechanical stability issues. The ability to efficiently and accurately map discontinuities, detect changes, and standardize roadside geomechanical stability analyses from remote locations will fundamentally change the state-of-practice of geotechnical investigation workflows and repeatable monitoring. This, in turn, will lead to earlier detection and definition of potential zones of instability, will allow for progressive monitoring and risk analysis, and will indicate the need for pro-active slope improvement and stabilization.
NASA Astrophysics Data System (ADS)
Edlund, C. A.
2017-12-01
The Department of Defense (DoD) is planning over $500M in military construction on Eielson Air Force Base (AFB) within the next three fiscal years. This construction program will expand the footprint of facilities and change the storm water management scheme, which will have second order effects on the underlying permafrost layer. These changes in permafrost will drive engineering decision making at local and regional levels, and help shape the overall strategy for military readiness in the Arctic. Although many studies have attempted to predict climate change induced permafrost degradation, very little site-specific knowledge exists on the anthropogenic effects to permafrost at this location. In 2016, the permafrost degradation rates at Eielson AFB were modeled using the Geophysics Institute Permafrost Laboratory (GIPL) 2.1 model and limited available geotechnical and climate data. Model results indicated a degradation of the discontinuous permafrost layer at Eielson AFB of up to 7 meters in depth over the next century. To further refine an understanding of the geophysics at Eielson AFB and help engineers and commanders make more informed decisions on engineering and operations in the arctic, this project established two permafrost monitoring stations near the future construction sites. Installation of the stations occurred in July 2017. Permafrost was located and characterized using two Electrical Resistivity Tomography surveys, as well as direct frost probe measurements. Using this data, the research team optimized the placement location and depth of two long term ground temperature monitoring stations, and then installed the stations for data collection. The data set generated by these stations are the first of their kind at Eielson AFB, and represent the first systematic effort in the DoD to quantify permafrost condition before, during, and after construction and other anthropogenic activities in order to fully understand the effects of that activity in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.
Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.
Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less
Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash
Grau, Francisco; Choo, Hyunwook; Hu, Jong Wan; Jung, Jongwon
2015-01-01
Biomasses are organic materials that are derived from any living or recently-living structure. Plenty of biomasses are produced nationwide. Biomasses are mostly combusted and usually discarded or disposed of without treatment as biomass ashes, which include wood and sugarcane bagasse ashes. Thus, recycling or treatment of biomass ashes leads to utilizing the natural materials as an economical and environmental alternative. This study is intended to provide an environmental solution for uncontrolled disposal of biomass ashes by way of recycling the biomass ash and replacing the soils in geotechnical engineering projects. Therefore, in this study, characteristic tests of wood and sugarcane bagasse ashes that are considered the most common biomass ashes are conducted. The test of chemical compositions of biomass ashes is conducted using energy dispersive X-ray spectroscopy (EDS), and Scanning Electron Microscope (SEM), and heavy metal analysis is also conducted. Engineering behaviors including hydraulic conductivity, constrained modulus and shear modulus are examined. Also, coal fly ash Class C is used in this study for comparison with biomass ashes, and Ottawa 20/30 sands containing biomass ashes are examined to identify the soil replacement effect of biomass ashes. The results show that the particle sizes of biomass ashes are halfway between coal fly ash Class C and Ottawa 20/30 sand, and biomass ashes consist of a heterogeneous mixture of different particle sizes and shapes. Also, all heavy metal concentrations were found to be below the US Environmental Protection Agency (EPA) maximum limit. Hydraulic conductivity values of Ottawa 20/30 sand decrease significantly when replacing them with only 1%–2% of biomass ashes. While both the constrained modulus and shear modulus of biomass ashes are lower than Ottawa 20/30 sand, those of mixtures containing up to 10% biomass ashes are little affected by replacing the soils with biomass ashes. PMID:28793611
Formulation Assessment and Support Team (FAST) for the Asteroid Redirect Mission (ARM)
NASA Astrophysics Data System (ADS)
Mazanek, Daniel D.; Abell, Paul; Reeves, David M.; NASA Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST)
2016-10-01
The Formulation Assessment and Support Team (FAST) for the Asteroid Redirect Mission (ARM) was a two-month effort, chartered by NASA, to provide timely inputs for mission requirement formulation in support of the Asteroid Redirect Robotic Mission (ARRM) Requirements Closure Technical Interchange Meeting held December 15-16, 2015. Additionally, the FAST was tasked with developing an initial list of potential mission investigations and providing input on potential hosted payloads and partnerships. The FAST explored several aspects of potential science benefits and knowledge gain from the ARM. Expertise from the science, engineering, and technology communities was represented in exploring lines of inquiry related to key characteristics of the ARRM reference target asteroid (2008 EV5) for engineering design purposes. Specific areas of interest included target origin, spatial distribution and size of boulders, surface geotechnical properties, boulder physical properties, and considerations for boulder handling, crew safety, and containment. In order to increase knowledge gain potential from the mission, opportunities for partnerships and accompanying payloads that could be provided by domestic and international partners were also investigated. The ARM FAST final report was publicly released on February 18, 2016 and represents the FAST's final product. The report and associated public comments are being used to support mission requirements formulation and serve as an initial inquiry to the science and engineering communities relating to the characteristics of the ARRM reference target asteroid. This report also provides a suggested list of potential investigations sorted and grouped based on their likely benefit to ARM and potential relevance to NASA science and exploration goals. These potential investigations could be conducted to reduce mission risks and increase knowledge return in the areas of science, planetary defense, asteroid resources and in-situ resource utilization (ISRU), and capability and technology demonstrations. This summary presentation will provide an overview of the FAST's effort and associated final report.
Dealing with Natural Disasters: Preparedness versus Post-Event Response
NASA Astrophysics Data System (ADS)
Sitar, N.
2015-12-01
Management or mitigation of natural disasters is comprised of two distinct elements: disaster preparedness and disaster response. Fundamentally disasters fall into two categories: 1) those whose timing can be predicted and evaluated in advance, such as hurricanes, floods, tsunamis, or even sea level rise; and 2) those that can be anticipated based on analysis, but their exact timing is unknown, such as earthquakes and landslides. Consequently, the type of response and options available for scientific and engineering consultation are fundamentally different. The common aspects of all natural disasters is that there is evidence of past events either historical or geologic, or both. Thus, given past evidence, scientists and engineers have an opportunity to recommend and guide development and implementation of long term or permanent mitigation measures, such as improving the resiliency of the infrastructure and emergency preparedness. However, the appropriate mitigation measures are very much a function of the type of event. Severe atmospheric events, such as hurricanes, typically can be predicted several days in advance and scientists and engineers have a role in guiding preparation of specific additional, temporary, mitigation measures and selective evacuation, as appropriate. In contrast, while earthquake potential of a given region may be well recognized, the actual timing of the event is an unknown and, consequently, the primary defense is in developing sufficiently resilient infrastructure which can be enhanced with early warning systems. Similarly, the type of damage caused by flooding, e.g. hurricane and tsunami, is significantly different from the type of damage caused by an earthquake in that flooding damage is pervasive affecting large contiguous areas wiping out all infrastructure whereas earthquake or landslide damage tends to be clustered with many elements of infrastructure remaining fully or somewhat operable. This distinction is very important when it comes to the type of technical guidance that is needed following such events. This presentation highlights lessons learned from post-event reconnaissance as a part of the NSF-funded Geotechnical Extreme Event Reconnaissance (GEER) over the last two decades.
NASA Astrophysics Data System (ADS)
Galindo Torres, S. A.; Scheuermann, A.; Ruest, M.
2016-12-01
Air blasts that may occur in a block caving mining operation represent a significant hazard for personnel as well as to mining infrastructure. Uncontrolled caving of a large volume of broken rock into a mine void causes compression of the air within, forcing it to flow at high velocities into connecting tunnels such as extraction points beneath the cave or observation points intersecting the cave. This high velocity flow of air can cause injury to personnel and significant damage to equipment. In this presentation, we introduce a simulation engine for the air blast problem. The solid material is modelled using the Discrete Element Method (DEM) and the fluid (air) is modelled using the Lattice Boltzmann Method (LBM). The combined DEM-LBM approach has been introduced by our group at the University of Queensland[1]. LBM allows us to introduce an appropriate equation of state for the air that simulates compressibility as a function of the speed of sound. Validation examples are presented to justify the use of this tool for an air blasting situation. A section view of one simulation is provided in Fig 1. An investigation into the risk of developing air pockets as a function of fragment size distribution is also conducted and described. The fragment size distribution can be assessed during mining and the risk of air pockets forming (and consequently of air blast occurring) can be deduced and mitigation measures put in place. The effect of other key variables that can be determined from geotechnical investigations, such as fracture frequency, are also systematically explored. It is expected that the results of this study can elucidate key features of the air blasting phenomenon in order to formulate safer mining protocols. references 1. Galindo-Torres, S.A., A coupled Discrete Element Lattice Boltzmann Method for the simulation of fluid-solid interaction with particles of general shapes. Computer Methods in Applied Mechanics and Engineering, 2013. 265(0): p. 107-119.
Estimation of soft sediment thickness in Kuala Lumpur based on microtremor observation data
NASA Astrophysics Data System (ADS)
Chiew, Chang Chyau; Cheah, Yi Ben; Tan, Chin Guan; Lau, Tze Liang
2017-10-01
Seismic site effect is one of the major concerns in earthquake engineering. Soft ground tends to amplify the seismic wave in surficial geological layers. The determination of soft ground thickness on the surface layers of the earth is an important input for seismic hazard assessment. This paper presents an easy and convenient approach to estimate the soft sediment thickness at the site using microtremor observation technique. A total number of 133 survey points were conducted in selected sites around Kuala Lumpur area using a microtremor measuring instrument, but only 103 survey points contributed to the seismic microzonation and sediment thickness plots. The bedrock of Kuala Lumpur area is formed by Kenny Hill Formation, limestone, granite, and the Hawthornden Schist; however, the thickness of surface soft ground formed by alluvial deposits, mine tailings, and residual soils remains unknown. Hence, the predominant frequency of the ground in each site was determined based on Nakamura method. A total number of 14 sites with known depth to bedrock from the supply of geotechnical reports in the study area were determined. An empirical correlation was developed to relate the ground predominant frequency and soft ground thickness. This correlation may contribute to local soil underlying the subsurface of Kuala Lumpur area. The finding provides an important relationship for engineers to estimate the soft ground thickness in Kuala Lumpur area based on the dynamic characteristics of the ground measured from microtremor observation.
NASA Astrophysics Data System (ADS)
Rinaldi-Montes, Natalia; Rowberry, Matt; Frontera, Carlos; BaroÅ, Ivo; Garcés, Javier; Blahůt, Jan; Pérez-López, Raúl; Pennos, Christos; Martí, Xavi
2017-07-01
In this paper, a contactless positioning system is presented which has been designed to monitor the kinematic behavior of mechanical discontinuities in three dimensions. The positioning system comprises a neodymium magnet, fixed on one side of a discontinuity, and a magnetoresistive sensing array, fixed on the opposing side. Each of the anisotropic magnetoresistive sensors in the sensing array records the magnetic field along three orthogonal directions. The positioning system intrinsically generates compact data packages which are transmitted effectively using a range of standard wireless telecommunication technologies. These data are then modeled using a global least squares fitting procedure in which the adjustable parameters are represented by the position and orientation of the neodymium magnet. The instrumental resolution of the positioning system can be tuned depending on the strength of the magnetic field generated by the neodymium magnet and the distance between the neodymium magnet and the magnetoresistive sensing array. For a typical installation, the displacement resolution is shown to be circa 10 μm while the rotation resolution is circa 0.1°. The first permanently deployed positioning system was established in June 2016 to monitor the behavior of an N-S trending fault located at the contact between the eastern Alps and the Vienna Basin. The robust design of the positioning system is demonstrated by the fact that no interruptions in the broadcasted data streams have occurred since its installation. It has a range of potential applications in many areas of basic and applied research including geology, geotechnical engineering, and structural health monitoring.
Numerical Modelling of Rayleigh Wave Propagation in Course of Rapid Impulse Compaction
NASA Astrophysics Data System (ADS)
Herbut, Aneta; Rybak, Jarosław
2017-10-01
As the soil improvement technologies are the area of a rapid development, they require designing and implementing novel methods of control and calibration in order to ensure the safety of geotechnical works. At Wroclaw University of Science and Technology (Poland), these new methods are continually developed with the aim to provide the appropriate tools for the preliminary design of work process, as well as for the further ongoing on-site control of geotechnical works (steel sheet piling, pile driving or soil improvement technologies). The studies include preliminary numerical simulations and field tests concerning measurements and continuous histogram recording of shocks and vibrations and its ground-born dynamic impact on engineering structures. The impact of vibrations on reinforced concrete and masonry structures in the close proximity of the construction site may be destroying in both architectural and structural meaning. Those limits are juxtaposed in codes of practice, but always need an individual judgment. The results and observations make it possible to delineate specific modifications to the parameters of technology applied (e.g. hammer drop height). On the basis of numerous case studies of practical applications, already summarized and published, we were able to formulate the guidelines for work on the aforementioned sites. This work presents specific aspects of the active design (calibration of building site numerical model) by means of technology calibration, using the investigation of the impact of vibrations that occur during the Impulse Compaction on adjacent structures. A case study entails the impact of construction works on Rayleigh wave propagation in the zone of 100 m (radius) around the Compactor.
NASA Astrophysics Data System (ADS)
Mori, Kentaro; Kaneko, Kenji; Hashizume, Yutaka
2017-06-01
The short fiber mixing method is well known as one of the method to improve the strength of gran- ular soils in geotechnical engineering. Mechanical properties of the short fiber mixing granular materials are influenced by many factors, such as the mixture ratio of the short fiber, the material of short fiber, the length, and the orientation. In particular, the mixture ratio of the short fibers is very important in mixture design. In the past study, we understood that the strength is reduced by too much short fiber mixing by a series of tri-axial compression experiments. Namely, there is "optimum mixture ratio" in the short fiber mixing granular soils. In this study, to consider the mechanism of occurrence of the optimum mixture ratio, we carried out the numerical experiments by granular element method. As the results, we can understand that the strength decrease when too much grain-fiber contact points exist, because a friction coefficient is smaller than the grain-grain contact points.
Deep Borehole Instrumentation Along San Francisco Bay Bridges - 2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchings, L.; Kasameyer, P.; Long, L.
2001-05-01
This is a progress report on the Bay Bridges downhole network. Between 2 and 8 instruments have been spaced along the Dumbarton, San Mateo, Bay, and San Rafael bridges in San Francisco Bay, California. The instruments will provide multiple use data that is important to geotechnical, structural engineering, and seismological studies. The holes are between 100 and 1000 ft deep and were drilled by Caltrans. There are twenty-one sensor packages at fifteen sites. The downhole instrument package contains a three component HS-1 seismometer and three orthogonal Wilcox 731 accelerometers, and is capable of recording a micro g from local Mmore » = 1.0 earthquakes to 0.5 g strong ground motion form large Bay Area earthquakes. This report list earthquakes and stations where recordings were obtained during the period February 29, 2000 to November 11, 2000. Also, preliminary results on noise analysis for up and down hole recordings at Yerba Buena Island is presented.« less
Identification Of Rippability And Bedrock Depth Using Seismic Refraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Nur Azwin; Saad, Rosli; Nawawi, M. N. M
2010-12-23
Spatial variability of the bedrock with reference to the ground surface is vital for many applications in geotechnical engineering to decide the type of foundation of a structure. A study was done within the development area of Mutiara Damansara utilising the seismic refraction method using ABEM MK8 24 channel seismograph. The geological features of the subsurface were investigated and velocities, depth to the underlying layers were determined. The seismic velocities were correlated with rippability characteristics and borehole records. Seismic sections generally show a three layer case. The first layer with velocity 400-600 m/s predominantly consists of soil mix with gravel.more » The second layer with velocity 1600-2000 m/s is suggested to be saturated and weathered area. Both layers forms an overburden and generally rippable. The third layer represents granite bedrock with average depth and velocity 10-30 m and >3000 m/s respectively and it is non-rippable. Steep slope on the bedrock are probably the results of shear zones.« less
Design and Implementation of a Modern Automatic Deformation Monitoring System
NASA Astrophysics Data System (ADS)
Engel, Philipp; Schweimler, Björn
2016-03-01
The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the University of Applied Sciences in Neubrandenburg (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.
NASA Astrophysics Data System (ADS)
Fang, Yi; Huang, Yahong
2017-12-01
Conducting sand liquefaction estimated based on codes is the important content of the geotechnical design. However, the result, sometimes, fails to conform to the practical earthquake damages. Based on the damage of Tangshan earthquake and engineering geological conditions, three typical sites are chosen. Moreover, the sand liquefaction probability was evaluated on the three sites by using the method in the Code for Seismic Design of Buildings and the results were compared with the sand liquefaction phenomenon in the earthquake. The result shows that the difference between sand liquefaction estimated based on codes and the practical earthquake damage is mainly attributed to the following two aspects: The primary reasons include disparity between seismic fortification intensity and practical seismic oscillation, changes of groundwater level, thickness of overlying non-liquefied soil layer, local site effect and personal error. Meanwhile, although the judgment methods in the codes exhibit certain universality, they are another reason causing the above difference due to the limitation of basic data and the qualitative anomaly of the judgment formulas.
Slow waves moving near the openings in highly stressed conditions
NASA Astrophysics Data System (ADS)
Guzev, Michail; Makarov, Vladimir
2017-04-01
In situ experiments have shown the unusual deformation waves near the openings on high depth of the construction. Process of the wave spreading is beginning after the mining and has two stages of the zonal mesocracking structure formation and development [1]. Extending in a radial direction, the wave poorly fades with distance. For phenomenon modelling the theoretical decision for non-Eucledian models about opening of round cross-section in strongly compressed rock massif is used [2]. The decision qualitatively repeats behaviour of a wave in a rock mass, adjustment of phenomenological parametres is executed. References [1] Vladimir V. Makarov, Mikhail A. Guzev, Vladimir N. Odintsev, Lyudmila S. Ksendzenko (2016) Periodical zonal character of damage near the openings in highly-stressed rock mass conditions. Journal of Rock Mechanics and Geotechnical Engineering. Volume 8, Issue 2, pp. 164-169. [2] M.A. Guzev, V.V. Makarov, 2007. Deforming and failure of the high stressed rocks around the openings, RAS Edit., Vladivostok, 2007, P. 232 (in Russian).
Identification Of Rippability And Bedrock Depth Using Seismic Refraction
NASA Astrophysics Data System (ADS)
Ismail, Nur Azwin; Saad, Rosli; Nawawi, M. N. M.; Muztaza, Nordiana Mohd; El Hidayah Ismail, Noer; Mohamad, Edy Tonizam
2010-12-01
Spatial variability of the bedrock with reference to the ground surface is vital for many applications in geotechnical engineering to decide the type of foundation of a structure. A study was done within the development area of Mutiara Damansara utilising the seismic refraction method using ABEM MK8 24 channel seismograph. The geological features of the subsurface were investigated and velocities, depth to the underlying layers were determined. The seismic velocities were correlated with rippability characteristics and borehole records. Seismic sections generally show a three layer case. The first layer with velocity 400-600 m/s predominantly consists of soil mix with gravel. The second layer with velocity 1600-2000 m/s is suggested to be saturated and weathered area. Both layers forms an overburden and generally rippable. The third layer represents granite bedrock with average depth and velocity 10-30 m and >3000 m/s respectively and it is non-rippable. Steep slope on the bedrock are probably the results of shear zones.
OpenSeesPy: Python library for the OpenSees finite element framework
NASA Astrophysics Data System (ADS)
Zhu, Minjie; McKenna, Frank; Scott, Michael H.
2018-01-01
OpenSees, an open source finite element software framework, has been used broadly in the earthquake engineering community for simulating the seismic response of structural and geotechnical systems. The framework allows users to perform finite element analysis with a scripting language and for developers to create both serial and parallel finite element computer applications as interpreters. For the last 15 years, Tcl has been the primary scripting language to which the model building and analysis modules of OpenSees are linked. To provide users with different scripting language options, particularly Python, the OpenSees interpreter interface was refactored to provide multi-interpreter capabilities. This refactoring, resulting in the creation of OpenSeesPy as a Python module, is accomplished through an abstract interface for interpreter calls with concrete implementations for different scripting languages. Through this approach, users are able to develop applications that utilize the unique features of several scripting languages while taking advantage of advanced finite element analysis models and algorithms.
A 3D smoothed particle hydrodynamics model for erosional dam-break floods
NASA Astrophysics Data System (ADS)
Amicarelli, Andrea; Kocak, Bozhana; Sibilla, Stefano; Grabe, Jürgen
2017-11-01
A mesh-less smoothed particle hydrodynamics (SPH) model for bed-load transport on erosional dam-break floods is presented. This mixture model describes both the liquid phase and the solid granular material. The model is validated on the results from several experiments on erosional dam breaks. A comparison between the present model and a 2-phase SPH model for geotechnical applications (Gadget Soil; TUHH) is performed. A demonstrative 3D erosional dam break on complex topography is investigated. The present 3D mixture model is characterised by: no tuning parameter for the mixture viscosity; consistency with the Kinetic Theory of Granular Flow; ability to reproduce the evolution of the free surface and the bed-load transport layer; applicability to practical problems in civil engineering. The numerical developments of this study are represented by a new SPH scheme for bed-load transport, which is implemented in the SPH code SPHERA v.8.0 (RSE SpA), distributed as FOSS on GitHub.
GPR applications in Civil Engineering in Spain - state-of-the-art
NASA Astrophysics Data System (ADS)
Pérez Gracia, Vega; Solla, Mercedes; Santos-Assunçao, Sonia; Lorenzo, Henrique
2014-05-01
GPR was introduced in Spain in 1990, and the first significant work was the PhD thesis of H. Lorenzo in 1994. Due to its versatile applicability, the employ has been increased and actually, GPR is extensively used in detection of pipes, wiring and urban services mainly. During the last years, this method was also widely utilized in the detection of graves from the civil war and in forensic studies, with irregular results. It was also commonly applied in archaeology. Actually exists more than 20 private companies offering geotechnical services by means of GPR. Also, several public institutions as Universities and Research Institutes base part of their research in GPR or in GPR applications. Notwithstanding, no training courses of specific formation on GPR is offered, but in several doctorate programs it is possible to work with GPR. Also, in many schools, GPR is part of the geophysical formation of graduate students. However, no national guidelines and rules exist, and each company defines the investigation protocols. Nevertheless, one of the aims of the Comisión Española de Geodesia y Geofísica (Spanish Committee for Geodesy and Geophysics) is to define guidelines for the GPR studies. Probably, the existence of national guidelines or perhaps European guidelines could be the most effective way to promote the responsible use of GPR in different domains. On the other hand, perhaps recommendations on the use of combined methodologies could be a practical way to persuade in the application of geophysical non-destructive technologies. The CEDEX, Centro de Estudios y Experimentación de Obras Públicas (Center for Studies and Experimentation in Civil Engineering), which is a civil engineering research agency in Spain, offers different test sites to calibrate and evaluate the method. It is an autonomous organization, organically ascribed at present to the Ministry of Fomento, and functionally ascribed to the Ministries of Fomento and Medioambiente of Spain, giving assistance to various administrations, public institutions and private companies. What is more, some of the existing private companies have also minor test sites to analyze the behavior of the signal and its propagation depending on the type of asphalt concrete. GPR is used mainly in detection of pipes and urban services and various private companies are specialized in these tasks. Another widespread application is archaeological survey; one private company is also specialized in archaeology evaluations, using GPR combined with magnetometer. Forensic examinations are also common applications in Spain. Other less common applications are: regular inspection of roads, bridges and tunnels, cultural heritage buildings assessment, shallow geology studies and quality control in civil engineering. Acknowledgment The study is a contribution to the EU funded COST Action TU1208, "Civil Engineering Applications of Ground Penetrating Radar".
New classification of landslide-inducing anthropogenic activities
NASA Astrophysics Data System (ADS)
Michoud, C.; Jaboyedoff, M.; Derron, M.-H.; Nadim, F.; Leroi, E.
2012-04-01
Although landslides are usually considered typical examples of natural hazards, they can be influenced by human activities. Many examples can be found in the literature about slope instabilities induced by anthropogenic activities, ranging from small superficial landslides to rock avalanches. Research on this topic is of primary importance for understanding and mitigation of landslide risk. Indeed, slope stabilities influenced by human actions contribute significantly to the risk level because, by definition, they are located where elements at risk and people are present. Within the framework of the European project SafeLand "Living with Landslide Risk in Europe", the authors analyzed the landslides induced by anthropogenic factors in Europe and elsewhere (SafeLand deliverable D1.6). During the bibliographical research, it appeared that a complete and illustrated classification on human activities influencing slope stabilities does not yet exist. Therefore, a new classification was introduced by Michoud et al. (2011) about anthropogenic activities affecting slope stability conditions. This classification takes into account conceptual processes leading to landslides (Terzaghi, 1950; Jaboyedoff and Derron, 2005) and the distinction between destabilization factors and triggering factors (Vaunat et al., 1994; Leroueil et al., 1996). The classification was tested and improved through fifty-eight well-documented case studies, even lots of large landslides, such as Elm, Aberfan, Namsos and Rissa landslides, etc. Furthermore, the boundary between natural and "anthropogenic" landslide triggers (e.g. water run-off modified by new land-uses, creating landslides some km farther), and the time during which changes and reactions are to be considered as direct consequences of human activities were highlighted. Finally, anthropogenic influences can also be positive and examples of (non-voluntary) positive human impacts on slope stability are presented. Jaboyedoff, M. and Derron, M.-H. 2005. Integrated risk assessment process for landslides. In: Landslide risk management, Hungr, O., Fell, R., Couture, R. and Eberhardt, E. (eds.): 776 p. Leroueil, S., Locat, J., Vaunat, J., Picarelli, L. Lee, H. and Faure, R. 1996. Geotechnical characterization of slope movements, Landslides, Senneset (ed.), 53-73. Michoud, C., Jaboyedoff, M., Derron, M.-H., Nadim, F. and Leroi, E. 2011. Classification of landslide-inducing anthropogenic activities, 5th Canadian Conference on Geotechnique and Natural Hazards, Kelowna, Canada, 10 p. Terzaghi, K. 1950. Mechanism of Landslides, The Geological Society of America, Engineering Geology (Berkley) Volume, 83-123. Vaunat, J., Leroueil, S. and Faure, R. 1994. Slope movements: a geotechnical perspective. Proc. 7th Int. Congress of Int. Association of Engineering Geology, Oliveira (ed.), 1637-1646.
Heritage stones and their deterioration in rock-cut monuments in India
NASA Astrophysics Data System (ADS)
Sharma, Vinod K.
2017-04-01
India is dotted with thousands of rock- cut monuments of considerable antiquity having artwork of global importance. It is evident from the location of many of these monuments that knowledge of viable selection of site, geotechnical considerations and amenability to sculptures' chisel was vital for construction of rock-cut monuments and sculptures. These rock-cut structures also represent significant achievements of geotechnical and structural engineering and craftsmanship of contemporary period. The paper deals with some of the sites where natural rock-mass exposures were used to hew the monuments and highlight the deterioration owing to geological and climatic conditions. The Kailash temple in Ellora and Ajanta rock-cut caves are among the greatest architectural feats which owe their grandeur to amenability and consistency of basalt of Deccan Volcanic Province from which it is hewn. The Kailash Temple was created through a single, huge top-down excavation 100 feet deep down into the volcanic basaltic cliff rock. These ancient rock cut structures are amazing achievements of structural engineering and craftsmanship. The lava flows are nearly horizontal, competent rock medium facilitated the chiseling for the sculptures. The deterioration of these basalts are seen where the amygdule, vesicles and opening in rock discontinuity had the medium of construction or excavation. The monolithic rock- cut monuments of Mahabalipuram temples are constructed in the form of rathas or chriot and adjoining caves by excavating solid charnockite/granites. The large rock exposures are excavated and cut to perfection with wall decorations and sculptured art. The charnockites are the strongest and the most durable rock, yet quite amenable to fine dressing. These monolithic monuments in charnockite and are cut out of the hillock. The 7th Century monuments now exhibit somewhat rough surface probably due to weathering effect of salt laden winds from the sea side and alteration of feldspars. The Rock shelters of Bhimbetka, a World Heritage Site, are located within Vindhyan sandstone, yielded primitive tools and decorative rock paintings.The rock-cut caves in twin hills Udayagiri and Khandagiri , contain carvings sculptured in coarse grained grey to buff coloured sandstone of Gondwana group of rocks. The Badami cave temples constructed out of escarpment of the hill in sandstone represent some of the earliest known examples of Hindu temples. Utilizing in situ rock exposures, natural rocks and landscape of Deccan basalts, granites of peninsular shield, sandstones and limestone for rock cut architecture in India, thus, holds varied examples of rock-cut architectures.
3D Modeling of Landslide in Open-pit Mining on Basis of Ground-based LIDAR Data
NASA Astrophysics Data System (ADS)
Hu, H.; Fernandez-Steeger, T. M.; Azzam, R.; Arnhardt, C.
2009-04-01
Slope stability is not only an important problem which is related to production and safety in open-pit mining, but also very complex task. There are three main reasons which affect the slope stability as follows: geotechnical factors: Geological structure, lithologic characteristics, water, cohesion, friction, etc.; climate factors: Rainfall and temperature; and external factors: Open-pit mining process, explosion vibration, dynamic load, etc.. The 3rd reason, as a specially one in open-pit mining, not only causes some dynamic problems but also induces the fast geometry changing which must be considered in the following research using numerical simulation and stability analysis. Recently, LIDAR technology has been applied in many fields and places in the world wide. Ground-based LIDAR technology with high accuracy up to 3mm increasingly accommodates to monitoring landslides and detecting changing. LIDAR data collection and preprocessing research have been carried out by Department of Engineering Geology and Hydrogeology at RWTH Aachen University. LIDAR data, so-called a point-cloud of mass data in high density can be obtained in short time for the sensitive open-pit mining area by using ground-based LIDAR. To obtain a consistent surface model, it is necessary to set up multiple scans with the ground-based LIDAR. The framework of data preprocessing which can be implemented by Poly-Works is introduced as follows: gross error detection and elimination, integration of reference frame, model fusion of different scans (re-sampled in overlap region), data reduction without removing the useful information which is a challenge and research front in LIDAR data processing. After data preprocessing, 3D surface model can be directly generated in Poly-Works or generated in other software by building the triangular meshes. The 3D surface landslide model can be applied to further researches such as: real time landslide geometry monitoring due to the fast data collection and processing; change detecting by means of overlying different periods of topographic or geometric data; FEM (Finite Element Method) numerical simulation on basis of combining with the geotechnical properties and parameters to analyze slope stability and predict future movements for designing and rectifying the open-pit mining process; using the reverse engineering thought for developing constitutive models. An improved 3D surface model (HRDEM) which is based on fast data collection and precise data processing on basis of ground-based LIDAR technology is important contribution for further researches of slope stability in open-pit mining area.
Earthquake Hazard and the Environmental Seismic Intensity (ESI) Scale
NASA Astrophysics Data System (ADS)
Serva, Leonello; Vittori, Eutizio; Comerci, Valerio; Esposito, Eliana; Guerrieri, Luca; Michetti, Alessandro Maria; Mohammadioun, Bagher; Mohammadioun, Georgianna C.; Porfido, Sabina; Tatevossian, Ruben E.
2016-05-01
The main objective of this paper was to introduce the Environmental Seismic Intensity scale (ESI), a new scale developed and tested by an interdisciplinary group of scientists (geologists, geophysicists and seismologists) in the frame of the International Union for Quaternary Research (INQUA) activities, to the widest community of earth scientists and engineers dealing with seismic hazard assessment. This scale defines earthquake intensity by taking into consideration the occurrence, size and areal distribution of earthquake environmental effects (EEE), including surface faulting, tectonic uplift and subsidence, landslides, rock falls, liquefaction, ground collapse and tsunami waves. Indeed, EEEs can significantly improve the evaluation of seismic intensity, which still remains a critical parameter for a realistic seismic hazard assessment, allowing to compare historical and modern earthquakes. Moreover, as shown by recent moderate to large earthquakes, geological effects often cause severe damage"; therefore, their consideration in the earthquake risk scenario is crucial for all stakeholders, especially urban planners, geotechnical and structural engineers, hazard analysts, civil protection agencies and insurance companies. The paper describes background and construction principles of the scale and presents some case studies in different continents and tectonic settings to illustrate its relevant benefits. ESI is normally used together with traditional intensity scales, which, unfortunately, tend to saturate in the highest degrees. In this case and in unpopulated areas, ESI offers a unique way for assessing a reliable earthquake intensity. Finally, yet importantly, the ESI scale also provides a very convenient guideline for the survey of EEEs in earthquake-stricken areas, ensuring they are catalogued in a complete and homogeneous manner.
Connecting Projects to Complete the In Situ Resource Utilization Paradigm
NASA Technical Reports Server (NTRS)
Linne, Diane L.; Sanders, Gerald B.
2017-01-01
Terrain Identify specifics such as slope, rockiness, traction parameters Identify what part of ISRU needs each Physical Geotechnical Hardness, density, cohesion, etc. Identify what part of ISRU needs each (e.g., excavation needs to know hardness, density; soil processing needs to know density, cohesion; etc.)Mineral Identify specifics Identify what part of ISRU needs each Volatile Identify specifics Identify what part of ISRU needs each Atmosphere Identify specifics Identify what part of ISRU needs each Environment Identify specifics Identify what part of ISRU needs each Resource Characterization What: Develop an instrument suite to locate and evaluate the physical, mineral, and volatile resources at the lunar poles Neutron Spectrometer Near Infrared (IR) to locate subsurface hydrogen surface water Near IR for mineral identification Auger drill for sample removal down to 1 m Oven with Gas Chromatograph Mass Spectrometer to quantify volatiles present ISRU relevance: Water volatile resource characterization and subsurface material access removal Site Evaluation Resource Mapping What: Develop and utilize new data products and tools for evaluating potential exploration sites for selection and overlay mission data to map terrain, environment, and resource information e.g., New techniques applied to generate Digital Elevation Map (DEMs) at native scale of images (1mpxl)ISRU relevance: Resource mapping and estimation with terrain and environment information is needed for extraction planning Mission Planning and Operations What: Develop and utilize tools and procedures for planning mission operations and real time changes Planning tools include detailed engineering models (e.g., power and data) of surface segment systems allows evaluation of designs ISRU relevance: Allows for iterative engineering as a function of environment and hardware performance.
Towards a geophysical decision-support system for monitoring and managing unstable slopes
NASA Astrophysics Data System (ADS)
Chambers, J. E.; Meldrum, P.; Wilkinson, P. B.; Uhlemann, S.; Swift, R. T.; Inauen, C.; Gunn, D.; Kuras, O.; Whiteley, J.; Kendall, J. M.
2017-12-01
Conventional approaches for condition monitoring, such as walk over surveys, remote sensing or intrusive sampling, are often inadequate for predicting instabilities in natural and engineered slopes. Surface observations cannot detect the subsurface precursors to failure events; instead they can only identify failure once it has begun. On the other hand, intrusive investigations using boreholes only sample a very small volume of ground and hence small scale deterioration process in heterogeneous ground conditions can easily be missed. It is increasingly being recognised that geophysical techniques can complement conventional approaches by providing spatial subsurface information. Here we describe the development and testing of a new geophysical slope monitoring system. It is built around low-cost electrical resistivity tomography instrumentation, combined with integrated geotechnical logging capability, and coupled with data telemetry. An automated data processing and analysis workflow is being developed to streamline information delivery. The development of this approach has provided the basis of a decision-support tool for monitoring and managing unstable slopes. The hardware component of the system has been operational at a number of field sites associated with a range of natural and engineered slopes for up to two years. We report on the monitoring results from these sites, discuss the practicalities of installing and maintaining long-term geophysical monitoring infrastructure, and consider the requirements of a fully automated data processing and analysis workflow. We propose that the result of this development work is a practical decision-support tool that can provide near-real-time information relating to the internal condition of problematic slopes.
Submarine pipeline on-bottom stability. Volume 2: Software and manuals
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-01
The state-of-the-art in pipeline stability design has been changing very rapidly recent. The physics governing on-bottom stability are much better understood now than they were eight years. This is due largely because of research and large scale model tests sponsored by PRCI. Analysis tools utilizing this new knowledge have been developed. These tools provide the design engineer with a rational approach have been developed. These tools provide the design engineer with a rational approach for weight coating design, which he can use with confidence because the tools have been developed based on full scale and near full scale model tests.more » These tools represent the state-of-the-art in stability design and model the complex behavior of pipes subjected to both wave and current loads. These include: hydrodynamic forces which account for the effect of the wake (generated by flow over the pipe) washing back and forth over the pipe in oscillatory flow; and the embedment (digging) which occurs as a pipe resting on the seabed is exposed to oscillatory loadings and small oscillatory deflections. This report has been developed as a reference handbook for use in on-bottom pipeline stability analysis It consists of two volumes. Volume one is devoted descriptions of the various aspects of the problem: the pipeline design process; ocean physics, wave mechanics, hydrodynamic forces, and meteorological data determination; geotechnical data collection and soil mechanics; and stability design procedures. Volume two describes, lists, and illustrates the analysis software. Diskettes containing the software and examples of the software are also included in Volume two.« less
NASA Astrophysics Data System (ADS)
Abidin, M. H. Z.; Ahmad, F.; Wijeyesekera, D. C.; Saad, R.
2014-04-01
Electrical resistivity technique has become a famous alternative tool in subsurface characterization. In the past, several interpretations of electrical resistivity results were unable to be delivered in a strong justification due to lack of appreciation of soil mechanics. Traditionally, interpreters will come out with different conclusion which commonly from qualitative point of view thus creating some uncertainty regarding the result reliability. Most engineers desire to apply any techniques in their project which are able to provide some clear justification with strong, reliable and meaningful results. In order to reduce the problem, this study presents the influence of basic physical properties of soil due to the electrical resistivity value under loose and dense condition. Two different conditions of soil embankment model were tested under electrical resistivity test and basic geotechnical test. It was found that the electrical resistivity value (ERV, ρ) was highly influenced by the variations of soil basic physical properties (BPP) with particular reference to moisture content (w), densities (ρbulk/dry), void ratio (e), porosity (η) and particle grain fraction (d) of soil. Strong relationship between ERV and BPP can be clearly presents such as ρ ∞ 1/w, ρ ∞ 1/ρbulk/dry, ρ ∞ e and ρ ∞ η. This study therefore contributes a means of ERV data interpretation using BPP in order to reduce ambiguity of ERV result and interpretation discussed among related persons such as geophysicist, engineers and geologist who applied these electrical resistivity techniques in subsurface profile assessment.
NASA Astrophysics Data System (ADS)
Duguay, M. A.; Lewkowicz, A. G.; Smith, S.
2011-12-01
A natural gas pipeline running across permafrost terrain from Prudhoe Bay, Alaska, through Canada to US markets was first proposed more than 30 years ago. In the intervening period, mean annual air temperatures in the region have risen by 0.5-1.0°C and it is probable that the ground has also warmed. Renewed interest in the pipeline has meant that information on permafrost and geotechnical conditions within the Alaska Highway Corridor of the southern Yukon must be updated for engineering design and the assessment of environmental impacts. To accomplish this goal, results from 1977-1981 drilling and ground temperature monitoring programs within the proposed pipeline corridor were used in combination with air photo analysis to select sites potentially sensitive to climate change. The sites are distributed across the extensive and sporadic discontinuous permafrost zones over a distance of 475 km between Beaver Creek and Whitehorse. To date, 11 targeted boreholes with permafrost have been found and cased to permit renewed ground temperature monitoring. By the end of summer 2011, it is expected that another 7 will have been instrumented. Measurable temperature increases relative to the 1970s are expected, except where values were previously just below 0°C. In the latter case, if the sites are still in permafrost, latent heat effects may have substantially moderated the temperature increase. Electrical resistivity tomography surveys are also being conducted to characterize the local permafrost distribution and geotechnical conditions. These 2D resistivity profiles will be used with the ground temperatures to examine current conditions and response to climate change and vegetation disturbance.
Determining the geotechnical properties of planetary regolith using Low Velocity Penetrometers
NASA Astrophysics Data System (ADS)
Seweryn, K.; Skocki, K.; Banaszkiewicz, M.; Grygorczuk, J.; Kolano, M.; Kuciński, T.; Mazurek, J.; Morawski, M.; Białek, A.; Rickman, H.; Wawrzaszek, R.
2014-09-01
Measurements of mechanical and thermophysical properties of planetary surface allow determining many important parameters useful for planetologists. For example, effective heat conductivity or thermal inertia of the regolith can help to better understand the processes occurring in the bodies interior. Chemical and mineralogical composition gives us a chance to determine the origin and evolution of moons and satellites. Mechanical properties of the surface are one of the key factors needed by civil engineers for developing future bases on space bodies. Space missions to planetary bodies highly restrict the payload concerning its mass and power consumption. Therefore, it is quite impossible to use a standard terrestrial technique like the Load Plate Test or Direct Shear Tests to determine the geotechnical parameters of the planetary regolith. Even the Dynamic Cone Penetration (DCP) method, which is frequently used for field testing, does not fit well with the constraints imposed by a space mission. Nevertheless, its operation principle is very similar to that of at the Low Velocity Penetrators (LVP), several of them being currently on their way to planetary bodies (e.g. the MUPUS instrument) or which were developed in the last couple of years (e.g. the CHOMIK instrument or the KRET device). In this paper we present a comparison between DCP method and LVP operation which was observed during several tests campaigns during mole KRET and CHOMIK instrument development. The tests were performed in different planetary analogues: JSC-1A, Chenobi and AGK-2010, Phobos analogue, cometary analogues F1, F2 and F3 (SRC) and dry quartz sand. In the last part of the paper the concept of results' interpretation is presented.
POST Earthquake Debris Management — AN Overview
NASA Astrophysics Data System (ADS)
Sarkar, Raju
Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction and demolition debris following an earthquake.
POST Earthquake Debris Management - AN Overview
NASA Astrophysics Data System (ADS)
Sarkar, Raju
Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction and demolition debris following an earthquake.
System reliability analysis of granular filter for protection against piping in dams
NASA Astrophysics Data System (ADS)
Srivastava, A.; Sivakumar Babu, G. L.
2015-09-01
Granular filters are provided for the safety of water retaining structure for protection against piping failure. The phenomenon of piping triggers when the base soil to be protected starts migrating in the direction of seepage flow under the influence of seepage force. To protect base soil from migration, the voids in the filter media should be small enough but it should not also be too small to block smooth passage of seeping water. Fulfilling these two contradictory design requirements at the same time is a major concern for the successful performance of granular filter media. Since Terzaghi era, conventionally, particle size distribution (PSD) of granular filters is designed based on particle size distribution characteristics of the base soil to be protected. The design approach provides a range of D15f value in which the PSD of granular filter media should fall and there exist infinite possibilities. Further, safety against the two critical design requirements cannot be ensured. Although used successfully for many decades, the existing filter design guidelines are purely empirical in nature accompanied with experience and good engineering judgment. In the present study, analytical solutions for obtaining the factor of safety with respect to base soil particle migration and soil permeability consideration as proposed by the authors are first discussed. The solution takes into consideration the basic geotechnical properties of base soil and filter media as well as existing hydraulic conditions and provides a comprehensive solution to the granular filter design with ability to assess the stability in terms of factor of safety. Considering the fact that geotechnical properties are variable in nature, probabilistic analysis is further suggested to evaluate the system reliability of the filter media that may help in risk assessment and risk management for decision making.
Permafrost and urban Development in Norilsk Russia.
NASA Astrophysics Data System (ADS)
Shiklomanov, N. I.; Streletskiy, D. A.; Grebenets, V. I.
2017-12-01
The city of Norilsk was established in 1935 as a GULAG mining and metallurgy work camp to explore the rich deposits of non-ferrous metals. By the 1989, the population of Norilsk reached 179,757 people. Two additional cities were developed in proximity to Norilsk in the 1960s-1980s: Talnakh (1989 population 65,710); and Kaerkan (1989 population 29,824) making the Norilsk region a major Arctic metropolis. While such rapid growth is not unusual for developing industrial cities, the geographic location makes Norilsk rather unique among world urban centers. It was built in Central Siberia at 69°51' N latitude (above the Arctic Circle), in region characterized by harsh subarctic climate (mean annual temperature around -10 oC), over forest tundra/tundra transitional landscapes underlined by perennially frozen ground (permafrost). Throughout its existence, the Norilsk region was highly isolated: it is not connected to Russian road and railroad systems. The harsh environmental conditions provided significant and rather unique challenges to Norilsk development. Specifically, the presence of ice-rich permafrost imposed restrictions on application of standard urban planning and engineering practices. This presentation analyzes the history of permafrost construction in Norilsk. It shows how though initial trial and errors, a set of guiding principles and engineering methods of construction on permafrost were developed allowing a rapid urbanization of the area during the 1960-1980s. However, despite significant advances in permafrost engineering, the pronounced permafrost degradation has become evident in Norilsk by the mid 1980s and has accelerated rapidly since the mid 1990s resulting in widespread deformation of buildings. Climatic changes are frequently identified as a major cause of accelerated deterioration of infrastructure build on permafrost. However, we argue that other factors, including the complexity of interactions between deferent components of urban infrastructure and permafrost, quality of construction, operation, and maintenance of infrastructure as well as socio-economic transformations are also responsible for emergence and intensification of the negative permafrost-related geotechnical processes manifested by the structural deformations of buildings in Norilsk.
Planning and design considerations in karst terrain
NASA Astrophysics Data System (ADS)
Fischer, J. A.; Greene, R. W.; Ottoson, R. S.; Graham, T. C.
1988-10-01
This article discusses the various steps that the authors feel are necessary to the successful progression of an engineered project sited in karst terrain. The procedures require a multidisciplined approach with liaison and cooperation among the various parties to the project. Initially, the prospective owner must have sufficient understanding of the potential engineering problems to incorporate the engineering geologist into the early stages of any planned acquisition. The first step in an investigation should include a review of the available geologic information, aerial photo interpretation, consultation with the State Geological Survey, and a geologic reconnaissance of the prospective site and surrounding area. A go-no-go decision as to purchase can often been made at an early time. Although, in some instances, more study is needed for a particularly intriguing property. The second stage should consider the various planning alternatives that are feasible based upon the limited available information. At this stage planning/purchase decisions can be made as to purchasing options, value of the property, design constraints, and the possible economic penalties that could be associated with the potential site construction. Various planning and construction alternatives should be considered in this phase of the work. The third stage should include a site investigation program of moderate size, consisting of test pits and/or exploratory borings. The borings should be drilled using water as the drilling fluid, with an experienced crew and qualified technical inspection. The authors find the use of geophysical techniques can be extremely misleading unless used in conjunction with exploratory drilling. Successful evaluations using geophysical procedures occur only under ideal conditions. The geotechnical viability of the plan and preliminary design should be investigated in the fourth phase. Additionally, the physical parameters required for the design of structures founded atop cavities can be obtained at this time. Several support schemes which incorporate cavity roof thickness, rock strength, and cavity space are discussed. Possible construction procedures include excavation and dental concrete, grouting, piers or piles to sound rock, or moving to another area. The relative economies of these procedures are discussed in relation to the size and depth of the soil or rock cavity, possible future cavity formation, magnitude of loading and acceptable safety factors.
NASA Astrophysics Data System (ADS)
Sudan Acharya, Madhu
2010-05-01
The crib retaining structures made of wooden/bamboo logs with live plants inside are called vegetative crib walls which are now becoming popular due to their advantages over conventional civil engineering walls. Conventionally, wooden crib walls were dimensioned based on past experiences. At present, there are several guidelines and design standards for machine finished wooden crib walls, but only few guidelines for the design and construction of vegetative log crib walls are available which are generally not sufficient for an economic engineering design of such walls. Analytical methods are generally used to determine the strength of vegetated crib retaining walls. The crib construction is analysed statically by satisfying the condition of static equilibrium with acceptable level of safety. The crib wall system is checked for internal and external stability using conventional monolithic and silo theories. Due to limitations of available theories, the exact calculation of the strength of vegetated wooden/bamboo crib wall cannot be made in static calculation. Therefore, experimental measurements are generally done to verify the static analysis. In this work, a model crib construction (1:20) made of bamboo elements is tested in the centrifuge machine to determine the strength behaviour of the slope supported by vegetated crib retaining wall. A geotechnical centrifuge is used to conduct model tests to study geotechnical problems such as the strength, stiffness and bearing capacity of different structures, settlement of embankments, stability of slopes, earth retaining structures etc. Centrifuge model testing is particularly well suited to modelling geotechnical events because the increase in gravitational force creates stresses in the model that are equivalent to the much larger prototype and hence ensures that the mechanisms of ground movements observed in the tests are realistic. Centrifuge model testing provides data to improve our understanding of basic mechanisms of deformation and failure and provides benchmarks useful for verification of numerical models. In this case this test is mainly carried out to verify the stability analysis and deformation characteristics of a bamboo crib wall. Models of crib wall of dimensions 37x13x10 cm and 37x13x14cm were placed inside a Plexiglas box of internal dimensions of 42.5x42.5x30 cm and slope was formed leaving a space about 10 cm in the front. The model crib wall tests were all performed at 40-70 times earth's gravity. This means that the 5 mm diameters bamboo rods in model used represents a prototype diameter of 20-35 cm. The horizontal and vertical displacements were measured with the help of three displacements sensor fixed horizontally and one sensor fixed vertically at the top of the model crib wall. All together nine tests were carried out with varying model parameters. Standard medium sand and coarse sand were used as fill material in the testing. Two wall heights variations and three slopes variations were used in the testing. The test model was constructed either compacted or uncompacted. The compaction in the model was carried out by hand to about 90% of the Proctor density. Three slopes inclinations were used. For flat slope the slope angle was less than 25° , and for steep slope it was 25° -35° and for extremely steep slope it was > 35° . The test results and conclusions are presented in this paper.
NASA Astrophysics Data System (ADS)
Liddicoat, J. C.; Bower, P.
2015-12-01
The U.S. Environmental Protection Agency estimates that presently there are over half a million brownfields in the United States, but this number only includes sites for which an Environmental Site Assessment has been conducted. The actual number of brownfields is certainly in the millions and constitutes one of the major environmental issues confronting all communities today. Taught in part or entirely online for more than 15 years in environmental science, engineering, and hydrology courses at over a dozen colleges, universities, and high schools in the United States, Brownfield Action (BA) is an interactive, web-based simulation that combines scientific expertise, constructivist education philosophy, and multimedia to advance the teaching of environmental science (Bower et al., 2011, 2014; Liddicoat and Bower, 2015). In the online simulation and classroom, students form geotechnical consulting companies with a peer chosen at random to solve a problem in environmental forensics. The BA model contains interdisciplinary scientific and social information that are integrated within a digital learning environment that encourages students to construct their knowledge as they learn by doing. As such, the approach improves the depth and coherence of students understanding of the course material. Like real-world environmental consultants and professionals, students are required to develop and apply expertise from a wide range of fields, including environmental science and engineering as well as journalism, medicine, public health, law, civics, economics, and business management. The overall objective is for students to gain an unprecedented appreciation of the complexity, ambiguity, and risk involved in any environmental issue, and to acquire STEM knowledge that can be used constructively when confronted with such an issue.
NASA Astrophysics Data System (ADS)
Thomson, J. A.; Gee, L. J.; George, T.
2002-12-01
This presentation shows results of a visualization method used to display and analyze multiple data types in a geospatially referenced three-dimensional (3-D) space. The integrated data types include sonar and seismic geophysical data, pipeline and geotechnical engineering data, and 3-D facilities models. Visualization of these data collectively in proper 3-D orientation yields insights and synergistic understandings not previously obtainable. Key technological components of the method are: 1) high-resolution geophysical data obtained using a newly developed autonomous underwater vehicle (AUV), 2) 3-D visualization software that delivers correctly positioned display of multiple data types and full 3-D flight navigation within the data space and 3) a highly immersive visualization environment (HIVE) where multidisciplinary teams can work collaboratively to develop enhanced understandings of geospatially complex data relationships. The initial study focused on an active deepwater development area in the Green Canyon protraction area, Gulf of Mexico. Here several planned production facilities required detailed, integrated data analysis for design and installation purposes. To meet the challenges of tight budgets and short timelines, an innovative new method was developed based on the combination of newly developed technologies. Key benefits of the method include enhanced understanding of geologically complex seabed topography and marine soils yielding safer and more efficient pipeline and facilities siting. Environmental benefits include rapid and precise identification of potential locations of protected deepwater biological communities for avoidance and protection during exploration and production operations. In addition, the method allows data presentation and transfer of learnings to an audience outside the scientific and engineering team. This includes regulatory personnel, marine archaeologists, industry partners and others.
NASA Astrophysics Data System (ADS)
Duarte, João; Gonçalves, Gil; Duarte, Diogo; Figueiredo, Fernando; Mira, Maria
2015-04-01
Photogrammetric Unmanned Aerial Vehicles (UAVs) and Terrestrial Laser Scanners (TLS) are two emerging technologies that allows the production of dense 3D point clouds of the sensed topographic surfaces. Although image-based stereo-photogrammetric point clouds could not, in general, compete on geometric quality over TLS point clouds, fully automated mapping solutions based on ultra-light UAVs (or drones) have recently become commercially available at very reasonable accuracy and cost for engineering and geological applications. The purpose of this paper is to compare the two point clouds generated by these two technologies, in order to automatize the manual process tasks commonly used to detect and represent the attitude of discontinuities (Stereographic projection: Schmidt net - Equal area). To avoid the difficulties of access and guarantee the data survey security conditions, this fundamental step in all geological/geotechnical studies, applied to the extractive industry and engineering works, has to be replaced by a more expeditious and reliable methodology. This methodology will allow, in a more actuated clear way, give answers to the needs of evaluation of rock masses, by mapping the structures present, which will reduce considerably the associated risks (investment, structures dimensioning, security, etc.). A case study of a dolerite outcrop locate in the center of Portugal (the dolerite outcrop is situated in the volcanic complex of Serra de Todo-o-Mundo, Casais Gaiola, intruded in Jurassic sandstones) will be used to assess this methodology. The results obtained show that the 3D point cloud produced by the Photogrammetric UAV platform has the appropriate geometric quality for extracting the parameters that define the discontinuities of the dolerite outcrops. Although, they are comparable to the manual extracted parameters, their quality is inferior to parameters extracted from the TLS point cloud.
Towards a unified solution of localization failure with mixed finite elements
NASA Astrophysics Data System (ADS)
Benedetti, Lorenzo; Cervera, Miguel; Chiumenti, Michele; Zeidler, Antonia; Fischer, Jan-Thomas
2015-04-01
Notwithstanding computational scientists made significant steps in the numerical simulation of failure in last three decades, the strain localization problem is still an open question. Especially in a geotechnical setting, when dealing with stability analysis of slopes, it is necessary to provide correct distribution of displacements, to evaluate the stresses in the ground and, therefore, to be able to identify the slip lines that brings to progressive collapse of the slope. Finite elements are an attractive method of solution thanks to profound mathematical foundations and the possibility of describing generic geometries. In order to account for the onset of localization band, the smeared crack approach [1] is introduced, that is the strain localization is assumed to occur in a band of finite width where the displacements are continuous and the strains are discontinuous but bounded. It is well known that this kind of approach poses some challenges. The standard irreducible formulation of FEM is known to be heavily affected by spurious mesh dependence when softening behavior occurs and, consequently, slip lines evolution is biased by the orientation of the mesh. Moreover, in the case of isochoric behavior, unbounded pressure oscillations arise and the consequent locking of the stresses pollutes the numerical solution. Both problems can be shown not to be related to the mathematical statement of the continuous problem but instead to its discrete (FEM) counterpart. Mixed finite element formulations represent a suitable alternative to mitigate these drawbacks. As it has been shown in previous works by Cervera [2], a mixed formulation in terms of displacements and pressure not only provides a propitious solution to the problem of incompressibility, but also it was found to possess the needed robustness in case of strain concentration. This presentation introduces a (stabilized) mixed finite element formulation with continuous linear strain and displacement interpolations. As a fundamental enhancement of the displacement-pressure formulation above mentioned, this kind of formulation benefits of the following advantages: it provides enhanced rate of convergence for the strain (and stress) and it is able to deal with incompressible situations. The method is completed with constitutive laws from Von Mises and Drucker-Prager local plasticity models with nonlinear strain softening. Moreover, global and local error norms are discussed to support the advantages of the proposed method. Then, numerical examples of stability analysis of slopes are presented to demonstrate the capability of the method. It will be shown that not only soil slopes can be modeled but also snow avalanche release and their weak layer fracture can be similarly treated. Consequently, this formulation appears to be a general and accurate tool for the solution of mechanical problem involving failure with localization bands [3,4]. References [1] Y.R. Rashid, 'Ultimate strength analysis of prestressed concrete pressure vessels', Nuclear Engineering and Design, Volume 7, Issue 4, April, Pages 334-344, 1968. [2] M. Cervera, M. Chiumenti, D. Di Capua. 'Benchmarking on bifurcation and localization in J 2 plasticity for plane stress and plane strain conditions.' Computer Methods in Applied Mechanics and Engineering, Vol. 241-244, Pages 206-224, 2012. [3] L. Benedetti, M. Cervera, M. Chiumenti. 'Stress-accurate mixed FEM for soil failure under shallow foundations involving strain localization in plasticity' Computers and Geotechnics, Vol. 64, pp. 32-47, 2015. [4] Cervera, M., Chiumenti, M., Benedetti, L., Codina, R. 'Mixed stabilized finite element methods in nonlinear solid mechanics. Part III: Compressible and incompressible plasticity' Computer Methods in Applied Mechanics and Engineering, to appear, 2015.
Long-term behavior of water content and density in an earthen liner
Frank, T.E.; Krapac, I.G.; Stark, T.D.; Strack, G.D.
2005-01-01
An extensively instrumented compacted earthen liner was constructed at the Illinois State Geological Survey facility in Champaign, III. in 1987. A pond of water 0.31 m deep was maintained on top of the 7.3 m ?? 14.6 m ?? 0.9 m thick liner for 14 years. One of the goals of the project was to evaluate the long-term performance of a compacted earthen liner by monitoring the long-term changes in water content and density. The water content of the earthen liner showed no trend with depth or time. The liner density remained essentially constant from construction through excavation in 2002. The liner did not become fully saturated. Upon excavation of the liner, the degree of saturation was 80.0??6.3% after 14 years of ponding under a hydraulic head of 0.31 m. The results imply that properly designed and constructed earthen liners may reduce the possibility of pollutants leaching from municipal solid waste containment facilities by remaining partially saturated for years and maintaining the placement density. Journal of Geotechnical and Geoenvironmental Engineering ?? ASCE.
Deep Borehole Instrumentation Along San Francisco Bay Bridges - 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchings, L.; Kasameyer, P.; Turpin, C.
2000-03-01
This is a progress report on the Bay Bridges downhole network. Between 2 and 8 instruments have been spaced along the Dumbarton, San Mateo, Bay, and San Rafael bridges in San Francisco Bay, California. The instruments will provide multiple use data that is important to geotechnical, structural engineering, and seismological studies. The holes are between 100 and 1000 ft deep and were drilled by Caltrans. There are twenty-one sensor packages at fifteen sites. The downhole instrument package contains a three component HS-1 seismometer and three orthogonal Wilcox 731 accelerometers, and is capable of recording a micro g from local Mmore » = 1.0 earthquakes to 0.5 g strong ground motion form large Bay Area earthquakes. Preliminary results on phasing across the Bay Bridge, up and down hole wave amplification at Yerba Buena Island, and sensor orientation analysis are presented. Events recorded and located during 1999 are presented. Also, a senior thesis on the deep structure of the San Francisco Bay beneath the Bay Bridge is presented as an addendum.« less
Rainfall-ground movement modelling for natural gas pipelines through landslide terrain
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Neil, G.D.; Simmonds, G.R.; Grivas, D.A.
1996-12-31
Perhaps the greatest challenge to geotechnical engineers is to maintain the integrity of pipelines at river crossings where landslide terrain dominates the approach slopes. The current design process at NOVA Gas Transmission Ltd. (NGTL) has developed to the point where this impact can be reasonably estimated using in-house models of pipeline-soil interaction. To date, there has been no method to estimate ground movements within unexplored slopes at the outset of the design process. To address this problem, rainfall and slope instrumentation data have been processed to derive rainfall-ground movement relationships. Early results indicate that the ground movements exhibit two components:more » a steady, small rate of movement independent of the rainfall, and, increased rates over short periods of time following heavy amounts of rainfall. Evidence exists of a definite threshold value of rainfall which has to be exceeded before any incremental movement is induced. Additional evidence indicates a one-month lag between rainfall and ground movement. While these models are in the preliminary stage, results indicate a potential to estimate ground movements for both initial design and planned maintenance actions.« less
NASA Astrophysics Data System (ADS)
Scarpato, D. J.
2016-02-01
Slope construction in shale can present some interesting challenges for geotechnical design engineers and contractors alike. There are challenges that can be expected and designed for; however, all too frequently, such challenges manifest themselves as "surprises" in the field. Common constructibility challenges can include drill hole deviation during drilling for controlled blasting; and, excavation slope instability arising from inconsistent perimeter control drilling. Drill hole deviation results from the cumulative effects from both drilling mechanics and rock mass conditions. Once a hole has initiated the deviation trajectory, it is difficult to rectify drill steel position. Although such challenges are not necessarily unique to shale, they are often exacerbated by weak, weathered and transversely isotropic nature of bedrock conditions. All too often, the working assumption is that shale is "soft" and easily excavatable; however, this blanket assumption can prove to be costly. This paper is intended to provide design professionals and contractors with the practical considerations needed to avoid the "surprises" associated with drill hole deviation, and minimize the potential for costly claims.
NASA Astrophysics Data System (ADS)
Izzaty Riwayat, Akhtar; Nazri, Mohd Ariff Ahmad; Hazreek Zainal Abidin, Mohd
2018-04-01
In recent years, Electrical Resistivity Imaging (ERI) has become part of important method in preliminary stage as to gain more information in indicate the hidden water in underground layers. The problem faces by engineers is to determine the exact location of groundwater zone in subsurface layers. ERI seen as the most suitable tools in exploration of groundwater as this method have been applied in geotechnical and geo-environment investigation. This study was conducted using resistivity at UTHM campus to interpret the potential shallow aquifer and potential location for borehole as observation well. A Schlumberger array was setup during data acquisition as this array is capable in imaging deeper profile data and suitable for areas with homogeneous layer. The raw data was processed using RES2DINV software for 2D subsurface image. The result obtained indicate that the thickness of shallow aquifer for both spread line varies between 7.5 m to 15 m. The analysis of rest raw data using IP showed that the chargeability parameter is equal to 0 which strongly indicated the presence of groundwater aquifer in the study area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deb, Kousik, E-mail: kousik@civil.iitkgp.ernet.in; Dhar, Anirban, E-mail: anirban@civil.iitkgp.ernet.in; Purohit, Sandip, E-mail: sandip.purohit91@gmail.com
Landslide due to rainfall has been and continues to be one of the most important concerns of geotechnical engineering. The paper presents the variation of factor of safety of stone column-supported embankment constructed over soft soil due to change in water level for an incessant period of rainfall. A combined simulation-optimization based methodology has been proposed to predict the critical surface of failure of the embankment and to optimize the corresponding factor of safety under rainfall conditions using an evolutionary genetic algorithm NSGA-II (Non-Dominated Sorted Genetic Algorithm-II). It has been observed that the position of water table can be reliablymore » estimated with varying periods of infiltration using developed numerical method. The parametric study is presented to study the optimum factor of safety of the embankment and its corresponding critical failure surface under the steady-state infiltration condition. Results show that in case of floating stone columns, period of infiltration has no effect on factor of safety. Even critical failure surfaces for a particular floating column length remain same irrespective of rainfall duration.« less
Conference on Continental margin mass wasting and Pleistocene sea-level changes, August 13-15, 1980
Folger, David W.; Hathaway, J.C.
1987-01-01
A conference on Continental Margin Mass Wasting and Pleistocene Sea-Level Changes was held in Woods Hole, Mass., August 13-15, 1980. Forty-seven participants, representing many government, academic, and industrial organizations, discussed the current state of knowledge of the features of marine mass wasting and of the interrelations of factors influencing them. These factors include sediment source, composition, textures, sedimentation rates, climatic and sea-level changes, gas and gas hydrate (clathrate) contents of sediments, geotechnical characteristics, oceanographic and morphological factors, ground-water processes, and seismic events. The part played by these factors in the processes and features of mass movement and the engineering considerations imposed by the emplacement of manmade structures on the sea floor were considered vital to the evaluation of hazards involved in offshore exploration and development. The conference concluded with a call for bold programs to establish the probability of occurrence and the quantitative importance of these factors and to devise more reliable means of measurement, particularly in place, of the characteristics of the sediment and features involved.
Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks.
Lai, Jinxing; Qiu, Junling; Feng, Zhihua; Chen, Jianxun; Fan, Haobo
2016-01-01
In the past few decades, as a new tool for analysis of the tough geotechnical problems, artificial neural networks (ANNs) have been successfully applied to address a number of engineering problems, including deformation due to tunnelling in various types of rock mass. Unlike the classical regression methods in which a certain form for the approximation function must be presumed, ANNs do not require the complex constitutive models. Additionally, it is traced that the ANN prediction system is one of the most effective ways to predict the rock mass deformation. Furthermore, it could be envisaged that ANNs would be more feasible for the dynamic prediction of displacements in tunnelling in the future, especially if ANN models are combined with other research methods. In this paper, we summarized the state-of-the-art and future research challenges of ANNs on the tunnel deformation prediction. And the application cases as well as the improvement of ANN models were also presented. The presented ANN models can serve as a benchmark for effective prediction of the tunnel deformation with characters of nonlinearity, high parallelism, fault tolerance, learning, and generalization capability.
NASA Astrophysics Data System (ADS)
Sharan Kumar, N.; Ashraf Mohamad Ismail, Mohd; Sukor, Nur Sabahiah Abdul; Cheang, William
2018-05-01
This paper discusses potential applications of unmanned aerial vehicles (UAVs) for evaluation of risk immediately with photos and 3-dimensional digital element. Aerial photography using UAV ready to give a powerful technique for potential rock boulder fall recognition. High-resolution outputs from this method give the chance to evaluate the site for potential rock boulder falls spatially. The utilization of UAV to capture the aerial photos is a quick, reliable, and cost-effective technique contrasted with terrestrial laser scanning method. Reconnaissance of potential rock boulder susceptible to fall is very crucial during the geotechnical investigation. This process is essential in the view of the rock fall hazards nearby site before the beginning of any preliminary work. Photogrammetric applications have empowered the automated way to deal with identification of rock boulder susceptible to fall by recognizing the location, size, and position. A developing examination of the utilization of digital photogrammetry gives numerous many benefits for civil engineering application. These advancements have made important contributions to our capabilities to create the geohazard map on potential rock boulder fall.
A Biogeotechnical engineering approach to Combat Desertification
NASA Astrophysics Data System (ADS)
Chang, I.; Im, J.; Cho, G. C.; Lee, S. J.
2016-12-01
The acceleration of global warming is not only inducing rising sea levels and abnormal climate problems, but also geotechnical hazards such as desertification. Recently, 30% of Earth's dry land has been affected by desertification, and approximately 850 million people are suffering due to famine, poverty, and hygiene problems induced by desertification. Global warming and unsustainable land development are known to be major triggers promoting desertification. Numerous global agencies and companies are thus contributing to anti-desertification movements. However, tree planting alone is not an ideal solution given that it takes approximately 2 3 years for stabilization. It is thus imperative to develop innovative technology that can promote vegetation growth and improve soil erosion resistance. In this study, a unique soil treatment and anti-desertification method is developed using microbial biopolymers. Biopolymers can effectively strengthen soil and improve durability. In particular, anionic-hydrophilic biopolymers delay water evaporation, thereby retaining a higher soil moisture condition compared to non-treated soil. Results of this study show that microbial biopolymer treatment is highly effective in improving both vegetation growth (3 times faster) and soil erosion resistance (less than 2%), compared to untreated earth surfaces.
Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks
Lai, Jinxing
2016-01-01
In the past few decades, as a new tool for analysis of the tough geotechnical problems, artificial neural networks (ANNs) have been successfully applied to address a number of engineering problems, including deformation due to tunnelling in various types of rock mass. Unlike the classical regression methods in which a certain form for the approximation function must be presumed, ANNs do not require the complex constitutive models. Additionally, it is traced that the ANN prediction system is one of the most effective ways to predict the rock mass deformation. Furthermore, it could be envisaged that ANNs would be more feasible for the dynamic prediction of displacements in tunnelling in the future, especially if ANN models are combined with other research methods. In this paper, we summarized the state-of-the-art and future research challenges of ANNs on the tunnel deformation prediction. And the application cases as well as the improvement of ANN models were also presented. The presented ANN models can serve as a benchmark for effective prediction of the tunnel deformation with characters of nonlinearity, high parallelism, fault tolerance, learning, and generalization capability. PMID:26819587
NASA Astrophysics Data System (ADS)
Goh, A. T. C.; Kulhawy, F. H.
2005-05-01
In urban environments, one major concern with deep excavations in soft clay is the potentially large ground deformations in and around the excavation. Excessive movements can damage adjacent buildings and utilities. There are many uncertainties associated with the calculation of the ultimate or serviceability performance of a braced excavation system. These include the variabilities of the loadings, geotechnical soil properties, and engineering and geometrical properties of the wall. A risk-based approach to serviceability performance failure is necessary to incorporate systematically the uncertainties associated with the various design parameters. This paper demonstrates the use of an integrated neural network-reliability method to assess the risk of serviceability failure through the calculation of the reliability index. By first performing a series of parametric studies using the finite element method and then approximating the non-linear limit state surface (the boundary separating the safe and failure domains) through a neural network model, the reliability index can be determined with the aid of a spreadsheet. Two illustrative examples are presented to show how the serviceability performance for braced excavation problems can be assessed using the reliability index.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-22
... Permit for Oil and Gas Geotechnical Surveying and Related Activities in Federal Waters of the Beaufort... (NPDES) General Permit for Oil and Gas Geotechnical Surveying and Related Activities in Federal Waters of... authorizes twelve types of discharges from facilities engaged in oil and gas geotechnical surveys to evaluate...
Kentucky geotechnical database.
DOT National Transportation Integrated Search
2005-03-01
Development of a comprehensive dynamic, geotechnical database is described. Computer software selected to program the client/server application in windows environment, components and structure of the geotechnical database, and primary factors cons...
NASA Astrophysics Data System (ADS)
Bán, Zoltán; Győri, Erzsébet; János Katona, Tamás; Tóth, László
2015-04-01
Preparedness of nuclear power plants to beyond design base external effects became high importance after 11th of March 2011 Great Tohoku Earthquakes. In case of some nuclear power plants constructed at the soft soil sites, liquefaction should be considered as a beyond design basis hazard. The consequences of liquefaction have to be analysed with the aim of definition of post-event plant condition, identification of plant vulnerabilities and planning the necessary measures for accident management. In the paper, the methodology of the analysis of liquefaction effects for nuclear power plants is outlined. The case of Nuclear Power Plant at Paks, Hungary is used as an example for demonstration of practical importance of the presented results and considerations. Contrary to the design, conservatism of the methodology for the evaluation of beyond design basis liquefaction effects for an operating plant has to be limited to a reasonable level. Consequently, applicability of all existing methods has to be considered for the best estimation. The adequacy and conclusiveness of the results is mainly limited by the epistemic uncertainty of the methods used for liquefaction hazard definition and definition of engineering parameters characterizing the consequences of liquefaction. The methods have to comply with controversial requirements. They have to be consistent and widely accepted and used in the practice. They have to be based on the comprehensive database. They have to provide basis for the evaluation of dominating engineering parameters that control the post-liquefaction response of the plant structures. Experience of Kashiwazaki-Kariwa plant hit by Niigata-ken Chuetsu-oki earthquake of 16 July 2007 and analysis of site conditions and plant layout at Paks plant have shown that the differential settlement is found to be the dominating effect in case considered. They have to be based on the probabilistic seismic hazard assessment and allow the integration into logic-tree procedure. Earlier studies have shown that the potentially liquefiable layer at Paks Nuclear Power Plant is situated in relatively large depth. Therefore the applicability and adequacy of the methods at high overburden pressure is important. In case of existing facilities, the geotechnical data gained before construction aren't sufficient for the comprehensive liquefaction analysis. Performance of new geotechnical survey is limited. Consequently, the availability of the data has to be accounted while selection the analysis methods. Considerations have to be made for dealing with aleatory uncertainty related to the knowledge of the soil conditions. It is shown in the paper, a careful comparison and analysis of the results obtained by different methodologies provides the basis of the selection of practicable methods for the safety analysis of nuclear power plant for beyond design basis liquefaction hazard.
Development of a geotechnical information database.
DOT National Transportation Integrated Search
2009-06-01
The purpose of this project was to create a database for existing, current, and future geotechnical records and data. : The project originated from the Geotechnical Design Section at the Louisiana Department of Transportation and : Development (LADOT...
NASA Astrophysics Data System (ADS)
Valent, Philip J.; Riggins, Michael
1989-04-01
An overview is given of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high quality sediment samples for laboratory dynamic testing, and to perform deep penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35 deg and in water depths to 1300 m.
Development of geotechnical data schema in transportation : final report.
DOT National Transportation Integrated Search
2012-12-01
The objective of "Development of Geotechnical Data Schema in Transportation" is to develop an : international standard interchange format for geotechnical data. This standard will include a data : dictionary and XML schema which are GML compliant. Th...
NASA Astrophysics Data System (ADS)
Zagroba, Marek
2016-10-01
This paper deals with the conditions underlying and the problems arising from the siting of a building with specialist laboratories in a developed part of the university campus in Olsztyn, Poland. The topography of the terrain and the need to house civil engineering laboratories in the planned building had an immense impact on the shape of the building and consequently on its foundations, whose dimensions responded to the ground conditions and the specification of various loads they would have to support, including the equipment for the laboratories. The siting of a building as a step in the construction process entails several problems, which are first taken into consideration at the stage of making preliminary concept plans and are subsequently verified while working on the final construction plan. The required information included geotechnical documentation, survey of the ground conditions and the data regarding the predicted loads on the building, necessary to select the right type of foundations. All these problems grow in importance when dealing with such unique buildings like the discussed example of a laboratory building for the Civil Engineering Department, built on a site within a conservation zone on the campus of the University of Warmia and Mazury in Olsztyn, Poland. The specific character of the building and the specialist equipment with which it was to be furnished (a resistance testing machine, a 17-meter-long wave flume) necessitated a series of analyses prior to the siting of the building and selecting suitable foundations. In turn, the fact that the new building was to be erected in the conservation zone meant that collaboration with the Heritage Conservation Office had to be undertaken at the stage of making the plan and continued during the construction works. The Heritage Officer's recommendations concerning the building's shape, divisions, dimensions, materials used, etc., created a situation where the team of designers and architects had to become engaged in the process of landscape and spatial management. The above requirements concerned the functions of the building and its siting on a land parcel that was difficult to handle, also because of the protected trees growing there. Other constraints included the small size of this site, the developed surroundings, and the pre-defined programme of functions and use of the new building. On the other hand, the siting of the planned building had to be accommodated to the existing underground infrastructure (utilities). All the above circumstances made the task difficult and demanded good coordination between individual teams of engineers and architects, both at the stage of making the plan and during the construction works.
Horton, J. Wright; Chapman, Martin C.; Green, Russell A.
2015-01-01
This book grew out of a topical session on “Central Virginia Earthquakes of 2011: Geology, Geophysics, and Significance for Seismic Hazards in Eastern North America” at the 2012 The Geological Society of America (GSA) Annual Meeting in Charlotte, North Carolina (USA). It also benefitted from related sessions at other meetings. The goal of this volume, The 2011 Mineral, Virginia, Earthquake, and Its Significance for Seismic Hazards in Eastern North America, is to bring together as much information as possible on lessons learned from this rare event. Chapters encompass a wide range of geoscience, engineering, and related studies of this earthquake and its effects from the epicentral area in central Virginia to Washington, D.C., and beyond. The intended audience is a broad spectrum of geoscientists, engineers, and decision makers interested in understanding earthquakes and seismic hazards in eastern North America and other intraplate settings. Chapters by Berti et al. (21), Chapman (2), Costain (8), Davenport et al. (15), Green et al. (9), Heller and Carter (10), Horton et al. (14), Hughes et al. (19), Powars et al. (23), Pratt et al. (16), Roeloffs et al. (7), Shah et al. (17), Stephenson et al. (3), Walsh et al. (18), and Wells et al. (12) are expansions of presentations at the 2012 GSA meeting. The volume also contains chapters from recent studies that were not presented at the GSA meeting, including those by Bobyarchick (22), Burton et al. (20), Dreiling and Mooney (5), Li et al. (11), McNamara et al. (4), Pollitz and Mooney (6), and Shahidi et al. (13). Following an overview and synthesis by the volume editors (1), chapters are arranged under the topical headings “Seismology and Regional Effects,” “Earthquake Damage, Geotechnical, and Engineering Investigations,” “Aftershocks, Geophysical Imaging, and Modeling,” “Geologic Investigations—Epicentral Area,” and “Geologic Investigations— Central Virginia Seismic Zone and Nearby Faults.”We thank the authors for their contributions and the many scientists and engineers who contributed time and expertise in reviewing manuscripts to substantially improve the quality of the volume. These reviewers include Gail Atkinson, Christopher Bailey, Richard Berquist, Kimberly Blisniuk, Paul Bodin, Aaron Bradshaw, Clive Collins, Ariel Conn, Randy Cox, Haitham Dawood, James Dewey, John Ebel, David Fenster, Alexander Gates, Kathleen Haller, Gregory Hancock, Robert Hatcher, William Henika, Paul Hsieh, Steven Jaumé, Jeffrey Kimball, Charles Langston, Jongwon Lee, Andrea Llenos, John McBride, Scott Olson, Michael Oskin, Brent Owens, Gilles Peltzer, Mark Quigley, Dhananjay Ravat, David Saftner, Arthur Snoke, Jamison Steidl, Kevin Stewart, Alice Stieve, Danielle Sumy, Ertugrul Taciroglu, Roy Van Arsdale, Mason Walters, Chiyuen Wang, Yang Wang, Richard Whittecar, Lorraine Wolf, Clint Wood, Liam Wotherspoon, and some anonymous reviewers.
Development of a geotechnical information database.
DOT National Transportation Integrated Search
2009-08-01
The purpose of this project was to create a user-friendly geotechnical Web site, so the LADOTD Headquarters Geotechnical Design Section and other LADOTD sections will have access to the appropriate and necessary resources to make the best design d...
DOT National Transportation Integrated Search
2005-01-01
In 2003, an Internet-based Geotechnical Database Management System (GDBMS) was developed for the Virginia Department of Transportation (VDOT) using distributed Geographic Information System (GIS) methodology for data management, archival, retrieval, ...
NASA Astrophysics Data System (ADS)
Kiku, H.
2014-12-01
Ladies and Gentlemen, It is an honor for me to present my welcome address in the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3), as the president of Kanto Gakuin University. Particularly to those from abroad more than 17 countries, I am very grateful for your participation after long long trips from your home to Yokohama. On the behalf of the Kanto Gakuin University, we certainly welcome your visit to our university and stay in Yokohama. First I would like to introduce Kanto Gakuin University briefly. Kanto Gakuin University, which is called KGU, traces its roots back to the Yokohama Baptist Seminary founded in 1884 in Yamate, Yokohama. The seminary's founder was Albert Arnold Bennett, alumnus of Brown University, who came to Japan from the United States to establish a theological seminary for cultivating and training Japanese missionaries. Now KGU is a major member of the Kanto Gakuin School Corporation, which is composed of two kindergartens, two primary schools, two junior high schools, two senior high schools as well as KGU. In this university, we have eight faculties with graduate school including Humanities, Economics, Law, Sciences and Engineering, Architecture and Environmental Design, Human and Environmental Studies, Nursing, and Law School. Over eleven thousands students are currently learning in our university. By the way, my major is the geotechnical engineering, and I belong to the faculty of Sciences and Engineering in my university. Prof. T. Yamada, here, is my colleague in the same faculty. I know that the nuclear physics is one of the most active academic fields in the world. In fact, about half of the participants, namely, more than 50 scientists, come from abroad in this conference. Moreover, I know that the nuclear physics is related to not only the other fundamental physics such as the elementary particle physics and astrophysics but also chemistry, medical sciences, medical cares, and radiation metrology etc. Therefore, I am very happy that the excellent scientists of nuclear physics over 120 visit to our university for discussing the latest results and scope in nuclear physics, and enjoy our facilities and City of Yokohama. I believe that this conference will transmit the forefront of the nuclear physics from Yokohama to the world. Finally, I hope this international workshop will be successful and fruitful, and all you have nice days in Yokohama. Thank you very much for your attention.
Application of the Unity Rockfall Model to Variable Surface Material Conditions
NASA Astrophysics Data System (ADS)
Sala, Zac; Hutchinson, D. Jean; Ondercin, Matthew
2017-04-01
Rockfall is a geological process that poses risks to the safe operation of transportation infrastructure in mountainous environments world wide. The Unity rockfall model was created as a tool for 3D rockfall simulation as part of the Railway Ground Hazards Research Program, studying the impact of geotechnical hazards affecting Canadian railways [1]. The Unity rockfall model demonstrates the applicability of 3D video game engines for the development of realistic simulations, leveraging high-resolution site data collected using remote sensing techniques. Currently work is being done to further calibrate the model as an engineering tool for decision support. Calibration datasets include high-resolution terrestrial LiDAR and helicopter photogrammetry data collected as part of an ongoing rockfall monitoring program along the Thompson River Valley in south-central British Columbia, Canada. Change detection techniques developed as part of the program have been used to construct a database of rockfall event history and to develop magnitude-frequency relationships for rockfalls in the area [2][3]. Data collected as part of a controlled rock-rolling field program in Christchurch, New Zealand [4] is also being utilized for model calibration. Data on block dynamics for the artificially triggered rockfalls were collected through the use of embedded motion sensors and a sixteen camera setup. These experiments provide detailed information on block kinematics, and capture each impact point of the rockfall with the slope, thus offering a valuable dataset for comparison with modelling results. The research reported here explores the ability of the game engine based modelling technique to simulate rockfall under the variable slope conditions present at each of the sites where calibration data was collected. This includes steep natural rock slopes, with debris-talus cover, as well as shallower slopes with soil cover and vegetation. The varying slope conditions in each environment affect the dominant processes controlling rockfall movement downslope. In comparison to rock on rock collisions, impacts with soil and talus exhibit lower restitution values, with more energy loss occurring, but less overall fragmentation expected. The current modelling efforts present example workflows for each case, showing the steps taken to run realistic simulations using the Unity rockfall model. A comparison of the setup, model inputs and methods implemented in the model for each case study demonstrates the adaptability of the tool to different rockfall environments. References: [1] Ondercin, M.: An Exploration of Rockfall Modelling Through Game Engines, M.A.Sc Thesis, Queen's University, Kingston, 2016 [2] Kromer, R., Hutchinson, D.J., Lato, M., Gauthier, D., and Edwards, T. 2015. Identifying rock slope failure precursors using LiDAR for transportation corridor hazard management. Engineering Geology, 195, 93-103. doi:10.1016/j.enggeo.2015.05.012 [3] van Veen, M., Hutchinson, D.J., Kromer, R., Lato, M., and Edwards, T. (Submitted September 2016) Effects of Sampling Interval on the Frequency-Magnitude Relationship of Rockfalls Detected from Terrestrial Laser Scanning using Semi-Automated Methods. Landslides, MS number: LASL-D-16-00258. [4] Vick, L.M.: Evaluation of Field Data and 3D Modelling for Rockfall Hazard Assessment, Ph.D Thesis, University of Canterbury, Christchurch, 2015
DOT National Transportation Integrated Search
2006-01-01
An Internet-based, spatiotemporal Geotechnical Database Management System (GDBMS) Framework was designed, developed, and implemented at the Virginia Department of Transportation (VDOT) in 2002 to retrieve, manage, archive, and analyze geotechnical da...
Seismic investigations in downtown Copenhagen, Denmark
NASA Astrophysics Data System (ADS)
Martinez, K.; Mendoza, J. A.; Olsen, H.
2009-12-01
Near surface geophysics are gaining widespread use in major infrastructure projects with respect to geotechnical and engineering applications. The development of data acquisition, processing tools and interpretation methods have optimized survey production, reduced logistics costs and increase results reliability of seismic surveys during the last decades. However, the use of geophysical methods under urban environments continues to face challenges due to multiple noise sources and obstacles inherent to cities. A seismic investigation was conducted in Copenhagen aiming to produce information needed for hydrological, geotechnical and groundwater modeling assessments related to the planned Cityringen underground metro project. The particular objectives were a) map variations in subsurface Quaternary and limestone properties b) to map for near surface structural features. The geological setting in the Copenhagen region is characterized by several interlaced layers of glacial till and meltwater sand deposits. These layers, which are found unevenly distributed throughout the city and present in varying thicknesses, overlie limestone of different generations. There are common occurrences of incised valley structures containing localized instances of weathered or fractured limestone. The surveys consisted of combined seismic reflection and refraction profiles accounting for approximately 13 km along sections of the projected metro line. The data acquisition was carried out using standard 192 channels arrays, receiver groups with 5 m spacing and a Vibroseis as a source at 5 m spacing. In order to improve the resolution of the data, 29 Walkaway-Vertical Seismic Profiles were performed at selected wells along the surface seismic lines. The refraction data was processed with travel-time tomography and the reflection data underwent standard interpretation. The refraction data inversion was performed twofold; a surface refraction alone and combined with the VSP data. Three general velocity layers were observed; 800-1250 m/s, 1250-1700 m/s and a high velocity layer 1700-2500 m/s with localized zones of greater velocities. The variations in the higher velocity layer provide information on limestone properties relevant for tunneling design. The Walkaway-VSP proved to be a useful tool for identifying the velocity fields corresponding to the shallow sediments and the deep sequences of limestone, thus aiding the interpretation of the surface refraction imaging. Data acquisition was planned overnight to reduce external noise impact and optimise production, and urban challenges (e.g. traffic, pipelines) were overcome. Further integrated geophysical interpretation will be done together with hydrogeological analyses, geotechnical evaluations and geological modelling. The authors acknowledge Metroselskabet I/S for permission to present these results, and the Cityringen Joint Venture partners COWI, Arup and Systra.
DOT National Transportation Integrated Search
2007-01-01
An Internet-based, spatiotemporal Geotechnical Database Management System (GDBMS) Framework was implemented at the Virginia Department of Transportation (VDOT) in 2002 to manage geotechnical data using a distributed Geographical Information System (G...
Data Documentation for Navy Civilian Manpower Study,
1986-09-01
Engineering 0830 Mechanical Engineer 0840 Nuclear Engineering 0850 Electrical Engineering 0855 Electronics Engineering 0856 Electronics ...OCCUPATIONAL LEVEL (DONOL) CODES DONOL code Title 1060 Engineering Drafting 1061 Electronics Technician w 1062 Engineering Technician 1063 Industrial...Architect 2314 Electrical Engineer 2315 Electronic Engineer 2316 Industrial Engineer 2317 Mechanical Engineer 2318
Code of Federal Regulations, 2014 CFR
2014-07-01
... engine displacement, engine class, and engine families. 90.116 Section 90.116 Protection of Environment... Certification procedure—determining engine displacement, engine class, and engine families. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...
Code of Federal Regulations, 2013 CFR
2013-07-01
... engine displacement, engine class, and engine families. 90.116 Section 90.116 Protection of Environment... Certification procedure—determining engine displacement, engine class, and engine families. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...
Code of Federal Regulations, 2012 CFR
2012-07-01
... engine displacement, engine class, and engine families. 90.116 Section 90.116 Protection of Environment... Certification procedure—determining engine displacement, engine class, and engine families. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...
Code of Federal Regulations, 2011 CFR
2011-07-01
... engine displacement, engine class, and engine families. 90.116 Section 90.116 Protection of Environment... Certification procedure—determining engine displacement, engine class, and engine families. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...
Code of Federal Regulations, 2010 CFR
2010-07-01
... engine displacement, engine class, and engine families. 90.116 Section 90.116 Protection of Environment... Certification procedure—determining engine displacement, engine class, and engine families. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...
Element soil behaviour during pile installation simulated by 2D-DEM
NASA Astrophysics Data System (ADS)
Ji, Xiaohui; Cheng, Yi Pik; Liu, Junwei
2017-06-01
The estimation of the skin friction of onshore or offshore piles in sand is still a difficult problem for geotechnical engineers. It has been accepted by many researchers that the mechanism of driving piles in the soil has shared some similarities with that of an element shear test under the constant normal stiffness (CNS) condition. This paper describes the behaviour of an element of soil next to a pile during the process of pile penetration into dense fine sand using the 2D-DEM numerical simulation software. A new CNS servo was added to the horizontal boundary while maintaining the vertical stress constant. This should simulate the soil in a similar manner to that of a CNS pile-soil interface shear test, but allowing the vertical stress to remain constant which is more realistic to the field situation. Shear behaviours observed in these simulations were very similar to the results from previous researchers' lab shearing tests. With the normal stress and shear stress obtained from the virtual models, the friction angle and the shaft friction factor β mentioned in the API-2007 offshore pile design guideline were calculated and compared with the API recommended values.
Estimating SPT-N Value Based on Soil Resistivity using Hybrid ANN-PSO Algorithm
NASA Astrophysics Data System (ADS)
Nur Asmawisham Alel, Mohd; Ruben Anak Upom, Mark; Asnida Abdullah, Rini; Hazreek Zainal Abidin, Mohd
2018-04-01
Standard Penetration Resistance (N value) is used in many empirical geotechnical engineering formulas. Meanwhile, soil resistivity is a measure of soil’s resistance to electrical flow. For a particular site, usually, only a limited N value data are available. In contrast, resistivity data can be obtained extensively. Moreover, previous studies showed evidence of a correlation between N value and resistivity value. Yet, no existing method is able to interpret resistivity data for estimation of N value. Thus, the aim is to develop a method for estimating N-value using resistivity data. This study proposes a hybrid Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) method to estimate N value using resistivity data. Five different ANN-PSO models based on five boreholes were developed and analyzed. The performance metrics used were the coefficient of determination, R2 and mean absolute error, MAE. Analysis of result found that this method can estimate N value (R2 best=0.85 and MAEbest=0.54) given that the constraint, Δ {\\bar{l}}ref, is satisfied. The results suggest that ANN-PSO method can be used to estimate N value with good accuracy.
Leaching behaviour of bottom ash from RDF high-temperature gasification plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gori, M., E-mail: manuela.gori@dicea.unifi.it; Pifferi, L.; Sirini, P.
2011-07-15
This study investigated the physical properties, the chemical composition and the leaching behaviour of two bottom ash (BA) samples from two different refuse derived fuel high-temperature gasification plants, as a function of particle size. The X-ray diffraction patterns showed that the materials contained large amounts of glass. This aspect was also confirmed by the results of availability and ANC leaching tests. Chemical composition indicated that Fe, Mn, Cu and Cr were the most abundant metals, with a slight enrichment in the finest fractions. Suitability of samples for inert waste landfilling and reuse was evaluated through the leaching test EN 12457-2.more » In one sample the concentration of all metals was below the limit set by law, while limits were exceeded for Cu, Cr and Ni in the other sample, where the finest fraction showed to give the main contribution to leaching of Cu and Ni. Preliminary results of physical and geotechnical characterisation indicated the suitability of vitrified BA for reuse in the field of civil engineering. The possible application of a size separation pre-treatment in order to improve the chemical characteristics of the materials was also discussed.« less
Final state of the Strategic Petroleum Reserve (SPR) Weeks Island Mine
DOE Office of Scientific and Technical Information (OSTI.GOV)
MOLECKE,MARTIN A.
2000-02-01
This report documents the decommissioning and abandonment activities at the Weeks Island Strategic Petroleum Reserve (SPR) site, Iberia Parish, Louisiana, that were concluded in 1999. These activities required about six years of intense operational, engineering, geotechnical, and management support efforts, following initiation of site abandonment plans in 1994. The Weeks Island SPR mine stored about 72.5 million bbl of crude oil following oil fill in 1980--1982, until November 1995, when the DOE initiated oil drawdown procedures, with brine refill and oil skimming, and numerous plugging and sealing activities. About 98% of the crude oil was recovered and transferred to othermore » SPR facilities in Louisiana and Texas; a small amount was also sold. This document summarizes recent pre- and post-closure: conditions of surface features at the site, including the sinkholes, the freeze wall, surface subsidence measurements and predictions; conditions within the SPR mine, including oil recovery, brine filling, and the Markel Wet Drift; risk assessment evaluations relevant to the decommissioning and long-term potential environmental impacts; continuing environmental monitoring activities at the site; and, an overview on the background and history of the Weeks Island SPR facility.« less
Data file: the 1976 Atlantic Margin Coring (AMCOR) Project of the U.S. Geological Survey
Poppe, Lawrence J.; Poppe, Lawrence J.
1981-01-01
In 1976, the U.S. Geological Survey conducted the Atlantic Margin Coring Project (AMCOR) to obtain information on stratigraphy, hydrology and water chemistry, mineral resources other than petroleum hydrocarbons, and geotechnical engineering properties at sites widely distributed along the Continental Shelf and Slope of the Eastern United States (Hathaway and others, 1976, 1979). This program's primary purpose was to investigate a broad variety of sediment properties, many of which had not been previously studied in this region. Previous studies of sediments recovered by core drilling in this region were usually limited to one or two aspects of the sediment properties (Hathaway and others, 1979, table 2). The AMCOR program was limited by two factors: water depth and penetration depth. Because the ship selected for the program, the Glomar Conception, lacked dynamic positioning capability, its anchoring capacity determined the maximum water depth in which drilling could take place. Although it was equipped to anchor in water 450 m deep and did so successfully at one site, we attmepted no drilling in water depths greater than 300 m. Strong Gulf Stream currents at the one attempted deep (443 m) site frustrated attempts to "spud in" to begin the hole.
The Shawmere anorthosite and OB-1 as lunar highland regolith simulants
NASA Astrophysics Data System (ADS)
Battler, Melissa M.; Spray, John G.
2009-12-01
Anorthosite constitutes a major component of the lunar crust and comprises an important, if not dominant, ingredient of the lunar regolith. Given the need for highland regolith simulants in preparation for lunar surface engineering activities, we have selected an appropriate terrestrial anorthosite and performed crushing trials to generate a particle size distribution comparable to Apollo 16 regolith sample 64 500. The root simulant is derived from a granoblastic facies of the Archean Shawmere Complex of the Kapuskasing Structural Zone of Ontario, Canada. The Shawmere exhibits minimal retrogression, is homogeneous and has an average plagioclase composition of An 78 (bytownite). Previous industrial interest in this calcic anorthosite has resulted in quarrying operations, which provide ease of extraction and access for potential large-scale simulant production. A derivative of the Shawmere involves the addition of olivine slag, crushed to yield a particle size distribution similar to that of the agglutinate and glass components of the Apollo sample. This simulant is referred to as OB-1. The Shawmere and OB-1 regolith simulants are lunar highland analogues, conceived to produce geotechnical properties of benefit to designing and testing drilling, excavation and construction equipment for future lunar surface operations.
The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis
A Rashid, Ahmad Safuan; Ali, Nazri
2014-01-01
Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes. PMID:24991652
The contribution of particle swarm optimization to three-dimensional slope stability analysis.
Kalatehjari, Roohollah; Rashid, Ahmad Safuan A; Ali, Nazri; Hajihassani, Mohsen
2014-01-01
Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.
Implicit Three-Dimensional Geo-Modelling Based on HRBF Surface
NASA Astrophysics Data System (ADS)
Gou, J.; Zhou, W.; Wu, L.
2016-10-01
Three-dimensional (3D) geological models are important representations of the results of regional geological surveys. However, the process of constructing 3D geological models from two-dimensional (2D) geological elements remains difficult and time-consuming. This paper proposes a method of migrating from 2D elements to 3D models. First, the geological interfaces were constructed using the Hermite Radial Basis Function (HRBF) to interpolate the boundaries and attitude data. Then, the subsurface geological bodies were extracted from the spatial map area using the Boolean method between the HRBF surface and the fundamental body. Finally, the top surfaces of the geological bodies were constructed by coupling the geological boundaries to digital elevation models. Based on this workflow, a prototype system was developed, and typical geological structures (e.g., folds, faults, and strata) were simulated. Geological modes were constructed through this workflow based on realistic regional geological survey data. For extended applications in 3D modelling of other kinds of geo-objects, mining ore body models and urban geotechnical engineering stratum models were constructed by this method from drill-hole data. The model construction process was rapid, and the resulting models accorded with the constraints of the original data.
MSW fly ash stabilized with coal ash for geotechnical application.
Kamon, M; Katsumi, T; Sano, Y
2000-09-15
The solidification and stabilization of municipal solid waste (MSW) fly ash for the purpose of minimizing the geo-environmental impact caused by toxic heavy metals as well as ensuring engineering safety (strength and soaking durability) are experimentally evaluated. The mixtures of MSW fly ash stabilized with cement and fluidized bed combustion coal fly ash (FCA) were used for unconfined compressive strength tests, leachate tests, and soaking tests. The behavior of soluble salts contained in the MSW fly ash significantly affects strength development, soaking durability, and the hardening reaction of the stabilized MSW fly ash mixtures. The cement stabilization of the MSW fly ash does not have enough effect on strength development and soaking durability. The addition of cement only contributes to the containment of heavy metals due to the high level of alkalinity. When using FCA as a stabilizing agent for MSW fly ash, the mixture exhibits high strength and durability. However, the Cd leachate cannot be prevented in the early stages of curing. Using a combination of cement and FCA as a MSW fly ash stabilizer can attain high strength, high soaking durability, and the containment of heavy metals. The stabilized MSW fly ash with cement and FCA can be practically applied to embankments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan E. Bland
Montana-Dakota Utilities (MDU) and Western Research Institute (WRI) have been developing flowable fill materials formulated using ash from the Montana-Dakota Utilities R. M. Heskett Station in Mandan, North Dakota. MDU and WRI have partnered with the U.S. Department of Energy (DOE) and the North Dakota Industrial Commission (NDIC) to further the development of these materials for lignite-fired fluidized-bed combustion (FBC) facilities. The MDU controlled density fill (CDF) appears to be a viable engineering material and environmentally safe. WRI is pursuing the commercialization of the technology under the trademark Ready-Fill{trademark}. The project objectives were to: (1) assess the market in themore » Bismarck-Mandan area; (2) evaluate the geotechnical properties and environmental compatibility; and (3) construct and monitor demonstrations of the various grades of flowable fill products in full-scale demonstrations. The scope of initial phase of work entailed the following: Task I--Assess Market for MDU Flowable Fill Products; Task II--Assess Geotechnical and Environmental Properties of MDU Flowable Fill Products; and Task III--Demonstrate and Monitor MDU Flowable Fill Products in Field-Scale Demonstrations. The results of these testing and demonstration activities proved the following: (1) The market assessment indicated that a market exists in the Bismarck-Mandan area for structural construction applications, such as sub-bases for residential and commercial businesses, and excavatable fill applications, such as gas line and utility trench filling. (2) The cost of the MDU flowable fill product must be lower than the current $35-$45/cubic yard price if it is to become a common construction material. Formulations using MDU ash and lower-cost sand alternatives offer that opportunity. An estimated market of 10,000 cubic yards of MDU flowable fill products could be realized if prices could be made competitive. (3) The geotechnical properties of the MDU ash-based flowable fill can be modified to meet the needs of a range of applications from structural fill applications to excavatable applications, such as utility trench fill. (4) Environmental assessments using standard testing indicate that the environmental properties of the fill materials are compatible with numerous construction applications and do not pose a threat to either adjacent groundwater or soils. (5) WRI developed an Environmental Field Simulator (EFS) method for assessing the impact of flowable fill materials on adjacent soils and found that the zone of impact is less than a couple of inches, thereby posing no threat to adjacent soils. (6) Field-scale demonstrations of the MDU flowable fill were constructed and were successful for structural, as well as excavatable applications. Monitoring has demonstrated the geotechnical performance, environmental performance, and compatibility with common embed materials with the MDU flowable fill products. Technical and economic issues were identified that may hinder the commercial acceptance of MDU flowable fill materials, including: (1) the ability to produce a consistent product; (2) the ability to provide a product year round (cold weather retards strength development); and (3) the ability to evaluate and produce commercial quantities of MDU flowable fill using inexpensive materials.« less
Engineering Ethics in the Subject of Engineering History
NASA Astrophysics Data System (ADS)
Isohata, Hiroshi
Engineering ethics has been focused in the field of engineering education since the introduction of accreditation system of engineering education. In this paper, contents of the subject of engineering history are examined and discussed from the viewpoints of education of engineering ethics through a practical case of civil engineering history in a college. For the first step, codes of engineering ethics regulated in various engineering organizations are analyzed and the common contents are extracted to set the requirements for the education of engineering ethics. Then contents of the subject of engineering history are examined according to the requirements. Finally, conditions of engineering history for engineering ethics are discussed.
Obermeier, S.F.
1996-01-01
Liquefaction features can be used in many field settings to estimate the recurrence interval and magnitude of strong earthquakes through much of the Holocene. These features include dikes, craters, vented sand, sills, and laterally spreading landslides. The relatively high seismic shaking level required for their formation makes them particularly valuable as records of strong paleo-earthquakes. This state-of-the-art summary for using liquefaction-induced features for paleoseismic interpretation and analysis takes into account both geological and geotechnical engineering perspectives. The driving mechanism for formation of the features is primarily the increased pore-water pressure associated with liquefaction of sand-rich sediment. The role of this mechanism is often supplemented greatly by the direct action of seismic shaking at the ground surface, which strains and breaks the clay-rich cap that lies immediately above the sediment that liquefied. Discussed in the text are the processes involved in formation of the features, as well as their morphology and characteristics in field settings. Whether liquefaction occurs is controlled mainly by sediment grain size, sediment packing, depth to the water table, and strength and duration of seismic shaking. Formation of recognizable features in the field generally requires a low-permeability cap above the sediment that liquefied. Field manifestations are controlled largely by the severity of liquefaction and the thickness and properties of the low-permeability cap. Criteria are presented for determining whether observed sediment deformation in the field originated by seismically induced liquefaction. These criteria have been developed mainly by observing historic effects of liquefaction in varied field settings. The most important criterion is that a seismic liquefaction origin requires widespread, regional development of features around a core area where the effects are most severe. In addition, the features must have a morphology that is consistent with a very sudden application of a large hydraulic force. This article discusses case studies in widely separated and different geological settings: coastal South Carolina, the New Madrid seismic zone, the Wabash Valley seismic zone, and coastal Washington State. These studies encompass most of the range of settings and the types of liquefaction-induced features likely to be encountered anywhere. The case studies describe the observed features and the logic for assigning a seismic liquefaction origin to them. Also discussed are some types of sediment deformations that can be misinterpreted as having a seismic origin. Two independent methods for estimating prehistoric magnitude are discussed briefly. One method is based on determination of the maximum distance from the epicenter over which liquefaction-induced effects have formed. The other method is based on use of geotechnical engineering techniques at sites of marginal liquefaction, in order to bracket the peak accelerations as a function of epicentral distance; these accelerations can then be compared with predictions from seismological models.
Perturbing engine performance measurements to determine optimal engine control settings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan
Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initialmore » value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.« less
NASA Technical Reports Server (NTRS)
Huang, Zhao-Feng; Fint, Jeffry A.; Kuck, Frederick M.
2005-01-01
This paper is to address the in-flight reliability of a liquid propulsion engine system for a launch vehicle. We first establish a comprehensive list of system and sub-system reliability drivers for any liquid propulsion engine system. We then build a reliability model to parametrically analyze the impact of some reliability parameters. We present sensitivity analysis results for a selected subset of the key reliability drivers using the model. Reliability drivers identified include: number of engines for the liquid propulsion stage, single engine total reliability, engine operation duration, engine thrust size, reusability, engine de-rating or up-rating, engine-out design (including engine-out switching reliability, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction), propellant specific hazards, engine start and cutoff transient hazards, engine combustion cycles, vehicle and engine interface and interaction hazards, engine health management system, engine modification, engine ground start hold down with launch commit criteria, engine altitude start (1 in. start), Multiple altitude restart (less than 1 restart), component, subsystem and system design, manufacturing/ground operation support/pre and post flight check outs and inspection, extensiveness of the development program. We present some sensitivity analysis results for the following subset of the drivers: number of engines for the propulsion stage, single engine total reliability, engine operation duration, engine de-rating or up-rating requirements, engine-out design, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction, and engine health management system implementation (basic redlines and more advanced health management systems).
Engineering Review Information System
NASA Technical Reports Server (NTRS)
Grems, III, Edward G. (Inventor); Henze, James E. (Inventor); Bixby, Jonathan A. (Inventor); Roberts, Mark (Inventor); Mann, Thomas (Inventor)
2015-01-01
A disciplinal engineering review computer information system and method by defining a database of disciplinal engineering review process entities for an enterprise engineering program, opening a computer supported engineering item based upon the defined disciplinal engineering review process entities, managing a review of the opened engineering item according to the defined disciplinal engineering review process entities, and closing the opened engineering item according to the opened engineering item review.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, N.Y.; Wu, T.H.
1986-01-01
To evaluate the engineering property of spent shale at elevated temperatures, high temperature triaxial cells were designed and manufactured. The cells were then used in the test program designed to provide the physical and engineering properties of spent shale (TOSCO-II) at elevated temperatures. A series of consolidated drained triaxial tests were conducted at high temperatures. Duncan-Chang hyperbolic model was adopted to simulate the laboratory stress versus strain behavior of spent shale at various temperatures. This model provides very good fit to the laboratory stress-strain-volumetric strain characteristics of spent shale at various temperatures. The parameters of this model were then formulatedmore » as functions of temperatures and the Duncan-Chang model was implemented in a finite element analysis computer code for predicting the stress-deformation behavior of large spent shale embankments. Modified Bishop method was also used in analyzing the stability of spent shale embankments. The stability of three different spent shale embankments at three different temperatures were investigated in the study. Additionally the stability of embankments with different degrees of toe erosion was also studied. Results of this study indicated that (1) the stress-strain-strength properties of soils are affected by temperature variation; (2) the stress-strain-strength behavior of spent shale can be simulated by Duncan-Chang hyperbolic model, (3) the factor of safety of embankment slope decreases with rising temperatures; (4) the embankment deformation increases with rising temperatures; and (5) the toe erosion induced by floods causes the embankment slope to become less stable. It is strongly recommended, to extend this study to investigate the effect of internal seepage on the stability of large spent shale embankment. 68 refs., 53 figs., 16 tabs.« less
Evolution of permafrost landscapes under technogenic impacts
NASA Astrophysics Data System (ADS)
Kerimov, A. G.; Grebenets, V. I.; Streletskiy, D. A.; Shiklomanov, N. I.; Nyland, K. E.
2014-12-01
Economic development of Russian Northern Regions on permafrost resulted in a new pattern of geocryological conditions, different from natural environment. This pattern is characterized by drastic landscape transformations; changes of heat and mass transfer in the permafrost/atmosphere system; and by engineering and technical pressure upon the permafrost, leading to alteration of its physical, thermal and mechanical properties. In the northern cities this causes increase of ground temperature and intensification of hazardous cryogenic processes in areas under engineering development, reducing stability of geotechnical environment. For example, facility deformations in Norilsk in the last 15 years, became much more abundant than these revealed throughout the previous 50 years. Increase in accident risk for facilities (pipelines, industrial enterprises, etc.) enhances the technogenic pressure on permafrost of the territories under development, leading to the new milestone of changes in permafrost, i.e. to creation of a new set of geocryological conditions. Cryogenic processes within the urban cryolithozone are seldom similar with these under the natural conditions: they either occur more intensively or, vice versa, attenuate under technogenic impacts, new cryogenic processes and phenomena occur, which have not been typical for a given region hitherto. A geographical distribution, evolution and other features of cryogenic processes differ considerably from natural conditions or are unprecedented at all. Peculiar natural-technogenic geocryological complices (NTGC) are formed in the urban centers, which are remarkable by the vector of permafrost evolution, by the set of cryogenic processes, by temperature trends and the other characteristics. NTGC types depend on initial natural settings and on kinds, intensity and duration of technogenic pressure. Our field surveys of permafrost and geological conditions resulted in mapping of 17 NTGC types in Norilsk, 11 types in Yamburg gas field, and 32 types along gas and oil pipelines in the north of Western Siberia. NTGC dynamics, depending on climate change, the scale of urban system, on the set of its elements and on duration of impact upon nature, and on degree of stability of natural permafrost, attracts the particular interest.
Rousseau, Joseph P.; Landa, Edward R.; Nimmo, John R.; Cecil, L. DeWayne; Knobel, LeRoy L.; Glynn, Pierre D.; Kwicklis, Edward M.; Curtis, Gary P.; Stollenwerk, Kenneth G.; Anderson, Steven R.; Bartholomay, Roy C.; Bossong, Clifford R.; Orr, Brennon R.
2005-01-01
The U.S. Department of Energy (DOE) requested that the U.S. Geological Survey conduct an independent technical review of the Interim Risk Assessment (IRA) and Contaminant Screening for the Waste Area Group 7 (WAG-7) Remedial Investigation, the draft Addendum to the Work Plan for Operable Unit 7-13/14 WAG-7 comprehensive Remedial Investigation and Feasibility Study (RI/FS), and supporting documents that were prepared by Lockheed Martin Idaho Technologies, Inc. The purpose of the technical review was to assess the data and geotechnical approaches that were used to estimate future risks associated with the release of the actinides americium, uranium, neptunium, and plutonium to the Snake River Plain aquifer from wastes buried in pits and trenches at the Subsurface Disposal Area (SDA). The SDA is located at the Radioactive Waste Management Complex in southeastern Idaho within the boundaries of the Idaho National Engineering and Environmental Laboratory. Radionuclides have been buried in pits and trenches at the SDA since 1957 and 1952, respectively. Burial of transuranic wastes was discontinued in 1982. The five specific tasks associated with this review were defined in a ?Proposed Scope of Work? prepared by the DOE, and a follow-up workshop held in June 1998. The specific tasks were (1) to review the radionuclide sampling data to determine how reliable and significant are the reported radionuclide detections and how reliable is the ongoing sampling program, (2) to assess the physical and chemical processes that logically can be invoked to explain true detections, (3) to determine if distribution coefficients that were used in the IRA are reliable and if they have been applied properly, (4) to determine if transport model predictions are technically sound, and (5) to identify issues needing resolution to determine technical adequacy of the risk assessment analysis, and what additional work is required to resolve those issues.
Hydraulic permeability of bentonite-polymer composites for application in landfill technology
NASA Astrophysics Data System (ADS)
Dehn, Hanna; Haase, Hanna; Schanz, Tom
2015-04-01
Bentonites are often used as barrier materials in landfill technology to prevent infiltration of leachates to the natural environment. Since decades, geoenvironmental engineering aims at improving the hydro-mechanical performance of landfill liners. Various studies on the permeability performance of geosynthetic clay liners (GCLs) show effects of non-standard liquids on behaviour of Na+-bentonite regarding its sealing capacity. With increasing concentration of chemical aggressive solutions the sealing capacity decreases (Shackelford et al. 2000). An opportunity to improve the hydraulic permeability of the bentonites is the addition of polymers. The changes in hydraulic permeability performance of polymer treated and untreated bentonites while adding chemical aggressive solutions were studied by several authors. Results obtained by Scalia et al. (2014) illustrate that an increase in permeability can be prevented by adding polymer to Na+-bentonite. On the other hand, Ashmawy et al. (2002) presented results on the incapability of several commercial bentonite-polymer-products. The objective of this study is to characterize the influence of polymer addition on hydraulic performance of Na+-bentonite systematically. Therefore, the influence of 1% polymer addition of cationic and anionic polyacrylamide on the swelling pressure and hydraulic permeability of MX 80 bentonite was investigated. Preparation of bentonite-polymer composites was conducted (1) in dry conditions and (2) using solution-intercalation method. Experiments on hydraulic permeability were carried out using distilled water as well as CaCl2-solution. References Ashmawy, A. K., El-Hajji, D., Sotelo, N. & Muhammad, N. (2002), `Hydraulic Performance of Untreated and Polymer-treated Bentonite in Inorganic Landfill Leachates', Clays and Clay Minerals 50(5), 546-552. Scalia, J., Benson, C., Bohnhoff, G., Edil, T. & Shackelford, C. (2014), 'Long-Term Hydraulic Conductivity of a Bentonite-Polymer Composite Permeated with Aggressive Inorganic Solutions', Journal of Geotechnical and Geoenvironmental Engineering 140(3). Shackelford, C. D., Benson, C. H., Katsumi, T., Edil, T. B. & Lin, L. (2000), 'Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids', Geotextiles and Geomembranes 18, 133-161.
An Earthquake Shake Map Routine with Low Cost Accelerometers: Preliminary Results
NASA Astrophysics Data System (ADS)
Alcik, H. A.; Tanircan, G.; Kaya, Y.
2015-12-01
Vast amounts of high quality strong motion data are indispensable inputs of the analyses in the field of geotechnical and earthquake engineering however, high cost of installation of the strong motion systems constitutes the biggest obstacle for worldwide dissemination. In recent years, MEMS based (micro-electro-mechanical systems) accelerometers have been used in seismological research-oriented studies as well as earthquake engineering oriented projects basically due to precision obtained in downsized instruments. In this research our primary goal is to ensure the usage of these low-cost instruments in the creation of shake-maps immediately after a strong earthquake. Second goal is to develop software that will automatically process the real-time data coming from the rapid response network and create shake-map. For those purposes, four MEMS sensors have been set up to deliver real-time data. Data transmission is done through 3G modems. A subroutine was coded in assembler language and embedded into the operating system of each instrument to create MiniSEED files with packages of 1-second instead of 512-byte packages.The Matlab-based software calculates the strong motion (SM) parameters at every second, and they are compared with the user-defined thresholds. A voting system embedded in the software captures the event if the total vote exceeds the threshold. The user interface of the software enables users to monitor the calculated SM parameters either in a table or in a graph (Figure 1). A small scale and affordable rapid response network is created using four MEMS sensors, and the functionality of the software has been tested and validated using shake table tests. The entire system is tested together with a reference sensor under real strong ground motion recordings as well as series of sine waves with varying amplitude and frequency. The successful realization of this software allowed us to set up a test network at Tekirdağ Province, the closest coastal point to the moderate size earthquake activities in the Marmara Sea, Turkey.
NASA Astrophysics Data System (ADS)
Li, A.; Tsai, F. T. C.; Jafari, N.; Chen, Q. J.; Bentley, S. J.
2017-12-01
A vast area of river deltaic wetlands stretches across southern Louisiana coast. The wetlands are suffering from a high rate of land loss, which increasingly threats coastal community and energy infrastructure. A regional stratigraphic framework of the delta plain is now imperative to answer scientific questions (such as how the delta plain grows and decays?) and to provide information to coastal protection and restoration projects (such as marsh creation and construction of levees and floodwalls). Through years, subsurface investigations in Louisiana have been conducted by state and federal agencies (Louisiana Department of Natural Resources, United States Geological Survey, United States Army Corps of Engineers, etc.), research institutes (Louisiana Geological Survey, LSU Coastal Studies Institute, etc.), engineering firms, and oil-gas companies. This has resulted in the availability of various types of data, including geological, geotechnical, and geophysical data. However, it is challenging to integrate different types of data and construct three-dimensional stratigraphy models in regional scale. In this study, a set of geostatistical methods were used to tackle this problem. An ordinary kriging method was used to regionalize continuous data, such as grain size, water content, liquid limit, plasticity index, and cone penetrometer tests (CPTs). Indicator kriging and multiple indicator kriging methods were used to regionalize categorized data, such as soil classification. A compositional kriging method was used to regionalize compositional data, such as soil composition (fractions of sand, silt and clay). Stratigraphy models were constructed for three cases in the coastal zone: (1) Inner Harbor Navigation Canal (IHNC) area: soil classification and soil behavior type (SBT) stratigraphies were constructed using ordinary kriging; (2) Middle Barataria Bay area: a soil classification stratigraphy was constructed using multiple indicator kriging; (3) Lower Barataria Bay and Lower Breton Sound areas: a soil texture stratigraphy was constructed using soil compositional data and compositional kriging. Cross sections were extracted from the three-dimensional stratigraphy models to reveal spatial distributions of different stratigraphic features.
NASA Astrophysics Data System (ADS)
Shahri, Abbas; Mousavinaseri, Mahsasadat; Naderi, Shima; Espersson, Maria
2015-04-01
Application of Artificial Neural Networks (ANNs) in many areas of engineering, in particular to geotechnical engineering problems such as site characterization has demonstrated some degree of success. The present paper aims to evaluate the feasibility of several various types of ANN models to predict the clay sensitivity of soft clays form piezocone penetration test data (CPTu). To get the aim, a research database of CPTu data of 70 test points around the Göta River near the Lilli Edet in the southwest of Sweden which is a high prone land slide area were collected and considered as input for ANNs. For training algorithms the quick propagation, conjugate gradient descent, quasi-Newton, limited memory quasi-Newton and Levenberg-Marquardt were developed tested and trained using the CPTu data to provide a comparison between the results of field investigation and ANN models to estimate the clay sensitivity. The reason of using the clay sensitivity parameter in this study is due to its relation to landslides in Sweden.A special high sensitive clay namely quick clay is considered as the main responsible for experienced landslides in Sweden which has high sensitivity and prone to slide. The training and testing program was started with 3-2-1 ANN architecture structure. By testing and trying several various architecture structures and changing the hidden layer in order to have a higher output resolution the 3-4-4-3-1 architecture structure for ANN in this study was confirmed. The tested algorithm showed that increasing the hidden layers up to 4 layers in ANN can improve the results and the 3-4-4-3-1 architecture structure ANNs for prediction of clay sensitivity represent reliable and reasonable response. The obtained results showed that the conjugate gradient descent algorithm with R2=0.897 has the best performance among the tested algorithms. Keywords: clay sensitivity, landslide, Artificial Neural Network
Concurrently adjusting interrelated control parameters to achieve optimal engine performance
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna
2015-12-01
Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.
Component improvement of free-piston Stirling engine key technology for space power
NASA Technical Reports Server (NTRS)
Alger, Donald L.
1988-01-01
The successful performance of the 25 kW Space Power Demonstrator (SPD) engine during an extensive testing period has provided a baseline of free piston Stirling engine technology from which future space Stirling engines may evolve. Much of the success of the engine was due to the initial careful selection of engine materials, fabrication and joining processes, and inspection procedures. Resolution of the few SPD engine problem areas that did occur has resulted in the technological advancement of certain key free piston Stirling engine components. Derivation of two half-SPD, single piston engines from the axially opposed piston SPD engine, designated as Space Power Research (SPR) engines, has made possible the continued improvement of these engine components. The two SPR engines serve as test bed engines for testing of engine components. Some important fabrication and joining processes are reviewed. Also, some component deficiencies that were discovered during SPD engine testing are described and approaches that were taken to correct these deficiencies are discussed. Potential component design modifications, based upon the SPD and SPR engine testing, are also reported.
NASA Technical Reports Server (NTRS)
Sander, Erik J.; Gosdin, Dennis R.
1992-01-01
Engineers regularly analyze SSME ground test and flight data with respect to engine systems performance. Recently, a redesigned SSME powerhead was introduced to engine-level testing in part to increase engine operational margins through optimization of the engine internal environment. This paper presents an overview of the MSFC personnel engine systems analysis results and conclusions reached from initial engine level testing of the redesigned powerhead, and further redesigns incorporated to eliminate accelerated main injector baffle and main combustion chamber hot gas wall degradation. The conclusions are drawn from instrumented engine ground test data and hardware integrity analysis reports and address initial engine test results with respect to the apparent design change effects on engine system and component operation.
Engine having multiple pumps driven by a single shaft
Blass, James R.
2001-01-01
An engine comprises an engine housing. A first engine fluid sub-system that includes a first pump and the engine housing defining a first fluid passage is also included in the engine. The engine also includes at least one additional engine fluid sub-system that includes a second pump and the engine housing defining a second fluid passage. A rotating shaft is at least partially positioned in the engine housing, the first pump and the second pump.
Earth Science Research at the Homestake Deep Underground Science and Engineering Laboratory
NASA Astrophysics Data System (ADS)
Roggenthen, W.; Wang, J.
2004-12-01
The Homestake Mine in South Dakota ceased gold production in 2002 and was sealed for entry in 2003. The announcement of mine closure triggered the revival of a national initiative to establish a deep underground facility, currently known as the Deep Underground Science and Engineering Laboratory (DUSEL). The National Science Foundation announced that solicitations were to be issued in 2004 and 2005, with the first one (known as S-1) issued in June, 2004. The focus of S-1 is on site non-specific technical requirements to define the scientific program at DUSEL. Earth scientists and physicists participated in an S-1 workshop at Berkeley in August, 2004. This abstract presents the prospects of the Homestake Mine to accommodate the earth science scientific programs defined at the S-1 workshop. The Homestake Mine has hundreds of kilometers of drifts over fifty levels accessible (upon mine reopening) for water evaluation, seepage quantification, seismic monitoring, geophysical imaging, geological mapping, mineral sampling, ecology and geo-microbiology. The extensive network of drifts, ramps, and vertical shafts allows installation of 10-kilometer-scale seismograph and electromagnetic networks. Ramps connecting different levels, typically separated by 150 ft, could be instrumented for flow and transport studies, prior to implementation of coupled thermal-hydro-chemical-mechanical-biological processes testing. Numerous large rooms are available for ecological and introduced-material evaluations. Ideas for installing instruments in cubic kilometers of rock mass can be realized over multiple levels. Environmental assessment, petroleum recovery, carbon sequestration were among the applications discussed in the S-1 workshop. If the Homestake Mine can be expediently reopened, earth scientists are ready to perform important tests with a phased approach. The drifts and ramps directly below the large open pit could be the first area for shallow testing. The 4,850 ft level is the next target area, which has a large lateral extent. Geophysical sensor stations could be installed at this level, together with stations along two main shafts accessing this level, and one winze below. After dewatering, rock mechanics and geotechnical engineering investigators could actively participate in room siting and excavation, at depths up to 8,000 ft. Geochemistry and geo-microbiology scientists would prefer additional drilling in deep zones beyond the mining and flooding perturbations. Additional earth science programs are being developed for the Homestake Mine, utilizing multiple levels and shafts. Many physics experiments require a site "as deep as possible" and special conditions to reduce background and cosmic rays. The Homestake Mine offers a very deep site and a vast amount of data and knowledge associated with its 125 years of mining operation. The cores from exploratory drilling into a mechanical strong unit, the Yates Formation, are available for scientific and engineering evaluations. A team from many institutions is being formed by Kevin Lesko, a neutrino scientist with experience in detecting neutrino oscillations with deep detectors in Canada and Japan. It is time for the United States to establish a DUSEL deep and large enough for next-generation physics and earth science long-term experiments. The Homestake Mine has these necessary attributes. The collaboration welcomes participation and contribution from scientists and engineers in the physics and earth science community for multi-disciplinary research during and after the restoration and conversion of the Homestake Mine.
Industrializing Offshore Wind Power with Serial Assembly and Lower-cost Deployment - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempton, Willett
A team of engineers and contractors has developed a method to move offshore wind installation toward lower cost, faster deployment, and lower environmental impact. A combination of methods, some incremental and some breaks from past practice, interact to yield multiple improvements. Three designs were evaluated based on detailed engineering: 1) a 5 MW turbine on a jacket with pin piles (base case), 2) a 10 MW turbine on a conventional jacket with pin piles, assembled at sea, and 3) a 10 MW turbine on tripod jacket with suction buckets (caissons) and with complete turbine assembly on-shore. The larger turbine, assemblymore » ashore, and the use of suction buckets together substantially reduce capital cost of offshore wind projects. Notable capital cost reductions are: changing from 5 MW to 10 MW turbine, a 31% capital cost reduction, and assembly on land then single-piece install at sea an additional 9% capital cost reduction. An estimated Design 4) estimates further cost reduction when equipment and processes of Design 3) are optimized, rather than adapted to existing equipment and process. Cost of energy for each of the four Designs are also calculated, yielding approximately the same percentage reductions. The methods of Design 3) analyzed here include accepted structures such as suction buckets used in new ways, innovations conceived but previously without engineering and economic validation, combined with new methods not previously proposed. Analysis of Designs 2) and 3) are based on extensive engineering calculations and detailed cost estimates. All design methods can be done with existing equipment, including lift equipment, ports and ships (except that design 4 assumes a more optimized ship). The design team consists of experienced offshore structure designers, heavy lift engineers, wind turbine designers, vessel operators, and marine construction contractors. Comparing the methods based on criteria of cost and deployment speed, the study selected the third design. That design is, in brief: a conventional turbine and tubular tower is mounted on a tripod jacket, in turn atop three suction buckets. Blades are mounted on the tower, not on the hub. The entire structure is built in port, from the bottom up, then assembled structures are queued in the port for deployment. During weather windows, the fully-assembled structures are lifted off the quay, lashed to the vessel, and transported to the deployment site. The vessel analyzed is a shear leg crane vessel with dynamic positioning like the existing Gulliver, or it could be a US-built crane barge. On site, the entire structure is lowered to the bottom by the crane vessel, then pumping of the suction buckets is managed by smaller service vessels. Blades are lifted into place by small winches operated by workers in the nacelle without lift vessel support. Advantages of the selected design include: cost and time at sea of the expensive lift vessel are significantly reduced; no jack up vessel is required; the weather window required for each installation is shorter; turbine structure construction is continuous with a queue feeding the weather-dependent installation process; pre-installation geotechnical work is faster and less expensive; there are no sound impacts on marine mammals, thus minimal spotting and no work stoppage Industrializing Offshore Wind Power 6 of 96 9 for mammal passage; the entire structure can be removed for decommissioning or major repairs; the method has been validated for current turbines up to 10 MW, and a calculation using simple scaling shows it usable up to 20 MW turbines.« less
Engineering Education for a New Era
NASA Astrophysics Data System (ADS)
Ohgaki, Shinichiro
Engineering education is composed of five components, the idea what engineering education ought to be, the knowledge in engineering fields, those who learn engineering, those who teach engineering and the stakeholders in engineering issues. The characteristics of all these five components are changing with the times. When we consider the engineering education for the next era, we should analyze the changes of all five components. Especially the knowledge and tools in engineering fields has been expanding, and advanced science and technology is casting partly a dark shadow on the modern convenient life. Moral rules or ethics for developing new products and engineering systems are now regarded as most important in engineering fields. All those who take the responsibility for engineering education should understand the change of all components in engineering education and have a clear grasp of the essence of engineering for sustainable society.
Performance assessment of geotechnical structural elements using distributed fiber optic sensing
NASA Astrophysics Data System (ADS)
Monsberger, Christoph; Woschitz, Helmut; Lienhart, Werner; Račanský, Václav; Hayden, Martin
2017-04-01
Geotechnical structural elements are used to underpin heavy structures or to stabilize slopes and embankments. The bearing capacity of these components is usually verified by geotechnical load tests. It is state of the art to measure the resulting deformations with electronic sensors at the surface and therefore, the load distribution along the objects cannot be determined. This paper reports about distributed strain measurements with an optical backscatter reflectometer along geotechnical elements. In addition to the installation of the optical fiber in harsh field conditions, results of investigations of the fiber optic system in the laboratory and the most significant results of the field trials are presented.
78 FR 5710 - Airworthiness Directives; Engine Alliance Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... Airworthiness Directives; Engine Alliance Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... all Engine Alliance GP7270 and GP7277 turbofan engines. This AD requires initial and repetitive...) Applicability This AD applies to all Engine Alliance GP7270 and GP7277 turbofan engines with a high-pressure...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-04
...,846B; TA-W-81,846C; TA-W-81,846D] Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Alpharetta, GA; Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Hunt Valley, MD; Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division...
40 CFR 91.115 - Certification procedure-determining engine power and engine families.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engine power and engine families. 91.115 Section 91.115 Protection of Environment ENVIRONMENTAL... ENGINES Emission Standards and Certification Provisions § 91.115 Certification procedure—determining engine power and engine families. (a) Engine power must be calculated using SAE J1228. This procedure has...
14 CFR 23.777 - Cockpit controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... powerplant controls for each engine must be located to prevent confusion as to the engines they control. (1... engines(s) and the right control(s) operates the right engine(s). (2) On twin-engine airplanes with front and rear engine locations (tandem), the left powerplant controls must operate the front engine and the...
14 CFR 23.777 - Cockpit controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... powerplant controls for each engine must be located to prevent confusion as to the engines they control. (1... engines(s) and the right control(s) operates the right engine(s). (2) On twin-engine airplanes with front and rear engine locations (tandem), the left powerplant controls must operate the front engine and the...
Biocatalysis engineering: the big picture.
Sheldon, Roger A; Pereira, Pedro C
2017-05-22
In this tutorial review we describe a holistic approach to the invention, development and optimisation of biotransformations utilising isolated enzymes. Increasing attention to applied biocatalysis is motivated by its numerous economic and environmental benefits. Biocatalysis engineering concerns the development of enzymatic systems as a whole, which entails engineering its different components: substrate engineering, medium engineering, protein (enzyme) engineering, biocatalyst (formulation) engineering, biocatalytic cascade engineering and reactor engineering.
Technician Career Opportunities in Engineering Technology.
ERIC Educational Resources Information Center
Engineers' Council for Professional Development, New York, NY.
Career opportunities for engineering technicians are available in the technologies relating to air conditioning, heating, and refrigeration, aviation and aerospace, building construction, chemical engineering, civil engineering, electrical engineering, electronics, industrial engineering, instrumentation, internal combustion engines, mechanical…
The responsibilities of engineers.
Smith, Justin; Gardoni, Paolo; Murphy, Colleen
2014-06-01
Knowledge of the responsibilities of engineers is the foundation for answering ethical questions about the work of engineers. This paper defines the responsibilities of engineers by considering what constitutes the nature of engineering as a particular form of activity. Specifically, this paper focuses on the ethical responsibilities of engineers qua engineers. Such responsibilities refer to the duties acquired in virtue of being a member of a group. We examine the practice of engineering, drawing on the idea of practices developed by philosopher Alasdair MacIntyre, and show how the idea of a practice is important for identifying and justifying the responsibilities of engineers. To demonstrate the contribution that knowledge of the responsibilities of engineers makes to engineering ethics, a case study from structural engineering is discussed. The discussion of the failure of the Sleipner A Platform off the coast of Norway in 1991 demonstrates how the responsibilities of engineers can be derived from knowledge of the nature of engineering and its context.
ERIC Educational Resources Information Center
Lucena, Juan C.
2006-01-01
The demand for flexible engineers presents significant challenges to engineering education. Among these is the need for engineers to be prepared to understand and deal with organizational change. Yet engineering education and research on engineers have overlooked the impact of organizational change on engineering work. After outlining the impact…
Staged combustion with piston engine and turbine engine supercharger
Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA
2006-05-09
A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.
Staged combustion with piston engine and turbine engine supercharger
Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA
2011-11-01
A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.
Wave rotor demonstrator engine assessment
NASA Technical Reports Server (NTRS)
Snyder, Philip H.
1996-01-01
The objective of the program was to determine a wave rotor demonstrator engine concept using the Allison 250 series engine. The results of the NASA LERC wave rotor effort were used as a basis for the wave rotor design. A wave rotor topped gas turbine engine was identified which incorporates five basic requirements of a successful demonstrator engine. Predicted performance maps of the wave rotor cycle were used along with maps of existing gas turbine hardware in a design point study. The effects of wave rotor topping on the engine cycle and the subsequent need to rematch compressor and turbine sections in the topped engine were addressed. Comparison of performance of the resulting engine is made on the basis of wave rotor topped engine versus an appropriate baseline engine using common shaft compressor hardware. The topped engine design clearly demonstrates an impressive improvement in shaft horsepower (+11.4%) and SFC (-22%). Off design part power engine performance for the wave rotor topped engine was similarly improved including that at engine idle conditions. Operation of the engine at off design was closely examined with wave rotor operation at less than design burner outlet temperatures and rotor speeds. Challenges identified in the development of a demonstrator engine are discussed. A preliminary design was made of the demonstrator engine including wave rotor to engine transition ducts. Program cost and schedule for a wave rotor demonstrator engine fabrication and test program were developed.
Wave Engine Topping Cycle Assessment
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1996-01-01
The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping constraints. Positive and negative aspects of wave engine topping in gas turbine engines are identified.
ERIC Educational Resources Information Center
Song, Ting; Becker, Kurt; Gero, John; DeBerard, Scott; DeBerard, Oenardi; Reeve, Edward
2016-01-01
The authors investigated the differences in using problem decomposition and problem recomposition between dyads of engineering experts, engineering seniors, and engineering freshmen. Participants worked in dyads to complete an engineering design challenge within 1 hour. The entire design process was video and audio recorded. After the design…
Automotive Stirling Engine Mod 1 Design Review, Volume 1
NASA Technical Reports Server (NTRS)
1982-01-01
Risk assessment, safety analysis of the automotive stirling engine (ASE) mod I, design criteria and materials properties for the ASE mod I and reference engines, combustion are flower development, and the mod I engine starter motor are discussed. The stirling engine system, external heat system, hot engine system, cold engine system, and engine drive system are also discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-20
... Nonroad Spark-Ignited Engines, New Nonroad Compression-Ignited Engines, and New On-Road Heavy Duty Engines... Compression-ignited Engines, and New On-road Heavy Duty Engines (Renewal). ICR numbers: EPA ICR No. 1852.05... engines, new nonroad compression-ignited engines, and new on- road heavy duty engines. Estimated Number of...
NASA Astrophysics Data System (ADS)
Kelly, Jacquelyn
Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions from the area of science education were used instead. Various researchers outlined strategies for helping students acquire scientific language. However, few examined and quantified the relationship it had on student learning. A systemic functional linguistics framework was adopted for this dissertation which is a framework that has not previously been used in engineering education research. This study investigated how engineering language proficiency influenced conceptual understanding of introductory materials science and engineering concepts. To answer the research questions about engineering language proficiency, a convenience sample of forty-one undergraduate students in an introductory materials science and engineering course was used. All data collected was integrated with the course. Measures included the Materials Concept Inventory, a written engineering design task, and group observations. Both systemic functional linguistics and mental models frameworks were utilized to interpret data and guide analysis. A series of regression analyses were conducted to determine if engineering language proficiency predicts group engineering term use, if conceptual understanding predicts group engineering term use, and if conceptual understanding predicts engineering language proficiency. Engineering academic language proficiency was found to be strongly linked to conceptual understanding in the context of introductory materials engineering courses. As the semester progressed, this relationship became even stronger. The more engineering concepts students are expected to learn, the more important it is that they are proficient in engineering language. However, exposure to engineering terms did not influence engineering language proficiency. These results stress the importance of engineering language proficiency for learning, but warn that simply exposing students to engineering terms does not promote engineering language proficiency.
Performance and driveline analyses of engine capacity in range extender engine hybrid vehicle
NASA Astrophysics Data System (ADS)
Praptijanto, Achmad; Santoso, Widodo Budi; Nur, Arifin; Wahono, Bambang; Putrasari, Yanuandri
2017-01-01
In this study, range extender engine designed should be able to meet the power needs of a power generator of hybrid electrical vehicle that has a minimum of 18 kW. Using this baseline model, the following range extenders will be compared between conventional SI piston engine (Baseline, BsL), engine capacity 1998 cm3, and efficiency-oriented SI piston with engine capacity 999 cm3 and 499 cm3 with 86 mm bore and stroke square gasoline engine in the performance, emission prediction of range extender engine, standard of charge by using engine and vehicle simulation software tools. In AVL Boost simulation software, range extender engine simulated from 1000 to 6000 rpm engine loads. The highest peak engine power brake reached up to 38 kW at 4500 rpm. On the other hand the highest torque achieved in 100 Nm at 3500 rpm. After that using AVL cruise simulation software, the model of range extended electric vehicle in series configuration with main components such as internal combustion engine, generator, electric motor, battery and the arthemis model rural road cycle was used to simulate the vehicle model. The simulation results show that engine with engine capacity 999 cm3 reported the economical performances of the engine and the emission and the control of engine cycle parameters.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false May I sell engines from an engine... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.330 May I sell engines from an engine...
A Feasibility Study for Advanced Technology Integration for General Aviation.
1980-05-01
154 4.5.9.4 Stratified Charge Reciprocating Engine ..... .. 155 4.5.9.5 Advanced Diesel Engine . ... 158 4.5.9.6 Liquid Cooling ... ........ 159... diesel , rotary combustion engine, advanced reciprocating engine concepts. (7) Powerplant control - integrated controls, microprocessor- based controls...Research Center Topics. (1) GATE (2) Positive displacement engines (a) Advanced reciprocating engines. (b) Alternative engine systems Diesel engines
NASA Astrophysics Data System (ADS)
Abbas, Mohammad
Recently developed methodology that provides the direct assessment of traditional thrust-based performance of aerospace vehicles in terms of entropy generation (i.e., exergy destruction) is modified for stand-alone jet engines. This methodology is applied to a specific single-spool turbojet engine configuration. A generic compressor performance map along with modeled engine component performance characterizations are utilized in order to provide comprehensive traditional engine performance results (engine thrust, mass capture, and RPM), for on and off-design engine operation. Details of exergy losses in engine components, across the entire engine, and in the engine wake are provided and the engine performance losses associated with their losses are discussed. Results are provided across the engine operating envelope as defined by operational ranges of flight Mach number, altitude, and fuel throttle setting. The exergy destruction that occurs in the engine wake is shown to be dominant with respect to other losses, including all exergy losses that occur inside the engine. Specifically, the ratio of the exergy destruction rate in the wake to the exergy destruction rate inside the engine itself ranges from 1 to 2.5 across the operational envelope of the modeled engine.
40 CFR 1065.401 - Test engine selection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065.401 Test engine selection. While all engine configurations within a certified engine family must comply with the applicable... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Test engine selection. 1065.401...
Enhancing Engineering Education through Engineering Management
ERIC Educational Resources Information Center
Pence, Kenneth R.; Rowe, Christopher J.
2012-01-01
Engineering Management courses are added to a traditional engineering curriculum to enhance the value of an undergraduate's engineering degree. A four-year engineering degree often leaves graduates lacking in business and management acumen. Engineering management education covers topics enhancing the value of new graduates by teaching management…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-22
...., Core Network Engineering (Deployment Engineering) Division Including Workers in the Core Network Engineering (Deployment Engineering) Division in Alpharetta, GA, Hunt Valley, MD, Naperville, IL, and St... Reconsideration applicable to workers and former workers of Goodman Networks, Inc., Core Network Engineering...
40 CFR 1042.825 - Baseline determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... a used engine to be the emission-data engine for the engine family for testing. Using good engineering judgment, select the engine configuration expected to represent the most common configuration in... adjust it differently, consistent with good engineering judgment. (d) Test the baseline engine four times...
40 CFR 1042.825 - Baseline determination.
Code of Federal Regulations, 2011 CFR
2011-07-01
... a used engine to be the emission-data engine for the engine family for testing. Using good engineering judgment, select the engine configuration expected to represent the most common configuration in... adjust it differently, consistent with good engineering judgment. (d) Test the baseline engine four times...
40 CFR 1065.401 - Test engine selection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Test engine selection. 1065.401... CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065.401 Test engine selection. While all engine configurations within a certified engine family must comply with the applicable...
40 CFR 1065.401 - Test engine selection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Test engine selection. 1065.401... CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065.401 Test engine selection. While all engine configurations within a certified engine family must comply with the applicable...
40 CFR 1065.401 - Test engine selection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Test engine selection. 1065.401... CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065.401 Test engine selection. While all engine configurations within a certified engine family must comply with the applicable...
Multi-fuel rotary engine for general aviation aircraft
NASA Technical Reports Server (NTRS)
Jones, C.; Ellis, D. R.; Meng, P. R.
1983-01-01
Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.
Virtual Collaborative Environments for System of Systems Engineering and Applications for ISAT
NASA Technical Reports Server (NTRS)
Dryer, David A.
2002-01-01
This paper describes an system of systems or metasystems approach and models developed to help prepare engineering organizations for distributed engineering environments. These changes in engineering enterprises include competition in increasingly global environments; new partnering opportunities caused by advances in information and communication technologies, and virtual collaboration issues associated with dispersed teams. To help address challenges and needs in this environment, a framework is proposed that can be customized and adapted for NASA to assist in improved engineering activities conducted in distributed, enhanced engineering environments. The approach is designed to prepare engineers for such distributed collaborative environments by learning and applying e-engineering methods and tools to a real-world engineering development scenario. The approach consists of two phases: an e-engineering basics phase and e-engineering application phase. The e-engineering basics phase addresses skills required for e-engineering. The e-engineering application phase applies these skills in a distributed collaborative environment to system development projects.
Analysis of a topping-cycle, aircraft, gas-turbine-engine system which uses cryogenic fuel
NASA Technical Reports Server (NTRS)
Turney, G. E.; Fishbach, L. H.
1984-01-01
A topping-cycle aircraft engine system which uses a cryogenic fuel was investigated. This system consists of a main turboshaft engine that is mechanically coupled (by cross-shafting) to a topping loop, which augments the shaft power output of the system. The thermodynamic performance of the topping-cycle engine was analyzed and compared with that of a reference (conventional) turboshaft engine. For the cycle operating conditions selected, the performance of the topping-cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping-cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping-cycle engine is comparable with that of the reference turboshaft engine.
Study of LH2-fueled topping cycle engine for aircraft propulsion
NASA Technical Reports Server (NTRS)
Turney, G. E.; Fishbach, L. H.
1983-01-01
An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine.
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna
2014-10-28
Methods and systems for engine control optimization are provided. A first and a second operating condition of a vehicle engine are detected. An initial value is identified for a first and a second engine control parameter corresponding to a combination of the detected operating conditions according to a first and a second engine map look-up table. The initial values for the engine control parameters are adjusted based on a detected engine performance variable to cause the engine performance variable to approach a target value. A first and a second sensitivity of the engine performance variable are determined in response to changes in the engine control parameters. The first engine map look-up table is adjusted when the first sensitivity is greater than a threshold, and the second engine map look-up table is adjusted when the second sensitivity is greater than a threshold.
NASA Technical Reports Server (NTRS)
Nguyen, H. L.; Addy, H. E.; Bond, T. H.; Lee, C. M.; Chun, K. S.
1987-01-01
A computer simulation which models engine performance of the Direct Injection Stratified Charge (DISC) rotary engines was used to study the effect of variations in engine design and operating parameters on engine performance and efficiency of an Outboard Marine Corporation (OMC) experimental rotary combustion engine. Engine pressure data were used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine data were compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the rotary engine using advanced heat engine concepts such as faster combustion, reduced leakage, and turbocharging is also presented.
Advanced General Aviation Turbine Engine (GATE) study
NASA Technical Reports Server (NTRS)
Smith, R.; Benstein, E. H.
1979-01-01
The small engine technology requirements suitable for general aviation service in the 1987 to 1988 time frame were defined. The market analysis showed potential United States engines sales of 31,500 per year providing that the turbine engine sales price approaches current reciprocating engine prices. An optimum engine design was prepared for four categories of fixed wing aircraft and for rotary wing applications. A common core approach was derived from the optimum engines that maximizes engine commonality over the power spectrum with a projected price competitive with reciprocating piston engines. The advanced technology features reduced engine cost, approximately 50 percent compared with current technology.
14 CFR Appendix D to Part 147 - Powerplant Curriculum Subjects
Code of Federal Regulations, 2013 CFR
2013-01-01
... a. reciprocating engines (1) 1. Inspect and repair a radial engine. (2) 2. Overhaul reciprocating.... Install, troubleshoot, and remove reciprocating engines. b. turbine engines (2) 5. Overhaul turbine engine. (3) 6. Inspect, check, service, and repair turbine engines and turbine engine installations. (3) 7...
14 CFR Appendix D to Part 147 - Powerplant Curriculum Subjects
Code of Federal Regulations, 2012 CFR
2012-01-01
... a. reciprocating engines (1) 1. Inspect and repair a radial engine. (2) 2. Overhaul reciprocating.... Install, troubleshoot, and remove reciprocating engines. b. turbine engines (2) 5. Overhaul turbine engine. (3) 6. Inspect, check, service, and repair turbine engines and turbine engine installations. (3) 7...
14 CFR Appendix D to Part 147 - Powerplant Curriculum Subjects
Code of Federal Regulations, 2014 CFR
2014-01-01
... a. reciprocating engines (1) 1. Inspect and repair a radial engine. (2) 2. Overhaul reciprocating.... Install, troubleshoot, and remove reciprocating engines. b. turbine engines (2) 5. Overhaul turbine engine. (3) 6. Inspect, check, service, and repair turbine engines and turbine engine installations. (3) 7...
14 CFR Appendix D to Part 147 - Powerplant Curriculum Subjects
Code of Federal Regulations, 2011 CFR
2011-01-01
... a. reciprocating engines (1) 1. Inspect and repair a radial engine. (2) 2. Overhaul reciprocating.... Install, troubleshoot, and remove reciprocating engines. b. turbine engines (2) 5. Overhaul turbine engine. (3) 6. Inspect, check, service, and repair turbine engines and turbine engine installations. (3) 7...
Be a Professional - Be Licensed! - Take the agricultural engineering professional engineering exam
USDA-ARS?s Scientific Manuscript database
Between October 2005 and October 2007, only 78 Agricultural Engineers took the professional engineering (PE) exam in the field of Agricultural Engineering, while the other 406 registered Agricultural Engineering Examinees took tests offer by other engineering disciplines. With the decline in partic...
Opportunities in Civil Engineering. [VGM Career Horizons Series].
ERIC Educational Resources Information Center
Hagerty, D. Joseph; Heer, John E., Jr.
This book presents information on career opportunities in civil engineering. Chapter 1 focuses on the scope of civil engineering, discussing: role of scientist, engineer, and technologists; engineering and engineering technology; civil engineer's role and obligations; and other information. Chapter 2 considers such aspects of the education for…
Federal Funding of Engineering Research and Development, 1980-1984.
ERIC Educational Resources Information Center
American Society of Mechanical Engineers, Washington, DC.
Data on the sources, amounts, and trends of federal funding for engineering research and development (R&D) are presented for 1980-1984. Narrative highlights are provided for: the total federal funding obligations for engineering R&D, mechanical engineering, astronautical engineering, aeronautical engineering, chemical engineering, civil…
Engine control techniques to account for fuel effects
Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.
2014-08-26
A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.
NASA Astrophysics Data System (ADS)
Endom, Joerg
2014-05-01
Having a look into geophysical text books, you will find for all the described methods detailed lists of good practice. The variety of annotations specifies how to perform a reliable, trusty and plausible geophysical survey. Much space is used for considerations about all the necessary parameters like target depth, contrast, frequency, sampling, resolution and many other boundary conditions that account for a high quality report. But you will find rather fewer comments on locating and positioning. It seems to be self-evident in times of GNSS (Global Navigation Satellite Systems) and high performance laser total stations that positioning is a solved issue. This seems to apply for all geophysical methods that operate at walking speed or slower and for typical geoscientific or environmental investigation sites like brownfields, wasteland or archaeological spots, usually of nearly rectangular size. Using of measuring tapes, ropes and ranging poles here is also good practice. In civil engineering applications we observe lots of rectangular shaped inspection areas too but we as well get many linear structures like elongated bridge decks, dikes, railway tracks, runways and roads. Surveying of an archaeological place of 60 m by 82 m width requires a different positioning technology than surveying 5000 m along a highway although both sites have the same areal extent of around 5000 m2. If we furthermore take into account that during the last years GPR evolved into one of the fastest investigation methods in geophysics, survey speed becomes an important item. While examining railway tracks or roads today it is common to make use of these high speed capabilities. GPR services are typically performed at speeds of 80 km/h or even with higher velocities. Standard positioning methods do not longer apply to this problem. With speeds of more than 22 m/sec the internal latency of surveying systems gets quite relevant and even the effect of rounding within survey wheel systems is not negligible any more. Locating for example the exact position of joints, rebars on site, getting correct calibration information or overlaying measurements of independent methods requires high accuracy positioning for all data. Different technologies of synchronizing and stabilizing are discussed in this presentation. Furthermore a scale problem for interdisciplinary work between the geotechnical engineer, the civil engineer, the surveyor and the geophysicist is presented. Manufacturers as well as users are addressed to work on a unified methodology that could be implemented in future. This presentation is a contribution to COST Action TU1208.
40 CFR 1042.101 - Exhaust emission standards for Category 1 engines and Category 2 engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... from research engines or similar engine models that are already in production. Your demonstration must... Category 1 engines and Category 2 engines. 1042.101 Section 1042.101 Protection of Environment... MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission Standards and Related Requirements § 1042.101...
14 CFR 33.84 - Engine overtorque test.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine overtorque test. 33.84 Section 33.84... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power turbine...
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2010 CFR
2010-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2011 CFR
2011-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2012 CFR
2012-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2014 CFR
2014-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
Code of Federal Regulations, 2013 CFR
2013-07-01
... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power and displacement for the purposes of this part. (a) An engine configuration's maximum engine power is...
40 CFR 1039.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...
40 CFR 1039.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...
40 CFR 1039.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...
40 CFR 1039.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...
14 CFR 23.777 - Cockpit controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Identical powerplant controls for each engine must be located to prevent confusion as to the engines they...) operates the left engines(s) and the right control(s) operates the right engine(s). (2) On twin-engine airplanes with front and rear engine locations (tandem), the left powerplant controls must operate the front...
Remembering the Giants: Apollo Rocket Propulsion Development
NASA Technical Reports Server (NTRS)
Fisher, Steven C. (Editor); Rahman, Shamim A. (Editor)
2009-01-01
Topics discussed include: Rocketdyne - F-1 Saturn V First Stage Engine; Rocketdyne - J-2 Saturn V 2nd & 3rd Stage Engine; Rocketdyne - SE-7 & SE-8 Engines; Aerojet - AJ10-137 Apollo Service Module Engine; Aerojet - Attitude Control Engines; TRW - Lunar Descent Engine; and Rocketdyne - Lunar Ascent Engine.
78 FR 70216 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-25
... Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines AGENCY: Federal Aviation... all Thielert Aircraft Engines GmbH TAE 125-01 reciprocating engines. This AD requires applying sealant... directive (AD): 2013-24-06 Thielert Aircraft Engines GmbH: Amendment 39-17680; Docket No. FAA-2013-0561...
Comparison of China-US Engineering Ethics Educations in Sino-Western Philosophies of Technology.
Cao, Gui Hong
2015-12-01
Ethics education has become essential in modern engineering. Ethics education in engineering has been increasingly implemented worldwide. It can improve ethical behaviors in technology and engineering design under the guidance of the philosophy of technology. Hence, this study aims to compare China-US engineering ethics education in Sino-Western philosophies of technology by using literature studies, online surveys, observational researches, textual analyses, and comparative methods. In my original theoretical framework and model of input and output for education, six primary variables emerge in the pedagogy: disciplinary statuses, educational goals, instructional contents, didactic models, teaching methods, and edificatory effects. I focus on the similarities and differences of engineering ethics educations between China and the U.S. in Chinese and Western philosophies of technology. In the field of engineering, the U.S. tends toward applied ethics training, whereas China inclines toward practical moral education. The U.S. is the leader, particularly in the amount of money invested and engineering results. China has quickened its pace, focusing specifically on engineering labor input and output. Engineering ethics is a multiplayer game effected at various levels among (a) lower level technicians and engineers, engineering associations, and stockholders; (b) middle ranking engineering ethics education, the ministry of education, the academy of engineering, and the philosophy of technology; and (c) top national and international technological policies. I propose that professional engineering ethics education can play many important roles in reforming engineering social responsibility by international cooperation in societies that are becoming increasingly reliant on engineered devices and systems. Significantly, my proposals contribute to improving engineering ethics education and better-solving engineering ethics issues, thereby maximizing engineering sustainability.
Campbell, Ryan C; Wilson, Denise
2017-04-01
This paper provides an empirically informed perspective on the notion of responsibility using an ethical framework that has received little attention in the engineering-related literature to date: ethics of care. In this work, we ground conceptual explorations of engineering responsibility in empirical findings from engineering student's writing on the human health and environmental impacts of "backyard" electronic waste recycling/disposal. Our findings, from a purposefully diverse sample of engineering students in an introductory electrical engineering course, indicate that most of these engineers of tomorrow associated engineers with responsibility for the electronic waste (e-waste) problem in some way. However, a number of responses suggested attempts to deflect responsibility away from engineers towards, for example, the government or the companies for whom engineers work. Still other students associated both engineers and non-engineers with responsibility, demonstrating the distributed/collective nature of responsibility that will be required to achieve a solution to the global problem of excessive e-waste. Building upon one element of a framework for care ethics adopted from the wider literature, these empirical findings are used to facilitate a preliminary, conceptual exploration of care-ethical responsibility within the context of engineering and e-waste recycling/disposal. The objective of this exploration is to provide a first step toward understanding how care-ethical responsibility applies to engineering. We also hope to seed dialogue within the engineering community about its ethical responsibilities on the issue. We conclude the paper with a discussion of its implications for engineering education and engineering ethics that suggests changes for educational policy and the practice of engineering.
NASA Astrophysics Data System (ADS)
Scribner, J. Adam
Numerous studies have demonstrated that educators having degrees in their subjects significantly enhances student achievement, particularly in secondary mathematics and science (Chaney, 1995; Goe, 2007; Rowan, Chiang, & Miller, 1997; Wenglinsky, 2000). Yet, science teachers in states that adopt the Next Generation Science Standards will be facilitating classroom engineering activities despite the fact that few have backgrounds in engineering. This quantitative study analyzed ex-post facto WaterBotics (an innovative underwater robotics curriculum for middle and high school students) data to determine if educators having backgrounds in engineering (i.e., undergraduate and graduate degrees in engineering) positively affected student learning on two engineering outcomes: 1) the engineering design process, and 2) understanding of careers in engineering (who engineers are and what engineers do). The results indicated that educators having backgrounds in engineering did not significantly affect student understanding of the engineering design process or careers in engineering when compared to educators having backgrounds in science, mathematics, technology education, or other disciplines. There were, however, statistically significant differences between the groups of educators. Students of educators with backgrounds in technology education had the highest mean score on assessments pertaining to the engineering design process while students of educators with disciplines outside of STEM had the highest mean scores on instruments that assess for student understanding of careers in engineering. This might be due to the fact that educators who lack degrees in engineering but who teach engineering do a better job of "sticking to the script" of engineering curricula.
NASA Astrophysics Data System (ADS)
Balogh, Zsuzsa Enriko
For at least the last decade, engineering, civil engineering, along with structural engineering as a profession within civil engineering, have and continue to face an emerging need for "Raising the Bar" of preparedness of young engineers seeking to become practicing professional engineers. The present consensus of the civil engineering profession is that the increasing need for broad and in-depth knowledge should require the young structural engineers to have at least a Masters-Level education. This study focuses on the Masters-Level preparedness in the structural engineering area within the civil engineering field. It follows much of the methodology used in the American Society of Civil Engineers (ASCE) Body of Knowledge determination for civil engineering and extends this type of study to better define the portion of the young engineers preparation beyond the undergraduate program for one specialty area of civil engineering. The objective of this research was to create a Framework of Knowledge for the young engineer which identifies and recognizes the needs of the profession, along with the profession's expectations of how those needs can be achieved in the graduate-level academic setting, in the practice environment, and through lifelong learning opportunities with an emphasis on the initial five years experience past completion of a Masters program in structural engineering. This study applied a modified Delphi method to obtain the critical information from members of the structural engineering profession. The results provide a Framework of Knowledge which will be useful to several groups seeking to better ensure the preparedness of the future young structural engineers at the Masters-Level.
MX Siting Investigation. Prime Characterization Sites Central High Plains Candidate Siting Province.
1979-02-15
information obtained from these studies , in combination with data obtained in the Screen- ing studies , has been used for geotechnical ranking (FN-TR-25). I...Plains Candi- date Siting Province (CSP), one of six provinces included in the geotechnical Characterization studies . The location of the sites within...remaining after Intermediate Screening were divided into CSPs based on similar geotechnical characteristics. Intermediate Screening studies (FN-TR-17
21. Engine identified as a 'single cylinder vacuum assist engine ...
21. Engine identified as a 'single cylinder vacuum assist engine for Tod tandem compound engine' showing compressor. - Carnegie Steel-Ohio Works, Steam Engines, 912 Salt Springs Road, Youngstown, Mahoning County, OH
Apparatus for sensor failure detection and correction in a gas turbine engine control system
NASA Technical Reports Server (NTRS)
Spang, H. A., III; Wanger, R. P. (Inventor)
1981-01-01
A gas turbine engine control system maintains a selected level of engine performance despite the failure or abnormal operation of one or more engine parameter sensors. The control system employs a continuously updated engine model which simulates engine performance and generates signals representing real time estimates of the engine parameter sensor signals. The estimate signals are transmitted to a control computational unit which utilizes them in lieu of the actual engine parameter sensor signals to control the operation of the engine. The estimate signals are also compared with the corresponding actual engine parameter sensor signals and the resulting difference signals are utilized to update the engine model. If a particular difference signal exceeds specific tolerance limits, the difference signal is inhibited from updating the model and a sensor failure indication is provided to the engine operator.
Key Future Engineering Capabilities for Human Capital Retention
NASA Astrophysics Data System (ADS)
Sivich, Lorrie
Projected record retirements of Baby Boomer generation engineers have been predicted to result in significant losses of mission-critical knowledge in space, national security, and future scientific ventures vital to high-technology corporations. No comprehensive review or analysis of engineering capabilities has been performed to identify threats related to the specific loss of mission-critical knowledge posed by the increasing retirement of tenured engineers. Archival data from a single diversified Fortune 500 aerospace manufacturing engineering company's engineering career database were analyzed to ascertain whether relationships linking future engineering capabilities, engineering disciplines, and years of engineering experience could be identified to define critical knowledge transfer models. Chi square, logistic, and linear regression analyses were used to map patterns of discipline-specific, mission-critical knowledge using archival data of engineers' perceptions of engineering capabilities, key developmental experiences, and knowledge learned from their engineering careers. The results from the study were used to document key engineering future capabilities. The results were then used to develop a proposed human capital retention plan to address specific key knowledge gaps of younger engineers as veteran engineers retire. The potential for social change from this study involves informing leaders of aerospace engineering corporations on how to build better quality mentoring or succession plans to fill the void of lost knowledge from retiring engineers. This plan can secure mission-critical knowledge for younger engineers for current and future product development and increased global competitiveness in the technology market.
Chesler, Naomi C; Ruis, A R; Collier, Wesley; Swiecki, Zachari; Arastoopour, Golnaz; Williamson Shaffer, David
2015-02-01
Engineering virtual internships are a novel paradigm for providing authentic engineering experiences in the first-year curriculum. They are both individualized and accommodate large numbers of students. As we describe in this report, this approach can (a) enable students to solve complex engineering problems in a mentored, collaborative environment; (b) allow educators to assess engineering thinking; and (c) provide an introductory experience that students enjoy and find valuable. Furthermore, engineering virtual internships have been shown to increase students'-and especially women's-interest in and motivation to pursue engineering degrees. When implemented in first-year engineering curricula more broadly, the potential impact of engineering virtual internships on the size and diversity of the engineering workforce could be dramatic.
Post-disaster Risk Assessment for Hilly Terrain exposed to Seismic Loading
NASA Astrophysics Data System (ADS)
Yates, Katherine; Villeneuve, Marlene; Wilson, Thomas
2013-04-01
The 2010-present Canterbury earthquake sequence in the central South Island of New Zealand has identified and highlighted the value of practical, standardised and coordinated geotechnical risk assessment guidelines for inhabited structures in the aftermath of a geotechnical disaster. The lack of such guidelines and provisions to enforce risk assessments was a major gap which hindered coordinated, timely and transparent management of geotechnical risk. The earthquake sequence initiated a series of rockfall, cliff collapse and landslide events around the Port Hills southeast of Christchurch. This was particularly the case with the 22 February 2011 earthquakes, which put thousands of people inhabiting the area at risk. Lives were lost and thousands of houses and critical infrastructure were damaged. Given the highly seismic environment in New Zealand and a significant number of active faults near population centres, it is prudent to develop such guidelines to ensure response mechanisms and geotechnical risk assessment is effective following an earthquake rupture in a largely populated urban environment. For response and associated risk assessments to be effective, the mechanisms of the geotechnical failure should be taken into consideration as part of the life safety assessment. This is to ensure that the hazard's potential risk is fully assessed and encompassed in decisions regarding life safety. This paper examines the event sequence, slope failure mechanisms and the geotechnical risk management approach that developed immediately post-earthquake. It highlights experiences from key municipal, management and operational stakeholders who were involved in geotechnical risk assessment during the Canterbury earthquake sequence, and sheds light on the evolution of information needed through time during the emergency response and identify the hard won lessons. It then discusses what is needed for life safety assessment post-earthquake and create awareness of potential geotechnical hazards. This is not only important to New Zealand but has international implications as there are many other regions of the world also subject to high seismic risk.
NASA Astrophysics Data System (ADS)
Kaouane, C.; Beck, Y.; Fauchard, C.; Chouteau, M.
2012-12-01
Quality controls of geotechnical works need gravimetric water content (w) and dry density (γd) measurements. Afterwards, results are compared to Proctor tests and referred to soil classification. Depending on the class of soils, different objectives must be achieved. Those measurements are usually carried out with neutron and gamma probes. Combined use of theses probes directly access (w, γd). Theses probes show great disadvantages as: nuclear hazard, heavy on-site, transporation and storage restrictions and low sampling volumes. Last decades showed a strong development of electrical and electromagnetic methods for mapping water content in soils. Still, their use in Geotechnics is limited due to interfacial effects neglected in common models but strong in compacted soils. We first showed that (w, γd) is equivalent to (φ, Sr) assuming density of particles γs=2.7 (g.cm-3). This assumption is true for common soils used in civil engineering. That first relationship allows us to work with meaningful parameters for geophysicists. Revil&Florsh recently adapted Vinegar&Waxman model for Spectal Induced Polarization (SIP) measurements at low frequencies (<50 kHz). This model relates quantitatively the electrical double layer polarization at the surface of grains. It takes into account saturation, porosity and granulometry. Standard granulometry and mineralogy are generally available in geotechnical campaigns. In-phase conductivity would be mostly related to saturation as quadrature conductivity would be related to porosity and surface conductivity. Although this model was developed for oil-bearing sands, we investigated its potential for compacted soils. Former DC-resistivity (ρ) measurements were carried out on a silty fined-grained soil (A1 in GTR classification or ML-CL in USCS) in a cylindrical cell (radius ~4 cm, heigth 7 cm). Median diameter of grain was 50 μm. For each measurement, samples were compacted at Proctor energy. We assessed (w, γd) by weighting and drying samples. We obtained γd = 1.6-1.9 (g.cm-3) and w=7-14% which lead to φ=0.3-0.4 and Sr=0.3-0.8. Tap water (ρw= 30 Ω.m) was used for the experiment. We first evaluated the saturation factor n=1.35 by fitting a power law ρ/ρw =a*Sr^n+b. a=0.223 agreed with φ^(-n)=F, F being the formation factor. This leads to a mean tortuosity α=1.47. b=0.5 might be related to surface conductivity. An empirical Rhoades-Corwin model also fit great to data. Revil&Florsh model allows us to predict a phase peak in case of complex conductivity measurements. We predicted a frequency peak at 2.4 Hz. This peak is well located in the frequency range of SIP (from 1 mHz to ~10 Hz). At the frequency peak, this model allows the direct evaluation of saturation and porosity. Hence, complex conductivity measurements might be a fine alternative to nuclear probes. Still, driving in electrodes in compacted soils remains difficult. Ongoing studies are looking further to extend this model to higher frequency range (5-200 kHz) where capacitively coupled resistivity arrays might be used allowing continuous measurements.
20. Engine identified as a 'single cylinder vacuum assist engine ...
20. Engine identified as a 'single cylinder vacuum assist engine for the Tod tandem compound engine' showing crank end. - Carnegie Steel-Ohio Works, Steam Engines, 912 Salt Springs Road, Youngstown, Mahoning County, OH
Biomedical Engineering | Classification | College of Engineering & Applied
Engineering, Biomedical Engineering(414) 229-6614wjchang@uwm.eduEng & Math Sciences 1113 profile photo Malkoc, Ph.D.Visiting Assistant ProfessorBiomedical Engineering414-229-6919malkoc@uwm.eduEng & Math Engineering / Electrical Engineering(414) 229-3327misra@uwm.eduEng & Math Sciences E-314 profile photo
Students' Changing Images of Engineering and Engineers. Research Brief
ERIC Educational Resources Information Center
Jocuns, Andrew; Stevens, Reed; Garrison, Lari; Amos, Daniel
2008-01-01
This study analyzes the images of engineers and engineering that students construct over the course of their undergraduate engineering educations. Students in their first year of study to become engineers knew very little about the work they would be doing as an engineer and their expectations were more specific, hopeful, and high status than…
78 FR 22168 - Airworthiness Directives; International Aero Engines AG Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-15
... Airworthiness Directives; International Aero Engines AG Turbofan Engines AGENCY: Federal Aviation Administration... International Aero Engines AG (IAE), V2525-D5 and V2528-D5 turbofan engines, with a certain No. 4 bearing... turbofan engines, serial numbers V20001 through V20285, with No. 4 bearing internal scavenge tube, part...
40 CFR 1042.101 - Exhaust emission standards for Category 1 engines and Category 2 engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... information equivalent to such in-use data, such as data from research engines or similar engine models that... Category 1 engines and Category 2 engines. 1042.101 Section 1042.101 Protection of Environment... MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission Standards and Related Requirements § 1042.101...
40 CFR 1042.101 - Exhaust emission standards for Category 1 engines and Category 2 engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... information equivalent to such in-use data, such as data from research engines or similar engine models that... Category 1 engines and Category 2 engines. 1042.101 Section 1042.101 Protection of Environment... MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission Standards and Related Requirements § 1042.101...
40 CFR 1042.101 - Exhaust emission standards for Category 1 engines and Category 2 engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... information equivalent to such in-use data, such as data from research engines or similar engine models that... Category 1 engines and Category 2 engines. 1042.101 Section 1042.101 Protection of Environment... MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission Standards and Related Requirements § 1042.101...
76 FR 82110 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-30
... Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines AGENCY: Federal Aviation...) for Thielert Aircraft Engines GmbH models TAE 125-02-99 and TAE 125-01 reciprocating engines. That AD... flight hours to within 600 flight hours for TAE 125-01 reciprocating engines. This AD was prompted by the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-08
... Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY... installed on a limited number of engines. No defective washers have been shipped as spare parts. This... consequent ignition failure, possibly resulting in damage to the engine, in- flight engine shutdown and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Maximum engine power, displacement... Maximum engine power, displacement, power density, and maximum in-use engine speed. This section describes how to determine the maximum engine power, displacement, and power density of an engine for the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Maximum engine power, displacement... Maximum engine power, displacement, power density, and maximum in-use engine speed. This section describes how to determine the maximum engine power, displacement, and power density of an engine for the...
Multi-fuel rotary engine for general aviation aircraft
NASA Technical Reports Server (NTRS)
Jones, C.; Ellis, D. R.; Meng, P. R.
1983-01-01
Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, an advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25,000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed. Previously announced in STAR as N83-18910
A Method for Search Engine Selection using Thesaurus for Selective Meta-Search Engine
NASA Astrophysics Data System (ADS)
Goto, Shoji; Ozono, Tadachika; Shintani, Toramatsu
In this paper, we propose a new method for selecting search engines on WWW for selective meta-search engine. In selective meta-search engine, a method is needed that would enable selecting appropriate search engines for users' queries. Most existing methods use statistical data such as document frequency. These methods may select inappropriate search engines if a query contains polysemous words. In this paper, we describe an search engine selection method based on thesaurus. In our method, a thesaurus is constructed from documents in a search engine and is used as a source description of the search engine. The form of a particular thesaurus depends on the documents used for its construction. Our method enables search engine selection by considering relationship between terms and overcomes the problems caused by polysemous words. Further, our method does not have a centralized broker maintaining data, such as document frequency for all search engines. As a result, it is easy to add a new search engine, and meta-search engines become more scalable with our method compared to other existing methods.
A simple method of calculating Stirling engines for engine design optimization
NASA Technical Reports Server (NTRS)
Martini, W. R.
1978-01-01
A calculation method is presented for a rhombic drive Stirling engine with a tubular heater and cooler and a screen type regenerator. Generally the equations presented describe power generation and consumption and heat losses. It is the simplest type of analysis that takes into account the conflicting requirements inherent in Stirling engine design. The method itemizes the power and heat losses for intelligent engine optimization. The results of engine analysis of the GPU-3 Stirling engine are compared with more complicated engine analysis and with engine measurements.
Stennis certifies final shuttle engine
2008-10-22
Steam blasts out of the A-2 Test Stand at Stennis Space Center on Oct. 22 as engineers begin a certification test on engine 2061, the last space shuttle main flight engine scheduled to be built. Since 1975, Stennis has tested every space shuttle main engine used in the program - about 50 engines in all. Those engines have powered more than 120 shuttle missions - and no mission has failed as a result of engine malfunction. For the remainder of 2008 and throughout 2009, Stennis will continue testing of various space shuttle main engine components.
Orbit Transfer Vehicle (OTV) engine phase A study
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1978-01-01
Requirements for the orbit transfer vehicle engine were examined. Engine performance/weight sensitivities, the effect of a service life of 300 start/shutdown cycles between overalls on the maximum engine operating pressure, and the sensitivity of the engine design point (i.e., thrust chamber pressure and nozzle area ratio) to the performance requirements specified are among the factors studied. Preliminary engine systems analyses were conducted on the stage combustion, expander, and gas generator engine cycles. Hydrogen and oxygen pump discharge pressure requirements are shown for various engine cycles. Performance of the engine cycles is compared.
Study of a LH2-fueled topping cycle engine for aircraft propulsion
NASA Technical Reports Server (NTRS)
Turney, G. E.; Fishbach, L. H.
1983-01-01
An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine. Previously announced in STAR as N83-34942
Analysis of automobile engine cylinder pressure and rotation speed from engine body vibration signal
NASA Astrophysics Data System (ADS)
Wang, Yuhua; Cheng, Xiang; Tan, Haishu
2016-01-01
In order to improve the engine vibration signal process method for the engine cylinder pressure and engine revolution speed measurement instrument, the engine cylinder pressure varying with the engine working cycle process has been regarded as the main exciting force for the engine block forced vibration. The forced vibration caused by the engine cylinder pressure presents as a low frequency waveform which varies with the cylinder pressure synchronously and steadily in time domain and presents as low frequency high energy discrete humorous spectrum lines in frequency domain. The engine cylinder pressure and the rotation speed can been extract form the measured engine block vibration signal by low-pass filtering analysis in time domain or by FFT analysis in frequency domain, the low-pass filtering analysis in time domain is not only suitable for the engine in uniform revolution condition but also suitable for the engine in uneven revolution condition. That provides a practical and convenient way to design motor revolution rate and cylinder pressure measurement instrument.
Engineering Lessons Learned and Systems Engineering Applications
NASA Technical Reports Server (NTRS)
Gill, Paul S.; Garcia, Danny; Vaughan, William W.
2005-01-01
Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. As part of the NASA Technical Standards Program activities, engineering lessons learned datasets have been identified from a number of sources. These are being searched and screened for those having a relation to Technical Standards. This paper will address some of these Systems Engineering Lessons Learned and how they are being related to Technical Standards within the NASA Technical Standards Program, including linking to the Agency's Interactive Engineering Discipline Training Courses and the life cycle for a flight vehicle development program.
NASA Astrophysics Data System (ADS)
Rulifson, Gregory A.
Engineers impact the lives of every person every day, and need to have a strong sense of social responsibility. Understanding what students think about social responsibility in engineering and their futures is very important. Further, by identifying influences that change these ideas and shape their conceptualizations, we can intervene to help prepare students for their responsibilities as part of the profession in the future. This thesis presents the experiences, in their own words, of 34 students who started in engineering. The study is composed of three parts: (i) engineering students' ideas about socially responsible engineering and what influenced these ideas, (ii) how students see themselves as future socially responsible engineers and how this idea changes over their first three years of college, and (iii) what social responsibility-related reasons students who leave engineering have for choosing a new major. Results show that students are complicated and have varied paths through and out of engineering studies. Students came up with their own ideas about socially responsible engineering that converged over the years on legal and safety related aspects of the profession. Relatedly, students identified with the engineering profession through internships and engineering courses, and rarely described socially responsible aspirations that could be accomplished with engineering. More often, those students who desired to help the disadvantaged through their engineering work left engineering. Their choice to leave was a combination of an unsupportive climate, disinterest in their classes, and a desire to combine their personal and professional social responsibility ambitions. If we want engineering students to push the engineering profession forward to be more socially responsible, we can identify the effective influences and develop a curriculum that encourages critical thinking about the social context and impacts of engineering. Additionally, a social responsibility-related curriculum could provide more opportunities for engagement that keeps those socially-motivated students in engineering. The engineering profession must also reflect these values to keep the new engineers working towards social responsibility and pushing the profession forward.
ERIC Educational Resources Information Center
Journal of Engineering Education, 1972
1972-01-01
Includes abstracts of papers presented at the 80th Annual Conference of the American Society for Engineering Education. The broad areas include aerospace, affiliate and associate member council, agricultural engineering, biomedical engineering, continuing engineering studies, chemical engineering, civil engineering, computers, cooperative…
40 CFR 1033.625 - Special certification provisions for non-locomotive-specific engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... name of the engine manufacturer and engine family identifier for the engines. (ii) A brief engineering... proprietary engine software. Note that this allowance to separately submit some of the information required by...
40 CFR 1033.625 - Special certification provisions for non-locomotive-specific engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... name of the engine manufacturer and engine family identifier for the engines. (ii) A brief engineering... proprietary engine software. Note that this allowance to separately submit some of the information required by...
40 CFR 1033.625 - Special certification provisions for non-locomotive-specific engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... name of the engine manufacturer and engine family identifier for the engines. (ii) A brief engineering... proprietary engine software. Note that this allowance to separately submit some of the information required by...
Paired peer learning through engineering education outreach
NASA Astrophysics Data System (ADS)
Fogg-Rogers, Laura; Lewis, Fay; Edmonds, Juliet
2017-01-01
Undergraduate education incorporating active learning and vicarious experience through education outreach presents a critical opportunity to influence future engineering teaching and practice capabilities. Engineering education outreach activities have been shown to have multiple benefits; increasing interest and engagement with science and engineering for school children, providing teachers with expert contributions to engineering subject knowledge, and developing professional generic skills for engineers such as communication and teamwork. This pilot intervention paired 10 pre-service teachers and 11 student engineers to enact engineering outreach in primary schools, reaching 269 children. A longitudinal mixed methods design was employed to measure change in attitudes and Education Outreach Self-Efficacy in student engineers; alongside attitudes, Teaching Engineering Self-Efficacy and Engineering Subject Knowledge Confidence in pre-service teachers. Highly significant improvements were noted in the pre-service teachers' confidence and self-efficacy, while both the teachers and engineers qualitatively described benefits arising from the paired peer mentor model.
NASA Technical Reports Server (NTRS)
Fishbach, L. H.; Koenig, R. W.
1972-01-01
A computer program which calculates steady-state design and off-design jet engine performance for two- or three-spool turbofans with one, two, or three nozzles is described. Included in the report are complete FORTRAN 4 listings of the program with sample results for nine basic turbofan engines that can be calculated: (1) three-spool, three-stream engine; (2) two-spool, three-stream, boosted-fan engine; (3) two-spool, three-stream, supercharged-compressor engine; (4) three-spool, two-stream engine; (5) two-spool, two-stream engine; (6) three-spool, three-stream, aft-fan engine; (7) two-spool, three-stream, aft-fan engine; (8) two-spool, two-stream, aft-engine; and (9) three-spool, two-stream, aft-fan engine. The simulation of other engines by using logical variables built into the program is also described.
Ecosystem engineering effects on species diversity across ecosystems: a meta-analysis.
Romero, Gustavo Q; Gonçalves-Souza, Thiago; Vieira, Camila; Koricheva, Julia
2015-08-01
Ecosystem engineering is increasingly recognized as a relevant ecological driver of diversity and community composition. Although engineering impacts on the biota can vary from negative to positive, and from trivial to enormous, patterns and causes of variation in the magnitude of engineering effects across ecosystems and engineer types remain largely unknown. To elucidate the above patterns, we conducted a meta-analysis of 122 studies which explored effects of animal ecosystem engineers on species richness of other organisms in the community. The analysis revealed that the overall effect of ecosystem engineers on diversity is positive and corresponds to a 25% increase in species richness, indicating that ecosystem engineering is a facilitative process globally. Engineering effects were stronger in the tropics than at higher latitudes, likely because new or modified habitats provided by engineers in the tropics may help minimize competition and predation pressures on resident species. Within aquatic environments, engineering impacts were stronger in marine ecosystems (rocky shores) than in streams. In terrestrial ecosystems, engineers displayed stronger positive effects in arid environments (e.g. deserts). Ecosystem engineers that create new habitats or microhabitats had stronger effects than those that modify habitats or cause bioturbation. Invertebrate engineers and those with lower engineering persistence (<1 year) affected species richness more than vertebrate engineers which persisted for >1 year. Invertebrate species richness was particularly responsive to engineering impacts. This study is the first attempt to build an integrative framework of engineering effects on species diversity; it highlights the importance of considering latitude, habitat, engineering functional group, taxon and persistence of their effects in future theoretical and empirical studies. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
Green engineering education through a U.S. EPA/academia collaboration.
Shonnard, David R; Allen, David T; Nguyen, Nhan; Austin, Sharon Weil; Hesketh, Robert
2003-12-01
The need to use resources efficiently and reduce environmental impacts of industrial products and processes is becoming increasingly important in engineering design; therefore, green engineering principles are gaining prominence within engineering education. This paper describes a general framework for incorporating green engineering design principles into engineering curricula, with specific examples for chemical engineering. The framework for teaching green engineering discussed in this paper mirrors the 12 Principles of Green Engineering proposed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A), especially in methods for estimating the hazardous nature of chemicals, strategies for pollution prevention, and approaches leading to efficient energy and material utilization. The key elements in green engineering education, which enlarge the "box" for engineering design, are environmental literacy, environmentally conscious design, and beyond-the-plant boundary considerations.
Fuel quantity modulation in pilot ignited engines
May, Andrew
2006-05-16
An engine system includes a first fuel regulator adapted to control an amount of a first fuel supplied to the engine, a second fuel regulator adapted to control an amount of a second fuel supplied to the engine concurrently with the first fuel being supplied to the engine, and a controller coupled to at least the second fuel regulator. The controller is adapted to determine the amount of the second fuel supplied to the engine in a relationship to the amount of the first fuel supplied to the engine to operate in igniting the first fuel at a specified time in steady state engine operation and adapted to determine the amount of the second fuel supplied to the engine in a manner different from the relationship at steady state engine operation in transient engine operation.
Quiet engine program flight engine design study
NASA Technical Reports Server (NTRS)
Klapproth, J. F.; Neitzel, R. E.; Seeley, C. T.
1974-01-01
The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included.
The Engineer of 2020: Visions of Engineering in the New Century
ERIC Educational Resources Information Center
National Academies Press, 2004
2004-01-01
To enhance the nation's economic productivity and improve the quality of life worldwide, engineering education in the United States must anticipate and adapt to the dramatic changes of engineering practice. The Engineer of 2020 urges the engineering profession to recognize what engineers can build for the future through a wide range of leadership…
Software engineering as an engineering discipline
NASA Technical Reports Server (NTRS)
Berard, Edward V.
1988-01-01
The following topics are discussed in the context of software engineering: early use of the term; the 1968 NATO conference; Barry Boehm's definition; four requirements fo software engineering; and additional criteria for software engineering. Additionally, the four major requirements for software engineering--computer science, mathematics, engineering disciplines, and excellent communication skills--are discussed. The presentation is given in vugraph form.
78 FR 1776 - Airworthiness Directives; International Aero Engines AG Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
... Engines AG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Aero Engines AG (IAE), V2525-D5 and V2528-D5 turbofan engines, with a certain number (No.) 4 bearing... proposed AD. Discussion We received a report of a fire warning on an IAE V2525 turbofan engine shortly...
I "Still" Wanna Be an Engineer! Women, Education and the Engineering Profession
ERIC Educational Resources Information Center
Gill, Judith; Sharp, Rhonda; Mills, Julie; Franzway, Suzanne
2008-01-01
Women's low enrolment in post-school engineering degrees continues to be a problem for engineering faculties and the profession generally. A qualitative interview-based study of Australian women engineers across the range of engineering disciplines showed the relevance of success in math and science at school to their enrolling in engineering at…
40 CFR 1042.310 - Engine selection for Category 1 and Category 2 engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Category 2 engines. (a) Determine minimum sample sizes as follows: (1) For Category 1 engines, the minimum sample size is one engine or one percent of the projected U.S.-directed production volume for all your Category 1 engine families, whichever is greater. (2) For Category 2 engines, the minimum sample size is...
76 FR 56637 - Airworthiness Directives; Lycoming Engines Model IO-720-A1B Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
... Airworthiness Directives; Lycoming Engines Model IO-720-A1B Reciprocating Engines AGENCY: Federal Aviation... directive (AD) for certain model IO-720-A1B Lycoming Engines reciprocating engines. This AD requires a... crankshaft due to incorrect parts installed. We are issuing this AD to prevent engine crankshaft failure and...
14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...
14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...
14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...
14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...
14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...
Engineering Encounters: Teaching Educators about Engineering
ERIC Educational Resources Information Center
Tank, Kristina M.; Raman, D. Raj; Lamm, Monica H.; Sundararajan, Sriram; Estapa, Anne
2017-01-01
This column presents ideas and techniques to enhance science teaching. This month's issue describes preservice elementary teachers learning engineering principles from engineers. Few elementary teachers have experience with implementing engineering into the classroom. While engineering professional development opportunities for inservice teachers…
46 CFR 10.109 - Classification of endorsements.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Professional nurse; (41) Marine physician assistant; (42) Hospital corpsman; and (43) Radar observer. (b) The... engineer (limited-near-coastal); (22) First assistant engineer; (23) Second assistant engineer; (24) Third assistant engineer; (25) Assistant engineer (limited); (26) Designated duty engineer (DDE); (27) Chief...
46 CFR 70.20-1 - Marine engineering details.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 3 2011-10-01 2011-10-01 false Marine engineering details. 70.20-1 Section 70.20-1... General Marine Engineering Requirements § 70.20-1 Marine engineering details. All marine engineering... subchapter F (Marine Engineering) of this chapter. ...
46 CFR 70.20-1 - Marine engineering details.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 3 2013-10-01 2013-10-01 false Marine engineering details. 70.20-1 Section 70.20-1... General Marine Engineering Requirements § 70.20-1 Marine engineering details. All marine engineering... subchapter F (Marine Engineering) of this chapter. ...
46 CFR 70.20-1 - Marine engineering details.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 3 2014-10-01 2014-10-01 false Marine engineering details. 70.20-1 Section 70.20-1... General Marine Engineering Requirements § 70.20-1 Marine engineering details. All marine engineering... subchapter F (Marine Engineering) of this chapter. ...
46 CFR 70.20-1 - Marine engineering details.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Marine engineering details. 70.20-1 Section 70.20-1... General Marine Engineering Requirements § 70.20-1 Marine engineering details. All marine engineering... subchapter F (Marine Engineering) of this chapter. ...
46 CFR 70.20-1 - Marine engineering details.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 3 2012-10-01 2012-10-01 false Marine engineering details. 70.20-1 Section 70.20-1... General Marine Engineering Requirements § 70.20-1 Marine engineering details. All marine engineering... subchapter F (Marine Engineering) of this chapter. ...
NASA Technical Reports Server (NTRS)
Maul, William A.; Meyer, Claudia M.
1991-01-01
A rocket engine safety system was designed to initiate control procedures to minimize damage to the engine or vehicle or test stand in the event of an engine failure. The features and the implementation issues associated with rocket engine safety systems are discussed, as well as the specific concerns of safety systems applied to a space-based engine and long duration space missions. Examples of safety system features and architectures are given, based on recent safety monitoring investigations conducted for the Space Shuttle Main Engine and for future liquid rocket engines. Also, the general design and implementation process for rocket engine safety systems is presented.
PROFESSIONAL REGISTRATION OF GOVERNMENT ENGINEERS.
Buchanan, Thomas J.
1985-01-01
The American Society of Civil Engineers views professional registration as an appropriate requirement for engineers, including those in government. The National Society of Professional Engineers makes registration a requirement for the grade of member and full privileges in the society. Some Federal agencies require engineering registration for certain positions in their agencies. Engineers in government service should consider the value of engineering registration to themselves and to their agencies and take pride in their professions and in their own capabilities by becoming registered engineers. They should also take steps to encourage their agencies to give more attention to engineering registration.
NASA Astrophysics Data System (ADS)
Dave, Eshan V.
Asphalt concrete pavements are inherently graded viscoelastic structures. Oxidative aging of asphalt binder and temperature cycling due to climatic conditions being the major cause of non-homogeneity. Current pavement analysis and simulation procedures dwell on the use of layered approach to account for these non-homogeneities. The conventional finite-element modeling (FEM) technique discretizes the problem domain into smaller elements, each with a unique constitutive property. However the assignment of unique material property description to an element in the FEM approach makes it an unattractive choice for simulation of problems with material non-homogeneities. Specialized elements such as "graded elements" allow for non-homogenous material property definitions within an element. This dissertation describes the development of graded viscoelastic finite element analysis method and its application for analysis of asphalt concrete pavements. Results show that the present research improves efficiency and accuracy of simulations for asphalt pavement systems. Some of the practical implications of this work include the new technique's capability for accurate analysis and design of asphalt pavements and overlay systems and for the determination of pavement performance with varying climatic conditions and amount of in-service age. Other application areas include simulation of functionally graded fiber-reinforced concrete, geotechnical materials, metal and metal composites at high temperatures, polymers, and several other naturally existing and engineered materials.
Influence of effective stress and dry density on the permeability of municipal solid waste.
Zhang, Zhenying; Wang, Yingfeng; Xu, Hui; Fang, Yuehua; Wu, Dazhi
2018-05-01
A landfill is one of the main sites for disposal of municipal solid waste and the current landfill disposal system faces several problems. For instance, excessive leachate water is an important factor leading to landfill instability. Understanding the permeability characteristics of municipal solid waste is a relevant topic in the field of environmental geotechnical engineering. In this paper, the current research progress on permeability characteristics of municipal solid waste is discussed. A review of recent studies indicates that the research in this field is divided into two categories based on the experimental method employed: field tests and laboratory tests. This paper summarizes test methods, landfill locations, waste ages, dry densities and permeability coefficients across different studies that focus on permeability characteristics. Additionally, an experimental study on compressibility and permeability characteristics of fresh municipal solid waste under different effective stresses and compression times was carried out. Moreover, the relationships between the permeability coefficient and effective stress as well as dry density were obtained and a permeability prediction model was established. Finally, the experimental results from the existing literature and this paper were compared and the effects of effective stress and dry density on the permeability characteristics of municipal solid waste were summarized. This study provides the basis for analysis of leachate production in a landfill.