Sample records for engineering industrial engineering

  1. Data Documentation for Navy Civilian Manpower Study,

    DTIC Science & Technology

    1986-09-01

    Engineering 0830 Mechanical Engineer 0840 Nuclear Engineering 0850 Electrical Engineering 0855 Electronics Engineering 0856 Electronics ...OCCUPATIONAL LEVEL (DONOL) CODES DONOL code Title 1060 Engineering Drafting 1061 Electronics Technician w 1062 Engineering Technician 1063 Industrial...Architect 2314 Electrical Engineer 2315 Electronic Engineer 2316 Industrial Engineer 2317 Mechanical Engineer 2318

  2. Handbook of Industrial Engineering Equations, Formulas, and Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badiru, Adedeji B; Omitaomu, Olufemi A

    The first handbook to focus exclusively on industrial engineering calculations with a correlation to applications, Handbook of Industrial Engineering Equations, Formulas, and Calculations contains a general collection of the mathematical equations often used in the practice of industrial engineering. Many books cover individual areas of engineering and some cover all areas, but none covers industrial engineering specifically, nor do they highlight topics such as project management, materials, and systems engineering from an integrated viewpoint. Written by acclaimed researchers and authors, this concise reference marries theory and practice, making it a versatile and flexible resource. Succinctly formatted for functionality, the bookmore » presents: Basic Math Calculations; Engineering Math Calculations; Production Engineering Calculations; Engineering Economics Calculations; Ergonomics Calculations; Facility Layout Calculations; Production Sequencing and Scheduling Calculations; Systems Engineering Calculations; Data Engineering Calculations; Project Engineering Calculations; and Simulation and Statistical Equations. It has been said that engineers make things while industrial engineers make things better. To make something better requires an understanding of its basic characteristics and the underlying equations and calculations that facilitate that understanding. To do this, however, you do not have to be computational experts; you just have to know where to get the computational resources that are needed. This book elucidates the underlying equations that facilitate the understanding required to improve design processes, continuously improving the answer to the age-old question: What is the best way to do a job?« less

  3. Industrial and Systems Engineering Applications in NASA

    NASA Technical Reports Server (NTRS)

    Shivers, Charles H.

    2006-01-01

    A viewgraph presentation on the many applications of Industrial and Systems Engineering used for safe NASA missions is shown. The topics include: 1) NASA Information; 2) Industrial Engineering; 3) Systems Engineering; and 4) Major NASA Programs.

  4. Job Prospects for Industrial Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1988-01-01

    Discusses 1987 statistics from the College Placement Council regarding new job offers to graduating industrial engineers. Identifies trends in hiring in the field. Describes several issues that will face industrial engineers. States that the industrial engineers most likely to win jobs are those with good basic mathematics and communications…

  5. Productivity improvement through industrial engineering in the semiconductor industry

    NASA Astrophysics Data System (ADS)

    Meyersdorf, Doron

    1996-09-01

    Industrial Engineering is fairly new to the semiconductor industry, though the awareness to its importance has increased in recent years. The US semiconductor industry in particular has come to the realization that in order to remain competitive in the global market it must take the lead not only in product development but also in manufacturing. Industrial engineering techniques offer one ofthe most effective strategies for achieving manufacturing excellence. Industrial engineers play an important role in the success of the manufacturing facility. This paper defines the Industrial engineers role in the IC facility, set the visions of excellence in semiconductor manufacturing and highlights 10 roadblocks on the journey towards manufacturing excellence.

  6. Industrial Education. "Small Engines".

    ERIC Educational Resources Information Center

    Parma City School District, OH.

    Part of a series of curriculum guides dealing with industrial education in junior high schools, this guide provides the student with information and manipulative experiences on small gasoline engines. Included are sections on shop adjustment, safety, small engines, internal combustion, engine construction, four stroke engines, two stroke engines,…

  7. Productivity improvement through industrial engineering in the semiconductor industry

    NASA Astrophysics Data System (ADS)

    Meyersdorf, Doron

    1996-09-01

    Industrial engineering is fairly new to the semiconductor industry, though the awareness to its importance has increased in recent years. The U.S. semiconductor industry in particular has come to the realization that in order to remain competitive in the global market it must take the lead not only in product development but also in manufacturing. Industrial engineering techniques offer one of the most effective strategies for achieving manufacturing excellence. Industrial engineers play an important role in the success of the manufacturing facility. This paper defines the industrial engineers role in the IC facility, sets the visions of excellence in semiconductor manufacturing and highlights 10 roadblocks on the journey towards manufacturing excellence.

  8. Perspective on thermal barrier coatings for industrial gas turbine applications

    NASA Technical Reports Server (NTRS)

    Mutasim, Zaher; Brentnall, William

    1995-01-01

    Thermal barrier coatings (TBC's) have been used in high thrust aircraft engines for many years, and have proved to be very effective in providing thermal protection and increasing engine efficiencies. TBC life requirements for aircraft engines are typically less than those required for industrial gas turbines. This paper describes current and future applications of TBC's in industrial gas turbine engines. Early testing and applications of TBC's is reviewed. Areas of concern from the engine designer's and materials engineer's perspective are identified and evaluated. This paper focuses on the key factors that are expected to influence utilization of TBC's in advanced industrial gas turbine engines. It is anticipated that reliable, durable and highly effective coating systems will be produced that will ultimately improve engine efficiency and performance.

  9. 48 CFR 6.302-3 - Industrial mobilization; engineering, developmental, or research capability; or expert services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...; engineering, developmental, or research capability; or expert services. 6.302-3 Section 6.302-3 Federal... Other Than Full and Open Competition 6.302-3 Industrial mobilization; engineering, developmental, or... achieve industrial mobilization, (ii) To establish or maintain an essential engineering, research, or...

  10. 48 CFR 6.302-3 - Industrial mobilization; engineering, developmental, or research capability; or expert services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...; engineering, developmental, or research capability; or expert services. 6.302-3 Section 6.302-3 Federal... Other Than Full and Open Competition 6.302-3 Industrial mobilization; engineering, developmental, or... achieve industrial mobilization, (ii) To establish or maintain an essential engineering, research, or...

  11. 48 CFR 6.302-3 - Industrial mobilization; engineering, developmental, or research capability; or expert services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...; engineering, developmental, or research capability; or expert services. 6.302-3 Section 6.302-3 Federal... Other Than Full and Open Competition 6.302-3 Industrial mobilization; engineering, developmental, or... achieve industrial mobilization, (ii) To establish or maintain an essential engineering, research, or...

  12. 48 CFR 6.302-3 - Industrial mobilization; engineering, developmental, or research capability; or expert services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...; engineering, developmental, or research capability; or expert services. 6.302-3 Section 6.302-3 Federal... Other Than Full and Open Competition 6.302-3 Industrial mobilization; engineering, developmental, or... achieve industrial mobilization, (ii) To establish or maintain an essential engineering, research, or...

  13. 48 CFR 6.302-3 - Industrial mobilization; engineering, developmental, or research capability; or expert services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...; engineering, developmental, or research capability; or expert services. 6.302-3 Section 6.302-3 Federal... Other Than Full and Open Competition 6.302-3 Industrial mobilization; engineering, developmental, or... achieve industrial mobilization, (ii) To establish or maintain an essential engineering, research, or...

  14. 46 CFR 11.530 - Endorsements as engineers of uninspected fishing industry vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Endorsements as engineers of uninspected fishing... Engineer Officer Endorsements § 11.530 Endorsements as engineers of uninspected fishing industry vessels... propelled, which are documented to engage in the fishing industry, with the exception of— (1) Wooden ships...

  15. The role of gender on academic performance in STEM-related disciplines: Data from a tertiary institution.

    PubMed

    John, Temitope M; Badejo, Joke A; Popoola, Segun I; Omole, David O; Odukoya, Jonathan A; Ajayi, Priscilla O; Aboyade, Mary; Atayero, Aderemi A

    2018-06-01

    This data article presents data of academic performances of undergraduate students in Science, Technology, Engineering and Mathematics (STEM) disciplines in Covenant University, Nigeria. The data shows academic performances of Male and Female students who graduated from 2010 to 2014. The total population of samples in the observation is 3046 undergraduates mined from Biochemistry (BCH), Building technology (BLD), Computer Engineering (CEN), Chemical Engineering (CHE), Industrial Chemistry (CHM), Computer Science (CIS), Civil Engineering (CVE), Electrical and Electronics Engineering (EEE), Information and Communication Engineering (ICE), Mathematics (MAT), Microbiology (MCB), Mechanical Engineering (MCE), Management and Information System (MIS), Petroleum Engineering (PET), Industrial Physics-Electronics and IT Applications (PHYE), Industrial Physics-Applied Geophysics (PHYG) and Industrial Physics-Renewable Energy (PHYR). The detailed dataset is made available in form of a Microsoft Excel spreadsheet in the supplementary material of this article.

  16. [Improving industrial microbial stress resistance by metabolic engineering: a review].

    PubMed

    Fu, Ruiyan; Li, Yin

    2010-09-01

    Metabolic engineering is a technologic platform for industrial strain improvement and aims not only at modifying microbial metabolic fluxes, but also improving the physiological performance of industrial microbes. Microbes will meet multiple stresses in industrial processes. Consequently, elicited gene responses might result in a decrease in overall cell fitness and the efficiency of biotransformation. Thus, it is crucial to develop robust and productive microbial strains that can be integrated into industrial-scale bioprocesses. In this review, we focus on the progress of these novel methods and strategies for engineering stress-tolerance phenotypes referring to rational metabolic engineering and inverse metabolic engineering in recent years. In addition, we also address problems existing in this area and future research needs of microbial physiological functionality engineering.

  17. Engineering Technology Education: Bibliography 1989.

    ERIC Educational Resources Information Center

    Dyrud, Marilyn A., Comp.

    1990-01-01

    Over 200 references divided into 24 different areas are presented. Topics include administration, aeronautics, architecture, biomedical technology, CAD/CAM, civil engineering, computers, curriculum, electrical/electronics engineering, industrial engineering, industry and employment, instructional technology, laboratories, lasers, liberal studies,…

  18. 75 FR 53846 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125-02...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... Engines Installed In, But Not Limited To, Diamond Aircraft Industries Model DA 42 Airplanes; Correction..., Diamond Aircraft Industries model DA 42 airplanes. The part number for engine model TAE 125-01 is missing...-99 reciprocating engines, installed in, but not limited to, Diamond Aircraft Industries model DA 42...

  19. Biocatalysts: application and engineering for industrial purposes.

    PubMed

    Jemli, Sonia; Ayadi-Zouari, Dorra; Hlima, Hajer Ben; Bejar, Samir

    2016-01-01

    Enzymes are widely applied in various industrial applications and processes, including the food and beverage, animal feed, textile, detergent and medical industries. Enzymes screened from natural origins are often engineered before entering the market place because their native forms do not meet the requirements for industrial application. Protein engineering is concerned with the design and construction of novel enzymes with tailored functional properties, including stability, catalytic activity, reaction product inhibition and substrate specificity. Two broad approaches have been used for enzyme engineering, namely, rational design and directed evolution. The powerful and revolutionary techniques so far developed for protein engineering provide excellent opportunities for the design of industrial enzymes with specific properties and production of high-value products at lower production costs. The present review seeks to highlight the major fields of enzyme application and to provide an updated overview on previous protein engineering studies wherein natural enzymes were modified to meet the operational conditions required for industrial application.

  20. Developing a New Industrial Engineering Curriculum Using a Systems Engineering Approach

    ERIC Educational Resources Information Center

    Buyurgan, Nebil; Kiassat, Corey

    2017-01-01

    This paper reports on the development of an engineering curriculum for a new industrial engineering programme at a medium-sized private university in the northeast United States. A systems engineering process has been followed to design and develop the new curriculum. Considering the programme curriculum as a system, first the stakeholders have…

  1. Molecular engineering of industrial enzymes: recent advances and future prospects.

    PubMed

    Yang, Haiquan; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2014-01-01

    Many enzymes are efficiently produced by microbes. However, the use of natural enzymes as biocatalysts has limitations such as low catalytic efficiency, low activity, and low stability, especially under industrial conditions. Many protein engineering technologies have been developed to modify natural enzymes and eliminate these limitations. Commonly used protein engineering strategies include directed evolution, site-directed mutagenesis, truncation, and terminal fusion. This review summarizes recent advances in the molecular engineering of industrial enzymes and discusses future prospects in this field. We expect this review to increase interest in and advance the molecular engineering of industrial enzymes.

  2. Renovation of a Mechanical Engineering Senior Design Class to an Industry-Tied and Team-Oriented Course

    ERIC Educational Resources Information Center

    Liu, Yucheng

    2017-01-01

    In this work, an industry-based and team-oriented education model was established based on a traditional mechanical engineering (ME) senior design class in order to better prepare future engineers and leaders so as to meet the increasing demand for high-quality engineering graduates. In the renovated curriculum, industry-sponsored projects became…

  3. Chemical Engineering in Education and Industry.

    ERIC Educational Resources Information Center

    Wei, James

    1986-01-01

    Provides an historical overview of the origins, developments, and contributions of chemical engineering. Reviews the roles of the university and industry in the education of chemical engineers. Includes a listing of the major advances of chemical engineering since World War II. (ML)

  4. Enhancing Small-Business Opportunities in the DoD

    DTIC Science & Technology

    2008-01-01

    to the DoD is below the small-business share of all industry sales. In some industries , including aircraft manufacturing and engineer - ing services...for goods not included in the Aircraft Manufacturing category as well as those not in another industry category for aircraft engine and engine parts...Purchases, % Small-Business Share of Industry , %, 20022007 2002 Aircraft Manufacturing 2.3 1.8 8.7 Engineering Services 13.6 16.9 20.3 R&D in the

  5. Engineering Graduates' Skill Sets in the MENA Region: A Gap Analysis of Industry Expectations and Satisfaction

    ERIC Educational Resources Information Center

    Ramadi, Eric; Ramadi, Serge; Nasr, Karim

    2016-01-01

    This study explored gaps between industry expectations and perceptions of engineering graduates' skill sets in the Middle East and North Africa (MENA) region. This study measured the importance that managers of engineers placed on 36 skills relevant to engineers. Also measured was managers' satisfaction with engineering graduates' skill sets.…

  6. A Multidisciplinary Engineering Summer School in an Industrial Setting

    ERIC Educational Resources Information Center

    Larsen, Peter Gorm; Fernandes, Joao M.; Habel, Jacek; Lehrskov, Hanne; Vos, Richard J. C.; Wallington, Oliver; Zidek, Jan

    2009-01-01

    Most university-level engineering studies produce technically skilled engineers. However, typically students face several difficulties when working in multidisciplinary teams when they initiate their industrial careers. In a globalised world, it becomes increasingly important that engineers are capable of collaborating across disciplinary…

  7. Research and Exploration for Operational Research Education in Industry and Engineering Subject

    ERIC Educational Resources Information Center

    Wu, Yu-hua; Wang, Feng-ming; Du, Gang

    2007-01-01

    On the basic of exploring the relationship of industry engineering and operational research technique, the thesis analyzes the location and utility of the operational research education in the whole industry engineering subject education. It brings forward the system design about operational research and relative class among industry engineering…

  8. A Resident Engineer.

    ERIC Educational Resources Information Center

    Chapman, Gary T.

    This paper examines the work of resident engineers in a university setting. The need for engineers with industrial experience is established, and the benefits of using resident engineers in training programs are cited. Attributes and problems associated with the practice are studied from the viewpoints of industry, government, universities, and…

  9. Perspectives and Plans for Graduate Studies. 11. Engineering 1974. E. Industrial Engineering and Systems Design. Report No. 74-22.

    ERIC Educational Resources Information Center

    Ontario Council on Graduate Studies, Toronto. Advisory Committee on Academic Planning.

    On the instruction of the Council of Ontario Universities, the Advisory Committee on Academic Planning in cooperation with the Committee of Ontario Deans of Engineering has conducted a planning assessment for doctoral work in industrial engineering and systems design. Recommendations for doctoral work in engineering studies are presented.…

  10. 46 CFR 11.530 - Endorsements for engineers of uninspected fishing industry vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Endorsements for engineers of uninspected fishing... MARINE OFFICERS AND SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.530 Endorsements for engineers of uninspected fishing industry vessels. (a) This section...

  11. 46 CFR 11.530 - Endorsements for engineers of uninspected fishing industry vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Endorsements for engineers of uninspected fishing... MARINE OFFICERS AND SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.530 Endorsements for engineers of uninspected fishing industry vessels. (a) This section...

  12. 46 CFR 11.530 - Endorsements for engineers of uninspected fishing industry vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Endorsements for engineers of uninspected fishing... MARINE OFFICERS AND SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.530 Endorsements for engineers of uninspected fishing industry vessels. (a) This section...

  13. 15 CFR 801.10 - Rules and regulations for the BE-120, Benchmark Survey of Transactions in Selected Services and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... engineering services; industrial-type maintenance, installation, alteration, and training services; legal... services; (17) Financial services (purchases only); (18) Industrial engineering services; (19) Industrial...; educational and training services; engineering, architectural, and surveying services; financial services...

  14. Job Prospects for Computer Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1988-01-01

    Discusses the computer engineering industry in the United States. Recounts recent shifts in the computer industry and notes that despite foreign competition, the industry offers graduating computer engineers ample opportunities for employment. Claims that skill and technical knowledge are the most important assets for getting a job. (TW)

  15. Technician Career Opportunities in Engineering Technology.

    ERIC Educational Resources Information Center

    Engineers' Council for Professional Development, New York, NY.

    Career opportunities for engineering technicians are available in the technologies relating to air conditioning, heating, and refrigeration, aviation and aerospace, building construction, chemical engineering, civil engineering, electrical engineering, electronics, industrial engineering, instrumentation, internal combustion engines, mechanical…

  16. China’s Aerospace Industry: Technology, Funding and Modernization

    DTIC Science & Technology

    1992-01-01

    7 was to use a General Electric F404 engine (from the F-20 Tigershark) along with other foreign engines as candidates but that program was again...firms like General Electric and Pratt & Whitney. As the Chinese engine industry gets more behind, more foreign engines are chosen, and the factories have... Electric since 1984.81 Liming Engine Plant makes compressor disks and turbine disks for GE and turbine disks for Pratt & Whitney while the Chengdu Engine

  17. The Role of Industry in Minority Engineering Programs.

    ERIC Educational Resources Information Center

    Branigan, Thomas L.

    Until recently, U.S. engineering education and American industry drew candidates from only about 43 percent of the potential market--white males. Many segments of American business, education, and government have been involved in a process to increase minority participation in engineering; the 1974 freshmen engineering enrollment for women…

  18. Establishing a "Centre for Engineering Experimentation and Design Simulation": A Step towards Restructuring Engineering Education in India

    ERIC Educational Resources Information Center

    Venkateswarlu, P.

    2017-01-01

    Reforms in undergraduate engineering curriculum to produce engineers with entrepreneurial skills should address real-world problems relevant to industry and society with active industry support. Technology-assisted, hands-on projects involving experimentation, design simulation and prototyping will transform graduates into professionals with…

  19. Development of university-industry partnerships in railroad engineering education

    NASA Astrophysics Data System (ADS)

    Lautala, Pasi T.

    Rail transportation has been an important part of the North American transportation network since the 19th century and it continues to be a major contributor to the economic well-being and the global competitiveness of the U.S. The recent expansion in freight rail volumes and forecasts for continuous growth, together with more favorable attitudes for urban passenger rail present several challenges for the rail industry. One of the challenges is the availability of a well educated engineering workforce. The rail industry has recognized a need to attract new railroad professionals from various disciplines for management and technical positions, but most universities eliminated railroad engineering from their curricula after the recruitment levels faded several decades ago. Today, railroad expertise and related engineering courses exist at only a few universities and most students graduate without any exposure to rail topics. While industry representatives have expressed their concern about a future workforce, little data is available on the extent of the demand, on the characteristics and skills of preferred candidates, and on the role that universities can play. A benchmarking study was undertaken to investigate the demand for university engineering graduates and assess whether current methods are sufficient to attract, educate, recruit, train and retain engineering students in the railroad profession. Data was collected from industry human resources and training managers to define the quantitative and qualitative needs for railroad engineers. In addition, recently hired engineers working in the rail industry were surveyed to determine the extent of their university exposure in rail topics and how it affected their career choice. The surveys indicated an increase of over 300 percent in the annual recruitment for railroad engineers by the participating companies between 2002 and 2005. Recruitment levels are expected to remain high for the next five to ten years due to high demand for rail transportation and an older engineering workforce with the greatest demand for civil, electrical and mechanical engineers with bachelor's degrees. The rail industry and universities have grown apart over the past several decades, as rail programs and courses were abandoned at universities and there were very limited recruitment and research activities by the railroads at universities. Today, specialized course(s) in rail topics are offered at approximately three percent of ABET accredited civil engineering programs in the U.S. and only 16 percent of engineers who responded to the survey had received university exposure to rail topics. The research findings suggest that increased university participation has the potential to assist the rail industry in all aspects related to attracting, educating, recruiting, training and retaining engineering graduates. The primary advantages would be greater industry visibility and student knowledge in rail topics. Increased prior knowledge, on the other hand, improves the effectiveness of industry training programs and offers a potential for sizable training cost reductions. As a final conclusion, the research suggests that the most effective approach for developing future railroad engineers is a balancing act where the responsibilities should be shared by the rail industry and universities based on each others strengths. University participation should include multiple types and levels, including introductory lectures, co-op/internship programs, courses in railroad engineering, and a minor or certificate in railroad engineering that would include several courses. Due to the urgent demand for railroad engineers and time it takes to rebuild the expertise on campuses, the development process should begin immediately, be incremental, and utilize concepts, such as cooperation with other universities or engineer-in-residence, that reduce the demand of internal university resources. The challenges to the process, such as willingness of partners to understand each others needs and motivations for the relationship should be alleviated by developing performance goals and measures of success. While it is impossible to evaluate all aspects of university level railroad engineering education in one study, this research suggests that there are opportunities for a partnership between the rail industry and universities. The purpose of this research was to identify those opportunities and increase the understanding of the forces that shape the demand for railroad engineers and engineering education. The findings can be used both by the rail industry and the universities as they initiate change in the current processes and thrive to develop railroad engineers to meet the demands of the 21 st century.

  20. Job Prospects for Industrial Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1986-01-01

    Because of the impetus on how to improve productivity in companies, the demand for graduating industrial engineers continues to be strong from a variety of sources. Starting salary offers for graduates have been averaging $26,784. Enrollments in industrial engineering programs are increasing (with 3,923 graduates in 1984). (JN)

  1. Training Engineers of Joint Programs for the European Aerospace Industry.

    ERIC Educational Resources Information Center

    Thomas, Jurgen

    1985-01-01

    Examines topics and issues related to training engineers of joint programs for the European aerospace industry. Forms of cooperation, European educational systems, and skills needed to successfully work as an engineer in a joint program for the European aircraft industry are the major areas addressed. (JN)

  2. An Industrial Engineering Approach to Cost Containment of Pharmacy Education.

    PubMed

    Duncan, Wendy; Bottenberg, Michelle; Chase, Marilea; Chesnut, Renae; Clarke, Cheryl; Schott, Kathryn; Torry, Ronald; Welty, Tim

    2015-11-25

    A 2-semester project explored employing teams of fourth-year industrial engineering students to optimize some of our academic management processes. Results included significant cost savings and increases in efficiency, effectiveness, and student and faculty satisfaction. While we did not adopt all of the students' recommendations, we did learn some important lessons. For example, an initial investment of time in developing a mutually clear understanding of the problems, constraints, and goals maximizes the value of industrial engineering analysis and recommendations. Overall, industrial engineering was a valuable tool for optimizing certain academic management processes.

  3. Perspective on thermal barrier coatings for industrial gas turbine applications

    NASA Technical Reports Server (NTRS)

    Mutasim, Z. Z.; Hsu, L. L.; Brentnall, W. D.

    1995-01-01

    Thermal Barrier Coatings (TBC's) have been used in high thrust aircraft engines for many years, and have proved to be very effective in allowing higher turbine inlet temperatures. TBC life requirements for aircraft engines are typically less than those required in industrial gas turbines. The use of TBC's for industrial gas turbines can increase if durability and longer service life can be successfully demonstrated. This paper will describe current and future applications of TBC's in industrial gas turbine engines. Early testing and applications of TBC's will also be reviewed. This paper focuses on the key factors that are expected to influence utilization of TBC's in advanced industrial gas turbine engines. It is anticipated that reliable, durable and high effective coating systems will be produced that will ultimately improve engine efficiency and performance.

  4. Perm State University HPC-hardware and software services: capabilities for aircraft engine aeroacoustics problems solving

    NASA Astrophysics Data System (ADS)

    Demenev, A. G.

    2018-02-01

    The present work is devoted to analyze high-performance computing (HPC) infrastructure capabilities for aircraft engine aeroacoustics problems solving at Perm State University. We explore here the ability to develop new computational aeroacoustics methods/solvers for computer-aided engineering (CAE) systems to handle complicated industrial problems of engine noise prediction. Leading aircraft engine engineering company, including “UEC-Aviadvigatel” JSC (our industrial partners in Perm, Russia), require that methods/solvers to optimize geometry of aircraft engine for fan noise reduction. We analysed Perm State University HPC-hardware resources and software services to use efficiently. The performed results demonstrate that Perm State University HPC-infrastructure are mature enough to face out industrial-like problems of development CAE-system with HPC-method and CFD-solvers.

  5. Biomedical engineering education through global engineering teams.

    PubMed

    Scheffer, C; Blanckenberg, M; Garth-Davis, B; Eisenberg, M

    2012-01-01

    Most industrial projects require a team of engineers from a variety of disciplines. The team members are often culturally diverse and geographically dispersed. Many students do not acquire sufficient skills from typical university courses to function efficiently in such an environment. The Global Engineering Teams (GET) programme was designed to prepare students such a scenario in industry. This paper discusses five biomedical engineering themed projects completed by GET students. The benefits and success of the programme in educating students in the field of biomedical engineering are discussed.

  6. Ceramic Technology For Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less

  7. Case Study: Meeting the Demand for Skilled Precision Engineers

    ERIC Educational Resources Information Center

    Sansom, Chris; Shore, Paul

    2008-01-01

    Purpose: This paper aims to demonstrate how science and engineering graduates can be recruited and trained to Masters level in precision engineering as an aid to reducing the skills shortage of mechanical engineers in UK industry. Design/methodology/approach: The paper describes a partnership between three UK academic institutions and industry,…

  8. Engineering English and the High-Tech Industry: A Case Study of an English Needs Analysis of Process Integration Engineers at a Semiconductor Manufacturing Company in Taiwan

    ERIC Educational Resources Information Center

    Spence, Paul; Liu, Gi-Zen

    2013-01-01

    The global high-tech industry is characterized by extreme competitiveness, innovation, and widespread use of English. Consequently, Taiwanese high-tech companies require engineers that are talented in both their engineering and English abilities. In response to the lack of knowledge regarding the English skills needed by engineers in Taiwan's…

  9. Why Industry Must Step In to Train Engineers.

    ERIC Educational Resources Information Center

    Business Week, 1981

    1981-01-01

    Suggests industrial training of Japanese engineers since engineering education in Japan focuses on abstract science and rote learning of fundamental principles and not on practical laboratory experiences characteristic of training in the United States. (SK)

  10. Manual for implementing a Shared Time Engineering Program (STEP) September 1980 through September 1983

    NASA Astrophysics Data System (ADS)

    Aronoff, H. I.; Leslie, J. J.; Mittleman, A. N.; Holt, S.

    1983-11-01

    This manual describes a Shared Time Engineering Program (STEP) conducted by the New England Apparel Manufacturers Association (NEAMA) headquartered in Fall River Massachusetts, and funded by the Office of Trade Adjustment Assistance of the U.S. Department of Commerce. It is addressed to industry association executives, industrial engineers and others interested in examining an innovative model of industrial engineering assistance to small plants which might be adapted to their particular needs.

  11. Collaboration between Industrial Designers and Design Engineers - Comparing the Understanding of Design Intent.

    PubMed

    Laursen, Esben Skov; Møller, Louise

    2015-01-01

    This paper describes a case study comparing the understanding of design intent between industrial designers and design engineers. The study is based on the hypothesis that it is not all aspects of the design intent that are equally difficult to share between industrial designers and design engineers in the product development process. The study builds on five semi-structured interviews, where two industrial designers and three design engineers were interviewed about different aspects of the design intent. Based on our results, there seem to be indications that the more complex and abstract elements of industrial design knowledge such as the meaning, semantics, values, emotions and social aspects of the product are less shared by the design engineers. Moreover, the results also indicate that the different aspects of the design intent are perceived separately, rather than as part of a whole by the design engineers. The connection between the different aspects of the design intent is not shared between the industrial designer and design engineer making the shared knowledge less meaningful to the design engineers. The results of this study cannot be claimed to be conclusive due to the limited empirical material. Further investigation and analytically richer data are required in order to verify and broaden the findings. More case studies have therefore been planned in order to understand the area better.

  12. Should bioengineering graduates seek employment in the defense industry?

    PubMed

    Johnson, Arthur T

    2014-01-01

    They say that the difference between a mechanical engineer and a civil engineer is that the mechanical engineer develops weapons whereas a civil engineer designs targets. The implication is that some engineers are involved with building peaceful infrastructure whereas others contribute to destruction. This brings to mind the question: what is the proper role for engineers in the creation of weapons and defenses against them? In particular, should engineers specializing in biology or medicine be involved in the defense industry? After all, bioengineers are supposed to be builders or healers rather than warriors or destroyers.

  13. The Future for Industrial Engineers: Education and Research Opportunities

    ERIC Educational Resources Information Center

    Mummolo, Giovanni

    2007-01-01

    EU graduation and the recruitment of industrial engineers (IEs) have been investigated. An increasing demand is observed for graduates in almost all industrial engineering (IE) subjects. The labour market in the EU is evolving towards the service sector even if manufacturing still represents a significant share of both IE employment and gross…

  14. Enhancing the Undergraduate Industrial Engineering Curriculum: Defining Desired Characteristics and Emerging Topics

    ERIC Educational Resources Information Center

    Eskandari, Hamidreza; Sala-Diakanda, Serge; Furterer, Sandra; Rabelo, Luis; Crumpton-Young, Lesia; Williams, Kent

    2007-01-01

    Purpose: This paper aims to present the results of an initial research study conducted to identify the desired professional characteristics of an industrial engineer with an undergraduate degree and the emerging topic areas that should be incorporated into the curriculum to prepare industrial engineering (IE) graduates for the future workforce.…

  15. Manufacturing Methods and Technology Program Plan. Update.

    DTIC Science & Technology

    1981-11-01

    INDUSTRIAL BASE ENGINEERING ACTIVITY ROCK ISLAND. ILLINOIS 61299 82 INDEX PAGE I. INTRODUCTION The MMT Program Plan Update ........... 1 Industry Guide...obtained from that Plan, extra copies of which are available upon request from the Industrial Base Engineering Activity. Other sources for this data are...Major Subcommands (SUBMACOM’S). The SUBMACOM’S plan, formulate, budget, and execute individual projects. The Industrial Base Engineering Activity

  16. Genetic engineering of industrial strains of Saccharomyces cerevisiae.

    PubMed

    Le Borgne, Sylvie

    2012-01-01

    Genetic engineering has been successfully applied to Saccharomyces cerevisiae laboratory strains for different purposes: extension of substrate range, improvement of productivity and yield, elimination of by-products, improvement of process performance and cellular properties, and extension of product range. The potential of genetically engineered yeasts for the massive production of biofuels as bioethanol and other nonfuel products from renewable resources as lignocellulosic biomass hydrolysates has been recognized. For such applications, robust industrial strains of S. cerevisiae have to be used. Here, some relevant genetic and genomic characteristics of industrial strains are discussed in relation to the problematic of the genetic engineering of such strains. General molecular tools applicable to the manipulation of S. cerevisiae industrial strains are presented and examples of genetically engineered industrial strains developed for the production of bioethanol from lignocellulosic biomass are given.

  17. Closing the gap in systems engineering education for the space industry

    NASA Technical Reports Server (NTRS)

    Carlisle, R.

    1986-01-01

    The education of system engineers with emphasis on designing systems for space applications is discussed. System engineers determine the functional requirements, performance needs, and implementation procedures for proposed systems and their education is based on aeronautics and mathematics. Recommendations from industry for improving the curriculum of system engineers at the undergraduate and graduate levels are provided. The assistance provided by companies to the education of system engineers is examined.

  18. Evolutionary engineering of industrial microorganisms-strategies and applications.

    PubMed

    Zhu, Zhengming; Zhang, Juan; Ji, Xiaomei; Fang, Zhen; Wu, Zhimeng; Chen, Jian; Du, Guocheng

    2018-06-01

    Microbial cells have been widely used in the industry to obtain various biochemical products, and evolutionary engineering is a common method in biological research to improve their traits, such as high environmental tolerance and improvement of product yield. To obtain better integrate functions of microbial cells, evolutionary engineering combined with other biotechnologies have attracted more attention in recent years. Classical laboratory evolution has been proven effective to letting more beneficial mutations occur in different genes but also has some inherent limitations such as a long evolutionary period and uncontrolled mutation frequencies. However, recent studies showed that some new strategies may gradually overcome these limitations. In this review, we summarize the evolutionary strategies commonly used in industrial microorganisms and discuss the combination of evolutionary engineering with other biotechnologies such as systems biology and inverse metabolic engineering. Finally, we prospect the importance and application prospect of evolutionary engineering as a powerful tool especially in optimization of industrial microbial cell factories.

  19. Pharmaceutical and industrial protein engineering: where we are?

    PubMed

    Amara, Amro Abd-Al-Fattah

    2013-01-01

    The huge amount of information, the big number of scientists and their efforts, labs, man/hrs, fund, companies all and others factors build the success of the amazing new branch of genetic engineering the 'protein engineering' (PE). It concerns with the modification of protein structure/function(s) or building protein from scratch. The engineered proteins usually have new criteria(s). Engineering proteins can be mediated on the level of genes or proteins. PE fined its way in different important sectors including industrial, pharmaceutical and medicinal ones. Aspects about PE and its applications will be discussed with this review. The concept, tools, and the industrial applications of the protein, engineered proteins and PE will be under focus. In order to get up to date knowledge about the applications of PE in basic protein and molecular biology, several examples are discussed. PE can play a significant role in different industrial and pharmaceutical sectors if used wisely and selectively.

  20. NRL Fact Book

    DTIC Science & Technology

    2002-11-01

    CRADAs) under which NRL scientists and engineers work together with industry , academia, state or local governments, or other Federal agencies to... industrial hygiene, and environ- mental safety. The Division provides engineering and technical assistance to research divisions in the installation...The NRL Women in Science and Engineer - ing (WISE) Network is an open-membership network group of scientists and engineers who meet periodically to

  1. Institute-Industry Interoperation Model: An Industry-Oriented Engineering Education Strategy in China

    ERIC Educational Resources Information Center

    Wang, Yanqing; Qi, Zhongying; Li, Ziru; Zhang, Lijie

    2011-01-01

    Engineering education has been well implemented in the majority of developed countries such as the USA, Germany, and the United Kingdom so that the gap between engineering science and engineering practice is greatly bridged. However, in China, the gap still exists, and some attempts by Chinese government, even though having made obvious progress,…

  2. An Industrial Engineering Approach to Cost Containment of Pharmacy Education

    PubMed Central

    Bottenberg, Michelle; Chase, Marilea; Chesnut, Renae; Clarke, Cheryl; Schott, Kathryn; Torry, Ronald; Welty, Tim

    2015-01-01

    A 2-semester project explored employing teams of fourth-year industrial engineering students to optimize some of our academic management processes. Results included significant cost savings and increases in efficiency, effectiveness, and student and faculty satisfaction. While we did not adopt all of the students’ recommendations, we did learn some important lessons. For example, an initial investment of time in developing a mutually clear understanding of the problems, constraints, and goals maximizes the value of industrial engineering analysis and recommendations. Overall, industrial engineering was a valuable tool for optimizing certain academic management processes. PMID:26839421

  3. Competences of Engineers in the Iron and Steel Industry

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, A. V.

    2017-12-01

    The article presents the results of assessment of the professional performance of engineers working in the iron and steel industry. A competence-based profile of highly-qualified professionals has been built. The study of the competences of the iron and steel industry engineers has shown that their knowledge and skills may be mobilized to solve professional tasks.

  4. An Empirical Study of Industrial Engineering and Management Curriculum Reform in Fostering Students' Creativity

    ERIC Educational Resources Information Center

    Chen, Chi-Kuang; Jiang, Bernard C.; Hsu, Kuang-Yiao

    2005-01-01

    The objective of this paper is to examine the effectiveness of a creativity-fostering program in industrial engineering and management (IE&M) curriculum reform. Fostering creativity in students has become a crucial issue in industrial engineering education. In a survey of previous studies, we found few on IE&M curriculum reform. In…

  5. Protein engineering and its applications in food industry.

    PubMed

    Kapoor, Swati; Rafiq, Aasima; Sharma, Savita

    2017-07-24

    Protein engineering is a young discipline that has been branched out from the field of genetic engineering. Protein engineering is based on the available knowledge about the proteins structure/function(s), tools/instruments, software, bioinformatics database, available cloned gene, knowledge about available protein, vectors, recombinant strains and other materials that could lead to change in the protein backbone. Protein produced properly from genetic engineering process means a protein that is able to fold correctly and to do particular function(s) efficiently even after being subjected to engineering practices. Protein is modified through its gene or chemically. However, modification of protein through gene is easier. There is no specific limitation of Protein Engineering tools; any technique that can lead to change the protein constituent of amino acid and result in the modification of protein structure/function is in the frame of Protein Engineering. Meanwhile, there are some common tools used to reach a specific target. More active industrial and pharmaceutical based proteins have been invented by the field of Protein Engineering to introduce new function as well as to change its interaction with surrounding environment. A variety of protein engineering applications have been reported in the literature. These applications range from biocatalysis for food and industry to environmental, medical and nanobiotechnology applications. Successful combinations of various protein engineering methods had led to successful results in food industries and have created a scope to maintain the quality of finished product after processing.

  6. Design and development of the Waukesha Custom Engine Control Air/Fuel Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, D.W.

    1996-12-31

    The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuelmore » composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.« less

  7. 48 CFR 206.302-3 - Industrial mobilization; or engineering, development, or research capability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Industrial mobilization; or engineering, development, or research capability. 206.302-3 Section 206.302-3 Federal Acquisition... engineering, development, or research capability. ...

  8. 48 CFR 206.302-3 - Industrial mobilization; or engineering, development, or research capability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Industrial mobilization; or engineering, development, or research capability. 206.302-3 Section 206.302-3 Federal Acquisition... engineering, development, or research capability. ...

  9. 48 CFR 206.302-3 - Industrial mobilization; or engineering, development, or research capability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Industrial mobilization; or engineering, development, or research capability. 206.302-3 Section 206.302-3 Federal Acquisition... engineering, development, or research capability. ...

  10. Incorporating comparative genomics into the design-test-learn cycle of microbial strain engineering.

    PubMed

    Sardi, Maria; Gasch, Audrey P

    2017-08-01

    Engineering microbes with new properties is an important goal in industrial engineering, to establish biological factories for production of biofuels, commodity chemicals and pharmaceutics. But engineering microbes to produce new compounds with high yield remains a major challenge toward economically viable production. Incorporating several modern approaches, including synthetic and systems biology, metabolic modeling and regulatory rewiring, has proven to significantly advance industrial strain engineering. This review highlights how comparative genomics can also facilitate strain engineering, by identifying novel genes and pathways, regulatory mechanisms and genetic background effects for engineering. We discuss how incorporating comparative genomics into the design-test-learn cycle of strain engineering can provide novel information that complements other engineering strategies. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Establishing a `Centre for Engineering Experimentation and Design Simulation': a step towards restructuring engineering education in India

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, P.

    2017-07-01

    Reforms in undergraduate engineering curriculum to produce engineers with entrepreneurial skills should address real-world problems relevant to industry and society with active industry support. Technology-assisted, hands-on projects involving experimentation, design simulation and prototyping will transform graduates into professionals with necessary skills to create and advance knowledge that meets global standards. To achieve this goal, this paper proposes establishing a central facility, 'Centre for Engineering Experimentation and Design Simulation' (CEEDS) in autonomous engineering colleges in India. The centre will be equipped with the most recent technology resources and computational facilities where students execute novel interdisciplinary product-oriented projects benefiting both industry and society. Students undertake two projects: a short-term project aimed at an engineering solution to a problem in energy, health and environment and the other a major industry-supported project devoted to a product that enhances innovation and creativity. The paper presents the current status, the theoretical and pedagogical foundation for the centre's relevance, an activity plan and its implementation in the centre for product-based learning with illustrative examples.

  12. [Comparison Analysis of Economic and Engineering Control of Industrial VOCs].

    PubMed

    Wang, Yu-fei; Liu, Chang-xin; Cheng, Jie; Hao, Zheng-ping; Wang, Zheng

    2015-04-01

    Volatile organic compounds (VOCs) pollutant has become China's major air pollutant in key urban areas like sulfur dioxide, nitrogen oxides and particulate matter. It is mainly produced from industry sectors, and engineering control is one of the most important reduction measures. During the 12th Five-Year Plan, China decides to invest 40 billion RMB to build pollution control projects in key industry sectors with annual emission reduction of 605 000 t x a(-1). It shows that China attaches a great importance to emission reduction by engineering projects and highlights the awareness of engineering reduction technologies. In this paper, a macroeconomic model, namely computable general equilibrium model, (CGE model) was employed to simulate engineering control and economic control (imposing environmental tax). We aim to compare the pros and cons of the two reduction policies. Considering the economic loss of the whole country, the environmental tax has more impacts on the economy system than engineering reduction measures. We suggest that the central government provides 7 500 RMB x t(-1) as subsidy for enterprises in industry sectors to encourage engineering reduction.

  13. Software Past, Present, and Future: Views from Government, Industry and Academia

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Page, Jerry; Evangelist, Michael

    2000-01-01

    Views from the NASA CIO NASA Software Engineering Workshop on software development from the past, present, and future are presented. The topics include: 1) Software Past; 2) Software Present; 3) NASA's Largest Software Challenges; 4) 8330 Software Projects in Industry Standish Groups 1994 Report; 5) Software Future; 6) Capability Maturity Model (CMM): Software Engineering Institute (SEI) levels; 7) System Engineering Quality Also Part of the Problem; 8) University Environment Trends Will Increase the Problem in Software Engineering; and 9) NASA Software Engineering Goals.

  14. The Relationship between Job Satisfaction and Intent to Turnover among Software Engineers in the Information Technology Industry

    ERIC Educational Resources Information Center

    Agada, Chuks N.

    2013-01-01

    The focus of this study was to examine the relationship between job satisfaction and intent to turnover among software engineers in the information technology (IT) industry. The population that was analyzed in this study was software engineers in the IT industry to determine whether there is a relationship between job satisfaction and intent to…

  15. Industrial Partners in the Education of an Engineer

    ERIC Educational Resources Information Center

    Smith, Barnard E.

    1973-01-01

    Discusses the theory, operation, and practical problems encountered in conducting a professional program which emphasizes close contact with industrial engineers in engineering education. Indicates that the partnership program provides one means for firms to participate in educational activities while serving their own interests. (CC)

  16. How to Teach Engineering and Industrial Design: a U.K. Experience.

    ERIC Educational Resources Information Center

    Sheldon, D. F.

    1988-01-01

    Explored are the possibilities of teaching engineering through a project approach. Discussed are the introduction, clashing cultures of industrial and engineering design, skills required of a designer, teaching approach to the total design activity, CAD/CAM experiences, and conclusions. (Author/YP)

  17. Facilitation of University Technology Transfer Through a Cooperative Service-University-Industry Program.

    DTIC Science & Technology

    1997-02-01

    through technology transfer centers for applied engineering training and consulting, and second, in assisting and expanding university technology...both the services and industry with an applied engineering program and the training for new engineers and researchers, (2) serve as an information

  18. A New Enhanced Engineering Programme for Manufacturing Industries.

    ERIC Educational Resources Information Center

    Clark, C.; And Others

    1985-01-01

    Special Engineering Programmes (SEPs) were established in Great Britain to attract highly able students into engineering and to provide education/training to meet the needs of manufacturing industries. SEP philosophy and objectives, program structure, student selection, course assessment, and other areas are discussed. (JN)

  19. Production of anthocyanins in metabolically engineered microorganisms: Current status and perspectives.

    PubMed

    Zha, Jian; Koffas, Mattheos A G

    2017-12-01

    Microbial production of plant-derived natural products by engineered microorganisms has achieved great success thanks to large extend to metabolic engineering and synthetic biology. Anthocyanins, the water-soluble colored pigments found in terrestrial plants that are responsible for the red, blue and purple coloration of many flowers and fruits, are extensively used in food and cosmetics industry; however, their current supply heavily relies on complex extraction from plant-based materials. A promising alternative is their sustainable production in metabolically engineered microbes. Here, we review the recent progress on anthocyanin biosynthesis in engineered bacteria, with a special focus on the systematic engineering modifications such as selection and engineering of biosynthetic enzymes, engineering of transportation, regulation of UDP-glucose supply, as well as process optimization. These promising engineering strategies will facilitate successful microbial production of anthocyanins in industry in the near future.

  20. Engineering and public health at CDC.

    PubMed

    Earnest, G Scott; Reed, Laurence D; Conover, D; Estill, C; Gjessing, C; Gressel, M; Hall, R; Hudock, S; Hudson, H; Kardous, C; Sheehy, J; Topmiller, J; Trout, D; Woebkenberg, M; Amendola, A; Hsiao, H; Keane, P; Weissman, D; Finfinger, G; Tadolini, S; Thimons, E; Cullen, E; Jenkins, M; McKibbin, R; Conway, G; Husberg, B; Lincoln, J; Rodenbeck, S; Lantagne, D; Cardarelli, J

    2006-12-22

    Engineering is the application of scientific and technical knowledge to solve human problems. Using imagination, judgment, and reasoning to apply science, technology, mathematics, and practical experience, engineers develop the design, production, and operation of useful objects or processes. During the 1940s, engineers dominated the ranks of CDC scientists. In fact, the first CDC director, Assistant Surgeon General Mark Hollis, was an engineer. CDC engineers were involved in malaria control through the elimination of standing water. Eventually the CDC mission expanded to include prevention and control of dengue, typhus, and other communicable diseases. The development of chlorination, water filtration, and sewage treatment were crucial to preventing waterborne illness. Beginning in the 1950s, CDC engineers began their work to improve public health while developing the fields of environmental health, industrial hygiene, and control of air pollution. Engineering disciplines represented at CDC today include biomedical, civil, chemical, electrical, industrial, mechanical, mining, and safety engineering. Most CDC engineers are located in the National Institute for Occupational Safety and Health (NIOSH) and the Agency for Toxic Substances and Disease Registry (ATSDR). Engineering research at CDC has a broad stakeholder base. With the cooperation of industry, labor, trade associations, and other stakeholders and partners, current work includes studies of air contaminants, mining, safety, physical agents, ergonomics, and environmental hazards. Engineering solutions remain a cornerstone of the traditional "hierarchy of controls" approach to reducing public health hazards.

  1. Industry Partners at CBE

    Science.gov Websites

    * Charles M. Salter Associates DIALOG HGA Architects and Engineers HOK Integral Group Interface Engineering + Will SERA Architects Taylor Engineering Team: Atelier Ten Taylor Engineering TRC Energy Services

  2. 48 CFR 206.302-3 - Industrial mobilization, engineering, developmental, or research capability, or expert services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Industrial mobilization, engineering, developmental, or research capability, or expert services. 206.302-3 Section 206.302-3 Federal..., engineering, developmental, or research capability, or expert services. ...

  3. 48 CFR 206.302-3 - Industrial mobilization, engineering, developmental, or research capability, or expert services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Industrial mobilization, engineering, developmental, or research capability, or expert services. 206.302-3 Section 206.302-3 Federal..., engineering, developmental, or research capability, or expert services. ...

  4. Facilitation of University Technology Transfer through a Cooperative Army-University-Industry Program,

    DTIC Science & Technology

    1995-01-01

    through Army technology transfer centers for applied engineering training and consulting, and second in assisting and expanding university technology...industry with an applied engineering program and the training for new engineers and researchers, serve as an information resource for both the Army and

  5. A Recommended Framework for the Network-Centric Acquisition Process

    DTIC Science & Technology

    2009-09-01

    ISO /IEC 12207 , Systems and Software Engineering-Software Life-Cycle Processes  ANSI/EIA 632, Processes for Engineering a System. There are...engineering [46]. Some of the process models presented in the DAG are:  ISO /IEC 15288, Systems and Software Engineering-System Life-Cycle Processes...e.g., ISO , IA, Security, etc.). Vetting developers helps ensure that they are using industry best industry practices and maximize the IA compliance

  6. Industrial biosystems engineering and biorefinery systems.

    PubMed

    Chen, Shulin

    2008-06-01

    The concept of Industrial Biosystems Engineering (IBsE) was suggested as a new engineering branch to be developed for meeting the needs for science, technology and professionals by the upcoming bioeconomy. With emphasis on systems, IBsE builds upon the interfaces between systems biology, bioprocessing, and systems engineering. This paper discussed the background, the suggested definition, the theoretical framework and methodologies of this new discipline as well as its challenges and future development.

  7. Systems Engineering Workshops | Wind | NREL

    Science.gov Websites

    Workshops Systems Engineering Workshops The Wind Energy Systems Engineering Workshop is a biennial topics relevant to systems engineering and the wind industry. The presentations and agendas are available for all of the Systems Engineering Workshops: The 1st NREL Wind Energy Systems Engineering Workshop

  8. Engineering: Defining and differentiating its unique culture

    NASA Astrophysics Data System (ADS)

    Pilotte, Mary K.

    The world of work for engineering professionals is changing. At a rapid pace, experienced engineers are exiting the workforce due to retirement of the Baby Boomer generation, while at the same time the problems facing engineers are increasingly complex and frequently global in nature. For firms to protect their knowledge assets, they must ensure that acquired understandings are shared among their engineering work groups. Engineering teaching and learning in the workplace (i.e., knowledge sharing), is a social activity that resides in a social context governed by the professional engineering culture. This quantitative study uses Hofstede's Organizational Cultural Values Model (Hofstede, Neuijen, Ohayv, & Sanders, 1990) to examine dimensions of engineering culture in the workplace, producing a central tendency profile of engineering's cultural practices. Further, it explores through hypotheses if demographic differentiators, including birth generation, gender, race, industry sector of employment, and engineering discipline, play roles in forming engineering cultural practices. Results both corroborate aspects of Hofstede's model and assert new understandings relative to factors influencing dimensions of engineering practice. Outcomes are discussed in terms of their potential impact on industrial knowledge sharing and formation of beneficial engineering cultures.

  9. Engineering Students' Views of Corporate Social Responsibility: A Case Study from Petroleum Engineering.

    PubMed

    Smith, Jessica M; McClelland, Carrie J; Smith, Nicole M

    2017-12-01

    The mining and energy industries present unique challenges to engineers, who must navigate sometimes competing responsibilities and codes of conduct, such as personal senses of right and wrong, professional ethics codes, and their employers' corporate social responsibility (CSR) policies. Corporate social responsibility (CSR) is the current dominant framework used by industry to conceptualize firms' responsibilities to their stakeholders, yet has it plays a relatively minor role in engineering ethics education. In this article, we report on an interdisciplinary pedagogical intervention in a petroleum engineering seminar that sought to better prepare engineering undergraduate students to critically appraise the strengths and limitations of CSR as an approach to reconciling the interests of industry and communities. We find that as a result of the curricular interventions, engineering students were able to expand their knowledge of the social, rather than simply environmental and economic dimensions of CSR. They remained hesitant, however, in identifying the links between those social aspects of CSR and their actual engineering work. The study suggests that CSR may be a fruitful arena from which to illustrate the profoundly sociotechnical dimensions of the engineering challenges relevant to students' future careers.

  10. Introduction of Sustainability Concepts into Industrial Engineering Education: A Modular Approach

    ERIC Educational Resources Information Center

    Nazzal, Dima; Zabinski, Joseph; Hugar, Alexander; Reinhart, Debra; Karwowski, Waldemar; Madani, Kaveh

    2015-01-01

    Sustainability in operations, production, and consumption continues to gain relevance for engineers. This trend will accelerate as demand for goods and services grows, straining resources and requiring ingenuity to replace boundless supply in meeting the needs of a more crowded, more prosperous world. Industrial engineers are uniquely positioned…

  11. Allison moving forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raflo, D.

    1994-07-01

    Allison has been on its own since December 1, when General Motors Corporation sold its former Allison Gas Turbine Division to Clayton, Dubilier & Rice Inc, a private New York investment firm, and a group of senior Allison managers for $318 million. Allison engine Company`s current product line includes large engines, small aircraft engines, and industrial engines. Over 140,000 engines have been produced since 1915, giving Allison a large stake in world leaderhsip. With strong cogeneration markets already established in Europe and Japan, Allison`s industrial engines are being positioned to compete in emerging markets in China, Indonesia and the Sovietmore » Union. Cogeneration market potential in the US improves despite the current popularity with abundant, low-cost natural gas because of the South Coast Air Control Management District`s push for reduced emissions. The new 7000-shp KB7 industrial engine is the latest addition to the 501K engine family, and adds increased power (by 1700 shp), with a boost compressor to the current core compressor increasing air flow, along with a new low-loss exhaust system. Allison`s new AE series of turboprop (AE 2100) and turbofan (AE 3007) engines, with engine cores derived from the T406 design, have been selected to power regional airliners. 2 figs.« less

  12. Fast engineering optimization: A novel highly effective control parameterization approach for industrial dynamic processes.

    PubMed

    Liu, Ping; Li, Guodong; Liu, Xinggao

    2015-09-01

    Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. 26 CFR 1.971-1 - Definitions with respect to export trade corporations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., industrial, financial, technical, scientific, managerial, engineering, architectural, skilled, or other..., industrial, financial, technical, scientific, managerial, engineering, architectural, skilled, or other... performance for any person of commercial, industrial, financial, technical, scientific, managerial...

  14. 26 CFR 1.971-1 - Definitions with respect to export trade corporations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., industrial, financial, technical, scientific, managerial, engineering, architectural, skilled, or other..., industrial, financial, technical, scientific, managerial, engineering, architectural, skilled, or other... performance for any person of commercial, industrial, financial, technical, scientific, managerial...

  15. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Rohdenburg, C.; Antonelli, M. (Editor)

    1983-01-01

    Program status and plans are discussed for component and technology development; reference engine system design, the upgraded Mod 1 engine; industry test and evaluation; and product assurance. Four current Mod 1 engines reached a total of 2523 operational hours, while two upgraded engines accumulated 166 hours.

  16. Metabolic Engineering VII Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Korpics

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniquesmore » important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.« less

  17. Protein design in systems metabolic engineering for industrial strain development.

    PubMed

    Chen, Zhen; Zeng, An-Ping

    2013-05-01

    Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Engineering Philosophy: Theories of Technology, German Idealism, and Social Order in High-Industrial Germany.

    PubMed

    Voskuhl, Adelheid

    During the so-called "Second Industrial Revolution," engineers were constituting themselves as a new social and professional group, and found themselves in often fierce competition with existing elites-the military, the nobility, and educated bourgeois mandarins-whose roots went back to medieval and early modern pre-industrial social orders. During that same time, engineers also discovered the discipline of philosophy: as a means to express their intellectual and social agendas, and to theorize technology and its relationship to art, history, culture, philosophy, and the state. This article analyzes engineers' own philosophical writings about technology as well as the institutions in which they composed them in 1910s and 1920s Germany. It emphasizes engineers' contributions to well-known discourses founded by canonical philosophers, the role of preindustrial economies and their imagination in such philosophies, and the role of both the history and the philosophy of technology in engineers' desire for upward social mobility.

  19. 15 CFR 801.9 - Reports required.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...); industrial engineering services; industrial-type maintenance, installation, alteration, and training services... services; educational and training services; engineering, architectural, and surveying services; financial... assets covered by the BE-125 survey are rights related to: Industrial processes and products; books...

  20. 15 CFR 801.9 - Reports required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...); industrial engineering services; industrial-type maintenance, installation, alteration, and training services... services; educational and training services; engineering, architectural, and surveying services; financial... assets covered by the BE-125 survey are rights related to: Industrial processes and products; books...

  1. 15 CFR 801.9 - Reports required.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...); industrial engineering services; industrial-type maintenance, installation, alteration, and training services... services; educational and training services; engineering, architectural, and surveying services; financial... assets covered by the BE-125 survey are rights related to: Industrial processes and products; books...

  2. Labor Market Slackens for New Science and Engineering Graduates. Science Resources Studies Highlights.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Recent recruiting experiences of firms that employ scientific and engineering (S/E) personnel were determined in a followup to a 1981 survey. The following industries, which employ almost three-fourths of the scientists and engineers in private industry, were included in the survey: mining, construction, petroleum refining and extraction,…

  3. Predictors of Effective Leadership in Industry--Should Engineering Education Focus on Traditional Intelligence, Personality, or Emotional Intelligence?

    ERIC Educational Resources Information Center

    Lappalainen, Pia

    2015-01-01

    Despite the changing global and industrial conditions requiring new approaches to leadership, management training as part of higher engineering education still remains understudied. The subsequent gap in engineering education calls for research on today's leader requirements and pedagogy supporting the inclusion of management competence in higher…

  4. Small Engine Manufacturing in Wisconsin: Work Reorganization and Training Needs.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Center on Wisconsin Strategy.

    Wisconsin is the country's leading manufacturer of small engines, and the network of companies and suppliers constituting the small engine industry accounts for more than 5% of the state's entire manufacturing base. For the past 15 years, the industry has been rocked by intensified international competition and rapid technological advancement. A…

  5. Software Engineering Technology Infusion Within NASA

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1996-01-01

    Abstract technology transfer is of crucial concern to both government and industry today. In this paper, several software engineering technologies used within NASA are studied, and the mechanisms, schedules, and efforts at transferring these technologies are investigated. The goals of this study are: 1) to understand the difference between technology transfer (the adoption of a new method by large segments of an industry) as an industry-wide phenomenon and the adoption of a new technology by an individual organization (called technology infusion); and 2) to see if software engineering technology transfer differs from other engineering disciplines. While there is great interest today in developing technology transfer models for industry, it is the technology infusion process that actually causes changes in the current state of the practice.

  6. Electric Utility Transmission and Distribution Line Engineering Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter McKenny

    2010-08-31

    Economic development in the United States depends on a reliable and affordable power supply. The nation will need well educated engineers to design a modern, safe, secure, and reliable power grid for our future needs. An anticipated shortage of qualified engineers has caused considerable concern in many professional circles, and various steps are being taken nationwide to alleviate the potential shortage and ensure the North American power system's reliability, and our world-wide economic competitiveness. To help provide a well-educated and trained workforce which can sustain and modernize the nation's power grid, Gonzaga University's School of Engineering and Applied Science hasmore » established a five-course (15-credit hour) Certificate Program in Transmission and Distribution (T&D) Engineering. The program has been specifically designed to provide working utility engineering professionals with on-line access to advanced engineering courses which cover modern design practice with an industry-focused theoretical foundation. A total of twelve courses have been developed to-date and students may select any five in their area of interest for the T&D Certificate. As each course is developed and taught by a team of experienced engineers (from public and private utilities, consultants, and industry suppliers), students are provided a unique opportunity to interact directly with different industry experts over the eight weeks of each course. Course material incorporates advanced aspects of civil, electrical, and mechanical engineering disciplines that apply to power system design and are appropriate for graduate engineers. As such, target students for the certificate program include: (1) recent graduates with a Bachelor of Science Degree in an engineering field (civil, mechanical, electrical, etc.); (2) senior engineers moving from other fields to the utility industry (i.e. paper industry to utility engineering or project management positions); and (3) regular working professionals wishing to update their skills or increase their knowledge of utility engineering design practices and procedures. By providing graduate educational opportunities for the above groups, the T&D Program will help serve a strong industry need for training the next generation of engineers in the cost-effective design, construction, operation, and maintenance of modern electrical transmission and distribution systems. In addition to developing the on-line engineering courses described above, the T&D Program also focused significant efforts towards enhancing the training opportunities available to power system operators in the northwest. These efforts have included working with outside vendors to provide NERC-approved training courses in Gonzaga University's (GU) system operator training facility, support for an accurate system model which can be used in regional blackstart exercises, and the identification of a retired system operator who could provide actual regional training courses. The GU system operator training facility is also being used to recruit young workers, veterans, and various under-represented groups to the utility industry. Over the past three years students from Columbia Gorge Community College, Spokane Falls Community College, Walla Walla Community College, Central Washington University, Eastern Washington University, Gonzaga University, and various local high schools have attended short (one-day) system operator training courses free of charge. These collaboration efforts has been extremely well received by both students and industry, and meet T&D Program objectives of strengthening the power industry workforce while bridging the knowledge base across power worker categories, and recruiting new workers to replace a predominantly retirement age workforce. In the past three years the T&D Program has provided over 170 utility engineers with access to advanced engineering courses, been involved in training more than 300 power system operators, and provided well over 500 college and high school students with an experience in running a power system simulator and an exposure to various utility-related professions and craft trades.« less

  7. [Progress in industrial bioprocess engineering in China].

    PubMed

    Zhuang, Yingping; Chen, Hongzhang; Xia, Jianye; Tang, Wenjun; Zhao, Zhimin

    2015-06-01

    The advances of industrial biotechnology highly depend on the development of industrial bioprocess researches. In China, we are facing several challenges because of a huge national industrial fermentation capacity. The industrial bioprocess development experienced several main stages. This work mainly reviews the development of the industrial bioprocess in China during the past 30 or 40 years: including the early stage kinetics model study derived from classical chemical engineering, researching method based on control theory, multiple-parameter analysis techniques of on-line measuring instruments and techniques, and multi-scale analysis theory, and also solid state fermentation techniques and fermenters. In addition, the cutting edge of bioprocess engineering was also addressed.

  8. Publications - PDF 99-24D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska ; Engineering; Engineering Geologic Map; Engineering Geology; Geologic Map; Geology; Land Subsidence; Landslide

  9. Advances in protease engineering for laundry detergents.

    PubMed

    Vojcic, Ljubica; Pitzler, Christian; Körfer, Georgette; Jakob, Felix; Ronny Martinez; Maurer, Karl-Heinz; Schwaneberg, Ulrich

    2015-12-25

    Proteases are essential ingredients in modern laundry detergents. Over the past 30 years, subtilisin proteases employed in the laundry detergent industry have been engineered by directed evolution and rational design to tailor their properties towards industrial demands. This comprehensive review discusses recent success stories in subtilisin protease engineering. Advances in protease engineering for laundry detergents comprise simultaneous improvement of thermal resistance and activity at low temperatures, a rational strategy to modulate pH profiles, and a general hypothesis for how to increase promiscuous activity towards the production of peroxycarboxylic acids as mild bleaching agents. The three protease engineering campaigns presented provide in-depth analysis of protease properties and have identified principles that can be applied to improve or generate enzyme variants for industrial applications beyond laundry detergents. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.; Rao, V. D.

    1978-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability tests/in industrial gas turbine engines. A regenerator core made from aluminum silicate shows minimal evidence of chemical attack damage after 7804 hours of engine test at 800 C and another showed little distress after 4983 hours at 982 C. The results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  11. Impacts of a Flat World on Engineering Education

    ERIC Educational Resources Information Center

    Chatziioanou, Alypios

    2006-01-01

    This paper discusses the changes to engineering education introduced through the accelerated engineering-related industrial growth in Asian and other developing countries. While the demand for engineering services is increasing, these nations educate a large number of engineers themselves and many are providing lower-cost alternatives for…

  12. Engineering Leadership Education--The Search for Definition and a Curricular Approach

    ERIC Educational Resources Information Center

    Schuhmann, Richard J.

    2010-01-01

    While industry and academia agree that leadership skills are critical for engineering graduates, there exists no consensus regarding the definition of "engineering leadership". The engineering leadership development program at Penn State University has a decade-long experience in teaching leadership to engineering undergraduates. In…

  13. Metabolic Engineering X Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, Evan

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  14. 76 FR 19903 - Special Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... DA-40NG the Austro Engine GmbH model E4 aircraft diesel engine (ADE) using turbine (jet) fuel. This... engine utilizing turbine (jet) fuel. The applicable airworthiness regulations do not contain adequate or...: Installation of the Austro Engine GmbH Model E4 ADE diesel engine utilizing turbine (jet) fuel. Discussion...

  15. Industrial Strength Changes in Engineering Education.

    ERIC Educational Resources Information Center

    Chatziioanou, Alypios; Sullivan, Edward

    2002-01-01

    Addresses the question of how closely the objectives of industry and engineering education should be aligned. Examines trends in college-business relationships using the example of California Polytechnic State University. Reflects on benefits and problems of closer connections with industry. (SK)

  16. Biocatalysis in the Pharmaceutical Industry: The Need for Speed

    PubMed Central

    2017-01-01

    The use of biocatalysis in the pharmaceutical industry continues to expand as a result of increased access to enzymes and the ability to engineer those enzymes to meet the demands of industrial processes. However, we are still just scratching the surface of potential biocatalytic applications. The time pressures present in pharmaceutical process development are incompatible with the long lead times required for engineering a suitable biocatalyst. Dramatic increases in the speed of protein engineering are needed to deliver on the ever increasing opportunities for industrial biocatalytic processes. PMID:28523096

  17. Biocatalysis in the Pharmaceutical Industry: The Need for Speed.

    PubMed

    Truppo, Matthew D

    2017-05-11

    The use of biocatalysis in the pharmaceutical industry continues to expand as a result of increased access to enzymes and the ability to engineer those enzymes to meet the demands of industrial processes. However, we are still just scratching the surface of potential biocatalytic applications. The time pressures present in pharmaceutical process development are incompatible with the long lead times required for engineering a suitable biocatalyst. Dramatic increases in the speed of protein engineering are needed to deliver on the ever increasing opportunities for industrial biocatalytic processes.

  18. 48 CFR 9904.403-60 - Illustrations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... personnel, labor hours, payroll, number of hires. 2. Manufacturing policies, (quality control, industrial engineering, production, scheduling, tooling, inspection and testing, etc 2. Manufacturing cost input, manufacturing direct labor. 3. Engineering policies 3. Total engineering costs, engineering direct labor, number...

  19. 48 CFR 9904.403-60 - Illustrations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... personnel, labor hours, payroll, number of hires. 2. Manufacturing policies, (quality control, industrial engineering, production, scheduling, tooling, inspection and testing, etc 2. Manufacturing cost input, manufacturing direct labor. 3. Engineering policies 3. Total engineering costs, engineering direct labor, number...

  20. 48 CFR 9904.403-60 - Illustrations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... personnel, labor hours, payroll, number of hires. 2. Manufacturing policies, (quality control, industrial engineering, production, scheduling, tooling, inspection and testing, etc 2. Manufacturing cost input, manufacturing direct labor. 3. Engineering policies 3. Total engineering costs, engineering direct labor, number...

  1. Evolutionary engineering for industrial microbiology.

    PubMed

    Vanee, Niti; Fisher, Adam B; Fong, Stephen S

    2012-01-01

    Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.

  2. Oregon Pre-Engineering Learning Outcomes Study: Final Report

    ERIC Educational Resources Information Center

    Conley, David T.; Langan, Holly; Veach, Darya; Farkas, Virginia

    2007-01-01

    The Oregon Pre-engineering Learning Outcomes Project was conducted by the Educational Policy Improvement Center (EPIC) with grant funding from the Engineering and Technology Industry Council (ETIC). The study sought to improve student preparation and success in pre-engineering programs through the development of the Oregon Pre-engineering Learning…

  3. Expose Mechanical Engineering Students to Biomechanics Topics

    ERIC Educational Resources Information Center

    Shen, Hui

    2011-01-01

    To adapt the focus of engineering education to emerging new industries and technologies nationwide and in the local area, a biomechanics module has been developed and incorporated into a mechanical engineering technical elective course to expose mechanical engineering students at ONU (Ohio Northern University) to the biomedical engineering topics.…

  4. 76 FR 72087 - Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... engine design certification, and the certification requirements for engine control systems are driven by... following novel or unusual design features: Electronic engine control system. Discussion As discussed above...; Electronic Engine Control (EEC) System AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final...

  5. 32 CFR 644.424 - Development of public port or industrial facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... industrial facilities upon the available land shall file a written application with the District Engineer... development of public port or industrial facilities, the District Engineer shall give notice of such... 32 National Defense 4 2011-07-01 2011-07-01 false Development of public port or industrial...

  6. 32 CFR 644.424 - Development of public port or industrial facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... industrial facilities upon the available land shall file a written application with the District Engineer... development of public port or industrial facilities, the District Engineer shall give notice of such... 32 National Defense 4 2010-07-01 2010-07-01 true Development of public port or industrial...

  7. Manpower Requirements Report for FY 1982

    DTIC Science & Technology

    1981-02-01

    Specifically included are program elements for industrial preparedness, second destination transportation, property disposal, production engineering ...artillery, and combat - engineers . Army policy accepts the fact that women will serve in loca- .. tions throughout the battlefield, will be expected to... industrial engineering work measurement techniques and computerized models such as the Logistics Composite Model (LCOM). MEP policy emanates from the

  8. Research on Building Education & Workforce Capacity in Systems Engineering

    DTIC Science & Technology

    2012-09-30

    Science Coast Guard Academy Chris Lund, Research Engineer USCG R&D center Civil Engineering Coast Guard Academy Scot T. Tripp, Program Manager USCG...74 researchers Coast Guard Academy Scot T. Tripp, Program Manager Internal institutional USCG R&D center... Woods Industry Lockheed Martin Aeronautics Company Defense contracted system development and analysis Stevens Tom Newby Industry Buro

  9. Assessing the Higher National Diploma Chemical Engineering Programme in Ghana: Students' Perspective

    ERIC Educational Resources Information Center

    Boateng, Cyril D.; Bensah, Edem Cudjoe; Ahiekpor, Julius C.

    2012-01-01

    Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering…

  10. Polytechnic Engineering Mathematics: Assessing Its Relevance to the Productivity of Industries in Uganda

    ERIC Educational Resources Information Center

    Jehopio, Peter J.; Wesonga, Ronald

    2017-01-01

    Background: The main objective of the study was to examine the relevance of engineering mathematics to the emerging industries. The level of abstraction, the standard of rigor, and the depth of theoretical treatment are necessary skills expected of a graduate engineering technician to be derived from mathematical knowledge. The question of whether…

  11. Is Chinese Software Engineering Professionalizing or Not?: Specialization of Knowledge, Subjective Identification and Professionalization

    ERIC Educational Resources Information Center

    Yang, Yan

    2012-01-01

    Purpose: This paper aims to discuss the challenge for the classical idea of professionalism in understanding the Chinese software engineering industry after giving a close insight into the development of this industry as well as individual engineers with a psycho-societal perspective. Design/methodology/approach: The study starts with the general…

  12. Support for Different Roles in Software Engineering Master's Thesis Projects

    ERIC Educational Resources Information Center

    Host, M.; Feldt, R.; Luders, F.

    2010-01-01

    Like many engineering programs in Europe, the final part of most Swedish software engineering programs is a longer project in which the students write a Master's thesis. These projects are often conducted in cooperation between a university and industry, and the students often have two supervisors, one at the university and one in industry. In…

  13. Acoustics: A branch of engineering at the Universidad Austral de Chile (UACh)

    NASA Astrophysics Data System (ADS)

    Poblete, Victor; Arenas, Jorge P.; Sommerhoff, Jorge

    2002-11-01

    At the end of the 1960s, the first acousticians graduating at UACh had acquired an education in applied physics and musical arts, since there was no College of Engineering at that time. Initially, they had a (rather modest) four-year undergraduate program, and most of the faculty were not specialized teachers. The graduates from such a program received a sound engineering degree and they were skilled for jobs in the musical industry and sound reinforcement companies. In addition, they worked as sound engineers and producers. Later, because of the scientific, industrial and educational changes in Chile during the 1980s, the higher education system had massive changes that affected all of the undergraduate and graduate programs of the 61 universities in Chile. The UACh College of Engineering was officially founded in 1989. Then, acoustics as an area of expertise was included, widened and developed as an interdisciplinary subject. Currently, the undergraduate program in acoustics at UACh offers a degree in engineering sciences and a 6-year professional studies in Civil Engineering (Acoustics), having two main fields: Sound and Image, and Environment and Industry.

  14. Master of Engineering Energy Systems Engineering Program: Smart Campus Energy Systems Demonstration DE-SC0005523

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodge, Martha; Coulter, John

    2014-09-25

    Program Purpose and Position: The mission of the Master of Engineering in Energy Systems Engineering program is to invigorate the pipeline of new engineering graduates interested in energy oriented careers and thus produce a new generation of technical leaders for the energy and power industries. Over the next decade, nearly 50% of the skilled workers and technical leaders in the gas and electric utility industries will retire -- a much larger void than the current available and qualified professionals could fill [CEWD, 2012 survey]. The Masters of Engineering in Energy System Engineering program provides an opportunity for cross-discipline education formore » graduates interested in a career in the energy industry. It focuses on electric power and the challenges and opportunities to develop a sustainable, reliable and resilient system that meets human needs in an increasingly sustainable manner through the use of environmentally sound energy resources and delivery. Both graduates and employers benefit from a well-trained professional workforce that is ready to hit the road running and be immediately productive in meeting these challenges, through this innovative and unique program.« less

  15. Systems metabolic engineering in an industrial setting.

    PubMed

    Sagt, Cees M J

    2013-03-01

    Systems metabolic engineering is based on systems biology, synthetic biology, and evolutionary engineering and is now also applied in industry. Industrial use of systems metabolic engineering focuses on strain and process optimization. Since ambitious yields, titers, productivities, and low costs are key in an industrial setting, the use of effective and robust methods in systems metabolic engineering is becoming very important. Major improvements in the field of proteomics and metabolomics have been crucial in the development of genome-wide approaches in strain and process development. This is accompanied by a rapid increase in DNA sequencing and synthesis capacity. These developments enable the use of systems metabolic engineering in an industrial setting. Industrial systems metabolic engineering can be defined as the combined use of genome-wide genomics, transcriptomics, proteomics, and metabolomics to modify strains or processes. This approach has become very common since the technology for generating large data sets of all levels of the cellular processes has developed quite fast into robust, reliable, and affordable methods. The main challenge and scope of this mini review is how to translate these large data sets in relevant biological leads which can be tested for strain or process improvements. Experimental setup, heterogeneity of the culture, and sample pretreatment are important issues which are easily underrated. In addition, the process of structuring, filtering, and visualization of data is important, but also, the availability of a genetic toolbox and equipment for medium/high-throughput fermentation is a key success factor. For an efficient bioprocess, all the different components in this process have to work together. Therefore, mutual tuning of these components is an important strategy.

  16. Profiles of Automotive Suppliers Industries--Engineered Mechanical Components and Systems : Volume II, Appendices.

    DOT National Transportation Integrated Search

    1981-09-01

    The profile describes and analyzes that segment of the automotive supplier industry which provides engineered mechanical components/assemblies/systems to the prime auto manufacturers. It presents an overview of the role and structure of this industry...

  17. Full hoop casing for midframe of industrial gas turbine engine

    DOEpatents

    Myers, Gerald A.; Charron, Richard C.

    2015-12-01

    A can annular industrial gas turbine engine, including: a single-piece rotor shaft spanning a compressor section (82), a combustion section (84), a turbine section (86); and a combustion section casing (10) having a section (28) configured as a full hoop. When the combustion section casing is detached from the engine and moved to a maintenance position to allow access to an interior of the engine, a positioning jig (98) is used to support the compressor section casing (83) and turbine section casing (87).

  18. Design of the subject of quality engineering and security of the product of the degree in engineering in industrial design and development of product based in the methodology of the case

    NASA Astrophysics Data System (ADS)

    González, M. R.; Lambán, M. P.

    2012-04-01

    This paper presents the result of designing the subject Quality Engineering and Security of the Product, belonging to the Degree of Engineering in Industrial Design and Product Development, on the basis of the case methodology. Practical sessions of this subject are organized using the whole documents of the Quality System Management of the virtual company BeaLuc S.A.

  19. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains

    DOE PAGES

    Lian, Jiazhang; Bao, Zehua; Hu, Sumeng; ...

    2018-02-20

    The CRISPR/Cas9 system has been widely used for multiplex genome engineering of Saccharomyces cerevisiae. Furthermore, its application in manipulating industrial yeast strains is less successful, probably due to the genome complexity and low copy numbers of gRNA expression plasmids. Here we developed an efficient CRISPR/Cas9 system for industrial yeast strain engineering by using our previously engineered plasmids with increased copy numbers. Four genes in both a diploid strain (Ethanol Red, 8 alleles in total) and a triploid strain (ATCC 4124, 12 alleles in total) were knocked out in a single step with 100% efficiency. This system was used to constructmore » xylose-fermenting, lactate-producing industrial yeast strains, in which ALD6, PHO13, LEU2, and URA3 were disrupted in a single step followed by the introduction of a xylose utilization pathway and a lactate biosynthetic pathway on auxotrophic marker plasmids. The optimized CRISPR/Cas9 system provides a powerful tool for the development of industrial yeast based microbial cell factories.« less

  20. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jiazhang; Bao, Zehua; Hu, Sumeng

    The CRISPR/Cas9 system has been widely used for multiplex genome engineering of Saccharomyces cerevisiae. Furthermore, its application in manipulating industrial yeast strains is less successful, probably due to the genome complexity and low copy numbers of gRNA expression plasmids. Here we developed an efficient CRISPR/Cas9 system for industrial yeast strain engineering by using our previously engineered plasmids with increased copy numbers. Four genes in both a diploid strain (Ethanol Red, 8 alleles in total) and a triploid strain (ATCC 4124, 12 alleles in total) were knocked out in a single step with 100% efficiency. This system was used to constructmore » xylose-fermenting, lactate-producing industrial yeast strains, in which ALD6, PHO13, LEU2, and URA3 were disrupted in a single step followed by the introduction of a xylose utilization pathway and a lactate biosynthetic pathway on auxotrophic marker plasmids. The optimized CRISPR/Cas9 system provides a powerful tool for the development of industrial yeast based microbial cell factories.« less

  1. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains.

    PubMed

    Lian, Jiazhang; Bao, Zehua; Hu, Sumeng; Zhao, Huimin

    2018-06-01

    The CRISPR/Cas9 system has been widely used for multiplex genome engineering of Saccharomyces cerevisiae. However, its application in manipulating industrial yeast strains is less successful, probably due to the genome complexity and low copy numbers of gRNA expression plasmids. Here we developed an efficient CRISPR/Cas9 system for industrial yeast strain engineering by using our previously engineered plasmids with increased copy numbers. Four genes in both a diploid strain (Ethanol Red, 8 alleles in total) and a triploid strain (ATCC 4124, 12 alleles in total) were knocked out in a single step with 100% efficiency. This system was used to construct xylose-fermenting, lactate-producing industrial yeast strains, in which ALD6, PHO13, LEU2, and URA3 were disrupted in a single step followed by the introduction of a xylose utilization pathway and a lactate biosynthetic pathway on auxotrophic marker plasmids. The optimized CRISPR/Cas9 system provides a powerful tool for the development of industrial yeast based microbial cell factories. © 2018 Wiley Periodicals, Inc.

  2. Industrial Engineering Lifts Off at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Barth, Tim

    1998-01-01

    When the National Aeronautics and Space Administration (NASA) began the Space Shuttle Program, it did not have an established industrial engineering (IE) capability for several probable reasons. For example, it was easy for some managers to dismiss IE principles as being inapplicable at NASA's John F. Kennedy Space Center (KSC). When NASA was formed by the National Aeronautics and Space Act of 1958, most industrial engineers worked in more traditional factory environments. The primary emphasis early in the shuttle program, and during previous human space flight programs such as Mercury and Apollo, was on technical accomplishments. Industrial engineering is sometimes difficult to explain in NASA's highly technical culture. IE is different in many ways from other engineering disciplines because it is devoted to process management and improvement, rather than product design. Images of clipboards and stopwatches still come to the minds of many people when the term industrial engineering is mentioned. The discipline of IE has only recently begun to gain acceptance and understanding in NASA. From an IE perspective today, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are among the most spectacular in the world: safe and successful launches of shuttles and expendable vehicles that carry tremendous payloads into space.

  3. Demanded competences in the agricultural engineering sector in Spain

    NASA Astrophysics Data System (ADS)

    Perdigones, A.; García, J. L.; Benavente, R. M.; Tarquis, A. M.

    2009-04-01

    An engineering education should prepare students, i.e., emerging engineers, to use problem-solving processes that combine creativity and imagination with rigour and discipline. The emphasis on training engineers may be best placed on answering the needs of industry; indeed, many proposals are now being made to try to reduce the gap between the educational and industrial communities. Training in the use of certain skills or competences may be one way of better preparing engineering undergraduates for eventual employment in industry. However, industry's needs in this respect must first be known. The aim of this work was to determine which skills are used by practising agricultural engineers with the aim of incorporating training in their use into our department's teaching curriculum. Three surveys were undertaken to determine which skills are demanded by agricultural engineers in their professional activities in Spain. Surveys were carried out by the Department of Rural Engineering, Technical University of Madrid (Spain), analysing two related degrees (agricultural engineer with a duration of the study plan of three and five years, respectively) during the courses 2006/07 and 2007/08. The first survey determined the competences acquired by the students along their academic studies (371 students interviewed). The second survey determined the skills demanded by the enterprises of the agricultural sector (50 enterprises interviewed). The third survey determined the skills demanded by the agricultural engineers working in the sector (70 engineers interviewed), specifically asking about the computer programs used by practising agricultural engineers. Surveys showed important differences between the competences demanded by the enterprises and the competences acquired by the students at the university. Enterprises mainly demanded general competences (team working, time organizing, and skills with computer programs) and were less interested in specific technical skills (engineering, economy, biological competences). These differences suggest it might be a good idea to increase the amount of time devoted to the skills demanded by the enterprises. The software packages most commonly used by practising engineers were Microsoft Office / Excel (used by 79% of respondents) and CAD (56%), as well as budgeting (27%), statistical (21%), engineering (15%) and GIS (13%) programs. As a result of this survey our university department opened an additional computer suite in order to provide students practical experience in the use of the demanded competences. The results of this survey underline the importance of competence training in this and perhaps other fields of engineering.

  4. Computer Engineers.

    ERIC Educational Resources Information Center

    Moncarz, Roger

    2000-01-01

    Looks at computer engineers and describes their job, employment outlook, earnings, and training and qualifications. Provides a list of resources related to computer engineering careers and the computer industry. (JOW)

  5. Ceramic regenerator systems development program. [for automobile gas turbine engines

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.

    1977-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines. The results of 19,600 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, continue to show promise toward achieving the durability objectives of this program. A regenerator core made from aluminum silicate showed minimal evidence of chemical attack damage after 6935 hours of engine test at 800 C and another showed little distress after 3510 hours at 982 C. Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  6. Education, Technology, and Media: A Peak into My Summer Internship at NASA Glenn Research Center in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Moon, James

    2004-01-01

    My name is James Moon and I am a senor at Tennessee State University where my major is Aeronautical and Industrial Technology with a concentration in industrial electronics. I am currently serving my internship in the Engineering and Technical Services Directorate at the Glenn Research Center (GRC). The Engineering and Technical Service Directorate provides the services and infrastructure for the Glenn Research Center to take research concepts to reality. They provide a full range of integrated services including engineering, advanced prototyping and testing, facility management, and information technology for NASA, industry, and academia. Engineering and Technical Services contains the core knowledge in Information Technology (IT). This includes data systems and analysis, inter and intranet based systems design and data security. Including the design and development of embedded real-time sohare applications for flight and supporting ground systems, Engineering and Technical Services provide a wide range of IT services and products specific to the Glenn Research Center research and engineering community.

  7. Toward Mass Customization in the Age of Information: The Case for Open Engineering Systems

    NASA Technical Reports Server (NTRS)

    Simpson, Timothy W.; Lautenschlager, Uwe; Mistree, Farrokh

    1997-01-01

    In the Industrial Era, manufacturers used "dedicated" engineering systems to mass produce their products. In today's increasingly competitive markets, the trend is toward mass customization, something that becomes increasingly feasible when modern information technologies are used to create open engineering systems. Our focus is on how designers can provide enhanced product flexibility and variety (if not fully customized products) through the development of open engineering systems. After presenting several industrial examples, we anchor our new systems philosophy with two real engineering applications. We believe that manufacturers who adopt open systems will achieve competitive advantage in the Information Age.

  8. 46 CFR 11.903 - Licenses requiring examinations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OFFICER ENDORSEMENTS Subjects of Examinations and Practical Demonstrations of Competence § 11.903 Licenses... industry vessels; (22) Chief engineer steam/motor vessels; (23) First assistant engineer steam/motor vessels; (24) Second assistant engineer steam/motor vessels; (25) Third assistant engineer steam/motor...

  9. USAF/SCEEE Summer Faculty Research Program (1982). Research Reports. Volume 2.

    DTIC Science & Technology

    1982-10-01

    Engineering (802) 658-3330 Assigned: RADC/Griffiss Dr. Milton J. Alexander Degree: D.B.A., Management , 1968 Professor Specialty: Management ...Information Auburn University Systems, Operational Management Department Research Auburn, AL 36830 Assigned: LMC (205) 826-4730 Dr. Gary L. Allen Degree: Ph.D...Ph.D., Industrial Professor Engineering, 1951 Oklahoma State University Specialty: Project Management , Industrial Engineering & Management Dept

  10. An Alternative Educational Approach for an Inorganic Chemistry Laboratory Course in Industrial and Chemical Engineering

    ERIC Educational Resources Information Center

    Garces, Andres; Sanchez-Barba, Luis Fernando

    2011-01-01

    We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…

  11. Industry careers for the biomedical engineer.

    PubMed

    Munzner, Robert F

    2004-01-01

    This year's conference theme is "linkages for innovation in biomedicine." Biomedical engineers, especially those transitioning their career from academic study into medical device industry, will play a critical role in converting the fruits of scientific research into the reality of modern medical devices. This special session is organized to help biomedical engineers to achieve their career goals more effectively. Participants will have opportunities to hear from and interact with leading industrial experts on many issues. These may include but not limited to 1) career paths for biomedical engineers (industrial, academic, or federal; technical vs. managerial track; small start-up or large established companies); 2) unique design challenges and regulatory requirements in medical device development; 3) aspects of a successful biomedical engineering job candidate (such as resume, interview, follow-up). Suggestions for other topics are welcome and should be directed to xkong@ieee.org The distinguished panelists include: Xuan Kong, Ph.D., VP of Research, NEUROMetrix Inc, Waltham, MA Robert F. Munzner, Ph.D., Medical Device Consultant, Doctor Device, Herndon, VA Glen McLaughlin, Ph.D., VP of Engineering and CTO, Zonare Medical System Inc., Mountain View, CA Grace Bartoo, Ph.D., RAC, General Manager, Decus Biomedical LLC San Carlos, CA.

  12. Industrial & Manufacturing Engineering | Classification | College of

    Science.gov Websites

    Engineering(414)229-6597msahmed@uwm.eduEng & Math Sciences EMS W383 profile photo Dr. Onur AsanAdjunct Assistant ProfessorIndustrial & Manufacturing Engineeringoasan@mcw.eduEng & Math Sciences profile ChandlerAdjunct InstructorIndustrial & Manufacturing Engineeringchandlec@uwm.eduEng & Math Sciences

  13. A project to transfer technology from NASA centers in support of industrial innovation in the midwest

    NASA Technical Reports Server (NTRS)

    Barr, B. G.

    1986-01-01

    A technology transfer program utilizing graduate students in mechanical engineering at the University of Kansas was initiated in early 1981. The objective of the program was to encourage industrial innovation in the Midwest through improved industry/university cooperation and the utilization of NASA technology. A related and important aspect of the program was the improvement of graduate engineering education through the involvement of students in the identification and accomplishment of technological objectives in cooperation with scientists at NASA centers and engineers in industry. The pilot NASA/University Industrial Innovation Program was an outstanding success based on its ability to: attract top graduate students; secure industry support; and stimulate industry/university cooperation leading to enhanced university capability and utilization of advanced technology by industry.

  14. Current status of nuclear engineering education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palladino, N.J.

    1975-09-01

    The 65 colleges and universities offering undergraduate degrees in nuclear engineering and the 15 schools offering strong nuclear engineering options are, in general, doing a good job to meet the current spectrum of job opportunities. But, nuclear engineering programs are not producing enough graduates to meet growing demands. They currently receive little aid and support from their customers --industry and government--in the form of scholarships, grants, faculty research support, student thesis and project support, or student summer jobs. There is not enough interaction between industry and universities. Most nuclear engineering programs are geared too closely to the technology of themore » present family of reactors and too little to the future breeder reactors and controlled thermonuclear reactors. In addition, nuclear engineering programs attract too few women and members of minority ethnic groups. Further study of the reasons for this fact is needed so that effective corrective action can be taken. Faculty in nuclear engineering programs should assume greater initiative to provide attractive and objective nuclear energy electives for technical and nontechnical students in other disciplines to improve their technical understanding of the safety and environmental issues involved. More aggressive and persistent efforts must be made by nuclear engineering schools to obtain industry support and involvement in their programs. (auth)« less

  15. Industrial Engineering Tool Use in Quality Improvement Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodin, Wayne; Beruvides, Mario

    This paper presents the results of an examination of industrial engineering tool use in Six Sigma projects for a contractor providing specialty manufacturing and service activities for a United States federal government agency.

  16. 46 CFR 58.60-11 - Analyses, plans, diagrams and specifications: Submission.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile...) Each industrial system must be analyzed by a registered professional engineer to certify that the...

  17. 46 CFR 58.60-11 - Analyses, plans, diagrams and specifications: Submission.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile...) Each industrial system must be analyzed by a registered professional engineer to certify that the...

  18. 46 CFR 58.60-11 - Analyses, plans, diagrams and specifications: Submission.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile...) Each industrial system must be analyzed by a registered professional engineer to certify that the...

  19. 46 CFR 58.60-11 - Analyses, plans, diagrams and specifications: Submission.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile...) Each industrial system must be analyzed by a registered professional engineer to certify that the...

  20. 46 CFR 58.60-11 - Analyses, plans, diagrams and specifications: Submission.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile...) Each industrial system must be analyzed by a registered professional engineer to certify that the...

  1. An investigation of crankshaft oscillations for cylinder health diagnostics

    NASA Astrophysics Data System (ADS)

    Geveci, Mert; Osburn, Andrew W.; Franchek, Matthew A.

    2005-09-01

    The vibrational characteristics of an internal combustion engine crankshaft are investigated from a cylinder health diagnostics point of view. Experimental results from a six-cylinder industrial diesel engine are presented to demonstrate the effects of cylinder imbalance on the individual harmonic components of the engine speed signal. A crank-angle domain numerical model of the crankshaft dynamics for a six-cylinder industrial diesel engine is also adopted to establish the effects of continuous low-power production in individual cylinders of a multi-cylinder engine. Outline of a diagnostics algorithm that makes use of the properties of crankshaft vibration behaviour is provided. In particular, crank-angle domain notch filters are employed to extact the harmonic components of engine speed. The outlined method can be implemented for individual cylinder health diagnostics across a family of multi-cylinder engines and can be formulated to handle changes in crankshaft characteristics due to replacement of mechanical components and/or wear.

  2. Engineering graduates' skill sets in the MENA region: a gap analysis of industry expectations and satisfaction

    NASA Astrophysics Data System (ADS)

    Ramadi, Eric; Ramadi, Serge; Nasr, Karim

    2016-01-01

    This study explored gaps between industry expectations and perceptions of engineering graduates' skill sets in the Middle East and North Africa (MENA) region. This study measured the importance that managers of engineers placed on 36 skills relevant to engineers. Also measured was managers' satisfaction with engineering graduates' skill sets. Importance and satisfaction were used to calculate skill gaps for each skill. A principal components analysis was then performed, consolidating the 36 skills into 8 categories. The means of importance, satisfaction, and skill gaps were ranked to determine the areas in which graduates needed improvement. Results showed significant gaps between managers' expectations of and satisfaction with all 36 skills. The areas in which managers felt that graduates needed most improvement were communication, time management, and continuous learning. Managers reported that recent engineering graduates exhibited low overall preparedness for employment. These findings may help to inform curricular reform in engineering education.

  3. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Freedman, Glenn B.

    1988-01-01

    The purpose of this panel is to explore the emerging field of software engineering from a variety of perspectives: university programs; industry training and definition; government development; and technology transfer. In doing this, the panel will address the issues of distinctions among software engineering, computer science, and computer hardware engineering as they relate to the challenges of large, complex systems.

  4. Effects of Professional Development on Infusing Engineering Design into High School Science, Technology, Engineering, and Math (STEM) Curricula

    ERIC Educational Resources Information Center

    Avery, Zanj Kano

    2010-01-01

    The purpose of this study was to examine the effects of professional development (PD) on the infusion of engineering design into high school curricula. Four inservice teachers with backgrounds in physics, chemistry, industrial education, math, and electrical engineering participated in the 2006 National Center of Engineering and Technology…

  5. The predicament of aeronautical engineering education and what we can do about it

    NASA Technical Reports Server (NTRS)

    Bryson, A. E., Jr.

    1975-01-01

    An analysis of the aeronautical engineering situation and the relationship to the U.S. aircraft industry is presented. Some of the problems encountered in undergraduate aeronautical engineering education are explained. A reorganization of the educational structure for aeronautical engineering is proposed. The human factors aspect of aeronautical engineering discipline is described.

  6. 77 FR 16769 - Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for...-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2010... Industrial Equipment, which includes the commercial heating, air-conditioning, and water-heating equipment...

  7. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production.

    PubMed

    Mans, Robert; Daran, Jean-Marc G; Pronk, Jack T

    2018-04-01

    Evolutionary engineering, which uses laboratory evolution to select for industrially relevant traits, is a popular strategy in the development of high-performing yeast strains for industrial production of fuels and chemicals. By integrating whole-genome sequencing, bioinformatics, classical genetics and genome-editing techniques, evolutionary engineering has also become a powerful approach for identification and reverse engineering of molecular mechanisms that underlie industrially relevant traits. New techniques enable acceleration of in vivo mutation rates, both across yeast genomes and at specific loci. Recent studies indicate that phenotypic trade-offs, which are often observed after evolution under constant conditions, can be mitigated by using dynamic cultivation regimes. Advances in research on synthetic regulatory circuits offer exciting possibilities to extend the applicability of evolutionary engineering to products of yeasts whose synthesis requires a net input of cellular energy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Theory and Practice Meets in Industrial Process Design -Educational Perspective-

    NASA Astrophysics Data System (ADS)

    Aramo-Immonen, Heli; Toikka, Tarja

    Software engineer should see himself as a business process designer in enterprise resource planning system (ERP) re-engineering project. Software engineers and managers should have design dialogue. The objective of this paper is to discuss the motives to study the design research in connection of management education in order to envision and understand the soft human issues in the management context. Second goal is to develop means of practicing social skills between designers and managers. This article explores the affective components of design thinking in industrial management domain. In the conceptual part of this paper are discussed concepts of network and project economy, creativity, communication, use of metaphors, and design thinking. Finally is introduced empirical research plan and first empirical results from design method experiments among the multi-disciplined groups of the master-level students of industrial engineering and management and software engineering.

  9. Assessing the Higher National Diploma Chemical Engineering programme in Ghana: students' perspective

    NASA Astrophysics Data System (ADS)

    Boateng, Cyril D.; Cudjoe Bensah, Edem; Ahiekpor, Julius C.

    2012-05-01

    Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering programme is being migrated from a subject-based to a competency-based curriculum. This paper evaluates the programme from the point of view of students. Data were drawn from a survey conducted in the department and were analysed using SPSS. The survey involved administering questionnaires to students at all levels in the department. Analysis of the responses indicated that the majority of the students had decided to pursue chemical engineering due to the career opportunities available. Their knowledge of the programme learning outcomes was, however, poor. The study revealed that none of the students was interested in developing indigenous industries.

  10. Materials engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramley, A.N.

    1985-01-01

    This book presents the Proceedings of the Second Materials Engineering Conference. This valuable collection of papers deal with the awareness, creative use, economics, reliability, selection, design, testing and warranty of materials. The papers address topics of both immediate and lasting industrial importance at a readily assimilated level and contain information which will lead speedily to improvements in industrial practice. Topics considered include recent developments in the science and technology of high modulus polymers; computer aided design of advanced composites; a systematic approach to materials testing in metal forming; new cold working tool steels; friction surfacing and its applications; fatigue lifemore » assessment and materials engineering; alternative materials for internal combustion engines; adhesives and the engineer; thermoplastic bearings; engineering applications of ZA alloys; and utility and complexity in the selection of polymeric materials.« less

  11. Engine System Loads Development for the Fastrac 60K Flight Engine

    NASA Technical Reports Server (NTRS)

    Frady, Greg; Christensen, Eric R.; Mims, Katherine; Harris, Don; Parks, Russell; Brunty, Joseph

    2000-01-01

    Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However, with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the new Fastrac engine program, the focus has been to reduce the cost to weight ratio; current structural dynamics analysis practices were tailored in order to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of Fastrac load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are discussed.

  12. 40 CFR 610.61 - Engine dynamometer tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dynamometer durability test procedures used by research organizations in government, the oil industry, engine... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Engine dynamometer tests. 610.61... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61 Engine...

  13. 40 CFR 610.61 - Engine dynamometer tests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dynamometer durability test procedures used by research organizations in government, the oil industry, engine... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Engine dynamometer tests. 610.61... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61 Engine...

  14. 40 CFR 610.61 - Engine dynamometer tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dynamometer durability test procedures used by research organizations in government, the oil industry, engine... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Engine dynamometer tests. 610.61... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61 Engine...

  15. 40 CFR 610.61 - Engine dynamometer tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dynamometer durability test procedures used by research organizations in government, the oil industry, engine... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Engine dynamometer tests. 610.61... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61 Engine...

  16. 40 CFR 610.61 - Engine dynamometer tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dynamometer durability test procedures used by research organizations in government, the oil industry, engine... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Engine dynamometer tests. 610.61... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61 Engine...

  17. ENGINEERING MANPOWER BULLETIN NUMBER 9.

    ERIC Educational Resources Information Center

    ALDEN, JOHN D.

    DESIGNED TO INFORM LEADERS IN INDUSTRY, GOVERNMENT, AND EDUCATION, WHOSE RESPONSIBILITY INCLUDES AWARENESS OF ENGINEERING MANPOWER DEVELOPMENTS, THIS BULLETIN REPORTS A STUDY CONDUCTED BY THE ENGINEERING MANPOWER COMMISSION OF ENGINEERS IN THE ARMED SERVICES. THE WORK OF THE COMMISSION IS TO ASSURE THE MOST EFFECTIVE UTILIZATION OF ENGINEERING…

  18. 26 CFR 1.414(r)-2 - Line of business.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...

  19. 26 CFR 1.414(r)-2 - Line of business.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...

  20. 26 CFR 1.414(r)-2 - Line of business.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...

  1. 26 CFR 1.414(r)-2 - Line of business.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...

  2. 26 CFR 1.414(r)-2 - Line of business.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...

  3. Two-Year ET Programs: Essential Topics and Levels of Proficiency.

    ERIC Educational Resources Information Center

    Gourley, Frank A., Jr.

    1990-01-01

    Reports the results of a survey of graduates, employers, and instructors of engineering technology programs for the essential topics in mechanical engineering technology, mechanical drafting/design technology, manufacturing engineering technology, and industrial engineering technology. Identifies the proficiency level suggested for classwork and…

  4. Progress in Metabolic Engineering of Saccharomyces cerevisiae

    PubMed Central

    Nevoigt, Elke

    2008-01-01

    Summary: The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial (“white”) biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate. PMID:18772282

  5. A Multidisciplinary PBL Approach for Teaching Industrial Informatics and Robotics in Engineering

    ERIC Educational Resources Information Center

    Calvo, Isidro; Cabanes, Itziar; Quesada, Jeronimo; Barambones, Oscar

    2018-01-01

    This paper describes the design of an industrial informatics course, following the project-based learning methodology, and reports the experience of four academic years (from 2012-13 to 2015-16). Industrial Informatics is a compulsory course taught in the third year of the B.Sc. degree in industrial electronics and automation engineering at the…

  6. [Some engineering problems on developing production industry of modern traditional Chinese medicine].

    PubMed

    Qu, Hai-bin; Cheng, Yi-yu; Wang, Yue-sheng

    2003-10-01

    Based on the review of some engineering problems on developing modern production industry of Traditional Chinese Medicine (TCM), the differences of TCM production industry between China and abroad were pointed out. Accelerating the application and extension of high-tech and computer integrated manufacturing system (CIMS) were suggested to promote the technology advancement of TCM industry.

  7. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production.

    PubMed

    Sun, Jie; Alper, Hal S

    2015-03-01

    A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5-50 g/L), and lab-scale (0-5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.

  8. Ceramic Technology for Advanced Heat Engines Project. Semiannual progress report, October 1984-March 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-09-01

    A five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applicationsmore » in these engines.« less

  9. Ceramic technology for advanced heat engines project: Semiannual progress report for April through September 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-03-01

    An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barriermore » and wear applications in these engines.« less

  10. Know-how and know-why in biochemical engineering.

    PubMed

    von Stockar, U; Valentinotti, S; Marison, I; Cannizzaro, C; Herwig, C

    2003-08-01

    This contribution analyzes the position of biochemical engineering in general and bioprocess engineering particularly in the force fields between fundamental science and applications, and between academia and industry. By using culture technology as an example, it can be shown that bioprocess engineering has moved slowly but steadily from an empirical art concerned with mainly know-how to a science elucidating the know-why of culture behavior. Highly powerful monitoring tools enable biochemical engineers to understand and explain quantitatively the activity of cellular culture on a metabolic basis. Among these monitoring tools are not just semi-online analyses of culture broth by HPLC, GC and FIA, but, increasingly, also noninvasive methods such as midrange IR, Raman and capacitance spectroscopy, as well as online calorimetry. The detailed and quantitative insight into the metabolome and the fluxome that bioprocess engineers are establishing offers an unprecedented opportunity for building bridges between molecular biology and engineering biosciences. Thus, one of the major tasks of biochemical engineering sciences is not developing new know-how for industrial applications, but elucidating the know-why in biochemical engineering by conducting research on the underlying scientific fundamentals.

  11. General Aviation Light Aircraft Propulsion: From the 1940's to the Next Century

    NASA Technical Reports Server (NTRS)

    Burkardt, Leo A.

    1998-01-01

    Current general aviation light aircraft are powered by engines that were originally designed in the 1940's. This paper gives a brief history of light aircraft engine development, explaining why the air-cooled, horizontally opposed piston engine became the dominant engine for this class of aircraft. Current engines are fairly efficient, and their designs have been updated through the years, but their basic design and operational characteristics are archaic in comparison to modem engine designs, such as those used in the automotive industry. There have been some innovative engine developments, but in general they have not been commercially successful. This paper gives some insight into the reasons for this lack of success. There is now renewed interest in developing modem propulsion systems for light aircraft, in the fore-front of which is NASA's General Aviation Propulsion (GAP) program. This paper gives an overview of the engines being developed in the GAP program, what they will mean to the general aviation community, and why NASA and its industry partners believe that these new engine developments will bring about a new era in general aviation light aircraft.

  12. Engineering Technology Education: Bibliography, 1988.

    ERIC Educational Resources Information Center

    Dyrud, Marilyn A.

    1989-01-01

    Lists articles and books related to engineering technology education published in 1988. Items are grouped administration, aeronautical, architectural, CAD/CAM, civil, computers, curriculum, electrical/electronics, industrial, industry/government/employers, instructional technology, laboratories, lasers, liberal studies, manufacturing, mechanical,…

  13. 46 CFR 11.530 - Endorsements for engineers of uninspected fishing industry vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... applies to endorsements for chief and assistant engineers of all vessels, however propelled, navigating the high seas, which are documented to engage in the fishing industry, with the exception of: (1...

  14. Progress in industrial holography in France

    NASA Astrophysics Data System (ADS)

    Smigielski, Paul

    1992-01-01

    Industrial applications of holography in France are briefly reviewed. Particular attention is given to nondestructive testing of helicopter blades at Aerospatiale Central Laboratory, the use of holography at Renault for car-engine vibration study, vibration characterization of turbo-jet engine components at SNECMA, and vibration analysis of plates in an industrial hemodynamic tunnel.

  15. Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion

    USDA-ARS?s Scientific Manuscript database

    Saccharomyces physiology and fermentation related properties vary broadly among industrial strains. In this study, six industrial strains of varied genetic background were engineered to ferment xylose. Aerobic growth rates on xylose were 0.040 h**-1 to 0.167 h**-1. Fermentation of xylose, glucose/xy...

  16. Training in software used by practising engineers should be included in university curricula

    NASA Astrophysics Data System (ADS)

    Silveira, A.; Perdigones, A.; García, J. L.

    2009-04-01

    Deally, an engineering education should prepare students, i.e., emerging engineers, to use problem-solving processes that synergistically combine creativity and imagination with rigour and discipline. Recently, pressures on curricula have resulted in the development of software-specific courses, often to the detriment of the understanding of theory [1]. However, it is also true that there is a demand for information technology courses by students other than computer science majors [2]. The emphasis on training engineers may be best placed on answering the needs of industry; indeed, many proposals are now being made to try to reduce the gap between the educational and industrial communities [3]. Training in the use of certain computer programs may be one way of better preparing engineering undergraduates for eventual employment in industry. However, industry's needs in this respect must first be known. The aim of this work was to determine which computer programs are used by practising agricultural engineers with the aim of incorporating training in their use into our department's teaching curriculum. The results showed that 72% of their working hours involved the use computer programs. The software packages most commonly used were Microsoft Office (used by 79% of respondents) and CAD (56%), as well as budgeting (27%), statistical (21%), engineering (15%) and GIS (13%) programs. As a result of this survey our university department opened an additional computer suite in order to provide students practical experience in the use of Microsoft Excel, budgeting and engineering software. The results of this survey underline the importance of computer software training in this and perhaps other fields of engineering. [1] D. J. Moore, and D. R. Voltmer, "Curriculum for an engineering renaissance," IEEE Trans. Educ., vol. 46, pp. 452-455, Nov. 2003. [2] N. Kock, R. Aiken, and C. Sandas, "Using complex IT in specific domains: developing and assessing a course for nonmajors," IEEE Trans. Educ., vol. 45, pp. 50- 56, Feb. 2002. [3] I. Vélez, and J. F. Sevillano, "A course to train digital hardware designers for industry," IEEE Trans. Educ., vol. 50, pp. 236-243, Aug. 2007. Acknowledgement: This work was supported in part by the Universidad Politécnica de Madrid, Spain.

  17. Student Self-Selection for Specializations in Engineering.

    ERIC Educational Resources Information Center

    Izraeli, Dafna; And Others

    1979-01-01

    Tests the hypothesis that students self-selecting themselves for different occupational fields differ in relevant values and interests. Industrial engineers have different work values and images of their subfield than other engineering specialists. In terms of type of student selecting engineering, the profession cannot be treated as an…

  18. Teambuilding, Innovation and the Engineering Communication Interface

    ERIC Educational Resources Information Center

    Prescott, David; El-Sakran, Tharwat; Albasha, Lutfi; Aloul, Fadi; Al-Assaf, Yousef

    2012-01-01

    Recent engineering industry-based research has identified a number of skill deficiencies in graduating engineers. Emphasis on communication and teamwork informed by attributes of self management, problem solving and mutual accountability have been recognized as important needs by The Engineering Accreditation Commission of ABET of the United…

  19. An Experiment in Integrating an Engineering Communication Toolkit into the Industrial Engineering Curriculum

    DOT National Transportation Integrated Search

    2011-01-31

    A recent survey on the working habits of professional engineers found that nearly 2/3 of their day is spent communicating with others, while only 1/3 is spent on tasks commonly associated with engineering (Sageev & Romanowski, 2001). Whether it is fa...

  20. Electronic Communication in Engineering Work.

    ERIC Educational Resources Information Center

    Bishop, Ann P.

    1992-01-01

    Discusses the role of electronic networks in engineering work; reviews selected literature on engineering work, knowledge, and communication; describes current uses of electronic networks; and presents results from a study of the use of networks by engineers in the aerospace industry, including their perceptions of networks. (67 references) (LRW)

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Blarigan, P.

    A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueledmore » operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.« less

  2. ["Two professions for a single task". The introduction of chemical engineering in Spain during the first Francoism].

    PubMed

    Toca, Angel

    2006-01-01

    Through the first half of the 20th century, chemical engineering was established as an academic option in the training of specialists for the North-American and European chemical industry, whereas it was not a special field of study in Spain until the 1990s. The reason for this delay was a battle of interests between chemist and industrial engineers to control this career during the first Francoism. This article will try to show the development and professionalization of specialists for the Spanish chemical industry.

  3. A Study to Determine the Basic Science and Mathematics Topics Most Needed by Engineering Technology Graduates of Wake Technical Institute in Performing Job Duties.

    ERIC Educational Resources Information Center

    Edwards, Timothy I.; Roberson, Clarence E., Jr.

    A survey of 470 graduates of the six engineering technology programs at Wake Technical Institute--Architectural, Chemical, Civil Engineering, Computer, Electronic Engineering, and Industrial Engineering Technologies--and 227 of their employers was conducted in October, 1979, to determine the science and mathematics topics most needed by…

  4. Incorporating unnatural amino acids to engineer biocatalysts for industrial bioprocess applications.

    PubMed

    Ravikumar, Yuvaraj; Nadarajan, Saravanan Prabhu; Hyeon Yoo, Tae; Lee, Chong-Soon; Yun, Hyungdon

    2015-12-01

    The bioprocess engineering with biocatalysts broadly spans its development and actual application of enzymes in an industrial context. Recently, both the use of bioprocess engineering and the development and employment of enzyme engineering techniques have been increasing rapidly. Importantly, engineering techniques that incorporate unnatural amino acids (UAAs) in vivo has begun to produce enzymes with greater stability and altered catalytic properties. Despite the growth of this technique, its potential value in bioprocess applications remains to be fully exploited. In this review, we explore the methodologies involved in UAA incorporation as well as ways to synthesize these UAAs. In addition, we summarize recent efforts to increase the yield of UAA engineered proteins in Escherichia coli and also the application of this tool in enzyme engineering. Furthermore, this protein engineering tool based on the incorporation of UAA can be used to develop immobilized enzymes that are ideal for bioprocess applications. Considering the potential of this tool and by exploiting these engineered enzymes, we expect the field of bioprocess engineering to open up new opportunities for biocatalysis in the near future. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Automotive Stirling Engine Development Project

    NASA Technical Reports Server (NTRS)

    Ernst, William D.; Shaltens, Richard K.

    1997-01-01

    The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.

  6. Improving safety of aircraft engines: a consortium approach

    NASA Astrophysics Data System (ADS)

    Brasche, Lisa J. H.

    1996-11-01

    With over seven million departures per year, air transportation has become not a luxury, but a standard mode of transportation for the United States. A critical aspect of modern air transport is the jet engine, a complex engineered component that has enabled the rapid travel to which we have all become accustomed. One of the enabling technologies for safe air travel is nondestructive evaluation, or NDE, which includes various inspection techniques used to assess the health or integrity of a structure, component, or material. The Engine Titanium Consortium (ETC) was established in 1993 to respond to recommendations made by the Federal Aviation Administration (FAA) Titanium Rotating Components Review Team (TRCRT) for improvements in inspection of engine titanium. Several recent accomplishments of the ETC are detailed in this paper. The objective of the Engine Titanium Consortium is to provide the FAAand the manufacturers with reliable and costeffective new methods and/or improvements in mature methods for detecting cracks, inclusions, and imperfections in titanium. The consortium consists of a team of researchers from academia and industry-namely, Iowa State University, Allied Signal Propulsion Engines, General Electric Aircraft Engines, and Pratt & Whitney Engines-who work together to develop program priorities, organize a program plan, conduct the research, and implement the solutions. The true advantage of the consortium approach is that it brings together the research talents of academia and the engineering talents of industry to tackle a technology-base problem. In bringing industrial competitors together, the consortium ensures that the research results, which have safety implications and result from FAA funds, are shared and become part of the public domain.

  7. Engineering Technology Education Bibliography, 1990.

    ERIC Educational Resources Information Center

    Dyrud, Marilyn A.

    1991-01-01

    Lists over 340 materials published in 1990 related to engineering technology education and grouped under the following headings: administration; architectural; computer-assisted design/management (CAD/CAM); civil; computers; curriculum; electrical/electronics; industrial; industry/government/employers; instructional technology; laboratories;…

  8. Renovation of a mechanical engineering senior design class to an industry-tied and team-oriented course

    NASA Astrophysics Data System (ADS)

    Liu, Yucheng

    2017-11-01

    In this work, an industry-based and team-oriented education model was established based on a traditional mechanical engineering (ME) senior design class in order to better prepare future engineers and leaders so as to meet the increasing demand for high-quality engineering graduates. In the renovated curriculum, industry-sponsored projects became the most important course component and critical assessment tool, from which problem-solving skills as well as employability skills of the ME students can be fully developed. Hands-on experiences in finite element analysis (FEA) modelling and simulation were also added into the renovated curriculum to promote the application of FEA on engineering design and assessment. Evaluation of the renovated course was conducted using two instruments and the results have shown that the course made the ME senior students more prepared for their future career and a win-win model was created between the industry partner and the ME programme through it. Impact of the renovated syllabus on Accreditation Board for Engineering Technology goals was discussed. Based on the current progress, a more substantial change is being planned to further improve the effectiveness and practicability of this design course. The renovated course was started to offer to the ME senior students at Mississippi State University.

  9. Training for Engineering Craftsmen: The Module System.

    ERIC Educational Resources Information Center

    Engineering Industry Training Board, London (England).

    New arrangements for craft training in the British engineering industry call for a three stage structure: (1) a year of basic training in a wide variety of skills (welding, vehicle painting, electrical engineering, mechanical engineering, and others); (2) selected training in specialized skills under controlled conditions; (3) experience in using…

  10. Guidelines for Engineering Teachers Concerning Educating the Engineer for Innovative and Entrepreneurial Activity.

    ERIC Educational Resources Information Center

    Eekels, J.

    1987-01-01

    Emphasizes that the concept of design is fundamental in innovation. Outlines the work of the European Society for Engineering Education-Working group on Innovation. Describes the innovation-management stream in the curriculum of the faculty of Industrial Design Engineering at Delft University of Technology, Netherlands. (CW)

  11. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    PubMed

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Tissue engineering: confronting the transplantation crisis.

    PubMed

    Nerem, R M

    2000-01-01

    Tissue engineering is the development of biological substitutes and/or the fostering of tissue regeneration/remodelling. It is emerging as a technology which has the potential to confront the crisis in transplantation caused by the shortage of donor tissues and organs. With the development of this technology, ther is emerging a new industry which is at the interface of biotechnology and the traditional medical implant field. For this technology and the associated industry to realize their full potential, there are core, enabling technologies that need to be developed. This is the focus of the Georgia Tech/Emory Center for the Engineering of Living Tissues, newly established in the United States, with an Engineering Research Center Award from the National Science Foundation. With the development of these core technologies, tissue engineering will evolve from an art form to a technology based on science and engineering.

  13. Visiting Professorships

    NASA Astrophysics Data System (ADS)

    Applications are now being accepted for the National Science Foundation (NSF) Visiting Professorships for Women Program. Under this program, women scientists and engineers from industry, government, and academia can be visiting professors at academic institutions in the United States.The program's objectives are to provide opportunities for women to advance their careers in the disciplines of science and engineering that are supported by NSF to provide greater visibility and wider opportunities for women scientists and engineers employed in industry, government, and academic institutions, and to provide encouragement for other women to pursue careers in science and engineering through the awardees' research, lecturing, counseling, and mentoring activities.

  14. Recent advances and versatility of MAGE towards industrial applications.

    PubMed

    Singh, Vijai; Braddick, Darren

    2015-12-01

    The genome engineering toolkit has expanded significantly in recent years, allowing us to study the functions of genes in cellular networks and assist in over-production of proteins, drugs, chemicals and biofuels. Multiplex automated genome engineering (MAGE) has been recently developed and gained more scientific interest towards strain engineering. MAGE is a simple, rapid and efficient tool for manipulating genes simultaneously in multiple loci, assigning genetic codes and integrating non-natural amino acids. MAGE can be further expanded towards the engineering of fast, robust and over-producing strains for chemicals, drugs and biofuels at industrial scales.

  15. Utilization of and Demand for Engineers and Scientists in Industrial Research.

    ERIC Educational Resources Information Center

    Alden, John D.

    A survey of the employment and demand for scientists and engineers in industrial research laboratories was made among all companies belonging to the Industrial Research Institute and a number of other organizations early in 1972. A questionnaire was used to analyze such aspects as reliability of future estimates, employment trends, personnel…

  16. An industrial engineering approach to laboratory automation for high throughput screening

    PubMed Central

    Menke, Karl C.

    2000-01-01

    Across the pharmaceutical industry, there are a variety of approaches to laboratory automation for high throughput screening. At Sphinx Pharmaceuticals, the principles of industrial engineering have been applied to systematically identify and develop those automated solutions that provide the greatest value to the scientists engaged in lead generation. PMID:18924701

  17. Murjottelu-Interdisciplinary Training Campaign for Industrial Design and Engineering Students

    ERIC Educational Resources Information Center

    Itkonen, Maija; Ekman, Kalevi Edvard; Kojo, Inka

    2009-01-01

    Today's growing business competition demands that design and technology must be seamlessly integrated. Designers should be employed increasingly as in-house in the industry, in addition to entrepreneurship and consultancy employment. How to realise this aim? Industry training is a tradition in engineering studies, but that is rarely the case in…

  18. Technology Education; Engineering Technology and Industrial Technology in California Community Colleges: A Curriculum Guide.

    ERIC Educational Resources Information Center

    Schon, James F.

    In order to identify the distinguishing characteristics of technical education programs in engineering and industrial technology currently offered by post-secondary institutions in California, a body of data was collected by visiting 25 community colleges, 5 state universities, and 8 industrial firms; by a questionnaire sampling of 72 California…

  19. The Importance of Industrial Ecology in Engineering Education for Sustainable Development

    ERIC Educational Resources Information Center

    Biswas, Wahidul K.

    2012-01-01

    Purpose: The purpose of this paper is to show how industrial ecology can facilitate the achievement of sustainable development through its incorporation into an engineering curriculum. Design/methodology/approach: A model has been developed for assessing sustainability learning outcomes due to the incorporation of the concept of industrial ecology…

  20. Developing an industry-oriented safety curriculum using the Delphi technique.

    PubMed

    Chen, Der-Fa; Wu, Tsung-Chih; Chen, Chi-Hsiang; Chang, Shu-Hsuan; Yao, Kai-Chao; Liao, Chin-Wen

    2016-09-01

    In this study, we examined the development of industry-oriented safety degree curricula at a college level. Based on a review of literature on the practices and study of the development of safety curricula, we classified occupational safety and health curricula into the following three domains: safety engineering, health engineering, and safety and health management. We invited 44 safety professionals to complete a four-round survey that was designed using a modified Delphi technique. We used Chi-square statistics to test the panel experts' consensus on the significance of the items in the three domains and employed descriptive statistics to rank the participants' rating of each item. The results showed that the top three items for each of the three domains were Risk Assessment, Dangerous Machinery and Equipment, and Fire and Explosion Prevention for safety engineering; Ergonomics, Industrial Toxicology, and Health Risk Assessment for health engineering; and Industrial Safety and Health Regulations, Accident Investigation and Analysis, and Emergency Response for safety and health management. Only graduates from safety programmes who possess practical industry-oriented abilities can satisfy industry demands and provide value to the existence of college safety programmes.

  1. Predictors of effective leadership in industry - should engineering education focus on traditional intelligence, personality, or emotional intelligence?

    NASA Astrophysics Data System (ADS)

    Lappalainen, Pia

    2015-03-01

    Despite the changing global and industrial conditions requiring new approaches to leadership, management training as part of higher engineering education still remains understudied. The subsequent gap in engineering education calls for research on today's leader requirements and pedagogy supporting the inclusion of management competence in higher engineering education. Previous organisation and management studies have, on a general level, established the importance of managerial qualities for industrial performance, but the nature and make-up of these qualifications has not been adequately analysed. To fill the related research gap, the present work embarked on a quantitative empirical effort to identify predictors of successful leadership in engineering. In particular, this study investigated relationships between perceived leader performance and three dimensions of managerial capability: (1) mathematical-logical intelligence, (2) personality, and (3) socio-emotional intelligence. This work complemented previous research by resorting to both self-reports and other-reports: the results acquired from the managerial sample were compared to subordinate perceptions as measured through an emotive intelligence other-report and a general managerial competence multi-source appraisal. The sample comprised 80 superiors and 354 subordinates operating in seven organisations in engineering industries. The results from the quantitative measurements signalled the strongest correlation for socio-emotional intelligence and certain personality dimensions with successful leadership. Mathematical-logical intelligence demonstrated no correlation with subordinate perceptions of good leadership. These findings lay the foundation for the incorporation of socio-emotive skills into higher engineering education.

  2. 26 CFR 1.501(e)-1 - Cooperative hospital service organizations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... illustrated by the following example. Example. An organization performs industrial engineering services on a...-hospitals), warehousing, billing and collection, food, clinical (including radiology), industrial engineering (including the installation, maintenance and repair of biomedical and similar equipment...

  3. 26 CFR 1.501(e)-1 - Cooperative hospital service organizations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... illustrated by the following example. Example. An organization performs industrial engineering services on a...-hospitals), warehousing, billing and collection, food, clinical (including radiology), industrial engineering (including the installation, maintenance and repair of biomedical and similar equipment...

  4. 26 CFR 1.501(e)-1 - Cooperative hospital service organizations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... illustrated by the following example. Example. An organization performs industrial engineering services on a...-hospitals), warehousing, billing and collection, food, clinical (including radiology), industrial engineering (including the installation, maintenance and repair of biomedical and similar equipment...

  5. 26 CFR 1.501(e)-1 - Cooperative hospital service organizations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... illustrated by the following example. Example. An organization performs industrial engineering services on a...-hospitals), warehousing, billing and collection, food, clinical (including radiology), industrial engineering (including the installation, maintenance and repair of biomedical and similar equipment...

  6. 26 CFR 1.501(e)-1 - Cooperative hospital service organizations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... illustrated by the following example. Example. An organization performs industrial engineering services on a...-hospitals), warehousing, billing and collection, food, clinical (including radiology), industrial engineering (including the installation, maintenance and repair of biomedical and similar equipment...

  7. 75 FR 21043 - Notice of Determinations Terminating Investigations of Petitions Regarding Eligibility To Apply...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ...: Advanced Industrial Machinery, Inc., Hickory, North Carolina, covered by TA-W-70,874: Advanced Industrial...,110: JR Engineering, Barberton, Ohio, covered by TA-W-70,975A: B&C Corporation, JR Engineering...

  8. Careers in the Aerospace Industry.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Office of General Aviation.

    The document briefly presents career information in the field of aerospace industry. Employment exists in three areas: (1) professional and technical occupations in research and development (engineers, scientists, and technicians); (2) administrative, clerical, and related occupations (engineers, scientists, technicians, clerks, secretaries,…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jun-hyung

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a hugemore » opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)« less

  10. Thermal barrier coating on high temperature industrial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Carlson, N.; Stoner, B. L.

    1977-01-01

    The thermal barrier coating used was a yttria stabilized zirconia material with a NiCrAlY undercoat, and the base engine used to establish improvements was the P&WA FT50A-4 industrial gas turbine engine. The design benefits of thermal barrier coatings include simplified cooling schemes and the use of conventional alloys in the engine hot section. Cooling flow reductions and improved heating rates achieved with thermal barrier coating result in improved performance. Economic benefits include reduced power production costs and reduced fuel consumption. Over the 30,000 hour life of the thermal barrier coated parts, fuel savings equivalent to $5 million are projected and specific power (megawatts/mass of engine airflow) improvements on the order of 13% are estimated.

  11. Studies on Freight Train Engineer Performance

    DOT National Transportation Integrated Search

    1976-12-01

    As a part of the International Government-Industry Program on Track Train Dynamics, the performance of engineers in freight train handling was studied by recording and analyzing train operations and engineer responses under field conditions. Data col...

  12. Metabolic engineering of Yarrowia lipolytica for industrial applications.

    PubMed

    Zhu, Quinn; Jackson, Ethel N

    2015-12-01

    Yarrowia lipolytica is a safe and robust yeast that has a history of industrial applications. Its physiological, metabolic and genomic characteristics have made it a superior host for metabolic engineering. The results of optimizing internal pathways and introducing new pathways have demonstrated that Y. lipolytica can be a platform cell factory for cost-effective production of chemicals and fuels derived from fatty acids, lipids and acetyl-CoA. Two products have been commercialized from metabolically engineered Y. lipolytica strains producing high amounts of omega-3 eicosapentaenoic acid, and more products are on the way to be produced at industrial scale. Here we review recent progress in metabolic engineering of Y. lipolytica for production of biodiesel fuel, functional fatty acids and carotenoids. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Conceptual or procedural mathematics for engineering students at University of Samudra

    NASA Astrophysics Data System (ADS)

    Saiman; Wahyuningsih, Puji; Hamdani

    2017-06-01

    This study we investigate whether the emphasis in mathematics courses for engineering students would benefit from being more conceptually oriented than more procedurally oriented way of teaching. In this paper, we report in some detail from twenty-five engineering students comes from three departements ; mechanical engineering, civil engineering and industrial engineering. The aim was to explore different kinds of arguments regarding the role of mathematics in engineering courses, as well as some common across contexts. The result of interview showed that most of engineering students feel that conceptual mathematics is more important than procedural mathematics for their job the future.

  14. New Technology Sparks Smoother Engines and Cleaner Air

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Automotive Resources, Inc. (ARI) has developed a new device for igniting fuel in engines-the SmartPlug.TM SmartPlug is a self-contained ignition system that may be retrofitted to existing spark-ignition and compression-ignition engines. The SmartPlug needs as little as six watts of power for warm-up, and requires no electricity at all when the engine is running. Unlike traditional spark plugs, once the SmartPlug ignites the engine, and the engine heats up, the power supply for the plug is no longer necessary. In the utility industry, SmartPlugs can be used in tractors, portable generators, compressors, and pumps. In addition to general-purpose applications, such as lawn mowers and chainsaws, SmartPlugs can also be used in the recreational, marine, aviation, and automotive industries. Unlike traditional ignition systems, the SmartPlug system requires no distributor, coil points, or moving parts. SmartPlugs are non-fouling, with a faster and cleaner burn than traditional spark plugs. They prevent detonation and are not sensitive to moisture, allowing them to be used on a variety of engines. Other advantages include no electrical noise, no high voltage, exceptionally high altitude capabilities, and better cold-start statistics than those of standard spark ignition systems. Future applications for the SmartPlug are being evaluated by manufacturers in the snowmobile industry.

  15. Chemical Engineering in the "BIO" World.

    PubMed

    Chiarappa, Gianluca; Grassi, Mario; Abrami, Michela; Abbiati, Roberto Andrea; Barba, Anna Angela; Boisen, Anja; Brucato, Valerio; Ghersi, Giulio; Caccavo, Diego; Cascone, Sara; Caserta, Sergio; Elvassore, Nicola; Giomo, Monica; Guido, Stefano; Lamberti, Gaetano; Larobina, Domenico; Manca, Davide; Marizza, Paolo; Tomaiuolo, Giovanna; Grassi, Gabriele

    2017-01-01

    Modern Chemical Engineering was born around the end of the 19th century in Great Britain, Germany, and the USA, the most industrialized countries at that time. Milton C. Whitaker, in 1914, affirmed that the difference between Chemistry and Chemical Engineering lies in the capability of chemical engineers to transfer laboratory findings to the industrial level. Since then, Chemical Engineering underwent huge transformations determining the detachment from the original Chemistry nest. The beginning of the sixties of the 20th century saw the development of a new branch of Chemical Engineering baptized Biomedical Engineering by Peppas and Langer and that now we can name Biological Engineering. Interestingly, although Biological Engineering focused on completely different topics from Chemical Engineering ones, it resorted to the same theoretical tools such as, for instance, mass, energy and momentum balances. Thus, the birth of Biological Engineering may be considered as a Darwinian evolution of Chemical Engineering similar to that experienced by mammals which, returning to water, used legs and arms to swim. From 1960 on, Biological Engineering underwent a considerable evolution as witnessed by the great variety of topics covered such as hemodialysis, release of synthetic drugs, artificial organs and, more recently, delivery of small interfering RNAs (siRNA). This review, based on the activities developed in the frame of our PRIN 2010-11 (20109PLMH2) project, tries to recount origins and evolution of Chemical Engineering illustrating several examples of recent and successful applications in the biological field. This, in turn, may stimulate the discussion about the Chemical Engineering students curriculum studiorum update. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Research and Development in Industry: 1979. Funds, 1979. Scientists and Engineers, January 1980. Surveys of Science Resources Series. Final Report.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    This report analyzes data on research and development (R&D) performed by industry during 1979, examines historical trends for key R&D funding variables, and presents information on industry-employed R&D scientists and engineers. Areas addressed in the first section on R&D funds include: major R&D industries (aircraft/missiles,…

  17. Citation Analysis: A Case Study of Korean Scientists and Engineers in Electrical and Electronics Engineering.

    ERIC Educational Resources Information Center

    Rieh, Hae-young

    1993-01-01

    Describes a study that investigated the citation patterns of publications by scientists and engineers in electrical and electronics engineering in Korea. Citation behavior of personnel in government, universities, and industry is compared; and citation patterns from articles in Korean and non-Korean publications are contrasted. (Contains 27…

  18. The Accuracy of Student Grading in First-Year Engineering Courses

    ERIC Educational Resources Information Center

    Van Hattum-Janssen, Natascha; Pacheco, Jose Augusto; Vasconcelos, Rosa Maria

    2004-01-01

    Assessment has become a powerful tool to change student learning. In a project of the Council of Engineering Courses of the University of Minho, Portugal, students of textile engineering, apparel engineering and industrial electronics increased their participation in every aspect of their assessment process. The traditional exam was changed to…

  19. Using Engineering Cases in Technology Education

    ERIC Educational Resources Information Center

    Kelley, Todd R.

    2009-01-01

    There has been a great deal of discussion in the past few years about implementing engineering design in K-12 classrooms. Experts from K-12 education, universities, industry, and government officials attended the ASEE leadership workshop on K-12 Engineering Outreach in June of 2004 and came to a consensus on the need to implement engineering in…

  20. Assessment of Knowledge and Skills Needed in Selected Engineering Technician Fields: Mechanical/Manufacturing/Industrial.

    ERIC Educational Resources Information Center

    Gourley, Frank A., Jr.

    A study identified the essential educational topics and the level of proficiency perceived to be required in these topics for selected two-year engineering technology programs in North Carolina. The four curricula studied were mechanical engineering technology, mechanical drafting and design technology, manufacturing engineering technology, and…

  1. Field Tests of In-Service Modifications to Improve Performance of An Icebreaker Main Diesel Engine

    DOT National Transportation Integrated Search

    1977-08-01

    Field tests of in-service modifications to improve engine efficiency and lower the emissions were performed on the no. 3 main diesel engine of the USCGC Mackinaw (WAGB-83). This engine is a model 38D8-1/8 manufactured by Colt Industries, Fairbanks Mo...

  2. Of Feedback, Noise, and Clarion Calls: Preserving the Quality of Engineering Education.

    ERIC Educational Resources Information Center

    David, Edward E., Jr.

    Although times seemed ripe for far-reaching initiatives to safeguard the quality of engineering education, current political noise about the issue threatens to drown out the engineering community's message. However, the engineering community's theme should be that economic growth in a modern economy, that industrial policy, is based first and…

  3. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum.

    PubMed

    Cho, Jae Sung; Choi, Kyeong Rok; Prabowo, Cindy Pricilia Surya; Shin, Jae Ho; Yang, Dongsoo; Jang, Jaedong; Lee, Sang Yup

    2017-07-01

    Genome engineering of Corynebacterium glutamicum, an important industrial microorganism for amino acids production, currently relies on random mutagenesis and inefficient double crossover events. Here we report a rapid genome engineering strategy to scarlessly knock out one or more genes in C. glutamicum in sequential and iterative manner. Recombinase RecT is used to incorporate synthetic single-stranded oligodeoxyribonucleotides into the genome and CRISPR/Cas9 to counter-select negative mutants. We completed the system by engineering the respective plasmids harboring CRISPR/Cas9 and RecT for efficient curing such that multiple gene targets can be done iteratively and final strains will be free of plasmids. To demonstrate the system, seven different mutants were constructed within two weeks to study the combinatorial deletion effects of three different genes on the production of γ-aminobutyric acid, an industrially relevant chemical of much interest. This genome engineering strategy will expedite metabolic engineering of C. glutamicum. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Development and Experimental Study of Education Through the Synergetic Training for the Engineering Enhanced Medicine “ESTEEM” in Tohoku University

    NASA Astrophysics Data System (ADS)

    Yamano, Masahiro; Matsuki, Noriaki; Numayama, Keiko; Takeda, Motohiro; Hayasaka, Tomoaki; Ishikawa, Takuji; Yamaguchi, Takami

    We developed new bio-medical engineering curriculum for industrial engineers, and we confirmed that the engineer's needs and the educative effects by holding a trail program. This study in Tohoku University was supported by the Ministry of Economy, Trade and Industry (METI) . We named the curriculum as “ESTEEM” which is acronym of project title “Education through the Synergetic Training for the Engineering Enhanced Medicine” . In Tohoku University, the “REDEEM” curriculum which is an entry level course of bio-medical engineering for engineers has been already held. The positioning of “ESTEEM” program is an advanced course to enhance knowledge and experience in clinical point of view. The program is consisted of the problem based learning (PBL) style lectures, practical training, and observation learning in hospital. It is a unique opportunity to have instruction by doctors, from diagnosis to surgical operation, from traditional technique to front-line medical equipment. In this paper, we report and discuss on the progress of the new bio-medical engineering curriculum.

  5. Systems Biology of Industrial Microorganisms

    NASA Astrophysics Data System (ADS)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  6. Systems biology of industrial microorganisms.

    PubMed

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    2010-01-01

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  7. Developing a new industrial engineering curriculum using a systems engineering approach

    NASA Astrophysics Data System (ADS)

    Buyurgan, Nebil; Kiassat, Corey

    2017-11-01

    This paper reports on the development of an engineering curriculum for a new industrial engineering programme at a medium-sized private university in the northeast United States. A systems engineering process has been followed to design and develop the new curriculum. Considering the programme curriculum as a system, first the stakeholders have been identified, and some preliminary analysis on their needs and requirements has been conducted. Following that, the phases of conceptual design, preliminary design, and detailed design have been pursued during which different levels of validation, assessment, and evaluation processes have been utilised. In addition, a curriculum assessment and continuous improvement process have been developed to assess the curriculum and the courses frequently. The resulting curriculum is flexible, allowing the pursuit of accelerated graduate programmes, a second major, various minor options, and study-abroad; relevant, tailored to the needs of industry partners in the vicinity; and practical, providing hands-on education, resulting in employment-ready graduates.

  8. Clean Air Act Standards and Guidelines for Energy, Engines, and Combustion

    EPA Pesticide Factsheets

    This page contains the stationary sources of air pollution for the energy, engines, and combustion industries, and their corresponding air pollution regulations. To learn more about the regulations for each industry, just click on the links below.

  9. Job Prospects for Industrial Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    Recent economic growth and improved manufacturing profitability are supporting increased employment for industrial engineers. Promising areas include modernizing manufacturing technology and productivity with large amounts of hiring in aerospace, electronics, and instrumentation. Percentages of women employed in these fields for 1982 and 1983 are…

  10. Chemists, Engineers Probe Mutual Problems.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1980

    1980-01-01

    Summarizes recommendations made in a workshop sponsored by the American Chemical Society concerning issues involving the diverging viewpoints of chemistry and chemical engineering. Includes recommendations regarding curricula, salary differences, and the need to change attitudes of chemistry faculty toward industry and industrial chemistry. (CS)

  11. Profiles of Automotive Suppliers Industries--Engineered Mechanical Components and Systems : Volume I, Text.

    DOT National Transportation Integrated Search

    1981-09-01

    This profile describes and analyzes that segment of the automotive supplier industry which provides engineered mechanical components/assemblies/systems to the prime auto manufacturers. It presents an overview of the role and structure of this industr...

  12. Engineered Plants Make Potential Precursor to Raw Material for Plastics

    ScienceCinema

    Shanklin, John

    2018-06-12

    In a first step toward achieving industrial-scale green production, scientists from BNL and collaborators at Dow AgroSciences report engineering a plant that produces industrially relevant levels of chemicals that could potentially be used to make plastics.

  13. Recruitment of Civil Engineering Students in Germany: Shortage or Overflow?

    ERIC Educational Resources Information Center

    Rothert, Heinrich

    1990-01-01

    Discussed is the recruitment and demand for civil engineering students in Germany. Described is the German engineering education system and the possibility of a joint-venture building industry between the two German states. (KR)

  14. A New Venture in Graduate Education: Co-Op Ph.D. Programme in Chemical Engineering.

    ERIC Educational Resources Information Center

    Fahidy, Thomas Z.

    1980-01-01

    Describes a cooperative Ph.D. program at the University of Waterloo, Ontario, Canada, in which industrial and governmental employers participate with the Department of Chemical Engineering in training chemical engineers. (CS)

  15. [The Engineering and Technical Services Directorate at the Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Moon, James

    2004-01-01

    My name is James Moon and I am a senior at Tennessee State University where my major is Aeronautical and Industrial Technology with a concentration in industrial electronics. I am currently serving my internship in the Engineering and Technical Services Directorate at the Glenn Research Center (GRC). The Engineering and Technical Service Directorate provides the services and infrastructure for the Glenn Research Center to take research concepts to reality. They provide a full range of integrated services including engineering, advanced prototyping and testing, facility management, and information technology for NASA, industry, and academia. Engineering and Technical Services contains the core knowledge in Information Technology (IT). This includes data systems and analysis, inter and intranet based systems design and data security. Including the design and development of embedded real-time s o h a r e applications for flight and supporting ground systems, Engineering and Technical Services provide a wide range of IT services and products specific to the Glenn Research Center research and engineering community. In the 7000 Directorate I work directly in the 7611 organization. This organization is known as the Aviation Environments Technical Branch. My mentor is Vincent Satterwhite who is also the Branch Chief of the Aviation Environments Technical Branch. In this branch, I serve as the Assistant program manager of the Engineering Technology Program. The Engineering Technology Program (ETP) is one of three components of the High School L.E.R.C.I.P. This is an Agency-sponsored, eight-week research-based apprenticeship program designed to attract traditionally underrepresented high school students that demonstrate an aptitude for and interest in mathematics, science, engineering, and technology.

  16. Engineering and Technology Education for the 21st Century. A Report from the Regional Colloquium on Engineering and Technology Education for the 21st Century (Nakhon Ratchasima, Thailand, February 11-14, 1997).

    ERIC Educational Resources Information Center

    Kettle, Kevin C., Ed.

    This colloquium was held with the purposes of promoting cooperation and collaboration among engineering education institutions in the Mekong subregion and establishing the linkage with engineering institutions in France; to promote university-industry collaboration in the field of engineering and technology education; to establish a network of…

  17. Applications of hybrid and digital computation methods in aerospace-related sciences and engineering. [problem solving methods at the University of Houston

    NASA Technical Reports Server (NTRS)

    Huang, C. J.; Motard, R. L.

    1978-01-01

    The computing equipment in the engineering systems simulation laboratory of the Houston University Cullen College of Engineering is described and its advantages are summarized. The application of computer techniques in aerospace-related research psychology and in chemical, civil, electrical, industrial, and mechanical engineering is described in abstracts of 84 individual projects and in reprints of published reports. Research supports programs in acoustics, energy technology, systems engineering, and environment management as well as aerospace engineering.

  18. Engineering in Scotland's Colleges: A Report by HM Inspectors for the Scottish Funding Council

    ERIC Educational Resources Information Center

    Her Majesty's Inspectorate of Education, 2007

    2007-01-01

    Engineering has played an important role in Scotland's industrial history. Over the years, the skills requirements of industry have changed as the technology has progressed and the industrial base of the country has developed. Over the past decade, there have been substantial changes in the employment opportunities for people with engineering…

  19. A Spiral Step-by-Step Educational Method for Cultivating Competent Embedded System Engineers to Meet Industry Demands

    ERIC Educational Resources Information Center

    Jing,Lei; Cheng, Zixue; Wang, Junbo; Zhou, Yinghui

    2011-01-01

    Embedded system technologies are undergoing dramatic change. Competent embedded system engineers are becoming a scarce resource in the industry. Given this, universities should revise their specialist education to meet industry demands. In this paper, a spirally tight-coupled step-by-step educational method, based on an analysis of industry…

  20. Developing Design and Management Skills for Senior Industrial Engineering Students

    ERIC Educational Resources Information Center

    Urbanic, R. J.

    2011-01-01

    In Canadian engineering institutions, a significant design experience must occur in the final year of study. In the Department of Industrial and Manufacturing Systems at the University of Windsor, unsolved, open ended projects sponsored by industrial partners from a variety of sectors are provided to the student teams in order for them to apply…

  1. Library Service to Industry at USC: The Industrial Associates of the School of Engineering.

    ERIC Educational Resources Information Center

    Frohmberg, Katherine A.

    Special libraries in Southern California and the San Francisco Bay Area who were members of the University of Southern California (USC) School of Engineering Industrial Associate program were surveyed on their use of the USC program and other similar programs. The questionnaire was designed to discover the attitudes and needs of the Industrial…

  2. Innovative Ways of Teaching Polymerization Reaction Engineering: Exchanging Information between the University and Industry.

    ERIC Educational Resources Information Center

    Soares, Joao B. P.; Penlidis, Alexander; Hamielec, Archie E.

    1998-01-01

    Describes how interaction with several polymer manufacturing companies through industrial short courses and research projects has led to the development of dynamic and up-to-date undergraduate and graduate curriculums in polymer science and engineering technology. (DDR)

  3. Enhanced Learning from an Industry-University Partnership. Aluminum Engineering Course Design and Development.

    ERIC Educational Resources Information Center

    Pai, Devdas M.; DeBlasio, Richard A.

    1997-01-01

    The example of Alcoa and North Carolina State University shows that partnerships in course design, development, and delivery can result in an engineering curriculum that bridges theory and practice and makes students aware of industry expectations. (SK)

  4. 75 FR 8316 - Office of Postsecondary Education; Overview Information; Erma Byrd Scholarship Program; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Transmittal of Applications: March 26, 2010. Full Text of Announcement I. Funding Opportunity Description... related to industrial health and safety: Mining and mineral engineering, industrial engineering... technology/technician, hazardous materials information systems technology/technician, mining technology...

  5. 29 CFR 1926.602 - Material handling equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Engineers J333a-1970, Operator Protection for Agricultural and Light Industrial Tractors. (ii) Seat belts... wheel tractors, bulldozers, off-highway trucks, graders, agricultural and industrial tractors, and... Society of Automotive Engineers, J386-1969, Seat Belts for Construction Equipment. Seat belts for...

  6. 29 CFR 1926.602 - Material handling equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Engineers J333a-1970, Operator Protection for Agricultural and Light Industrial Tractors. (ii) Seat belts... wheel tractors, bulldozers, off-highway trucks, graders, agricultural and industrial tractors, and... Society of Automotive Engineers, J386-1969, Seat Belts for Construction Equipment. Seat belts for...

  7. Scott Nicholson | NREL

    Science.gov Websites

    Nicholson Photo of Scott Nicholson Scott Nicholson Researcher I-Chemical Engineering through Industry (MFI) tool Education B.S. in chemical engineering with a minor in economics, Tufts Affiliations American Institute of Chemical Engineers

  8. Common Analysis Tool Being Developed for Aeropropulsion: The National Cycle Program Within the Numerical Propulsion System Simulation Environment

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.; Naiman, Cynthia G.

    1999-01-01

    The NASA Lewis Research Center is developing an environment for analyzing and designing aircraft engines-the Numerical Propulsion System Simulation (NPSS). NPSS will integrate multiple disciplines, such as aerodynamics, structure, and heat transfer, and will make use of numerical "zooming" on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS uses the latest computing and communication technologies to capture complex physical processes in a timely, cost-effective manner. The vision of NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Through the NASA/Industry Cooperative Effort agreement, NASA Lewis and industry partners are developing a new engine simulation called the National Cycle Program (NCP). NCP, which is the first step toward NPSS and is its initial framework, supports the aerothermodynamic system simulation process for the full life cycle of an engine. U.S. aircraft and airframe companies recognize NCP as the future industry standard common analysis tool for aeropropulsion system modeling. The estimated potential payoff for NCP is a $50 million/yr savings to industry through improved engineering productivity.

  9. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    PubMed

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. A Buddhist perspective on industrial engineering and the design of work.

    PubMed

    Lee, Wei-Tau; Blumenthal, James A; Funk, Kenneth H

    2014-06-01

    The modern way of life is highly dependent upon the production of goods by industrial organizations that are in turn dependent upon their workers for their ongoing operations. Even though more than a century has passed since the dawn of the industrial revolution, many dangerous aspects of work, both physical and mental, remain in the workplace today. Using Buddhist philosophical principles, this paper suggests that although many sources of the problem reside within the larger society, the industrial engineer is still a key factor in bettering work and providing a workplace suitable for their fellow workers. Drawing on these insights, we present a number of work design guidelines that industrial engineers who abide by Buddhist principles could practice to help overcome some of the many sufferings produced by modern work.

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 39: The role of computer networks in aerospace engineering

    NASA Technical Reports Server (NTRS)

    Bishop, Ann P.; Pinelli, Thomas E.

    1994-01-01

    This paper presents selected results from an empirical investigation into the use of computer networks in aerospace engineering. Such networks allow aerospace engineers to communicate with people and access remote resources through electronic mail, file transfer, and remote log-in. The study drew its subjects from private sector, government and academic organizations in the U.S. aerospace industry. Data presented here were gathered in a mail survey, conducted in Spring 1993, that was distributed to aerospace engineers performing a wide variety of jobs. Results from the mail survey provide a snapshot of the current use of computer networks in the aerospace industry, suggest factors associated with the use of networks, and identify perceived impacts of networks on aerospace engineering work and communication.

  12. Advancing metabolic engineering through systems biology of industrial microorganisms.

    PubMed

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Industrial training approach using GPM P5 Standard for Sustainability in Project Management: a framework for sustainability competencies in the 21st century

    NASA Astrophysics Data System (ADS)

    Johan, Kartina; Mohd Turan, Faiz

    2016-11-01

    Malaysian Engineering Accreditation (Engineering Programme Accreditation Manual, 2007) requires all bachelor degree in engineering programmes to incorporate a minimum of two months industrial training in order for the programme to be accredited by the council. The industrial training has the objective to provide students on the insights of being an engineer at the workplace hence increasing their knowledge in employability skills prior to graduation. However the current structure of industrial training is not able to inculcate good leadership ability and prepare students with sustainability competencies needed in the era of Sustainable Development (SD). This paper aims to study project management methodology as a framework to create a training pathway in industrial training for students in engineering programs using Green Project Management (GPM) P5 standard for sustainability in project management. The framework involves students as interns, supervisors from both university and industry and also participation from NonProfit Organisation (NPO). The framework focus on the development of the student's competency in employability skills, lean leadership and sustainability competencies using experiential learning approach. Deliverables of the framework include internship report, professional sustainability report using GPM P5 standard and competency assessment. The post-industrial phase of the framework is constructed for students to be assessed collaboratively by the university, industry and the sustainability practitioner in the country. The ability for the interns to act as a change agent in sustainability practices is measured by the competency assessment and the quality of the sustainability report. The framework support the call for developing holistic students based on Malaysian Education Blueprint (Higher Education) 2015-2025 and address the gap between the statuses of engineering qualification to the sustainability competencies in the 21st century in particular by achieving the Sustainability Graduates (SG) attributes outlined in the framework.

  14. Helping Students Build Their Future in Engineering

    ERIC Educational Resources Information Center

    English, Vincent

    2014-01-01

    EngineeringUK estimates that the UK will require 87,000 new engineers a year over the next ten years. However, with skills shortages threatening to derail the UK's engineering industry, it is clear that immediate action needs to be taken if this quota is to be met. In this article, Vincent English, managing director of Vernier Europe, offers his…

  15. Engineering Careers in the UK: Still Not What Women Want?

    ERIC Educational Resources Information Center

    Hodgkinson, Liz; Hamill, Les

    2006-01-01

    Of all professions, engineering is ranked near the bottom in the UK in terms of the proportion of female applicants for university places, so the engineering industry is missing out on some of the best young talent available. Despite initiatives to increase the number of women entering engineering, there has been little change over the last…

  16. Educating the Engineers of 2020: An Outcomes-Based Typology of Engineering Undergraduates

    ERIC Educational Resources Information Center

    Knight, David B.

    2012-01-01

    Members of government and industry have called for greater emphasis within U.S. colleges and universities on producing engineers who can enter and advance a more competitive, globally connected workforce. Looking toward this future, engineers will need to exhibit strong analytical skills as in the past, but they also will need to be proficient in…

  17. Investigations on Required Core Competencies for Engineering Graduates with Reference to the Indian IT Industry

    ERIC Educational Resources Information Center

    Goel, Sanjay

    2006-01-01

    Fifty-four engineers and managers working with Indian and multinational IT companies, with an average experience of 7.5 years, have responded to a survey about engineering education. Respondents have assessed the importance of 49 parameters. Twenty-three of these parameters correspond to core engineering and general professional competencies for…

  18. The Role of Oral Communicative Tasks (OCT) in Developing the Spoken Proficiency of Engineering Students

    ERIC Educational Resources Information Center

    Shantha, S.; Mekala, S.

    2017-01-01

    The mastery of speaking skills in English has become a major requisite in engineering industry. Engineers are expected to possess speaking skills for executing their routine activities and career prospects. The article focuses on the experimental study conducted to improve English spoken proficiency of Indian engineering students using task-based…

  19. An Introduction of Finite Element Method in the Engineering Teaching at the University of Camaguey.

    ERIC Educational Resources Information Center

    Napoles, Elsa; Blanco, Ramon; Jimenez, Rafael; Mc.Pherson, Yoanka

    This paper illuminates experiences related to introducing finite element methods (FEM) in mechanical and civil engineering courses at the University of Camaguey in Cuba and provides discussion on using FEM in postgraduate courses for industry engineers. Background information on the introduction of FEM in engineering teaching is focused on…

  20. High School Engineering and Technology Education Integration through Design Challenges

    ERIC Educational Resources Information Center

    Mentzer, Nathan

    2011-01-01

    This study contextualized the use of the engineering design process by providing descriptions of how each element in a design process was integrated in an eleventh grade industry and engineering systems course. The guiding research question for this inquiry was: How do students engage in the engineering design process in a course where technology…

  1. Co-Optimization of Fuels and Engines | Transportation Research | NREL

    Science.gov Websites

    Co-Optimization of Fuels and Engines Co-Optimization of Fuels and Engines Photo of silver sedan in ), eight other national laboratories, and industry on the Co-Optimization of Fuels & Engines (Co-Optima research activities and accomplishments of the Co-Optima initiative in the Co-Optimization of Fuels &

  2. Team-Based Programs: The EMP. An Industry/University Partnership-The Educational Model for the 21st Century.

    ERIC Educational Resources Information Center

    Haynes, Ray; And Others

    California Polytechnic State University's College of Business and College of Engineering have joined forces to create a joint Engineering Management Program (EMP). Students holding undergraduate engineering or equivalent degrees enter and earn both Masters in Business Administration and Masters of Science in Engineering in 24 months. The program…

  3. Some developing concepts of engineering education

    NASA Technical Reports Server (NTRS)

    Perkins, C. D.

    1975-01-01

    An analysis of the circumstances which have created a shortage of aeronautical engineering undergraduate students in the universities is presented. Suggestions for motivating students to enter aeronautical engineering are examined. The support of the aeronautical industry for graduate education funding is recommended. Examples of actions taken by governmental agencies to promote increased interest in aeronautical engineering are included.

  4. Recruitment and Retention of Full-Time Engineering Faculty, Fall 1980. Higher Education Panel Report Number 52.

    ERIC Educational Resources Information Center

    Atelsek, Frank J.; Gomberg, Irene L.

    The extent of faculty vacancies in colleges of engineering, the effects of such vacancies upon research and instructional programs, and the nature of the competition between academia and industry in hiring engineering faculty were surveyed. The focus is on permanent full-time faculty positions in the following major engineering fields:…

  5. Collaborative Systems Thinking: A Response to the Problems Faced by Systems Engineering's 'Middle Tier'

    NASA Technical Reports Server (NTRS)

    Phfarr, Barbara B.; So, Maria M.; Lamb, Caroline Twomey; Rhodes, Donna H.

    2009-01-01

    Experienced systems engineers are adept at more than implementing systems engineering processes: they utilize systems thinking to solve complex engineering problems. Within the space industry demographics and economic pressures are reducing the number of experienced systems engineers that will be available in the future. Collaborative systems thinking within systems engineering teams is proposed as a way to integrate systems engineers of various experience levels to handle complex systems engineering challenges. This paper uses the GOES-R Program Systems Engineering team to illustrate the enablers and barriers to team level systems thinking and to identify ways in which performance could be improved. Ways NASA could expand its engineering training to promote team-level systems thinking are proposed.

  6. Green engineering education through a U.S. EPA/academia collaboration.

    PubMed

    Shonnard, David R; Allen, David T; Nguyen, Nhan; Austin, Sharon Weil; Hesketh, Robert

    2003-12-01

    The need to use resources efficiently and reduce environmental impacts of industrial products and processes is becoming increasingly important in engineering design; therefore, green engineering principles are gaining prominence within engineering education. This paper describes a general framework for incorporating green engineering design principles into engineering curricula, with specific examples for chemical engineering. The framework for teaching green engineering discussed in this paper mirrors the 12 Principles of Green Engineering proposed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A), especially in methods for estimating the hazardous nature of chemicals, strategies for pollution prevention, and approaches leading to efficient energy and material utilization. The key elements in green engineering education, which enlarge the "box" for engineering design, are environmental literacy, environmentally conscious design, and beyond-the-plant boundary considerations.

  7. Human Body Interfacing.

    ERIC Educational Resources Information Center

    Fryda, Lawrence J.; Harrington, Robert; Szumal, Clint

    Electronics Engineering Technology majors in the Industrial and Engineering Technology department at Central Michigan University have developed many real-world projects that represent the type of problem-solving projects encouraged by industry. Two projects that can be used by other educators as freestanding projects or as the core for further…

  8. Applications of aerospace technology in the electric power industry

    NASA Technical Reports Server (NTRS)

    Johnson, F. D.; Heins, C. F.

    1974-01-01

    Existing applications of NASA contributions to disciplines such as combustion engineering, mechanical engineering, materials science, quality assurance and computer control are outlined to illustrate how space technology is used in the electric power industry. Corporate strategies to acquire relevant space technology are described.

  9. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae.

    PubMed

    Lee, Ye-Gi; Jin, Yong-Su; Cha, Young-Lok; Seo, Jin-Ho

    2017-03-01

    Even though industrial yeast strains exhibit numerous advantageous traits for the production of bioethanol, their genetic manipulation has been limited. This study demonstrates that an industrial polyploidy Saccharomyces cerevisiae JHS200 can be engineered through Cas9 (CRISPR associated protein 9)-based genome editing. Specifically, we generated auxotrophic mutants and introduced a xylose metabolic pathway into the auxotrophic mutants. As expected, the engineered strain (JX123) enhanced ethanol production from cellulosic hydrolysates as compared to other engineered haploid strains. However, the JX123 strain produced substantial amounts of xylitol as a by-product during xylose fermentation. Hypothesizing that the xylitol accumulation might be caused by intracellular redox imbalance from cofactor difference, the NADH oxidase from Lactococcus lactis was introduced into the JX123 strain. The resulting strain (JX123_noxE) not only produced more ethanol, but also produced xylitol less than the JX123 strain. These results suggest that industrial polyploidy yeast can be modified for producing biofuels and chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Evaluating the Competency Mismatch between Master of Engineering Graduates and Industry Needs in China

    ERIC Educational Resources Information Center

    Peng, Lijun; Zhang, Shulin; Gu, Jibao

    2016-01-01

    This study investigates the mismatch between the educational attainment of a graduate with a Master of Engineering (MEng) degree and the industry needs in China. A competency list for MEng graduates from the perspective of industry needs was constructed. And a survey was conducted among MEng graduate students, alumni, and employers to assess the…

  11. Synthetic biology advances and applications in the biotechnology industry: a perspective.

    PubMed

    Katz, Leonard; Chen, Yvonne Y; Gonzalez, Ramon; Peterson, Todd C; Zhao, Huimin; Baltz, Richard H

    2018-06-18

    Synthetic biology is a logical extension of what has been called recombinant DNA (rDNA) technology or genetic engineering since the 1970s. As rDNA technology has been the driver for the development of a thriving biotechnology industry today, starting with the commercialization of biosynthetic human insulin in the early 1980s, synthetic biology has the potential to take the industry to new heights in the coming years. Synthetic biology advances have been driven by dramatic cost reductions in DNA sequencing and DNA synthesis; by the development of sophisticated tools for genome editing, such as CRISPR/Cas9; and by advances in informatics, computational tools, and infrastructure to facilitate and scale analysis and design. Synthetic biology approaches have already been applied to the metabolic engineering of microorganisms for the production of industrially important chemicals and for the engineering of human cells to treat medical disorders. It also shows great promise to accelerate the discovery and development of novel secondary metabolites from microorganisms through traditional, engineered, and combinatorial biosynthesis. We anticipate that synthetic biology will continue to have broadening impacts on the biotechnology industry to address ongoing issues of human health, world food supply, renewable energy, and industrial chemicals and enzymes.

  12. Parametric and Generative Design Techniques for Digitalization in Building Industry: the Case Study of Glued- Laminated-Timber Industry

    NASA Astrophysics Data System (ADS)

    Pasetti Monizza, G.; Matt, D. T.; Benedetti, C.

    2016-11-01

    According to Wortmann classification, the Building Industry (BI) can be defined as engineer-to-order (ETO) industry: the engineering-process starts only when an order is acquired. This definition implies that every final product (building) is almost unique’ and processes cannot be easily standardized or automated. Because of this, BI is one of the less efficient industries today’ mostly leaded by craftsmanship. In the last years’ several improvements in process efficiency have been made focusing on manufacturing and installation processes only. In order to improve the efficiency of design and engineering processes as well, the scientific community agrees that the most fruitful strategy should be Front-End Design (FED). Nevertheless, effective techniques and tools are missing. This paper discusses outcomes of a research activity that aims at highlighting whether Parametric and Generative Design techniques allow reducing wastes of resources and improving the overall efficiency of the BI, by pushing the Digitalization of design and engineering processes of products. Focusing on the Glued-Laminated-Timber industry, authors will show how Parametric and Generative Design techniques can be introduced in a standard supply-chain system, highlighting potentials and criticism on the supply-chain system as a whole.

  13. European research and commercialisation activities in the field of tissue engineering and liver support in world wide competition.

    PubMed

    Marx, U; Bushnaq, H; Yalcin, E

    1998-02-01

    Tissue engineering is seen as an interesting field of technology which could improve medical therapy and could also be considered as a commercial opportunity for the European biotechnological industry. Research in the state of the art of science using the MedLine and the Science Citation Index databases, in the patent situation and of the industry dealing with tissue engineering was done. A special method, based on the Science Citation Index Journal Citation Report 1993, for evaluating scientific work was defined. The main countries working in the field of tissue engineering were evaluated in regard to their scientific performance and their patents. The R&D of German industry was investigated as an exemplary European country. Out of all activities, different tissues were rated with respect to the attention received from research and industry and with regard to the frequency in which patents were applied for. USA, Germany and Japan rank first in most tissues, especially liver. After comparing German patents with the German scientific and industrial work, it seems that the potential in German patents and research is underestimated by German industry and inefficiently exploited.

  14. The Study on Neuro-IE Management Software in Manufacturing Enterprises. -The Application of Video Analysis Technology

    NASA Astrophysics Data System (ADS)

    Bian, Jun; Fu, Huijian; Shang, Qian; Zhou, Xiangyang; Ma, Qingguo

    This paper analyzes the outstanding problems in current industrial production by reviewing the three stages of the Industrial Engineering Development. Based on investigations and interviews in enterprises, we propose the new idea of applying "computer video analysis technology" to new industrial engineering management software, and add "loose-coefficient" of the working station to this software in order to arrange scientific and humanistic production. Meanwhile, we suggest utilizing Biofeedback Technology to promote further research on "the rules of workers' physiological, psychological and emotional changes in production". This new kind of combination will push forward industrial engineering theories and benefit enterprises in progressing towards flexible social production, thus it will be of great theory innovation value, social significance and application value.

  15. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  16. Reviewing sulfidation corrosion—Yesterday and today

    NASA Astrophysics Data System (ADS)

    Bornstein, Norman S.

    1996-11-01

    At one time, sulfidation corrosion threatened to severely limit the use of gas turbines in marine applications, markedly reduce the life of industrial gas turbines, and affect the performance of aircraft engines. Today, gas turbine engines drive U.S. naval ships, produce electricity, and power aircraft. However, the problem of sulfidation corrosion has not disappeared. The rapid rate of degradation of airfoil materials in the presence of condensed sulfates is still a concern for gas turbine engines that operate in industrial and marine environments.

  17. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  18. [Innovation guidelines and strategies for pharmaceutical engineering of Chinese medicine and their industrial translation].

    PubMed

    Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li

    2013-01-01

    This paper briefly analyzes the bottlenecks and major technical requirements for pharmaceutical industry of Chinese medicine, providing current status of pharmaceutical engineering of Chinese medicine. The innovation directions and strategies of the pharmaceutical engineering for manufacturing Chinese medicine are proposed along with the framework of their core technology. As a consequence, the development of the third-generation pharmaceutical technology for Chinese medicine, featured as "precision, digital and intelligent", is recommended. The prospects of the pharmaceutical technology are also forecasted.

  19. Recent advances in rational approaches for enzyme engineering

    PubMed Central

    Steiner, Kerstin; Schwab, Helmut

    2012-01-01

    Enzymes are an attractive alternative in the asymmetric syntheses of chiral building blocks. To meet the requirements of industrial biotechnology and to introduce new functionalities, the enzymes need to be optimized by protein engineering. This article specifically reviews rational approaches for enzyme engineering and de novo enzyme design involving structure-based approaches developed in recent years for improvement of the enzymes’ performance, broadened substrate range, and creation of novel functionalities to obtain products with high added value for industrial applications. PMID:24688651

  20. Implementation of partnership management model of SMK (Vocational High School) with existing industries in mechanical engineering expertise in Central Java

    NASA Astrophysics Data System (ADS)

    Sumbodo, Wirawan; Pardjono, Samsudi, Rahadjo, Winarno Dwi

    2018-03-01

    This study aims to determine the existing conditions of implementation of partnership management model of SMK with the industry on the mechanical engineering expertise in Central Java. The method used is descriptive analysis. The research result shows that the implementation of partnership management model of SMK based on new existing industry produces ready graduates of 62.5% which belongs to low category, although the partnership program of SMK with the industry is done well with the average score of 3.17. As many as 37.5% of SMK graduates of Mechanical Engineering Expertise Program choose to continue their studies or to be an entrepreneur. It is expected that the partnership model of SMK with the industry can be developed into a reference for government policy in developing SMK that is able to produce graduates who are ready to work according to the needs of partner industry.

  1. [Fermentation production of microbial catalase and its application in textile industry].

    PubMed

    Zhang, Dongxu; Du, Guocheng; Chen, Jian

    2010-11-01

    Microbial catalase is an important industrial enzyme that catalyzes the decomposition of hydrogen peroxide to water and oxygen. This enzyme has great potential of application in food, textile and pharmaceutical industries. The production of microbial catalase has been significantly improved thanks to advances in bioprocess engineering and genetic engineering. In this paper, we review the progresses in fermentation production of microbial catalase and its application in textile industry. Among these progresses, we will highlight strain isolation, substrate and environment optimization, enzyme induction, construction of engineering strains and application process optimization. Meanwhile, we also address future research trends for microbial catalase production and its application in textile industry. Molecular modification (site-directed mutagenesis and directed revolution) will endue catalase with high pH and temperature stabilities. Improvement of catalase production, based on the understanding of induction mechanism and the process control of recombinant stain fermentation, will further accelerate the application of catalase in textile industry.

  2. Probability and Statistics in Aerospace Engineering

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Howell, L. W.

    1998-01-01

    This monograph was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject.

  3. Teaching Sustainable Energy and Power Electronics to Engineering Students in a Laboratory Environment Using Industry-Standard Tools

    ERIC Educational Resources Information Center

    Ochs, David S.; Miller, Ruth Douglas

    2015-01-01

    Power electronics and renewable energy are two important topics for today's power engineering students. In many cases, the two topics are inextricably intertwined. As the renewable energy sector grows, the need for engineers qualified to design such systems grows as well. In order to train such engineers, new courses are needed that highlight the…

  4. Assessment of 3D Viewers for the Display of Interactive Documents in the Learning of Graphic Engineering

    ERIC Educational Resources Information Center

    Barbero, Basilio Ramos; Pedrosa, Carlos Melgosa; Mate, Esteban Garcia

    2012-01-01

    The purpose of this study is to determine which 3D viewers should be used for the display of interactive graphic engineering documents, so that the visualization and manipulation of 3D models provide useful support to students of industrial engineering (mechanical, organizational, electronic engineering, etc). The technical features of 26 3D…

  5. Reviews of Data on Science Resources, No. 25. Doctoral Scientists and Engineers in Private Industry, 1973.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Reported are manpower data needed by those engaged in science and engineering policy activities. The information is collected from scientists and engineers themselves. The basis of this report is the first survey, in a biennial series, of the Doctoral Roster of Scientists and Engineers, conducted for the National Science Foundation by the…

  6. Best Manufacturing Practices Survey Conducted at General Dynamics, Fort Worth Division, Fort Worth, Texas

    DTIC Science & Technology

    1988-05-01

    funded by the U.S. Air Force and GDFW. The system will be capable of unmanned operation and will encompass design, engineering , fabrication, and product...Industrial Engineering Production (309) 782-4619 ActivityRock Island, IL Richard Celin Naval Air Engineering Center Production (201) 323-2173 Lakehurst...CONFIGURATION CONTROL Engineering Change Control Room ............................................ 15 Implementatlon af Retofit Changes

  7. Occupational Safety and Health Professionals

    ERIC Educational Resources Information Center

    Wash, Pat

    1975-01-01

    The growing concern for safety in both the workplace and in consumer products will create many new jobs through the mid-1980's--especially in private industry. The largest number of safety professionals are safety engineers; others include fire protection engineers, industrial hygienists, loss control and occupational health consultants, and…

  8. Promoting Interdisciplinarity in Engineering Teaching

    ERIC Educational Resources Information Center

    Harrison, Gareth P.; Macpherson, D. Ewen; Williams, David A.

    2007-01-01

    With funding from the UK's Royal Academy of Engineering, the University of Edinburgh has developed a series of truly interdisciplinary design courses aimed at improving penultimate-year students' ability to operate across disciplines and improve their preparation for industry. Led by a Visiting Industrial Professor, the course on hydropower design…

  9. Photonics engineering: snapshot applications in healthcare, homeland security, agriculture, and industry

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun

    2015-01-01

    Throughout my experience in photonics engineering, this article shows that photonics is indeed a key technology enabler for enhancing our competitiveness. In particular, I snapshot the achievements of NECTEC research teams in implementing devices and systems suitable for healthcare, homeland security, agriculture, and industry.

  10. Perspectives in metabolic engineering: understanding cellular regulation towards the control of metabolic routes.

    PubMed

    Zadran, Sohila; Levine, Raphael D

    2013-01-01

    Metabolic engineering seeks to redirect metabolic pathways through the modification of specific biochemical reactions or the introduction of new ones with the use of recombinant technology. Many of the chemicals synthesized via introduction of product-specific enzymes or the reconstruction of entire metabolic pathways into engineered hosts that can sustain production and can synthesize high yields of the desired product as yields of natural product-derived compounds are frequently low, and chemical processes can be both energy and material expensive; current endeavors have focused on using biologically derived processes as alternatives to chemical synthesis. Such economically favorable manufacturing processes pursue goals related to sustainable development and "green chemistry". Metabolic engineering is a multidisciplinary approach, involving chemical engineering, molecular biology, biochemistry, and analytical chemistry. Recent advances in molecular biology, genome-scale models, theoretical understanding, and kinetic modeling has increased interest in using metabolic engineering to redirect metabolic fluxes for industrial and therapeutic purposes. The use of metabolic engineering has increased the productivity of industrially pertinent small molecules, alcohol-based biofuels, and biodiesel. Here, we highlight developments in the practical and theoretical strategies and technologies available for the metabolic engineering of simple systems and address current limitations.

  11. Engine System Loads Analysis Compared to Hot-Fire Data

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Jennings, John M.; Mims, Katherine; Brunty, Joseph; Christensen, Eric R.; McConnaughey, Paul R. (Technical Monitor)

    2002-01-01

    Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the NASA MC-1 engine program, the focus was to reduce the cost-to-weight ratio. The techniques for structural dynamics analysis practices, were tailored in this program to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of MC-1 load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are important during the design and integration of a new engine system. During the final stages of development, it is important to verify the results of an engine system model to determine the validity of the results. During the final stages of the MC-1 program, hot-fire test results were obtained and compared to the structural design loads calculated by the engine system model. These comparisons are presented in this paper.

  12. 33 CFR 211.142 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... encouraging the development of public port or industrial facilities. (e) District Engineer. The term “District....142 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION WITH CIVIL WORKS PROJECTS Conveyances...

  13. 33 CFR 211.142 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... encouraging the development of public port or industrial facilities. (e) District Engineer. The term “District....142 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION WITH CIVIL WORKS PROJECTS Conveyances...

  14. Marykate O'Brien | NREL

    Science.gov Websites

    industry partners and NREL programmatic R&D. Sustainable energy/fuels research and development Catalyst Biological Engineering, University of Colorado, 2009 Professional Experience Bio-Process Engineer, NREL, 2013 Professional Research Assistant, University of Colorado, 2007-2012 Engineering Intern, Baxter Healthcare, 2007

  15. Performance Engineering as an Expert System.

    ERIC Educational Resources Information Center

    Harmon, Paul

    1984-01-01

    Considers three powerful techniques--heuristics, context trees, and search via backward chaining--that a knowledge engineer might employ to develop an expert system to automate performance engineering, i.e., the branch of instructional technology that focuses on the problems of business and industry. (MBR)

  16. Job Prospects for Civil Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    Government programs and renewed industrial activity have combined with stable enrollments to create bright job prospects for civil engineers. Areas with good opportunities include highway reconstruction and rehabilitation, water-resource management, and new factory construction. The subspecialty of structural engineering has a growing need in…

  17. Design approaches to more energy efficient engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.; Colladay, R. S.; Macioce, L. E.

    1978-01-01

    The status of NASA's Energy Efficient Engine Project, a comparative government-industry effort aimed at advancing the technology base for the next generation of large turbofan engines for civil aircraft transports is summarized. Results of recently completed studies are reviewed. These studies involved selection of engine cycles and configurations that offer potential for at least 12% lower fuel consumption than current engines and also are economically attractive and environmentally acceptable. Emphasis is on the advancements required in component technologies and systems design concepts to permit future development of these more energy efficient engines.

  18. NACA Lewis Researcher and Technicians Discuss a Test Setup

    NASA Image and Video Library

    1956-12-21

    Researcher Bill Reiwaldt discusses the preparations for a test in the Altitude Wind Tunnel with technicians Jack Wagner and Dick Golladay at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. Research engineers developed ideas for tests that were often in response to requests from the military or aircraft industry. Arrangements were made to obtain an engine for the study and to transport it to the Cleveland laboratory. The engine was brought into the facility’s shop area, where it was readied for investigation. It was common for several different engines to be worked on simultaneously in the shop. The researcher would discuss the engine and the test objectives with the Test Installation Division and the facility’s technicians. The operations team would handle the installation of the instrumentation and fitting the test into the facility’s schedule. Upon completion of the previous test, the engine was removed. The next engine was lifted by an overhead crane and transported from the shop to the test section. The engine was connected to the measurement devices and fuel and oil supply lines. Engines were tested over numerous runs under varying conditions and with variations on the configuration. The findings and test procedure were then described in research or technical memorandums and distributed to industry.

  19. Tissue engineering and regenerative medicine: manufacturing challenges.

    PubMed

    Williams, D J; Sebastine, I M

    2005-12-01

    Tissue engineering and regenerative medicine are interdisciplinary fields that apply principles of engineering and life sciences to develop biological substitutes, typically composed of biological and synthetic components, that restore, maintain or improve tissue function. Many tissue engineering technologies are still at a laboratory or pre-commercial scale. The short review paper describes the most significant manufacturing and bio-process challenges inherent in the commercialisation and exploitation of the exciting results emerging from the biological and clinical laboratories exploring tissue engineering and regenerative medicine. A three-generation road map of the industry has been used to structure a view of these challenges and to define where the manufacturing community can contribute to the commercial success of the products from these emerging fields. The first-generation industry is characterised by its demonstrated clinical applications and products in the marketplace, the second is characterised by emerging clinical applications, and the third generation is characterised by aspirational clinical applications. The paper focuses on the cost reduction requirement of the first generation of the industry to allow more market penetration and consequent patient impact. It indicates the technological requirements, for instance the creation of three-dimensional tissue structures, and value chain issues in the second generation of the industry. The third-generation industry challenges lie in fundamental biological and clinical science. The paper sets out a road map of these generations to identify areas for research.

  20. Ceramic technology for advanced heat engines project. Semiannual progress report, October 1985-March 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-08-01

    Significant accomplishments in fabricating cermaic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, additional research is needed in materials and processing development, design methodology, and data base and life prediction. An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotivemore » heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.« less

  1. Modern Cast Irons in Chemical Engineering

    DTIC Science & Technology

    1934-11-09

    fl’ceew. T I SOCIETY OF CHEMICAL INDUSTRY CHEMICAL ENGINEERING GROUP MODERN CAST IRONS IN CHEMICAL ENGINEERING By J. G. PEARCE, M.Sc., F.Inst.P...CAST IRONS IN CHEMICAL ENGINEERING By J. G. PEARCE, M.Sc., F.Inst.P., M.I.E.E.* INTRODUCTION to chemical or thermal resistance. Small blow-holes Any...consideration of modern cast irons in chemical seldom appear to reduce the mechanical strength of engineering should strictly be prefaced by a definition

  2. The Quantum Engineering Conundrum

    NASA Astrophysics Data System (ADS)

    Monroe, Christopher

    2017-04-01

    There is newfound rush and excitement in Quantum Information Science, as this field seems to be moving toward an industrial/engineering phase. However, this evolution will require that quantum science, long the domain of academics and other researchers, make the leap to sustained engineering efforts in order to fabricate practical devices. I will address the conundrum, that full-blooded engineering does not generally happen on campuses, while many in the professional engineering and computer science community do not believe in quantum physics!

  3. Metabolic engineering of biosynthetic pathway for production of renewable biofuels.

    PubMed

    Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar; Dhar, Pawan Kumar

    2014-02-01

    Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.

  4. Automotive Stirling engine Market and Industrial Readiness Program (MIRP), phase 1

    NASA Astrophysics Data System (ADS)

    1982-05-01

    A program, begun in 1978, has the goal of transferring Stirling engine technology from United Stirling of Sweden to the US and, then, following design, fabrication, and prototype testing, to secure US manufacturers for the engine. The ultimate objective is the large-scale commercial use of the Automotive Stirling Engine (ASE) by the year 2000. The fist phase of the Market and Industrial Readiness Program for the ASE was concerned with defining the market, product, economic and technical factors necessary to be addressed to assure a reasonable chance of ultimate commercial acceptance. Program results for this first phase are reported and discussed. These results pertain to licensing strategy development, economic analysis, market factors, product planning, market growth, cost studies, and engine performance as measured by fuel economy using conventional fuels and by vehicle speed and acceleration characteristics.

  5. Protein engineering and the use of molecular modeling and simulation: the case of heterodimeric Fc engineering.

    PubMed

    Spreter Von Kreudenstein, Thomas; Lario, Paula I; Dixit, Surjit B

    2014-01-01

    Computational and structure guided methods can make significant contributions to the development of solutions for difficult protein engineering problems, including the optimization of next generation of engineered antibodies. In this paper, we describe a contemporary industrial antibody engineering program, based on hypothesis-driven in silico protein optimization method. The foundational concepts and methods of computational protein engineering are discussed, and an example of a computational modeling and structure-guided protein engineering workflow is provided for the design of best-in-class heterodimeric Fc with high purity and favorable biophysical properties. We present the engineering rationale as well as structural and functional characterization data on these engineered designs. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Greener, meaner diesels sport thermal barrier coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, M.F.; Parker, D.W.

    1992-05-01

    The highly reliable diesel engine has long been the workhorse of the transportation, industrial power, utility, and marine industries. Demand for diesels is expected to accelerate well into the next century, driven by the engine's ability to economically produce power in almost any environment. Increasingly stringent environmental, efficiency, and durability requirements, however, present new challenges to diesel engine manufacturers and operators. This paper reports that many of these challenges can be met entirely, or in part, by thermal barrier coatings (TBCs). Diesel engine TBCs are plasma-spray-applied ceramics, which insulate combustion system components, such as pistons, valves, and piston fire decks,more » from heat and thermal shock.« less

  7. Education of Advanced Biotechnologists of Kitakyushu National College of Technology

    NASA Astrophysics Data System (ADS)

    Kawahara, Hiroharu

    The Cell Engineering Center was established in October, 2003 to research and develop manufacturing technologies and cell engineering technologies with human cell lines, which boost their uniqueness. The center serves as a base for advancing industrial development and creating new industries in Kitakyushu City area. One of the features in this center's activities is to promote technology exchanges between the students and researchers in private firms and to facilitate developed biotechnologies transferred to the private sectors. The Cell Engineering Center aims to train the advanced biotechnologists who have abilities for applying for patents, international communications, and leaderships. In this work, the educational and research activities in the Cell Engineering Center will be reported.

  8. Light-energy conversion in engineered microorganisms.

    PubMed

    Johnson, Ethan T; Schmidt-Dannert, Claudia

    2008-12-01

    Increasing interest in renewable resources by the energy and chemical industries has spurred new technologies both to capture solar energy and to develop biologically derived chemical feedstocks and fuels. Advances in molecular biology and metabolic engineering have provided new insights and techniques for increasing biomass and biohydrogen production, and recent efforts in synthetic biology have demonstrated that complex regulatory and metabolic networks can be designed and engineered in microorganisms. Here, we explore how light-driven processes may be incorporated into nonphotosynthetic microbes to boost metabolic capacity for the production of industrial and fine chemicals. Progress towards the introduction of light-driven proton pumping or anoxygenic photosynthesis into Escherichia coli to increase the efficiency of metabolically-engineered biosynthetic pathways is highlighted.

  9. Identification and detoxification of glycolaldehyde, an unattended bioethanol fermentation inhibitor.

    PubMed

    Jayakody, Lahiru N; Ferdouse, Jannatul; Hayashi, Nobuyuki; Kitagaki, Hiroshi

    2017-03-01

    Although there have been approximately 60 chemical compounds identified as potent fermentation inhibitors in lignocellulose hydrolysate, our research group recently discovered glycolaldehyde as a key fermentation inhibitor during second generation biofuel production. Accordingly, we have developed a yeast S. cerevisiae strain exhibiting tolerance to glycolaldehyde. During this glycolaldehyde study, we established novel approaches for rational engineering of inhibitor-tolerant S. cerevisiae strains, including engineering redox cofactors and engineering the SUMOylation pathway. These new technical dimensions provide a novel platform for engineering S. cerevisiae strains to overcome one of the key barriers for industrialization of lignocellulosic ethanol production. As such, this review discusses novel biochemical insight of glycolaldehyde in the context of the biofuel industry.

  10. Genetically Engineered Materials for Biofuels Production

    NASA Astrophysics Data System (ADS)

    Raab, Michael

    2012-02-01

    Agrivida, Inc., is an agricultural biotechnology company developing industrial crop feedstocks for the fuel and chemical industries. Agrivida's crops have improved processing traits that enable efficient, low cost conversion of the crops' cellulosic components into fermentable sugars. Currently, pretreatment and enzymatic conversion of the major cell wall components, cellulose and hemicellulose, into fermentable sugars is the most expensive processing step that prevents widespread adoption of biomass in biofuels processes. To lower production costs we are consolidating pretreatment and enzyme production within the crop. In this strategy, transgenic plants express engineered cell wall degrading enzymes in an inactive form, which can be reactivated after harvest. We have engineered protein elements that disrupt enzyme activity during normal plant growth. Upon exposure to specific processing conditions, the engineered enzymes are converted into their active forms. This mechanism significantly lowers pretreatment costs and enzyme loadings (>75% reduction) below those currently available to the industry.

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 15: Technical uncertainty and project complexity as correlates of information use by US industry-affiliated aerospace engineers and scientists: Results of an exploratory investigation

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    An exploratory study was conducted that investigated the influence of technical uncertainty and project complexity on information use by U.S. industry-affiliated aerospace engineers and scientists. The study utilized survey research in the form of a self-administered mail questionnaire. U.S. aerospace engineers and scientists on the Society of Automotive Engineers (SAE) mailing list served as the study population. The adjusted response rate was 67 percent. The survey instrument is appendix C to this report. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and information use. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and the use of federally funded aerospace R&D. The results of this investigation are relevant to researchers investigating information-seeking behavior of aerospace engineers. They are also relevant to R&D managers and policy planners concerned with transferring the results of federally funded aerospace R&D to the U.S. aerospace industry.

  12. Engineering Ecosystems and Synthetic Ecologies#

    PubMed Central

    Mee, Michael T; Wang, Harris H

    2012-01-01

    Microbial ecosystems play an important role in nature. Engineering these systems for industrial, medical, or biotechnological purposes are important pursuits for synthetic biologists and biological engineers moving forward. Here, we provide a review of recent progress in engineering natural and synthetic microbial ecosystems. We highlight important forward engineering design principles, theoretical and quantitative models, new experimental and manipulation tools, and possible applications of microbial ecosystem engineering. We argue that simply engineering individual microbes will lead to fragile homogenous populations that are difficult to sustain, especially in highly heterogeneous and unpredictable environments. Instead, engineered microbial ecosystems are likely to be more robust and able to achieve complex tasks at the spatial and temporal resolution needed for truly programmable biology. PMID:22722235

  13. Aircraft Engine Systems

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2003-01-01

    The objective is to develop the capability to numerically model the performance of gas turbine engines used for aircraft propulsion. This capability will provide turbine engine designers with a means of accurately predicting the performance of new engines in a system environment prior to building and testing. The 'numerical test cell' developed under this project will reduce the number of component and engine tests required during development. As a result, the project will help to reduce the design cycle time and cost of gas turbine engines. This capability will be distributed to U.S. turbine engine manufacturers and air framers. This project focuses on goals of maintaining U.S. superiority in commercial gas turbine engine development for the aeronautics industry.

  14. Air Pollution and Industry.

    ERIC Educational Resources Information Center

    Ross, R. D., Ed.

    This book is an authoritative reference and practical guide designed to help the plant engineer identify and solve industrial air pollution problems in order to be able to meet current air pollution regulations. Prepared under the editorial supervision of an experienced chemical engineer, with each chapter contributed by an expert in his field,…

  15. Converting waste gases from pulp mills into value-added chemicals

    EPA Science Inventory

    Engineering, Miami University, 64 J Engineering Building, Oxford, OH, 45056 The pulp and paper industry generates large amounts of HAPs, VOCs and total reduced sulfur compounds (TRSs) of the various sources. As the industry is moving to a sustainable future, the U.S. EPA and Mia...

  16. Information Literacy for First-Year Students: An Embedded Curriculum Approach

    ERIC Educational Resources Information Center

    Andrews, T.; Patil, R.

    2007-01-01

    The ability to access, evaluate and synthesise high-quality research material is the backbone of critical thinking in academic and professional contexts for Engineers and Industrial Designers. This is the premise upon which teaching and library staff developed Information Literacy (IL) components in Engineering & Industrial Design Practice--a…

  17. Innovative University-Industry-Government Collaboration. Six Case Studies from the USA.

    ERIC Educational Resources Information Center

    Dryden, R. D.; Erzurumlu, H. C. M.

    1996-01-01

    University-industry-government collaborations face challenges that necessitate a new culture or mindset. Six U.S. case examples demonstrate ways to create a win-win-win scenario and sustain partnerships: Oregon Joint Graduate Schools of Engineering; Network for Engineering and Research in Oregon; Blacksburg Electronic Village; research…

  18. Industrial Work Placement in Higher Education: A Study of Civil Engineering Student Engagement

    ERIC Educational Resources Information Center

    Tennant, Stuart; Murray, Mike; Gilmour, Bob; Brown, Linda

    2018-01-01

    For civil engineering undergraduates, short-term industrial work placement provides an invaluable learning experience. Notwithstanding the near-universal endorsement of short-term placement programmes, the resulting experience is rarely articulated through the student voice. This article provides an analysis of 174 questionnaires returned by…

  19. University/government/industry relations in aeronautics

    NASA Technical Reports Server (NTRS)

    Schairer, G. S.

    1975-01-01

    Methods for improving the relationships between universities, the aircraft industry, and the Government are proposed. The author submits nine specific recommendations aimed at more effective aeronautical engineering education and employment of graduate engineers. The need for improved communication between the organizations which influence the advancement of aeronautical sciences is stressed.

  20. 15 CFR 801.10 - Rules and regulations for the BE-120, Benchmark Survey of Transactions in Selected Services and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; educational and training services; engineering, architectural, and surveying services; financial services (purchases only, by companies or parts of companies that are not financial services providers); industrial engineering services; industrial-type maintenance, installation, alteration, and training services; legal...

  1. Industrial Sponsor Perspective on Leveraging Capstone Design Projects to Enhance Their Business

    ERIC Educational Resources Information Center

    Weissbach, Robert S.; Snyder, Joseph W.; Evans, Edward R., Jr.; Carucci, James R., Jr.

    2017-01-01

    Capstone design projects have become commonplace among engineering and engineering technology programs. These projects are valuable tools when assessing students, as they require students to work in teams, communicate effectively, and demonstrate technical competency. The use of industrial sponsors enhances these projects by giving these projects…

  2. 46 CFR 107.231 - Inspection for certification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... chapter, Electrical Engineering; 1 1 Requirements for industrial systems and components are in Subpart 111.94 of this chapter. (3) Subchapter F of this chapter, Marine Engineering; 2 2 Requirements for industrial systems and components are in Subpart 58.60 of this chapter. (4) Subchapter E of this chapter...

  3. 46 CFR 107.231 - Inspection for certification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... chapter, Electrical Engineering; 1 1 Requirements for industrial systems and components are in Subpart 111.94 of this chapter. (3) Subchapter F of this chapter, Marine Engineering; 2 2 Requirements for industrial systems and components are in Subpart 58.60 of this chapter. (4) Subchapter E of this chapter...

  4. 15 CFR 801.10 - Rules and regulations for the BE-120, Benchmark Survey of Transactions in Selected Services and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; educational and training services; engineering, architectural, and surveying services; financial services (purchases only, by companies or parts of companies that are not financial services providers); industrial engineering services; industrial-type maintenance, installation, alteration, and training services; legal...

  5. 46 CFR 107.231 - Inspection for certification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... chapter, Electrical Engineering; 1 1 Requirements for industrial systems and components are in Subpart 111.94 of this chapter. (3) Subchapter F of this chapter, Marine Engineering; 2 2 Requirements for industrial systems and components are in Subpart 58.60 of this chapter. (4) Subchapter E of this chapter...

  6. 46 CFR 107.231 - Inspection for certification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... chapter, Electrical Engineering; 1 1 Requirements for industrial systems and components are in Subpart 111.94 of this chapter. (3) Subchapter F of this chapter, Marine Engineering; 2 2 Requirements for industrial systems and components are in Subpart 58.60 of this chapter. (4) Subchapter E of this chapter...

  7. 46 CFR 107.231 - Inspection for certification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... chapter, Electrical Engineering; 1 1 Requirements for industrial systems and components are in Subpart 111.94 of this chapter. (3) Subchapter F of this chapter, Marine Engineering; 2 2 Requirements for industrial systems and components are in Subpart 58.60 of this chapter. (4) Subchapter E of this chapter...

  8. Continuous Improvement in the Industrial and Management Systems Engineering Programme at Kuwait University

    ERIC Educational Resources Information Center

    Aldowaisan, Tariq; Allahverdi, Ali

    2016-01-01

    This paper describes the process employed by the Industrial and Management Systems Engineering programme at Kuwait University to continuously improve the programme. Using a continuous improvement framework, the paper demonstrates how various qualitative and quantitative analyses methods, such as hypothesis testing and control charts, have been…

  9. 78 FR 19530 - RG Steel Sparrows Point LLC, Formerly Known as Severstal Sparrows Point LLC, a Subsidiary of RG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ..., Alliance Engineering, Inc., Washington Group International, Javan & Walter, Inc., Kinetic Technical... Consulting, Crown Security, Eastern Automation, EDS (HP), TekSystems, URS Corporation, B More Industrial... Service Company, Sun Associated Industries, Inc., MPI Consultants LLC, Alliance Engineering, Inc...

  10. Personal Study Planning in Doctoral Education in Industrial Engineering

    ERIC Educational Resources Information Center

    Lahenius, K.; Martinsuo, M.

    2010-01-01

    The duration of doctoral studies has increased in Europe. Personal study planning has been considered as one possible solution to help students in achieving shorter study times. This study investigates how doctoral students experience and use personal study plans in one university department of industrial engineering. The research material…

  11. 77 FR 24587 - Addition of Certain Persons to the Entity List; and Implementation of Entity List Annual Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ...; --Mahtab Technical Engineering Company; --Composite Propellant Missile Industry; and --Sanaye Sokhte... entity; 0 (i) By removing the ``Country'' column for South Korea, including the South Korean entity... Technical Engineering Company;. --Composite Propellant Missile Industry; and. --Sanaye Sokhte Morakab (SSM...

  12. 75 FR 68327 - Certain Welded Carbon Steel Standard Pipes and Tubes From India: Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... Lloyds Metals & Engineers Ltd. and Lloyds Steel Industries Ltd.) (collectively, Lloyds) and Ushdev... and all affiliates, Lloyds Metals & Engineers Ltd., and Lloyds Steel Industries Ltd. Because we... DEPARTMENT OF COMMERCE International Trade Administration [A-533-502] Certain Welded Carbon Steel...

  13. Bacteria engineered for fuel ethanol production: current status

    Treesearch

    B.S. Dien; M.A. Cotta; T.W. Jeffries

    2003-01-01

    The lack of industrially suitable microorganisms for converting biomass into fuel ethanol has traditionally been cited as a major technical roadblock to developing a bioethanol industry. In the last two decades, numerous microorganisms have been engineered to selectively produce ethanol. Lignocellulosic biomass contains complex carbohydrates that necessitate utilizing...

  14. Engineering industrial oil biosynthesis: cloning and characterization of Kennedy pathway acyltransferases from novel oilseed species

    USDA-ARS?s Scientific Manuscript database

    For more than twenty years, various industrial, governmental, and academic laboratories have developed and refined genetic engineering strategies aimed at manipulating lipid metabolism in plants and microbes. The goal of these projects is to produce renewable specialized oils that can effectively c...

  15. The Exploration and Practice of Gradually Industrialization Model in Software Engineering Education: A Factual Instance of the Excellent Engineer Plan of China

    ERIC Educational Resources Information Center

    Liu, Shu; Ma, Peijun; Li, Dong

    2012-01-01

    The current education model and practices in the Higher education sector in China have been successful in educating students for academic excellence, for producing industry-linked and practice-oriented graduates, who could quickly fit into the industrial working environment, has been a problem. There is a big gap between the theoretical knowledge…

  16. Competency Focused Engineering Education with Reference to IT Related Disciplines: Is the Indian System Ready for Transformation?

    ERIC Educational Resources Information Center

    Goel, Sanjay

    2006-01-01

    The growth of the Indian IT industry has been of great interest to the international IT community. Nearly one third of fresh Indian engineering graduates are currently joining the IT industry irrespective of their specialization. The success of the Indian IT industry, however, has not been yet been leveraged for developing India as a preferred…

  17. Development of Iron Aluminides.

    DTIC Science & Technology

    1986-03-01

    in the evolution of technology for the aerospace industry. This is particularly true for the gas turbine engine industry, where the requirements for...vulnerability of the U.S. gas turbine industry in terms of its heavy reliance upon non-domestic sources for much of its strategic metals requirements...superalloys used in gas turbine engines. The questionable future availability of chromium, for example, poses a potential serious threat to these applicacions

  18. Evaluation of Project Based Learning in the Area of Manufacturing and Statistics in the Degree of Industrial Technology

    ERIC Educational Resources Information Center

    Buj-Corral, Irene; Marco-Almagro, Lluís; Riba, Alex; Vivancos-Calvet, Joan; Tort-Martorell, Xavier

    2015-01-01

    In the subject Project I in the second year of the Degree in Industrial Technology Engineering taught at the School of Industrial Engineering of Barcelona (ETSEIB), subgroups of 3-4 students within groups of 20 students develop a project along a semester. Results of 2 projects are presented related to manufacturing, measurement of parts and the…

  19. Competitive Tradeoff Modeling: Methodology, Computation, and Testing

    DTIC Science & Technology

    1997-12-01

    variational inequalities produced the dissertation of Ozge [4], which presented and justified a new method for numerical solution of stochastic...Philosophy (Industrial Engineering) in 1996. • A. Yonca Ozge , Research Assistant. Ms. Ozge received the degree of Doctor of Philosophy (Industrial...Ph.D. Disserta- tion, Department of Industrial Engineering, University of Wisconsin- Madison, 1996. [2] G. Gürkan, A. Y. Ozge , and S. M. Robinson

  20. Job Prospects for Mechanical Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1986-01-01

    Discusses the career outlook for mechanical engineers. Explains that the number of bachelor degrees awarded yearly has reached a plateau, but salaries continue to rise. Suggests that the largest increase in demand for mechanical engineers will come from industries involved in automation, particularly those developing robotics. (TW)

  1. Biomedical Engineering Education in Perspective

    ERIC Educational Resources Information Center

    Gowen, Richard J.

    1973-01-01

    Discusses recent developments in the health care industry and their impact on the future of biomedical engineering education. Indicates that a more thorough understanding of the complex functions of the living organism can be acquired through the application of engineering techniques to problems of life sciences. (CC)

  2. 33 CFR 211.143 - Delegations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....143 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION WITH CIVIL WORKS PROJECTS Conveyances for Public Port Or Industrial Facilities § 211.143 Delegations. (a) The Chief of Engineers and/or the...

  3. The Top 10 Careers for the 1990s.

    ERIC Educational Resources Information Center

    Price, Paul

    1988-01-01

    Reports on a survey of experts from industry and academia which attempted to identify the top ten major career fields for engineers, including materials, biotechnology, automation and robotics, computer engineering, metals and mining, neural modeling, along with marine, aerospace, environmental and energy-related engineering. (TW)

  4. 33 CFR 211.143 - Delegations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....143 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION WITH CIVIL WORKS PROJECTS Conveyances for Public Port Or Industrial Facilities § 211.143 Delegations. (a) The Chief of Engineers and/or the...

  5. Continuing Engineering Studies Series; Monograph No. 3.

    ERIC Educational Resources Information Center

    American Society for Engineering Education, Washington, DC.

    Interest in continuing engineering studies has been growing within the American Society for Engineering Education as well as among educational institutions, industrial organizations, professional association, and governmental agencies. Feeling a national need for uniformity, in 1968 the National Planning Conference authorized a National Task Force…

  6. Job Prospects for Petroleum Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1988-01-01

    Describes petroleum engineering as one area in industry where job opportunities are few but where the worst of the declines has been seen. Discusses the causes of the decline. Lists several areas where petroleum engineers have found alternatives including environmental projects, water supply projects, and computer applications. (CW)

  7. Evan Weaver | NREL

    Science.gov Websites

    Evan Weaver Photo of Evan Weaver Evan Weaver Researcher III-Software Engineering Evan.Weaver , he works as a software engineer developing whole-building energy modeling tools. Prior to joining NREL, he worked in the biomedical industry as a software engineer, specializing in graphical user

  8. Job Prospects for Agricultural Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1986-01-01

    Discusses the career outlook for agricultural engineers. Explains that the number of bachelor degrees awarded yearly continues to drop, and that the traditional industries that hire agricultural engineers are employing fewer each year. Suggests that future opportunities exist in the areas of information technology, biotechnology, and research. (TW)

  9. 24 CFR 3285.4 - Incorporation by reference (IBR).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-6600, fax number (253) 565-7265. (1) PS1-95, Construction and Industrial Plywood (with typical APA... for Engineering Purposes (Unified Soil Classification System), 2000, IBR approved for the table at... purchase from the Structural Engineering Institute/American Society of Civil Engineers (SEI/ASCE), 1801...

  10. 24 CFR 3285.4 - Incorporation by reference (IBR).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-6600, fax number (253) 565-7265. (1) PS1-95, Construction and Industrial Plywood (with typical APA... for Engineering Purposes (Unified Soil Classification System), 2000, IBR approved for the table at... purchase from the Structural Engineering Institute/American Society of Civil Engineers (SEI/ASCE), 1801...

  11. New Challenging Approaches to Engineering Education: Enhancing University-Industry Co-Operation

    ERIC Educational Resources Information Center

    Korhonen-Yrjanheikki, Kati; Tukiainen, Taina; Takala, Minna

    2007-01-01

    Globalization, accelerated time-based competition, qualitative dynamics, rapid development of technology and especially Information and Communications Technology (ICT) developments challenge engineering education and capability development of each engineer. The success and the competitiveness of companies are increasingly based on their employees.…

  12. IPAD project overview

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1980-01-01

    To respond to national needs for improved productivity in engineering design and manufacturing, a NASA supported joint industry/government project is underway denoted Integrated Programs for Aerospace-Vehicle Design (IPAD). The objective is to improve engineering productivity through better use of computer technology. It focuses on development of technology and associated software for integrated company-wide management of engineering information. The project has been underway since 1976 under the guidance of an Industry Technical Advisory Board (ITAB) composed of representatives of major engineering and computer companies and in close collaboration with the Air Force Integrated Computer-Aided Manufacturing (ICAM) program. Results to date on the IPAD project include an in-depth documentation of a representative design process for a large engineering project, the definition and design of computer-aided design software needed to support that process, and the release of prototype software to integrate selected design functions. Ongoing work concentrates on development of prototype software to manage engineering information, and initial software is nearing release.

  13. Efficiency Assessment of a Blended-Learning Educational Methodology in Engineering

    NASA Astrophysics Data System (ADS)

    Rogado, Ana Belén González; Conde, Ma José Rodríguez; Migueláñez, Susana Olmos; Riaza, Blanca García; Peñalvo, Francisco José García

    The content of this presentation highlights the importance of an active learning methodology in engineering university degrees in Spain. We present of some of the outcomes from an experimental study carried out during the academic years 2007/08 and 2008/09 with engineering students (Technical Industrial Engineering: Mechanics, Civical Design Engineering: Civical building, Technical Architecture and Technical Engineering on Computer Management.) at the University of Salamanca. In this research we select a subject which is common for the four degrees: Computer Science. This study has the aim of contributing to the improvement of education and teaching methods for a better performance of students in Engineering.

  14. Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects.

    PubMed

    Guan, Ningzi; Zhuge, Xin; Li, Jianghua; Shin, Hyun-Dong; Wu, Jing; Shi, Zhongping; Liu, Long

    2015-01-01

    Propionibacteria are actinobacteria consisting of two principal groups: cutaneous and dairy. Cutaneous propionibacteria are considered primary pathogens to humans, whereas dairy propionibacteria are widely used in the food and pharmaceutical industries. Increasing attention has been focused on improving the performance of dairy propionibacteria for the production of industrially important chemicals, and significant advances have been made through strain engineering and process optimization in the production of flavor compounds, nutraceuticals, and antimicrobial compounds. In addition, genome sequencing of several propionibacteria species has been completed, deepening understanding of the metabolic and physiological features of these organisms. However, the metabolic engineering of propionibacteria still faces several challenges owing to the lack of efficient genome manipulation tools and the existence of various types of strong restriction-modification systems. The emergence of systems and synthetic biology provides new opportunities to overcome these bottlenecks. In this review, we first introduce the major species of propionibacteria and their properties and provide an overview of their functions and applications. We then discuss advances in the genome sequencing and metabolic engineering of these bacteria. Finally, we discuss systems and synthetic biology approaches for engineering propionibacteria as efficient and robust cell factories for the production of industrially important chemicals.

  15. The application of powerful promoters to enhance gene expression in industrial microorganisms.

    PubMed

    Zhou, Shenghu; Du, Guocheng; Kang, Zhen; Li, Jianghua; Chen, Jian; Li, Huazhong; Zhou, Jingwen

    2017-02-01

    Production of useful chemicals by industrial microorganisms has been attracting more and more attention. Microorganisms screened from their natural environment usually suffer from low productivity, low stress resistance, and accumulation of by-products. In order to overcome these disadvantages, rational engineering of microorganisms to achieve specific industrial goals has become routine. Rapid development of metabolic engineering and synthetic biology strategies provide novel methods to improve the performance of industrial microorganisms. Rational regulation of gene expression by specific promoters is essential to engineer industrial microorganisms for high-efficiency production of target chemicals. Identification, modification, and application of suitable promoters could provide powerful switches at the transcriptional level for fine-tuning of a single gene or a group of genes, which are essential for the reconstruction of pathways. In this review, the characteristics of promoters from eukaryotic, prokaryotic, and archaea microorganisms are briefly introduced. Identification of promoters based on both traditional biochemical and systems biology routes are summarized. Besides rational modification, de novo design of promoters to achieve gradient, dynamic, and logic gate regulation are also introduced. Furthermore, flexible application of static and dynamic promoters for the rational engineering of industrial microorganisms is highlighted. From the perspective of powerful promoters in industrial microorganisms, this review will provide an extensive description of how to regulate gene expression in industrial microorganisms to achieve more useful goals.

  16. Transferring experience labs for production engineering students to universities in newly industrialized countries

    NASA Astrophysics Data System (ADS)

    Leiden, A.; Posselt, G.; Bhakar, V.; Singh, R.; Sangwan, K. S.; Herrmann, C.

    2018-01-01

    The Indian economy is one of the fastest growing economies in the world and the demand for the skilled engineers is increasing. Subsequently the Indian education sector is growing to provide the necessary number of skilled engineers. Current Indian engineering graduates have broad theoretical background but lack in methodological, soft and practical skills. To bridge this gap, the experience lab ideas from the engineering education at “Die Lernfabrik” (learning factory) of the Technische Universität Braunschweig (TU Braunschweig) is transferred to the Birla Institute of Technology and Science in Pilani (BITS Pilani), India. This Lernfabrik successfully strengthened the methodological, soft and practical skills of the TU Braunschweig production-engineering graduates. The target group is discrete manufacturing education with focusing on energy and resource efficiency as well as cyber physical production systems. As the requirements of industry and academia in India differs from Germany, the transfer of the experience lab to the Indian education system needs special attention to realize a successful transfer project. This publication provides a unique approach to systematically transfer the educational concept in Learning Factory from a specific university environment to a different environment in a newly industrialized country. The help of a bilateral university driven practice partnership between the two universities creates a lighthouse for the Indian university environment.

  17. 75 FR 63060 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A. Model PIAGGIO P-180 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... failure of engine oil dipsticks, installed on Pratt & Whitney Canada (P&WC) PT6A66 and PT6A66B engines... subsequent corrosion, can cause incorrect reading of the engine oil low level on the Refuel/Ground Test Panel. If left uncorrected, this situation could lead to in-flight engine failure(s). We are issuing this AD...

  18. The need for scientific software engineering in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Luty, Brock; Rose, Peter W.

    2017-03-01

    Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.

  19. The need for scientific software engineering in the pharmaceutical industry.

    PubMed

    Luty, Brock; Rose, Peter W

    2017-03-01

    Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.

  20. Automotive Control Systems: For Engine, Driveline, and Vehicle

    NASA Astrophysics Data System (ADS)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  1. Searches Conducted for Engineers.

    ERIC Educational Resources Information Center

    Lorenz, Patricia

    This paper reports an industrial information specialist's experience in performing online searches for engineers and surveys the databases used. Engineers seeking assistance fall into three categories: (1) those who recognize the value of online retrieval; (2) referrals by colleagues; and (3) those who do not seek help. As more successful searches…

  2. 33 CFR 211.144 - Notice.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION WITH CIVIL WORKS PROJECTS Conveyances for Public Port Or Industrial Facilities § 211.144 Notice. The District Engineer shall give notice of the availability of any...

  3. 33 CFR 211.144 - Notice.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION WITH CIVIL WORKS PROJECTS Conveyances for Public Port Or Industrial Facilities § 211.144 Notice. The District Engineer shall give notice of the availability of any...

  4. What`s available in industrial vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzhauer, R.

    A large assortment of material handling vehicles are available for transporting and lifting products. Equipment is offered with electric (battery) and internal combustion power, operator walking alongside or riding, and inside or outside applications. Factors such as load capacity, turning radius, aisle width, travel speed, lifting height, controls, and cost also enter the selection equation. The various types of vehicles serving the industrial truck market are broken into seven classes, according to guidelines established by the Industrial Truck Association (ITA). This association deals with issues of common interests to manufacturers of fork lifts, tow tractors, rough terrain vehicles, hand palletmore » trucks, automated guided vehicles, and their suppliers; develops voluntary engineering practices; and collects and disseminates statistical information relating to the industrial truck marketplace. The seven classes are: Electric Motor Rider Trucks; Electric Motor Narrow Aisle Trucks; Electric Motor Hand Trucks; Internal Combustion Engine Trucks, cushion tired; Internal Combustion Engine Trucks, pneumatic tired; Electric and Internal Combustion Engine Tractors; and Rough Terrain Fork Lift Trucks. The following pages present a descriptive and pictorial overview of the equipment available in the first five vehicle classes. The last two categories are not covered because of their limited industrial use.« less

  5. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes.

    PubMed

    Singh, Raushan Kumar; Tiwari, Manish Kumar; Singh, Ranjitha; Lee, Jung-Kul

    2013-01-10

    Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts. Protein engineering aims at modifying the sequence of a protein, and hence its structure, to create enzymes with improved functional properties such as stability, specific activity, inhibition by reaction products, and selectivity towards non-natural substrates. Soluble enzymes are often immobilized onto solid insoluble supports to be reused in continuous processes and to facilitate the economical recovery of the enzyme after the reaction without any significant loss to its biochemical properties. Immobilization confers considerable stability towards temperature variations and organic solvents. Multipoint and multisubunit covalent attachments of enzymes on appropriately functionalized supports via linkers provide rigidity to the immobilized enzyme structure, ultimately resulting in improved enzyme stability. Protein engineering and immobilization techniques are sequential and compatible approaches for the improvement of enzyme properties. The present review highlights and summarizes various studies that have aimed to improve the biochemical properties of industrially significant enzymes.

  6. Space Industry Commercialization: A Systems Engineering Evaluation of Alternatives

    NASA Astrophysics Data System (ADS)

    Dinally, Jihan

    The Constellation Program cancellation reversed the government and commercial space industry's roles and relationships by dedicating the majority of the federal funding and opportunities to the commercial space industry and left the government space industry in search of an approach to collaborate with the dominant organization, the commercial space industry service providers. The space industry government agencies, Air Force Space Command (AFSPC) and National Aeronautics and Space Administration (NASA) had realized that to gain resources in the new commercially oriented economic environment, they had to work together and possess the capabilities aligned with the National Space Policy's documented goals. Multi-organizational collaboration in space industry programs is challenging, as NASA, AFSPC, and commercial providers, follow different [1] enterprise architecture guidance such as the NASA systems engineering Handbook, MIL-STD-499 and "A Guide to the systems engineering Body of Knowledge" by the International Council on systems engineering [2] [3]. A solution to streamline their enterprise architecture documentation and meet National Space Policy goals is the Multi-User Architecture Maturity Model Methodology (MAM3), which offers a tailored systems engineering technique the government agencies and private companies can implement for the program's maturity level. In order to demonstrate the MAM3, a CubeSat motivated study was conducted partnering a commercial provider with a government agency. A survey of the commercial space industry service providers' capabilities was performed to select the private companies for the study. Using the survey results, the commercial space industry service providers were ranked using the Analytic Hierarchy Process (AHP) [4]. The AHP is a structured technique for making complex decisions for representing and quantifying its weights, relating those weights to overall goals, and evaluating alternative solutions [5] - [8]. The weights applied to each of the alternatives [9] and criteria (i.e. goals) were based on the National Space Policy focused survey administered to United States owned commercial space industry service providers.

  7. Healthcare Engineering Defined: A White Paper.

    PubMed

    Chyu, Ming-Chien; Austin, Tony; Calisir, Fethi; Chanjaplammootil, Samuel; Davis, Mark J; Favela, Jesus; Gan, Heng; Gefen, Amit; Haddas, Ram; Hahn-Goldberg, Shoshana; Hornero, Roberto; Huang, Yu-Li; Jensen, Øystein; Jiang, Zhongwei; Katsanis, J S; Lee, Jeong-A; Lewis, Gladius; Lovell, Nigel H; Luebbers, Heinz-Theo; Morales, George G; Matis, Timothy; Matthews, Judith T; Mazur, Lukasz; Ng, Eddie Yin-Kwee; Oommen, K J; Ormand, Kevin; Rohde, Tarald; Sánchez-Morillo, Daniel; Sanz-Calcedo, Justo García; Sawan, Mohamad; Shen, Chwan-Li; Shieh, Jiann-Shing; Su, Chao-Ton; Sun, Lilly; Sun, Mingui; Sun, Yi; Tewolde, Senay N; Williams, Eric A; Yan, Chongjun; Zhang, Jiajie; Zhang, Yuan-Ting

    2015-01-01

    Engineering has been playing an important role in serving and advancing healthcare. The term "Healthcare Engineering" has been used by professional societies, universities, scientific authors, and the healthcare industry for decades. However, the definition of "Healthcare Engineering" remains ambiguous. The purpose of this position paper is to present a definition of Healthcare Engineering as an academic discipline, an area of research, a field of specialty, and a profession. Healthcare Engineering is defined in terms of what it is, who performs it, where it is performed, and how it is performed, including its purpose, scope, topics, synergy, education/training, contributions, and prospects.

  8. Engineering modular polyketide synthases for production of biofuels and industrial chemicals.

    PubMed

    Cai, Wenlong; Zhang, Wenjun

    2018-04-01

    Polyketide synthases (PKSs) are one of the most profound biosynthetic factories for producing polyketides with diverse structures and biological activities. These enzymes have been historically studied and engineered to make un-natural polyketides for drug discovery, and have also recently been explored for synthesizing biofuels and industrial chemicals due to their versatility and customizability. Here, we review recent advances in the mechanistic understanding and engineering of modular PKSs for producing polyketide-derived chemicals, and provide perspectives on this relatively new application of PKSs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Views on the impact of HOST

    NASA Technical Reports Server (NTRS)

    Esgar, J. B.; Sokolowski, Daniel E.

    1989-01-01

    The Hot Section Technology (HOST) Project, which was initiated by NASA Lewis Research Center in 1980 and concluded in 1987, was aimed at improving advanced aircraft engine hot section durability through better technical understanding and more accurate design analysis capability. The project was a multidisciplinary, multiorganizational, focused research effort that involved 21 organizations and 70 research and technology activities and generated approximately 250 research reports. No major hardware was developed. To evaluate whether HOST had a significant impact on the overall aircraft engine industry in the development of new engines, interviews were conducted with 41 participants in the project to obtain their views. The summarized results of these interviews are presented. Emphasis is placed on results relative to three-dimensional inelastic structural analysis, thermomechanical fatigue testing, constitutive modeling, combustor aerothermal modeling, turbine heat transfer, protective coatings, computer codes, improved engine design capability, reduced engine development costs, and the impacts on technology transfer and the industry-government partnership.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolonkin, A.

    A first-hand account of developments in the Soviet rocket industry is presented. The organization and leadership of the rocket and missile industry are traced from its beginning in the 1920s. The development of the Glushko Experimental Design Bureau, where the majority of Soviet rocket engines were created, is related. The evolution of Soviet rocket engines is traced in regard to both their technical improvement and their application in missiles and space vehicles. Improved Glushko engines and specialized Isaev and Kosberg engines are discussed. The difficulties faced by the Soviet missile and space program, such as the pre-Sputnik failures, the oscillationmore » problem of 1965/1966, which exposed a weakness in Soviet ICBM missiles, and the Nedelin disaster of 1960, which cost the lives of more than 200 scientists and engineers, as well as the Commander-in-Chief of the Strategic Rocket Forces, Marshall Nedelin, are examined. 122 refs.« less

  11. Space Station Engineering and Technology Development: Proceedings of the Panel on In-Space Engineering Research and Technology Development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In 1984 the ad hoc committee on Space Station Engineering and Technology Development of the Aeronautics and Space Engineering Board (ASEB) conducted a review of the National Aeronautics and Space Administration's (NASA's) space station program planning. The review addressed the initial operating configuration (IOC) of the station. The ASEB has reconstituted the ad hoc committee which then established panels to address each specific related subject. The participants of the panels come from the committee, industry, and universities. The proceedings of the Panel on In Space Engineering Research and Technology Development are presented in this report. Activities, and plans for identifying and developing R&T programs to be conducted by the space station and related in space support needs including module requirements are addressed. Consideration is given to use of the station for R&T for other government agencies, universities, and industry.

  12. Global engineering teams - a programme promoting teamwork in engineering design and manufacturing

    NASA Astrophysics Data System (ADS)

    Oladiran, M. T.; Uziak, J.; Eisenberg, M.; Scheffer, C.

    2011-05-01

    Engineering graduates are expected to possess various competencies categorised into hard and soft skills. The hard skills are acquired through specific coursework, but the soft skills are often treated perfunctorily. Global Engineering Teams (GET) is a programme that promotes project-oriented tasks in virtual student teams working in collaboration with industry partners. Teamwork is a major success factor for GET as students always work in groups of varying sizes. A questionnaire-based survey of the 2008 cohort of GET students was conducted to assess teamwork, communication and conflict resolution among group members. The results confirmed that deliverables are readily achieved in teams and communication was open. A challenge of using virtual teams is the availability of high-speed Internet access. The GET programme shows that it is possible to deliver engineering design and manufacturing via industry/university collaboration. The programme also facilitates multidisciplinary teamwork at an international level.

  13. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions.

    PubMed

    Liu, Jiaheng; Li, Huiling; Zhao, Guangrong; Caiyin, Qinggele; Qiao, Jianjun

    2018-05-01

    NAD and NADP, a pivotal class of cofactors, which function as essential electron donors or acceptors in all biological organisms, drive considerable catabolic and anabolic reactions. Furthermore, they play critical roles in maintaining intracellular redox homeostasis. However, many metabolic engineering efforts in industrial microorganisms towards modification or introduction of metabolic pathways, especially those involving consumption, generation or transformation of NAD/NADP, often induce fluctuations in redox state, which dramatically impede cellular metabolism, resulting in decreased growth performance and biosynthetic capacity. Here, we comprehensively review the cofactor engineering strategies for solving the problematic redox imbalance in metabolism modification, as well as their features, suitabilities and recent applications. Some representative examples of in vitro biocatalysis are also described. In addition, we briefly discuss how tools and methods from the field of synthetic biology can be applied for cofactor engineering. Finally, future directions and challenges for development of cofactor redox engineering are presented.

  14. The History of the Internet Search Engine: Navigational Media and the Traffic Commodity

    NASA Astrophysics Data System (ADS)

    van Couvering, E.

    This chapter traces the economic development of the search engine industry over time, beginning with the earliest Web search engines and ending with the domination of the market by Google, Yahoo! and MSN. Specifically, it focuses on the ways in which search engines are similar to and different from traditional media institutions, and how the relations between traditional and Internet media have changed over time. In addition to its historical overview, a core contribution of this chapter is the analysis of the industry using a media value chain based on audiences rather than on content, and the development of traffic as the core unit of exchange. It shows that traditional media companies failed when they attempted to create vertically integrated portals in the late 1990s, based on the idea of controlling Internet content, while search engines succeeded in creating huge "virtually integrated" networks based on control of Internet traffic rather than Internet content.

  15. Creating global networks through an online engineering graduate programme

    NASA Astrophysics Data System (ADS)

    Murray, M. H.

    2011-03-01

    Internationally, the railway industry is facing a severe shortage of engineers with high-level, relevant, professional and technical knowledge and abilities, in particular amongst engineers involved in the design, construction and maintenance of railway infrastructure. A unique graduate level programme has been created to meet that global need via a fully online, distance education format. The development and operation of this Master of Engineering degree is proposed as a model of the process needed for industry-relevance, flexible delivery, international networking and professional development required for a successful graduate engineering programme in the twenty-first century. In particular, this paper demonstrates how a mix of new and more familiar technologies are utilised through a variety of tasks to overcome the huge distances and multiple time zones that separate the participants across a growing number of countries, successfully achieving close and sustained interaction amongst the participants and railway experts.

  16. Development of Graduate Course Education by Industry Collaboration in Center for Engineering Education Development, CEED

    NASA Astrophysics Data System (ADS)

    Noguchi, Toru; Yoshikawa, Kozo; Nakamura, Masato; Kaneko, Katsuhiko

    New education programs for engineering graduate courses, and the achievements are described. Following the previous reports on overseas and domestic internship2) , 3) , this article states other common programs ; seminars on state of technologies in industries, practical English and internationalization programs, and a program to accept overseas internship students. E-learning system to assist off-campus students is also described. All these programs are developed and conducted by specialist professors invited from industries and national institutions, in collaboration with faculty professors. Students learn how the engineering science apply to the practical problems, acquire wider view and deeper understanding on industries, and gain abilities to act in global society including communication skill, those are not taught in classrooms and laboratories. Educational effects of these industry collaborated programs is significant to activate the graduate course education, although the comprehensive evaluation is the future subject.

  17. Role-play and the Industrial Revolution: an STS approach to the teaching of steam engines

    NASA Astrophysics Data System (ADS)

    Sabka, Diego; Pereira de Pereira, Alexsandro; Lima Junior, Paulo

    2016-11-01

    Role-play is an interesting, although underexplored, way of teaching physics in high school. This paper presents a science-technology-society (STS) approach to the teaching of heat engines based on a role-play of the Industrial Revolution. Enacting the role-play, students are presented not only to scientific concepts, but also to the social and technological controversies of industrial development.

  18. Harnessing the Environmental Professional Expertise of Engineering Students—The Course: ``Environmental Management Systems in the Industry''

    NASA Astrophysics Data System (ADS)

    Ben-Zvi-Assaraf, Orit; Ayal, Nitzan

    2010-12-01

    More and more technical universities now advocate integrating sustainability in higher education and including it as a strategic goal for improving education's quality and relevance to society. This study examines 30 fourth-year chemical engineering students, graduates of a university course designed to combine their terminological domain with sustainability-oriented goals, focusing on topics like corporate sustainability, developing environmental policy, introduction to ISO 14001—Environmental Management Systems (EMS), and environmental legislation. The study explores their perception of industrial-environmental issues and asks—How did the study unit influence the students' ability to use their preexisting scientific knowledge, while relating to industrial-environmental issues? Our findings indicate that engineering students can develop industrial-environmental awareness, and make use of interdisciplinary knowledge beyond that strictly related to the realm of engineering. Regarding the research's particular aim—i.e. determining the study unit's influence on students' ability to relate industrial-environmental issues to their own field of engineering—the findings indeed show a change in the students' conceptions of environmental elements related to industry. The course graduates became more attentive to the environmental aspects associated with building and opening a factory, and the concepts they raised in connection with the topic gained in variety.

  19. Engineering Lessons Learned and Systems Engineering Applications

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.

    2005-01-01

    Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. As part of the NASA Technical Standards Program activities, engineering lessons learned datasets have been identified from a number of sources. These are being searched and screened for those having a relation to Technical Standards. This paper will address some of these Systems Engineering Lessons Learned and how they are being related to Technical Standards within the NASA Technical Standards Program, including linking to the Agency's Interactive Engineering Discipline Training Courses and the life cycle for a flight vehicle development program.

  20. National Electrical Code in Power Engineering Course for Electrical Engineering Curriculum

    ERIC Educational Resources Information Center

    Azizur, Rahman M. M.

    2011-01-01

    In order to ensure the safety of their inhabitants and properties, the residential, industrial and business installations require complying with NEC (national electrical code) for electrical systems. Electrical design engineers and technicians rely heavily on these very important design guidelines. However, these design guidelines are not formally…

  1. Engineering and Related Occupations. Reprinted from the Occupational Outlook Handbook, 1978-79 Edition.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    Focusing on engineering and related occupations, this document is one in a series of forty-one reprints from the Occupational Outlook Handbook providing current information and employment projections for individual occupations and industries through 1985. The specific occupations covered in this document include aerospace engineers, agricultural…

  2. 78 FR 53773 - Select Updates for Non-Clinical Engineering Tests and Recommended Labeling for Intravascular...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ...] Select Updates for Non-Clinical Engineering Tests and Recommended Labeling for Intravascular Stents and... Engineering Tests and Recommended Labeling for Intravascular Stents and Associated Delivery Systems.'' FDA has developed this guidance to inform the coronary and peripheral stent industry about selected updates to FDA's...

  3. "Quebrando Fronteras": Trends among Latino and Latina Undergraduate Engineers

    ERIC Educational Resources Information Center

    Camacho, Michelle Madsen; Lord, Susan M.

    2011-01-01

    Engineering, a field that has shaped the world's industrial and technological base, is ripe for an influx of Latino undergraduate students. Given U.S. Latino population increases, what is the trajectory of Latino participation in engineering education? Using an interdisciplinary lens, we critically examine Latino trends in undergraduate…

  4. Engineering Industry Training Board (EITB) Foundation Training. Unit 1.

    ERIC Educational Resources Information Center

    Engineering Industry Training Board, London (England).

    This instructional unit deals with broadly based appreciation training in a range of skills that are appropriate to a wide sector of occupations, including engineering drawing, engineering materials, bench fitting, sheet metal work, turning, milling, welding, and electricity/electronics. The materials presented are intended for instructors and…

  5. Civil Engineering Technology Needs Assessment.

    ERIC Educational Resources Information Center

    Oakland Community Coll., Farmington, MI. Office of Institutional Planning and Analysis.

    In 1991, a study was conducted by Oakland Community College (OCC) to evaluate the need for a proposed Civil Engineering Technology program. An initial examination of the literature focused on industry needs and the job market for civil engineering technicians. In order to gather information on local area employers' hiring practices and needs, a…

  6. Engineering Research Centers: A Partnership for Competitiveness.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA.

    This publication consists of colorful data sheets on the National Science Foundation's Engineering Research Centers (ERC) Program, a program designed to strengthen the competitiveness of U.S. industries by bringing new approaches and goals to academic engineering research and education. The main elements of the ERC mission are cross-disciplinary…

  7. 75 FR 26049 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... conducted by ``a licensed professional engineer or foreign equivalent who works in the chemical engineering... chemical engineering field. EPA views renewable fuel production to fall generally within the chemical... basic organic chemical manufacturers. Industry 424690 5169 Chemical and allied products merchant...

  8. Creating Global Networks through an Online Engineering Graduate Programme

    ERIC Educational Resources Information Center

    Murray, M. H.

    2011-01-01

    Internationally, the railway industry is facing a severe shortage of engineers with high-level, relevant, professional and technical knowledge and abilities, in particular amongst engineers involved in the design, construction and maintenance of railway infrastructure. A unique graduate level programme has been created to meet that global need via…

  9. Engineered and Other Wood Products - An Opportunity to "Grow the Pie"

    Treesearch

    Albert Schuler; Craig Adair

    2003-01-01

    The market for engineered wood products (EWP) is being driven by a number of factors including: technology; reduced availability of old-growth timber; construction activity, and globalization. Specifically, technological developments have allowed the industry to "engineer" or "design" improved performance properties and to utilize former "weed...

  10. Frontiers in Chemical Engineering. Research Needs and Opportunities.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    Chemical engineers play a key role in industries such as petroleum, food, artificial fibers, petrochemicals, plastics and many others. They are needed to tailor manufacturing technology to the requirements of products and to integrate product and process design. This report discusses how chemical engineers are continuing to address technological…

  11. Project-Based Teaching-Learning Computer-Aided Engineering Tools

    ERIC Educational Resources Information Center

    Simoes, J. A.; Relvas, C.; Moreira, R.

    2004-01-01

    Computer-aided design, computer-aided manufacturing, computer-aided analysis, reverse engineering and rapid prototyping are tools that play an important key role within product design. These are areas of technical knowledge that must be part of engineering and industrial design courses' curricula. This paper describes our teaching experience of…

  12. Engineering Sustainable Engineers through the Undergraduate Experience

    ERIC Educational Resources Information Center

    Weatherton, Yvette Pearson; Sattler, Melanie; Mattingly, Stephen; Chen, Victoria; Rogers, Jamie; Dennis, Brian

    2012-01-01

    In order to meet the challenges of sustainable development, our approach to education must be modified to equip students to evaluate alternatives and devise solutions that meet multi-faceted requirements. In 2009, faculty in the Departments of Civil, Industrial and Mechanical Engineering at the University of Texas at Arlington began implementation…

  13. 7 CFR Appendix A to Subpart E of... - Hazard Potential Classification for Civil Works Projects

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES... appendix is U.S. Army Corps of Engineers Engineering and Design Dam Safety Assurance Program, ER 1110-2... human habitation) Uncertain (rural location with few residences and only transient or industrial...

  14. 7 CFR Appendix A to Subpart E of... - Hazard Potential Classification for Civil Works Projects

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES... appendix is U.S. Army Corps of Engineers Engineering and Design Dam Safety Assurance Program, ER 1110-2... human habitation) Uncertain (rural location with few residences and only transient or industrial...

  15. 7 CFR Appendix A to Subpart E of... - Hazard Potential Classification for Civil Works Projects

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES... appendix is U.S. Army Corps of Engineers Engineering and Design Dam Safety Assurance Program, ER 1110-2... human habitation) Uncertain (rural location with few residences and only transient or industrial...

  16. 7 CFR Appendix A to Subpart E of... - Hazard Potential Classification for Civil Works Projects

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES... appendix is U.S. Army Corps of Engineers Engineering and Design Dam Safety Assurance Program, ER 1110-2... human habitation) Uncertain (rural location with few residences and only transient or industrial...

  17. Publications - AR 2010-C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content DGGS AR 2010-C Publication Details Title: Engineering Geology FY11 project descriptions Authors , Engineering Geology FY11 project descriptions, in DGGS Staff, Alaska Division of Geological & Geophysical

  18. New High in Engineering Degree Production. Facts

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2010

    2010-01-01

    Several of the state's key industry sectors depend heavily on employees with advanced scientific, analytic and technical knowledge. Among the fields closely related to these sectors, engineering degrees have posted the largest gain. This paper presents details on the following facts: (1) 2009 represented a record high for engineering degrees; (2)…

  19. Engineering Industry Training Board (EITB) Foundation Training. Unit 2.

    ERIC Educational Resources Information Center

    Engineering Industry Training Board, London (England).

    This instructional unit deals with broadly based appreciation training in a range of skills that are appropriate to a wide sector of occupations, including safety, engineering drawing, engineering materials, bench fitting, sheet metal work, turning, milling, welding, and electricity/electronics. The materials presented are intended for instructors…

  20. Career Access Models: The Philadelphia Minorities in Engineering Consortium.

    ERIC Educational Resources Information Center

    McLaughlin, W. Barry

    The Philadelphia Regional Introduction for Minorities to Engineering (PRIME) program, a nonprofit consortium of colleges, public schools, business/industry, government, and community agencies, is described. The pre-engineering program begins in the seventh grade and continues to track students through their college years. At the middle schools,…

  1. Jet Engines as High-Capacity Vacuum Pumps

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.

    1983-01-01

    Large diffuser operations envelope and long run times possible. Jet engine driven ejector/diffuser system combines two turbojet engines and variable-area-ratio ejector in two stages. Applications in such industrial proesses as handling corrosive fumes, evaporation of milk and fruit juices, petroleum distillation, and dehydration of blood plasma and penicillin.

  2. Engineering and Industrial Fields. Revised Summary Report: Technical Employment in Northeast Florida.

    ERIC Educational Resources Information Center

    Baker, William E.; And Others

    The document is one of five summary reports, all part of a Pre-Technical Curriculum Planning Project for secondary students who aspire to technical employment or post secondary technical education. This report represents the results of an assessment of the northeast Florida area's technical occupations in engineering and industrial fields. A…

  3. Management Science/Industrial Engineering Techniques to Reduce Food Costs.

    ERIC Educational Resources Information Center

    Greenberg, Murray

    This paper examines the contributions of Industrial Engineering and Management Science toward reduction in the cost of production and distribution of food. Food processing firms were requested to respond to a questionnaire which asked for examples of their use of various operations research tools and information on the number of operations…

  4. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME II. APPENDICES A-I

    EPA Science Inventory

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  5. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  6. Fundamental Research in Engineering Education. Student Learning in Industrially Situated Virtual Laboratories

    ERIC Educational Resources Information Center

    Koretsky, Milo D.; Kelly, Christine; Gummer, Edith

    2011-01-01

    The instructional design and the corresponding research on student learning of two virtual laboratories that provide an engineering task situated in an industrial context are described. In this problem-based learning environment, data are generated dynamically based on each student team's distinct choices of reactor parameters and measurements.…

  7. A Collaborative Role for Industry in Assessing Student Learning. AIR 1999 Annual Forum Paper.

    ERIC Educational Resources Information Center

    McMartin, Flora

    This paper recounts the process of integrating industry into the assessment process in engineering education developed by the Synthesis Coalition, a group of colleges and schools working together to improve engineering education through development and implementation of curriculum reforms. Originating in the Coalition's efforts to introduce…

  8. Perception of the Acquisition of Generic Competences in Engineering Degrees

    ERIC Educational Resources Information Center

    Olmedo-Torre, Noelia; Martínez, María Martínez; Perez-Poch, Antoni; García, Beatriz Amante

    2018-01-01

    The aim of this paper is to analyze what generic competencies at the "Universitat Politécnica de Catalunya" (UPC BarcelonaTech) are most evaluated by the teaching staff belonging to the first curricular block of industrial engineering degree courses at the Barcelona "Escola Universitaria d'Enginyeria Técnica Industrial," and…

  9. Development of an Industrial Engineering Project

    ERIC Educational Resources Information Center

    Moreno, Lorenzo; Gonzalez, Evelio; Acosta, Leopoldo; Toledo, Jonay; Marichal, Nicolas; Hamilton, Alberto; Sigut, Marta; Mendez, J. Albino; Hernandez, Sergio; Torres, Santiago

    2005-01-01

    This paper presents a teaching strategy of the scheduling and developmental phase of an Industrial Engineering computer project. It is based on a real project which has been carried out by our department in collaboration with a local company. The classroom setting provides an environment where students can experience firsthand all phases of the…

  10. Improving Educational Objectives of the Industrial and Management Systems Engineering Programme at Kuwait University

    ERIC Educational Resources Information Center

    Aldowaisan, Tariq; Allahverdi, Ali

    2016-01-01

    This paper describes the process of developing programme educational objectives (PEOs) for the Industrial and Management Systems Engineering programme at Kuwait University, and the process of deployment of these PEOs. Input of the four constituents of the programme, faculty, students, alumni, and employers, is incorporated in the development and…

  11. Information Technologies in Higher Education: Lessons Learned in Industrial Engineering

    ERIC Educational Resources Information Center

    Delgado-Almonte, Milagros; Andreu, Hernando Bustos; Pedraja-Rejas, Liliana

    2010-01-01

    This article describes a teaching experience in which information and communication technologies were applied in five industrial engineering courses at the Universidad de Tarapaca in Chile. The paper compares the performance and course pass rates of the e-learning platform and portable pocket PC platform with those of the same courses teaching in…

  12. Human Systems Engineering: A Learning Model Designed To Converge Education, Business, and Industry.

    ERIC Educational Resources Information Center

    Hanson, Karen L.

    The Human Systems Engineering (HSE) Model was created to facilitate collaboration among education, business, and industry. It emphasized the role of leaders who converge with others to accomplish their goals while paying attention to the key elements that create successful partnerships. The partnership of XXsys Technologies, Inc., University of…

  13. Biotechnology Process Engineering Center at MIT - Overview

    Science.gov Websites

    ADVISORY BOARD Under an academic paradigm set forth by the National Science Foundation for National Engineering Research Centers, BPEC exists as a partnership with industry. Regular two-way information flow sabbaticals at MIT and student internships at our industrial partners. We have selected an elite group of

  14. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.

    PubMed

    Chen, Xianzhong; Zhou, Li; Tian, Kangming; Kumar, Ashwani; Singh, Suren; Prior, Bernard A; Wang, Zhengxiang

    2013-12-01

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klipstein, David H.; Robinson, Sharon

    The Reaction Engineering Roadmap is a part of an industry- wide effort to create a blueprint of the research and technology milestones that are necessary to achieve longterm industry goals. This report documents the results of a workshop focused on the research needs, technology barriers, and priorities of the chemical industry as they relate to reaction engineering viewed first by industrial use (basic chemicals; specialty chemicals; pharmaceuticals; and polymers) and then by technology segment (reactor system selection, design, and scale-up; chemical mechanism development and property estimation; dealing with catalysis; and new, nonstandard reactor types).

  16. Optical engineering capstone design projects with industry sponsors

    NASA Astrophysics Data System (ADS)

    Bunch, Robert M.; Leisher, Paul O.; Granieri, Sergio C.

    2014-09-01

    Capstone senior design is the culmination of a student's undergraduate engineering education that prepares them for engineering practice. In fact, any engineering degree program that pursues accreditation by the Engineering Accreditation Commission of ABET must contain "a major design experience based on the knowledge and skills acquired in earlier course work and incorporating appropriate engineering standards and multiple realistic constraints." At Rose-Hulman, we offer an interdisciplinary Optical Engineering / Engineering Physics senior design curriculum that meets this requirement. Part of this curriculum is a two-course sequence where students work in teams on a design project leading to a functional prototype. The students begin work on their capstone project during the first week of their senior year. The courses are deliverable-driven and the students are held accountable for regular technical progress through weekly updates with their faculty advisor and mid-term design reviews. We have found that client-sponsored projects offer students an enriched engineering design experience as it ensures consideration of constraints and standards requirements similar to those that they will encounter as working engineers. Further, client-sponsored projects provide teams with an opportunity for regular customer interactions which help shape the product design. The process that we follow in both soliciting and helping to scope appropriate industry-related design projects will be described. In addition, an outline of the capstone course structure as well as methods used to hold teams accountable for technical milestones will be discussed. Illustrative examples of past projects will be provided.

  17. Research and technology 1995 annual report

    NASA Technical Reports Server (NTRS)

    1995-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1995 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as technology transfer activities. Major areas of research include environmental engineering, automation, robotics, advanced software, materials science, life sciences, mechanical engineering, nondestructive evaluation, and industrial engineering.

  18. Development of naval diesel engine duty cycles for air exhaust emission environmental impact analysis. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markle, S.P.

    1994-05-01

    A strategy for testing naval diesel engines for exhaust emissions was developed. A survey of existing international and national standard diesel engine duty cycles was conducted. All were found to be inadequate for testing and certification of engine exhaust emissions from naval diesel powered ships. Naval ship data covering 11,500 hours of engine operation of four U.S. Navy LSD 41 Class amphibious ships was analyzed to develop a 27 point class operating profile. A procedure combining ship hull form characteristics, ship propulsion plant parameters, and ship operating profile was detailed to derive an 11-Mode duty cycle representative for testing LSDmore » 41 Class propulsion diesel engines. A similar procedure was followed for ship service diesel engines. Comparisons with industry accepted duty cycles were conducted using exhaust emission contour plots for the Colt-Pielstick PC-4B diesel engines. Results showed the 11-Mode LSD 41 Class Duty Cycle best predicted ship propulsion engine emissions compared to the 27 point operating profile propeller curve. The procedure was applied to T-AO 187 Class with similar results. The application of civilian industry standards to measure naval diesel ship propulsion engine exhaust emissions was found to be inadequate. Engine exhaust flow chemistry post turbocharger was investigated using the SANDIA Lab computer tool CHEMKIN. Results showed oxidation and reduction reactions within exhaust gases are quenched in the exhaust stack. Since the exhaust stream in the stack is unreactive, emission sampling may be performed where most convenient. A proposed emission measurement scheme for LSD 41 Class ships was presented.« less

  19. Invisible Engineers

    NASA Astrophysics Data System (ADS)

    Ohashi, Hideo

    Questionnaire to ask “mention three names of scientists you know” and “three names of engineers you know” was conducted and the answers from 140 adults were analyzed. The results indicated that the image of scientists is represented by Nobel laureates and that of engineers by great inventors like Thomas Edison and industry founders like Soichiro Honda. In order to reveal the image of engineers among young generation, questionnaire was conducted for pupils in middle and high schools. Answers from 1,230 pupils were analyzed and 226 names mentioned as engineers were classified. White votes reached 60%. Engineers who are neither big inventors nor company founders collected less than 1% of named votes. Engineers are astonishingly invisible from young generation. Countermeasures are proposed.

  20. Future space transport

    NASA Technical Reports Server (NTRS)

    Grishin, S. D.; Chekalin, S. V.

    1984-01-01

    Prospects for the mastery of space and the basic problems which must be solved in developing systems for both manned and cargo spacecraft are examined. The achievements and flaws of rocket boosters are discussed as well as the use of reusable spacecraft. The need for orbiting satellite solar power plants and related astrionics for active control of large space structures for space stations and colonies in an age of space industrialization is demonstrated. Various forms of spacecraft propulsion are described including liquid propellant rocket engines, nuclear reactors, thermonuclear rocket engines, electrorocket engines, electromagnetic engines, magnetic gas dynamic generators, electromagnetic mass accelerators (rail guns), laser rocket engines, pulse nuclear rocket engines, ramjet thermonuclear rocket engines, and photon rockets. The possibilities of interstellar flight are assessed.

  1. Analytical Modelling of the Effects of Different Gas Turbine Cooling Techniques on Engine Performance =

    NASA Astrophysics Data System (ADS)

    Uysal, Selcuk Can

    In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).

  2. 5 CFR 532.313 - Private sector industries.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the physical, engineering, and life sciences (except biotechnology). 56172 Janitorial services. 62191... Research and development in the physical, engineering, and life sciences (except biotechnology). Heavy Duty...

  3. 5 CFR 532.313 - Private sector industries.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the physical, engineering, and life sciences (except biotechnology). 56172 Janitorial services. 62191... Research and development in the physical, engineering, and life sciences (except biotechnology). Heavy Duty...

  4. 5 CFR 532.313 - Private sector industries.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the physical, engineering, and life sciences (except biotechnology). 56172 Janitorial services. 62191... Research and development in the physical, engineering, and life sciences (except biotechnology). Heavy Duty...

  5. 5 CFR 532.313 - Private sector industries.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the physical, engineering, and life sciences (except biotechnology). 56172 Janitorial services. 62191... Research and development in the physical, engineering, and life sciences (except biotechnology). Heavy Duty...

  6. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production

    PubMed Central

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A.; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N.; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J.; Huai, Dongxin; Taylor, David C.; Zhou, Xue-Rong; Green, Allan G.; Shockey, Jay; Klasson, K. Thomas; Mullen, Robert T.; Huang, Bangquan; Dyer, John M.; Cahoon, Edgar B.

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds. PMID:26916792

  7. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    PubMed

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-02-26

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.

  8. The Industrial Property Rights Education in Collaboration with the Creative Product Design Education

    NASA Astrophysics Data System (ADS)

    Tokoro, Tetsuro; Habuchi, Hitoe; Chonan, Isao

    Recently, the Advanced Courses of Electronic System Engineering and Architecture and Civil Engineering of Gifu National College of Technology have introduced a creative subject, “Creative Engineering Practice”. In this subject, students study intellectual property rights. More specifically, they learn and practice industrial proprietary rights, procedures for obtaining a patent right, how to use Industrial Property Digital Library and so forth, along with the practice of creative product design. The industrial property rights education in collaboration with the creative product design education has been carried out by the cooperation of Japan Patent Office, Japan Institute of Invention and Innovation and a patent attorney. Through the instruction of the cooperative members, great educative results have been obtained. In this paper, we will describe the contents of the subject together with its items to pursue an upward spiral of progress.

  9. Making aerospace technology work for the automotive industry - Introduction

    NASA Technical Reports Server (NTRS)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  10. Technological Nocturne: The Lisbon Industrial Institute and Romantic Engineering (1849-1888).

    PubMed

    Saraiva, Tiago; De Matos, Ana Cardoso

    This article explores technology as romantic culture in the second half of the nineteenth century. It details how new urban nocturnal experiences emerged from the Lisbon Industrial Institute (Instituto Industrial) founded in 1852. It combines the interest in the space of science production, typical of history of science and science studies, with the attention to production and consumption of lighting more commonly found in history of technology and urban history literature. Engineers' practices are put in a cultural continuum with poetry, opera, and modern city life at large. Industrial Institute directors Vitorino Damásio and Fonseca Benevides are described as romantic engineers for whom technology overcame differences between humans through the forging of new social bonds, produced new aesthetic experiences and new ways of feeling, expressed nature's harmony, and led to heroic lives.

  11. Repurposing Mass-produced Internal Combustion Engines Quantifying the Value and Use of Low-cost Internal Combustion Piston Engines for Modular Applications in Energy and Chemical Engineering Industries

    NASA Astrophysics Data System (ADS)

    L'Heureux, Zara E.

    This thesis proposes that internal combustion piston engines can help clear the way for a transformation in the energy, chemical, and refining industries that is akin to the transition computer technology experienced with the shift from large mainframes to small personal computers and large farms of individually small, modular processing units. This thesis provides a mathematical foundation, multi-dimensional optimizations, experimental results, an engine model, and a techno-economic assessment, all working towards quantifying the value of repurposing internal combustion piston engines for new applications in modular, small-scale technologies, particularly for energy and chemical engineering systems. Many chemical engineering and power generation industries have focused on increasing individual unit sizes and centralizing production. This "bigger is better" concept makes it difficult to evolve and incorporate change. Large systems are often designed with long lifetimes, incorporate innovation slowly, and necessitate high upfront investment costs. Breaking away from this cycle is essential for promoting change, especially change happening quickly in the energy and chemical engineering industries. The ability to evolve during a system's lifetime provides a competitive advantage in a field dominated by large and often very old equipment that cannot respond to technology change. This thesis specifically highlights the value of small, mass-manufactured internal combustion piston engines retrofitted to participate in non-automotive system designs. The applications are unconventional and stem first from the observation that, when normalized by power output, internal combustion engines are one hundred times less expensive than conventional, large power plants. This cost disparity motivated a look at scaling laws to determine if scaling across both individual unit size and number of units produced would predict the two order of magnitude difference seen here. For the first time, this thesis provides a mathematical analysis of scaling with a combination of both changing individual unit size and varying the total number of units produced. Different paths to meet a particular cumulative capacity are analyzed and show that total costs are path dependent and vary as a function of the unit size and number of units produced. The path dependence identified is fairly weak, however, and for all practical applications, the underlying scaling laws seem unaffected. This analysis continues to support the interest in pursuing designs built around small, modular infrastructure. Building on the observation that internal combustion engines are an inexpensive power-producing unit, the first optimization in this thesis focuses on quantifying the value of engine capacity committing to deliver power in the day-ahead electricity and reserve markets, specifically based on pricing from the New York Independent System Operator (NYISO). An optimization was written in Python to determine, based on engine cost, fuel cost, engine wear, engine lifetime, and electricity prices, when and how much of an engine's power should be committed to a particular energy market. The optimization aimed to maximize profit for the engine and generator (engine genset) system acting as a price-taker. The result is an annual profit on the order of \\$30 per kilowatt. The most value in the engine genset is in its commitments to the spinning reserve market, where power is often committed but not always called on to deliver. This analysis highlights the benefits of modularity in energy generation and provides one example where the system is so inexpensive and short-lived, that the optimization views the engine replacement cost as a consumable operating expense rather than a capital cost. Having the opportunity to incorporate incremental technological improvements in a system's infrastructure throughout its lifetime allows introduction of new technology with higher efficiencies and better designs. An alternative to traditionally large infrastructure that locks in a design and today's state-of-the-art technology for the next 50 - 70 years, is a system designed to incorporate new technology in a modular fashion. The modular engine genset system used for power generation is one example of how this works in practice. The largest single component of this thesis is modeling, designing, retrofitting, and testing a reciprocating piston engine used as a compressor. Motivated again by the low cost of an internal combustion engine, this work looks at how an engine (which is, in its conventional form, essentially a reciprocating compressor) can be cost-effectively retrofitted to perform as a small-scale gas compressor. In the laboratory, an engine compressor was built by retrofitting a one-cylinder, 79 cc engine. Various retrofitting techniques were incorporated into the system design, and the engine compressor performance was quantified in each iteration. Because the retrofitted engine is now a power consumer rather than a power-producing unit, the engine compressor is driven in the laboratory with an electric motor. Experimentally, compressed air engine exhaust (starting at elevated inlet pressures) surpassed 650 psia (about 45 bar), which makes this system very attractive for many applications in chemical engineering and refining industries. A model of the engine compressor system was written in Python and incorporates experimentally-derived parameters to quantify gas leakage, engine friction, and flow (including backflow) through valves. The model as a whole was calibrated and verified with experimental data and is used to explore engine retrofits beyond what was tested in the laboratory. Along with the experimental and modeling work, a techno-economic assessment is included to compare the engine compressor system with state-of-the-art, commercially-available compressors. Included in the financial analysis is a case study where an engine compressor system is modeled to achieve specific compression needs. The result of the assessment is that, indeed, the low engine cost, even with the necessary retrofits, provides a cost advantage over incumbent compression technologies. Lastly, this thesis provides an algorithm and case study for another application of small-scale units in energy infrastructure, specifically in energy storage. This study focuses on quantifying the value of small-scale, onsite energy storage in shaving peak power demands. This case study focuses on university-level power demands. The analysis finds that, because peak power is so costly, even small amounts of energy storage, when dispatched optimally, can provide significant cost reductions. This provides another example of the value of small-scale implementations, particularly in energy infrastructure. While the study focuses on flywheels and batteries as the energy storage medium, engine gensets could also be used to deliver power and shave peak power demands. The overarching goal of this thesis is to introduce small-scale, modular infrastructure, with a particular focus on the opportunity to retrofit and repurpose inexpensive, mass-manufactured internal combustion engines in new and unconventional applications. The modeling and experimental work presented in this dissertation show very compelling results for engines incorporated into both energy generation infrastructure and chemical engineering industries via compression technologies. The low engine cost provides an opportunity to add retrofits whilst remaining cost competitive with the incumbent technology. This work supports the claim that modular infrastructure, built on the indivisible unit of an internal combustion engine, can revolutionize many industries by providing a low-cost mechanism for rapid change and promoting small-scale designs.

  12. A Case Study of an Academia-Industry Partnership to Meet the Education and Training Needs in a Science, Technology, Engineering & Mathematics (STEM) Field

    ERIC Educational Resources Information Center

    Richardson, Joseph Carl

    2013-01-01

    The purpose of this case study is to provide a description of the characteristics of an academia-industry partnership that works together with industry to meet the education and training needs in a Science, Technology, Engineering, and Mathematics (STEM) field. After the launch of Sputnik in 1957, U.S. pursued efforts to compete in STEM fields on…

  13. Progress in reforming chemical engineering education.

    PubMed

    Wankat, Phillip C

    2013-01-01

    Three successful historical reforms of chemical engineering education were the triumph of chemical engineering over industrial chemistry, the engineering science revolution, and Engineering Criteria 2000. Current attempts to change teaching methods have relied heavily on dissemination of the results of engineering-education research that show superior student learning with active learning methods. Although slow dissemination of education research results is probably a contributing cause to the slowness of reform, two other causes are likely much more significant. First, teaching is the primary interest of only approximately one-half of engineering faculty. Second, the vast majority of engineering faculty have no training in teaching, but trained professors are on average better teachers. Significant progress in reform will occur if organizations with leverage-National Science Foundation, through CAREER grants, and the Engineering Accreditation Commission of ABET-use that leverage to require faculty to be trained in pedagogy.

  14. Intercultural Communication in Management of Engineering and Technology

    NASA Astrophysics Data System (ADS)

    Miyoshi, Kazuhisa

    Companies want more business-minded industrial technology managers and engineers with entrepreneurial skills who also have an awareness of the challenges of global marketplace. Both the Master of Engineering and Management Degree (MEM) and the Master of Management of Technology Degree (MOT) aim to meet the needs of industry by offering managers and engineers the critical skills need to be successful in a professional career. The world today is characterized by an ever-growing number of contacts resulting in communication between people in industry with different linguistic and cultural backgrounds. This communication takes place because of contacts within the areas of business, engineering, technology, science, and education but also because of immigration brought about by labor shortage or political conflicts. In all these contacts, there is communication, which needs to be as constructive as possible, without misunderstandings and breakdowns. Knowledge on the nature of linguistic and cultural similarities and differences can play a positive and constructive role. The objective of this paper is to examine what makes the difference in communication between people with diverse cultural background. In addition, it emphasizes the importance of diversity management and diversity leadership in the diverse workplace.

  15. Metabolic Engineering for Probiotics and their Genome-Wide Expression Profiling.

    PubMed

    Yadav, Ruby; Singh, Puneet K; Shukla, Pratyoosh

    2018-01-01

    Probiotic supplements in food industry have attracted a lot of attention and shown a remarkable growth in this field. Metabolic engineering (ME) approaches enable understanding their mechanism of action and increases possibility of designing probiotic strains with desired functions. Probiotic microorganisms generally referred as industrially important lactic acid bacteria (LAB) which are involved in fermenting dairy products, food, beverages and produces lactic acid as final product. A number of illustrations of metabolic engineering approaches in industrial probiotic bacteria have been described in this review including transcriptomic studies of Lactobacillus reuteri and improvement in exopolysaccharide (EPS) biosynthesis yield in Lactobacillus casei LC2W. This review summaries various metabolic engineering approaches for exploring metabolic pathways. These approaches enable evaluation of cellular metabolic state and effective editing of microbial genome or introduction of novel enzymes to redirect the carbon fluxes. In addition, various system biology tools such as in silico design commonly used for improving strain performance is also discussed. Finally, we discuss the integration of metabolic engineering and genome profiling which offers a new way to explore metabolic interactions, fluxomics and probiogenomics using probiotic bacteria like Bifidobacterium spp and Lactobacillus spp. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Initial test results from a prototype, 20 kW helium charged Stirling engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, M.A.; Taylor, D.R.

    An alpha-configuration, helium charged Stirling engine with a predicted output of 20 kW indicated power has been developed by a British consortium of universities and industrial companies. The work performed by the Royal Naval Engineering College has been in computer assisted design and component testing, with future plans for full engine trials during 1984/85. The scope of this paper is to outline the data obtained during motoring trials of the engine block and crankcase assembly, together with details of modifications incorporated in the various components.

  17. Gas turbine engines and transmissions for bus demonstration programs. Technical status report, 31 October 1979-31 January 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigro, D.N.

    1980-02-01

    Progress is reported on the procurement and delivery of 11 Allison GT 404-4 Industrial Gas Turbine Engines and 5 HT740CT and 6 V730CT Allison Automatic Transmissions for the Greyhound and Transit Coaches, respectively. Ceramic regenerators have been incorporated in the build configuration for last 4 Transit Coach engines. The 5 Greyhound Coach engines and the first 2 Transit Coach engines were built in the all-metal configuration. The Master Schedules for the program are presented.

  18. Benefit from NASA

    NASA Image and Video Library

    2004-04-22

    NASA structural materials engineer, Jonathan Lee, displays blocks and pistons as examples of some of the uses for NASA’s patented high-strength aluminum alloy originally developed at Marshall Space Flight Center in Huntsville, Alabama. NASA desired an alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard engine line.

  19. A STUDY ON THE APPLICATION OF VALUE ENGINEERING TO THE CONSTRUCTION INDUSTRY

    NASA Astrophysics Data System (ADS)

    Kemmochi, Sampei; Koizumi, Atsushi

    Value Engineering (VE), one of the effective management techniques to provide products and services, is focused as a measure to reduce the cost on public works, but its effectiveness as a management technique doesn't seem to be fully understood in the construction industry. This paper demonstrates aspects and issues of VE in construction industry by comparing with manufacturing industry, and to combat these, VE which is implemented in construction industry must be succinct and proposes methods to conduct it from the viewpoint of construction industry. At last, the place to go to for construction industry down the road regarding the VE adaptation is clarified.

  20. Pahoa geothermal industrial park. Engineering and economic analysis for direct applications of geothermal energy in an industrial park at Pahoa, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, J.W.

    1980-12-01

    This engineering and economic study evaluated the potential for developing a geothermal industrial park in the Puna District near Pahoa on the Island of Hawaii. Direct heat industrial applications were analyzed from a marketing, engineering, economic, environmental, and sociological standpoint to determine the most viable industries for the park. An extensive literature search produced 31 existing processes currently using geothermal heat. An additional list was compiled indicating industrial processes that require heat that could be provided by geothermal energy. From this information, 17 possible processes were selected for consideration. Careful scrutiny and analysis of these 17 processes revealed three thatmore » justified detailed economic workups. The three processes chosen for detailed analysis were: an ethanol plant using bagasse and wood as feedstock; a cattle feed mill using sugar cane leaf trash as feedstock; and a papaya processing facility providing both fresh and processed fruit. In addition, a research facility to assess and develop other processes was treated as a concept. Consideration was given to the impediments to development, the engineering process requirements and the governmental support for each process. The study describes the geothermal well site chosen, the pipeline to transmit the hydrothermal fluid, and the infrastructure required for the industrial park. A conceptual development plan for the ethanol plant, the feedmill and the papaya processing facility was prepared. The study concluded that a direct heat industrial park in Pahoa, Hawaii, involves considerable risks.« less

  1. Enrichment Experiences in Engineering (E[superscript 3]) for Teachers Summer Research Program: An Examination of Mixed-Method Evaluation Findings on High School Teacher Implementation of Engineering Content in High School STEM Classrooms

    ERIC Educational Resources Information Center

    Page, Cheryl A.; Lewis, Chance W.; Autenrieth, Robin L.; Butler-Purry, Karen L.

    2013-01-01

    Ongoing efforts across the U.S. to encourage K-12 students to consider science, technology, engineering and mathematics (STEM) careers have been motivated by concerns that the STEM pipeline is shrinking because of declining student enrollment and increasing rates of retirement in industry. The Enrichment Experiences in Engineering (E[superscript…

  2. Pertinent Factors that Affect the Representation of Women and Minorities in Scientific, Engineering, and Technical Careers

    DTIC Science & Technology

    1990-07-01

    Upon the Supply of Minority and Women Scientists, Engineers , and Technologists (SETs) for Defense Industries and Installations." The purpose of the...the causes of the underrepresentation of minorities and women in scientific, engineering , and technolog- ical (SET) careers, and to establish a...DT ?copy- ARI Research Note 90-80 AD-A231 827 Pertinent Factors that Affect the Representation of Women and Minorities in Scientific, Engineering

  3. Fueling Chemical Engineering Concepts with Biodiesel Production: A Professional Development Experience for High School Pre-Service Teachers

    ERIC Educational Resources Information Center

    Gupta, Anju

    2015-01-01

    This one-day workshop for pre-service teachers was aimed at implementing a uniquely designed and ready-to-implement chemical engineering curriculum in high school coursework. This educational and professional development opportunity introduced: 1) chemical engineering curriculum and career opportunities, 2) basic industrial processes and flow…

  4. Challenges of Engineering Higher Education in a Transitional Economy: A Russian Experience

    ERIC Educational Resources Information Center

    Matveev, Alexei; Matveev, Olga; Zhukov, Vassily

    2005-01-01

    Education and training serve as critical elements of advancement of a nation's economy in transition. The restructuring of the power engineering industry in Russia has called for a fast implementation of new management system in electric power engineering and radical training of professional managers at different levels in organizations.…

  5. Developing Tomorrows Engineers: A Case Study in Instrument Engineering

    ERIC Educational Resources Information Center

    McDonnell, Liam; O'Neill, Donal

    2009-01-01

    Purpose: The purpose of this case study is to outline the challenges facing industry and educational institutions in educating and training instrument engineers against a backdrop of declining interest by secondary school students in mathematics and physics. This case study cites the experience and strategies of the Kentz Group and Cork Institute…

  6. Current Developments in the French Engineering Education System

    ERIC Educational Resources Information Center

    Lemaître, Denis

    2017-01-01

    The French engineering education system has been established in quite a different way from others in Europe, such as the German and British systems, for instance. Due to both the whole state system and the private initiatives during the industrial revolution, the engineering education system today is composed of a large number (nearly 200) of…

  7. Skills Conversion Project: Chapter 10, Ocean Engineering and Oceanography. Final Report.

    ERIC Educational Resources Information Center

    National Society of Professional Engineers, Washington, DC.

    In order to determine the potential utilization of displaced aerospace and defense technical professionals in oceanography and ocean engineering, a study of ocean-oriented industry in Florida and Southern California was conducted by The National Society of Professional Engineers for the U.S. Department of Labor. After recent consolidation, this…

  8. Framework for Implementing Engineering Senior Design Capstone Courses and Design Clinics

    ERIC Educational Resources Information Center

    Franchetti, Matthew; Hefzy, Mohamed Samir; Pourazady, Mehdi; Smallman, Christine

    2012-01-01

    Senior design capstone projects for engineering students are essential components of an undergraduate program that enhances communication, teamwork, and problem solving skills. Capstone projects with industry are well established in management, but not as heavily utilized in engineering. This paper outlines a general framework that can be used by…

  9. A Curriculum of Value Creation and Management in Engineering

    ERIC Educational Resources Information Center

    Yannou, Bernard; Bigand, Michel

    2004-01-01

    As teachers and researchers belonging to two sister French engineering schools, we are convinced that the processes of value creation and management are essential in today's teaching of industrial engineering and project managers. We believe that such processes may be embedded in a three-part curriculum composed of value management and innovation…

  10. Influence of End Customer Exposure on Product Design within an Epistemic Game Environment

    ERIC Educational Resources Information Center

    Markovetz, Matthew R.; Clark, Renee M.; Swiecki, Zachari; Irgens, Golnaz Arastoopour; Chesler, Naomi C.; Shaffer, David W.; Bodnar, Cheryl A.

    2017-01-01

    Engineering product design requires both technical aptitude and an understanding of the nontechnical requirements in the marketplace, economic or otherwise. Engineering education has long focused on the technical side of product design, but there is increasing demand for market-aware engineers in industry. Market-awareness and customer-focus are…

  11. Publications - AR 2011-C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content DGGS AR 2011-C Publication Details Title: Engineering Geology FY12 project descriptions Authors Combellick, R.A., 2012, Engineering Geology FY12 project descriptions, in DGGS Staff, Alaska Division of

  12. The Big Bang: UK Young Scientists' and Engineers' Fair 2010

    ERIC Educational Resources Information Center

    Allison, Simon

    2010-01-01

    The Big Bang: UK Young Scientists' and Engineers' Fair is an annual three-day event designed to promote science, technology, engineering and maths (STEM) careers to young people aged 7-19 through experiential learning. It is supported by stakeholders from business and industry, government and the community, and brings together people from various…

  13. A Curriculum Model: Engineering Design Graphics Course Updates Based on Industrial and Academic Institution Requirements

    ERIC Educational Resources Information Center

    Meznarich, R. A.; Shava, R. C.; Lightner, S. L.

    2009-01-01

    Engineering design graphics courses taught in colleges or universities should provide and equip students preparing for employment with the basic occupational graphics skill competences required by engineering and technology disciplines. Academic institutions should introduce and include topics that cover the newer and more efficient graphics…

  14. The Transferability and Retraining of Defense Engineers.

    ERIC Educational Resources Information Center

    Rittenhouse, Carl H.

    This study was undertaken to describe any special barriers to the transfer of engineers from defense to commercial work, and to evaluate retraining and reorientation techniques that might help ease the transfer. Interviews and questionnaires were used to obtain data from about 2,100 engineers and 100 managers in 14 industries. Characteristics,…

  15. Studies on the Use of Extramural Videopublished Materials in Continuing Education. Final Report.

    ERIC Educational Resources Information Center

    Sjogren, Douglas; And Others

    The Engineering Renewal and Growth (ERG) program at Colorado State University (CSU) was designed for continuing education of engineers. The program used videotapes and coordinated written materials to deliver instruction to the practicing engineer. Courses were leased to individual students or industries in which students worked. The courses were…

  16. Use of the Colorado SURGE System for Continuing Education for Civil Engineers.

    ERIC Educational Resources Information Center

    Fead, J. W. N.

    The Colorado State University Resources in Graduate Education (SURGE) program is described in this report. Since it is expected that not all the participants in a graduate engineering program will be able to attend university-based lectures, presentations are video-taped and transported to industrial plants, engineering offices, and other…

  17. Engineering Robustness of Microbial Cell Factories.

    PubMed

    Gong, Zhiwei; Nielsen, Jens; Zhou, Yongjin J

    2017-10-01

    Metabolic engineering and synthetic biology offer great prospects in developing microbial cell factories capable of converting renewable feedstocks into fuels, chemicals, food ingredients, and pharmaceuticals. However, prohibitively low production rate and mass concentration remain the major hurdles in industrial processes even though the biosynthetic pathways are comprehensively optimized. These limitations are caused by a variety of factors unamenable for host cell survival, such as harsh industrial conditions, fermentation inhibitors from biomass hydrolysates, and toxic compounds including metabolic intermediates and valuable target products. Therefore, engineered microbes with robust phenotypes is essential for achieving higher yield and productivity. In this review, the recent advances in engineering robustness and tolerance of cell factories is described to cope with these issues and briefly introduce novel strategies with great potential to enhance the robustness of cell factories, including metabolic pathway balancing, transporter engineering, and adaptive laboratory evolution. This review also highlights the integration of advanced systems and synthetic biology principles toward engineering the harmony of overall cell function, more than the specific pathways or enzymes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Problems of elimination of low emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepniowski, A.

    1995-12-31

    The Cracow Municipal Gas Distribution Enterprises is subordinated to the Carpathian Regional Gas Engineering Plant in Tarnow, which - in turn - is a part of Polish Oil Mining and Gas Engineering with its seat in Warsaw. The required quick development of power engineering in Poland needs harmonized development of all branches of power engineering, including the gas production and distribution industry which constitutes an element of technical infrastructure of Poland influencing the direction of development. After World War II, the gas engineering industry was transformed from a typical communal service to a big industrial structure which covers the entiremore » territory of the state and has considerable technical and material measures at its disposal. Programming of the gas industry development ranges from development of installation of gas-supply arrangements for communal purposes including modification of local gas generators - to the development of gas transportation, storage and purification system. At present gas is taken from following sources: import, own natural gas deposits (high-methane content gas and high-nitrogen content gas within Polish Lowland); cokeries, and local gas generators. Gas sorts obtained in these sources have differentiated physico-chemical properties and they are distributed by three independent transmission systems assigned for high-methane natural gas, high-nitrogen natural gas, and coke-oven gas. Taking into consideration the forecast demand and potential capacity of natural gas production in Poland, the required import of natural gas is estimated.« less

  19. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT I, GENERAL INTRODUCTION TO DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    ONE OF A 30-MODULE COURSE DESIGNED TO UPGRADE THE JOB SKILLS AND TECHNICAL KNOWLEDGE OF DIESEL MAINTENANCE MECHANICS, THIS MATERIAL WAS DEVELOPED BY INDUSTRIAL TRAINING AND SUBJECT-MATTER SPECIALISTS AND TESTED IN INDUSTRIAL TRAINING SITUATIONS. THE PURPOSE OF THIS FIRST UNIT IS TO PROVIDE AN INTRODUCTION TO DIESEL ENGINES BY DEVELOPING AN…

  20. Can Man Control His Biological Evolution? A Symposium on Genetic Engineering. Probabilities and Practicalities

    ERIC Educational Resources Information Center

    Djerassi, Carl

    1972-01-01

    Manipulation of genes in human beings on a large scale is not possible under present conditions because it lacks economic potential and other attractions for industry. However, preventive'' genetic engineering may be a field for vast research in the future and will perhaps be approved by governments, parishes, people and industry. (PS)

  1. The Requirement for Vocational Skills in the Engineering Industry in the Areas of Modena and Vienna. Synthesis Report.

    ERIC Educational Resources Information Center

    Gatti, Mario; Mereu, Maria Grazia; Tagliaferro, Claudio; Markowitsch, Jorg; Neuberger, Robert

    Requirements for vocational skills in the engineering industry in Modena, Italy, and Vienna, Austria, were studied. In Modena, employees of a representative sample of 90 small, medium, and large firms in the mechanical processing, agricultural machinery, and sports car manufacturing sectors were interviewed. In Vienna, data were collected through…

  2. Industry-Oriented Laboratory Development for Mixed-Signal IC Test Education

    ERIC Educational Resources Information Center

    Hu, J.; Haffner, M.; Yoder, S.; Scott, M.; Reehal, G.; Ismail, M.

    2010-01-01

    The semiconductor industry is lacking qualified integrated circuit (IC) test engineers to serve in the field of mixed-signal electronics. The absence of mixed-signal IC test education at the collegiate level is cited as one of the main sources for this problem. In response to this situation, the Department of Electrical and Computer Engineering at…

  3. Curves and Surfaces

    DTIC Science & Technology

    1990-01-01

    Morten Dohlen Center for Industrial Rcsearch(SI), Box 124 Blindern, 0314 Oslo 3, Norway. Abstract. The combination of refinement and decomposition...of Technology Faculty of Industrial Design Engineering Section Mechanical Engineering Design Jaffalaan 9 NL-2628 BX Delft The Netherlands louwe...OF A GIVEN SET OF POINTS Leonardo Traversoni Dominguez Division de Ciencias Basicas e Ingenieria Universidad Autonoma Metropolitana (Iztapalapa) ap

  4. The Attitude of Civil Engineering Students towards Health and Safety Risk Management: A Case Study

    ERIC Educational Resources Information Center

    Petersen, A. K.; Reynolds, J. H.; Ng, L. W. T.

    2008-01-01

    The highest rate of accidents and injuries in British industries has been reported by the construction industry during the past decade. Since then stakeholders have recognised that a possible solution would be to inculcate a good attitude towards health and safety risk management in undergraduate civil engineering students and construction…

  5. A Proposition to Engineer a Bridge: Reconnecting with the Industry-Based Educators

    ERIC Educational Resources Information Center

    Rigler, Kenny

    2017-01-01

    The first steps in the engineering design process are to identify and define the problem (Eide, Jenison, Mashaw, & Northup, 2001). The primary purpose of this article is to highlight the problem that has existed for the past three decades (a disconnect between industrial educators and proponents of technological literacy) and to make a…

  6. Development of a Study Module on and Pedagogical Approaches to Industrial Environmental Engineering and Sustainability in Mozambique

    ERIC Educational Resources Information Center

    Husgafvel, Roope; Martikka, Mikko; Egas, Andrade; Ribiero, Natasha; Dahl, Olli

    2017-01-01

    Addressing the sustainability challenges in the forest sector in Mozambique requires capacity building for higher education and training of new skilled expert and future decision-makers. Our approach was to develop a study module on and pedagogical approaches to industrial environmental engineering and sustainability. The idea was to develop a…

  7. Applying Peer Reviews in Software Engineering Education: An Experiment and Lessons Learned

    ERIC Educational Resources Information Center

    Garousi, V.

    2010-01-01

    Based on the demonstrated value of peer reviews in the engineering industry, numerous industry experts have listed it at the top of the list of desirable development practices. Experience has shown that problems (defects) are eliminated earlier if a development process incorporates peer reviews and that these reviews are as effective as or even…

  8. How Student Written Communication Skills Benefit during Participation in an Industry-Sponsored Civil Engineering Capstone Course

    ERIC Educational Resources Information Center

    Fries, Ryan; Cross, Brad; Zhou, Jianpeng; Verbais, Chad

    2017-01-01

    Because many engineering programs use capstone design courses and value strong communication abilities, authors sought to identify how student written communication skills changed because of industry-sponsored capstone design projects. A student exit survey was collected at the end of the capstone design course during faculty-led projects and…

  9. Meeting the Expectation of Industry: An Integrated Approach for the Teaching of Mechanics and Electronics to Design Students

    ERIC Educational Resources Information Center

    Bingham, Guy A.; Southee, Darren J.; Page, Tom

    2015-01-01

    This paper examines the traditional engineering-based provision delivered to Product Design and Technology (B.Sc.) undergraduates at the Loughborough Design School and questions its relevancy against the increasing expectations of industry. The paper reviews final-year design projects to understand the level of transference of engineering-based…

  10. A Study To Determine the Job Satisfaction of the Engineering/Industrial Technology Faculty at Delgado Community College.

    ERIC Educational Resources Information Center

    Satterlee, Brian

    A study assessed job satisfaction among Engineering/Industrial Technology faculty at Delgado Community College (New Orleans, Louisiana). A secondary purpose was to confirm Herzberg's Two-Factor Theory of Job Satisfaction (1966) that workers derived satisfaction from the work itself and that causes of dissatisfaction stemmed from conditions…

  11. 47 CFR 2.947 - Measurement procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... reports prepared by the Commission's Office of Engineering and Technology. These will be issued as... Commission and published by national engineering societies such as the Electronic Industries Association, the...

  12. 3D Printing and Biofabrication for Load Bearing Tissue Engineering.

    PubMed

    Jeong, Claire G; Atala, Anthony

    2015-01-01

    Cell-based direct biofabrication and 3D bioprinting is becoming a dominant technological platform and is suggested as a new paradigm for twenty-first century tissue engineering. These techniques may be our next step in surpassing the hurdles and limitations of conventional scaffold-based tissue engineering, and may offer the industrial potential of tissue engineered products especially for load bearing tissues. Here we present a topically focused review regarding the fundamental concepts, state of the art, and perspectives of this new technology and field of biofabrication and 3D bioprinting, specifically focused on tissue engineering of load bearing tissues such as bone, cartilage, osteochondral and dental tissue engineering.

  13. Toward metabolic engineering in the context of system biology and synthetic biology: advances and prospects.

    PubMed

    Liu, Yanfeng; Shin, Hyun-dong; Li, Jianghua; Liu, Long

    2015-02-01

    Metabolic engineering facilitates the rational development of recombinant bacterial strains for metabolite overproduction. Building on enormous advances in system biology and synthetic biology, novel strategies have been established for multivariate optimization of metabolic networks in ensemble, spatial, and dynamic manners such as modular pathway engineering, compartmentalization metabolic engineering, and metabolic engineering guided by genome-scale metabolic models, in vitro reconstitution, and systems and synthetic biology. Herein, we summarize recent advances in novel metabolic engineering strategies. Combined with advancing kinetic models and synthetic biology tools, more efficient new strategies for improving cellular properties can be established and applied for industrially important biochemical production.

  14. Recent Advances in Application of Biosensors in Tissue Engineering

    PubMed Central

    Paul, Arghya; Lee, Yong-kyu; Jaffa, Ayad A.

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications. PMID:25165697

  15. Recent advances in application of biosensors in tissue engineering.

    PubMed

    Hasan, Anwarul; Nurunnabi, Md; Morshed, Mahboob; Paul, Arghya; Polini, Alessandro; Kuila, Tapas; Al Hariri, Moustafa; Lee, Yong-kyu; Jaffa, Ayad A

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications.

  16. Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion.

    PubMed

    Hector, Ronald E; Dien, Bruce S; Cotta, Michael A; Qureshi, Nasib

    2011-09-01

    Saccharomyces' physiology and fermentation-related properties vary broadly among industrial strains used to ferment glucose. How genetic background affects xylose metabolism in recombinant Saccharomyces strains has not been adequately explored. In this study, six industrial strains of varied genetic background were engineered to ferment xylose by stable integration of the xylose reductase, xylitol dehydrogenase, and xylulokinase genes. Aerobic growth rates on xylose were 0.04-0.17 h(-1). Fermentation of xylose and glucose/xylose mixtures also showed a wide range of performance between strains. During xylose fermentation, xylose consumption rates were 0.17-0.31 g/l/h, with ethanol yields 0.18-0.27 g/g. Yields of ethanol and the metabolite xylitol were positively correlated, indicating that all of the strains had downstream limitations to xylose metabolism. The better-performing engineered and parental strains were compared for conversion of alkaline pretreated switchgrass to ethanol. The engineered strains produced 13-17% more ethanol than the parental control strains because of their ability to ferment xylose.

  17. Engineering Thermostable Microbial Xylanases Toward its Industrial Applications.

    PubMed

    Kumar, Vishal; Dangi, Arun Kumar; Shukla, Pratyoosh

    2018-03-01

    Xylanases are one of the important hydrolytic enzymes which hydrolyze the β-1, 4 xylosidic linkage of the backbone of the xylan polymeric chain which consists of xylose subunits. Xylanases are mainly found in plant cell walls and are produced by several kinds of microorganisms such as fungi, bacteria, yeast, and some protozoans. The fungi are considered as most potent xylanase producers than that of yeast and bacteria. There is a broad series of industrial applications for the thermostable xylanase as an industrial enzyme. Thermostable xylanases have been used in a number of industries such as paper and pulp industry, biofuel industry, food and feed industry, textile industry, etc. The present review explores xylanase-substrate interactions using gene-editing tools toward the comprehension in improvement in industrial stability of xylanases. The various protein-engineering and metabolic-engineering methods have also been explored to improve operational stability of xylanase. Thermostable xylanases have also been used for improvement in animal feed nutritional value. Furthermore, they have been used directly in bakery and breweries, including a major use in paper and pulp industry as a biobleaching agent. This present review envisages some of such applications of thermostable xylanases for their bioengineering.

  18. Design and Test of Fan/Nacelle Models Quiet High-Speed Fan Design

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J. (Technical Monitor); Repp, Russ; Gentile, David; Hanson, David; Chunduru, Srinivas

    2003-01-01

    The primary objective of the Quiet High-Speed Fan (QHSF) program was to develop an advanced high-speed fan design that will achieve a 6 dB reduction in overall fan noise over a baseline configuration while maintaining similar performance. The program applies and validates acoustic, aerodynamic, aeroelastic, and mechanical design tools developed by NASA, US industry, and academia. The successful fan design will be used in an AlliedSignal Engines (AE) advanced regional engine to be marketed in the year 2000 and beyond. This technology is needed to maintain US industry leadership in the regional turbofan engine market.

  19. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering.

    PubMed

    Becker, Judith; Gießelmann, Gideon; Hoffmann, Sarah Lisa; Wittmann, Christoph

    Since its discovery 60 years ago, Corynebacterium glutamicum has evolved into a workhorse for industrial biotechnology. Traditionally well known for its remarkable capacity to produce amino acids, this Gram-positive soil bacterium, has become a flexible, efficient production platform for various bulk and fine chemicals, materials, and biofuels. The central turnstile of all these achievements is our excellent understanding of its metabolism and physiology. This knowledge base, together with innovative systems metabolic engineering concepts, which integrate systems and synthetic biology into strain engineering, has upgraded C. glutamicum into one of the most successful industrial microorganisms in the world.

  20. Discussion on the Development of Green Chemistry and Chemical Engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshen

    2017-11-01

    Chemical industry plays a vital role in the development process of national economy. However, in view of the special nature of the chemical industry, a large number of poisonous and harmful substances pose a great threat to the ecological environment and human health in the entire process of raw material acquisition, production, transportation, product manufacturing, and the final practical application. Therefore, it is a general trend to promote the development of chemistry and chemical engineering towards a greener environment. This article will focus on some basic problems occurred in the development process of green chemistry and chemical engineering.

Top