Component improvement of free-piston Stirling engine key technology for space power
NASA Technical Reports Server (NTRS)
Alger, Donald L.
1988-01-01
The successful performance of the 25 kW Space Power Demonstrator (SPD) engine during an extensive testing period has provided a baseline of free piston Stirling engine technology from which future space Stirling engines may evolve. Much of the success of the engine was due to the initial careful selection of engine materials, fabrication and joining processes, and inspection procedures. Resolution of the few SPD engine problem areas that did occur has resulted in the technological advancement of certain key free piston Stirling engine components. Derivation of two half-SPD, single piston engines from the axially opposed piston SPD engine, designated as Space Power Research (SPR) engines, has made possible the continued improvement of these engine components. The two SPR engines serve as test bed engines for testing of engine components. Some important fabrication and joining processes are reviewed. Also, some component deficiencies that were discovered during SPD engine testing are described and approaches that were taken to correct these deficiencies are discussed. Potential component design modifications, based upon the SPD and SPR engine testing, are also reported.
Advanced expander test bed engine
NASA Technical Reports Server (NTRS)
Mitchell, J. P.
1992-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
Development of structural ceramic components for automobile applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamoto, H.
1995-12-01
Development efforts have been made in automobile technologies on heat engines to improve the power performance, the fuel economy, and so on. It is well recognized that ceramic applications are keys to succeed in such advanced heat engines, because of their good mechanical and thermal properties. This paper discusses present automobile applications of structural ceramic components and the expectations in automobile uses. The strength and reliability of mass-produced components for the engines are described with the manufacturing processes. The future R&D directions are recommended for structural ceramics.
Facet‐Engineered Surface and Interface Design of Photocatalytic Materials
Wang, Lili; Li, Zhengquan
2016-01-01
The facet‐engineered surface and interface design for photocatalytic materials has been proven as a versatile approach to enhance their photocatalytic performance. This review article encompasses some recent advances in the facet engineering that has been performed to control the surface of mono‐component semiconductor systems and to design the surface and interface structures of multi‐component heterostructures toward photocatalytic applications. The review begins with some key points which should receive attention in the facet engineering on photocatalytic materials. We then discuss the synthetic approaches to achieve the facet control associated with the surface and interface design. In the following section, the facet‐engineered surface design on mono‐component photocatalytic materials is introduced, which forms a basis for the discussion on more complex systems. Subsequently, we elucidate the facet‐engineered surface and interface design of multi‐component photocatalytic materials. Finally, the existing challenges and future prospects are discussed. PMID:28105398
Rocket Engine Health Management: Early Definition of Critical Flight Measurements
NASA Technical Reports Server (NTRS)
Christenson, Rick L.; Nelson, Michael A.; Butas, John P.
2003-01-01
The NASA led Space Launch Initiative (SLI) program has established key requirements related to safety, reliability, launch availability and operations cost to be met by the next generation of reusable launch vehicles. Key to meeting these requirements will be an integrated vehicle health management ( M) system that includes sensors, harnesses, software, memory, and processors. Such a system must be integrated across all the vehicle subsystems and meet component, subsystem, and system requirements relative to fault detection, fault isolation, and false alarm rate. The purpose of this activity is to evolve techniques for defining critical flight engine system measurements-early within the definition of an engine health management system (EHMS). Two approaches, performance-based and failure mode-based, are integrated to provide a proposed set of measurements to be collected. This integrated approach is applied to MSFC s MC-1 engine. Early identification of measurements supports early identification of candidate sensor systems whose design and impacts to the engine components must be considered in engine design.
J-2X concludes series of tests
2008-05-09
NASA engineers successfully complete the first series of tests in the early development of the J-2X engine that will power the Ares I and Ares V rockets, key components of NASA's Constellation Program.
ERIC Educational Resources Information Center
Donaldson, Krista M.; Chen, Helen L.; Toye, George; Sheppard, Sheri D.
2007-01-01
The Academic Pathways of People Learning Engineering Survey (APPLES or APPLE survey) is a component of the Academic Pathways Study (APS) of the Center for the Advancement of Engineering Education (CAEE). The APS aims to provide a comprehensive account of how people become engineers by exploring key questions around the engineering learning…
Plant salt-tolerance mechanisms
Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; ...
2014-06-01
Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less
A Co-modeling Method Based on Component Features for Mechatronic Devices in Aero-engines
NASA Astrophysics Data System (ADS)
Wang, Bin; Zhao, Haocen; Ye, Zhifeng
2017-08-01
Data-fused and user-friendly design of aero-engine accessories is required because of their structural complexity and stringent reliability. This paper gives an overview of a typical aero-engine control system and the development process of key mechatronic devices used. Several essential aspects of modeling and simulation in the process are investigated. Considering the limitations of a single theoretic model, feature-based co-modeling methodology is suggested to satisfy the design requirements and compensate for diversity of component sub-models for these devices. As an example, a stepper motor controlled Fuel Metering Unit (FMU) is modeled in view of the component physical features using two different software tools. An interface is suggested to integrate the single discipline models into the synthesized one. Performance simulation of this device using the co-model and parameter optimization for its key components are discussed. Comparison between delivery testing and the simulation shows that the co-model for the FMU has a high accuracy and the absolute superiority over a single model. Together with its compatible interface with the engine mathematical model, the feature-based co-modeling methodology is proven to be an effective technical measure in the development process of the device.
Engineering Design for Engineering Design: Benefits, Models, and Examples from Practice
ERIC Educational Resources Information Center
Turner, Ken L., Jr.; Kirby, Melissa; Bober, Sue
2016-01-01
Engineering design, a framework for studying and solving societal problems, is a key component of STEM education. It is also the area of greatest challenge within the Next Generation Science Standards, NGSS. Many teachers feel underprepared to teach or create activities that feature engineering design, and integrating a lesson plan of core content…
Changing the Conversation: Messages for Improving Public Understanding of Engineering
ERIC Educational Resources Information Center
National Academies Press, 2008
2008-01-01
Can the United States continue to lead the world in innovation? The answer may hinge in part on how well the public understands engineering, a key component of the "innovation engine." A related concern is how to encourage young people--particularly girls and under-represented minorities--to consider engineering as a career option.…
Superhydrophobic engineered cementitious composites for highway applications : phase I.
DOT National Transportation Integrated Search
2013-05-01
The strength and durability of highway bridges are two of the key components in maintaining a high level of freight transportation capacity on the nations highways. This research focused on developing new hybrid superhydrophobic engineered cementi...
Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review
NASA Astrophysics Data System (ADS)
Şöhret, Yasin; Ekici, Selcuk; Altuntaş, Önder; Hepbasli, Arif; Karakoç, T. Hikmet
2016-05-01
It is known that aircraft gas turbine engines operate according to thermodynamic principles. Exergy is considered a very useful tool for assessing machines working on the basis of thermodynamics. In the current study, exergy-based assessment methodologies are initially explained in detail. A literature overview is then presented. According to the literature overview, turbofans may be described as the most investigated type of aircraft gas turbine engines. The combustion chamber is found to be the most irreversible component, and the gas turbine component needs less exergetic improvement compared to all other components of an aircraft gas turbine engine. Finally, the need for analyses of exergy, exergo-economic, exergo-environmental and exergo-sustainability for aircraft gas turbine engines is emphasized. A lack of agreement on exergy analysis paradigms and assumptions is noted by the authors. Exergy analyses of aircraft gas turbine engines, fed with conventional fuel as well as alternative fuel using advanced exergy analysis methodology to understand the interaction among components, are suggested to those interested in thermal engineering, aerospace engineering and environmental sciences.
Development of Cryogenic Engine for GSLV MkIII: Technological Challenges
NASA Astrophysics Data System (ADS)
Praveen, RS; Jayan, N.; Bijukumar, KS; Jayaprakash, J.; Narayanan, V.; Ayyappan, G.
2017-02-01
Cryogenic engine capable of delivering 200 kN thrust is being developed for the first time in the country by ISRO for powering the upper stage of GSLV Mk-III, the next generation launch vehicle of ISRO capable of launching four tonne class satellites to Geo-synchronous Transfer Orbit(GTO). Development of this engine started a decade ago when various sub-systems development and testing were taken up. Starting with injector element development, the design, realization and testing of the major sub-systems viz the gas generator, turbopumps, start-up system and thrust chamber have been successfully done in a phased manner before conducting a series of developmental tests in the integrated engine mode. Apart from the major sub-systems, many critical components like the igniter, control components etc were independently developed and qualified. During the development program many challenges were faced in almost all areas of propulsion engineering. Systems engineering of the engine was another key challenge in the realization. This paper gives an outlook on various technological challenges faced in the key areas related to the engine development, insight to the solutions and measures taken to overcome the challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Hai D.
2017-03-02
SimEngine provides the core functionalities and components that are key to the development of discrete event simulation tools. These include events, activities, event queues, random number generators, and basic result tracking classes. SimEngine was designed for high performance, integrates seamlessly into any Microsoft .Net development environment, and provides a flexible API for simulation developers.
A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay
2015-01-01
In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing," evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door, were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.
A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay
2015-01-01
In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.
Superhydrophobic engineered cementitious composites for highway applications : phase II.
DOT National Transportation Integrated Search
2013-06-01
The strength and durability of highway bridges are two of the key components in maintaining a : high level of freight transportation capacity on the nations highways. : The CFIRE project 04-09 demonstrated the feasibility of a new hybrid engineered...
DOT National Transportation Integrated Search
2013-09-01
The strength and durability of highway bridges are two of the key components in maintaining a : high level of freight transportation capacity on the nations highways. Superhydrophobic : engineered cementitious composite (SECC) is a new advanced con...
Polymer, metal and ceramic matrix composites for advanced aircraft engine applications
NASA Technical Reports Server (NTRS)
Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.
1985-01-01
Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.;
2015-01-01
The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.
Development of an engineered cementitious composite to enhance bridge approach slab durability.
DOT National Transportation Integrated Search
2013-06-01
The strength and durability of highway bridges are two of the key components in maintaining a : high level of freight transportation capacity on the nations highways. : The CFIRE project 04-09 demonstrated the feasibility of a new hybrid engineered...
2012-09-01
control functions. Components that are included in this category include the steering column / linkages as well as brakes . D. FIREPOWER COMPONENTS...COMPONENTS: STEERING AND BRAKES ......................48 D. FIREPOWER COMPONENTS: TURRET AND ARMAMENT .............49 E. PROTECTION COMPONENTS: HULL AND...Key Functional Area Propulsion Powertrain (Engine / Transmission) Tracks / Wheels Control Steering Brakes / Suspension Firepower Turret Armament
Advanced expander test bed program
NASA Technical Reports Server (NTRS)
Riccardi, D. P.; Mitchell, J. C.
1993-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.
Materials and structural aspects of advanced gas-turbine helicopter engines
NASA Technical Reports Server (NTRS)
Freche, J. C.; Acurio, J.
1979-01-01
The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.
Life prediction systems for critical rotating components
NASA Technical Reports Server (NTRS)
Cunningham, Susan E.
1993-01-01
With the advent of advanced materials in rotating gas turbine engine components, the methodologies for life prediction of these parts must also increase in sophistication and capability. Pratt & Whitney's view of generic requirements for composite component life prediction systems are presented, efforts underway to develop these systems are discussed, and industry participation in key areas requiring development is solicited.
Advanced expander test bed program
NASA Technical Reports Server (NTRS)
Masters, A. I.; Mitchell, J. C.
1991-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
Advanced Environmental Barrier Coatings Developed for SiC/SiC Composite Vanes
NASA Technical Reports Server (NTRS)
Lee, Kang N.; Fox, Dennis S.; Eldridge, Jeffrey I.; Zhu, Dongming; Bansal, Narottam P.; Miller, Robert A.
2003-01-01
Ceramic components exhibit superior high-temperature strength and durability over conventional component materials in use today, signifying the potential to revolutionize gas turbine engine component technology. Silicon-carbide fiber-reinforced silicon carbide ceramic matrix composites (SiC/SiC CMCs) are prime candidates for the ceramic hotsection components of next-generation gas turbine engines. A key barrier to the realization of SiC/SiC CMC hot-section components is the environmental degradation of SiC/SiC CMCs in combustion environments. This is in the form of surface recession due to the volatilization of silica scale by water vapor. An external environmental barrier coating (EBC) is a logical approach to achieve protection and long-term durability.
Current Challenges for HTCMC Aero-Propulsion Components
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; Bansal, Narottam P.
2007-01-01
In comparison to the best metallic materials, HTCMC aero-propulsion engine components offer the opportunity of reduced weight and higher temperature operation, with corresponding improvements in engine cooling requirements, emissions, thrust, and specific fuel consumption. Although much progress has been made in the development of advanced HTCMC constituent materials and processes, major challenges still remain for their implementation into these components. The objectives of this presentation are to briefly review (1) potential HTCMC aero-propulsion components and their generic material performance requirements, (2) recent progress at NASA and elsewhere concerning advanced constituents and processes for meeting these requirements, (3) key HTCMC component implementation challenges that are currently being encountered, and (4) on-going activities within the new NASA Fundamental Aeronautics Program that are addressing these challenges.
ERIC Educational Resources Information Center
Nachlas, Joel A.; Cassady, C. Richard
1999-01-01
Suggests that a chief contributor to the continued economic success of the western economies will be the productivity gains available through efficient preventative maintenance planning and argues for appropriate changes in engineering curricula. Describes the formulation of maintenance planning problems and illustrates with numerical examples the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John T; Holladay, John; Wagner, Robert
The U.S. Department of Energy's (DOE's) Co-Optimization of Fuels & Engines (Co-Optima) initiative is conducting the early-stage research needed to accelerate the market introduction of advanced fuel and engine technologies. The research includes both spark-ignition (SI) and compression-ignition (CI) combustion approaches, targeting applications that impact the entire on-road fleet (light-, medium-, and heavy-duty vehicles). The initiative's major goals include significant improvements in vehicle fuel economy, lower-cost pathways to reduce emissions, and leveraging diverse U.S. fuel resources. A key objective of Co-Optima's research is to identify new blendstocks that enhance current petroleum blending components, increase blendstock diversity, and provide refiners withmore » increased flexibility to blend fuels with the key properties required to optimize advanced internal combustion engines. This report identifies eight representative blendstocks from five chemical families that have demonstrated the potential to increase boosted SI engine efficiency, meet key fuel quality requirements, and be viable for production at commercial scale by 2025-2030.« less
NDE: A key to engine rotor life prediction
NASA Technical Reports Server (NTRS)
Doherty, J. E.
1977-01-01
A key ingredient in the establishment of safe life times for critical components is the means of reliably detecting flaws which may potentially exist. Currently used nondestructive evaluation procedures are successful in detecting life limiting defects; however, the development of automated and computer aided NDE technology permits even greater assurance of flight safety.
Joint electrical engineering/physics course sequence for optics fundamentals and design
NASA Astrophysics Data System (ADS)
Magnusson, Robert; Maldonado, Theresa A.; Black, Truman D.
2000-06-01
Optics is a key technology in a broad range of engineering and science applications of high national priority. Engineers and scientists with a sound background in this field are needed to preserve technical leadership and to establish new directions of research and development. To meet this educational need, a joint Electrical Engineering/Physics optics course sequence was created as PHYS 3445 Fundamentals of Optics and EE 4444 Optical Systems Design, both with a laboratory component. The objectives are to educate EE and Physics undergraduate students in the fundamentals of optics; in interdisciplinary problem solving; in design and analysis; in handling optical components; and in skills such as communications and team cooperation. Written technical reports in professional format are required, formal presentations are given, and participation in paper design contests is encouraged.
Developing a new course for public transportation education.
DOT National Transportation Integrated Search
2015-06-01
Safe, efficient, and accessible public transportation is a key component of livable and sustainable : transportation systems. It is therefore critical that both undergraduate and graduate-level Civil : Engineering students have a better understanding...
NASA Technical Reports Server (NTRS)
Willett, Mike
2015-01-01
Orbital Research, Inc., developed, built, and tested three high-temperature components for use in the design of a data concentrator module in distributed turbine engine control. The concentrator receives analog and digital signals related to turbine engine control and communicates with a full authority digital engine control (FADEC) or high-level command processor. This data concentrator follows the Distributed Engine Controls Working Group (DECWG) roadmap for turbine engine distributed controls communication development that operates at temperatures at least up to 225 C. In Phase I, Orbital Research developed detailed specifications for each component needed for the system and defined the total system specifications. This entailed a combination of system design, compiling existing component specifications, laboratory testing, and simulation. The results showed the feasibility of the data concentrator. Phase II of this project focused on three key objectives. The first objective was to update the data concentrator design modifications from DECWG and prime contractors. Secondly, the project defined requirements for the three new high-temperature, application-specific integrated circuits (ASICs): one-time programmable (OTP), transient voltage suppression (TVS), and 3.3V. Finally, the project validated each design by testing over temperature and under load.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2014-01-01
Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned CMC components to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing advanced environmental barrier coating systems, the coating integrations with next generation CMC turbine components having improved environmental stability, cyclic durability and system performance will be described. The development trends for turbine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.
A feasibility work on the applications of MRE to automotive components
NASA Astrophysics Data System (ADS)
Kim, S. H.; Park, Y. J.; Cha, A. R.; Kim, G. W.; Bang, J. H.; Lim, C. S.; Choi, S. B.
2018-03-01
A feasibility work on the application of magneto-rheological elastomers (MREs) to automotive components, such as engine mounts is presented. While vehicle components require the high resonance frequency in terms of ride quality and handling, it is required to have the low resonance frequency to isolate the incoming vibration. With the conventional automotive technologies, it is challenging to combine these two conflicting performance trade-offs, ride quality including handling, and NVH (noise, vibration and harshness). Over the last decades, MREs, one of the new emerging smart materials, have been widely used to resolve this technical limitation. For example, an advanced engine mount was developed by using MRE to isolate the vibration transmitting from engines. In this paper, we will focus on rear cross member bushes, which is a key component for isolating the vibration from the road, and demonstrate their improved performance by utilizing MRE. The resonance frequency shift induced by the stiffness change of MRE will be presented through the frequency response functions estimated by simulation result.
The logics of metabolic regulation in bacteria challenges biosensor-based metabolic engineering.
Jules, Matthieu
2017-12-11
Synthetic Biology (SB) aims at the rational design and engineering of novel biological functions and systems. By facilitating the engineering of living organisms, SB promises to facilitate the development of many new applications for health, biomanufacturing, and the environment. Over the last decade, SB promoted the construction of libraries of components enabling the fine-tuning of genetic circuits expression and the development of novel genome engineering methodologies for many organisms of interest. SB thus opened new perspectives in the field of metabolic engineering, which was until then mainly limited to (over)producing naturally synthesized metabolic compounds. To engineer efficient cell factories, it is key to precisely reroute cellular resources from the central carbon metabolism (CCM) to the synthetic circuitry. This task is however difficult as there is still significant lack of knowledge regarding both the function of several metabolic components and the regulation of the CCM fluxes for many industrially important bacteria. Pyruvate is a pivotal metabolite at the heart of the CCM and a key precursor for the synthesis of several commodity compounds and fine chemicals. Numerous bacterial species can also use it as a carbon source when present in the environment but bacterial, pyruvate-specific uptake systems were to be discovered. This is an issue for metabolic engineering as one can imagine to make use of pyruvate transport systems to replenish synthetic metabolic pathways towards the synthesis of chemicals of interest. Here we describe a recent study (MBio 8(5): e00976-17), which identified and characterized a pyruvate transport system in the Gram-positive (G +ve ) bacterium Bacillus subtilis , a well-established biotechnological workhorse for the production of enzymes, fine chemicals and antibiotics. This study also revealed that the activity of the two-component system (TCS) responsible for its induction is retro-inhibited by the level of pyruvate influx. Following up on the open question which is whether this retro-inhibition is a generic mechanism for TCSs, we will discuss the implications in metabolic engineering.
Molecular engineering of polymer actuators for biomedical and industrial use
NASA Astrophysics Data System (ADS)
Banister, Mark; Eichorst, Rebecca; Gurr, Amy; Schweitzer, Georgette; Geronov, Yordan; Rao, Pavalli; McGrath, Dominic
2012-04-01
Five key materials engineering components and how each component impacted the working performance of a polymer actuator material are investigated. In our research we investigated the change of actuation performance that occurred with each change we made to the material. We investigated polymer crosslink density, polymer chain length, polymer gelation, type and density of reactive units, as well as the addition of binders to the polymer matrix. All five play a significant role and need to be addressed at the molecular level to optimize a polymer gel for use as a practical actuator material for biomedical and industrial use.
Computational electronics and electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, C. C.
The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domainmore » CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.« less
The engine fuel system fault analysis
NASA Astrophysics Data System (ADS)
Zhang, Yong; Song, Hanqiang; Yang, Changsheng; Zhao, Wei
2017-05-01
For improving the reliability of the engine fuel system, the typical fault factor of the engine fuel system was analyzed from the point view of structure and functional. The fault character was gotten by building the fuel system fault tree. According the utilizing of fault mode effect analysis method (FMEA), several factors of key component fuel regulator was obtained, which include the fault mode, the fault cause, and the fault influences. All of this made foundation for next development of fault diagnosis system.
Kerosene-Fuel Engine Testing Under Way
2003-11-17
NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.
Kerosene-Fuel Engine Testing Under Way
NASA Technical Reports Server (NTRS)
2003-01-01
NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.
Engine System Model Development for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Nelson, Karl W.; Simpson, Steven P.
2006-01-01
In order to design, analyze, and evaluate conceptual Nuclear Thermal Propulsion (NTP) engine systems, an improved NTP design and analysis tool has been developed. The NTP tool utilizes the Rocket Engine Transient Simulation (ROCETS) system tool and many of the routines from the Enabler reactor model found in Nuclear Engine System Simulation (NESS). Improved non-nuclear component models and an external shield model were added to the tool. With the addition of a nearly complete system reliability model, the tool will provide performance, sizing, and reliability data for NERVA-Derived NTP engine systems. A new detailed reactor model is also being developed and will replace Enabler. The new model will allow more flexibility in reactor geometry and include detailed thermal hydraulics and neutronics models. A description of the reactor, component, and reliability models is provided. Another key feature of the modeling process is the use of comprehensive spreadsheets for each engine case. The spreadsheets include individual worksheets for each subsystem with data, plots, and scaled figures, making the output very useful to each engineering discipline. Sample performance and sizing results with the Enabler reactor model are provided including sensitivities. Before selecting an engine design, all figures of merit must be considered including the overall impacts on the vehicle and mission. Evaluations based on key figures of merit of these results and results with the new reactor model will be performed. The impacts of clustering and external shielding will also be addressed. Over time, the reactor model will be upgraded to design and analyze other NTP concepts with CERMET and carbide fuel cores.
EMDS 3.0: A modeling framework for coping with complexity in environmental assessment and planning.
K.M. Reynolds
2006-01-01
EMDS 3.0 is implemented as an ArcMap® extension and integrates the logic engine of NetWeaver® to perform landscape evaluations, and the decision modeling engine of Criterium DecisionPlus® for evaluating management priorities. Key features of the system's evaluation component include abilities to (1) reason about large, abstract, multifaceted ecosystem management...
Multiple Integrated Navigation Sensors for Improved Occupancy Grid FastSLAM
2011-03-01
to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air...autonomous vehicle exploration with applications to search and rescue. To current knowledge , this research presents the first SLAM solution to...solution is a key component of an autonomous vehicle, especially one whose mission involves gaining knowledge of unknown areas. It provides the ability
Engineering intelligent tutoring systems
NASA Technical Reports Server (NTRS)
Warren, Kimberly C.; Goodman, Bradley A.
1993-01-01
We have defined an object-oriented software architecture for Intelligent Tutoring Systems (ITS's) to facilitate the rapid development, testing, and fielding of ITS's. This software architecture partitions the functionality of the ITS into a collection of software components with well-defined interfaces and execution concept. The architecture was designed to isolate advanced technology components, partition domain dependencies, take advantage of the increased availability of commercial software packages, and reduce the risks involved in acquiring ITS's. A key component of the architecture, the Executive, is a publish and subscribe message handling component that coordinates all communication between ITS components.
Re-Educating Jet-Engine-Researchers to Stay Relevant
NASA Astrophysics Data System (ADS)
Gal-Or, Benjamin
2016-06-01
To stay relevantly supported, jet-engine researchers, designers and operators should follow changing uses of small and large jet engines, especially those anticipated to be used by/in the next generation, JET-ENGINE-STEERED ("JES") fleets of jet drones but fewer, JES-Stealth-Fighter/Strike Aircraft. In addition, some diminishing returns from isolated, non-integrating, jet-engine component studies, vs. relevant, supersonic, shock waves control in fluidic-JES-side-effects on compressor stall dynamics within Integrated Propulsion Flight Control ("IPFC"), and/or mechanical JES, constitute key relevant methods that currently move to China, India, South Korea and Japan. The central roles of the jet engine as primary or backup flight controller also constitute key relevant issues, especially under post stall conditions involving induced engine-stress while participating in crash prevention or minimal path-time maneuvers to target. And when proper instructors are absent, self-study of the JES-STVS REVOLUTION is an updating must, where STVS stands for wing-engine-airframe-integrated, embedded stealthy-jet-engine-inlets, restructured engines inside Stealth, Tailless, canard-less, Thrust Vectoring IFPC Systems. Anti-terror and Airliners Super-Flight-Safety are anticipated to overcome US legislation red-tape that obstructs JES-add-on-emergency-kits-use.
Wen, Li; Lin, Yi; Zhang, Zhi-Ling; Lu, Wen; Lv, Cheng; Chen, Zhi-Liang; Wang, Han-Zhong; Pang, Dai-Wen
2016-08-01
Envelope, capsid and nucleic acids are key viral components that are all involved in crucial events during virus infection. Thus simultaneous labeling of these key components is an indispensable prerequisite for monitoring comprehensive virus infection process and dissecting virus infection mechanism. Baculovirus was genetically tagged with biotin on its envelope protein GP64 and enhanced green fluorescent protein (EGFP) on its capsid protein VP39. Spodoptera frugiperda 9 (Sf9) cells were infected by the recombinant baculovirus and subsequently fed with streptavidin-conjugated quantum dots (SA-QDs) and cell-permeable nucleic acids dye SYTO 82. Just by genetic engineering and virus propagation, multi-labeling of envelope, capsid and nucleic acids was spontaneously accomplished during virus inherent self-assembly process, significantly simplifying the labeling process while maintaining virus infectivity. Intracellular dissociation and transportation of all the key viral components, which was barely reported previously, was real-time monitored based on the multi-labeling approach, offering opportunities for deeply understanding virus infection and developing anti-virus treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Integration of magnetic bearings in the design of advanced gas turbine engines
NASA Technical Reports Server (NTRS)
Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.
1994-01-01
Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamers, M.D.
One of the key needs in the advancement of geothermal energy is availability of adequate subsurface measurements to aid the reservoir engineer in the development and operation of geothermal wells. Some current projects being sponsored by the U. S. Department of Energy's Division of Geothermal Energy pertaining to the development of improved well logging techniques, tools and components are described. An attempt is made to show how these projects contribute to improvement of geothermal logging technology in forming key elements of the overall program goals.
On architecting and composing engineering information services to enable smart manufacturing
Ivezic, Nenad; Srinivasan, Vijay
2016-01-01
Engineering information systems play an important role in the current era of digitization of manufacturing, which is a key component to enable smart manufacturing. Traditionally, these engineering information systems spanned the lifecycle of a product by providing interoperability of software subsystems through a combination of open and proprietary exchange of data. But research and development efforts are underway to replace this paradigm with engineering information services that can be composed dynamically to meet changing needs in the operation of smart manufacturing systems. This paper describes the opportunities and challenges in architecting such engineering information services and composing them to enable smarter manufacturing. PMID:27840595
Systems metabolic engineering in an industrial setting.
Sagt, Cees M J
2013-03-01
Systems metabolic engineering is based on systems biology, synthetic biology, and evolutionary engineering and is now also applied in industry. Industrial use of systems metabolic engineering focuses on strain and process optimization. Since ambitious yields, titers, productivities, and low costs are key in an industrial setting, the use of effective and robust methods in systems metabolic engineering is becoming very important. Major improvements in the field of proteomics and metabolomics have been crucial in the development of genome-wide approaches in strain and process development. This is accompanied by a rapid increase in DNA sequencing and synthesis capacity. These developments enable the use of systems metabolic engineering in an industrial setting. Industrial systems metabolic engineering can be defined as the combined use of genome-wide genomics, transcriptomics, proteomics, and metabolomics to modify strains or processes. This approach has become very common since the technology for generating large data sets of all levels of the cellular processes has developed quite fast into robust, reliable, and affordable methods. The main challenge and scope of this mini review is how to translate these large data sets in relevant biological leads which can be tested for strain or process improvements. Experimental setup, heterogeneity of the culture, and sample pretreatment are important issues which are easily underrated. In addition, the process of structuring, filtering, and visualization of data is important, but also, the availability of a genetic toolbox and equipment for medium/high-throughput fermentation is a key success factor. For an efficient bioprocess, all the different components in this process have to work together. Therefore, mutual tuning of these components is an important strategy.
NASA Technical Reports Server (NTRS)
Huang, Zhao-Feng; Fint, Jeffry A.; Kuck, Frederick M.
2005-01-01
This paper is to address the in-flight reliability of a liquid propulsion engine system for a launch vehicle. We first establish a comprehensive list of system and sub-system reliability drivers for any liquid propulsion engine system. We then build a reliability model to parametrically analyze the impact of some reliability parameters. We present sensitivity analysis results for a selected subset of the key reliability drivers using the model. Reliability drivers identified include: number of engines for the liquid propulsion stage, single engine total reliability, engine operation duration, engine thrust size, reusability, engine de-rating or up-rating, engine-out design (including engine-out switching reliability, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction), propellant specific hazards, engine start and cutoff transient hazards, engine combustion cycles, vehicle and engine interface and interaction hazards, engine health management system, engine modification, engine ground start hold down with launch commit criteria, engine altitude start (1 in. start), Multiple altitude restart (less than 1 restart), component, subsystem and system design, manufacturing/ground operation support/pre and post flight check outs and inspection, extensiveness of the development program. We present some sensitivity analysis results for the following subset of the drivers: number of engines for the propulsion stage, single engine total reliability, engine operation duration, engine de-rating or up-rating requirements, engine-out design, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction, and engine health management system implementation (basic redlines and more advanced health management systems).
Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components
NASA Technical Reports Server (NTRS)
Yun, H. M.; DiCarlo, J. A.; Easler, T. E.
2004-01-01
NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at high temperatures of high environmental resistance and high creep resistance, which in turn will result in long component life. Data are presented from a variety of laboratory tests on simple two-dimensional panels that examine these properties and compare the performance of the optimized full PIP system with those of the full CVI and CVI + PIP hybrid systems. Underlying mechanisms for performance differences in the various systems are discussed. Remaining issues for further property enhancement and for application of the full PIP approach for engine components are also discussed, as well as on-going approaches at NASA to solve these issues.
A Historical Systems Study of Liquid Rocket Engine Throttling Capabilities
NASA Technical Reports Server (NTRS)
Betts, Erin M.; Frederick, Robert A., Jr.
2010-01-01
This is a comprehensive systems study to examine and evaluate throttling capabilities of liquid rocket engines. The focus of this study is on engine components, and how the interactions of these components are considered for throttling applications. First, an assessment of space mission requirements is performed to determine what applications require engine throttling. A background on liquid rocket engine throttling is provided, along with the basic equations that are used to predict performance. Three engines are discussed that have successfully demonstrated throttling. Next, the engine system is broken down into components to discuss special considerations that need to be made for engine throttling. This study focuses on liquid rocket engines that have demonstrated operational capability on American space launch vehicles, starting with the Apollo vehicle engines and ending with current technology demonstrations. Both deep throttling and shallow throttling engines are discussed. Boost and sustainer engines have demonstrated throttling from 17% to 100% thrust, while upper stage and lunar lander engines have demonstrated throttling in excess of 10% to 100% thrust. The key difficulty in throttling liquid rocket engines is maintaining an adequate pressure drop across the injector, which is necessary to provide propellant atomization and mixing. For the combustion chamber, cooling can be an issue at low thrust levels. For turbomachinery, the primary considerations are to avoid cavitation, stall, surge, and to consider bearing leakage flows, rotordynamics, and structural dynamics. For valves, it is necessary to design valves and actuators that can achieve accurate flow control at all thrust levels. It is also important to assess the amount of nozzle flow separation that can be tolerated at low thrust levels for ground testing.
NASA Astrophysics Data System (ADS)
Han, Jinhyup; Hwang, Soo Min; Go, Wooseok; Senthilkumar, S. T.; Jeon, Donghoon; Kim, Youngsik
2018-01-01
Cell design and optimization of the components, including active materials and passive components, play an important role in constructing robust, high-performance rechargeable batteries. Seawater batteries, which utilize earth-abundant and natural seawater as the active material in an open-structured cathode, require a new platform for building and testing the cells other than typical Li-ion coin-type or pouch-type cells. Herein, we present new findings based on our optimized cell. Engineering the cathode components-improving the wettability of cathode current collector and seawater catholyte flow-improves the battery performance (voltage efficiency). Optimizing the cell component and design is the key to identifying the electrochemical processes and reactions of active materials. Hence, the outcome of this research can provide a systematic study of potentially active materials used in seawater batteries and their effectiveness on the electrochemical performance.
Health management and controls for earth to orbit propulsion systems
NASA Technical Reports Server (NTRS)
Bickford, R. L.
1992-01-01
Fault detection and isolation for advanced rocket engine controllers are discussed focusing on advanced sensing systems and software which significantly improve component failure detection for engine safety and health management. Aerojet's Space Transportation Main Engine controller for the National Launch System is the state of the art in fault tolerant engine avionics. Health management systems provide high levels of automated fault coverage and significantly improve vehicle delivered reliability and lower preflight operations costs. Key technologies, including the sensor data validation algorithms and flight capable spectrometers, have been demonstrated in ground applications and are found to be suitable for bridging programs into flight applications.
Topology optimization of a gas-turbine engine part
NASA Astrophysics Data System (ADS)
Faskhutdinov, R. N.; Dubrovskaya, A. S.; Dongauzer, K. A.; Maksimov, P. V.; Trufanov, N. A.
2017-02-01
One of the key goals of aerospace industry is a reduction of the gas turbine engine weight. The solution of this task consists in the design of gas turbine engine components with reduced weight retaining their functional capabilities. Topology optimization of the part geometry leads to an efficient weight reduction. A complex geometry can be achieved in a single operation with the Selective Laser Melting technology. It should be noted that the complexity of structural features design does not affect the product cost in this case. Let us consider a step-by-step procedure of topology optimization by an example of a gas turbine engine part.
DOT National Transportation Integrated Search
2012-08-01
Material characterization is a critical component of modern day pavement analysis, design, construction, quality : control/quality assurance, management, and rehabilitation. At each stage during the life of a project, the influence of : several funda...
Rotary wave-ejector enhanced pulse detonation engine
NASA Astrophysics Data System (ADS)
Nalim, M. R.; Izzy, Z. A.; Akbari, P.
2012-01-01
The use of a non-steady ejector based on wave rotor technology is modeled for pulse detonation engine performance improvement and for compatibility with turbomachinery components in hybrid propulsion systems. The rotary wave ejector device integrates a pulse detonation process with an efficient momentum transfer process in specially shaped channels of a single wave-rotor component. In this paper, a quasi-one-dimensional numerical model is developed to help design the basic geometry and operating parameters of the device. The unsteady combustion and flow processes are simulated and compared with a baseline PDE without ejector enhancement. A preliminary performance assessment is presented for the wave ejector configuration, considering the effect of key geometric parameters, which are selected for high specific impulse. It is shown that the rotary wave ejector concept has significant potential for thrust augmentation relative to a basic pulse detonation engine.
Design type air engine Di Pietro
NASA Astrophysics Data System (ADS)
Zwierzchowski, Jaroslaw
The article presents a pneumatic engine constructed by Angelo Di Pietro. 3D solid models of pneumatic engine components were presented therein. A directional valve is a key element of the control system. The valve functions as a camshaft distributing air to particular engine chambers. The construction designed by Angelo Di Pietro is modern and innovative. A pneumatic engine requires low pressure to start rotary movement. With the use of CFD software, the fields of velocity vectors' distribution were determined. Moreover, the author determined the distribution of pressure values in engine inlet and outlet channels. CFD model studies on engine operation were conducted for chosen stages of operating cycles. On the basis of simulation tests that were conducted, the values of flow rates for the engine were determined. The distribution of pressure values made it possible to evaluate the torque value on the rotating shaft.
Co-Optimization of Fuels and Engines (Co-Optima) -- Introduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John T; Wagner, Robert; Holladay, John
The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a U.S. Department of Energy (DOE) effort funded by both the Vehicle and Bioenergy Technology Offices. The overall goal of the effort is to identify the combinations of fuel properties and engine characteristics that maximize efficiency, independent of production pathway or fuel composition, and accelerate commercialization of these technologies. Multiple research efforts are underway focused on both spark-ignition and compression-ignition strategies applicable across the entire light, medium, and heavy-duty fleet. A key objective of Co-Optima's research is to identify new blendstocks that enhance current petroleum blending components, increase blendstock diversity, andmore » provide refiners with increased flexibility to blend fuels with the key properties required to optimize advanced internal combustion engines. In addition to fuels and engines R&D, the initiative is guided by analyses assessing the near-term commercial feasibility of new blendstocks based on economics, environmental performance, compatibility, and large-scale production viability. This talk will provide an overview of the Co-Optima effort.« less
Processing-Related Issues for the Design and Lifing of SiC/SiC Hot-Section Components
NASA Technical Reports Server (NTRS)
DiCarlo, J.; Bhatt, R.; Morscher, G.; Yun, H. M.
2006-01-01
For successful SiC/SiC engine components, numerous process steps related to the fiber, fiber architecture, interphase coating, and matrix need to be optimized. Under recent NASA-sponsored programs, it was determined that many of these steps in their initial approach were inadequate, resulting in less than optimum thermostructural and life properties for the as-fabricated components. This presentation will briefly review many of these process issues, the key composite properties they degrade, their underlying mechanisms, and current process remedies developed by NASA and others.
Engineering model system study for a regenerative fuel cell: Study report
NASA Technical Reports Server (NTRS)
Chang, B. J.; Schubert, F. H.; Kovach, A. J.; Wynveen, R. A.
1984-01-01
Key design issues of the regenerative fuel cell system concept were studied and a design definition of an alkaline electrolyte based engineering model system or low Earth orbit missions was completed. Definition of key design issues for a regenerative fuel cell system include gaseous reactant storage, shared heat exchangers and high pressure pumps. A power flow diagram for the 75 kW initial space station and the impact of different regenerative fuel cell modular sizes on the total 5 year to orbit weight and volume are determined. System characteristics, an isometric drawing, component sizes and mass and energy balances are determined for the 10 kW engineering model system. An open loop regenerative fuel cell concept is considered for integration of the energy storage system with the life support system of the space station. Technical problems and their solutions, pacing technologies and required developments and demonstrations for the regenerative fuel cell system are defined.
NASA Astrophysics Data System (ADS)
Bruyere, C. L.; Tye, M. R.; Holland, G. J.; Done, J.
2015-12-01
Graceful failure acknowledges that all systems will fail at some level and incorporates the potential for failure as a key component of engineering design, community planning, and the associated research and development. This is a fundamental component of the ECEP, an interdisciplinary partnership bringing together scientific, engineering, cultural, business and government expertise to develop robust, well-communicated predictions and advice on the impacts of weather and climate extremes in support of decision-making. A feature of the partnership is the manner in which basic and applied research and development is conducted in direct collaboration with the end user. A major ECEP focus is the Global Risk and Resilience Toolbox (GRRT) that is aimed at developing public-domain, risk-modeling and response data and planning system in support of engineering design, and community planning and adaptation activities. In this presentation I will outline the overall ECEP and GRIP activities, and expand on the 'graceful failure' concept. Specific examples for direct assessment and prediction of hurricane impacts and damage potential will be included.
NASA Astrophysics Data System (ADS)
Schmidt, S.; Beyer, S.; Knabe, H.; Immich, H.; Meistring, R.; Gessler, A.
2004-08-01
Current rocket engines, due to their method of construction, the materials used and the extreme loads to which they are subjected, feature a limited number of load cycles. Various technology programmes in Europe are concerned, besides developing reliable and rugged, low cost, throwaway equipment, with preparing for future reusable propulsion technologies. One of the key roles for realizing reusable engine components is the use of modern and innovative materials. One of the key technologies which concern various engine manufacturers worldwide is the development of fibre-reinforced ceramics—ceramic matrix composites. The advantages for the developers are obvious—the low specific weight, the high specific strength over a large temperature range, and their great damage tolerance compared to monolithic ceramics make this material class extremely interesting as a construction material. Over the past years, the Astrium company (formerly DASA) has, together with various partners, worked intensively on developing components for hypersonic engines and liquid rocket propulsion systems. In the year 2000, various hot-firing tests with subscale (scale 1:5) and full-scale nozzle extensions were conducted. In this year, a further decisive milestone was achieved in the sector of small thrusters, and long-term tests served to demonstrate the extraordinary stability of the C/SiC material. Besides developing and testing radiation-cooled nozzle components and small-thruster combustion chambers, Astrium worked on the preliminary development of actively cooled structures for future reusable propulsion systems. In order to get one step nearer to this objective, the development of a new fibre composite was commenced within the framework of a regionally sponsored programme. The objective here is to create multidirectional (3D) textile structures combined with a cost-effective infiltration process. Besides material and process development, the project also encompasses the development of special metal/ceramic and ceramic/ceramic joining techniques as well as studying and verifying non destructive investigation processes for the purpose of testing components.
Students' Risk Perceptions of Nanotechnology Applications: Implications for Science Education
ERIC Educational Resources Information Center
Gardner, Grant; Jones, Gail; Taylor, Amy; Forrester, Jennifer; Robertson, Laura
2010-01-01
Scientific literacy as a goal of a science education reform remains an important discourse in the research literature and is a key component of students' understanding and acceptance of emergent technologies like nanotechnology. This manuscript focuses on undergraduate engineering students' perceptions of the risks and benefits posed by…
Identifying Key Components of Teaching and Learning in a STEM School
ERIC Educational Resources Information Center
Morrison, Judith; Roth McDuffie, Amy; French, Brian
2015-01-01
This study was conducted at an innovative science, technology, engineering, and mathematics high school, providing a rich contextual description of the teaching and learning at the school, specifically focusing on problem solving and inquiry approaches, and students' motivation, social interactions, and collaborative work. Data were collected…
ERIC Educational Resources Information Center
Trempy, Janine E.; Skinner, Monica M.; Siebold, William A.
2002-01-01
Describes the course "The World According to Microbes" which puts science, mathematics, engineering, and technology majors into teams of students charged with problem solving activities that are microbial in origin. Describes the development of learning activities that utilize key components of cooperative learning including positive…
Numerical Simulation of the RTA Combustion Rig
NASA Technical Reports Server (NTRS)
Davoudzadeh, Farhad; Buehrle, Robert; Liu, Nan-Suey; Winslow, Ralph
2005-01-01
The Revolutionary Turbine Accelerator (RTA)/Turbine Based Combined Cycle (TBCC) project is investigating turbine-based propulsion systems for access to space. NASA Glenn Research Center and GE Aircraft Engines (GEAE) planned to develop a ground demonstrator engine for validation testing. The demonstrator (RTA-1) is a variable cycle, turbofan ramjet designed to transition from an augmented turbofan to a ramjet that produces the thrust required to accelerate the vehicle from Sea Level Static (SLS) to Mach 4. The RTA-1 is designed to accommodate a large variation in bypass ratios from sea level static to Mach 4 conditions. Key components of this engine are new, such as a nickel alloy fan, advanced trapped vortex combustor, a Variable Area Bypass Injector (VABI), radial flameholders, and multiple fueling zones. A means to mitigate risks to the RTA development program was the use of extensive component rig tests and computational fluid dynamics (CFD) analysis.
A New Method to Measure Temperature and Burner Pattern Factor Sensing for Active Engine Control
NASA Technical Reports Server (NTRS)
Ng, Daniel
1999-01-01
The determination of the temperatures of extended surfaces which exhibit non-uniform temperature variation is very important for a number of applications including the "Burner Pattern Factor" (BPF) of turbine engines. Exploratory work has shown that use of BPF to control engine functions can result in many benefits, among them reduction in engine weight, reduction in operating cost, increase in engine life, while attaining maximum engine efficiency. Advanced engines are expected to operate at very high temperature to achieve high efficiency. Brief exposure of engine components to higher than design temperatures due to non-uniformity in engine burner pattern can reduce engine life. The engine BPF is a measure of engine temperature uniformity. Attainment of maximum temperature uniformity and high temperatures is key to maximum efficiency and long life. A new approach to determine through the measurement of just one radiation spectrum by a multiwavelength pyrometer is possible. This paper discusses a new temperature sensing approach and its application to determine the BPF.
Controls and Health Management Technologies for Intelligent Aerospace Propulsion Systems
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2004-01-01
With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. The key enabling technologies for an Intelligent Engine are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Technology Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.
Fabrication of Composite Combustion Chamber/Nozzle for Fastrac Engine
NASA Technical Reports Server (NTRS)
Lawerence, T.; Beshears, R.; Burlingame, S.; Peters, W.; Prince, M.; Suits, M.; Tillery, S.; Burns, L.; Kovach, M.; Roberts, K.;
2000-01-01
The Fastrac Engine developed by the Marshall Space Flight Center for the X-34 vehicle began as a low cost engine development program for a small booster system. One of the key components to reducing the engine cost was the development of an inexpensive combustion chamber/nozzle. Fabrication of a regeneratively cooled thrust chamber and nozzle was considered too expensive and time consuming. In looking for an alternate design concept, the Space Shuttle's Reusable Solid Rocket Motor Project provided an extensive background with ablative composite materials in a combustion environment. An integral combustion chamber/nozzle was designed and fabricated with a silica/phenolic ablative liner and a carbon/epoxy structural overwrap. This paper describes the fabrication process and developmental hurdles overcome for the Fastrac engine one-piece composite combustion chamber/nozzle.
Fabrication of Composite Combustion Chamber/Nozzle for Fastrac Engine
NASA Technical Reports Server (NTRS)
Lawrence, T.; Beshears, R.; Burlingame, S.; Peters, W.; Prince, M.; Suits, M.; Tillery, S.; Burns, L.; Kovach, M.; Roberts, K.
2001-01-01
The Fastrac Engine developed by the Marshall Space Flight Center for the X-34 vehicle began as a low cost engine development program for a small booster system. One of the key components to reducing the engine cost was the development of an inexpensive combustion chamber/nozzle. Fabrication of a regeneratively cooled thrust chamber and nozzle was considered too expensive and time consuming. In looking for an alternate design concept, the Space Shuttle's Reusable Solid Rocket Motor Project provided an extensive background with ablative composite materials in a combustion environment. An integral combustion chamber/nozzle was designed and fabricated with a silica/phenolic ablative liner and a carbon/epoxy structural overwrap. This paper describes the fabrication process and developmental hurdles overcome for the Fastrac engine one-piece composite combustion chamber/nozzle.
Cost effective launch operations of the SSME
NASA Technical Reports Server (NTRS)
Klatt, F. P.
1985-01-01
The Space Shuttle Main Engine (SSME) represents the beginning of reusable rocket engine operations in the space transportation system (STS). Steps taken to reduce the overall cost of flight operations of the SSME by improving turnaround operations, extending the life of the engine, and improving the cost effectiveness of overhaul operations at the Canoga Park home plant are described. Ground certification testing to ensure safe launch operations is described, as well as certification extension testing that leads to a service life equivalent to 40 flights. The proven flight record of the SSME, which has demonstrated the utility of the SSME as a key component of America's space transportation system, is discussed.
USDA-ARS?s Scientific Manuscript database
Fruits and vegetables are key components of a well-balanced nutritious diet because they contain phytonutrients that are believed to have an overall positive effect on human health. In some instances, consumption of dietary phytonutrients, including vitamins, flavonoids, minerals, carotenoids, organ...
DOT National Transportation Integrated Search
1979-05-01
This report presents the key thought processes that are used by the drivetrain designer in matching an engine to a given vehicle with specific performance goals in mind. This report provides those uninitiated in this aspect of automotive design valua...
A Survey and Analysis of Access Control Architectures for XML Data
2006-03-01
13 4. XML Query Engines ...castle and the drawbridge over the moat. Extending beyond the visual analogy, there are many key components to the protection of information and...technology. While XML’s original intent was to enable large-scale electronic publishing over the internet, its functionality is firmly rooted in its
The Role of Social Support in Students' Perceived Abilities and Attitudes toward Math and Science
ERIC Educational Resources Information Center
Rice, Lindsay; Barth, Joan M.; Guadagno, Rosanna E.; Smith, Gabrielle P. A.; McCallum, Debra M.
2013-01-01
Social cognitive models examining academic and career outcomes emphasize constructs such as attitude, interest, and self-efficacy as key factors affecting students' pursuit of STEM (science, technology, engineering and math) courses and careers. The current research examines another under-researched component of social cognitive models: social…
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Sefcik, Robert J.; Qualls, A. L.; Schnitzler, B.G.; Joyner, C. R.
2014-01-01
Formulation of Affordable and Sustainable NTP Development Strategy is Underway Involving NASA, DOE and Industry. In FY11, Nuclear Thermal Propulsion (NTP) was identified as a key propulsion option under the Advanced In-Space Propulsion (AISP) component of NASA's Exploration Technology Development and Demonstration (ETDD) program.
Enabling propulsion materials for high-speed civil transport engines
NASA Technical Reports Server (NTRS)
Stephens, Joseph R.; Herbell, Thomas P.
1992-01-01
NASA Headquarters and LeRC have advocated an Enabling Propulsion Materials Program (EPM) to begin in FY-92. The High Speed Research Phase 1 program which began in FY-90 has focused on the environmental acceptability of a High Speed Civil Transport (HSCT). Studies by industry, including Boeing, McDonnell Douglas, GE Aircraft Engines, and Pratt & Whitney Aircraft, and in-house studies by NASA concluded that NO(x) emissions and airport noise reduction can only be economically achieved by revolutionary advancements in materials technologies. This is especially true of materials for the propulsion system where the combustor is the key to maintaining low emissions, and the exhaust nozzle is the key to reducing airport noise to an acceptable level. Both of these components will rely on high temperature composite materials that can withstand the conditions imposed by commercial aircraft operations. The proposed EPM program will operate in conjunction with the HSR Phase 1 Program and the planned HSR Phase 2 program slated to start in FY-93. Components and subcomponents developed from advanced materials will be evaluated in the HSR Phase 2 Program.
Environmental Barrier Coatings for Ceramics and Ceramic Composites
NASA Technical Reports Server (NTRS)
Lee, Kang N.; Fox, Dennis; Eldridge, Jeffrey; Robinson, R. Craig; Bansal, Narottam
2004-01-01
One key factor that limits the performance of current gas turbine engines is the temperature capability of hot section structural components. Silicon-based ceramics, such as SiC/SiC composites and monolithic Si3N4, are leading candidates to replace superalloy hot section components in the next generation gas turbine engines due to their excellent high temperature properties. A major stumbling block to realizing Si-based ceramic hot section components is the recession of Si-based ceramics in combustion environments due to the volatilization of silica scale by water vapor. An external environmental barrier coating (EBC) is the most promising approach to preventing the recession. Current EBCs are based on silicon, mullite (3A12O3-2SiO2) and BSAS (barium strontium aluminum silicate with celsian structure). Volatility of BSAS, BSAS-silica chemical reaction, and low melting point of silicon limit the durability and temperature capability of current EBCs. Research is underway to develop EBCs with longer life and enhanced temperature capability. Understanding key issues affecting the performance of current EBCs is necessary for successful development of advanced EBCs. These issues include stress, chemical compatibility, adherence, and water vapor stability. Factors that affect stress are thermal expansion mismatch, phase stability, chemical stability, elastic modulus, etc. The current understanding on these issues will be discussed.
A View From Space. NASA Systems Engineering and Test
2014-12-01
rocket ship called Atlantis came alive. Technology was ubiquitous. There were so many critical components that had to be harmonized. If it weren’t for...notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a...July 8, 2011, affirmed whether every key compo- nent could safely “go for launch.” If any component operated outside its performance enve- lope
Rover/NERVA-derived near-term nuclear propulsion
NASA Technical Reports Server (NTRS)
1993-01-01
FY-92 accomplishments centered on conceptual design and analyses for 25, 50, and 75 K engines with emphasis on the 50 K engine. During the first period of performance, flow and energy balances were prepared for each of these configurations and thrust-to-weight values were estimated. A review of fuel technology and key data from the Rover/NERVA program established a baseline for proven reactor performance and areas of enhancement to meet near-term goals. Studies were performed of the criticality and temperature profiles for probable fuel and moderator loadings for the three engine sizes, with a more detailed analysis of the 50 K size. During the second period of performance, analyses of the 50 K engine continued. A chamber/nozzle contour was selected and heat transfer and fatigue analyses were performed for likely construction materials. Reactor analyses were performed to determine component radiation heating rates, reactor radiation fields, water immersion poisoning requirements, temperature limits for restartability, and a tie-tube thermal analysis. Finally, a brief assessment of key enabling technologies was made, with a view toward identifying development issues and identification of the critical path toward achieving engine qualification within 10 years.
Engineering the System and Technical Integration
NASA Technical Reports Server (NTRS)
Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.
2011-01-01
Approximately 80% of the problems encountered in aerospace systems have been due to a breakdown in technical integration and/or systems engineering. One of the major challenges we face in designing, building, and operating space systems is: how is adequate integration achieved for the systems various functions, parts, and infrastructure? This Contractor Report (CR) deals with part of the problem of how we engineer the total system in order to achieve the best balanced design. We will discuss a key aspect of this question - the principle of Technical Integration and its components, along with management and decision making. The CR will first provide an introduction with a discussion of the Challenges in Space System Design and meeting the challenges. Next is an overview of Engineering the System including Technical Integration. Engineering the System is expanded to include key aspects of the Design Process, Lifecycle Considerations, etc. The basic information and figures used in this CR were presented in a NASA training program for Program and Project Managers Development (PPMD) in classes at Georgia Tech and at Marshall Space Flight Center (MSFC). Many of the principles and illustrations are extracted from the courses we teach for MSFC.
NASA Technical Reports Server (NTRS)
Borowski, S. K.; Sefcik, R. J.; Fittje, J. E.; McCurdy, D. R.; Qualls, A. L.; Schnitzler, B. G; Werner, J.; Weitzberg, A.; Joyner, C. R.
2015-01-01
In FY'11, Nuclear Thermal Propulsion (NTP) was identified as a key propulsion option under the Advanced In-Space Propulsion (AISP) component of NASA's Exploration Technology Development and Demonstration (ETDD) program A strategy was outlined by GRC and NASA HQ that included 2 key elements -"Foundational Technology Development" followed by specific "Technology Demonstration" projects. The "Technology Demonstration "element proposed ground technology demonstration (GTD) testing in the early 2020's, followed by a flight technology demonstration (FTD) mission by approx. 2025. In order to reduce development costs, the demonstration projects would focus on developing a small, low thrust (approx. 7.5 -16.5 klb(f)) engine that utilizes a "common" fuel element design scalable to the higher thrust (approx. 25 klb(f)) engines used in NASA's Mars DRA 5.0 study(NASA-SP-2009-566). Besides reducing development costs and allowing utilization of existing, flight proven engine hard-ware (e.g., hydrogen pumps and nozzles), small, lower thrust ground and flight demonstration engines can validate the technology and offer improved capability -increased payloads and decreased transit times -valued for robotic science missions identified in NASA's Decadal Study.
Experimental evaluation of a translating nozzle sidewall radial turbine
NASA Technical Reports Server (NTRS)
Roelke, Richard J.; Rogo, Casimir
1987-01-01
Studies have shown that reduced specific fuel consumption of rotorcraft engines can be achieved with a variable capacity engine. A key component in such an engine in a high-work, high-temperature variable geometry gas generator turbine. An optimization study indicated that a radial turbine with a translating nozzle sidewall could produce high efficiency over a wide range of engine flows but substantiating data were not available. An experimental program with Teledyne CAE, Toledo, Ohio was undertaken to evaluate the moving sidewall concept. A variety of translating nozzle sidewall turbine configurations were evaluated. The effects of nozzle leakage and coolant flows were also investigated. Testing was done in warm air (121 C). The results of the contractual program were summarized.
Authentication Without Secrets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierson, Lyndon G.; Robertson, Perry J.
This work examines a new approach to authentication, which is the most fundamental security primitive that underpins all cyber security protections. Current Internet authentication techniques require the protection of one or more secret keys along with the integrity protection of the algorithms/computations designed to prove possession of the secret without actually revealing it. Protecting a secret requires physical barriers or encryption with yet another secret key. The reason to strive for "Authentication without Secret Keys" is that protecting secrets (even small ones only kept in a small corner of a component or device) is much harder than protecting the integritymore » of information that is not secret. Promising methods are examined for authentication of components, data, programs, network transactions, and/or individuals. The successful development of authentication without secret keys will enable far more tractable system security engineering for high exposure, high consequence systems by eliminating the need for brittle protection mechanisms to protect secret keys (such as are now protected in smart cards, etc.). This paper is a re-release of SAND2009-7032 with new figures numerous edits.« less
Hardisty, Frank; Robinson, Anthony C.
2010-01-01
In this paper we present the GeoViz Toolkit, an open-source, internet-delivered program for geographic visualization and analysis that features a diverse set of software components which can be flexibly combined by users who do not have programming expertise. The design and architecture of the GeoViz Toolkit allows us to address three key research challenges in geovisualization: allowing end users to create their own geovisualization and analysis component set on-the-fly, integrating geovisualization methods with spatial analysis methods, and making geovisualization applications sharable between users. Each of these tasks necessitates a robust yet flexible approach to inter-tool coordination. The coordination strategy we developed for the GeoViz Toolkit, called Introspective Observer Coordination, leverages and combines key advances in software engineering from the last decade: automatic introspection of objects, software design patterns, and reflective invocation of methods. PMID:21731423
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Margaret E.; Mukhopadhyay, Aindrila; Keasling, Jay D.
In this paper, we report an engineered strain of Escherichia coli that catabolizes the carbonaceous component of the extremely toxic chemical warfare agent sarin. Enzymatic decomposition of sarin generates isopropanol waste that, with this engineered strain, is then transformed into acetyl-CoA by enzymatic conversion with a key reaction performed by the acetone carboxylase complex (ACX). We engineered the heterologous expression of the ACX complex from Xanthobacter autotrophicus PY2 to match the naturally occurring subunit stoichiometry and purified the recombinant complex from E. coli for biochemical analysis. Incorporating this ACX complex and enzymes from diverse organisms, we introduced an isopropanol degradationmore » pathway in E. coli, optimized induction conditions, and decoupled enzyme expression to probe pathway bottlenecks. Our engineered E. coli consumed 65% of isopropanol compared to no-cell controls and was able to grow on isopropanol as a sole carbon source. Finally, in the process, reconstitution of this large ACX complex (370 kDa) in a system naïve to its structural and mechanistic requirements allowed us to study this otherwise cryptic enzyme in more detail than would have been possible in the less genetically tractable native Xanthobacter system.« less
NASA Astrophysics Data System (ADS)
Gaunaa, Mac; Heinz, Joachim; Skrzypiński, Witold
2016-09-01
The crossflow principle is one of the key elements used in engineering models for prediction of the aerodynamic loads on wind turbine blades in standstill or blade installation situations, where the flow direction relative to the wind turbine blade has a component in the direction of the blade span direction. In the present work, the performance of the crossflow principle is assessed on the DTU 10MW reference blade using extensive 3D CFD calculations. Analysis of the computational results shows that there is only a relatively narrow region in which the crossflow principle describes the aerodynamic loading well. In some conditions the deviation of the predicted loadings can be quite significant, having a large influence on for instance the integral aerodynamic moments around the blade centre of mass; which is very important for single blade installation applications. The main features of these deviations, however, have a systematic behaviour on all force components, which in this paper is employed to formulate the first version of an engineering correction method to the crossflow principle applicable for wind turbine blades. The new correction model improves the agreement with CFD results for the key aerodynamic loads in crossflow situations. The general validity of this model for other blade shapes should be investigated in subsequent works.
Engine-propeller power plant aircraft community noise reduction key methods
NASA Astrophysics Data System (ADS)
Moshkov P., A.; Samokhin V., F.; Yakovlev A., A.
2018-04-01
Basic methods of aircraft-type flying vehicle engine-propeller power plant noise reduction were considered including single different-structure-and-arrangement propellers and piston engines. On the basis of a semiempirical model the expressions for blade diameter and number effect evaluation upon propeller noise tone components under thrust constancy condition were proposed. Acoustic tests performed at Moscow Aviation institute airfield on the whole qualitatively proved the obtained ratios. As an example of noise and detectability reduction provision a design-and-experimental estimation of propeller diameter effect upon unmanned aircraft audibility boundaries was performed. Future investigation ways were stated to solve a low-noise power plant design problem for light aircraft and unmanned aerial vehicles.
NASA Technical Reports Server (NTRS)
Assanis, D. N.; Ekchian, J. E.; Frank, R. M.; Heywood, J. B.
1985-01-01
A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system was developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multicylinder reciprocator diesel model, where each cylinder undergoes the same thermodynamic cycle. The master cylinder model describes the reciprocator intake, compression, combustion and exhaust processes in sufficient detail to define the mass and energy transfers in each subsystem of the total engine system. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. From this information, the simulation predicts the performance gains, and assesses the system design trade-offs which would result from the introduction of selected heat transfer reduction materials in key system components, over a range of operating conditions.
Bioreactor design for tendon/ligament engineering.
Wang, Tao; Gardiner, Bruce S; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B; Wang, Allan; Xu, Jiake; Smith, David W; Lloyd, David G; Zheng, Ming H
2013-04-01
Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments.
Bioreactor Design for Tendon/Ligament Engineering
Wang, Tao; Gardiner, Bruce S.; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B.; Wang, Allan; Xu, Jiake
2013-01-01
Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments. PMID:23072472
Improving Turbine Performance with Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
DiCarlo, James A.
2007-01-01
Under the new NASA Fundamental Aeronautics Program, efforts are on-going within the Supersonics Project aimed at the implementation of advanced SiC/SiC ceramic composites into hot section components of future gas turbine engines. Due to recent NASA advancements in SiC-based fibers and matrices, these composites are lighter and capable of much higher service temperatures than current metallic superalloys, which in turn will allow the engines to operate at higher efficiencies and reduced emissions. This presentation briefly reviews studies within Task 6.3.3 that are primarily aimed at developing physics-based concepts, tools, and process/property models for micro- and macro-structural design, fabrication, and lifing of SiC/SiC turbine components in general and airfoils in particular. Particular emphasis is currently being placed on understanding and modeling (1) creep effects on residual stress development within the component, (2) fiber architecture effects on key composite properties such as design strength, and (3) preform formation processes so that the optimum architectures can be implemented into complex-shaped components, such as turbine vanes and blades.
The success of the X-33 depends on its technology—an overview
NASA Astrophysics Data System (ADS)
Bunting, Jackie O.; Sasso, Steven E.
1996-03-01
The success of the X-33, and therefore the Reusable Launch Vehicle (RLV) program, is highly dependent on the maturity of the components and subsystems selected and the ability to verify their performance, cost, and operability goals. The success of the technology that will be developed to support these components and subsystems will be critical to developing an operationally efficient X-33 that is traceable to a full-scale RLV system. This paper will delineate the key objectives of each technology demonstration area and provide an assessment of its ability to meet the X-33/RLV requirements. It is our intent to focus on these key technology areas to achieve the ambitious but achievable goals of the RLV and X-33 programs. Based on our assessment of the X-33 and RLV systems, we have focused on the performance verification and validation of the linear aerospike engine. This engine, first developed in the mid-1960s, shows promise in achieving the RLV objectives. Equally critical to the engine selection is the development of cryogenic composite tanks and the associated health management system required to meet the operability goals. We are also developing a highly reusable form of thermal protection system based on years of hypersonic research and Space Shuttle experience. To meet the mass fraction goals, reduction in engine component weights will also be developed. Due to the high degree of operability required, we will investigate the use of real-time integrated system health management and propulsion systems diagnostics, and mature the use of electromechanical actuators for highly reusable systems. The rapid turn-around requirements will require an adaptive guidance, navigation, and control algorithm toolset, which is well underway. We envision our X-33 and RLV to use mature, low-risk technologies that will allow truly low-cost access to space (Lockheed Martin Internal Document, 1995).
ERIC Educational Resources Information Center
Millet, Charlyne; Oget, David; Cavallucci, Denis
2017-01-01
Innovation is a key component to the success and longevity of companies. Our research opens the "black box" of creativity and innovation in R&D teams. We argue that understanding the nature of R&D projects in terms of creativity/innovation, efficiency/inefficiency, is important for designing education policies and improving…
Information visualisation based on graph models
NASA Astrophysics Data System (ADS)
Kasyanov, V. N.; Kasyanova, E. V.
2013-05-01
Information visualisation is a key component of support tools for many applications in science and engineering. A graph is an abstract structure that is widely used to model information for its visualisation. In this paper, we consider practical and general graph formalism called hierarchical graphs and present the Higres and Visual Graph systems aimed at supporting information visualisation on the base of hierarchical graph models.
Alternative Fuels Data Center: How Do Bi-fuel Propane Vehicles Work?
Vehicles Work? Bi-fuel propane vehicles typically use a spark-ignited internal combustion engine. A bi-fuel stored on board and the driver can switch between the fuels. The vehicle is equipped with fuel tanks Propane vehicle image Key Components of a Bi-fuel Propane Vehicle Battery: The battery provides
Developing an Engineering Design Process Assessment using Mixed Methods.
Wind, Stefanie A; Alemdar, Meltem; Lingle, Jeremy A; Gale, Jessica D; Moore, Roxanne A
Recent reforms in science education worldwide include an emphasis on engineering design as a key component of student proficiency in the Science, Technology, Engineering, and Mathematics disciplines. However, relatively little attention has been directed to the development of psychometrically sound assessments for engineering. This study demonstrates the use of mixed methods to guide the development and revision of K-12 Engineering Design Process (EDP) assessment items. Using results from a middle-school EDP assessment, this study illustrates the combination of quantitative and qualitative techniques to inform item development and revisions. Overall conclusions suggest that the combination of quantitative and qualitative evidence provides an in-depth picture of item quality that can be used to inform the revision and development of EDP assessment items. Researchers and practitioners can use the methods illustrated here to gather validity evidence to support the interpretation and use of new and existing assessments.
Biomedical engineering strategies in system design space.
Savageau, Michael A
2011-04-01
Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a "system design space" for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further development will be made.
NASA Astrophysics Data System (ADS)
Abdul-Aziz, Ali; Woike, Mark R.; Clem, Michelle; Baaklini, George
2015-03-01
Efforts to update and improve turbine engine components in meeting flights safety and durability requirements are commitments that engine manufacturers try to continuously fulfill. Most of their concerns and developments energies focus on the rotating components as rotor disks. These components typically undergo rigorous operating conditions and are subject to high centrifugal loadings which subject them to various failure mechanisms. Thus, developing highly advanced health monitoring technology to screen their efficacy and performance is very essential to their prolonged service life and operational success. Nondestructive evaluation techniques are among the many screening methods that presently are being used to pre-detect hidden flaws and mini cracks prior to any appalling events occurrence. Most of these methods or procedures are confined to evaluating material's discontinuities and other defects that have mature to a point where failure is eminent. Hence, development of more robust techniques to pre-predict faults prior to any catastrophic events in these components is highly vital. This paper is focused on presenting research activities covering the ongoing research efforts at NASA Glenn Research Center (GRC) rotor dynamics laboratory in support of developing a fault detection system for key critical turbine engine components. Data obtained from spin test experiments of a rotor disk that relates to investigating behavior of blade tip clearance, tip timing and shaft displacement based on measured data acquired from sensor devices such as eddy current, capacitive and microwave are presented. Additional results linking test data with finite element modeling to characterize the structural durability of a cracked rotor as it relays to the experimental tests and findings is also presented. An obvious difference in the vibration response is shown between the notched and the baseline no notch rotor disk indicating the presence of some type of irregularity.
Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration
NASA Technical Reports Server (NTRS)
Brown, Kendall K.; Nelson, Karl W.
2005-01-01
Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bi-propellant engines used in the Apollo program. A multi-use engine. one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, bum duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).
Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration
NASA Astrophysics Data System (ADS)
Brown, Kendall K.; Nelson, Karl W.
2005-02-01
Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bipropellant engines used in the Apollo program. A multi-use engine, one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, burn duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).
Tissue Engineering Whole Bones Through Endochondral Ossification: Regenerating the Distal Phalanx.
Sheehy, Eamon J; Mesallati, Tariq; Kelly, Lara; Vinardell, Tatiana; Buckley, Conor T; Kelly, Daniel J
2015-01-01
Novel strategies are urgently required to facilitate regeneration of entire bones lost due to trauma or disease. In this study, we present a novel framework for the regeneration of whole bones by tissue engineering anatomically shaped hypertrophic cartilaginous grafts in vitro that subsequently drive endochondral bone formation in vivo. To realize this, we first fabricated molds from digitized images to generate mesenchymal stem cell-laden alginate hydrogels in the shape of different bones (the temporomandibular joint [TMJ] condyle and the distal phalanx). These constructs could be stimulated in vitro to generate anatomically shaped hypertrophic cartilaginous tissues that had begun to calcify around their periphery. Constructs were then formed into the shape of the distal phalanx to create the hypertrophic precursor of the osseous component of an engineered long bone. A layer of cartilage engineered through self-assembly of chondrocytes served as the articular surface of these constructs. Following chondrogenic priming and subcutaneous implantation, the hypertrophic phase of the engineered phalanx underwent endochondral ossification, leading to the generation of a vascularized bone integrated with a covering layer of stable articular cartilage. Furthermore, spatial bone deposition within the construct could be modulated by altering the architecture of the osseous component before implantation. These findings open up new horizons to whole limb regeneration by recapitulating key aspects of normal bone development.
Ultra High Temperature (UHT) SiC Fiber (Phase 2)
NASA Technical Reports Server (NTRS)
Dicarlo, James A.; Jacobson, Nathan S.; Lizcano, Maricela; Bhatt, Ramakrishna T.
2015-01-01
Silicon-carbide fiber-reinforced silicon-carbide ceramic matrix composites (SiCSiC CMC) are emerginglightweight re-usable structural materials not only for hot section components in gas turbine engines, but also for controlsurfaces and leading edges of reusable hypersonic vehicles as well as for nuclear propulsion and reactor components. Ithas been shown that when these CMC are employed in engine hot-section components, the higher the upper usetemperature (UUT) of the SiC fiber, the more performance benefits are accrued, such as higher operating temperatures,reduced component cooling air, reduced fuel consumption, and reduced emissions. The first generation of SiCSiC CMC with a temperature capability of 2200-2400F are on the verge of being introduced into the hot-section components ofcommercial and military gas turbine engines.Today the SiC fiber type currently recognized as the worlds best in terms ofthermo-mechanical performance is the Sylramic-iBN fiber. This fiber was previously developed by the PI at NASA GRC using patented processes to improve the high-cost commercial Sylramic fiber, which in turn was derived from anotherlow-cost low-performance commercial fiber. Although the Sylramic-iBN fiber shows state-of-the art creep and rupture resistance for use temperatures above 2550oF, NASA has shown by fundamental creep studies and model developmentthat its microstructure and creep resistance could theoretically be significantly improved to produce an Ultra HighTemperature (UHT) SiC fiber.This Phase II Seedling Fund effort has been focused on the key objective of effectively repeating the similar processes used for producing the Sylramic-iBN fiber using a design of experiments approach to first understand the cause of the less than optimum Sylramic-iBN microstructure and then attempting to develop processconditions that eliminate or minimize these key microstructural issues. In so doing, it is predicted that that theseadvanced process could result in an UHT SiC fiber with 20 times more creep resistance than the Sylramic-iBN fiber,which in turn would allow SiCSiC CMC to operate up to 2700oF and above, thereby further enhancing the performancebenefits of SiCSiC components in aero-propulsion engines. It was also envisioned that the fiber processes developedduring Phase II efforts would not only reduce production costs for the UHT fiber by using low-cost precursor fibers andcombined processes, but also allow the UHT fibers to be directly produced in preforms of the precursor fibers, possibly atthe facilities of the CMC fabricator.
Avionics and Power Management for Low-Cost High-Altitude Balloon Science Platforms
NASA Technical Reports Server (NTRS)
Chin, Jeffrey; Roberts, Anthony; McNatt, Jeremiah
2016-01-01
High-altitude balloons (HABs) have become popular as educational and scientific platforms for planetary research. This document outlines key components for missions where low cost and rapid development are desired. As an alternative to ground-based vacuum and thermal testing, these systems can be flight tested at comparable costs. Communication, solar, space, and atmospheric sensing experiments often require environments where ground level testing can be challenging or impossible in certain cases. When performing HAB research the ability to monitor the status of the platform and gather data is key for both scientific and recoverability aspects of the mission. A few turnkey platform solutions are outlined that leverage rapidly evolving open-source engineering ecosystems. Rather than building custom components from scratch, these recommendations attempt to maximize simplicity and cost of HAB platforms to make launches more accessible to everyone.
Bond Graph Modeling of Chemiosmotic Biomolecular Energy Transduction.
Gawthrop, Peter J
2017-04-01
Engineering systems modeling and analysis based on the bond graph approach has been applied to biomolecular systems. In this context, the notion of a Faraday-equivalent chemical potential is introduced which allows chemical potential to be expressed in an analogous manner to electrical volts thus allowing engineering intuition to be applied to biomolecular systems. Redox reactions, and their representation by half-reactions, are key components of biological systems which involve both electrical and chemical domains. A bond graph interpretation of redox reactions is given which combines bond graphs with the Faraday-equivalent chemical potential. This approach is particularly relevant when the biomolecular system implements chemoelectrical transduction - for example chemiosmosis within the key metabolic pathway of mitochondria: oxidative phosphorylation. An alternative way of implementing computational modularity using bond graphs is introduced and used to give a physically based model of the mitochondrial electron transport chain To illustrate the overall approach, this model is analyzed using the Faraday-equivalent chemical potential approach and engineering intuition is used to guide affinity equalisation: a energy based analysis of the mitochondrial electron transport chain.
Three-dimensional bioprinting is not only about cell-laden structures.
Zhang, Hong-Bo; Xing, Tian-Long; Yin, Rui-Xue; Shi, Yong; Yang, Shi-Mo; Zhang, Wen-Jun
2016-08-01
In this review, we focused on a few obstacles that hinder three-dimensional (3D) bioprinting process in tissue engineering. One of the obstacles is the bioinks used to deliver cells. Hydrogels are the most widely used bioink materials; however, they aremechanically weak in nature and cannot meet the requirements for supporting structures, especially when the tissues, such as cartilage, require extracellular matrix to be mechanically strong. Secondly and more importantly, tissue regeneration is not only about building all the components in a way that mimics the structures of living tissues, but also about how to make the constructs function normally in the long term. One of the key issues is sufficient nutrient and oxygen supply to the engineered living constructs. The other is to coordinate the interplays between cells, bioactive agents and extracellular matrix in a natural way. This article reviews the approaches to improve the mechanical strength of hydrogels and their suitability for 3D bioprinting; moreover, the key issues of multiple cell lines coprinting with multiple growth factors, vascularization within engineered living constructs etc. were also reviewed.
The next step in biology: a periodic table?
Dhar, Pawan K
2007-08-01
Systems biology is an approach to explain the behaviour of a system in relation to its individual components. Synthetic biology uses key hierarchical and modular concepts of systems biology to engineer novel biological systems. In my opinion the next step in biology is to use molecule-to-phenotype data using these approaches and integrate them in the form a periodic table. A periodic table in biology would provide chassis to classify, systematize and compare diversity of component properties vis-a-vis system behaviour. Using periodic table it could be possible to compute higher- level interactions from component properties. This paper examines the concept of building a bio-periodic table using protein fold as the fundamental unit.
2004-01-01
Department. The SSP faculty, however, includes natural scientists and engineers as well as social scientists. Distinguishing the program is its ability to...Humanities, Arts, and Social Sciences at MIT and seeks to encourage the analysis of issues of continuing public concern. Key components of the Center in...by a Europe worried about meeting promised social welfare benefits for a rapidly aging population. Americans cannot avoid the war with mili- tant
Winters, J M
1995-01-01
A perspective is offered on rehabilitation engineering educational strategies, with a focus on the bachelor's and master's levels. Ongoing changes in engineering education are summarized, especially as related to the integration of design and computers throughout the curriculum; most positively affect rehabilitation engineering training. The challenge of identifying long-term "niches" for rehabilitation engineers within a changing rehabilitation service delivery process is addressed. Five key training components are identified and developed: core science and engineering knowledge, synthesized open-ended problem-solving skill development, hands-on design experience, rehabilitation breadth exposure, and a clinical internship. Two unique abilities are identified that help demarcate the engineer from other providers: open-ended problem-solving skills that include quantitative analysis when appropriate, and objective quantitative evaluation of human performance. Educational strategies for developing these abilities are addressed. Finally, a case is made for training "hybrid" engineers/therapists, in particular bachelor-level engineers who go directly to graduate school to become certified orthotists/prosthetists or physical/occupational therapists, pass the RESNA-sponsored assistive technology service provision exam along the way, then later in life obtain a professional engineer's license and an engineering master's degree.
Propulsion System Advances that Enable a Reusable Liquid Fly Back Booster (LFBB)
NASA Technical Reports Server (NTRS)
Keith, Edward L.; Rothschild, William J.
1998-01-01
This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX / kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.
Propulsion system advances that enable a reusable Liquid Fly Back Booster (LFBB)
NASA Technical Reports Server (NTRS)
Keith, E. L.; Rothschild, W. J.
1998-01-01
This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX/kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.
Aerothermal modeling. Executive summary
NASA Technical Reports Server (NTRS)
Kenworthy, M. K.; Correa, S. M.; Burrus, D. L.
1983-01-01
One of the significant ways in which the performance level of aircraft turbine engines has been improved is by the use of advanced materials and cooling concepts that allow a significant increase in turbine inlet temperature level, with attendant thermodynamic cycle benefits. Further cycle improvements have been achieved with higher pressure ratio compressors. The higher turbine inlet temperatures and compressor pressure ratios with corresponding higher temperature cooling air has created a very hostile environment for the hot section components. To provide the technology needed to reduce the hot section maintenance costs, NASA has initiated the Hot Section Technology (HOST) program. One key element of this overall program is the Aerothermal Modeling Program. The overall objective of his program is to evolve and validate improved analysis methods for use in the design of aircraft turbine engine combustors. The use of such combustor analysis capabilities can be expected to provide significant improvement in the life and durability characteristics of both combustor and turbine components.
Near Zero Emissions at 50 Percent Thermal Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2012-12-31
Detroit Diesel Corporation (DDC) has successfully completed a 10 year DOE sponsored heavy-duty truck engine program, hereafter referred to as the NZ-50 program. This program was split into two major phases. The first phase was called Near-Zero Emission at 50 Percent Thermal Efficiency, and was completed in 2007. The second phase was initiated in 2006, and this phase was named Advancements in Engine Combustion Systems to Enable High-Efficiency Clean Combustion for Heavy-Duty Engines. This phase was completed in September, 2010. The key objectives of the NZ-50 program for this first phase were to: Quantify thermal efficiency degradation associated with reductionmore » of engine-out NOx emissions to the 2007 regulated level of ~1.1 g/hp-hr. Implement an integrated analytical/experimental development plan for improving subsystem and component capabilities in support of emerging engine technologies for emissions and thermal efficiency goals of the program. Test prototype subsystem hardware featuring technology enhancements and demonstrate effective application on a multi-cylinder, production feasible heavy-duty engine test-bed. Optimize subsystem components and engine controls (calibration) to demonstrate thermal efficiency that is in compliance with the DOE 2005 Joule milestone, meaning greater than 45% thermal efficiency at 2007 emission levels. Develop technology roadmap for meeting emission regulations of 2010 and beyond while mitigating the associated degradation in engine fuel consumption. Ultimately, develop technical prime-path for meeting the overall goal of the NZ-50 program, i.e., 50% thermal efficiency at 2010 regulated emissions. These objectives were successfully met during the course of the NZ-50 program. The most noteworthy achievements in this program are summarized as follows: Demonstrated technologies through advanced integrated experiments and analysis to achieve the technical objectives of the NZ-50 program with 50.2% equivalent thermal efficiency under EPA 2010 emissions regulations. Experimentally demonstrate brake efficiency of 48.5% at EPA 2010 emission level at single steady-state point. Analytically demonstrated additional brake efficiency benefits using advanced aftertreatment configuration concept and air system enhancement including, but not limited to, turbo-compound, variable valve actuator system, and new cylinder head redesign, thus helping to achieve the final program goals. Experimentally demonstrated EPA 2010 emissions over FTP cycles using advanced integrated engine and aftertreatment system. These aggressive thermal efficiency and emissions results were achieved by applying a robust systems technology development methodology. It used integrated analytical and experimental tools for subsystem component optimization encompassing advanced fuel injection system, increased EGR cooling capacity, combustion process optimization, and advanced aftertreatment technologies. Model based controls employing multiple input and output techniques enabled efficient integration of the various subsystems and ensured optimal performance of each system within the total engine package. . The key objective of the NZ-50 program for the second phase was to explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize cylinder-out emissions, targeting a 10% efficiency improvement. The most noteworthy achievements in this phase of the program are summarized as follows: Experimentally and analytically evaluated numerous air system improvements related to the turbocharger and variable valve actuation. Some of the items tested proved to be very successful and modifications to the turbine discovered in this program have since been incorporated into production hardware. The combustion system development continued with evaluation of various designs of the 2-step piston bowl. Significant improvements in engine emissions have been obtained, but fuel economy improvements have been tougher to realize. Development of a neural network control system progressed to the point that the system was fully functional and showing significant fuel economy gains in transient engine testing. Development of the QuantLogic injector with the capability of both a hollow cone spray during early injection and conventional diesel injection at later injection timings was undertaken and proved to be problematic. This injector was designed to be a key component in a PCCI combustion system, but this innovative fuel injector required significantly more development effort than this programâ's resources or timing would allow.« less
A user interface framework for the Square Kilometre Array: concepts and responsibilities
NASA Astrophysics Data System (ADS)
Marassi, Alessandro; Brajnik, Giorgio; Nicol, Mark; Alberti, Valentina; Le Roux, Gerhard
2016-07-01
The Square Kilometre Array (SKA) project is responsible for developing the SKA Observatory, the world's largest radio telescope, with eventually over a square kilometre of collecting area and including a general headquarters as well as two radio telescopes: SKA1-Mid in South Africa and SKA1-Low in Australia. The SKA project consists of a number of subsystems (elements) among which the Telescope Manager (TM) is the one involved in controlling and monitoring the SKA telescopes. The TM element has three primary responsibilities: management of astronomical observations, management of telescope hardware and software subsystems, management of data to support system operations and all stakeholders (operators, maintainers, engineers and science users) in achieving operational, maintenance and engineering goals. Operators, maintainers, engineers and science users will interact with TM via appropriate user interfaces (UI). The TM UI framework envisaged is a complete set of general technical solutions (components, technologies and design information) for implementing a generic computing system (UI platform). Such a system will enable UI components to be instantiated to allow for human interaction via screens, keyboards, mouse and to implement the necessary logic for acquiring or deriving the information needed for interaction. It will provide libraries and specific Application Programming Interfaces (APIs) to implement operator and engineer interactive interfaces. This paper will provide a status update of the TM UI framework, UI platform and UI components design effort, including the technology choices, and discuss key challenges in the TM UI architecture, as well as our approaches to addressing them.
Distributed Engine Control Empirical/Analytical Verification Tools
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan; Hettler, Eric; Yedavalli, Rama; Mitra, Sayan
2013-01-01
NASA's vision for an intelligent engine will be realized with the development of a truly distributed control system featuring highly reliable, modular, and dependable components capable of both surviving the harsh engine operating environment and decentralized functionality. A set of control system verification tools was developed and applied to a C-MAPSS40K engine model, and metrics were established to assess the stability and performance of these control systems on the same platform. A software tool was developed that allows designers to assemble easily a distributed control system in software and immediately assess the overall impacts of the system on the target (simulated) platform, allowing control system designers to converge rapidly on acceptable architectures with consideration to all required hardware elements. The software developed in this program will be installed on a distributed hardware-in-the-loop (DHIL) simulation tool to assist NASA and the Distributed Engine Control Working Group (DECWG) in integrating DCS (distributed engine control systems) components onto existing and next-generation engines.The distributed engine control simulator blockset for MATLAB/Simulink and hardware simulator provides the capability to simulate virtual subcomponents, as well as swap actual subcomponents for hardware-in-the-loop (HIL) analysis. Subcomponents can be the communication network, smart sensor or actuator nodes, or a centralized control system. The distributed engine control blockset for MATLAB/Simulink is a software development tool. The software includes an engine simulation, a communication network simulation, control algorithms, and analysis algorithms set up in a modular environment for rapid simulation of different network architectures; the hardware consists of an embedded device running parts of the CMAPSS engine simulator and controlled through Simulink. The distributed engine control simulation, evaluation, and analysis technology provides unique capabilities to study the effects of a given change to the control system in the context of the distributed paradigm. The simulation tool can support treatment of all components within the control system, both virtual and real; these include communication data network, smart sensor and actuator nodes, centralized control system (FADEC full authority digital engine control), and the aircraft engine itself. The DECsim tool can allow simulation-based prototyping of control laws, control architectures, and decentralization strategies before hardware is integrated into the system. With the configuration specified, the simulator allows a variety of key factors to be systematically assessed. Such factors include control system performance, reliability, weight, and bandwidth utilization.
An extension of fracture mechanics/technology to larger and smaller cracks/defects
Abé, Hiroyuki
2009-01-01
Fracture mechanics/technology is a key science and technology for the design and integrity assessment of the engineering structures. However, the conventional fracture mechanics has mostly targeted a limited size of cracks/defects, say of from several hundred microns to several tens of centimeters. The author and his group has tried to extend that limited size and establish a new version of fracture technology for very large cracks used in geothermal energy extraction and for very small cracks/defects or damage often appearing in the combination of mechanical and electronic components of engineering structures. Those new versions are reviewed in this paper. PMID:19907123
An extension of fracture mechanics/technology to larger and smaller cracks/defects.
Abé, Hiroyuki
2009-01-01
Fracture mechanics/technology is a key science and technology for the design and integrity assessment of the engineering structures. However, the conventional fracture mechanics has mostly targeted a limited size of cracks/defects, say of from several hundred microns to several tens of centimeters. The author and his group has tried to extend that limited size and establish a new version of fracture technology for very large cracks used in geothermal energy extraction and for very small cracks/defects or damage often appearing in the combination of mechanical and electronic components of engineering structures. Those new versions are reviewed in this paper.
NASA Astrophysics Data System (ADS)
Kupecki, Jakub; Motyliński, Konrad; Skrzypkiewicz, Marek; Wierzbicki, Michał; Naumovich, Yevgeniy
2017-12-01
The article discusses the operation of solid oxide electrochemical cells (SOC) developed in the Institute of Power Engineering as prospective key components of power-to-gas systems. The fundamentals of the solid oxide cells operated as fuel cells (SOFC - solid oxide fuel cells) and electrolysers (SOEC - solid oxide fuel cells) are given. The experimental technique used for electrochemical characterization of cells is presented. The results obtained for planar cell with anodic support are given and discussed. Based on the results, the applicability of the cells in power-to-gas systems (P2G) is evaluated.
Engineered nanomaterials for solar energy conversion.
Mlinar, Vladan
2013-02-01
Understanding how to engineer nanomaterials for targeted solar-cell applications is the key to improving their efficiency and could lead to breakthroughs in their design. Proposed mechanisms for the conversion of solar energy to electricity are those exploiting the particle nature of light in conventional photovoltaic cells, and those using the collective electromagnetic nature, where light is captured by antennas and rectified. In both cases, engineered nanomaterials form the crucial components. Examples include arrays of semiconductor nanostructures as an intermediate band (so called intermediate band solar cells), semiconductor nanocrystals for multiple exciton generation, or, in antenna-rectifier cells, nanomaterials for effective optical frequency rectification. Here, we discuss the state of the art in p-n junction, intermediate band, multiple exciton generation, and antenna-rectifier solar cells. We provide a summary of how engineered nanomaterials have been used in these systems and a discussion of the open questions.
Wetting and Spreading of Molten Volcanic Ash in Jet Engines.
Song, Wenjia; Lavallée, Yan; Wadsworth, Fabian B; Hess, Kai-Uwe; Dingwell, Donald B
2017-04-20
A major hazard to jet engines posed by volcanic ash is linked to the wetting and spreading of molten ash droplets on engine component surfaces. Here, using the sessile drop method, we study the evolution of the wettability and spreading of volcanic ash. We employ rapid temperature changes up to 1040-1450 °C, to replicate the heating conditions experienced by volcanic ash entering an operating jet engine. In this scenario, samples densify as particles coalesce under surface tension until they form a large system-sized droplet (containing remnant gas bubbles and crystals), which subsequently spreads on the surface. The data exhibit a transition from a heterogeneous to a homogeneous wetting regime above 1315 °C as crystals in the drops are dissolved in the melt. We infer that both viscosity and microstructural evolution are key controls on the attainment of equilibrium in the wetting of molten volcanic ash droplets.
Zhao, Weizhao; Li, Xiping; Chen, Hairong; Manns, Fabrice
2012-01-01
Medical Imaging is a key training component in Biomedical Engineering programs. Medical imaging education is interdisciplinary training, involving physics, mathematics, chemistry, electrical engineering, computer engineering, and applications in biology and medicine. Seeking an efficient teaching method for instructors and an effective learning environment for students has long been a goal for medical imaging education. By the support of NSF grants, we developed the medical imaging teaching software (MITS) and associated dynamic assessment tracking system (DATS). The MITS/DATS system has been applied to junior and senior medical imaging classes through a hybrid teaching model. The results show that student's learning gain improved, particularly in concept understanding and simulation project completion. The results also indicate disparities in subjective perception between junior and senior classes. Three institutions are collaborating to expand the courseware system and plan to apply it to different class settings.
Miniaturization as a key factor to the development and application of advanced metrology systems
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Dobrev, Ivo; Harrington, Ellery; Hefti, Peter; Khaleghi, Morteza
2012-10-01
Recent technological advances of miniaturization engineering are enabling the realization of components and systems with unprecedented capabilities. Such capabilities, which are significantly beneficial to scientific and engineering applications, are impacting the development and the application of optical metrology systems for investigations under complex boundary, loading, and operating conditions. In this paper, and overview of metrology systems that we are developing is presented. Systems are being developed and applied to high-speed and high-resolution measurements of shape and deformations under actual operating conditions for such applications as sustainability, health, medical diagnosis, security, and urban infrastructure. Systems take advantage of recent developments in light sources and modulators, detectors, microelectromechanical (MEMS) sensors and actuators, kinematic positioners, rapid prototyping fabrication technologies, as well as software engineering.
NASA Technical Reports Server (NTRS)
Goldstein, Arthur W; Alpert, Sumner; Beede, William; Kovach, Karl
1949-01-01
In order to understand the operation and the interaction of jet-engine components during engine operation and to determine how component characteristics may be used to compute engine performance, a method to analyze and to estimate performance of such engines was devised and applied to the study of the characteristics of a research turbojet engine built for this investigation. An attempt was made to correlate turbine performance obtained from engine experiments with that obtained by the simpler procedure of separately calibrating the turbine with cold air as a driving fluid in order to investigate the applicability of component calibration. The system of analysis was also applied to prediction of the engine and component performance with assumed modifications of the burner and bearing characteristics, to prediction of component and engine operation during engine acceleration, and to estimates of the performance of the engine and the components when the exhaust gas was used to drive a power turbine.
Reliability and Productivity Modeling for the Optimization of Separated Spacecraft Interferometers
NASA Technical Reports Server (NTRS)
Kenny, Sean (Technical Monitor); Wertz, Julie
2002-01-01
As technological systems grow in capability, they also grow in complexity. Due to this complexity, it is no longer possible for a designer to use engineering judgement to identify the components that have the largest impact on system life cycle metrics, such as reliability, productivity, cost, and cost effectiveness. One way of identifying these key components is to build quantitative models and analysis tools that can be used to aid the designer in making high level architecture decisions. Once these key components have been identified, two main approaches to improving a system using these components exist: add redundancy or improve the reliability of the component. In reality, the most effective approach to almost any system will be some combination of these two approaches, in varying orders of magnitude for each component. Therefore, this research tries to answer the question of how to divide funds, between adding redundancy and improving the reliability of components, to most cost effectively improve the life cycle metrics of a system. While this question is relevant to any complex system, this research focuses on one type of system in particular: Separate Spacecraft Interferometers (SSI). Quantitative models are developed to analyze the key life cycle metrics of different SSI system architectures. Next, tools are developed to compare a given set of architectures in terms of total performance, by coupling different life cycle metrics together into one performance metric. Optimization tools, such as simulated annealing and genetic algorithms, are then used to search the entire design space to find the "optimal" architecture design. Sensitivity analysis tools have been developed to determine how sensitive the results of these analyses are to uncertain user defined parameters. Finally, several possibilities for the future work that could be done in this area of research are presented.
Introduction to Advanced Engine Control Concepts
NASA Technical Reports Server (NTRS)
Sanjay, Garg
2007-01-01
With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.
Cell-free synthetic biology for environmental sensing and remediation.
Karig, David K
2017-06-01
The fields of biosensing and bioremediation leverage the phenomenal array of sensing and metabolic capabilities offered by natural microbes. Synthetic biology provides tools for transforming these fields through complex integration of natural and novel biological components to achieve sophisticated sensing, regulation, and metabolic function. However, the majority of synthetic biology efforts are conducted in living cells, and concerns over releasing genetically modified organisms constitute a key barrier to environmental applications. Cell-free protein expression systems offer a path towards leveraging synthetic biology, while preventing the spread of engineered organisms in nature. Recent efforts in the areas of cell-free approaches for sensing, regulation, and metabolic pathway implementation, as well as for preserving and deploying cell-free expression components, embody key steps towards realizing the potential of cell-free systems for environmental sensing and remediation. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.
Procurement engineering - the productivity factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bargerstock, S.B.
1993-01-01
The industry is several years on the road to implementation of the Nuclear Management and Resources Council (NUMARC) initiatives on commercial-grade item dedication and procurement. Utilities have taken several approaches to involve engineering in the procurement process. A common result for the approaches is the additional operations and maintenance (O M) cost imposed by the added resource requirements. Procurement engineering productivity is a key element in controlling this business area. Experience shows that 400 to 500% improvements in productivity are possible with a 2-yr period. Improving the productivity of the procurement engineering function is important in today's competitive utility environment.more » Procurement engineering typically involves four distinct technical evaluation responsibilities along with several administrative areas. Technical evaluations include the functionally based safety classification of replacement components and parts (lacking a master parts list), the determination of dedication requirements for safety-related commercial-grade items, the preparation of a procurement specification to maintain the licensed design bases, and the equivalency evaluation of alternate items not requiring the design-change process. Administrative duties include obtaining technical review of vendor-supplied documentation, identifying obsolete parts and components, resolving material nonconformances, initiating the design-change process for replacement items (as needed), and providing technical support to O M. Although most utilities may not perform or require all the noted activities, a large percentage will apply to each utility station.« less
NASA Technical Reports Server (NTRS)
DiCarlo, J. A.; Yun, Hee Mann; Morscher, Gregory N.; Bhatt, Ramakrishna T.
2002-01-01
The successful application of ceramic matrix composites as hot-section components in advanced gas turbine engines will require the development of constituent materials and processes that can provide the material systems with the key thermostructural properties required for long-term component service. Much initial progress in identifying these materials and processes was made under the former NASA Enabling Propulsion Materials Program using stoichiometric Sylramic (trademark) silicon-carbide (SiC) fibers, 2D (two dimensional)-woven fiber architectures, chemically vapor-infiltrated (CVI) BN fiber coatings (interphases), and SiC-based matrices containing CVI SiC interphase over-coatings, slurry-infiltrated SiC particulate, and melt-infiltrated (MI) silicon. The objective of this paper is to discuss the property benefits of this SiC/SiC composite system for high-temperature engine components and to elaborate on further progress in SiC/SiC development made under the new NASA Ultra Efficient Engine Technology Program. This progress stems from the recent development of advanced constituent materials and manufacturing processes, including specific treatments at NASA that improve the creep, rupture, and environmental resistance of the Sylramic fiber as well as the thermal conductivity and creep resistance of the CVI SiC over-coatings. Also discussed are recent observations concerning the detrimental effects of inadvertent carbon in the fiber-BN interfacial region and the beneficial effects of certain 2D-architectures for thin-walled SiC/SiC panels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherry, N.C.
1980-10-31
The University of Dayton (UD) and Wilberforce University (WU) Preface Program provides a key component in a comprehensive and successful strategy for increasing minority group members and women students entering and graduating in engineering and engineering technology. The high school level includes programs for minority and women students, teachers, and counselors. The University level includes a Dual Degree Program (DDP) between Wilberforce University and the University of Dayton; freshman academic assistance and support programs and schlorships (PREFACE/INSTEP) for the critical freshman year; and, co-op employment to provide motivation and financial resources for students in upper classes. In the past fivemore » years, UD and WU have awarded 89 PREFACE/INSTEP scholarships to students entering UD or DDP and 75 are still in engineering or engineering technology for an outstanding retention rate of 84.27%. Thirty-seven scholarships have been funded by the DOE and its predecessor, the ERDA with a retention rate in engineering and engineering technology of 81.1%. There will be ten PREFACE students graduating in engineering and engineering technology in 1980-1981. The first ERDA Preface Scholar graduated in August 1980 and currently works for a DOE contractor - Monsanto Research Corporation.« less
Neoproteoglycans in tissue engineering.
Weyers, Amanda; Linhardt, Robert J
2013-05-01
Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein-glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer-glycosaminoglycan complexes. © 2013 The Authors Journal compilation © 2013 FEBS.
Neoproteoglycans in tissue engineering
Weyers, Amanda; Linhardt, Robert J.
2014-01-01
Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein–glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer–glycosaminoglycan complexes. PMID:23399318
Transporter engineering in biomass utilization by yeast.
Hara, Kiyotaka Y; Kobayashi, Jyumpei; Yamada, Ryosuke; Sasaki, Daisuke; Kuriya, Yuki; Hirono-Hara, Yoko; Ishii, Jun; Araki, Michihiro; Kondo, Akihiko
2017-11-01
Biomass resources are attractive carbon sources for bioproduction because of their sustainability. Many studies have been performed using biomass resources to produce sugars as carbon sources for cell factories. Expression of biomass hydrolyzing enzymes in cell factories is an important approach for constructing biomass-utilizing bioprocesses because external addition of these enzymes is expensive. In particular, yeasts have been extensively engineered to be cell factories that directly utilize biomass because of their manageable responses to many genetic engineering tools, such as gene expression, deletion and editing. Biomass utilizing bioprocesses have also been developed using these genetic engineering tools to construct metabolic pathways. However, sugar input and product output from these cells are critical factors for improving bioproduction along with biomass utilization and metabolic pathways. Transporters are key components for efficient input and output activities. In this review, we focus on transporter engineering in yeast to enhance bioproduction from biomass resources. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli.
Whitaker, W Brian; Jones, J Andrew; Bennett, R Kyle; Gonzalez, Jacqueline E; Vernacchio, Victoria R; Collins, Shannon M; Palmer, Michael A; Schmidt, Samuel; Antoniewicz, Maciek R; Koffas, Mattheos A; Papoutsakis, Eleftherios T
2017-01-01
Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using 13 C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolytic intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. By incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Emerging Biomimetic Applications of DNA Nanotechnology.
Shen, Haijing; Wang, Yingqian; Wang, Jie; Li, Zhihao; Yuan, Quan
2018-06-25
Re-engineering cellular components and biological processes has received great interest and promised compelling advantages in applications ranging from basic cell biology to biomedicine. With the advent of DNA nanotechnology, the programmable self-assembly ability makes DNA an appealing candidate for rational design of artificial components with different structures and functions. This Forum Article summarizes recent developments of DNA nanotechnology in mimicking the structures and functions of existing cellular components. We highlight key successes in the achievements of DNA-based biomimetic membrane proteins and discuss the assembly behavior of these artificial proteins. Then, we focus on the construction of higher-order structures by DNA nanotechnology to recreate cell-like structures. Finally, we explore the current challenges and speculate on future directions of DNA nanotechnology in biomimetics.
Heat Treatment Used to Strengthen Enabling Coating Technology for Oil-Free Turbomachinery
NASA Technical Reports Server (NTRS)
Edmonds, Brian J.; DellaCorte, Christopher
2002-01-01
The PS304 high-temperature solid lubricant coating is a key enabling technology for Oil- Free turbomachinery propulsion and power systems. Breakthroughs in the performance of advanced foil air bearings and improvements in computer-based finite element modeling techniques are the key technologies enabling the development of Oil-Free aircraft engines being pursued by the Oil-Free Turbomachinery team at the NASA Glenn Research Center. PS304 is a plasma spray coating applied to the surface of shafts operating against foil air bearings or in any other component requiring solid lubrication at high temperatures, where conventional materials such as graphite cannot function.
The J-2X Upper Stage Engine: From Heritage to Hardware
NASA Technical Reports Server (NTRS)
Byrd, THomas
2008-01-01
NASA's Global Exploration Strategy requires safe, reliable, robust, efficient transportation to support sustainable operations from Earth to orbit and into the far reaches of the solar system. NASA selected the Ares I crew launch vehicle and the Ares V cargo launch vehicle to provide that transportation. Guiding principles in creating the architecture represented by the Ares vehicles were the maximum use of heritage hardware and legacy knowledge, particularly Space Shuttle assets, and commonality between the Ares vehicles where possible to streamline the hardware development approach and reduce programmatic, technical, and budget risks. The J-2X exemplifies those goals. It was selected by the Exploration Systems Architecture Study (ESAS) as the upper stage propulsion for the Ares I Upper Stage and the Ares V Earth Departure Stage (EDS). The J-2X is an evolved version ofthe historic J-2 engine that successfully powered the second stage of the Saturn I launch vehicle and the second and third stages of the Saturn V launch vehicle. The Constellation architecture, however, requires performance greater than its predecessor. The new architecture calls for larger payloads delivered to the Moon and demands greater loss of mission reliability and numerous other requirements associated with human rating that were not applied to the original J-2. As a result, the J-2X must operate at much higher temperatures, pressures, and flow rates than the heritage J-2, making it one of the highest performing gas generator cycle engines ever built, approaching the efficiency of more complex stage combustion engines. Development is focused on early risk mitigation, component and subassembly test, and engine system test. The development plans include testing engine components, including the subscale injector, main igniter, powerpack assembly (turbopumps, gas generator and associated ducting and structural mounts), full-scale gas generator, valves, and control software with hardware-in-the-loop. Testing expanded in 2007, accompanied by the refinement of the design through several key milestones. This paper discusses those 2007 tests and milestones, as well as updates key developments in 2008.
NASA X-34 Technology in Motion
NASA Technical Reports Server (NTRS)
Beech, Geoffrey; Chandler, Kristie
1997-01-01
The X-34 technology development program is a joint industry/government project to develop, test, and operate a small, fully-reusable hypersonic flight vehicle. The objective is to demonstrate key technologies and operating concepts applicable to future reusable launch vehicles. Integrated in the vehicle are various systems to assure successful completion of mission objectives, including the Main Propulsion System (MPS). NASA-Marshall Space Flight Center (MSFC) is responsible for developing the X-34's MPS including the design and complete build package for the propulsion system components. The X-34 will be powered by the Fastrac Engine, which is currently in design and development at NASA-MSFC. Fastrac is a single-stage main engine, which burns a mixture of liquid oxygen (LOX) and kerosene(RP-1). The interface between the MPS and Fastrac engine are critical for proper system operation and technologies applicable to future reusable launch vehicles. Deneb's IGRIP software package with the Dynamic analysis option provided a key tool for conducting studies critical to this interface as well as a mechanism to drive the design of the LOX and RP-1 feedlines. Kinematic models were created for the Fastrac Engine and the feedlines for various design concepts. Based on the kinematic simulation within Envision, design and joint limits were verified and system interference controlled. It was also critical to the program to evaluate the effect of dynamic loads visually, providing a verification tool for dynamic analysis and in some cases uncovering areas that had not been considered. Deneb's software put the X-34 technology in motion and has been a key factor in facilitating the strenuous design schedule.
Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.
1993-03-01
A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.
Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide
NASA Technical Reports Server (NTRS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.
1993-01-01
A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.
NASA Astrophysics Data System (ADS)
Minakova, N. N.; Ushakov, V. Ya.
2017-12-01
One of the key problems in modern materials technology is synthesis of materials for electrotechnical devices capable of operating under severe conditions. Electrical and power engineering, in particular, demands for electrically conductive composite materials operating at high and low temperatures, various mechanical loads, electric fields, etc. Chaotic arrangement of electrically conductive component in the matrix and its structural and geometrical inhomogeneity can increase the local electric and thermal energy flux densities up to critical values even when their average values remain moderate. Elastomers filled with technical carbon being a promising component for electrotechnical devices was chosen as an object of study.
The role of technology and engineering models in transforming healthcare.
Pavel, Misha; Jimison, Holly Brugge; Wactlar, Howard D; Hayes, Tamara L; Barkis, Will; Skapik, Julia; Kaye, Jeffrey
2013-01-01
The healthcare system is in crisis due to challenges including escalating costs, the inconsistent provision of care, an aging population, and high burden of chronic disease related to health behaviors. Mitigating this crisis will require a major transformation of healthcare to be proactive, preventive, patient-centered, and evidence-based with a focus on improving quality-of-life. Information technology, networking, and biomedical engineering are likely to be essential in making this transformation possible with the help of advances, such as sensor technology, mobile computing, machine learning, etc. This paper has three themes: 1) motivation for a transformation of healthcare; 2) description of how information technology and engineering can support this transformation with the help of computational models; and 3) a technical overview of several research areas that illustrate the need for mathematical modeling approaches, ranging from sparse sampling to behavioral phenotyping and early detection. A key tenet of this paper concerns complementing prior work on patient-specific modeling and simulation by modeling neuropsychological, behavioral, and social phenomena. The resulting models, in combination with frequent or continuous measurements, are likely to be key components of health interventions to enhance health and wellbeing and the provision of healthcare.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margie Jeffs; R. Douglas Hamelin
Integrated Product Development Teams (IPDT) are a key component of any systems engineering (SE) application, but since they are formed primarily from technical considerations, many IPDTs are far less productive than they otherwise could be. By recognizing specific personality types and skill sets, a random group of 'technical' individuals can be structured to become a highly effective team capable of delivering much more than the sum of its members.
NASA Technical Reports Server (NTRS)
1989-01-01
An overview of the five volume set of Information System Life-Cycle and Documentation Standards is provided with information on its use. The overview covers description, objectives, key definitions, structure and application of the standards, and document structure decisions. These standards were created to provide consistent NASA-wide structures for coordinating, controlling, and documenting the engineering of an information system (hardware, software, and operational procedures components) phase by phase.
Bootstrapping and Maintaining Trust in the Cloud
2016-03-16
of infrastructure-as-a- service (IaaS) cloud computing services such as Ama- zon Web Services, Google Compute Engine, Rackspace, et. al. means that...Implementation We implemented keylime in ∼3.2k lines of Python in four components: registrar, node, CV, and tenant. The registrar offers a REST-based web ...bootstrap key K. It provides an unencrypted REST-based web service for these two functions. As described earlier, the pro- tocols for exchanging data
14 CFR 33.53 - Engine system and component tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine system and component tests. 33.53... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.53 Engine system and component tests. (a) For those systems and components that cannot be adequately substantiated in accordance...
NASA Astrophysics Data System (ADS)
Millet, Charlyne; Oget, David; Cavallucci, Denis
2017-11-01
Innovation is a key component to the success and longevity of companies. Our research opens the 'black box' of creativity and innovation in R&D teams. We argue that understanding the nature of R&D projects in terms of creativity/innovation, efficiency/inefficiency, is important for designing education policies and improving engineering curriculum. Our research addresses the inventive design process, a lesser known aspect of the innovation process, in 197 R&D departments of industrial sector companies in France. One fundamental issue facing companies is to evaluate processes and results of innovation. Results show that the evaluation of innovation is confined by a lack of methodology of inventive projects. We will be establishing the foundations of a formal ontology for inventive design projects and finally some recommendations for engineering education.
NASA Technical Reports Server (NTRS)
Condon, Steven; Hendrick, Robert; Stark, Michael E.; Steger, Warren
1997-01-01
The Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center (GSFC) recently embarked on a far-reaching revision of its process for developing and maintaining satellite support software. The new process relies on an object-oriented software development method supported by a domain specific library of generalized components. This Generalized Support Software (GSS) Domain Engineering Process is currently in use at the NASA GSFC Software Engineering Laboratory (SEL). The key facets of the GSS process are (1) an architecture for rapid deployment of FDD applications, (2) a reuse asset library for FDD classes, and (3) a paradigm shift from developing software to configuring software for mission support. This paper describes the GSS architecture and process, results of fielding the first applications, lessons learned, and future directions
Development of Metal Matrix Composites for NASA's Advanced Propulsion Systems
NASA Technical Reports Server (NTRS)
Lee, J.; Elam, S.
2001-01-01
The state-of-the-art development of several Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The goal is to provide an overview of NASA-Marshall Space Flight Center's on-going activities in MMC components for advanced liquid rocket engines such as the X-33 vehicle's Aerospike engine and X-34's Fastrac engine. The focus will be on lightweight, low cost, and environmental compatibility with oxygen and hydrogen of key MMC materials, within each of NASA's new propulsion application, that will provide a high payoff for NASA's Reusable Launch Vehicles and space access vehicles. In order to fabricate structures from MMC, effective joining methods must be developed to join MMC to the same or to different monolithic alloys. Therefore, a qualitative assessment of MMC's welding and joining techniques will be outlined.
Nanoscale Engineering of Designer Cellulosomes.
Gunnoo, Melissabye; Cazade, Pierre-André; Galera-Prat, Albert; Nash, Michael A; Czjzek, Mirjam; Cieplak, Marek; Alvarez, Beatriz; Aguilar, Marina; Karpol, Alon; Gaub, Hermann; Carrión-Vázquez, Mariano; Bayer, Edward A; Thompson, Damien
2016-07-01
Biocatalysts showcase the upper limit obtainable for high-speed molecular processing and transformation. Efforts to engineer functionality in synthetic nanostructured materials are guided by the increasing knowledge of evolving architectures, which enable controlled molecular motion and precise molecular recognition. The cellulosome is a biological nanomachine, which, as a fundamental component of the plant-digestion machinery from bacterial cells, has a key potential role in the successful development of environmentally-friendly processes to produce biofuels and fine chemicals from the breakdown of biomass waste. Here, the progress toward so-called "designer cellulosomes", which provide an elegant alternative to enzyme cocktails for lignocellulose breakdown, is reviewed. Particular attention is paid to rational design via computational modeling coupled with nanoscale characterization and engineering tools. Remaining challenges and potential routes to industrial application are put forward. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Making Temporal Search More Central in Spatial Data Infrastructures
NASA Astrophysics Data System (ADS)
Corti, P.; Lewis, B.
2017-10-01
A temporally enabled Spatial Data Infrastructure (SDI) is a framework of geospatial data, metadata, users, and tools intended to provide an efficient and flexible way to use spatial information which includes the historical dimension. One of the key software components of an SDI is the catalogue service which is needed to discover, query, and manage the metadata. A search engine is a software system capable of supporting fast and reliable search, which may use any means necessary to get users to the resources they need quickly and efficiently. These techniques may include features such as full text search, natural language processing, weighted results, temporal search based on enrichment, visualization of patterns in distributions of results in time and space using temporal and spatial faceting, and many others. In this paper we will focus on the temporal aspects of search which include temporal enrichment using a time miner - a software engine able to search for date components within a larger block of text, the storage of time ranges in the search engine, handling historical dates, and the use of temporal histograms in the user interface to display the temporal distribution of search results.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1989-01-01
ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.
Application of Concurrent Engineering Methods to the Design of an Autonomous Aerial Robot
1991-12-01
power within the system, either airborne or at a ground station, was left to the team’s discretion. Data link from the aerial vehicle to the ground...Design Process 1 4 10 0% Conceptual 100% Preliminary 100% Detailed 100% Design Freedom Kowledge About the Design TIME INTO THE DESIGN PROCESS Figure 15...mission planning and control tasks was accomplished. Key system issues regarding power up and component initialization procedures began to be addressed
The Software Management Environment (SME)
NASA Technical Reports Server (NTRS)
Valett, Jon D.; Decker, William; Buell, John
1988-01-01
The Software Management Environment (SME) is a research effort designed to utilize the past experiences and results of the Software Engineering Laboratory (SEL) and to incorporate this knowledge into a tool for managing projects. SME provides the software development manager with the ability to observe, compare, predict, analyze, and control key software development parameters such as effort, reliability, and resource utilization. The major components of the SME, the architecture of the system, and examples of the functionality of the tool are discussed.
Overview of the Main Propulsion System for the NASA Ares I Upper Stage
NASA Technical Reports Server (NTRS)
Quinn, Jason E.; Swanson, Luke A.
2009-01-01
A functional overview of the Main Propulsion System (MPS) of the NASA Ares I Upper Stage is provided. In addition to a simple overview of the key MPS functions and design philosophies, major lessons learned are discussed. The intent is to provide a technical overview with enough detail to allow engineers outside of the MPS Integrated Product Team (IPT) to develop a rough understanding of MPS operations, components, design philosophy, and lessons learned.
Gu, Cheng; Huang, Ning; Xu, Fei; Gao, Jia; Jiang, Donglin
2015-01-01
Light-harvesting antennae are the machinery for exciton pumping in natural photosynthesis, whereas cascade energy transfer through chlorophyll is key to long-distance, efficient energy transduction. Numerous artificial antennae have been developed. However, they are limited in their cascade energy-transfer abilities because of a lack of control over complex chromophore aggregation processes, which has impeded their advancement. Here we report a viable approach for addressing this issue by using a light-harvesting porous polymer film in which a three-dimensional π-network serves as the antenna and micropores segregate multiple dyes to prevent aggregation. Cascade energy-transfer engines are integrated into the films; the rate and efficiency of the energy-funneling engines are precisely manipulated by tailoring the dye components and contents. The nanofilms allow accurate and versatile luminescence engineering, resulting in the production of thirty emission hues, including blue, green, red and white. This advance may open new pathways for realising photosynthesis and photoenergy conversion. PMID:25746459
Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitaker, W. Brian; Jones, J. Andrew; Bennett, R. Kyle
Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using 13C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolyticmore » intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. In conclusion, by incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli.« less
Space shuttle main engine: Interactive design challenges
NASA Technical Reports Server (NTRS)
Mccarty, J. P.; Wood, B. K.
1985-01-01
The operating requirements established by NASA for the SSME were considerably more demanding than those for earlier rocket engines used in the military launch vehicles or Apollo program. The SSME, in order to achieve the high performance, low weight, long life, reusable objectives, embodied technical demands far in excess of its predecessor rocket engines. The requirements dictated the use of high combustion pressure and the staged combustion cycle which maximizes performance through total use of all propellants in the main combustion process. This approach presented a myriad of technical challenges for maximization of performance within attainable state of the art capabilities for operating pressures, operating temperatures and rotating machinery efficiencies. Controlling uniformity of the high pressure turbomachinery turbine temperature environment was a key challenge for thrust level and life capability demanding innovative engineering. New approaches in the design of the components were necessary to accommodate the multiple use, minimum maintenance objectives. Included were the use of line replaceable units to facilitate field maintenance automatic checkout and internal inspection capabilities.
Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli
Whitaker, W. Brian; Jones, J. Andrew; Bennett, R. Kyle; ...
2016-11-01
Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using 13C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolyticmore » intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. In conclusion, by incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli.« less
Designers workbench: toward real-time immersive modeling
NASA Astrophysics Data System (ADS)
Kuester, Falko; Duchaineau, Mark A.; Hamann, Bernd; Joy, Kenneth I.; Ma, Kwan-Liu
2000-05-01
This paper introduces the Designers Workbench, a semi- immersive virtual environment for two-handed modeling, sculpting and analysis tasks. The paper outlines the fundamental tools, design metaphors and hardware components required for an intuitive real-time modeling system. As companies focus on streamlining productivity to cope with global competition, the migration to computer-aided design (CAD), computer-aided manufacturing, and computer-aided engineering systems has established a new backbone of modern industrial product development. However, traditionally a product design frequently originates form a clay model that, after digitization, forms the basis for the numerical description of CAD primitives. The Designers Workbench aims at closing this technology or 'digital gap' experienced by design and CAD engineers by transforming the classical design paradigm into its fully integrate digital and virtual analog allowing collaborative development in a semi- immersive virtual environment. This project emphasizes two key components form the classical product design cycle: freeform modeling and analysis. In the freedom modeling stage, content creation in the form of two-handed sculpting of arbitrary objects using polygonal, volumetric or mathematically defined primitives is emphasized, whereas the analysis component provides the tools required for pre- and post-processing steps for finite element analysis tasks applied to the created models.
Code of Federal Regulations, 2014 CFR
2014-04-01
... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...
Code of Federal Regulations, 2013 CFR
2013-04-01
... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...
Code of Federal Regulations, 2012 CFR
2012-04-01
... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...
Banerjee, Chiranjib; Singh, Puneet Kumar; Shukla, Pratyoosh
2016-03-01
Exploring the efficiency of algae to produce remarkable products can be directly benefitted by studying its mechanism at systems level. Recent advents in biotechnology like flux balance analysis (FBA), genomics and in silico proteomics minimize the wet lab exertion. It is understood that FBA predicts the metabolic products, metabolic pathways and alternative pathway to maximize the desired product, and these are key components for microalgae bio-engineering. This review encompasses recent transgenesis techniques and metabolic engineering strategies applied to different microalgae for improving different traits. Further it also throws light on RNAi and riboswitch engineering based methods which may be advantageous for high throughput microalgal research. A valid and optimally designed microalga can be developed where every engineering strategies meet each other successfully and will definitely fulfill the market needs. It is also to be noted that Omics (viz. genetic and metabolic manipulation with bioinformatics) should be integrated to develop a strain which could prove to be a futuristic solution for sustainable development for energy. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhou, Jun; Shen, Li; Zhang, Tianhong
2016-12-01
Simulated altitude test is an essential exploring, debugging, verification and validation means during the development of aero-engine. Free-jet engine test can simulate actual working conditions of aero-engine more realistically than direct-connect engine test but with relatively lower cost compared to propulsion wind tunnel test, thus becoming an important developing area of simulated altitude test technology. The Flight Conditions Simulating Control System (FCSCS) is of great importance to the Altitude Test Facility (ATF) but the development of that is a huge challenge. Aiming at improving the design efficiency and reducing risks during the development of FCSCS for ATFs, a Hardware- in-the-Loop (HIL) simulation system was designed and the mathematical models of key components such as the pressure stabilizing chamber, free-jet nozzle, control valve and aero-engine were built in this paper. Moreover, some HIL simulation experiments were carried out. The results show that the HIL simulation system designed and established in this paper is reasonable and effective, which can be used to adjust control parameters conveniently and assess the software and hardware in the control system immediately.
Engine component instrumentation development facility at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan
1992-01-01
The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.
Study on the variable cycle engine modeling techniques based on the component method
NASA Astrophysics Data System (ADS)
Zhang, Lihua; Xue, Hui; Bao, Yuhai; Li, Jijun; Yan, Lan
2016-01-01
Based on the structure platform of the gas turbine engine, the components of variable cycle engine were simulated by using the component method. The mathematical model of nonlinear equations correspondeing to each component of the gas turbine engine was established. Based on Matlab programming, the nonlinear equations were solved by using Newton-Raphson steady-state algorithm, and the performance of the components for engine was calculated. The numerical simulation results showed that the model bulit can describe the basic performance of the gas turbine engine, which verified the validity of the model.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.
NASA Technical Reports Server (NTRS)
1997-01-01
This CP contains the extended abstracts and presentation figures of 36 papers presented at the PPM and Other Propulsion R&T Conference. The focus of the research described in these presentations is on materials and structures technologies that are parts of the various projects within the NASA Aeronautics Propulsion Systems Research and Technology Base Program. These projects include Physics and Process Modeling; Smart, Green Engine; Fast, Quiet Engine; High Temperature Engine Materials Program; and Hybrid Hyperspeed Propulsion. Also presented were research results from the Rotorcraft Systems Program and work supported by the NASA Lewis Director's Discretionary Fund. Authors from NASA Lewis Research Center, industry, and universities conducted research in the following areas: material processing, material characterization, modeling, life, applied life models, design techniques, vibration control, mechanical components, and tribology. Key issues, research accomplishments, and future directions are summarized in this publication.
Benny, Paula; Raghunath, Michael
2017-01-01
Biomimetic microenvironments are key components to successful cell culture and tissue engineering in vitro. One of the most accurate biomimetic microenvironments is that made by the cells themselves. Cell-made microenvironments are most similar to the in vivo state as they are cell-specific and produced by the actual cells which reside in that specific microenvironment. However, cell-made microenvironments have been challenging to re-create in vitro due to the lack of extracellular matrix composition, volume and complexity which are required. By applying macromolecular crowding to current cell culture protocols, cell-made microenvironments, or cell-derived matrices, can be generated at significant rates in vitro. In this review, we will examine the causes and effects of macromolecular crowding and how it has been applied in several in vitro systems including tissue engineering.
NASA Astrophysics Data System (ADS)
Yang, Qingchun; Wang, Hongxin; Chetehouna, Khaled; Gascoin, Nicolas
2017-01-01
The supersonic combustion ramjet (scramjet) engine remains the most promising airbreathing engine cycle for hypersonic flight, particularly the high-performance dual-mode scramjet in the range of flight Mach number from 4 to 7, because it can operates under different combustion modes. Isolator is a very key component of the dual-mode scramjet engine. In this paper, nonlinear characteristics of combustion mode transition is theoretically analyzed. The discontinuous sudden changes of static pressure and Mach number are obtained as the mode transition occurs, which emphasizing the importance of predication and control of combustion modes. In this paper, a predication model of different combustion modes is developed based on these these nonlinear features in the isolator flow field. it can provide a valuable reference for control system design of the scramjet-powered aerospace vehicle.
Phase-coherent engineering of electronic heat currents with a Josephson modulator
NASA Astrophysics Data System (ADS)
Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco
In this contribution we report the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of electronic thermal currents. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase-engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.
Plant synthetic biology for molecular engineering of signalling and development.
Nemhauser, Jennifer L; Torii, Keiko U
2016-03-02
Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.
Engineering Education for a New Era
NASA Astrophysics Data System (ADS)
Ohgaki, Shinichiro
Engineering education is composed of five components, the idea what engineering education ought to be, the knowledge in engineering fields, those who learn engineering, those who teach engineering and the stakeholders in engineering issues. The characteristics of all these five components are changing with the times. When we consider the engineering education for the next era, we should analyze the changes of all five components. Especially the knowledge and tools in engineering fields has been expanding, and advanced science and technology is casting partly a dark shadow on the modern convenient life. Moral rules or ethics for developing new products and engineering systems are now regarded as most important in engineering fields. All those who take the responsibility for engineering education should understand the change of all components in engineering education and have a clear grasp of the essence of engineering for sustainable society.
Conceptual design of an advanced Stirling conversion system for terrestrial power generation
NASA Technical Reports Server (NTRS)
1988-01-01
A free piston Stirling engine coupled to an electric generator or alternator with a nominal kWe power output absorbing thermal energy from a nominal 100 square meter parabolic solar collector and supplying electric power to a utility grid was identified. The results of the conceptual design study of an Advanced Stirling Conversion System (ASCS) were documented. The objectives are as follows: define the ASCS configuration; provide a manufacturability and cost evaluation; predict ASCS performance over the range of solar input required to produce power; estimate system and major component weights; define engine and electrical power condidtioning control requirements; and define key technology needs not ready by the late 1980s in meeting efficiency, life, cost, and with goalds for the ASCS.
NASA Technical Reports Server (NTRS)
1979-01-01
Results of studies leading to the preliminary design of a hybrid passenger vehicle which is projected to have the maximum potential for reducing petroleum consumption in the near term are presented. Heat engine/electric hybrid vehicle tradeoffs, assessment of battery power source, and weight and cost analysis of key components are among the topics covered. Performance of auxiliary equipment, such as power steering, power brakes, air conditioning, lighting and electrical accessories, heating and ventilation is discussed along with the selection of preferred passenger compartment heating procedure for the hybrid vehicle. Waste heat from the engine, thermal energy storage, and an auxiliary burner are among the approaches considered.
Seal Technology Development for Advanced Component for Airbreathing Engines
NASA Technical Reports Server (NTRS)
Snyder, Philip H.
2008-01-01
Key aspects of the design of sealing systems for On Rotor Combustion/Wave Rotor (ORC/WR) systems were addressed. ORC/WR systems generally fit within a broad class of pressure gain Constant Volume Combustors (CVCs) or Pulse Detonation Combustors (PDCs) which are currently being considered for use in many classes of turbine engines for dramatic efficiency improvement. Technology readiness level of this ORC/WR approaches are presently at 2.0. The results of detailed modeling of an ORC/WR system as applied to a regional jet engine application were shown to capture a high degree of pressure gain capabilities. The results of engine cycle analysis indicated the level of specific fuel consumption (SFC) benefits to be 17 percent. The potential losses in pressure gain due to leakage were found to be closely coupled to the wave processes at the rotor endpoints of the ORC/WR system. Extensive investigation into the sealing approaches is reported. Sensitivity studies show that SFC gains of 10 percent remain available even when pressure gain levels are highly penalized. This indicates ORC/WR systems to have a high degree of tolerance to rotor leakage effects but also emphasizes their importance. An engine demonstration of an ORC/WR system is seen as key to progressing the TRL of this technology. An industrial engine was judged to be a highly advantageous platform for demonstration of a first generation ORC/WR system. Prior to such a demonstration, the existing NASA pressure exchanger wave rotor rig was identified as an opportunity to apply both expanded analytical modeling capabilities developed within this program and to identify and fix identified leakage issues existing within this rig. Extensive leakage analysis of the rig was performed and a detailed design of additional sealing strategies for this rig was generated.
Test bed ion engine development
NASA Technical Reports Server (NTRS)
Aston, G.; Deininger, W. D.
1984-01-01
A test bed ion (TBI) engine was developed to serve as a tool in exploring the limits of electrostatic ion thruster performance. A description of three key ion engine components, the decoupled extraction and amplified current (DE-AC) accelerator system, field enhanced refractory metal (FERM) hollow cathode and divergent line cusp (DLC) discharge chamber, whose designs and operating philosophies differ markedly from conventional thruster technology is given. Significant program achievements were: (1) high current density DE-AC accelerator system operation at low electric field stress with indicated feasibility of a 60 mA/sq cm argon ion beam; (2) reliable FERM cathode start up times of 1 to 2 secs. and demonstrated 35 ampere emission levels; (3) DLC discharge chamber plasma potentials negative of anode potential; and (4) identification of an efficient high plasma density engine operating mode. Using the performance projections of this program and reasonable estimates of other parameter values, a 1.0 Newton thrust ion engine is identified as a realizable technology goal. Calculations show that such an engine, comparable in beam area to a J series 30 cm thruster, could, operating on Xe or Hg, have thruster efficiencies as high as 0.76 and 0.78 respectively, with a 100 eV/ion discharge loss.
NASA/Howard University Large Space Structures Institute
NASA Technical Reports Server (NTRS)
Broome, T. H., Jr.
1984-01-01
Basic research on the engineering behavior of large space structures is presented. Methods of structural analysis, control, and optimization of large flexible systems are examined. Topics of investigation include the Load Correction Method (LCM) modeling technique, stabilization of flexible bodies by feedback control, mathematical refinement of analysis equations, optimization of the design of structural components, deployment dynamics, and the use of microprocessors in attitude and shape control of large space structures. Information on key personnel, budgeting, support plans and conferences is included.
Pump CFD code validation tests
NASA Technical Reports Server (NTRS)
Brozowski, L. A.
1993-01-01
Pump CFD code validation tests were accomplished by obtaining nonintrusive flow characteristic data at key locations in generic current liquid rocket engine turbopump configurations. Data were obtained with a laser two-focus (L2F) velocimeter at scaled design flow. Three components were surveyed: a 1970's-designed impeller, a 1990's-designed impeller, and a four-bladed unshrouded inducer. Two-dimensional velocities were measured upstream and downstream of the two impellers. Three-dimensional velocities were measured upstream, downstream, and within the blade row of the unshrouded inducer.
A method for turbine blade temperature data segmentation
NASA Astrophysics Data System (ADS)
Feng, Chi; Wang, Li; Gao, Shan
2017-08-01
Turbine blade, as one of the key components of the engine, operates in the badly working conditions. In order to better monitor the temperature status of turbine blades, research on temperature distribution of working blades is significant. The paper applies discrete Fourier transform to develop mathematical models, and the changes of period and peaks are summarized. The changing trends of temperature are reflected in each blade. The trends can be treated as one of the bases of the blade condition monitoring and fault diagnosis.
A Design Basis for Spacecraft Cabin Trace Contaminant Control
NASA Technical Reports Server (NTRS)
Perry, Jay L.
2009-01-01
Successful trace chemical contamination control is one of the components necessary for achieving good cabin atmospheric quality. While employing seemingly simple process technologies, sizing the active contamination control equipment must employ a reliable design basis for the trace chemical load in the cabin atmosphere. A simplified design basis that draws on experience gained from the International Space Station program is presented. The trace chemical contamination control design load refines generation source magnitudes and includes key chemical functional groups representing both engineering and toxicology challenges.
1995 Laboratory-Directed Research and Development Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.
1995-12-31
The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.
Effect of Individual Component Life Distribution on Engine Life Prediction
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.; Hendricks, Robert C.; Soditus, Sherry M.
2003-01-01
The effect of individual engine component life distributions on engine life prediction was determined. A Weibull-based life and reliability analysis of the NASA Energy Efficient Engine was conducted. The engine s life at a 95 and 99.9 percent probability of survival was determined based upon the engine manufacturer s original life calculations and assumed values of each of the component s cumulative life distributions as represented by a Weibull slope. The lives of the high-pressure turbine (HPT) disks and blades were also evaluated individually and as a system in a similar manner. Knowing the statistical cumulative distribution of each engine component with reasonable engineering certainty is a condition precedent to predicting the life and reliability of an entire engine. The life of a system at a given reliability will be less than the lowest-lived component in the system at the same reliability (probability of survival). Where Weibull slopes of all the engine components are equal, the Weibull slope had a minimal effect on engine L(sub 0.1) life prediction. However, at a probability of survival of 95 percent (L(sub 5) life), life decreased with increasing Weibull slope.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1991-01-01
ATTAP activities were highlighted by test bed engine design and development activities; ceramic component design; materials and engine component characterization; ceramic component process development and fabrication; component rig testing; and test bed engine fabrication and testing. Specifically, ATTAP aims to develop and demonstrate the technology of structural ceramics that have the potential for competitive automotive engine life cycle cost and for operating for 3500 hours in a turbine engine environment at temperatures up to 1371 C (2500 F).
Fostering Creative Engineers: A Key to Face the Complexity of Engineering Practice
ERIC Educational Resources Information Center
Zhou, Chunfang
2012-01-01
Recent studies have argued a shift of thinking about engineering practice from a linear conception to a system understanding. The complexity of engineering practice has been thought of as the root of challenges for engineers. Moreover, creativity has been emphasised as one key capability that engineering students should master. This paper aims to…
Novel biofuel formulations for enhanced vehicle performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Dennis; Narayan, Ramani; Berglund, Kris
2013-08-30
This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbonmore » sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal combustion engine under highly instrumented conditions. Simulation of and experimentation on combustion in single and multicylinder engines was carried out in detail throughout the project. The combustion behavior of biofuel blends neat and in petroleum were characterized in the MSU optical engine, in part to validate results obtained in the RCM and to provide data for comparison with simulations. Simulation of in- cylinder, low-temperature combustion included development of an extensive fuel injection model that included fuel spray breakup, evaporation, and ignition, along with prediction of cylinder temperature, pressure, and work produced. Single cylinder and multicylinder engine tests under advanced low-temperature combustion conditions conducted at Ford Motor Company validated experimental and simulation results obtained in the MSU engine and in MSU simulations. Single cylinder engine tests of an advanced biofuel containing biodiesel and dibutyl succinate, carried out under low-temperature combustion conditions, showed similar power generation and gas-phase emissions (CO, HC, NOx), but a reduction in particulates of as much as 60% relative to neat biodiesel and 95% relative to petroleum diesel at the same operating conditions. This remarkable finding suggests that biofuels may be able to play a role in eliminating the need for particulate removal systems in diesel vehicles. The multicylinder engine tests at Ford, carried out using butyl nonanoate as an advanced biofuel, also gave promising results, showing a strong decline in particulate emissions and simultaneously a modest decrease in NOx emissions relative to standard petroleum diesel at the same conditions. In summary, this project has shown that advanced biofuels and their blends are capable of maintaining performance while reducing emissions, particularly particulates (soot), in 3 compression ignition engines. The interdisciplinary nature of biofuel production and testing has identified fuel properties that are capable of producing such performance, thus providing direction for the implementation of renewable fuels for U.S. transportation. The testing and simulation studies have deepened our understanding of combustion 1) by advancing the rigor with which simulations can be carried out and 2) by illustrating that differences in biofuel and petroleum fuel properties can be used to predict differences in combustion behavior in engines. The future viability of biofuels for compression ignition (diesel) engines is now subject to economic (cost) uncertainty more so than to technical barriers, as the advanced biofuel blends developed here can improve cold-weather fuel properties, provide similar engine performance, and reduce emissions.« less
A part toolbox to tune genetic expression in Bacillus subtilis
Guiziou, Sarah; Sauveplane, Vincent; Chang, Hung-Ju; Clerté, Caroline; Declerck, Nathalie; Jules, Matthieu; Bonnet, Jerome
2016-01-01
Libraries of well-characterised components regulating gene expression levels are essential to many synthetic biology applications. While widely available for the Gram-negative model bacterium Escherichia coli, such libraries are lacking for the Gram-positive model Bacillus subtilis, a key organism for basic research and biotechnological applications. Here, we engineered a genetic toolbox comprising libraries of promoters, Ribosome Binding Sites (RBS), and protein degradation tags to precisely tune gene expression in B. subtilis. We first designed a modular Expression Operating Unit (EOU) facilitating parts assembly and modifications and providing a standard genetic context for gene circuits implementation. We then selected native, constitutive promoters of B. subtilis and efficient RBS sequences from which we engineered three promoters and three RBS sequence libraries exhibiting ∼14 000-fold dynamic range in gene expression levels. We also designed a collection of SsrA proteolysis tags of variable strength. Finally, by using fluorescence fluctuation methods coupled with two-photon microscopy, we quantified the absolute concentration of GFP in a subset of strains from the library. Our complete promoters and RBS sequences library comprising over 135 constructs enables tuning of GFP concentration over five orders of magnitude, from 0.05 to 700 μM. This toolbox of regulatory components will support many research and engineering applications in B. subtilis. PMID:27402159
Engineering Concepts in Stem Cell Research.
Narayanan, Karthikeyan; Mishra, Sachin; Singh, Satnam; Pei, Ming; Gulyas, Balazs; Padmanabhan, Parasuraman
2017-12-01
The field of regenerative medicine integrates advancements made in stem cells, molecular biology, engineering, and clinical methodologies. Stem cells serve as a fundamental ingredient for therapeutic application in regenerative medicine. Apart from stem cells, engineering concepts have equally contributed to the success of stem cell based applications in improving human health. The purpose of various engineering methodologies is to develop regenerative and preventive medicine to combat various diseases and deformities. Explosion of stem cell discoveries and their implementation in clinical setting warrants new engineering concepts and new biomaterials. Biomaterials, microfluidics, and nanotechnology are the major engineering concepts used for the implementation of stem cells in regenerative medicine. Many of these engineering technologies target the specific niche of the cell for better functional capability. Controlling the niche is the key for various developmental activities leading to organogenesis and tissue homeostasis. Biomimetic understanding not only helped to improve the design of the matrices or scaffolds by incorporating suitable biological and physical components, but also ultimately aided adoption of designs that helped these materials/devices have better function. Adoption of engineering concepts in stem cell research improved overall achievement, however, several important issues such as long-term effects with respect to systems biology needs to be addressed. Here, in this review the authors will highlight some interesting breakthroughs in stem cell biology that use engineering methodologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Consequence-driven cyber-informed engineering (CCE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, Sarah G.; St Michel, Curtis; Smith, Robert
The Idaho National Lab (INL) is leading a high-impact, national security-level initiative to reprioritize the way the nation looks at high-consequence risk within the industrial control systems (ICS) environment of the country’s most critical infrastructure and other national assets. The Consequence-driven Cyber-informed Engineering (CCE) effort provides both private and public organizations with the steps required to examine their own environments for high-impact events/risks; identify implementation of key devices and components that facilitate that risk; illuminate specific, plausible cyber attack paths to manipulate these devices; and develop concrete mitigations, protections, and tripwires to address the high-consequence risk. The ultimate goal ofmore » the CCE effort is to help organizations take the steps necessary to thwart cyber attacks from even top-tier, highly resourced adversaries that would result in a catastrophic physical effect. CCE participants are encouraged to work collaboratively with each other and with key U.S. Government (USG) contributors to establish a coalition, maximizing the positive effect of lessons-learned and further contributing to the protection of critical infrastructure and other national assets.« less
Space Shuttle Main Engine - The Relentless Pursuit of Improvement
NASA Technical Reports Server (NTRS)
VanHooser, Katherine P.; Bradley, Douglas P.
2011-01-01
The Space Shuttle Main Engine (SSME) is the only reusable large liquid rocket engine ever developed. The specific impulse delivered by the staged combustion cycle, substantially higher than previous rocket engines, minimized volume and weight for the integrated vehicle. The dual pre-burner configuration permitted precise mixture ratio and thrust control while the fully redundant controller and avionics provided a very high degree of system reliability and health diagnosis. The main engine controller design was the first rocket engine application to incorporate digital processing. The engine was required to operate at a high chamber pressure to minimize engine volume and weight. Power level throttling was required to minimize structural loads on the vehicle early in flight and acceleration levels on the crew late in ascent. Fatigue capability, strength, ease of assembly and disassembly, inspectability, and materials compatibility were all major considerations in achieving a fully reusable design. During the multi-decade program the design evolved substantially using a series of block upgrades. A number of materials and manufacturing challenges were encountered throughout SSME s history. Significant development was required for the final configuration of the high pressure turbopumps. Fracture control was implemented to assess life limits of critical materials and components. Survival in the hydrogen environment required assessment of hydrogen embrittlement. Instrumentation systems were a challenge due to the harsh thermal and dynamic environments within the engine. Extensive inspection procedures were developed to assess the engine components between flights. The Space Shuttle Main Engine achieved a remarkable flight performance record. All flights were successful with only one mission requiring an ascent abort condition, which still resulted in an acceptable orbit and mission. This was achieved in large part via extensive ground testing to fully characterize performance and to establish acceptable life limits. During the program over a million seconds of accumulated test and flight time was achieved. Post flight inspection and assessment was a key part of assuring proper performance of the flight hardware. By the end of the program the predicted reliability had improved by a factor of four. These unique challenges, evolution of the design, and the resulting reliability will be discussed in this paper.
NASA Technical Reports Server (NTRS)
Dengler, R. P.
1975-01-01
Experiences with integrally-cast compressor and turbine components during fabrication and testing of four engine assemblies of a small (29 cm (11 1/2 in.) maximum diameter) experimental turbojet engine design for an expendable application are discussed. Various operations such as metal removal, welding, and re-shaping of these components were performed in preparation of full-scale engine tests. Engines with these components were operated for a total of 157 hours at engine speeds as high as 38,000 rpm and at turbine inlet temperatures as high as 1256 K (1800 F).
Code of Federal Regulations, 2011 CFR
2011-04-01
... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines, ground...
Code of Federal Regulations, 2010 CFR
2010-04-01
... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines, ground...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part for..., airframe, aircraft engine, propeller, appliance, or component part for return to service as provided in...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part for..., airframe, aircraft engine, propeller, appliance, or component part for return to service as provided in...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part for..., airframe, aircraft engine, propeller, appliance, or component part for return to service as provided in...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part for..., airframe, aircraft engine, propeller, appliance, or component part for return to service as provided in...
Statistical Analysis of CMC Constituent and Processing Data
NASA Technical Reports Server (NTRS)
Fornuff, Jonathan
2004-01-01
Ceramic Matrix Composites (CMCs) are the next "big thing" in high-temperature structural materials. In the case of jet engines, it is widely believed that the metallic superalloys currently being utilized for hot structures (combustors, shrouds, turbine vanes and blades) are nearing their potential limits of improvement. In order to allow for increased turbine temperatures to increase engine efficiency, material scientists have begun looking toward advanced CMCs and SiC/SiC composites in particular. Ceramic composites provide greater strength-to-weight ratios at higher temperatures than metallic alloys, but at the same time require greater challenges in micro-structural optimization that in turn increases the cost of the material as well as increases the risk of variability in the material s thermo-structural behavior. to model various potential CMC engine materials and examines the current variability in these properties due to variability in component processing conditions and constituent materials; then, to see how processing and constituent variations effect key strength, stiffness, and thermal properties of the finished components. Basically, this means trying to model variations in the component s behavior by knowing what went into creating it. inter-phase and manufactured by chemical vapor infiltration (CVI) and melt infiltration (MI) were considered. Examinations of: (1) the percent constituents by volume, (2) the inter-phase thickness, (3) variations in the total porosity, and (4) variations in the chemical composition of the Sic fiber are carried out and modeled using various codes used here at NASA-Glenn (PCGina, NASALife, CEMCAN, etc...). The effects of these variations and the ranking of their respective influences on the various thermo-mechanical material properties are studied and compared to available test data. The properties of the materials as well as minor changes to geometry are then made to the computer model and the detrimental effects observed using statistical analysis software. The ultimate purpose of this study is to determine what variations in material processing can lead to the most critical changes in the materials property. The work I have taken part in this summer explores, in general, the key properties needed In this study SiC/SiC composites of varying architectures, utilizing a boron-nitride (BN)
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1990-01-01
Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that will permit the achievement of program performance and durability goals. The designated durability engine accumulated 359.3 hour of test time, 226.9 of which were on the General Motors gas turbine durability schedule.
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Veres, Joseph P.; Wright, William B.; Struk, Peter M.
2013-01-01
The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was one or more of the following anomalies: degraded engine performance, engine roll back, compressor surge and stall, and flameout of the combustor. The main focus of this research is the development of a computational tool that can estimate whether there is a risk of ice accretion by tracking key parameters through the compression system blade rows at all engine operating points within the flight trajectory. The tool has an engine system thermodynamic cycle code, coupled with a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Assumptions are made to predict the complex physics involved in engine icing. Specifically, the code does not directly estimate ice accretion and does not have models for particle breakup or erosion. Two key parameters have been suggested as conditions that must be met at the same location for ice accretion to occur: the local wet-bulb temperature to be near freezing or below and the local melt ratio must be above 10%. These parameters were deduced from analyzing laboratory icing test data and are the criteria used to predict the possibility of ice accretion within an engine including the specific blade row where it could occur. Once the possibility of accretion is determined from these parameters, the degree of blockage due to ice accretion on the local stator vane can be estimated from an empirical model of ice growth rate and time spent at that operating point in the flight trajectory. The computational tool can be used to assess specific turbine engines to their susceptibility to ice accretion in an ice crystal environment.
Ceramic applications in turbine engines
NASA Technical Reports Server (NTRS)
Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.
1984-01-01
The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.
Additive Manufacturing of Fuel Injectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadek Tadros, Dr. Alber Alphonse; Ritter, Dr. George W.; Drews, Charles Donald
Additive manufacturing (AM), also known as 3D-printing, has been shifting from a novelty prototyping paradigm to a legitimate manufacturing tool capable of creating components for highly complex engineered products. An emerging AM technology for producing metal parts is the laser powder bed fusion (L-PBF) process; however, industry manufacturing specifications and component design practices for L-PBF have not yet been established. Solar Turbines Incorporated (Solar), an industrial gas turbine manufacturer, has been evaluating AM technology for development and production applications with the desire to enable accelerated product development cycle times, overall turbine efficiency improvements, and supply chain flexibility relative to conventionalmore » manufacturing processes (casting, brazing, welding). Accordingly, Solar teamed with EWI on a joint two-and-a-half-year project with the goal of developing a production L-PBF AM process capable of consistently producing high-nickel alloy material suitable for high temperature gas turbine engine fuel injector components. The project plan tasks were designed to understand the interaction of the process variables and their combined impact on the resultant AM material quality. The composition of the high-nickel alloy powders selected for this program met the conventional cast Hastelloy X compositional limits and were commercially available in different particle size distributions (PSD) from two suppliers. Solar produced all the test articles and both EWI and Solar shared responsibility for analyzing them. The effects of powder metal input stock, laser parameters, heat treatments, and post-finishing methods were evaluated. This process knowledge was then used to generate tensile, fatigue, and creep material properties data curves suitable for component design activities. The key process controls for ensuring consistent material properties were documented in AM powder and process specifications. The basic components of the project were: • Powder metal input stock: Powder characterization, dimensional accuracy, metallurgical characterization, and mechanical properties evaluation. • Process parameters: Laser parameter effects, post-printing heat-treatment development, mechanical properties evaluation, and post-finishing technique. • Material design curves: Room and elevated temperature tensiles, low cycle fatigue, and creep rupture properties curves generated. • AM specifications: Key metal powder characteristics, laser parameters, and heat-treatment controls identified.« less
Fusion technologies for Laser Inertial Fusion Energy (LIFE)
NASA Astrophysics Data System (ADS)
Kramer, K. J.; Latkowski, J. F.; Abbott, R. P.; Anklam, T. P.; Dunne, A. M.; El-Dasher, B. S.; Flowers, D. L.; Fluss, M. J.; Lafuente, A.; Loosmore, G. A.; Morris, K. R.; Moses, E.; Reyes, S.
2013-11-01
The Laser Inertial Fusion-based Energy (LIFE) engine design builds upon on going progress at the National Ignition Facility (NIF) and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Designers Workbench: Towards Real-Time Immersive Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuester, F; Duchaineau, M A; Hamann, B
2001-10-03
This paper introduces the DesignersWorkbench, a semi-immersive virtual environment for two-handed modeling, sculpting and analysis tasks. The paper outlines the fundamental tools, design metaphors and hardware components required for an intuitive real-time modeling system. As companies focus on streamlining productivity to cope with global competition, the migration to computer-aided design (CAD), computer-aided manufacturing (CAM), and computer-aided engineering (CAE) systems has established a new backbone of modern industrial product development. However, traditionally a product design frequently originates from a clay model that, after digitization, forms the basis for the numerical description of CAD primitives. The DesignersWorkbench aims at closing this technologymore » or ''digital gap'' experienced by design and CAD engineers by transforming the classical design paradigm into its filly integrated digital and virtual analog allowing collaborative development in a semi-immersive virtual environment. This project emphasizes two key components from the classical product design cycle: freeform modeling and analysis. In the freeform modeling stage, content creation in the form of two-handed sculpting of arbitrary objects using polygonal, volumetric or mathematically defined primitives is emphasized, whereas the analysis component provides the tools required for pre- and post-processing steps for finite element analysis tasks applied to the created models.« less
SSME component assembly and life management expert system
NASA Technical Reports Server (NTRS)
Ali, M.; Dietz, W. E.; Ferber, H. J.
1989-01-01
The space shuttle utilizes several rocket engine systems, all of which must function with a high degree of reliability for successful mission completion. The space shuttle main engine (SSME) is by far the most complex of the rocket engine systems and is designed to be reusable. The reusability of spacecraft systems introduces many problems related to testing, reliability, and logistics. Components must be assembled from parts inventories in a manner which will most effectively utilize the available parts. Assembly must be scheduled to efficiently utilize available assembly benches while still maintaining flight schedules. Assembled components must be assigned to as many contiguous flights as possible, to minimize component changes. Each component must undergo a rigorous testing program prior to flight. In addition, testing and assembly of flight engines and components must be done in conjunction with the assembly and testing of developmental engines and components. The development, testing, manufacture, and flight assignments of the engine fleet involves the satisfaction of many logistical and operational requirements, subject to many constraints. The purpose of the SSME Component Assembly and Life Management Expert System (CALMES) is to assist the engine assembly and scheduling process, and to insure that these activities utilize available resources as efficiently as possible.
VCE testbed program planning and definition study
NASA Technical Reports Server (NTRS)
Westmoreland, J. S.; Godston, J.
1978-01-01
The flight definition of the Variable Stream Control Engine (VSCE) was updated to reflect design improvements in the two key components: (1) the low emissions duct burner, and (2) the coannular exhaust nozzle. The testbed design was defined and plans for the overall program were formulated. The effect of these improvements was evaluated for performance, emissions, noise, weight, and length. For experimental large scale testing of the duct burner and coannular nozzle, a design definition of the VCE testbed configuration was made. This included selecting the core engine, determining instrumentation requirements, and selecting the test facilities, in addition to defining control system and assembly requirements. Plans for a comprehensive test program to demonstrate the duct burner and nozzle technologies were formulated. The plans include both aeroacoustic and emissions testing.
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1981-01-01
Accomplishments in the Energy Efficient Engine Component Development and Integration program during the period of April 1, 1981 through September 30, 1981 are discussed. The major topics considered are: (1) propulsion system analysis, design, and integration; (2) engine component analysis, design, and development; (3) core engine tests; and (4) integrated core/low spool testing.
Solar Thermal Upper Stage Cryogen System Engineering Checkout Test
NASA Technical Reports Server (NTRS)
Olsen, A. D; Cady, E. C.; Jenkins, D. S.
1999-01-01
The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.
Coupled Electro-Hydrodynamic Effects of Electro-Osmosis from Pore Scale to Darcy Scale
NASA Astrophysics Data System (ADS)
Schotting, R.; Joekar-Niasar, V.; Leijnse, A.
2011-12-01
Electro-osmosis is "movement of a fluid under the effect of an electric field in a porous medium". This phenomenon has many applications in civil engineering (slope stabilization, dewatering), environmental engineering (soil remediation, sludge dewatering), chemical engineering (micro- or nano- mixers), medical engineering (drug delivery), etc. The key factor in electro-osmosis is the competition between the electrochemical and hydrodynamic forces as well as the coupling between the solid surface and the electrolyte properties. The objective of this research is to understand the influence of pore-scale heterogeneities of surface properties on the Darcy-scale behavior. We develop novel analytical solutions for the flow and transport of electrolyte including electro-hydrodynamic forces in a single micro-channel. We propose the complete analytical solution for monovalent electrolyte at full range overlapping double layers, and nonlinear electric field, including the Donan effect in transport of ions. These pore-scale formulations are numerically upscaled to obtain the Darcy-scale behavior. Our results show the contribution of electro-osmotic, chemical-osmotic and hydrodynamic components of the flow equation on pressure field evolution and multi-directional flow field at Darcy scale.
Design Considerations for Human Rating of Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Parkinson, Douglas
2010-01-01
I.Human-rating is specific to each engine; a. Context of program/project must be understood. b. Engine cannot be discussed independently from vehicle and mission. II. Utilize a logical combination of design, manufacturing, and test approaches a. Design 1) It is crucial to know the potential ways a system can fail, and how a failure can propagate; 2) Fault avoidance, fault tolerance, DFMR, caution and warning all have roles to play. b. Manufacturing and Assembly; 1) As-built vs. as-designed; 2) Review procedures for assembly and maintenance periodically; and 3) Keep personnel trained and certified. c. There is no substitute for test: 1) Analytical tools are constantly advancing, but still need test data for anchoring assumptions; 2) Demonstrate robustness and explore sensitivities; 3) Ideally, flight will be encompassed by ground test experience. III. Consistency and repeatability is key in production a. Maintain robust processes and procedures for inspection and quality control based upon development and qualification experience; b. Establish methods to "spot check" quality and consistency in parts: 1) Dedicated ground test engines; 2) Random components pulled from the line/lot to go through "enhanced" testing.
The role of the U.S. Geological Survey in Lake Michigan Diversion Accounting in Illinois, 1984-2010
Johnson, Kevin K.; Duncker, James J.; Jackson, P. Ryan
2012-01-01
The State of Illinois' annual withdrawl from Lake Michigan is limited by a U.S. Supreme Court decree. The U.S. Geological Survey (USGS) is responsible for monitoring flows in the Chicago area waterway system (CAWS) as part of the Lake Michigan Diversion Accounting (LMDA) overseen by the U.S. Army Corps of Engineers, Chicago District. Every five years, the USGS streamgage practices in the CAWS are reviewed by a committee of practicing engineers and academics to ensure that the best engineering practices are implemented in accordance with the U.S. Supreme Court decree and as part of LMDA. This report provides a perspective on the role of the USGS in LMDA from 1984 to 2010 including the responses to the review committees. Six technical review committees have been convened by the U.S. Corps of Engineers to evaluate the key components of LMDA especially the USGS streamgages within the CAWS. Any changes in streamgaging practices at CAWS gaging stations require detailed analysis to ensure the change will not adversely affect the ability of the USGS to accurately monitor flows.
Military efforts in nanosensors, 3D printing, and imaging detection
NASA Astrophysics Data System (ADS)
Edwards, Eugene; Booth, Janice C.; Roberts, J. Keith; Brantley, Christina L.; Crutcher, Sihon H.; Whitley, Michael; Kranz, Michael; Seif, Mohamed; Ruffin, Paul
2017-04-01
A team of researchers and support organizations, affiliated with the Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC), has initiated multidiscipline efforts to develop nano-based structures and components for advanced weaponry, aviation, and autonomous air/ground systems applications. The main objective of this research is to exploit unique phenomena for the development of novel technology to enhance warfighter capabilities and produce precision weaponry. The key technology areas that the authors are exploring include nano-based sensors, analysis of 3D printing constituents, and nano-based components for imaging detection. By integrating nano-based devices, structures, and materials into weaponry, the Army can revolutionize existing (and future) weaponry systems by significantly reducing the size, weight, and cost. The major research thrust areas include the development of carbon nanotube sensors to detect rocket motor off-gassing; the application of current methodologies to assess materials used for 3D printing; and the assessment of components to improve imaging seekers. The status of current activities, associated with these key areas and their implementation into AMRDEC's research, is outlined in this paper. Section #2 outlines output data, graphs, and overall evaluations of carbon nanotube sensors placed on a 16 element chip and exposed to various environmental conditions. Section #3 summarizes the experimental results of testing various materials and resulting components that are supplementary to additive manufacturing/fused deposition modeling (FDM). Section #4 recapitulates a preliminary assessment of the optical and electromechanical components of seekers in an effort to propose components and materials that can work more effectively.
CF60 Concrete Composition Design and Application on Fudiankou Xijiang Super Large Bridge
NASA Astrophysics Data System (ADS)
Qiu, Yi Mei; Wen, Sen Yuan; Chen, Jun Xiang
2018-06-01
Guangxi Wuzhou City Ring Road Fudiankou Xijiang super large bridge CF60 concrete is a new multi-phase composite high-performance concrete, this paper for the Fudiankou Xijiang bridge structure and characteristics of the project, in accordance with the principle of local materials and technical specification requirements, combined with the site conditions of CF60 engineering high performance concrete component materials, proportion and the technical performance, quantify the main physical and mechanical performance index. Analysis main influencing factors of the technical indicators, reasonable adjustment of concrete mix design parameters, and the use of technical means of admixture and multi-function composite admixture of concrete, obtain the optimal proportion of good work, process, mechanical properties stability and durability of engineering properties, recommend and verification of concrete mix; to explore the CF60 high performance concrete Soil in the Fudiankou Xijiang bridge application technology, detection and tracking the quality of concrete construction, concrete structure during the construction of the key technology and control points is proposed, evaluation of CF60 high performance concrete in the actual engineering application effect and benefit to ensure engineering quality of bridge structure and service life, and super long span bridge engineering construction to provide basis and reference.
Session 6: Dynamic Modeling and Systems Analysis
NASA Technical Reports Server (NTRS)
Csank, Jeffrey; Chapman, Jeffryes; May, Ryan
2013-01-01
These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators
Key Future Engineering Capabilities for Human Capital Retention
NASA Astrophysics Data System (ADS)
Sivich, Lorrie
Projected record retirements of Baby Boomer generation engineers have been predicted to result in significant losses of mission-critical knowledge in space, national security, and future scientific ventures vital to high-technology corporations. No comprehensive review or analysis of engineering capabilities has been performed to identify threats related to the specific loss of mission-critical knowledge posed by the increasing retirement of tenured engineers. Archival data from a single diversified Fortune 500 aerospace manufacturing engineering company's engineering career database were analyzed to ascertain whether relationships linking future engineering capabilities, engineering disciplines, and years of engineering experience could be identified to define critical knowledge transfer models. Chi square, logistic, and linear regression analyses were used to map patterns of discipline-specific, mission-critical knowledge using archival data of engineers' perceptions of engineering capabilities, key developmental experiences, and knowledge learned from their engineering careers. The results from the study were used to document key engineering future capabilities. The results were then used to develop a proposed human capital retention plan to address specific key knowledge gaps of younger engineers as veteran engineers retire. The potential for social change from this study involves informing leaders of aerospace engineering corporations on how to build better quality mentoring or succession plans to fill the void of lost knowledge from retiring engineers. This plan can secure mission-critical knowledge for younger engineers for current and future product development and increased global competitiveness in the technology market.
An Assessment Methodology to Evaluate In-Flight Engine Health Management Effectiveness
NASA Astrophysics Data System (ADS)
Maggio, Gaspare; Belyeu, Rebecca; Pelaccio, Dennis G.
2002-01-01
flight effectiveness of candidate engine health management system concepts. A next generation engine health management system will be required to be both reliable and robust in terms of anomaly detection capability. The system must be able to operate successfully in the hostile, high-stress engine system environment. This implies that its system components, such as the instrumentation, process and control, and vehicle interface and support subsystems, must be highly reliable. Additionally, the system must be able to address a vast range of possible engine operation anomalies through a host of different types of measurements supported by a fast algorithm/architecture processing capability that can identify "true" (real) engine operation anomalies. False anomaly condition reports for such a system must be essentially eliminated. The accuracy of identifying only real anomaly conditions has been an issue with the Space Shuttle Main Engine (SSME) in the past. Much improvement in many of the technologies to address these areas is required. The objectives of this study were to identify and demonstrate a consistent assessment methodology that can evaluate the capability of next generation engine health management system concepts to respond in a correct, timely manner to alleviate an operational engine anomaly condition during flight. Science Applications International Corporation (SAIC), with support from NASA Marshall Space Flight Center, identified a probabilistic modeling approach to assess engine health management system concept effectiveness using a deterministic anomaly-time event assessment modeling approach that can be applied in the engine preliminary design stage of development to assess engine health management system concept effectiveness. Much discussion in this paper focuses on the formulation and application approach in performing this assessment. This includes detailed discussion of key modeling assumptions, the overall assessment methodology approach identified, and the identification of key supporting engine health management system concept design/operation and fault mode information required to utilize this methodology. At the paper's conclusion, discussion focuses on a demonstration benchmark study that applied this methodology to the current SSME health management system. A summary of study results and lessons learned are provided. Recommendations for future work in this area are also identified at the conclusion of the paper. * Please direct all correspondence/communication pertaining to this paper to Dennis G. Pelaccio, Science
Detection of carotenoids present in blood of various animal species using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Liaqat, Maryam; Younus, Ayesha; Saleem, Muhammad; Rashid, Imaad; Yaseen, Maria; Jabeen, Saher
Raman spectroscopy is simple stable powerful diagnostic tool for body fluids, tissues and other biomolecules. Human blood possesses different kind of carotenoids that play a key role for protecting the cells from damaging by different viral and bacterial diseases. Carotenoids are antioxidative components which are capable to overcome the attack of different free radicals and reactive oxygen species. Carotenoids are not prepared by human body, therefore it is recommended to eat carotenoids enrich vegetable foods. No standard data is available on the concentration of useful carotenoids component in non-vegetable consumed items. In present research work, Raman spectroscopy is used to compare various blood components like plasma, serum, carotenoids present in blood of different animal species like goat, sheep, cow and buffalo consumed by human. Especially beta carotene is investigated. The Raman shift ranges from 600-1700 cm-1 for samples. Different characteristic peaks of the blood components are found which are not characterized before in animal samples. Doctrate Student in Photonics Deparatment of Electrical Engineering.
Tracking and Control of Gas Turbine Engine Component Damage/Life
NASA Technical Reports Server (NTRS)
Jaw, Link C.; Wu, Dong N.; Bryg, David J.
2003-01-01
This paper describes damage mechanisms and the methods of controlling damages to extend the on-wing life of critical gas turbine engine components. Particularly, two types of damage mechanisms are discussed: creep/rupture and thermo-mechanical fatigue. To control these damages and extend the life of engine hot-section components, we have investigated two methodologies to be implemented as additional control logic for the on-board electronic control unit. This new logic, the life-extending control (LEC), interacts with the engine control and monitoring unit and modifies the fuel flow to reduce component damages in a flight mission. The LEC methodologies were demonstrated in a real-time, hardware-in-the-loop simulation. The results show that LEC is not only a new paradigm for engine control design, but also a promising technology for extending the service life of engine components, hence reducing the life cycle cost of the engine.
30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall be...
30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall be...
30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall be...
Methods for heat transfer and temperature field analysis of the insulated diesel, phase 3
NASA Technical Reports Server (NTRS)
Morel, Thomas; Wahiduzzaman, Syed; Fort, Edward F.; Keribar, Rifat; Blumberg, Paul N.
1988-01-01
Work during Phase 3 of a program aimed at developing a comprehensive heat transfer and thermal analysis methodology for design analysis of insulated diesel engines is described. The overall program addresses all the key heat transfer issues: (1) spatially and time-resolved convective and radiative in-cylinder heat transfer, (2) steady-state conduction in the overall structure, and (3) cyclical and load/speed temperature transients in the engine structure. These are all accounted for in a coupled way together with cycle thermodynamics. This methodology was developed during Phases 1 and 2. During Phase 3, an experimental program was carried out to obtain data on heat transfer under cooled and insulated engine conditions and also to generate a database to validate the developed methodology. A single cylinder Cummins diesel engine was instrumented for instantaneous total heat flux and heat radiation measurements. Data were acquired over a wide range of operating conditions in two engine configurations. One was a cooled baseline. The other included ceramic coated components (0.050 inches plasma sprayed zirconia)-piston, head and valves. The experiments showed that the insulated engine has a smaller heat flux than the cooled one. The model predictions were found to be in very good agreement with the data.
A Framework for Assessing the Reusability of Hardware (Reusable Rocket Engines)
NASA Technical Reports Server (NTRS)
Childress-Thompson, Rhonda; Thomas, Dale; Farrington, Philip
2016-01-01
Within the past few years, there has been a renewed interest in reusability as it applies to space flight hardware. Commercial companies such as Space Exploration Technologies Corporation (SpaceX), Blue Origin, and United Launch Alliance (ULA) are pursuing reusable hardware. Even foreign companies are pursuing this option. The Indian Space Research Organization (ISRO) launched a reusable space plane technology demonstrator and Airbus Defense and Space is planning to recover the main engines and avionics from its Advanced Expendable Launcher with Innovative engine Economy [1] [2]. To date, the Space Shuttle remains as the only Reusable Launch (RLV) to have flown repeated missions and the Space Shutte Main Engine (SSME) is the only demonstrated reusable engine. Whether the hardware being considered for reuse is a launch vehicle (fully reusable), a first stage (partially reusable), or a booster engine (single component), the overall governing process is the same; it must be recovered and recertified for flight. Therefore, there is a need to identify the key factors in determining the reusability of flight hardware. This paper begins with defining reusability to set the context, addresses the significance of reuse, and discusses areas that limit successful implementation. Finally, this research identifies the factors that should be considered when incorporating reuse.
Advanced General Aviation Turbine Engine (GATE) concepts
NASA Technical Reports Server (NTRS)
Lays, E. J.; Murray, G. L.
1979-01-01
Concepts are discussed that project turbine engine cost savings through use of geometrically constrained components designed for low rotational speeds and low stress to permit manufacturing economies. Aerodynamic development of geometrically constrained components is recommended to maximize component efficiency. Conceptual engines, airplane applications, airplane performance, engine cost, and engine-related life cycle costs are presented. The powerplants proposed offer encouragement with respect to fuel efficiency and life cycle costs, and make possible remarkable airplane performance gains.
Methods of Si based ceramic components volatilization control in a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie
A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.
Fast track lunar NTR systems assessment for the First Lunar Outpost and its evolvability to Mars
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Alexander, Stephen W.
1992-01-01
The objectives of the 'fast track' lunar Nuclear Thermal Rocket (NTR) analysis are to quantify necessary engine/stage characteristics to perform NASA's 'First Lunar Outpost' scenario and to assess the potential for evolution to Mars mission applications. By developing NTR/stage technologies for use in NASA's 'First Lunar Outpost' scenario, NASA will make a major down payment on the key components needed for the follow-on Mars Space Transportation System. A faster, cheaper approach to overall lunar/Mars exploration is expected.
Fernandes, Alinda R; Chari, Divya M
2016-09-28
Genetically engineered neural stem cell (NSC) transplant populations offer key benefits in regenerative neurology, for release of therapeutic biomolecules in ex vivo gene therapy. NSCs are 'hard-to-transfect' but amenable to 'magnetofection'. Despite the high clinical potential of this approach, the low and transient transfection associated with the large size of therapeutic DNA constructs is a critical barrier to translation. We demonstrate for the first time that DNA minicircles (small DNA vectors encoding essential gene expression components but devoid of a bacterial backbone, thereby reducing construct size versus conventional plasmids) deployed with magnetofection achieve the highest, safe non-viral DNA transfection levels (up to 54%) reported so far for primary NSCs. Minicircle-functionalized magnetic nanoparticle (MNP)-mediated gene delivery also resulted in sustained gene expression for up to four weeks. All daughter cell types of engineered NSCs (neurons, astrocytes and oligodendrocytes) were transfected (in contrast to conventional plasmids which usually yield transfected astrocytes only), offering advantages for targeted cell engineering. In addition to enhancing MNP functionality as gene delivery vectors, minicircle technology provides key benefits from safety/scale up perspectives. Therefore, we consider the proof-of-concept of fusion of technologies used here offers high potential as a clinically translatable genetic modification strategy for cell therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Keane, C. M.; Martinez, C. M.
2009-12-01
In many other science and engineering fields, the professional society is a key component of the student culture during their education. Students in fields such as physics, civil engineering, and mechanical engineering are usually expected to be members and active participants in their respective professional society, which in turn is tightly integrated with the academic programs through student chapters or activities. This phenomenon does not readily exist in the geosciences, and may be part of the reason for above average student attrition rates and subcompetitive recruitment over the entirety of business cycles. Part of this is a result of 45 societies, including over a dozen that actively recruit student members, but in the same vein, no single society has universal strong cultural presence across the 800 undergraduate programs in the United States. In addition, given the diversity of professional opportunities are not obvious to students because of the traditional subject stovepiping see in the curriculum and societies. To test and address this issue, the American Geological Institute is piloting a program to build student awareness of the breadth of career opportunities in a social context while also promoting the role of societies as a key networking and development conduit. Early responses to this test have resulted in some non-intuitive patterns and may yield insight into the world view of new and prospective majors.
Methods to Measure, Predict and Relate Friction, Wear and Fuel Economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gravante, Steve; Fenske, George; Demas, Nicholas
High-fidelity measurements of the coefficient of friction and the parasitic friction power of the power cylinder components have been made for the Isuzu 5.2L 4H on-highway engine. In particular, measurements of the asperity friction coefficient were made with test coupons using Argonne National Lab’s (ANL) reciprocating test rig for the ring-on-liner and skirt-on-liner component pairs. These measurements correlated well with independent measurements made by Electro-Mechanical Associates (EMA). In addition, surface roughness measurements of the Isuzu components were made using white light interferometer (WLI). The asperity friction and surface characterization are key inputs to advanced CAE simulation tools such as RINGPAKmore » and PISDYN which are used to predict the friction power and wear rates of power cylinder components. Finally, motored friction tests were successfully performed to quantify the friction mean effective pressure (FMEP) of the power cylinder components for various oils (High viscosity 15W40, low viscosity 5W20 with friction modifier (FM) and specially blended oil containing consisting of PAO/ZDDP/MoDTC) at 25, 50, and 110°C.« less
Lemaitre, D; Sauquet, D; Fofol, I; Tanguy, L; Jean, F C; Degoulet, P
1995-01-01
Legacy systems are crucial for organizations since they support key functionalities. But they become obsolete with aging and the apparition of new techniques. Managing their evolution is a key issue in software engineering. This paper presents a strategy that has been developed at Broussais University Hospital in Paris to make a legacy system devoted to the management of health care units evolve towards a new up-to-date software. A two-phase evolution pathway is described. The first phase consists in separating the interface from the data storage and application control and in using a communication channel between the individualized components. The second phase proposes to use an object-oriented DBMS in place of the homegrown system. An application example for the management of hypertensive patients is described.
Sensor Based Engine Life Calculation: A Probabilistic Perspective
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei; Chen, Philip
2003-01-01
It is generally known that an engine component will accumulate damage (life usage) during its lifetime of use in a harsh operating environment. The commonly used cycle count for engine component usage monitoring has an inherent range of uncertainty which can be overly costly or potentially less safe from an operational standpoint. With the advance of computer technology, engine operation modeling, and the understanding of damage accumulation physics, it is possible (and desirable) to use the available sensor information to make a more accurate assessment of engine component usage. This paper describes a probabilistic approach to quantify the effects of engine operating parameter uncertainties on the thermomechanical fatigue (TMF) life of a selected engine part. A closed-loop engine simulation with a TMF life model is used to calculate the life consumption of different mission cycles. A Monte Carlo simulation approach is used to generate the statistical life usage profile for different operating assumptions. The probabilities of failure of different operating conditions are compared to illustrate the importance of the engine component life calculation using sensor information. The results of this study clearly show that a sensor-based life cycle calculation can greatly reduce the risk of component failure as well as extend on-wing component life by avoiding unnecessary maintenance actions.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1994-01-01
Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.
Real-Time Aircraft Engine-Life Monitoring
NASA Technical Reports Server (NTRS)
Klein, Richard
2014-01-01
This project developed an inservice life-monitoring system capable of predicting the remaining component and system life of aircraft engines. The embedded system provides real-time, inflight monitoring of the engine's thrust, exhaust gas temperature, efficiency, and the speed and time of operation. Based upon this data, the life-estimation algorithm calculates the remaining life of the engine components and uses this data to predict the remaining life of the engine. The calculations are based on the statistical life distribution of the engine components and their relationship to load, speed, temperature, and time.
Data collection and analysis software development for rotor dynamics testing in spin laboratory
NASA Astrophysics Data System (ADS)
Abdul-Aziz, Ali; Arble, Daniel; Woike, Mark
2017-04-01
Gas turbine engine components undergo high rotational loading another complex environmental conditions. Such operating environment leads these components to experience damages and cracks that can cause catastrophic failure during flights. There are traditional crack detections and health monitoring methodologies currently being used which rely on periodic routine maintenances, nondestructive inspections that often times involve engine and components dis-assemblies. These methods do not also offer adequate information about the faults, especially, if these faults at subsurface or not clearly evident. At NASA Glenn research center, the rotor dynamics laboratory is presently involved in developing newer techniques that are highly dependent on sensor technology to enable health monitoring and prediction of damage and cracks in rotor disks. These approaches are noninvasive and relatively economical. Spin tests are performed using a subscale test article mimicking turbine rotor disk undergoing rotational load. Non-contact instruments such as capacitive and microwave sensors are used to measure the blade tip gap displacement and blade vibrations characteristics in an attempt develop a physics based model to assess/predict the faults in the rotor disk. Data collection is a major component in this experimental-analytical procedure and as a result, an upgrade to an older version of the data acquisition software which is based on LabVIEW program has been implemented to support efficiently running tests and analyze the results. Outcomes obtained from the tests data and related experimental and analytical rotor dynamics modeling including key features of the updated software are presented and discussed.
Nuclear thermal propulsion engine system design analysis code development
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.
1992-01-01
A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.
Wave Engine Topping Cycle Assessment
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1996-01-01
The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping constraints. Positive and negative aspects of wave engine topping in gas turbine engines are identified.
Turbine Engine Disk Rotor Health Monitoring Assessment Using Spin Tests Data
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Woike, Mark; Baalini, George; Bodis, James R.
2012-01-01
Detecting rotating engine component malfunctions and structural anomalies is increasingly becoming a crucial key feature that will help boost safety and lower maintenance cost. However, achievement of such technology, which can be referred to as a health monitoring remains somewhat challenging to implement. This is mostly due to presence of scattered loading conditions, crack sizes, component geometry and material properties that hinders the simplicity of imposing such application. Different approaches are being considered to assist in developing other means of health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic events occur. These methods extend further to assess material discontinuities and other defects that have matured to the level where a failure is very likely. This paper is focused on presenting data obtained from spin test experiments of a turbine engine like rotor disk and their correlation to the development of a structural health monitoring and fault detection system. The data collected includes blade tip clearance, blade tip timing measurements and shaft displacements. The experimental results are collected at rotational speeds up to 10,000 Rpm and tests are conducted at the NASA Glenn Research Center s Rotordynamics Laboratory via a high precision spin system. Additionally, this study offers a closer glance at a selective online evaluation of a rotating disk using advanced capacitive, microwave and eddy current sensor technology.
Turbine engine disk rotor health monitoring assessment using spin tests data
NASA Astrophysics Data System (ADS)
Abdul-Aziz, Ali; Woike, Mark; Baaklini, George; Bodis, James R.
2012-04-01
Detecting rotating engine component malfunctions and structural anomalies is increasingly becoming a crucial key feature that will help boost safety and lower maintenance cost. However, achievement of such technology, which can be referred to as a health monitoring remains somewhat challenging to implement. This is mostly due to presence of scattered loading conditions, crack sizes, component geometry and material properties that hinders the simplicity of imposing such application. Different approaches are being considered to assist in developing other means of health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic events occur. These methods extend further to assess material discontinuities and other defects that have matured to the level where a failure is very likely. This paper is focused on presenting data obtained from spin test experiments of a turbine engine like rotor disk and their correlation to the development of a structural health monitoring and fault detection system. The data collected includes blade tip clearance, blade tip timing measurements and shaft displacements. The experimental results are collected at rotational speeds up to 10,000 Rpm and tests are conducted at the NASA Glenn Research Center's Rotordynamics Laboratory via a high precision spin system. Additionally, this study offers a closer glance at a selective online evaluation of a rotating disk using advanced capacitive, microwave and eddy current sensor technology.
Load Sharing Behavior of Star Gearing Reducer for Geared Turbofan Engine
NASA Astrophysics Data System (ADS)
Mo, Shuai; Zhang, Yidu; Wu, Qiong; Wang, Feiming; Matsumura, Shigeki; Houjoh, Haruo
2017-07-01
Load sharing behavior is very important for power-split gearing system, star gearing reducer as a new type and special transmission system can be used in many industry fields. However, there is few literature regarding the key multiple-split load sharing issue in main gearbox used in new type geared turbofan engine. Further mechanism analysis are made on load sharing behavior among star gears of star gearing reducer for geared turbofan engine. Comprehensive meshing error analysis are conducted on eccentricity error, gear thickness error, base pitch error, assembly error, and bearing error of star gearing reducer respectively. Floating meshing error resulting from meshing clearance variation caused by the simultaneous floating of sun gear and annular gear are taken into account. A refined mathematical model for load sharing coefficient calculation is established in consideration of different meshing stiffness and supporting stiffness for components. The regular curves of load sharing coefficient under the influence of interactions, single action and single variation of various component errors are obtained. The accurate sensitivity of load sharing coefficient toward different errors is mastered. The load sharing coefficient of star gearing reducer is 1.033 and the maximum meshing force in gear tooth is about 3010 N. This paper provides scientific theory evidences for optimal parameter design and proper tolerance distribution in advanced development and manufacturing process, so as to achieve optimal effects in economy and technology.
Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities.
DePaoli, Henrique C; Borland, Anne M; Tuskan, Gerald A; Cushman, John C; Yang, Xiaohan
2014-07-01
To meet future food and energy security needs, which are amplified by increasing population growth and reduced natural resource availability, metabolic engineering efforts have moved from manipulating single genes/proteins to introducing multiple genes and novel pathways to improve photosynthetic efficiency in a more comprehensive manner. Biochemical carbon-concentrating mechanisms such as crassulacean acid metabolism (CAM), which improves photosynthetic, water-use, and possibly nutrient-use efficiency, represent a strategic target for synthetic biology to engineer more productive C3 crops for a warmer and drier world. One key challenge for introducing multigene traits like CAM onto a background of C3 photosynthesis is to gain a better understanding of the dynamic spatial and temporal regulatory events that underpin photosynthetic metabolism. With the aid of systems and computational biology, vast amounts of experimental data encompassing transcriptomics, proteomics, and metabolomics can be related in a network to create dynamic models. Such models can undergo simulations to discover key regulatory elements in metabolism and suggest strategic substitution or augmentation by synthetic components to improve photosynthetic performance and water-use efficiency in C3 crops. Another key challenge in the application of synthetic biology to photosynthesis research is to develop efficient systems for multigene assembly and stacking. Here, we review recent progress in computational modelling as applied to plant photosynthesis, with attention to the requirements for CAM, and recent advances in synthetic biology tool development. Lastly, we discuss possible options for multigene pathway construction in plants with an emphasis on CAM-into-C3 engineering. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1980-01-01
Engine control techniques were established and new technology requirements were identified. The designs of the components and engine were prepared in sufficient depth to calculate engine and component weights and envelopes, turbopump efficiencies and recirculation leakage rates, and engine performance. Engine design assumptions are presented along with the structural design criteria.
14 CFR 33.53 - Engine system and component tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine system and component tests. 33.53 Section 33.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.53 Engine system and...
14 CFR 33.91 - Engine system and component tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and...
14 CFR 33.91 - Engine system and component tests.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and...
14 CFR 33.91 - Engine system and component tests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and...
An integrated systems engineering approach to aircraft design
NASA Astrophysics Data System (ADS)
Price, M.; Raghunathan, S.; Curran, R.
2006-06-01
The challenge in Aerospace Engineering, in the next two decades as set by Vision 2020, is to meet the targets of reduction of nitric oxide emission by 80%, carbon monoxide and carbon dioxide both by 50%, reduce noise by 50% and of course with reduced cost and improved safety. All this must be achieved with expected increase in capacity and demand. Such a challenge has to be in a background where the understanding of physics of flight has changed very little over the years and where industrial growth is driven primarily by cost rather than new technology. The way forward to meet the challenges is to introduce innovative technologies and develop an integrated, effective and efficient process for the life cycle design of aircraft, known as systems engineering (SE). SE is a holistic approach to a product that comprises several components. Customer specifications, conceptual design, risk analysis, functional analysis and architecture, physical architecture, design analysis and synthesis, and trade studies and optimisation, manufacturing, testing validation and verification, delivery, life cycle cost and management. Further, it involves interaction between traditional disciplines such as Aerodynamics, Structures and Flight Mechanics with people- and process-oriented disciplines such as Management, Manufacturing, and Technology Transfer. SE has become the state-of-the-art methodology for organising and managing aerospace production. However, like many well founded methodologies, it is more difficult to embody the core principles into formalised models and tools. The key contribution of the paper will be to review this formalisation and to present the very latest knowledge and technology that facilitates SE theory. Typically, research into SE provides a deeper understanding of the core principles and interactions, and helps one to appreciate the required technical architecture for fully exploiting it as a process, rather than a series of events. There are major issues as regards to systems approach to aircraft design and these include lack of basic scientific/practical models and tools for interfacing and integrating the components of SE and within a given component, for example, life cycle cost, basic models for linking the key drivers. The paper will review the current state of art in SE approach to aircraft design and identify some of the major challenges, the current state of the art and visions for the future. The review moves from an initial basis in traditional engineering design processes to consideration of costs and manufacturing in this integrated environment. Issues related to the implementation of integration in design at the detailed physics level are discussed in the case studies.
Digest of Key Science and Engineering Indicators, 2008. NSB-08-2
ERIC Educational Resources Information Center
National Science Foundation, 2008
2008-01-01
This digest of key science and engineering indicators draws primarily from the National Science Board's two-volume "Science and Engineering Indicators, 2008" report. The digest serves two purposes: (1) to draw attention to important trends and data points from across the chapters and volumes of "Science and Engineering Indicators, 2008," and (2)…
Thermal and Environmental Barrier Coating Development for Advanced Propulsion Engine Systems
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.; Fox, Dennis S.
2008-01-01
Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. Advanced TEBCs that have significantly lower thermal conductivity, better thermal stability and higher toughness than current coatings will be beneficial for future low emission and high performance propulsion engine systems. In this paper, ceramic coating design and testing considerations will be described for turbine engine high temperature and high-heat-flux applications. Thermal barrier coatings for metallic turbine airfoils and thermal/environmental barrier coatings for SiC/SiC ceramic matrix composite (CMC) components for future supersonic aircraft propulsion engines will be emphasized. Further coating capability and durability improvements for the engine hot-section component applications can be expected by utilizing advanced modeling and design tools.
Integrated Testing Approaches for the NASA Ares I Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Taylor, James L.; Cockrell, Charles E.; Tuma, Margaret L.; Askins, Bruce R.; Bland, Jeff D.; Davis, Stephan R.; Patterson, Alan F.; Taylor, Terry L.; Robinson, Kimberly L.
2008-01-01
The Ares I crew launch vehicle is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew and cargo access to the International Space Station (ISS) and, together with the Ares V cargo launch vehicle, serves as a critical component of NASA's future human exploration of the Moon. During the preliminary design phase, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements - including the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine - will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the upper stage Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle ground vibration test (IVGVT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, validate the ability of the upper stage to manage cryogenic propellants to achieve upper stage engine start conditions, and a high-altitude demonstration of the launch abort system (LAS) following stage separation. The Orion 1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.
Toward Reusable Graphics Components in Ada
1993-03-01
Then alternatives for obtaining well- engineered reusable software components were examined. Finally, the alternatives were analyzed, and the most...reusable software components. Chapter 4 describes detailed design and implementation strategies in building a well- engineered reusable set of components in...study. 2.2 The Object-Oriented Paradigm 2.2.1 The Need for Object-Oriented Techniques. Among software engineers the software crisis is a well known
Modeling Creep Effects within SiC/SiC Turbine Components
NASA Technical Reports Server (NTRS)
DiCarlo, J. A.; Lang, J.
2008-01-01
Anticipating the implementation of advanced SiC/SiC ceramic composites into the hot section components of future gas turbine engines, the primary objective of this on-going study is to develop physics-based analytical and finite-element modeling tools to predict the effects of constituent creep on SiC/SiC component service life. A second objective is to understand how to possibly select and manipulate constituent materials, processes, and geometries in order to minimize these effects. In initial studies aimed at SiC/SiC components experiencing through-thickness stress gradients, creep models were developed that allowed an understanding of detrimental residual stress effects that can develop globally within the component walls. It was assumed that the SiC/SiC composites behaved as isotropic visco-elastic materials with temperature-dependent creep behavior as experimentally measured in-plane in the fiber direction of advanced thin-walled 2D SiC/SiC panels. The creep models and their key results are discussed assuming state-of-the-art SiC/SiC materials within a simple cylindrical thin-walled tubular structure, which is currently being employed to model creep-related effects for turbine airfoil leading edges subjected to through-thickness thermal stress gradients. Improvements in the creep models are also presented which focus on constituent behavior with more realistic non-linear stress dependencies in order to predict such key creep-related SiC/SiC properties as time-dependent matrix stress, constituent creep and content effects on composite creep rates and rupture times, and stresses on fiber and matrix during and after creep.
Improving Thermomechanical Properties of SiC/SiC Composites
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; Bhatt, Ramakrishna T.
2006-01-01
Today, a major thrust toward improving the thermomechanical properties of engine components lies in the development of fiber-reinforced silicon carbide matrix composite materials, including SiC-fiber/SiC-matrix composites. These materials are lighter in weight and capable of withstanding higher temperatures, relative to state-of-the-art metallic alloys and oxide-matrix composites for which maximum use temperatures are in the vicinity of 1,100 C. In addition, the toughness or damage tolerance of the SiC-matrix composites is significantly greater than that of unreinforced silicon-based monolithic ceramics. For successful application in advanced engine systems, the SiC-matrix composites should be able to withstand component service stresses and temperatures for the desired component lifetimes. Inasmuch as the high-temperature structural lives of ceramic materials are typically limited by creep-induced growth of flaws, a key property required of such composite materials is high resistance to creep under conditions of use. Also, the thermal conductivity of the materials should be as high as possible so as to minimize component thermal gradients and thermal stresses. A state-of-the-art SiC-matrix composite is typically fabricated in a three-step process: (1) fabrication of a component-shaped architectural preform reinforced by thermally stable high-performance fibers, (2) chemical-vapor infiltration (CVI) of a fiber-coating material such as boron nitride (BN) into the preform, and (3) infiltration of an SiC-based matrix into the remaining porosity in the preform. Generally, the matrices of the highest-performing composites are fabricated by initial use of a CVI SiC matrix component that is typically more thermally stable and denser than matrix components formed by processes other than CVI. As such, the initial SiC matrix component made by CVI provides better environmental protection to the coated fibers embedded within it. Also, the denser CVI SiC imparts to the composite better resistance to propagation of cracks, enhanced thermal conductivity, and higher creep resistance.
At a glance: cellular biology for engineers.
Khoshmanesh, K; Kouzani, A Z; Nahavandi, S; Baratchi, S; Kanwar, J R
2008-10-01
Engineering contributions have played an important role in the rise and evolution of cellular biology. Engineering technologies have helped biologists to explore the living organisms at cellular and molecular levels, and have created new opportunities to tackle the unsolved biological problems. There is now a growing demand to further expand the role of engineering in cellular biology research. For an engineer to play an effective role in cellular biology, the first essential step is to understand the cells and their components. However, the stumbling block of this step is to comprehend the information given in the cellular biology literature because it best suits the readers with a biological background. This paper aims to overcome this bottleneck by describing the human cell components as micro-plants that form cells as micro-bio-factories. This concept can accelerate the engineers' comprehension of the subject. In this paper, first the structure and function of different cell components are described. In addition, the engineering attempts to mimic various cell components through numerical modelling or physical implementation are highlighted. Next, the interaction of different cell components that facilitate complicated chemical processes, such as energy generation and protein synthesis, are described. These complex interactions are translated into simple flow diagrams, generally used by engineers to represent multi-component processes.
The J-2X Fuel Turbopump - Design, Development, and Test
NASA Technical Reports Server (NTRS)
Tellier, James G.; Hawkins, Lakiesha V.; Shinguchi, Brian H.; Marsh, Matthew W.
2011-01-01
Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the design, development, test, and evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine with the intent of uprating the engine and incorporating SSME and RS-68 lessons learned. The J-2S engine was a design upgrade of the flight proven J-2 configuration used to put American astronauts on the moon. The J-2S Fuel Turbopump (FTP) was the first Rocketdyne-designed liquid hydrogen centrifugal pump and provided many of the early lessons learned for the Space Shuttle Main Engine High Pressure Fuel Turbopumps. This paper will discuss the design trades and analyses performed for the current J-2X FTP to increase turbine life; increase structural margins, facilitate component fabrication; expedite turbopump assembly; and increase rotordynamic stability margins. Risk mitigation tests including inducer water tests, whirligig turbine blade tests, turbine air rig tests, and workhorse gas generator tests characterized operating environments, drove design modifications, or identified performance impact. Engineering design, fabrication, analysis, and assembly activities support FTP readiness for the first J-2X engine test scheduled for July 2011.
Controlling exhaust gas recirculation
Zurlo, James Richard [Madison, WI; Konkle, Kevin Paul [West Bend, WI; May, Andrew [Milwaukee, WI
2012-01-31
In controlling an engine, an amount of an intake charge provided, during operation of the engine, to a combustion chamber of the engine is determined. The intake charge includes an air component, a fuel component and a diluent component. An amount of the air component of the intake charge is determined. An amount of the diluent component of the intake charge is determined utilizing the amount of the intake charge, the amount of the air component and, in some instances, the amount of the fuel component. An amount of a diluent supplied to the intake charge is adjusted based at least in part on the determined amount of diluent component of the intake charge.
Ceramic Composite Development for Gas Turbine Engine Hot Section Components
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; VANrOODE, mARK
2006-01-01
The development of ceramic materials for incorporation into the hot section of gas turbine engines has been ongoing for about fifty years. Researchers have designed, developed, and tested ceramic gas turbine components in rigs and engines for automotive, aero-propulsion, industrial, and utility power applications. Today, primarily because of materials limitations and/or economic factors, major challenges still remain for the implementation of ceramic components in gas turbines. For example, because of low fracture toughness, monolithic ceramics continue to suffer from the risk of failure due to unknown extrinsic damage events during engine service. On the other hand, ceramic matrix composites (CMC) with their ability to display much higher damage tolerance appear to be the materials of choice for current and future engine components. The objective of this paper is to briefly review the design and property status of CMC materials for implementation within the combustor and turbine sections for gas turbine engine applications. It is shown that although CMC systems have advanced significantly in thermo-structural performance within recent years, certain challenges still exist in terms of producibility, design, and affordability for commercial CMC turbine components. Nevertheless, there exist some recent successful efforts for prototype CMC components within different engine types.
Component-specific modeling. [jet engine hot section components
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.
1992-01-01
Accomplishments are described for a 3 year program to develop methodology for component-specific modeling of aircraft hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models, (2) geometry model generators, (3) remeshing, (4) specialty three-dimensional inelastic structural analysis, (5) computationally efficient solvers, (6) adaptive solution strategies, (7) engine performance parameters/component response variables decomposition and synthesis, (8) integrated software architecture and development, and (9) validation cases for software developed.
NASA Astrophysics Data System (ADS)
Morelock, John R.
2017-11-01
Studies exploring what it means to be an engineer professionally have been conducted for decades, but have boomed in recent years. This systematic literature review aims to organise extant studies on engineering identity by coding around four key variables: (a) definitions of engineering identity, (b) factors affecting engineering identity development, (c) interventions affecting engineering identity development, and (d) means of measuring identity. In doing so, this review provides strategies for future research and educational interventions to advance work related to engineering identity. Publications were selected for inclusion by screening and appraising results obtained from databases and keywords refined through a scoping study. Derived from key findings, suggestions for future research include bridging disparate strands of engineering identity literature and incorporating more varied methodological approaches. Also from key findings, suggestions for future practice involve better connecting existing definitions of engineering identity and factors known to affect identity development with identity-related interventions.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1993-01-01
The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.
Flow Control Opportunities for Propulsion Systems
NASA Technical Reports Server (NTRS)
Cutley, Dennis E.
2008-01-01
The advancement of technology in gas turbine engines used for aerospace propulsion has been focused on achieving significant performance improvements. At the system level, these improvements are expressed in metrics such as engine thrust-to-weight ratio and system and component efficiencies. The overall goals are directed at reducing engine weight, fuel burn, emissions, and noise. At a component level, these goals translate into aggressive designs of each engine component well beyond the state of the art.
Ceramic composites for rocket engine turbines
NASA Technical Reports Server (NTRS)
Herbell, Thomas P.; Eckel, Andrew J.
1991-01-01
The use of ceramic materials in the hot section of the fuel turbopump of advanced reusable rocket engines promises increased performance and payload capability, improved component life and economics, and greater design flexibility. Severe thermal transients present during operation of the Space Shuttle Main Engine (SSME), push metallic components to the limit of their capabilities. Future engine requirements might be even more severe. In phase one of this two-phase program, performance benefits were quantified and continuous fiber reinforced ceramic matrix composite components demonstrated a potential to survive the hostile environment of an advanced rocket engine turbopump.
Ceramic composites for rocket engine turbines
NASA Technical Reports Server (NTRS)
Herbell, Thomas P.; Eckel, Andrew J.
1991-01-01
The use of ceramic materials in the hot section of the fuel turbopump of advanced reusable rocket engines promises increased performance and payload capability, improved component life and economics, and greater design flexibility. Severe thermal transients present during operation of the Space Shuttle Main Engine (SSME), push metallic components to the limit of their capabilities. Future engine requirements might be even more severe. In phase one of this two-phase program, performance benefits were quantified and continuous fiber reinforced ceramic matrix composite components demonstrated a potential to survive the hostile environment of an advaced rocket engine turbopump.
Ceramic automotive Stirling engine program
NASA Technical Reports Server (NTRS)
1986-01-01
The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.
Automotive Stirling engine development program
NASA Technical Reports Server (NTRS)
Farrell, R.; Hindes, C.; Battista, R.; Connelly, M.; Cronin, M.; Howarth, R.; Donahue, A.; Slate, E.; Stotts, R.; Lacy, R.
1988-01-01
The study of high power kinematic Stirling engines for transportation use, testing of Mod I and Mod II Stirling engines, and component development activities are summarized. Mod II development testing was performed to complete the development of the basic engine and begin characterization of performance. Mod I engines were used for Mod II component development and to obtain independent party (U.S. Air Force) evaluation of Stirling engine vehicle performance.
Detailed Post-Soft Impact Progressive Damage Assessment for Hybrid Structure Jet Engines
NASA Technical Reports Server (NTRS)
Siddens, Aaron; Bayandor, Javid; Celestina, Mark L.
2014-01-01
Currently, certification of engine designs for resistance to bird strike is reliant on physical tests. Predictive modeling of engine structural damage has mostly been limited to evaluation of individual forward section components, such as fan blades within a fixed frame of reference, to direct impact with a bird. Such models must be extended to include interactions among engine components under operating conditions to evaluate the full extent of engine damage. This paper presents the results of a study aim to develop a methodology for evaluating bird strike damage in advanced propulsion systems incorporating hybrid composite/metal structures. The initial degradation and failure of individual fan blades struck by a bird were investigated. Subsequent damage to other fan blades and engine components due to resultant violent fan assembly vibrations and fragmentation was further evaluated. Various modeling parameters for the bird and engine components were investigated to determine guidelines for accurately capturing initial damage and progressive failure of engine components. Then, a novel hybrid structure modeling approach was investigated and incorporated into the crashworthiness methodology. Such a tool is invaluable to the process of design, development, and certification of future advanced propulsion systems.
Molecular response of canola to salt stress: insights on tolerance mechanisms.
Shokri-Gharelo, Reza; Noparvar, Pouya Motie
2018-01-01
Canola ( Brassica napus L. ) is widely cultivated around the world for the production of edible oils and biodiesel fuel. Despite many canola varieties being described as 'salt-tolerant', plant yield and growth decline drastically with increasing salinity. Although many studies have resulted in better understanding of the many important salt-response mechanisms that control salt signaling in plants, detoxification of ions, and synthesis of protective metabolites, the engineering of salt-tolerant crops has only progressed slowly. Genetic engineering has been considered as an efficient method for improving the salt tolerance of canola but there are many unknown or little-known aspects regarding canola response to salinity stress at the cellular and molecular level. In order to develop highly salt-tolerant canola, it is essential to improve knowledge of the salt-tolerance mechanisms, especially the key components of the plant salt-response network. In this review, we focus on studies of the molecular response of canola to salinity to unravel the different pieces of the salt response puzzle. The paper includes a comprehensive review of the latest studies, particularly of proteomic and transcriptomic analysis, including the most recently identified canola tolerance components under salt stress, and suggests what researchers should focus on in future studies.
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1980-01-01
The design of an energy efficient commercial turbofan engine is examined with emphasis on lower fuel consumption and operating costs. Propulsion system performance, emission standards, and noise reduction are also investigated. A detailed design analysis of the engine/aircraft configuration, engine components, and core engine is presented along with an evaluation of the technology and testing involved.
Watstein, Daniel M; McNerney, Monica P; Styczynski, Mark P
2015-09-01
Micronutrient deficiencies, including zinc deficiency, are responsible for hundreds of thousands of deaths annually. A key obstacle to allocating scarce treatment resources is the ability to measure population blood micronutrient status inexpensively and quickly enough to identify those who most need treatment. This paper develops a metabolically engineered strain of Escherichia coli to produce different colored pigments (violacein, lycopene, and β-carotene) in response to different extracellular zinc levels, for eventual use in an inexpensive blood zinc diagnostic test. However, obtaining discrete color states in the carotenoid pathway required precise engineering of metabolism to prevent reaction at low zinc concentrations but allow complete reaction at higher concentrations, and all under the constraints of natural regulator limitations. Hence, the metabolic engineering challenge was not to improve titer, but to enable precise control of pathway state. A combination of gene dosage, post-transcriptional, and post-translational regulation was necessary to allow visible color change over physiologically relevant ranges representing a small fraction of the regulator's dynamic response range, with further tuning possible by modulation of precursor availability. As metabolic engineering expands its applications and develops more complex systems, tight control of system components will likely become increasingly necessary, and the approach presented here can be generalized to other natural sensing systems for precise control of pathway state. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2015-01-01
Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned 2700-3000F EBC - CMC systems to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current NASA candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, cyclic durability, erosion-impact resistance, and long-term system performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.
Lemaitre, D.; Sauquet, D.; Fofol, I.; Tanguy, L.; Jean, F. C.; Degoulet, P.
1995-01-01
Legacy systems are crucial for organizations since they support key functionalities. But they become obsolete with aging and the apparition of new techniques. Managing their evolution is a key issue in software engineering. This paper presents a strategy that has been developed at Broussais University Hospital in Paris to make a legacy system devoted to the management of health care units evolve towards a new up-to-date software. A two-phase evolution pathway is described. The first phase consists in separating the interface from the data storage and application control and in using a communication channel between the individualized components. The second phase proposes to use an object-oriented DBMS in place of the homegrown system. An application example for the management of hypertensive patients is described. PMID:8563252
Powder Injection Molding of Ceramic Engine Components for Transportation
NASA Astrophysics Data System (ADS)
Lenz, Juergen; Enneti, Ravi K.; Onbattuvelli, Valmikanathan; Kate, Kunal; Martin, Renee; Atre, Sundar
2012-03-01
Silicon nitride has been the favored material for manufacturing high-efficiency engine components for transportation due to its high temperature stability, good wear resistance, excellent corrosion resistance, thermal shock resistance, and low density. The use of silicon nitride in engine components greatly depends on the ability to fabricate near net-shape components economically. The absence of a material database for design and simulation has further restricted the engineering community in developing parts from silicon nitride. In this paper, the design and manufacturability of silicon nitride engine rotors for unmanned aerial vehicles by the injection molding process are discussed. The feedstock material property data obtained from experiments were used to simulate the flow of the material during injection molding. The areas susceptible to the formation of defects during the injection molding process of the engine component were identified from the simulations. A test sample was successfully injection molded using the feedstock and sintered to 99% density without formation of significant observable defects.
14 CFR 27.1189 - Shutoff means.
Code of Federal Regulations, 2010 CFR
2010-01-01
...— (1) Lines, fittings, and components forming an intergral part of an engine; (2) For oil systems for which all components of the system, including oil tanks, are fireproof or located in areas not subject to engine fire conditions; and (3) For reciprocating engine installations only, engine oil system...
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Steinetz, B. M.; Zaretsky, E. V.; Athavale, M. M.; Przekwas, A. J.
2004-01-01
The issues and components supporting the engine power stream are reviewed. It is essential that companies pay close attention to engine sealing issues, particularly on the high-pressure spool or high-pressure pumps. Small changes in these systems are reflected throughout the entire engine. Although cavity, platform, and tip sealing are complex and have a significant effect on component and engine performance, computational tools (e.g., NASA-developed INDSEAL, SCISEAL, and ADPAC) are available to help guide the designer and the experimenter. Gas turbine engine and rocket engine externals must all function efficiently with a high degree of reliability in order for the engine to run but often receive little attention until they malfunction. Within the open literature statistically significant data for critical engine components are virtually nonexistent; the classic approach is deterministic. Studies show that variations with loading can have a significant effect on component performance and life. Without validation data they are just studies. These variations and deficits in statistical databases require immediate attention.
Progress with variable cycle engines
NASA Technical Reports Server (NTRS)
Westmoreland, J. S.
1980-01-01
The evaluation of components of an advanced propulsion system for a future supersonic cruise vehicle is discussed. These components, a high performance duct burner for thrust augmentation and a low jet noise coannular exhaust nozzle, are part of the variable stream control engine. An experimental test program involving both isolated component and complete engine tests was conducted for the high performance, low emissions duct burner with excellent results. Nozzle model tests were completed which substantiate the inherent jet noise benefit associated with the unique velocity profile possible of a coannular exhaust nozzle system on a variable stream control engine. Additional nozzle model performance tests have established high thrust efficiency levels at takeoff and supersonic cruise for this nozzle system. Large scale testing of these two critical components is conducted using an F100 engine as the testbed for simulating the variable stream control engine.
FY10 Engineering Innovations, Research and Technology Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, M A; Aceves, S M; Paulson, C N
This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&Dmore » 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.« less
Development costs for a nuclear electric propulsion stage.
NASA Technical Reports Server (NTRS)
Mondt, J. F.; Prickett, W. Z.
1973-01-01
Development costs are presented for an unmanned nuclear electric propulsion (NEP) stage based upon a liquid metal cooled, in-core thermionic reactor. A total of 120 kWe are delivered to the thrust subsystem which employs mercury ion engines for electric propulsion. This study represents the most recent cost evaluation of the development of a reactor power system for a wide range of nuclear space power applications. These include geocentric, and outer planet and other deep space missions. The development program is described for the total NEP stage, based upon specific development programs for key NEP stage components and subsystems.
MEMS applications in space exploration
NASA Astrophysics Data System (ADS)
Tang, William C.
1997-09-01
Space exploration in the coming century will emphasize cost effectiveness and highly focused mission objectives, which will result in frequent multiple missions that broaden the scope of space science and to validate new technologies on a timely basis. MEMS is one of the key enabling technology to create cost-effective, ultra-miniaturized, robust, and functionally focused spacecraft for both robotic and human exploration programs. Examples of MEMS devices at various stages of development include microgyroscope, microseismometer, microhygrometer, quadrupole mass spectrometer, and micropropulsion engine. These devices, when proven successful, will serve as models for developing components and systems for new-millennium spacecraft.
Applications of MEMS for Space Exploration
NASA Astrophysics Data System (ADS)
Tang, William C.
1998-03-01
Space exploration in the coming century will emphasize cost effectiveness and highly focused mission objectives, which will result in frequent multiple missions that broaden the scope of space science and to validate new technologies on a timely basis. Micro Electro Mechanical Systems (MEMS) is one of the key enabling technologies to create cost-effective, ultra-miniaturized, robust, and functionally focused spacecraft for both robotic and human exploration programs. Examples of MEMS devices at various stages of development include microgyroscope, microseismometer, microhygrometer, quadrupole mass spectrometer, and micropropulsion engine. These devices, when proven successful, will serve as models for developing components and systems for new-millennium spacecraft.
A Prototype for the Support of Integrated Software Process Development and Improvement
NASA Astrophysics Data System (ADS)
Porrawatpreyakorn, Nalinpat; Quirchmayr, Gerald; Chutimaskul, Wichian
An efficient software development process is one of key success factors for quality software. Not only can the appropriate establishment but also the continuous improvement of integrated project management and of the software development process result in efficiency. This paper hence proposes a software process maintenance framework which consists of two core components: an integrated PMBOK-Scrum model describing how to establish a comprehensive set of project management and software engineering processes and a software development maturity model advocating software process improvement. Besides, a prototype tool to support the framework is introduced.
Materials Research With Neutrons at NIST
Cappelletti, R. L.; Glinka, C. J.; Krueger, S.; Lindstrom, R. A.; Lynn, J. W.; Prask, H. J.; Prince, E.; Rush, J. J.; Rowe, J. M.; Satija, S. K.; Toby, B. H.; Tsai, A.; Udovic, T. J.
2001-01-01
The NIST Materials Science and Engineering Laboratory works with industry, standards bodies, universities, and other government laboratories to improve the nation’s measurements and standards infrastructure for materials. An increasingly important component of this effort is carried out at the NIST Center for Neutron Research (NCNR), at present the most productive center of its kind in the United States. This article gives a brief historical account of the growth and activities of the Center with examples of its work in major materials research areas and describes the key role the Center can expect to play in future developments. PMID:27500021
van Roekel, Hendrik W H; Rosier, Bas J H M; Meijer, Lenny H H; Hilbers, Peter A J; Markvoort, Albert J; Huck, Wilhelm T S; de Greef, Tom F A
2015-11-07
Living cells are able to produce a wide variety of biological responses when subjected to biochemical stimuli. It has become apparent that these biological responses are regulated by complex chemical reaction networks (CRNs). Unravelling the function of these circuits is a key topic of both systems biology and synthetic biology. Recent progress at the interface of chemistry and biology together with the realisation that current experimental tools are insufficient to quantitatively understand the molecular logic of pathways inside living cells has triggered renewed interest in the bottom-up development of CRNs. This builds upon earlier work of physical chemists who extensively studied inorganic CRNs and showed how a system of chemical reactions can give rise to complex spatiotemporal responses such as oscillations and pattern formation. Using purified biochemical components, in vitro synthetic biologists have started to engineer simplified model systems with the goal of mimicking biological responses of intracellular circuits. Emulation and reconstruction of system-level properties of intracellular networks using simplified circuits are able to reveal key design principles and molecular programs that underlie the biological function of interest. In this Tutorial Review, we present an accessible overview of this emerging field starting with key studies on inorganic CRNs followed by a discussion of recent work involving purified biochemical components. Finally, we review recent work showing the versatility of programmable biochemical reaction networks (BRNs) in analytical and diagnostic applications.
Testing to Transition the J-2X from Paper to Hardware
NASA Technical Reports Server (NTRS)
Byrd, Tom
2010-01-01
The J-2X Upper Stage Engine (USE) will be the first new human-rated upper stage engine since the Apollo program of the 1960s. It is designed to carry the Ares I and Ares V into orbit and send the Ares V to the Moon as part of NASA's Constellation Program. This paper will provide an overview of progress on the design, testing, and manufacturing of this new engine in 2009 and 2010. The J-2X embodies the program goals of basing the design on proven technology and experience and seeking commonality between the Ares vehicles as a way to minimize risk, shorten development times, and live within current budget constraints. It is based on the proven J-2 engine used on the Saturn IB and Saturn V launch vehicles. The prime contractor for the J-2X is Pratt & Whitney Rocketdyne (PWR), which is under a design, development, test, and engineering (DDT&E) contract covering the period from June 2006 through September 2014. For Ares I, the J-2X will provide engine start at approximately 190,000 feet, operate roughly 500 seconds, and shut down. For Ares V, the J-2X will start at roughly 190,000 feet to place the Earth departure stage (EDS) in orbit, shut down and loiter for up to five days, re-start on command and operate for roughly 300 seconds at its secondary power level to perform trans lunar injection (TLI), followed by final engine shutdown. The J-2X development effort focuses on four key areas: early risk mitigation, design risk mitigation, component and subassembly testing, and engine system testing. Following that plan, the J-2X successfully completed its critical design review (CDR) in 2008, and it has made significant progress in 2009 and 2010 in moving from the drawing board to the machine shop and test stand. Post-CDR manufacturing is well under way, including PWR in-house and vendor hardware. In addition, a wide range of component and sub-component tests have been completed, and more component tests are planned. Testing includes heritage powerpack, turbopump inducer water flow, turbine air flow, turbopump seal testing, main injector and gas generator, injector testing, augmented spark igniter testing, nozzle side loads cold flow testing, nozzle extension film cooling flow testing, control system testing with hardware in the loop, and nozzle extension emissivity coating tests. In parallel with hardware manufacturing, work is progressing on the new A-3 test stand to support full duration altitude testing. The Stennis A-2 test stand is scheduled to be turned over to the Constellation Program in September 2010 to be modified for J-2X testing also. As the structural steel was rising on the A-3 stand, work was under way in the nearby E complex on the chemical steam generator and subscale diffuser concepts to be used to evacuate the A-3 test cell and simulate altitude conditions.
Structural Health Monitoring on Turbine Engines Using Microwave Blade Tip Clearance Sensors
NASA Technical Reports Server (NTRS)
Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle
2014-01-01
The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA) has taken a lead role in the investigation of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. As part of this effort, microwave sensor technology has been investigated as a means of making high temperature non-contact blade tip clearance, blade tip timing, and blade vibration measurements for use in gas turbine engines. This paper presents a summary of key results and findings obtained from the evaluation of two different types of microwave sensors that have been investigated for use possible in structural health monitoring applications. The first is a microwave blade tip clearance sensor that has been evaluated on a large scale Axial Vane Fan, a subscale Turbofan, and more recently on sub-scale turbine engine like disks. The second is a novel microwave based blade vibration sensor that was also used in parallel with the microwave blade tip clearance sensors on the experiments with the sub-scale turbine engine disks.
Structural health monitoring on turbine engines using microwave blade tip clearance sensors
NASA Astrophysics Data System (ADS)
Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle
2014-04-01
The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to the aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA) has taken a lead role in the investigation of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. As part of this effort, microwave sensor technology has been investigated as a means of making high temperature non-contact blade tip clearance, blade tip timing, and blade vibration measurements for use in gas turbine engines. This paper presents a summary of key results and findings obtained from the evaluation of two different types of microwave sensors that have been investigated for possible use in structural health monitoring applications. The first is a microwave blade tip clearance sensor that has been evaluated on a large scale Axial Vane Fan, a subscale Turbofan, and more recently on sub-scale turbine engine like disks. The second is a novel microwave based blade vibration sensor that was also used in parallel with the microwave blade tip clearance sensors on the same experiments with the sub-scale turbine engine disks.
NASA Astrophysics Data System (ADS)
Feng, Qi; Yuan, Xiao-Zi; Liu, Gaoyang; Wei, Bing; Zhang, Zhen; Li, Hui; Wang, Haijiang
2017-10-01
Proton exchange membrane water electrolysis (PEMWE) is an advanced and effective solution to the primary energy storage technologies. A better understanding of performance and durability of PEMWE is critical for the engineers and researchers to further advance this technology for its market penetration, and for the manufacturers of PEM water electrolyzers to implement quality control procedures for the production line or on-site process monitoring/diagnosis. This paper reviews the published works on performance degradations and mitigation strategies for PEMWE. Sources of degradation for individual components are introduced. With degradation causes discussed and degradation mechanisms examined, the review emphasizes on feasible strategies to mitigate the components degradation. To avoid lengthy real lifetime degradation tests and their high costs, the importance of accelerated stress tests and protocols is highlighted for various components. In the end, R&D directions are proposed to move the PEMWE technology forward to become a key element in future energy scenarios.
Nguyen, A; Yosinski, J; Clune, J
2016-01-01
The Achilles Heel of stochastic optimization algorithms is getting trapped on local optima. Novelty Search mitigates this problem by encouraging exploration in all interesting directions by replacing the performance objective with a reward for novel behaviors. This reward for novel behaviors has traditionally required a human-crafted, behavioral distance function. While Novelty Search is a major conceptual breakthrough and outperforms traditional stochastic optimization on certain problems, it is not clear how to apply it to challenging, high-dimensional problems where specifying a useful behavioral distance function is difficult. For example, in the space of images, how do you encourage novelty to produce hawks and heroes instead of endless pixel static? Here we propose a new algorithm, the Innovation Engine, that builds on Novelty Search by replacing the human-crafted behavioral distance with a Deep Neural Network (DNN) that can recognize interesting differences between phenotypes. The key insight is that DNNs can recognize similarities and differences between phenotypes at an abstract level, wherein novelty means interesting novelty. For example, a DNN-based novelty search in the image space does not explore in the low-level pixel space, but instead creates a pressure to create new types of images (e.g., churches, mosques, obelisks, etc.). Here, we describe the long-term vision for the Innovation Engine algorithm, which involves many technical challenges that remain to be solved. We then implement a simplified version of the algorithm that enables us to explore some of the algorithm's key motivations. Our initial results, in the domain of images, suggest that Innovation Engines could ultimately automate the production of endless streams of interesting solutions in any domain: for example, producing intelligent software, robot controllers, optimized physical components, and art.
Improved components for engine fuel savings
NASA Technical Reports Server (NTRS)
Antl, R. J.; Mcaulay, J. E.
1980-01-01
NASA programs for developing fuel saving technology include the Engine Component Improvement Project for short term improvements in existing air engines. The Performance Improvement section is to define component technologies for improving fuel efficiency for CF6, JT9D and JT8D turbofan engines. Sixteen concepts were developed and nine were tested while four are already in use by airlines. If all sixteen concepts are successfully introduced the gain will be fuel savings of more than 6 billion gallons over the lifetime of the engines. The improvements include modifications in fans, mounts, exhaust nozzles, turbine clearance and turbine blades.
SiC/SiC Composites for 1200 C and Above
NASA Technical Reports Server (NTRS)
DiCarlo, J. A.; Yun, H.-M.; Morscher, G. N.; Bhatt, R. T.
2004-01-01
The successful replacement of metal alloys by ceramic matrix composites (CMC) in high-temperature engine components will require the development of constituent materials and processes that can provide CMC systems with enhanced thermal capability along with the key thermostructural properties required for long-term component service. This chapter presents information concerning processes and properties for five silicon carbide (SiC) fiber-reinforced SiC matrix composite systems recently developed by NASA that can operate under mechanical loading and oxidizing conditions for hundreds of hours at 1204, 1315, and 1427 C, temperatures well above current metal capability. This advanced capability stems in large part from specific NASA-developed processes that significantly improve the creep-rupture and environmental resistance of the SiC fiber as well as the thermal conductivity, creep resistance, and intrinsic thermal stability of the SiC matrices.
Spacecraft Testing Programs: Adding Value to the Systems Engineering Process
NASA Technical Reports Server (NTRS)
Britton, Keith J.; Schaible, Dawn M.
2011-01-01
Testing has long been recognized as a critical component of spacecraft development activities - yet many major systems failures may have been prevented with more rigorous testing programs. The question is why is more testing not being conducted? Given unlimited resources, more testing would likely be included in a spacecraft development program. Striking the right balance between too much testing and not enough has been a long-term challenge for many industries. The objective of this paper is to discuss some of the barriers, enablers, and best practices for developing and sustaining a strong test program and testing team. This paper will also explore the testing decision factors used by managers; the varying attitudes toward testing; methods to develop strong test engineers; and the influence of behavior, culture and processes on testing programs. KEY WORDS: Risk, Integration and Test, Validation, Verification, Test Program Development
Cryogenics for superconductors: Refrigeration, delivery, and preservation of the cold
NASA Astrophysics Data System (ADS)
Ganni, Venkatarao; Fesmire, James
2012-06-01
Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-user with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.
Cryogenics for superconductors: Refrigeration, delivery, and preservation of the cold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkatarao Ganni, James Fesmire
Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-usermore » with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.« less
Cryogenics for Superconductors: Refrigeration, Delivery, and Preservation of the Cold
NASA Technical Reports Server (NTRS)
Ganni, V.; Fesmire, J. E.
2011-01-01
Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-user with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.
Urrios, Arturo; de Nadal, Eulàlia; Solé, Ricard; Posas, Francesc
2016-01-01
Engineered synthetic biological devices have been designed to perform a variety of functions from sensing molecules and bioremediation to energy production and biomedicine. Notwithstanding, a major limitation of in vivo circuit implementation is the constraint associated to the use of standard methodologies for circuit design. Thus, future success of these devices depends on obtaining circuits with scalable complexity and reusable parts. Here we show how to build complex computational devices using multicellular consortia and space as key computational elements. This spatial modular design grants scalability since its general architecture is independent of the circuit’s complexity, minimizes wiring requirements and allows component reusability with minimal genetic engineering. The potential use of this approach is demonstrated by implementation of complex logical functions with up to six inputs, thus demonstrating the scalability and flexibility of this method. The potential implications of our results are outlined. PMID:26829588
NASA Astrophysics Data System (ADS)
Fan, Dongmei; Akkaraju, Giridhar R.; Couch, Ernest F.; Canham
2011-02-01
The impact of mesoporous silicon (PSi) particles-embedded either on the surface, or totally encapsulated within electrospun poly (ε-caprolactone) (PCL) fibers-on its properties as a tissue engineering scaffold is assessed. Our findings suggest that the resorbable porous silicon component can sensitively accelerate the necessary calcification process in such composites. Calcium phosphate deposition on the scaffolds was measured via in vitro calcification assays both at acellular and cellular levels. Extensive attachment of fibroblasts, human adult mesenchymal stem cells, and mouse stromal cells to the scaffold were observed. Complementary cell differentiation assays and ultrastructural measurements were also carried out; the levels of alkaline phosphatase expression, a specific biomarker for mesenchymal stem cell differentiation, show that the scaffolds have the ability to mediate such processes, and that the location of the Si plays a key role in levels of expression.
The development of the ICME supply-chain: Route to ICME implementation and sustainment
NASA Astrophysics Data System (ADS)
Furrer, David; Schirra, John
2011-04-01
Over the past twenty years, integrated computational materials engineering (ICME) has emerged as a key engineering field with great promise. Models simulating materials-related phenomena have been developed and are being validated for industrial application. The integration of computational methods into material, process and component design has been a challenge, however, in part due to the complexities in the development of an ICME "supply-chain" that supports, sustains and delivers this emerging technology. ICME touches many disciplines, which results in a requirement for many types of computational-based technology organizations to be involved to provide tools that can be rapidly developed, validated, deployed and maintained for industrial applications. The need for, and the current state of an ICME supply-chain along with development and future requirements for the continued pace of introduction of ICME into industrial design practices will be reviewed within this article.
Enhancements to the Engine Data Interpretation System (EDIS)
NASA Technical Reports Server (NTRS)
Hofmann, Martin O.
1993-01-01
The Engine Data Interpretation System (EDIS) expert system project assists the data review personnel at NASA/MSFC in performing post-test data analysis and engine diagnosis of the Space Shuttle Main Engine (SSME). EDIS uses knowledge of the engine, its components, and simple thermodynamic principles instead of, and in addition to, heuristic rules gathered from the engine experts. EDIS reasons in cooperation with human experts, following roughly the pattern of logic exhibited by human experts. EDIS concentrates on steady-state static faults, such as small leaks, and component degradations, such as pump efficiencies. The objective of this contract was to complete the set of engine component models, integrate heuristic rules into EDIS, integrate the Power Balance Model into EDIS, and investigate modification of the qualitative reasoning mechanisms to allow 'fuzzy' value classification. The results of this contract is an operational version of EDIS. EDIS will become a module of the Post-Test Diagnostic System (PTDS) and will, in this context, provide system-level diagnostic capabilities which integrate component-specific findings provided by other modules.
Towards an Automated Full-Turbofan Engine Numerical Simulation
NASA Technical Reports Server (NTRS)
Reed, John A.; Turner, Mark G.; Norris, Andrew; Veres, Joseph P.
2003-01-01
The objective of this study was to demonstrate the high-fidelity numerical simulation of a modern high-bypass turbofan engine. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled three-dimensional computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady-state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the three-dimensional component models are integrated into the cycle model via partial performance maps generated automatically from the CFD flow solutions using one-dimensional meanline turbomachinery programs. This paper reports on the progress made towards the full-engine simulation of the GE90-94B engine, highlighting the generation of the high-pressure compressor partial performance map. The ongoing work will provide a system to evaluate the steady and unsteady aerodynamic and mechanical interactions between engine components at design and off-design operating conditions.
Enhancements to the Engine Data Interpretation System (EDIS)
NASA Technical Reports Server (NTRS)
Hofmann, Martin O.
1993-01-01
The Engine Data Interpretation System (EDIS) expert system project assists the data review personnel at NASA/MSFC in performing post-test data analysis and engine diagnosis of the Space Shuttle Main Engine (SSME). EDIS uses knowledge of the engine, its components, and simple thermodynamic principles instead of, and in addition to, heuristic rules gathered from the engine experts. EDIS reasons in cooperation with human experts, following roughly the pattern of logic exhibited by human experts. EDIS concentrates on steady-state static faults, such as small leaks, and component degradations, such as pump efficiencies. The objective of this contract was to complete the set of engine component models, integrate heuristic rules into EDIS, integrate the Power Balance Model into EDIS, and investigate modification of the qualitative reasoning mechanisms to allow 'fuzzy' value classification. The result of this contract is an operational version of EDIS. EDIS will become a module of the Post-Test Diagnostic System (PTDS) and will, in this context, provide system-level diagnostic capabilities which integrate component-specific findings provided by other modules.
NASA Technical Reports Server (NTRS)
Leach, K.; Thulin, R. D.; Howe, D. C.
1982-01-01
A four stage, low pressure turbine component has been designed to power the fan and low pressure compressor system in the Energy Efficient Engine. Designs for a turbine intermediate case and an exit guide vane assembly also have been established. The components incorporate numerous technology features to enhance efficiency, durability, and performance retention. These designs reflect a positive step towards improving engine fuel efficiency on a component level. The aerodynamic and thermal/mechanical designs of the intermediate case and low pressure turbine components are presented and described. An overview of the predicted performance of the various component designs is given.
High variable mixture ratio oxygen/hydrogen engine
NASA Technical Reports Server (NTRS)
Erickson, C. M.; Tu, W. H.; Weiss, A. H.
1988-01-01
The ability of an O2/H2 engine to operate over a range of high-propellant mixture ratios was previously shown to be advantageous in single stage to orbit (SSTO) vehicles. The results are presented for the analysis of high-performance engine power cycles operating over propellant mixture ratio ranges of 12 to 6 and 9 to 6. A requirement to throttle up to 60 percent of nominal thrust was superimposed as a typical throttle range to limit vehicle acceleration as propellant is expended. The object of the analysis was to determine areas of concern relative to component and engine operability or potential hazards resulting from the operating requirements and ranges of conditions that derive from the overall engine requirements. The SSTO mission necessitates a high-performance, lightweight engine. Therefore, staged combustion power cycles employing either dual fuel-rich preburners or dual mixed (fuel-rich and oxygen-rich) preburners were examined. Engine mass flow and power balances were made and major component operating ranges were defined. Component size and arrangement were determined through engine layouts for one of the configurations evaluated. Each component is being examined to determine if there are areas of concern with respect to component efficiency, operability, reliability, or hazard. The effects of reducing the maximum chamber pressure were investigated for one of the cycles.
Phys FilmMakers: teaching science students how to make YouTube-style videos
NASA Astrophysics Data System (ADS)
Coates, Rebecca L.; Kuhai, Alvina; Turlej, Laurence Z. J.; Rivlin, Tom; McKemmish, Laura K.
2018-01-01
Phys FilmMakers (PFM) is a new type of course in which a science expert and science communicator partner teach physics students how to make YouTube-style videos on cutting-edge scientific research within the university department. Here, we describe this new course, outline its key components and provide recommendations for others considering implementing a similar FilmMakers-style course using feedback from course tutors and students. We discuss successful and less successful teaching techniques as well as use our experience to identify areas that science students in particular often have difficulties: finding an interesting ‘hook’ for the video, imagining creative B-roll and making a succinct video by removing extraneous (though usually correct and often interesting) material. The course has two major components: workshop sessions in which students learn the key elements of film-making and independent video production where PFM students partner with senior PhD or post-doc researchers to produce a video on their research. This partnership with the department means that the videos produced serve not only as interesting ‘edutainment’ to encourage teenagers and young adults into Science, Technology, Engineering and Maths subjects, but also provide valuable outreach for the academic department.
Advances in SiC/SiC Composites for Aerospace Applications
NASA Technical Reports Server (NTRS)
DiCarlo, James A.
2006-01-01
In recent years, supported by a variety of materials development programs, NASA Glenn Research Center has significantly increased the thermostructural capability of SiC/SiC composite materials for high-temperature aerospace applications. These state-of-the-art advances have occurred in every key constituent of the composite: fiber, fiber coating, matrix, and environmental barrier coating, as well as processes for forming the fiber architectures needed for complex-shaped components such as turbine vanes for gas turbine engines. This presentation will briefly elaborate on the nature of these advances in terms of performance data and underlying mechanisms. Based on a list of first-order property goals for typical high-temperature applications, key data from a variety of laboratory tests are presented which demonstrate that the NASA-developed constituent materials and processes do indeed result in SiC/SiC systems with the desired thermal and structural capabilities. Remaining process and microstructural issues for further property enhancement are discussed, as well as on-going approaches at NASA to solve these issues. NASA efforts to develop physics-based property models that can be used not only for component design and life modeling, but also for constituent material and process improvement will also be discussed.
Nanoscale phase engineering of thermal transport with a Josephson heat modulator.
Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco
2016-03-01
Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.
NASA Astrophysics Data System (ADS)
Bunker, K.; Casuccio, G.; Lersch, T.; Ogle, R.; Wahl, L.
2009-12-01
Nanotechnology and the use of unbound engineered nanoparticles (UNP) is a rapidly developing area of materials science. UNP are defined as engineered nanoparticles that are not contained within a matrix that would prevent the nanoparticles from being mobile and a potential source of exposure. At this time there are no regulatory environmental release limits or worker exposure limits for UNP. The Lawrence Berkeley National Laboratory (LBNL) has initiated a study to evaluate worker exposure and potential environmental release of UNP related to various research activities at LBNL. The study is being performed to help identify and manage potential health and safety hazards as well as environmental impacts related to UNP. A key component of the study is the characterization of starting (source) UNP materials to assist in the determination of worker exposure and environmental release. Analysis of the starting materials is being used to establish source signatures. The source signatures will then be used in the evaluation of worker exposure and environmental release. This presentation will provide an overview of the LBNL study with a focus on the methodologies being used to analyze the samples.
Toward Superior Capacitive Energy Storage: Recent Advances in Pore Engineering for Dense Electrodes.
Liu, Congcong; Yan, Xiaojun; Hu, Fei; Gao, Guohua; Wu, Guangming; Yang, Xiaowei
2018-04-01
With the rapid development of mobile electronics and electric vehicles, future electrochemical capacitors (ECs) need to store as much energy as possible in a rather limited space. As the core component of ECs, dense electrodes that have a high volumetric energy density and superior rate capability are the key to achieving improved energy storage. Here, the significance of and recent progress in the high volumetric performance of dense electrodes are presented. Furthermore, dense yet porous electrodes, as the critical precondition for realizing superior electrochemical capacitive energy, have become a scientific challenge and an attractive research focus. From a pore-engineering perspective, insight into the guidelines of engineering the pore size, connectivity, and wettability is provided to design dense electrodes with different porous architectures toward high-performance capacitive energy storage. The current challenges and future opportunities toward dense electrodes are discussed and include the construction of an orderly porous structure with an appropriate gradient, the coupling of pore sizes with the solvated cations and anions, and the design of coupled pores with diverse electrolyte ions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New sensors and techniques for the structural health monitoring of propulsion systems.
Woike, Mark; Abdul-Aziz, Ali; Oza, Nikunj; Matthews, Bryan
2013-01-01
The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA), through the Aviation Safety Program (AVSP), has taken a lead role in the development of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. This paper presents a summary of key results and findings obtained from three different structural health monitoring approaches that have been investigated. This includes evaluating the performance of a novel microwave blade tip clearance sensor; a vibration based crack detection technique using an externally mounted capacitive blade tip clearance sensor; and lastly the results of using data driven anomaly detection algorithms for detecting cracks in a rotating disk.
2015-01-01
Antibody–drug conjugates (ADCs) combine the specificity of antibodies with the potency of small molecules to create targeted drugs. Despite the simplicity of this concept, generation of clinically successful ADCs has been very difficult. Over the past several decades, scientists have learned a great deal about the constraints on antibodies, linkers, and drugs as they relate to successful construction of ADCs. Once these components are in hand, most ADCs are prepared by nonspecific modification of antibody lysine or cysteine residues with drug-linker reagents, which results in heterogeneous product mixtures that cannot be further purified. With advances in the fields of bioorthogonal chemistry and protein engineering, there is growing interest in producing ADCs by site-specific conjugation to the antibody, yielding more homogeneous products that have demonstrated benefits over their heterogeneous counterparts in vivo. Here, we chronicle the development of a multitude of site-specific conjugation strategies for assembly of ADCs and provide a comprehensive account of key advances and their roots in the fields of bioorthogonal chemistry and protein engineering. PMID:25494884
Agarwal, Paresh; Bertozzi, Carolyn R
2015-02-18
Antibody-drug conjugates (ADCs) combine the specificity of antibodies with the potency of small molecules to create targeted drugs. Despite the simplicity of this concept, generation of clinically successful ADCs has been very difficult. Over the past several decades, scientists have learned a great deal about the constraints on antibodies, linkers, and drugs as they relate to successful construction of ADCs. Once these components are in hand, most ADCs are prepared by nonspecific modification of antibody lysine or cysteine residues with drug-linker reagents, which results in heterogeneous product mixtures that cannot be further purified. With advances in the fields of bioorthogonal chemistry and protein engineering, there is growing interest in producing ADCs by site-specific conjugation to the antibody, yielding more homogeneous products that have demonstrated benefits over their heterogeneous counterparts in vivo. Here, we chronicle the development of a multitude of site-specific conjugation strategies for assembly of ADCs and provide a comprehensive account of key advances and their roots in the fields of bioorthogonal chemistry and protein engineering.
New Sensors and Techniques for the Structural Health Monitoring of Propulsion Systems
2013-01-01
The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA), through the Aviation Safety Program (AVSP), has taken a lead role in the development of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. This paper presents a summary of key results and findings obtained from three different structural health monitoring approaches that have been investigated. This includes evaluating the performance of a novel microwave blade tip clearance sensor; a vibration based crack detection technique using an externally mounted capacitive blade tip clearance sensor; and lastly the results of using data driven anomaly detection algorithms for detecting cracks in a rotating disk. PMID:23935425
Nanoscale phase engineering of thermal transport with a Josephson heat modulator
NASA Astrophysics Data System (ADS)
Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco
2016-03-01
Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.
Slavens, Brooke A; Harris, Gerald F
2008-01-01
Human motion analysis has evolved from the lower extremity to the upper extremity. Rehabilitation engineering is reliant upon three-dimensional biome-chanical models for a thorough understanding of upper body motions and forces in order to improve treatment methods, rehabilitation strategies and to prevent injury. Due to the complex nature of upper body movements, a standard biomechanical model does not exist. This paper reviews several kinematic and kinetic rehabilitation engineering models from the literature. These models may capture a single joint; multijoints such as the shoulder, elbow and wrist; or a combination of joints and an ambulatory aid, which serves as the extension of the upper arm. With advances in software and hardware, new models continuously arise due to the clinical questions at hand. When designing a biomechanical upper extremity model, several key components must be determined. These include deciding on the anatomic segments of the model, the number of markers and placement on bony landmarks, the definition of joint coordinate systems, and the description of the joint motions. It is critical to apply the proper model to further our understanding of pathologic populations.
NASA Technical Reports Server (NTRS)
Mcknight, R. L.
1985-01-01
Accomplishments are described for the second year effort of a 3-year program to develop methodology for component specific modeling of aircraft engine hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models; (2) geometry model generators; (3) remeshing; (4) specialty 3-D inelastic stuctural analysis; (5) computationally efficient solvers, (6) adaptive solution strategies; (7) engine performance parameters/component response variables decomposition and synthesis; (8) integrated software architecture and development, and (9) validation cases for software developed.
Second-order schedules: discrimination of components1
Squires, Nancy; Norborg, James; Fantino, Edmund
1975-01-01
Pigeons were exposed to a series of second-order schedules in which the completion of a fixed number of fixed-interval components produced food. In Experiment 1, brief (2 sec) stimulus presentations occurred as each fixed-interval component was completed. During the brief-stimulus presentation terminating the last fixed-interval component, a response was required on a second key, the brief-stimulus key, to produce food. Responses on the brief-stimulus key before the last brief-stimulus presentation had no scheduled consequences, but served as a measure of the extent to which the final component was discriminated from preceding components. Whether there were one, two, four, or eight fixed-interval components, responses on the brief-stimulus key occurred during virtually every brief-stimulus presentation. In Experiment 2, an attempt was made to punish unnecessary responses on the brief-stimulus key, i.e., responses on the brief-stimulus key that occurred before the last component. None of the pigeons learned to withhold these responses, even though they produced a 15-sec timeout and loss of primary reinforcement. In Experiment 3, different key colors were associated with each component of a second-order schedule (a chain schedule). In contrast to Experiment 1, brief-stimulus key responses were confined to the last component. It was concluded that pigeons do not discriminate well between components of second-order schedules unless a unique exteroceptive cue is provided for each component. The relative discriminability of the components may account for the observed differences in initial-component response rates between comparable brief-stimulus, tandem, and chain schedules. PMID:16811868
Technology Benefit Estimator (T/BEST): User's Manual
NASA Technical Reports Server (NTRS)
Generazio, Edward R.; Chamis, Christos C.; Abumeri, Galib
1994-01-01
The Technology Benefit Estimator (T/BEST) system is a formal method to assess advanced technologies and quantify the benefit contributions for prioritization. T/BEST may be used to provide guidelines to identify and prioritize high payoff research areas, help manage research and limited resources, show the link between advanced concepts and the bottom line, i.e., accrued benefit and value, and to communicate credibly the benefits of research. The T/BEST software computer program is specifically designed to estimating benefits, and benefit sensitivities, of introducing new technologies into existing propulsion systems. Key engine cycle, structural, fluid, mission and cost analysis modules are used to provide a framework for interfacing with advanced technologies. An open-ended, modular approach is used to allow for modification and addition of both key and advanced technology modules. T/BEST has a hierarchical framework that yields varying levels of benefit estimation accuracy that are dependent on the degree of input detail available. This hierarchical feature permits rapid estimation of technology benefits even when the technology is at the conceptual stage. As knowledge of the technology details increases the accuracy of the benefit analysis increases. Included in T/BEST's framework are correlations developed from a statistical data base that is relied upon if there is insufficient information given in a particular area, e.g., fuel capacity or aircraft landing weight. Statistical predictions are not required if these data are specified in the mission requirements. The engine cycle, structural fluid, cost, noise, and emissions analyses interact with the default or user material and component libraries to yield estimates of specific global benefits: range, speed, thrust, capacity, component life, noise, emissions, specific fuel consumption, component and engine weights, pre-certification test, mission performance engine cost, direct operating cost, life cycle cost, manufacturing cost, development cost, risk, and development time. Currently, T/BEST operates on stand-alone or networked workstations, and uses a UNIX shell or script to control the operation of interfaced FORTRAN based analyses. T/BEST's interface structure works equally well with non-FORTRAN or mixed software analysis. This interface structure is designed to maintain the integrity of the expert's analyses by interfacing with expert's existing input and output files. Parameter input and output data (e.g., number of blades, hub diameters, etc.) are passed via T/BEST's neutral file, while copious data (e.g., finite element models, profiles, etc.) are passed via file pointers that point to the expert's analyses output files. In order to make the communications between the T/BEST's neutral file and attached analyses codes simple, only two software commands, PUT and GET, are required. This simplicity permits easy access to all input and output variables contained within the neutral file. Both public domain and proprietary analyses codes may be attached with a minimal amount of effort, while maintaining full data and analysis integrity, and security. T/BESt's sotware framework, status, beginner-to-expert operation, interface architecture, analysis module addition, and key analysis modules are discussed. Representative examples of T/BEST benefit analyses are shown.
Technology Benefit Estimator (T/BEST): User's manual
NASA Astrophysics Data System (ADS)
Generazio, Edward R.; Chamis, Christos C.; Abumeri, Galib
1994-12-01
The Technology Benefit Estimator (T/BEST) system is a formal method to assess advanced technologies and quantify the benefit contributions for prioritization. T/BEST may be used to provide guidelines to identify and prioritize high payoff research areas, help manage research and limited resources, show the link between advanced concepts and the bottom line, i.e., accrued benefit and value, and to communicate credibly the benefits of research. The T/BEST software computer program is specifically designed to estimating benefits, and benefit sensitivities, of introducing new technologies into existing propulsion systems. Key engine cycle, structural, fluid, mission and cost analysis modules are used to provide a framework for interfacing with advanced technologies. An open-ended, modular approach is used to allow for modification and addition of both key and advanced technology modules. T/BEST has a hierarchical framework that yields varying levels of benefit estimation accuracy that are dependent on the degree of input detail available. This hierarchical feature permits rapid estimation of technology benefits even when the technology is at the conceptual stage. As knowledge of the technology details increases the accuracy of the benefit analysis increases. Included in T/BEST's framework are correlations developed from a statistical data base that is relied upon if there is insufficient information given in a particular area, e.g., fuel capacity or aircraft landing weight. Statistical predictions are not required if these data are specified in the mission requirements. The engine cycle, structural fluid, cost, noise, and emissions analyses interact with the default or user material and component libraries to yield estimates of specific global benefits: range, speed, thrust, capacity, component life, noise, emissions, specific fuel consumption, component and engine weights, pre-certification test, mission performance engine cost, direct operating cost, life cycle cost, manufacturing cost, development cost, risk, and development time. Currently, T/BEST operates on stand-alone or networked workstations, and uses a UNIX shell or script to control the operation of interfaced FORTRAN based analyses. T/BEST's interface structure works equally well with non-FORTRAN or mixed software analysis. This interface structure is designed to maintain the integrity of the expert's analyses by interfacing with expert's existing input and output files. Parameter input and output data (e.g., number of blades, hub diameters, etc.) are passed via T/BEST's neutral file, while copious data (e.g., finite element models, profiles, etc.) are passed via file pointers that point to the expert's analyses output files. In order to make the communications between the T/BEST's neutral file and attached analyses codes simple, only two software commands, PUT and GET, are required. This simplicity permits easy access to all input and output variables contained within the neutral file. Both public domain and proprietary analyses codes may be attached with a minimal amount of effort, while maintaining full data and analysis integrity, and security.
Integrated two-cylinder liquid piston Stirling engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ning; Rickard, Robert; Pluckter, Kevin
2014-10-06
Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harnessmore » useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.« less
MC-1 Engine Valves, Lessons Learned
NASA Technical Reports Server (NTRS)
Laszar, John
2003-01-01
Many lessons were learned during the development of the valves for the MC-1 engine. The purpose of this report is to focus on a variety of issues related to the engine valves and convey the lessons learned. This paper will not delve into detailed technical analysis of the components. None of the lessons learned are new or surprising, but simply reinforce the importance of addressing the details of the design early, at the component level. The Marshall Space Flight Center (MSFC), Huntsville, Alabama developed the MC-1 engine, a LOX / FW-1, 60,000 pound thrust engine. This engine was developed under the Low Cost Boost Technology office at MSFC and proved to be a very successful project for the MSFC Propulsion team and the various subcontractors working the development of the engine and its components.
Integrated two-cylinder liquid piston Stirling engine
NASA Astrophysics Data System (ADS)
Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd
2014-10-01
Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.
Earth Science Mining Web Services
NASA Astrophysics Data System (ADS)
Pham, L. B.; Lynnes, C. S.; Hegde, M.; Graves, S.; Ramachandran, R.; Maskey, M.; Keiser, K.
2008-12-01
To allow scientists further capabilities in the area of data mining and web services, the Goddard Earth Sciences Data and Information Services Center (GES DISC) and researchers at the University of Alabama in Huntsville (UAH) have developed a system to mine data at the source without the need of network transfers. The system has been constructed by linking together several pre-existing technologies: the Simple Scalable Script-based Science Processor for Measurements (S4PM), a processing engine at the GES DISC; the Algorithm Development and Mining (ADaM) system, a data mining toolkit from UAH that can be configured in a variety of ways to create customized mining processes; ActiveBPEL, a workflow execution engine based on BPEL (Business Process Execution Language); XBaya, a graphical workflow composer; and the EOS Clearinghouse (ECHO). XBaya is used to construct an analysis workflow at UAH using ADaM components, which are also installed remotely at the GES DISC, wrapped as Web Services. The S4PM processing engine searches ECHO for data using space-time criteria, staging them to cache, allowing the ActiveBPEL engine to remotely orchestrates the processing workflow within S4PM. As mining is completed, the output is placed in an FTP holding area for the end user. The goals are to give users control over the data they want to process, while mining data at the data source using the server's resources rather than transferring the full volume over the internet. These diverse technologies have been infused into a functioning, distributed system with only minor changes to the underlying technologies. The key to this infusion is the loosely coupled, Web- Services based architecture: All of the participating components are accessible (one way or another) through (Simple Object Access Protocol) SOAP-based Web Services.
Earth Science Mining Web Services
NASA Technical Reports Server (NTRS)
Pham, Long; Lynnes, Christopher; Hegde, Mahabaleshwa; Graves, Sara; Ramachandran, Rahul; Maskey, Manil; Keiser, Ken
2008-01-01
To allow scientists further capabilities in the area of data mining and web services, the Goddard Earth Sciences Data and Information Services Center (GES DISC) and researchers at the University of Alabama in Huntsville (UAH) have developed a system to mine data at the source without the need of network transfers. The system has been constructed by linking together several pre-existing technologies: the Simple Scalable Script-based Science Processor for Measurements (S4PM), a processing engine at he GES DISC; the Algorithm Development and Mining (ADaM) system, a data mining toolkit from UAH that can be configured in a variety of ways to create customized mining processes; ActiveBPEL, a workflow execution engine based on BPEL (Business Process Execution Language); XBaya, a graphical workflow composer; and the EOS Clearinghouse (ECHO). XBaya is used to construct an analysis workflow at UAH using ADam components, which are also installed remotely at the GES DISC, wrapped as Web Services. The S4PM processing engine searches ECHO for data using space-time criteria, staging them to cache, allowing the ActiveBPEL engine to remotely orchestras the processing workflow within S4PM. As mining is completed, the output is placed in an FTP holding area for the end user. The goals are to give users control over the data they want to process, while mining data at the data source using the server's resources rather than transferring the full volume over the internet. These diverse technologies have been infused into a functioning, distributed system with only minor changes to the underlying technologies. The key to the infusion is the loosely coupled, Web-Services based architecture: All of the participating components are accessible (one way or another) through (Simple Object Access Protocol) SOAP-based Web Services.
Continuous QKD and high speed data encryption
NASA Astrophysics Data System (ADS)
Zbinden, Hugo; Walenta, Nino; Guinnard, Olivier; Houlmann, Raphael; Wen, Charles Lim Ci; Korzh, Boris; Lunghi, Tommaso; Gisin, Nicolas; Burg, Andreas; Constantin, Jeremy; Legré, Matthieu; Trinkler, Patrick; Caselunghe, Dario; Kulesza, Natalia; Trolliet, Gregory; Vannel, Fabien; Junod, Pascal; Auberson, Olivier; Graf, Yoan; Curchod, Gilles; Habegger, Gilles; Messerli, Etienne; Portmann, Christopher; Henzen, Luca; Keller, Christoph; Pendl, Christian; Mühlberghuber, Michael; Roth, Christoph; Felber, Norbert; Gürkaynak, Frank; Schöni, Daniel; Muheim, Beat
2013-10-01
We present the results of a Swiss project dedicated to the development of high speed quantum key distribution and data encryption. The QKD engine features fully automated key exchange, hardware key distillation based on finite key security analysis, efficient authentication and wavelength division multiplexing of the quantum and the classical channel and one-time pas encryption. The encryption device allows authenticated symmetric key encryption (e.g AES) at rates of up to 100 Gb/s. A new quantum key can uploaded up to 1000 times second from the QKD engine.
Current Computational Challenges for CMC Processes, Properties, and Structures
NASA Technical Reports Server (NTRS)
DiCarlo, James
2008-01-01
In comparison to current state-of-the-art metallic alloys, ceramic matrix composites (CMC) offer a variety of performance advantages, such as higher temperature capability (greater than the approx.2100 F capability for best metallic alloys), lower density (approx.30-50% metal density), and lower thermal expansion. In comparison to other competing high-temperature materials, CMC are also capable of providing significantly better static and dynamic toughness than un-reinforced monolithic ceramics and significantly better environmental resistance than carbon-fiber reinforced composites. Because of these advantages, NASA, the Air Force, and other U.S. government agencies and industries are currently seeking to implement these advanced materials into hot-section components of gas turbine engines for both propulsion and power generation. For applications such as these, CMC are expected to result in many important performance benefits, such as reduced component cooling air requirements, simpler component design, reduced weight, improved fuel efficiency, reduced emissions, higher blade frequencies, reduced blade clearances, and higher thrust. Although much progress has been made recently in the development of CMC constituent materials and fabrication processes, major challenges still remain for implementation of these advanced composite materials into viable engine components. The objective of this presentation is to briefly review some of those challenges that are generally related to the need to develop physics-based computational approaches to allow CMC fabricators and designers to model (1) CMC processes for fiber architecture formation and matrix infiltration, (2) CMC properties of high technical interest such as multidirectional creep, thermal conductivity, matrix cracking stress, damage accumulation, and degradation effects in aggressive environments, and (3) CMC component life times when all of these effects are interacting in a complex stress and service environment. To put these computational issues in perspective, the various modeling needs within these three areas are briefly discussed in terms of their technical importance and their key controlling mechanistic factors as we know them today. Emphasis is placed primarily on the SiC/SiC ceramic composite system because of its higher temperature capability and enhanced development within the CMC industry. A brief summary is then presented concerning on-going property studies aimed at addressing these CMC modeling needs within NASA in terms of their computational approaches and recent important results. Finally an overview perspective is presented on those key areas where further CMC computational studies are needed today to enhance the viability of CMC structural components for high-temperature applications.
Stirling Engine Dynamic System Modeling
NASA Technical Reports Server (NTRS)
Nakis, Christopher G.
2004-01-01
The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.
ERIC Educational Resources Information Center
Duggan, Louise
2014-01-01
Generic skills are considered as key essential skills which are required by all individuals in the engineering profession and are considered vital for success. Integrating generic skills into engineering education is a key concern for universities and colleges involved in delivering such courses. The accreditation criteria for engineering…
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.
2012-01-01
The NTR represents the next evolutionary step in high performance rocket propulsion. It generates high thrust and has a specific impulse (Isp) of approx.900 seconds (s) or more V twice that of today s best chemical rockets. The technology is also proven. During the previous Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) nuclear rocket programs, 20 rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability V all the requirements needed for a human mission to Mars. Ceramic metal cermet fuel was also pursued, as a backup option. The NTR also has significant growth and evolution potential. Configured as a bimodal system, it can generate electrical power for the spacecraft. Adding an oxygen afterburner nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, simple assembly and mission operations. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program V the 25,000 lbf (25 klbf) Pewee engine is sufficient for human Mars missions when used in a clustered engine arrangement. The Copernicus crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth asteroid (NEA) and Mars orbital missions prior to a Mars landing mission. Initially, the basic Copernicus vehicle can enable reusable 1-year round trip human missions to candidate NEAs like 1991 JW and Apophis in the late 2020 s to check out vehicle systems. Afterwards, the Copernicus spacecraft and its 2 key components, now configured as an Earth Return Vehicle / propellant tanker, would be used for a short round trip (approx.18 - 20 months)/short orbital stay (60 days) Mars / Phobos survey mission in 2033 using a split mission approach. The paper also discusses NASA s current Foundational Technology Development activities and its pre-decisional plans for future system-level Technology Demonstrations that include ground testing a small (approx.7.5 klbf) scalable NTR before the decade is out with a flight test shortly thereafter.
Composite material application for liquid rocket engines
NASA Technical Reports Server (NTRS)
Heubner, S. W.
1982-01-01
With increasing emphasis on improving engine thrust-to-weight ratios to provide improved payload capabilities, weight reductions achievable by the use of composites have become attractive. Of primary significance is the weight reduction offered by composites, although high temperature properties and cost reduction were also considered. The potential for application of composites to components of Earth-to-orbit hydrocarbon engines and orbit-to-orbit LOX/H2 engines was assessed. The components most likely to benefit from the application of composites were identified, as were the critical technology areas where developed would be required. Recommendations were made and a program outlined for the design, fabrication, and demonstration of specific engine components.
Applying human factors and ergonomics to the misuse of nonsterile clinical gloves in acute care.
Wilson, Jennie; Bak, Aggie; Loveday, Heather P
2017-07-01
Health care workers (HCWs) are recommended to wear nonsterile clinical gloves (NSCG) for direct contact with blood and body fluids. However, there is evidence of extensive inappropriate NSCG use. A mixed-methods study comprising observation of NSCG use in 2 acute hospitals and semistructured HCW interviews. Qualitative data were categorized using thematic analysis. Findings were mapped to the Systems Engineering Initiative for Patient Safety model and used to develop a strategy for improving NSCG use. Two hundred seventy-eight procedures performed in 178 episodes of care involved the use of NSCG. NSCG were inappropriate for 59% of procedures (165 out of 278). Risk of cross-contamination occurred in 49% (87 out of 178) episodes. Twenty-six HCWs were interviewed; emotion and socialization were key factors influencing decisions to use NSCG. Data from observation and thematic analysis were mapped to 6 interacting components of the Systems Engineering Initiative for Patient Safety work system. Interventions targeting each component informed quality improvement strategies CONCLUSIONS: Despite intense promotion of hand hygiene as the key measure to protect patients from health care-associated infection, NSCG dominate routine clinical practice and potential cross-contamination occurs in 50% of care episodes. Such practice is associated with significant environmental and financial costs and adversely affects patient safety. The application of human factors and ergonomics to the complex drivers of inappropriate NSCG behavior may be more effective than conventional approaches of education and policy in achieving the goal of preventing health care-associated infection and improving patient safety. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Handbook of data on selected engine components for solar thermal applications
NASA Technical Reports Server (NTRS)
1979-01-01
A data base on developed and commercially available power conversion system components for Rankine and Brayton cycle engines, which have potential application to solar thermal power-generating systems is presented. The status of the Stirling engine is discussed.
NASA Astrophysics Data System (ADS)
Carter, Andrew C.; Wale, Michael J.; Simmons, T.; Whitbread, Neil; Asghari, M.
2003-06-01
A key attribute emerging in the optoelectronic component supply industry is the ability to deliver 'solution level' products rather than discrete optical components to equipment manufacturers. This approach is primarily aimed at reducing cost for the equipment manufacturer both in engineering and assembly. Such 'solutions' must be designed to be cost effective - offering costs substantially below discrete components - and must be compatible with subcontract board manufacture without the traditional and expensive skills of fibre handling, splicing and management. Examples of 'solutions' in this context may be the core of a multifunctional OADM or a DWDM laser transmitter subsystem, with modulation, wavelength and power management all included in a simple to use module. Essential to the cost effective production of such solutions is a high degree of optical/optoelectronic integration. Co-packaging of discrete components and electronics into modules will not deliver the cost reduction demanded. At Bookham Technology we have brought together what we believe to be the three key integration technologies - InP for monolithic tunable sources, GaAs for high performance integrated modulation and ASOC for smart passives and hybrid platforms - which can deliver this cost reduction, together with performance enhancement, over a wide range of applications. In the paper we will demonstrate and compare our above integration approaches with the competing alternatives and seek to show how the power of integration is finally being harnessed in optoelectronics, delivering radical cost reduction as well as enabling system concepts virtually impossible to achieve with discrete components. In the paper we will demonstrate and compare our above integration approaches with the competing alternatives and seek to show how the power of integration is finally being harnessed in optoelectronics, delivering radical cost reduction as well as enabling system concepts virtually impossible to achieve with discrete components.
Making Ceramic Components For Advanced Aircraft Engines
NASA Technical Reports Server (NTRS)
Franklin, J. E.; Ezis, A.
1994-01-01
Lightweight, oxidation-resistant silicon nitride components containing intricate internal cooling and hydraulic passages and capable of withstanding high operating temperatures made by ceramic-platelet technology. Used to fabricate silicon nitride test articles of two types: components of methane-cooled regenerator for air turbo ramjet engine and components of bipropellant injector for rocket engine. Procedures for development of more complex and intricate components established. Technology has commercial utility in automotive, aircraft, and environmental industries for manufacture of high-temperature components for use in regeneration of fuels, treatment of emissions, high-temperature combustion devices, and application in which other high-temperature and/or lightweight components needed. Potential use in fabrication of combustors and high-temperature acoustic panels for suppression of noise in future high-speed aircraft.
Impact of broad-specification fuels on future jet aircraft. [engine components and performance
NASA Technical Reports Server (NTRS)
Grobman, J. S.
1978-01-01
The effects that broad specification fuels have on airframe and engine components were discussed along with the improvements in component technology required to use broad specification fuels without sacrificing performance, reliability, maintainability, or safety.
Space flight requirements for fiber optic components: qualification testing and lessons learned
NASA Astrophysics Data System (ADS)
Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam
2006-04-01
"Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.
Space Flight Requirements for Fiber Optic Components; Qualification Testing and Lessons Learned
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam
2007-01-01
"Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.
Ceramic components for the AGT 100 engine
NASA Technical Reports Server (NTRS)
Helms, H. E.; Heitman, P. W.
1983-01-01
Historically, automotive gas turbines have not been able to meet requirements of the marketplace with respect to cost, performance, and reliability. However, the development of appropriate ceramic materials has overcome problems related to a need for expensive superalloy components and to limitations regarding the operating temperature. An automotive gas turbine utilizing ceramic components has been developed by a U.S. automobile manufacturer. A 100-horsepower, two-shaft, regenerative engine geometry was selected because it is compatible with manual, automatic, and continuously variable transmissions. Attention is given to the ceramic components, the ceramic gasifier turbine rotor development, the ceramic gasifier scroll, ceramic component testing, and the use of advanced nondestructive techniques for the evaluation of the engine components.
NASA Technical Reports Server (NTRS)
Packard, Michael H.
2002-01-01
Probabilistic Structural Analysis (PSA) is now commonly used for predicting the distribution of time/cycles to failure of turbine blades and other engine components. These distributions are typically based on fatigue/fracture and creep failure modes of these components. Additionally, reliability analysis is used for taking test data related to particular failure modes and calculating failure rate distributions of electronic and electromechanical components. How can these individual failure time distributions of structural, electronic and electromechanical component failure modes be effectively combined into a top level model for overall system evaluation of component upgrades, changes in maintenance intervals, or line replaceable unit (LRU) redesign? This paper shows an example of how various probabilistic failure predictions for turbine engine components can be evaluated and combined to show their effect on overall engine performance. A generic model of a turbofan engine was modeled using various Probabilistic Risk Assessment (PRA) tools (Quantitative Risk Assessment Software (QRAS) etc.). Hypothetical PSA results for a number of structural components along with mitigation factors that would restrict the failure mode from propagating to a Loss of Mission (LOM) failure were used in the models. The output of this program includes an overall failure distribution for LOM of the system. The rank and contribution to the overall Mission Success (MS) is also given for each failure mode and each subsystem. This application methodology demonstrates the effectiveness of PRA for assessing the performance of large turbine engines. Additionally, the effects of system changes and upgrades, the application of different maintenance intervals, inclusion of new sensor detection of faults and other upgrades were evaluated in determining overall turbine engine reliability.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-03
... via the U.S. Postal Service to Naval Facilities Engineering Command Southeast, NAS Key West Air... the project Web site ( http://www.keywesteis.com ). All statements, oral or written, submitted during... Engineering Command Southeast, NAS Key West Air Operations EIS Project Manager, P.O. Box 30, Building 903, NAS...
Research on Impact Stress and Fatigue Simulation of a New Down-to-the-Hole Impactor Based on ANSYS
NASA Astrophysics Data System (ADS)
Wu, Tao; Wang, Wei; Yao, Aiguo; Li, Yongbo; He, Wangyong; Fei, Dongdong
2018-06-01
In the present work, a down-to-the-hole electric hammer driven by linear motor is reported for drilling engineering. It differs from the common hydraulic or pneumatic hammers in that it can be applied to some special occasions without circulating medium due to its independence of the drilling fluid. The impact stress caused by the reciprocating motion between stator and rotor and the fatigue damage in key components of linear motor are analyzed by the ANSYS Workbench software and 3D model. Based on simulation results, the hammer's structure is optimized by using special sliding bearing, increasing the wall thickness of key and multilayer buffer gasket. Fatigue life and coefficient issues of the new structure are dramatically improved. However buffer gasket reduces the impactor's energy, different bumper structure effect on life improving and energy loss have also been elaborated.
14 CFR 91.1415 - CAMP: Mechanical reliability reports.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the engine, adjacent structure, equipment, or components; (5) An aircraft component that causes... flight when external damage to the engine or aircraft structure occurs; (8) Engine shutdown during flight... ground; (14) Aircraft structure that requires major repair; (15) Cracks, permanent deformation, or...
14 CFR 91.1415 - CAMP: Mechanical reliability reports.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the engine, adjacent structure, equipment, or components; (5) An aircraft component that causes... flight when external damage to the engine or aircraft structure occurs; (8) Engine shutdown during flight... ground; (14) Aircraft structure that requires major repair; (15) Cracks, permanent deformation, or...
Petty, Jack D.
1993-01-01
A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.
RE-1000 free-piston Stirling engine hydraulic output system description
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.; Geng, Steven M.
1987-01-01
The NASA Lewis Research Center was involved in free-piston Stirling engine research since 1976. Most of the work performed in-house was related to characterization of the RE-1000 engine. The data collected from the RE-1000 tests were intended to provide a data base for the validation of Stirling cycle simulations. The RE-1000 was originally build with a dashpot load system which did not convert the output of the engine into useful power, but was merely used as a load for the engine to work against during testing. As part of the interagency program between NASA Lewis and the Oak Ridge National Laboratory, (ORNL), the RE-1000 was converted into a configuration that produces useable hydraulic power. A goal of the hydraulic output conversion effort was to retain the same thermodynamic cycle that existed with the dashpot loaded engine. It was required that the design must provide a hermetic seal between the hydraulic fluid and the working gas of the engine. The design was completed and the hardware was fabricated. The RE-1000 was modified in 1985 to the hydraulic output configuration. The early part of the RE-1000 hydraulic output program consisted of modifying hardware and software to allow the engine to run at steady-state conditions. A complete description of the engine is presented in sufficient detail so that the device can be simulated on a computer. Tables are presented showing the masses of the oscillating components and key dimensions needed for modeling purposes. Graphs are used to indicate the spring rate of the diaphragms used to separate the helium of the working and bounce space from the hydraulic fluid.
78 FR 4195 - Petition for Exemption From the Vehicle Theft Prevention Standard; Mercedes-Benz
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-18
..., transmitter key, electronic ignition starter switch control unit (EIS), the engine control module (ECM) and... immobilizer function. The interlinked system includes the engine, EIS, transmitter key, TCM and ECM (including...
NEEMO 21: Tools, Techniques, Technologies and Training for Science Exploration
NASA Technical Reports Server (NTRS)
Graff, T.; Young, K.; Coan, D.; Merselis, D.; Bellantuono, A.; Dougan, K.; Rodriguez-Lanetty, M.; Nedimyer, K.; Chappell, S.; Beaton, K.;
2017-01-01
The 21st mission of the National Aeronautics and Space Administration (NASA) Extreme Environment Mission Operations (NEEMO) was a highly integrated operational field test and evaluation of tools, techniques, technologies, and training for science driven exploration during extravehicular activity (EVA). The mission was conducted in July 2016 from the Aquarius habitat, an underwater laboratory, off the coast of Key Largo in the Florida Keys National Marine Sanctuary. An international crew of eight (comprised of NASA and ESA astronauts, engineers, medical personnel, and habitat technicians) lived and worked in and around Aquarius and its surrounding reef environment for 16 days. The integrated testing (both interior and exterior objectives) conducted from this unique facility continues to support current and future human space exploration endeavors. Expanding on the scientific and operational evaluations conducted during NEEMO 20, the 21st NEEMO mission further incorporated a diverse Science Team comprised of planetary geoscientists from the Astromaterials Research and Exploration Science (ARES/XI) Division from the Johnson Space Center, marine scientists from the Department of Biological Sciences at Florida International University (FIU) Integrative Marine Genomics and Symbiosis (IMaGeS) Lab, and conservationists from the Coral Restoration Foundation. The Science Team worked in close coordination with the long-standing EVA operations, planning, engineering, and research components of NEEMO in all aspects of mission planning, development, and execution.
Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.
Obregon, F; Vaquette, C; Ivanovski, S; Hutmacher, D W; Bertassoni, L E
2015-09-01
Craniofacial tissues are organized with complex 3-dimensional (3D) architectures. Mimicking such 3D complexity and the multicellular interactions naturally occurring in craniofacial structures represents one of the greatest challenges in regenerative dentistry. Three-dimensional bioprinting of tissues and biological structures has been proposed as a promising alternative to address some of these key challenges. It enables precise manufacture of various biomaterials with complex 3D architectures, while being compatible with multiple cell sources and being customizable to patient-specific needs. This review describes different 3D bioprinting methods and summarizes how different classes of biomaterials (polymer hydrogels, ceramics, composites, and cell aggregates) may be used for 3D biomanufacturing of scaffolds, as well as craniofacial tissue analogs. While the fabrication of scaffolds upon which cells attach, migrate, and proliferate is already in use, printing of all the components that form a tissue (living cells and matrix materials together) to produce tissue constructs is still in its early stages. In summary, this review seeks to highlight some of the key advantages of 3D bioprinting technology for the regeneration of craniofacial structures. Additionally, it stimulates progress on the development of strategies that will promote the translation of craniofacial tissue engineering from the laboratory bench to the chair side. © International & American Associations for Dental Research 2015.
Smith, Sarah R.; Gle, Corine; Abbriano, Raffaela M.; ...
2016-02-04
Diatoms are one of the most productive and successful photosynthetic taxa on Earth and possess attributes such as rapid growth rates and production of lipids, making them candidate sources of renewable fuels. Despite their significance, few details of the mechanisms used to regulate growth and carbon metabolism are currently known, hindering metabolic engineering approaches to enhance productivity. To characterize the transcript level component of metabolic regulation, genome-wide changes in transcript abundance were documented in the model diatom Thalassiosira pseudonana on a time-course of silicon starvation. Growth, cell cycle progression, chloroplast replication, fatty acid composition, pigmentation, and photosynthetic parameters were characterizedmore » alongside lipid accumulation. Extensive coordination of large suites of genes was observed, highlighting the existence of clusters of coregulated genes as a key feature of global gene regulation in T. pseudonana. The identity of key enzymes for carbon metabolic pathway inputs (photosynthesis) and outputs (growth and storage) reveals these clusters are organized to synchronize these processes. Coordinated transcript level responses to silicon starvation are probably driven by signals linked to cell cycle progression and shifts in photophysiology. A mechanistic understanding of how this is accomplished will aid efforts to engineer metabolism for development of algal-derived biofuels.« less
A Decision Support Framework for Evaluation of Engineered ...
Engineered nanomaterials (ENM) are currently being developed and applied at rates that far exceed our ability to evaluate their potential for environmental or human health risks. The gap between material development and capacity for assessment grows wider every day. Transformative approaches are required that enhance our ability to forecast potential exposure and adverse health risks based on limited information such as the physical and chemical parameters of ENM, their proposed uses, and functional assays reflective of key ENM - environmental interactions. We are developing a framework that encompasses the potential for release of nanomaterials across a product life cycle, environmental transport, transformations and fate, exposure to sensitive species, including humans, and the potential for causing adverse effects. Each component of the framework is conceive of as a sequential segmented model depicting the movement, transformations and actions of ENM through environmental or biological compartments, and along which targeted functional assays can be developed that are indicative of projected rates of ENM movement or action. The eventual goal is to allow simple predictive models to be built that incorporate the data from key functional assays and thereby allow rapid screening of the projected margin of exposure for proposed applications of ENM enabled products. In this way, cases where a substantially safe margin of exposure is forecast can be reduced in
NAVAIR Office of Small Business Programs
2012-08-08
Southeast – Jacksonville Aircraft EA-6B, F/A-18, H-60, P-3 Engines F414, J52, T56 , T700 Components Electro-Optics, Air Refueling Stores, Racks...Launchers, Components for above T/M/S East – Cherry Point Aircraft Repair AV-8B, EA-6B, H-1, H-46, H-53, V-22 Engine Repair F402, T56 , T58, T64...46, P-3 Engines LM2500, T700, T56 Components Instruments, Canopies, E-2 Radar, Composites, Components for above T/M/S 20 Fleet Readiness
Fabry-Perot interferometer development for rocket engine plume spectroscopy
NASA Astrophysics Data System (ADS)
Bickford, R. L.; Madzsar, G.
1990-07-01
This paper describes a new rugged high-resolution Fabry-Perot interferometer (FPI) designed for rocket engine plume spectroscopy, which is capable of detecting spectral signatures of eroding engine components during rocket engine tests and/or flight operations. The FPI system will make it possible to predict and to respond to the incipient rocket engine failures and to indicate the presence of rocket components degradation. The design diagram of the FPI spectrometer is presented.
Fabry-Perot interferometer development for rocket engine plume spectroscopy
NASA Technical Reports Server (NTRS)
Bickford, R. L.; Madzsar, G.
1990-01-01
This paper describes a new rugged high-resolution Fabry-Perot interferometer (FPI) designed for rocket engine plume spectroscopy, which is capable of detecting spectral signatures of eroding engine components during rocket engine tests and/or flight operations. The FPI system will make it possible to predict and to respond to the incipient rocket engine failures and to indicate the presence of rocket components degradation. The design diagram of the FPI spectrometer is presented.
Materials and Designs for High-Efficacy LED Light Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibbetson, James; Gresback, Ryan
Cree, Inc. conducted a narrow-band downconverter (NBD) materials development and implementation program which will lead to warm-white LED light engines with enhanced efficacy via improved spectral efficiency with respect to the human eye response. New red (600-630nm) NBD materials could result in as much as a 20% improvement in warm-white efficacy at high color quality relative to conventional phosphor-based light sources. Key program innovations included: high quantum yield; narrow peak width; minimized component-level losses due to “cross-talk” and light scattering among red and yellow-green downconverters; and improved reliability to reach parity with conventional phosphors. NBD-enabled downconversion efficiency gains relative tomore » conventional phosphors yielded an end-of-project LED light engine efficacy of >160 lm/W at room temperature and 35 A/cm2, with a correlated color temperature (CCT) of ~3500K and >90 CRI (Color Rending Index). NBD-LED light engines exhibited equivalent luminous flux and color point maintenance at >1,000 hrs. of highly accelerated reliability testing as conventional phosphor LEDs. A demonstration luminaire utilizing an NBD-based LED light engine had a steady-state system efficacy of >150 lm/W at ~3500K and >90 CRI, which exceeded the 2014 DOE R&D Plan luminaire milestone for FY17 of >150 lm/W at just 80 CRI.« less
Sheehy, Eamon J; Vinardell, Tatiana; Toner, Mary E; Buckley, Conor T; Kelly, Daniel J
2014-01-01
Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) can be leveraged to generate bone in vivo by executing an endochondral program, leading to increased interest in the use of such hypertrophic grafts for the regeneration of osseous defects. During normal skeletogenesis, canals within the developing hypertrophic cartilage play a key role in facilitating endochondral ossification. Inspired by this developmental feature, the objective of this study was to promote endochondral ossification of an engineered cartilaginous construct through modification of scaffold architecture. Our hypothesis was that the introduction of channels into MSC-seeded hydrogels would firstly facilitate the in vitro development of scaled-up hypertrophic cartilaginous tissues, and secondly would accelerate vascularisation and mineralisation of the graft in vivo. MSCs were encapsulated into hydrogels containing either an array of micro-channels, or into non-channelled 'solid' controls, and maintained in culture conditions known to promote a hypertrophic cartilaginous phenotype. Solid constructs accumulated significantly more sGAG and collagen in vitro, while channelled constructs accumulated significantly more calcium. In vivo, the channels acted as conduits for vascularisation and accelerated mineralisation of the engineered graft. Cartilaginous tissue within the channels underwent endochondral ossification, producing lamellar bone surrounding a hematopoietic marrow component. This study highlights the potential of utilising engineering methodologies, inspired by developmental skeletal processes, in order to enhance endochondral bone regeneration strategies.
Sheehy, Eamon J.; Vinardell, Tatiana; Toner, Mary E.; Buckley, Conor T.; Kelly, Daniel J.
2014-01-01
Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) can be leveraged to generate bone in vivo by executing an endochondral program, leading to increased interest in the use of such hypertrophic grafts for the regeneration of osseous defects. During normal skeletogenesis, canals within the developing hypertrophic cartilage play a key role in facilitating endochondral ossification. Inspired by this developmental feature, the objective of this study was to promote endochondral ossification of an engineered cartilaginous construct through modification of scaffold architecture. Our hypothesis was that the introduction of channels into MSC-seeded hydrogels would firstly facilitate the in vitro development of scaled-up hypertrophic cartilaginous tissues, and secondly would accelerate vascularisation and mineralisation of the graft in vivo. MSCs were encapsulated into hydrogels containing either an array of micro-channels, or into non-channelled ‘solid’ controls, and maintained in culture conditions known to promote a hypertrophic cartilaginous phenotype. Solid constructs accumulated significantly more sGAG and collagen in vitro, while channelled constructs accumulated significantly more calcium. In vivo, the channels acted as conduits for vascularisation and accelerated mineralisation of the engineered graft. Cartilaginous tissue within the channels underwent endochondral ossification, producing lamellar bone surrounding a hematopoietic marrow component. This study highlights the potential of utilising engineering methodologies, inspired by developmental skeletal processes, in order to enhance endochondral bone regeneration strategies. PMID:24595316
NACA Photographer Films a Ramjet Test
1946-10-21
A National Advisory Committee for Aeronautics (NACA) photographer films the test of a ramjet engine at the Lewis Flight Propulsion Laboratory. The laboratory had an arsenal of facilities to test the engines and their components, and immersed itself in the study of turbojet and ramjet engines during the mid-1940s. Combustion, fuel injection, flameouts, and performance at high altitudes were of particular interest to researchers. They devised elaborate schemes to instrument the engines in order to record temperature, pressure, and other data. Many of the tests were also filmed so Lewis researchers could visually review the combustion performance along with the data. The photographer in this image was using high-speed film to document a thrust augmentation study at Lewis’ Jet Static Propulsion Laboratory. The ramjet in this photograph was equipped with a special afterburner as part of a general effort to improve engine performance. Lewis’ Photo Lab was established in 1942. The staff was expanded over the next few years as more test facilities became operational. The Photo Lab’s staff and specialized equipment have been key research tools for decades. They accompany pilots on test flights, use high-speed cameras to capture fleeting processes like combustion, and work with technology, such as the Schlieren camera, to capture supersonic aerodynamics. In addition, the group has documented construction projects, performed publicity work, created images for reports, and photographed data recording equipment.
Wang, Baojun; Barahona, Mauricio; Buck, Martin
2013-01-01
Cells perceive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate particular phenotypic responses. Here, we employ both single and mixed cell type populations, pre-programmed with engineered modular cell signalling and sensing circuits, as processing units to detect and integrate multiple environmental signals. Based on an engineered modular genetic AND logic gate, we report the construction of a set of scalable synthetic microbe-based biosensors comprising exchangeable sensory, signal processing and actuation modules. These cellular biosensors were engineered using distinct signalling sensory modules to precisely identify various chemical signals, and combinations thereof, with a quantitative fluorescent output. The genetic logic gate used can function as a biological filter and an amplifier to enhance the sensing selectivity and sensitivity of cell-based biosensors. In particular, an Escherichia coli consortium-based biosensor has been constructed that can detect and integrate three environmental signals (arsenic, mercury and copper ion levels) via either its native two-component signal transduction pathways or synthetic signalling sensors derived from other bacteria in combination with a cell-cell communication module. We demonstrate how a modular cell-based biosensor can be engineered predictably using exchangeable synthetic gene circuit modules to sense and integrate multiple-input signals. This study illustrates some of the key practical design principles required for the future application of these biosensors in broad environmental and healthcare areas. PMID:22981411
Intelligent Life-Extending Controls for Aircraft Engines
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei; Chen, Philip; Jaw, Link
2005-01-01
Aircraft engine controllers are designed and operated to provide desired performance and stability margins. The purpose of life-extending-control (LEC) is to study the relationship between control action and engine component life usage, and to design an intelligent control algorithm to provide proper trade-offs between performance and engine life usage. The benefit of this approach is that it is expected to maintain safety while minimizing the overall operating costs. With the advances of computer technology, engine operation models, and damage physics, it is necessary to reevaluate the control strategy fro overall operating cost consideration. This paper uses the thermo-mechanical fatigue (TMF) of a critical component to demonstrate how an intelligent engine control algorithm can drastically reduce the engine life usage with minimum sacrifice in performance. A Monte Carlo simulation is also performed to evaluate the likely engine damage accumulation under various operating conditions. The simulation results show that an optimized acceleration schedule can provide a significant life saving in selected engine components.
Implanted component faults and their effects on gas turbine engine performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLeod, J.D.; Taylor, V.; Laflamme, J.C.G.
Under the sponsorship of the Canadian Department of National Defence, the Engine Laboratory of the National Research Council of Canada (NRCC) has established a program for the evaluation of component deterioration on gas turbine engine performance. The effect is aimed at investigating the effects of typical in-service faults on the performance characteristics of each individual engine component. The objective of the program is the development of a generalized fault library, which will be used with fault identification techniques in the field, to reduce unscheduled maintenance. To evaluate the effects of implanted faults on the performance of a single spool engine,more » such as an Allison T56 turboprop engine, a series of faulted parts were installed. For this paper the following faults were analyzed: (a) first-stage turbine nozzle erosion damage; (b) first-stage turbine rotor blade untwist; (c) compressor seal wear; (d) first and second-stage compressor blade tip clearance increase. This paper describes the project objectives, the experimental installation, and the results of the fault implantation on engine performance. Discussed are performance variations on both engine and component characteristics. As the performance changes were significant, a rigorous measurement uncertainty analysis is included.« less
PVD TBC experience on GE aircraft engines
NASA Technical Reports Server (NTRS)
Bartz, A.; Mariocchi, A.; Wortman, D. J.
1995-01-01
The higher performance levels of modern gas turbine engines present significant challenges in the reliability of materials in the turbine. The increased engine temperatures required to achieve the higher performance levels reduce the strength of the materials used in the turbine sections of the engine. Various forms of Thermal Barrier Coatings (TBC's) have been used for many years to increase the reliability of gas turbine engine components. Recent experience with the Physical Vapor Deposition (PVD) process using ceramic material has demonstrated success in extending the service life of turbine blades and nozzles. Engine test results of turbine components with a 125 micrometer (0.005 in) PVD TBC have demonstrated component operating temperatures of 56-83 C (100-150 F) lower than uncoated components. Engine testing has also revealed the TBC is susceptible to high angle particle impact damage. Sand particles and other engine debris impact the TBC surface at the leading edge of airfoils and fracture the PVD columns. As the impacting continues the TBC erodes away in local areas. Analysis of the eroded areas has shown a slight increase in temperature over a fully coated area, however, a significant temperature reduction was realized over an airfoil without any TBC.
PVD TBC experience on GE aircraft engines
NASA Technical Reports Server (NTRS)
Maricocchi, Antonio; Bartz, Andi; Wortman, David
1995-01-01
The higher performance levels of modern gas turbine engines present significant challenges in the reliability of materials in the turbine. The increased engine temperatures required to achieve the higher performance levels reduce the strength of the materials used in the turbine sections of the engine. Various forms of thermal barrier coatings (TBC's) have been used for many years to increase the reliability of gas turbine engine components. Recent experience with the physical vapor deposition (PVD) process using ceramic material has demonstrated success in extending the service life of turbine blades and nozzles. Engine test results of turbine components with a 125 micron (0.005 in) PVD TBC have demonstrated component operating temperatures of 56-83 C (100-150 F) lower than non-PVD TBC components. Engine testing has also revealed the TBC is susceptible to high angle particle impact damage. Sand particles and other engine debris impact the TBC surface at the leading edge of airfoils and fracture the PVD columns. As the impacting continues, the TBC erodes away in local areas. Analysis of the eroded areas has shown a slight increase in temperature over a fully coated area, however a significant temperature reduction was realized over an airfoil without TBC.
PVD TBC experience on GE aircraft engines
NASA Astrophysics Data System (ADS)
Maricocchi, A.; Bartz, A.; Wortman, D.
1997-06-01
The higher performance levels of modern gas turbine engines present significant challenges in the reli-ability of materials in the turbine. The increased engine temperatures required to achieve the higher per-formance levels reduce the strength of the materials used in the turbine sections of the engine. Various forms of thermal barrier coatings have been used for many years to increase the reliability of gas turbine engine components. Recent experience with the physical vapor deposition process using ceramic material has demonstrated success in extending the service life of turbine blades and nozzles. Engine test results of turbine components with a 125 μm (0.005 in.) PVD TBC have demonstrated component operating tem-peratures of 56 to 83 °C (100 to 150 °F) lower than non-PVD TBC components. Engine testing has also revealed that TBCs are susceptible to high angle particle impact damage. Sand particles and other engine debris impact the TBC surface at the leading edge of airfoils and fracture the PVD columns. As the impacting continues, the TBC erodes in local areas. Analysis of the eroded areas has shown a slight increase in temperature over a fully coated area ; however, a significant temperature reduc-tion was realized over an airfoil without TBC.
Effects of Gas Turbine Component Performance on Engine and Rotary Wing Vehicle Size and Performance
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.; Thurman, Douglas R.
2010-01-01
In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project, further gas turbine engine studies have been performed to quantify the effects of advanced gas turbine technologies on engine weight and fuel efficiency and the subsequent effects on a civilian rotary wing vehicle size and mission fuel. The Large Civil Tiltrotor (LCTR) vehicle and mission and a previous gas turbine engine study will be discussed as a starting point for this effort. Methodology used to assess effects of different compressor and turbine component performance on engine size, weight and fuel efficiency will be presented. A process to relate engine performance to overall LCTR vehicle size and fuel use will also be given. Technology assumptions and levels of performance used in this analysis for the compressor and turbine components performances will be discussed. Optimum cycles (in terms of power specific fuel consumption) will be determined with subsequent engine weight analysis. The combination of engine weight and specific fuel consumption will be used to estimate their effect on the overall LCTR vehicle size and mission fuel usage. All results will be summarized to help suggest which component performance areas have the most effect on the overall mission.
Stirling engines for low-temperature solar-thermal-electric power generation
NASA Astrophysics Data System (ADS)
der Minassians, Artin
This dissertation discusses the design and development of a distributed solar-thermal-electric power generation system that combines solar-thermal technology with a moderate-temperature Stirling engine to generate electricity. The conceived system incorporates low-cost materials and utilizes simple manufacturing processes. This technology is expected to achieve manufacturing cost of less than $1/W. Since solar-thermal technology is mature, the analysis, design, and experimental assessment of moderate-temperature Stirling engines is the main focus of this thesis. The design, fabrication, and test of a single-phase free-piston Stirling engine prototype is discussed. This low-power prototype is designed and fabricated as a test rig to provide a clear understanding of the Stirling cycle operation, to identify the key components and the major causes of irreversibility, and to verify corresponding theoretical models. As a component, the design of a very low-loss resonant displacer piston subsystem is discussed. The displacer piston is part of a magnetic circuit that provides both a required stiffness and actuation forces. The stillness is provided by a magnetic spring, which incorporates an array of permanent magnets and has a very linear stiffness characteristic that facilitates the frequency tuning. In this prototype, the power piston is not mechanically linked to the displacer piston and forms a mass-spring resonating subsystem with the engine chamber gas spring and has resonant frequency matched to that of the displacer. The fabricated engine prototype is successfully tested and the experimental results are presented and discussed. Extensive experimentation on individual component subsystems confirms the theoretical models and design considerations, providing a sound basis for higher power Stirling engine designs for residential or commercial deployments. Multi-phase Stirling engine systems are also considered and analyzed. The modal analysis of these machines proves their self-starting potential. The start-up temperature, i.e., the heater temperature at which the system starts its operation, is derived based on the same modal analysis. Following the mathematical modeling, the design, fabrication, and test of a symmetric three-phase free-piston Stirling engine system are discussed. The system is designed to operate with moderate-temperature heat input that is consistent with solar-thermal collectors. Diaphragm pistons and nylon flexures are considered for this prototype to eliminate surface friction and provide appropriate seals. The experimental results are presented and compared with design calculations. Experimental assessments confirm the models for flow friction and gas spring hysteresis dissipation. It is revealed that gas spring hysteresis loss is an important dissipation phenomenon in low-power low-pressure Stirling engines, and should be carefully addressed during the design as it may hinder the engine operation. Further analysis shows that the gas hysteresis dissipation can be reduced drastically by increasing the number of phases in a system with a little compromise on the operating frequency and, hence, the output power. It is further shown that for an even number of phases, half of the pistons could be eliminated by utilizing a reverser. By introducing a reverser to the fabricated system, the system proves its self-starting capability in engine mode and validates the derived expressions for computing the start-up temperature.
Reusable rocket engine turbopump condition monitoring
NASA Technical Reports Server (NTRS)
Hampson, M. E.; Barkhoudarian, S.
1985-01-01
Significant improvements in engine readiness with attendant reductions in maintenance costs and turnaround times can be achieved with an engine condition monitoring system (CMS). The CMS provides real time health status of critical engine components, without disassembly, through component monitoring with advanced sensor technologies. Three technologies were selected to monitor the rotor bearings and turbine blades: the isotope wear detector and fiber optic deflectometer (bearings), and the fiber optic pyrometer (blades). Signal processing algorithms were evaluated and ranked for their utility in providing useful component health data to unskilled maintenance personnel. Design modifications to current configuration Space Shuttle Main Engine (SSME) high pressure turbopumps and the MK48-F turbopump were developed to incorporate the sensors.
Analysis and test of insulated components for rotary engine
NASA Technical Reports Server (NTRS)
Badgley, Patrick R.; Doup, Douglas; Kamo, Roy
1989-01-01
The direct-injection stratified-charge (DISC) rotary engine, while attractive for aviation applications due to its light weight, multifuel capability, and potentially low fuel consumption, has until now required a bulky and heavy liquid-cooling system. NASA-Lewis has undertaken the development of a cooling system-obviating, thermodynamically superior adiabatic rotary engine employing state-of-the-art thermal barrier coatings to thermally insulate engine components. The thermal barrier coating material for the cast aluminum, stainless steel, and ductile cast iron components was plasma-sprayed zirconia. DISC engine tests indicate effective thermal barrier-based heat loss reduction, but call for superior coefficient-of-thermal-expansion matching of materials and better tribological properties in the coatings used.
A Synthetic Biology Framework for Programming Eukaryotic Transcription Functions
Khalil, Ahmad S.; Lu, Timothy K.; Bashor, Caleb J.; Ramirez, Cherie L.; Pyenson, Nora C.; Joung, J. Keith; Collins, James J.
2013-01-01
SUMMARY Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks. PMID:22863014
Satisfying STEM Education Using the Arduino Microprocessor in C Programming
NASA Astrophysics Data System (ADS)
Hoffer, Brandyn M.
There exists a need to promote better Science Technology Engineering and Math (STEM) education at the high school level. To satisfy this need a series of hands-on laboratory assignments were created to be accompanied by 2 educational trainers that contain various electronic components. This project provides an interdisciplinary, hands-on approach to teaching C programming that meets several standards defined by the Tennessee Board of Education. Together the trainers and lab assignments also introduce key concepts in math and science while allowing students hands-on experience with various electronic components. This will allow students to mimic real world applications of using the C programming language while exposing them to technology not currently introduced in many high school classrooms. The developed project is targeted at high school students performing at or above the junior level and uses the Arduino Mega open-source Microprocessor and software as the primary control unit.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-03
...), Ignition Node Module (IGNM), Engine Control Module (ECM), Body Controller Module (BCM), Sentry Key..., Chrysler stated that the RFHM sends an invalid key message to the ECM, which will disable engine operation...
Tensile properties of nicalon fiber-reinforced carbon following aerospace turbine engine testing
NASA Astrophysics Data System (ADS)
Pierce, J. L.; Zawada, L. P.; Srinivasan, R.
2003-06-01
The durability of coated Nicalon silicon carbide fiber-reinforced carbon (SiC/C) as the flap and seal exhaust nozzle components in a military aerospace turbine engine was studied. Test specimens machined from both a flap and a seal component were tested for residual strength following extended ground engine testing on a General Electric F414 afterburning turbofan engine. Although small amounts of damage to the protective exterior coating were identified on each component following engine testing, the tensile strengths were equal to the as-fabricated tensile strength of the material. Differences in strength between the two components and variability within the data sets could be traced back to the fabrication process using witness coupon test data from the manufacturer. It was also observed that test specimens machined transversely across the flap and seal components were stronger than those machined along the length. The excellent retained strength of the coated SiC/C material after extended exposure to the severe environment in the afterburner exhaust section of an aerospace turbofan engine has resulted in this material being selected as the baseline material for the F414 exhaust nozzle system.
Orlando, Giuseppe; Baptista, Pedro; Birchall, Martin; De Coppi, Paolo; Farney, Alan; Guimaraes-Souza, Nadia K.; Opara, Emmanuel; Rogers, Jeffrey; Seliktar, Dror; Shapira-Schweitzer, Keren; Stratta, Robert J.; Atala, Anthony; Wood, Kathryn J.; Soker, Shay
2013-01-01
Summary In the last two decades, regenerative medicine has shown the potential for “bench-to-bedside” translational research in specific clinical settings. Progress made in cell and stem cell biology, material sciences and tissue engineering enabled researchers to develop cutting-edge technology which has lead to the creation of nonmodular tissue constructs such as skin, bladders, vessels and upper airways. In all cases, autologous cells were seeded on either artificial or natural supporting scaffolds. However, such constructs were implanted without the reconstruction of the vascular supply, and the nutrients and oxygen were supplied by diffusion from adjacent tissues. Engineering of modular organs (namely, organs organized in functioning units referred to as modules and requiring the reconstruction of the vascular supply) is more complex and challenging. Models of functioning hearts and livers have been engineered using “natural tissue” scaffolds and efforts are underway to produce kidneys, pancreata and small intestine. Creation of custom-made bioengineered organs, where the cellular component is exquisitely autologous and have an internal vascular network, will theoretically overcome the two major hurdles in transplantation, namely the shortage of organs and the toxicity deriving from lifelong immuno-suppression. This review describes recent advances in the engineering of several key tissues and organs. PMID:21062367
NASA Technical Reports Server (NTRS)
Goullioud, Renaud; Dekens, Frank; Nemati, Bijan; An, Xin; Carson, Johnathan
2010-01-01
The SIM Lite Astrometric Observatory is a mission concept for a space-borne instrument to perform micro-arc-second narrow-angle astrometry to search 60 to 100 nearby stars for Earth-like planets, and to perform global astrometry for a broad astrophysics program. The instrument consists of two Michelson stellar interferometers and a telescope. The first interferometer chops between the target star and a set of reference stars. The second interferometer monitors the attitude of the instrument in the direction of the target star. The telescope monitors the attitude of the instrument in the other two directions. The main enabling technology development for the mission was completed during phases A & B. The project is currently implementing the developed technology onto flight-ready engineering models. These key engineering tasks will significantly reduce the implementation risks during the flight phases C & D of the mission. The main optical interferometer components, including the astrometric beam combiner, the fine steering optical mechanism, the path-length-control and modulation optical mechanisms, focal-plane camera electronics and cooling heat pipe, are currently under development. Main assemblies are built to meet flight requirements and will be subjected to flight qualification level environmental testing (random vibration and thermal cycling) and performance testing. This paper summarizes recent progress in engineering risk reduction activities.
Smart sensor technology for advanced launch vehicles
NASA Astrophysics Data System (ADS)
Schoess, Jeff
1989-07-01
Next-generation advanced launch vehicles will require improved use of sensor data and the management of multisensor resources to achieve automated preflight checkout, prelaunch readiness assessment and vehicle inflight condition monitoring. Smart sensor technology is a key component in meeting these needs. This paper describes the development of a smart sensor-based condition monitoring system concept referred to as the Distributed Sensor Architecture. A significant event and anomaly detection scheme that provides real-time condition assessment and fault diagnosis of advanced launch system rocket engines is described. The design and flight test of a smart autonomous sensor for Space Shuttle structural integrity health monitoring is presented.
GPS synchronized power system phase angle measurements
NASA Astrophysics Data System (ADS)
Wilson, Robert E.; Sterlina, Patrick S.
1994-09-01
This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.
Towards Large-Scale, Non-Destructive Inspection of Concrete Bridges
NASA Astrophysics Data System (ADS)
Mahmoud, A.; Shah, A. H.; Popplewell, N.
2005-04-01
It is estimated that the rehabilitation of deteriorating engineering infrastructure in the harsh North American environment could cost billions of dollars. Bridges are key infrastructure components for surface transportation. Steel-free and fibre-reinforced concrete is used increasingly nowadays to circumvent the vulnerability of steel rebar to corrosion. Existing steel-free and fibre-reinforced bridges may experience extensive surface-breaking cracks that need to be characterized without incurring further damage. In the present study, a method that uses Lamb elastic wave propagation to non-destructively characterize cracks in plain as well as fibre-reinforced concrete is investigated both numerically and experimentally. Numerical and experimental data are corroborated with good agreement.
Laser damage helps the eavesdropper in quantum cryptography.
Bugge, Audun Nystad; Sauge, Sebastien; Ghazali, Aina Mardhiyah M; Skaar, Johannes; Lydersen, Lars; Makarov, Vadim
2014-02-21
We propose a class of attacks on quantum key distribution (QKD) systems where an eavesdropper actively engineers new loopholes by using damaging laser illumination to permanently change properties of system components. This can turn a perfect QKD system into a completely insecure system. A proof-of-principle experiment performed on an avalanche photodiode-based detector shows that laser damage can be used to create loopholes. After ∼1 W illumination, the detectors' dark count rate reduces 2-5 times, permanently improving single-photon counting performance. After ∼1.5 W, the detectors switch permanently into the linear photodetection mode and become completely insecure for QKD applications.
NASA Technical Reports Server (NTRS)
Poppel, G. L.; Glasheen, W. M.
1989-01-01
A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.
Parameter Estimation for Viscoplastic Material Modeling
NASA Technical Reports Server (NTRS)
Saleeb, Atef F.; Gendy, Atef S.; Wilt, Thomas E.
1997-01-01
A key ingredient in the design of engineering components and structures under general thermomechanical loading is the use of mathematical constitutive models (e.g. in finite element analysis) capable of accurate representation of short and long term stress/deformation responses. In addition to the ever-increasing complexity of recent viscoplastic models of this type, they often also require a large number of material constants to describe a host of (anticipated) physical phenomena and complicated deformation mechanisms. In turn, the experimental characterization of these material parameters constitutes the major factor in the successful and effective utilization of any given constitutive model; i.e., the problem of constitutive parameter estimation from experimental measurements.
SENER molten salt tower technology. Ouarzazate NOOR III case
NASA Astrophysics Data System (ADS)
Relloso, Sergio; Gutiérrez, Yolanda
2017-06-01
NOOR III 150 MWe project is the evolution of Gemasolar (19.9 MWe) to large scale Molten Salt Tower plants. With more than 5 years of operational experience, Gemasolar lessons learned have been the starting point for the optimization of this technology, considered the leader of potential cost reduction in CSP. In addition, prototypes of plant key components (heliostat and receiver) were manufactured and thoroughly tested before project launch in order to prove the new engineering solutions adopted. The SENER proprietary technology of NOOR III will be applied in the next Molten Salt Tower plants that will follow in other countries, such as South Africa, Chile and Australia.
Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review
NASA Astrophysics Data System (ADS)
Hardwicke, Canan U.; Lau, Yuk-Chiu
2013-06-01
Functional coatings are widely used in energy generation equipment in industries such as renewables, oil and gas, propulsion engines, and gas turbines. Intelligent thermal spray processing is vital in many of these areas for efficient manufacturing. Advanced thermal spray coating applications include thermal management, wear, oxidation, corrosion resistance, sealing systems, vibration and sound absorbance, and component repair. This paper reviews the current status of materials, equipment, processing, and properties' aspects for key coatings in the energy industry, especially the developments in large-scale gas turbines. In addition to the most recent industrial advances in thermal spray technologies, future technical needs are also highlighted.
Technologies for Turbofan Noise Reduction
NASA Technical Reports Server (NTRS)
Huff, Dennis
2005-01-01
An overview presentation of NASA's engine noise research since 1992 is given for subsonic commercial aircraft applications. Highlights are included from the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project with emphasis on engine source noise reduction. Noise reduction goals for 10 EPNdB by 207 and 20 EPNdB by 2022 are reviewed. Fan and jet noise technologies are highlighted from the AST program including higher bypass ratio propulsion, scarf inlets, forward-swept fans, swept/leaned stators, chevron nozzles, noise prediction methods, and active noise control for fans. Source diagnostic tests for fans and jets that have been completed over the past few years are presented showing how new flow measurement methods such as Particle Image Velocimetry (PIV) have played a key role in understanding turbulence, the noise generation process, and how to improve noise prediction methods. Tests focused on source decomposition have helped identify which engine components need further noise reduction. The role of Computational AeroAcoustics (CAA) for fan noise prediction is presented. Advanced noise reduction methods such as Hershel-Quincke tubes and trailing edge blowing for fan noise that are currently being pursued n the QAT program are also presented. Highlights are shown form engine validation and flight demonstrations that were done in the late 1990's with Pratt & Whitney on their PW4098 engine and Honeywell on their TFE-731-60 engine. Finally, future propulsion configurations currently being studied that show promise towards meeting NASA's long term goal of 20 dB noise reduction are shown including a Dual Fan Engine concept on a Blended Wing Body aircraft.
Metal Injection Molding for Superalloy Jet Engine Components
2006-05-01
single vanes. The vanes are subject to high vibration stresses and thus require reliable fatigue strength. Therefore the quality of the material must meet...Injection Molding for Superalloy Jet Engine Components 9 - 12 RTO-MP-AVT-139 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED MTU AeroEngines copyright...Sikorski Max Kraus Dr. Claus Müller MTU Aero Engines GmbH Munich, Germany 15.05. - 17.05.2006 MTU AeroEngines copyright ©2 AVT – 139 on “Cost Effective
NASA Technical Reports Server (NTRS)
1987-01-01
The UDF trademark (Unducted Fan) engine is a new aircraft engine concept based on an ungeared, counterrotating, unducted, ultra-high-bypass turbofan configuration. This engine is being developed to provide a high thrust-to-weight ratio powerplant with exceptional fuel efficiency for subsonic aircraft application. This report covers the testing of pertinent components of this engine such as the fan blades, control and actuation system, turbine blades and spools, seals, and mixer frame.
Materials technology assessment for stirling engines
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.; Watson, G. K.; Johnston, J. R.; Croft, W. J.
1977-01-01
A materials technology assessment of high temperature components in the improved (metal) and advanced (ceramic) Stirling engines was undertaken to evaluate the current state-of-the-art of metals and ceramics, identify materials research and development required to support the development of automotive Stirling engines, and to recommend materials technology programs to assure material readiness concurrent with engine system development programs. The most critical component for each engine is identified and some of the material problem areas are discussed.
NASA Astrophysics Data System (ADS)
Kroeger, C. A.; Larson, H. J.
1992-03-01
Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.
An investigation of crankshaft oscillations for cylinder health diagnostics
NASA Astrophysics Data System (ADS)
Geveci, Mert; Osburn, Andrew W.; Franchek, Matthew A.
2005-09-01
The vibrational characteristics of an internal combustion engine crankshaft are investigated from a cylinder health diagnostics point of view. Experimental results from a six-cylinder industrial diesel engine are presented to demonstrate the effects of cylinder imbalance on the individual harmonic components of the engine speed signal. A crank-angle domain numerical model of the crankshaft dynamics for a six-cylinder industrial diesel engine is also adopted to establish the effects of continuous low-power production in individual cylinders of a multi-cylinder engine. Outline of a diagnostics algorithm that makes use of the properties of crankshaft vibration behaviour is provided. In particular, crank-angle domain notch filters are employed to extact the harmonic components of engine speed. The outlined method can be implemented for individual cylinder health diagnostics across a family of multi-cylinder engines and can be formulated to handle changes in crankshaft characteristics due to replacement of mechanical components and/or wear.
Hainsworth, S V; Fitzpatrick, M E
2007-06-01
Forensic engineering is the application of engineering principles or techniques to the investigation of materials, products, structures or components that fail or do not perform as intended. In particular, forensic engineering can involve providing solutions to forensic problems by the application of engineering science. A criminal aspect may be involved in the investigation but often the problems are related to negligence, breach of contract, or providing information needed in the redesign of a product to eliminate future failures. Forensic engineering may include the investigation of the physical causes of accidents or other sources of claims and litigation (for example, patent disputes). It involves the preparation of technical engineering reports, and may require giving testimony and providing advice to assist in the resolution of disputes affecting life or property.This paper reviews the principal methods available for the analysis of failed components and then gives examples of different component failure modes through selected case studies.
NASA Technical Reports Server (NTRS)
Kroeger, C. A.; Larson, H. J.
1992-01-01
Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.
NASA Astrophysics Data System (ADS)
Sembiring, N.; Panjaitan, N.; Angelita, S.
2018-02-01
PT. XYZ is a company owned by non-governmental organizations engaged in the field of production of rubber processing becoming crumb rubber. Part of the production is supported by some of machines and interacting equipment to achieve optimal productivity. Types of the machine that are used in the production process are Conveyor Breaker, Breaker, Rolling Pin, Hammer Mill, Mill Roll, Conveyor, Shredder Crumb, and Dryer. Maintenance system in PT. XYZ is corrective maintenance i.e. repairing or replacing the engine components after the crash on the machine. Replacement of engine components on corrective maintenance causes the machine to stop operating during the production process is in progress. The result is in the loss of production time due to the operator must replace the damaged engine components. The loss of production time can impact on the production targets which were not reached and lead to high loss costs. The cost for all components is Rp. 4.088.514.505. This cost is really high just for maintaining a Mill Roll Machine. Therefore PT. XYZ is needed to do preventive maintenance i.e. scheduling engine components and improving maintenance efficiency. The used methods are Reliability Engineering and Maintenance Value Stream Mapping (MVSM). The needed data in this research are the interval of time damage to engine components, opportunity cost, labor cost, component cost, corrective repair time, preventive repair time, Mean Time To Opportunity (MTTO), Mean Time To Repair (MTTR), and Mean Time To Yield (MTTY). In this research, the critical components of Mill Roll machine are Spier, Bushing, Bearing, Coupling and Roll. Determination of damage distribution, reliability, MTTF, cost of failure, cost of preventive, current state map, and future state map are done so that the replacement time for each critical component with the lowest maintenance cost and preparation of Standard Operation Procedure (SOP) are developed. For the critical component that has been determined, the Spier component replacement time interval is 228 days with a reliability value of 0,503171, Bushing component is 240 days with reliability value of 0.36861, Bearing component is 202 days with reliability value of 0,503058, Coupling component is 247 days with reliability value of 0,50108 and Roll component is 301 days with reliability value of 0,373525. The results show that the cost decreases from Rp 300,688,114 to Rp 244,384,371 obtained from corrective maintenance to preventive maintenance. While maintenance efficiency increases with the application of preventive maintenance i.e. for Spier component from 54,0540541% to 74,07407%, Bushing component from 52,3809524% to 68,75%, Bearing component from 40% to 52,63158%, Coupling component from 60.9756098% to 71.42857%, and Roll components from 64.516129% to 74.7663551%.
Energy Efficient Engine: Control system component performance report
NASA Technical Reports Server (NTRS)
Beitler, R. S.; Bennett, G. W.
1984-01-01
An Energy Efficient Engine (E3) program was established to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, General Electric designed and tested a new engine. The design, fabrication, bench and engine testing of the Full Authority Digital Electronic Control (FADEC) system used for controlling the E3 Demonstrator Engine is described. The system design was based on many of the proven concepts and component designs used on the General Electric family of engines. One significant difference is the use of the FADEC in place of hydromechanical computation currently used.
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Kopasakis, George; Carlson, Jan-Renee; Woolwine, Kyle
2015-01-01
This paper covers the development of an integrated nonlinear dynamic model for a variable cycle turbofan engine, supersonic inlet, and convergent-divergent nozzle that can be integrated with an aeroelastic vehicle model to create an overall Aero-Propulso-Servo-Elastic (APSE) modeling tool. The primary focus of this study is to provide a means to capture relevant thrust dynamics of a full supersonic propulsion system by using relatively simple quasi-one dimensional computational fluid dynamics (CFD) methods that will allow for accurate control algorithm development and capture the key aspects of the thrust to feed into an APSE model. Previously, propulsion system component models have been developed and are used for this study of the fully integrated propulsion system. An overview of the methodology is presented for the modeling of each propulsion component, with a focus on its associated coupling for the overall model. To conduct APSE studies the de- scribed dynamic propulsion system model is integrated into a high fidelity CFD model of the full vehicle capable of conducting aero-elastic studies. Dynamic thrust analysis for the quasi-one dimensional dynamic propulsion system model is presented along with an initial three dimensional flow field model of the engine integrated into a supersonic commercial transport.
Spurrier, Ryan Gregory; Speer, Allison L.; Hou, Xiaogang; El-Nachef, Wael N.
2015-01-01
Purpose: Tissue-engineered esophagus (TEE) may serve as a therapeutic replacement for absent foregut. Most prior esophagus studies have favored microdesigned biomaterials and yielded epithelial growth alone. None have generated human TEE with mesenchymal components. We hypothesized that sufficient progenitor cells might only require basic support for successful generation of murine and human TEE. Materials and Methods: Esophageal organoid units (EOUs) were isolated from murine or human esophagi and implanted on a polyglycolic acid/poly-l-lactic acid collagen-coated scaffold in adult allogeneic or immune-deficient mice. Alternatively, EOU were cultured for 10 days in vitro prior to implantation. Results: TEE recapitulated all key components of native esophagus with an epithelium and subjacent muscularis. Differentiated suprabasal and proliferative basal layers of esophageal epithelium, muscle, and nerve were identified. Lineage tracing demonstrated that multiple EOU could contribute to the epithelium and mesenchyme of a single TEE. Cultured murine EOU grew as an expanding sphere of proliferative basal cells on a neuromuscular network that demonstrated spontaneous peristalsis in culture. Subsequently, cultured EOU generated TEE. Conclusions: TEE forms after transplantation of mouse and human organ-specific stem/progenitor cells in vivo on a relatively simple biodegradable scaffold. This is a first step toward future human therapies. PMID:25298083
NASA Technical Reports Server (NTRS)
Connolly, Joe; Carlson, Jan-Renee; Kopasakis, George; Woolwine, Kyle
2015-01-01
This paper covers the development of an integrated nonlinear dynamic model for a variable cycle turbofan engine, supersonic inlet, and convergent-divergent nozzle that can be integrated with an aeroelastic vehicle model to create an overall Aero-Propulso-Servo-Elastic (APSE) modeling tool. The primary focus of this study is to provide a means to capture relevant thrust dynamics of a full supersonic propulsion system by using relatively simple quasi-one dimensional computational fluid dynamics (CFD) methods that will allow for accurate control algorithm development and capture the key aspects of the thrust to feed into an APSE model. Previously, propulsion system component models have been developed and are used for this study of the fully integrated propulsion system. An overview of the methodology is presented for the modeling of each propulsion component, with a focus on its associated coupling for the overall model. To conduct APSE studies the described dynamic propulsion system model is integrated into a high fidelity CFD model of the full vehicle capable of conducting aero-elastic studies. Dynamic thrust analysis for the quasi-one dimensional dynamic propulsion system model is presented along with an initial three dimensional flow field model of the engine integrated into a supersonic commercial transport.
Exo-Skeletal Engine: Novel Engine Concept
NASA Technical Reports Server (NTRS)
Chamis, Cristos C.; Blankson, Isaiah M.
2004-01-01
The exo-skeletal engine concept represents a new radical engine technology with the potential to substantially revolutionize engine design. It is an all-composite drum-rotor engine in which conventionally heavy shafts and discs are eliminated and are replaced by rotating casings that support the blades in spanwise compression. Thus the rotating blades are in compression rather than tension. The resulting open channel at the engine centerline has immense potential for jet noise reduction and can also accommodate an inner combined-cycle thruster such as a ramjet. The exo-skeletal engine is described in some detail with respect to geometry, components, and potential benefits. Initial evaluations and results for drum rotors, bearings, and weights are summarized. Component configuration, assembly plan, and potential fabrication processes are also identified. A finite element model of the assembled engine and its major components is described. Preliminary results obtained thus far show at least a 30-percent reduction of engine weight and about a 10-dB noise reduction, compared with a baseline conventional high-bypass-ratio engine. Potential benefits in all aspects of this engine technology are identified and tabulated. Quantitative assessments of potential benefits are in progress.
NASA Crew Launch Vehicle Flight Test Options
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.; Davis, Stephan R.; Robonson, Kimberly; Tuma, Margaret L.; Sullivan, Greg
2006-01-01
Options for development flight testing (DFT) of the Ares I Crew Launch Vehicle (CLV) are discussed. The Ares-I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to launch the Crew Exploration Vehicle (CEV) into low Earth Orbit (LEO). The Ares-I implements one of the components of the Vision for Space Exploration (VSE), providing crew and cargo access to the International Space Station (ISS) after retirement of the Space Shuttle and, eventually, forming part of the launch capability needed for lunar exploration. The role of development flight testing is to demonstrate key sub-systems, address key technical risks, and provide flight data to validate engineering models in representative flight environments. This is distinguished from certification flight testing, which is designed to formally validate system functionality and achieve flight readiness. Lessons learned from Saturn V, Space Shuttle, and other flight programs are examined along with key Ares-I technical risks in order to provide insight into possible development flight test strategies. A strategy for the first test flight of the Ares I, known as Ares I-1, is presented.
Skeletal biology: Where matrix meets mineral
Young, Marian F.
2017-01-01
The skeleton is unique from all other tissues in the body because of its ability to mineralize. The incorporation of mineral into bones and teeth is essential to give them strength and structure for body support and function. For years, researchers have wondered how mineralized tissues form and repair. A major focus in this context has been on the role of the extracellular matrix, which harbors key regulators of the mineralization process. In this introductory minireview, we will review some key concepts of matrix biology as it related to mineralized tissues. Concurrently, we will highlight the subject of this special issue covering many aspects of mineralized tissues, including bones and teeth and their associated structures cartilage and tendon. Areas of emphasis are on the generation and analysis of new animal models with permutations of matrix components as well as the development of new approaches for tissue engineering for repair of damaged hard tissue. In assembling key topics on mineralized tissues written by leaders in our field, we hope the reader will get a broad view of the topic and all of its fascinating complexities. PMID:27131884
Initiating Event Analysis of a Lithium Fluoride Thorium Reactor
NASA Astrophysics Data System (ADS)
Geraci, Nicholas Charles
The primary purpose of this study is to perform an Initiating Event Analysis for a Lithium Fluoride Thorium Reactor (LFTR) as the first step of a Probabilistic Safety Assessment (PSA). The major objective of the research is to compile a list of key initiating events capable of resulting in failure of safety systems and release of radioactive material from the LFTR. Due to the complex interactions between engineering design, component reliability and human reliability, probabilistic safety assessments are most useful when the scope is limited to a single reactor plant. Thus, this thesis will study the LFTR design proposed by Flibe Energy. An October 2015 Electric Power Research Institute report on the Flibe Energy LFTR asked "what-if?" questions of subject matter experts and compiled a list of key hazards with the most significant consequences to the safety or integrity of the LFTR. The potential exists for unforeseen hazards to pose additional risk for the LFTR, but the scope of this thesis is limited to evaluation of those key hazards already identified by Flibe Energy. These key hazards are the starting point for the Initiating Event Analysis performed in this thesis. Engineering evaluation and technical study of the plant using a literature review and comparison to reference technology revealed four hazards with high potential to cause reactor core damage. To determine the initiating events resulting in realization of these four hazards, reference was made to previous PSAs and existing NRC and EPRI initiating event lists. Finally, fault tree and event tree analyses were conducted, completing the logical classification of initiating events. Results are qualitative as opposed to quantitative due to the early stages of system design descriptions and lack of operating experience or data for the LFTR. In summary, this thesis analyzes initiating events using previous research and inductive and deductive reasoning through traditional risk management techniques to arrive at a list of key initiating events that can be used to address vulnerabilities during the design phases of LFTR development.
NASA Astrophysics Data System (ADS)
Kong, Changduk; Lim, Semyeong
2011-12-01
Recently, the health monitoring system of major gas path components of gas turbine uses mostly the model based method like the Gas Path Analysis (GPA). This method is to find quantity changes of component performance characteristic parameters such as isentropic efficiency and mass flow parameter by comparing between measured engine performance parameters such as temperatures, pressures, rotational speeds, fuel consumption, etc. and clean engine performance parameters without any engine faults which are calculated by the base engine performance model. Currently, the expert engine diagnostic systems using the artificial intelligent methods such as Neural Networks (NNs), Fuzzy Logic and Genetic Algorithms (GAs) have been studied to improve the model based method. Among them the NNs are mostly used to the engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base if there are large amount of learning data. In addition, it has a very complex structure for finding effectively single type faults or multiple type faults of gas path components. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measured performance data, and proposes a fault diagnostic system using the base engine performance model and the artificial intelligent methods such as Fuzzy logic and Neural Network. The proposed diagnostic system isolates firstly the faulted components using Fuzzy Logic, then quantifies faults of the identified components using the NN leaned by fault learning data base, which are obtained from the developed base performance model. In leaning the NN, the Feed Forward Back Propagation (FFBP) method is used. Finally, it is verified through several test examples that the component faults implanted arbitrarily in the engine are well isolated and quantified by the proposed diagnostic system.
An Object Model for a Rocket Engine Numerical Simulator
NASA Technical Reports Server (NTRS)
Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.
1998-01-01
Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.
Status of NASA's Space Launch System
NASA Technical Reports Server (NTRS)
Honeycutt, John; Lyles, Garry
2016-01-01
NASA's Space Launch System (SLS) continued to make significant progress in 2015 and 2016, completing hardware and testing that brings NASA closer to a new era of deep space exploration. Programmatically, SLS completed Critical Design Review (CDR) in 2015. A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just five years after program start, every major element has amassed development and flight hardware and completed key tests that will lead to an accelerated pace of manufacturing and testing in 2016 and 2017. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The existing fleet of RS-25 engines is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with a fifth propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major 2015-2016 accomplishments were two booster qualification hotfire tests, a series of RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the completion of welding for all qualification and flight EM-1 core stage components and testing of flight avionics, completion of core stage structural test stands, casting of the EM-1 solid rocket motors, additional testing of RS-25 engines and flight engine controllers This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.
Orbital transfer rocket engine technology 7.5K-LB thrust rocket engine preliminary design
NASA Technical Reports Server (NTRS)
Harmon, T. J.; Roschak, E.
1993-01-01
A preliminary design of an advanced LOX/LH2 expander cycle rocket engine producing 7,500 lbf thrust for Orbital Transfer vehicle missions was completed. Engine system, component and turbomachinery analysis at both on design and off design conditions were completed. The preliminary design analysis results showed engine requirements and performance goals were met. Computer models are described and model outputs are presented. Engine system assembly layouts, component layouts and valve and control system analysis are presented. Major design technologies were identified and remaining issues and concerns were listed.
Progress toward an advanced condition monitoring system for reusable rocket engines
NASA Technical Reports Server (NTRS)
Maram, J.; Barkhoudarian, S.
1987-01-01
A new generation of advanced sensor technologies will allow the direct measurement of critical/degradable rocket engine components' health and the detection of degraded conditions before component deterioration affects engine performance, leading to substantial improvements in reusable engines' operation and maintenance. When combined with a computer-based engine condition-monitoring system, these sensors can furnish a continuously updated data base for the prediction of engine availability and advanced warning of emergent maintenance requirements. Attention is given to the case of a practical turbopump and combustion device diagnostic/prognostic health-monitoring system.
An overview of NASA research on positive displacement general-aviation engines
NASA Technical Reports Server (NTRS)
Kempke, E. E., Jr.
1980-01-01
The research and technology program related to improved and advanced general aviation engines is described. Current research is directed at the near-term improvement of conventional air-cooled spark-ignition piston engines and at future alternative engine systems based on all-new spark-ignition piston engines, lightweight diesels, and rotary combustion engines that show potential for meeting program goals in the midterm and long-term future. The conventional piston engine activities involve efforts on applying existing technology to improve fuel economy, investigation of key processes to permit leaner operation and reduce drag, and the development of cost effective technology to permit flight at high-altitudes where fuel economy and safety are improved. The advanced engine concepts activities include engine conceptual design studies and enabling technology efforts on the critical or key technology items.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotlin, J.J.; Dunteman, N.R.; Scott, D.I.
1983-01-01
The current Electro-Motive Division 645 Series turbocharged engines are the Model FB and EC. The FB engine combines the highest thermal efficiency with the highest specific output of any EMD engine to date. The FB Series incorporates 16:1 compression ratio with a fire ring piston and an improved turbocharger design. Engine components included in the FB engine provide very high output levels with exceptional reliability. This paper also describes the performance of the lower rated Model EC engine series which feature high thermal efficiency and utilize many engine components well proven in service and basic to the Model FB Series.
14 CFR 25.1045 - Cooling test procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... not one during which component and the engine fluid temperatures would stabilize (in which case... cooling test must be preceded by a period during which the powerplant component and engine fluid temperatures are stabilized with the engines at ground idle. (c) Cooling tests for each stage of flight must be...
SSME Post Test Diagnostic System: Systems Section
NASA Technical Reports Server (NTRS)
Bickmore, Timothy
1995-01-01
An assessment of engine and component health is routinely made after each test firing or flight firing of a Space Shuttle Main Engine (SSME). Currently, this health assessment is done by teams of engineers who manually review sensor data, performance data, and engine and component operating histories. Based on review of information from these various sources, an evaluation is made as to the health of each component of the SSME and the preparedness of the engine for another test or flight. The objective of this project - the SSME Post Test Diagnostic System (PTDS) - is to develop a computer program which automates the analysis of test data from the SSME in order to detect and diagnose anomalies. This report primarily covers work on the Systems Section of the PTDS, which automates the analyses performed by the systems/performance group at the Propulsion Branch of NASA Marshall Space Flight Center (MSFC). This group is responsible for assessing the overall health and performance of the engine, and detecting and diagnosing anomalies which involve multiple components (other groups are responsible for analyzing the behavior of specific components). The PTDS utilizes several advanced software technologies to perform its analyses. Raw test data is analyzed using signal processing routines which detect features in the data, such as spikes, shifts, peaks, and drifts. Component analyses are performed by expert systems, which use 'rules-of-thumb' obtained from interviews with the MSFC data analysts to detect and diagnose anomalies. The systems analysis is performed using case-based reasoning. Results of all analyses are stored in a relational database and displayed via an X-window-based graphical user interface which provides ranked lists of anomalies and observations by engine component, along with supporting data plots for each.
The use of programmable logic controllers (PLC) for rocket engine component testing
NASA Technical Reports Server (NTRS)
Nail, William; Scheuermann, Patrick; Witcher, Kern
1991-01-01
Application of PLCs to the rocket engine component testing at a new Stennis Space Center Component Test Facility is suggested as an alternative to dedicated specialized computers. The PLC systems are characterized by rugged design, intuitive software, fault tolerance, flexibility, multiple end device options, networking capability, and built-in diagnostics. A distributed PLC-based system is projected to be used for testing LH2/LOx turbopumps required for the ALS/NLS rocket engines.
High Bypass Turbofan Component Development. Amendment I. Small Fan Redesign.
1980-02-01
A0A89 67 BENRAL EECTRIC CO LYNN MA AIRCRAFT ENGINE GROUP P’S 21 5 HIGH BYPASS TURBOFAN COMPONENT DEVELOPMENT. AMENDMENT I. SMALL -ETC(U) FEB 80 H...Weldon Aircraft Engine Group S General Electric Co. Lynn, Massachusetts 01910 0 February 1980 DTC Technical Report AF.AL-TR-80-2011 Final Report for...LARRY W.4ILL, CAPT, USAF ERIK W. LINDNER, TAM Project Engineer Special Engines Performance Branch Performance Branch Turbine Engine Division FOR THE
Kdo2-lipid A: structural diversity and impact on immunopharmacology
Wang, Xiaoyuan; Quinn, Peter J; Yan, Aixin
2015-01-01
3-deoxy-d-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the essential component of lipopolysaccharide in most Gram-negative bacteria and the minimal structural component to sustain bacterial viability. It serves as the active component of lipopolysaccharide to stimulate potent host immune responses through the complex of Toll-like-receptor 4 (TLR4) and myeloid differentiation protein 2. The entire biosynthetic pathway of Escherichia coli Kdo2-lipid A has been elucidated and the nine enzymes of the pathway are shared by most Gram-negative bacteria, indicating conserved Kdo2-lipid A structure across different species. Yet many bacteria can modify the structure of their Kdo2-lipid A which serves as a strategy to modulate bacterial virulence and adapt to different growth environments as well as to avoid recognition by the mammalian innate immune systems. Key enzymes and receptors involved in Kdo2-lipid A biosynthesis, structural modification and its interaction with the TLR4 pathway represent a clear opportunity for immunopharmacological exploitation. These include the development of novel antibiotics targeting key biosynthetic enzymes and utilization of structurally modified Kdo2-lipid A or correspondingly engineered live bacteria as vaccines and adjuvants. Kdo2-lipid A/TLR4 antagonists can also be applied in anti-inflammatory interventions. This review summarizes recent knowledge on both the fundamental processes of Kdo2-lipid A biosynthesis, structural modification and immune stimulation, and applied research on pharmacological exploitations of these processes for therapeutic development. PMID:24838025
Development status of LE-7 fuel turbopump
NASA Astrophysics Data System (ADS)
Nakano, T.; Nagao, R.; Ohta, T.; Warashina, S.; Watanabe, H.; Oguchi, H.
The liquid hydrogen turbopump (LH2 T/P) for the LE-7 engine has been developed since 1984. The component PDR was held in June 1988 and the basic troubles occurred at the development test were solved. Next, the component CDR-1 was held in December 1989 in order to feed back the test results of prototype LH2 T/P model to the design of qualification phase T/P. So, the production of these turbopumps was admitted. Recently, the component CDR-2 was held in February 1992 to reflect the counterparts adopted for some troubles (impeller and turbine blade cracks and so on) in long-time engine tests to the design of qualification phase T/P. In the qualification phase, the hydraulic characteristics and strength in the engine operating range were examined at the LH2 T/P component test, and its endurance confirmed at the engine tests. The LH2 turbopump component test was held at NASDA Kakuda and the engine test at Tashiro and Tanegashima. This paper describes the development status of LH2 T/P, containing the design description and the content of some troubles and its counterplans.
Marshall Space Flight Center Propulsion Systems Department (PSD) KM Initiative
NASA Technical Reports Server (NTRS)
Caraccioli, Paul; Varnadoe, Tom; McCarter, Mike
2006-01-01
NASA Marshall Space Flight Center s Propulsion Systems Department (PSD) is four months into a fifteen month Knowledge Management (KM) initiative to support enhanced engineering decision making and analyses, faster resolution of anomalies (near-term) and effective, efficient knowledge infused engineering processes, reduced knowledge attrition, and reduced anomaly occurrences (long-term). The near-term objective of this initiative is developing a KM Pilot project, within the context of a 3-5 year KM strategy, to introduce and evaluate the use of KM within PSD. An internal NASA/MSFC PSD KM team was established early in project formulation to maintain a practitioner, user-centric focus throughout the conceptual development, planning and deployment of KM technologies and capabilities with in the PSD. The PSD internal team is supported by the University of Alabama's Aging Infrastructure Systems Center Of Excellence (AISCE), Intergraph Corporation, and The Knowledge Institute. The principle product of the initial four month effort has been strategic planning of PSD KM implementation by first determining the "as is" state of KM capabilities and developing, planning and documenting the roadmap to achieve the desired "to be" state. Activities undertaken to support the planning phase have included data gathering; cultural surveys, group work-sessions, interviews, documentation review, and independent research. Assessments and analyses have been performed including industry benchmarking, related local and Agency initiatives, specific tools and techniques used and strategies for leveraging existing resources, people and technology to achieve common KM goals. Key findings captured in the PSD KM Strategic Plan include the system vision, purpose, stakeholders, prioritized strategic objectives mapped to the top ten practitioner needs and analysis of current resource usage. Opportunities identified from research, analyses, cultural/KM surveys and practitioner interviews include: executive and senior management sponsorship, KM awareness, promotion and training, cultural change management, process improvement, leveraging existing resources and new innovative technologies to align with other NASA KM initiatives (convergence: the big picture). To enable results based incremental implementation and future growth of the KM initiative, key performance measures have been identified including stakeholder value, system utility, learning and growth (knowledge capture, sharing, reduced anomaly recurrence), cultural change, process improvement and return-on-investment. The next steps for the initial implementation spiral (focused on SSME Turbomachinery) have been identified, largely based on the organization and compilation of summary level engineering process models, data capture matrices, functional models and conceptual-level systems architecture. Key elements include detailed KM requirements definition, KM technology architecture assessment, evaluation and selection, deployable KM Pilot design, development, implementation and evaluation, and justifying full implementation (estimated Return-on-Investment). Features identified for the notional system architecture include the knowledge presentation layer (and its components), knowledge network layer (and its components), knowledge storage layer (and its components), User Interface and capabilities. This paper provides a snapshot of the progress to date, the near term planning for deploying the KM pilot project and a forward look at results based growth of KM capabilities with-in the MSFC PSD.
NASA Technical Reports Server (NTRS)
Caraccioli, Paul; Varnedoe, Tom; Smith, Randy; McCarter, Mike; Wilson, Barry; Porter, Richard
2006-01-01
NASA Marshall Space Flight Center's Propulsion Systems Department (PSD) is four months into a fifteen month Knowledge Management (KM) initiative to support enhanced engineering decision making and analyses, faster resolution of anomalies (near-term) and effective, efficient knowledge infused engineering processes, reduced knowledge attrition, and reduced anomaly occurrences (long-term). The near-term objective of this initiative is developing a KM Pilot project, within the context of a 3-5 year KM strategy, to introduce and evaluate the use of KM within PSD. An internal NASA/MSFC PSD KM team was established early in project formulation to maintain a practitioner, user-centric focus throughout the conceptual development, planning and deployment of KM technologies and capabilities within the PSD. The PSD internal team is supported by the University of Alabama's Aging Infrastructure Systems Center of Excellence (AISCE), lntergraph Corporation, and The Knowledge Institute. The principle product of the initial four month effort has been strategic planning of PSD KNI implementation by first determining the "as is" state of KM capabilities and developing, planning and documenting the roadmap to achieve the desired "to be" state. Activities undertaken to suppoth e planning phase have included data gathering; cultural surveys, group work-sessions, interviews, documentation review, and independent research. Assessments and analyses have beon pedormed including industry benchmarking, related local and Agency initiatives, specific tools and techniques used and strategies for leveraging existing resources, people and technology to achieve common KM goals. Key findings captured in the PSD KM Strategic Plan include the system vision, purpose, stakeholders, prioritized strategic objectives mapped to the top ten practitioner needs and analysis of current resource usage. Opportunities identified from research, analyses, cultural1KM surveys and practitioner interviews include: executive and senior management sponsorship, KM awareness, promotion and training, cultural change management, process improvement, leveraging existing resources and new innovative technologies to align with other NASA KM initiatives (convergence: the big picture). To enable results based incremental implementation and future growth of the KM initiative, key performance measures have been identified including stakeholder value, system utility, learning and growth (knowledge capture, sharing, reduced anomaly recurrence), cultural change, process improvement and return-on-investment. The next steps for the initial implementation spiral (focused on SSME Turbomachinery) have been identified, largely based on the organization and compilation of summary level engineering process models, data capture matrices, functional models and conceptual-level svstems architecture. Key elements include detailed KM requirements definition, KM technology architecture assessment, - evaluation and selection, deployable KM Pilot design, development, implementation and evaluation, and justifying full implementation (estimated Return-on-Investment). Features identified for the notional system architecture include the knowledge presentation layer (and its components), knowledge network layer (and its components), knowledge storage layer (and its components), User Interface and capabilities. This paper provides a snapshot of the progress to date, the near term planning for deploying the KM pilot project and a forward look at results based growth of KM capabilities with-in the MSFC PSD.
Performance deterioration based on existing (historical) data; JT9D jet engine diagnostics program
NASA Technical Reports Server (NTRS)
Sallee, G. P.
1978-01-01
The results of the collection and analysis of historical data pertaining to the deterioration of JT9D engine performance are presented. The results of analyses of prerepair and postrepair engine test stand performance data from a number of airlines to establish the individual as well as average losses in engine performance with respect to service use are included. Analysis of the changes in mechanical condition of parts, obtained by inspection of used gas-path parts of varying age, allowed preliminary assessments of component performance deterioration levels and identification of the causitive factors. These component performance estimates, refined by data from special engine back-to-back testing related to module performance restoration, permitted the development of preliminary models of engine component/module performance deterioration with respect to usage. The preliminary assessment of the causes of module performance deterioration and the trends with usage are explained, along with the role each module plays in overall engine performance deterioration. Preliminary recommendations with respect to operating and maintenance practices which could be adopted to control the level of performance deterioration are presented. The needs for additional component sensitivity testing as well as outstanding issues are discussed.
Advanced Gas Turbine (AGT) Technology Project
NASA Technical Reports Server (NTRS)
1986-01-01
Engine testing, ceramic component fabrication and evaluation, component performance rig testing, and analytical studies comprised AGT 100 activities during the 1985 year. Ten experimental assemblies (builds) were evaluated using two engines. Accrued operating time was 120 hr of burning and 170 hr total, bringing cumulative total operating time to 395 hr, all devoid of major failures. Tests identified the generator seals as the primary working fluid leakage sources. Power transfer clutch operation was demonstrated. An alpha SiC gasifier rotor engine test resulted in blade tip failures. Recurring case vibration and shaft whip have limited gasifier shaft speeds to 84%. Ceramic components successfully engine tested now include the SiC scroll assembly, Si3N3 turbine rotor, combustor assembly, regenerator disk bulkhead, turbine vanes, piston rings, and couplings. A compressor shroud design change to reduce heat recirculation back to the inlet was executed. Ceramic components activity continues to focus on the development of state-of-the-art material strength characteristics in full-scale engine hardware. Fiber reinforced glass-ceramic composite turbine (inner) backplates were fabricated by Corning Glass Works. The BMAS/III material performed well in engine testing. Backplates of MAS material have not been engine tested.
Ceramic Matrix Composites for Rotorcraft Engines
NASA Technical Reports Server (NTRS)
Halbig, Michael C.
2011-01-01
Ceramic matrix composite (CMC) components are being developed for turbine engine applications. Compared to metallic components, the CMC components offer benefits of higher temperature capability and less cooling requirements which correlates to improved efficiency and reduced emissions. This presentation discusses a technology develop effort for overcoming challenges in fabricating a CMC vane for the high pressure turbine. The areas of technology development include small component fabrication, ceramic joining and integration, material and component testing and characterization, and design and analysis of concept components.
The Importance of Engine External's Health
NASA Technical Reports Server (NTRS)
Stoner, Barry L.
2006-01-01
Engine external components include all the fluid carrying, electron carrying, and support devices that are needed to operate the propulsion system. These components are varied and include: pumps, valves, actuators, solenoids, sensors, switches, heat exchangers, electrical generators, electrical harnesses, tubes, ducts, clamps and brackets. The failure of any component to perform its intended function will result in a maintenance action, a dispatch delay, or an engine in flight shutdown. The life of each component, in addition to its basic functional design, is closely tied to its thermal and dynamic environment .Therefore, to reach a mature design life, the component's thermal and dynamic environment must be understood and controlled, which can only be accomplished by attention to design analysis and testing. The purpose of this paper is to review analysis and test techniques toward achieving good component health.
Integrated System Test Approaches for the NASA Ares I Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.; Askins, Bruce R.; Bland, Jeffrey; Davis, Stephan; Holladay, Jon B.; Taylor, James L.; Taylor, Terry L.; Robinson, Kimberly F.; Roberts, Ryan E.; Tuma, Margaret
2007-01-01
The Ares I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew access to the International Space Station (ISS) and, together with the Ares V Cargo Launch Vehicle (CaLV), serves as one component of a future launch capability for human exploration of the Moon. During the system requirements definition process and early design cycles, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements: the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine, will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle dynamic test (IVDT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, and a highaltitude actuation of the launch abort system (LAS) following separation. The Orion-1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.
Torres-Acosta, Mario A; Aguilar-Yáñez, José M; Rito-Palomares, Marco; Titchener-Hooker, Nigel J
2016-01-01
Uricase is the enzyme responsible for the breakdown of uric acid, the key molecule leading to gout in humans, into allantoin, but it is absent in humans. It has been produced as a PEGylated pharmaceutical where the purification is performed through three sequential chromatographic columns. More recently an aqueous two-phase system (ATPS) was reported that could recover Uricase with high yield and purity. Although the use of ATPS can decrease cost and time, it also generates a large amount of waste. The ability, therefore, to recycle key components of ATPS is of interest. Economic modelling is a powerful tool that allows the bioprocess engineer to compare possible outcomes and find areas where further research or optimization might be required without recourse to extensive experiments and time. This research provides an economic analysis using the commercial software BioSolve of the strategies for Uricase production: chromatographic and ATPS, and includes a third bioprocess that uses material recycling. The key parameters that affect the process the most were located via a sensitivity analysis and evaluated with a Monte Carlo analysis. Results show that ATPS is far less expensive than chromatography, but that there is an area where the cost of production of both bioprocesses overlap. Furthermore, recycling does not impact the cost of production. This study serves to provide a framework for the economic analysis of Uricase production using alternative techniques. © 2015 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.
Torres‐Acosta, Mario A.; Aguilar‐Yáñez, José M.; Rito‐Palomares, Marco
2015-01-01
Uricase is the enzyme responsible for the breakdown of uric acid, the key molecule leading to gout in humans, into allantoin, but it is absent in humans. It has been produced as a PEGylated pharmaceutical where the purification is performed through three sequential chromatographic columns. More recently an aqueous two‐phase system (ATPS) was reported that could recover Uricase with high yield and purity. Although the use of ATPS can decrease cost and time, it also generates a large amount of waste. The ability, therefore, to recycle key components of ATPS is of interest. Economic modelling is a powerful tool that allows the bioprocess engineer to compare possible outcomes and find areas where further research or optimization might be required without recourse to extensive experiments and time. This research provides an economic analysis using the commercial software BioSolve of the strategies for Uricase production: chromatographic and ATPS, and includes a third bioprocess that uses material recycling. The key parameters that affect the process the most were located via a sensitivity analysis and evaluated with a Monte Carlo analysis. Results show that ATPS is far less expensive than chromatography, but that there is an area where the cost of production of both bioprocesses overlap. Furthermore, recycling does not impact the cost of production. This study serves to provide a framework for the economic analysis of Uricase production using alternative techniques. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:126–133, 2016 PMID:26561271
D0 Solenoid Upgrade Project: Pressure Ratings for Some Chimney and Control Dewar Componenets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rucinski, R.; /Fermilab
1993-05-25
Pressure rating calculations were done for some of the chimney and control dewar components. This engineering note documents these calculations. The table below summarizes the components looked at, and what pressure rating are. The raw engineering calculations for each of the components is given.
40 CFR 1036.205 - What must I include in my application?
Code of Federal Regulations, 2014 CFR
2014-07-01
... gas emissions, including all auxiliary emission control devices (AECDs) and all fuel-system components you will install on any production or test engine. Identify the part number of each component you.... (e) Identify the CO2 FCLs with which you are certifying engines in the engine family; also identify...
Adiabatic diesel engine component development: Reference engine for on-highway applications
NASA Technical Reports Server (NTRS)
Hakim, Nabil S.
1986-01-01
The main objectives were to select an advanced low heat rejection diesel reference engine (ADRE) and to carry out systems analysis and design. The ADRE concept selection consisted of: (1) rated point performance optimization; (2) study of various exhaust energy recovery scenarios; (3) components, systems and engine configuration studies; and (4) life cycle cost estimates of the ADRE economic worth. The resulting ADRE design proposed a reciprocator with many advanced features for the 1995 technology demonstration time frame. These included ceramic air gap insulated hot section structural components, high temperature tribology treatments, nonmechanical (camless) valve actuation systems, and elimination of the cylinder head gasket. ADRE system analysis and design resulted in more definition of the engine systems. These systems include: (1) electro-hydraulic valve actuation, (2) electronic common rail injection system; (3) engine electronic control; (4) power transfer for accessory drives and exhaust energy recovery systems; and (5) truck installation. Tribology and performance assessments were also carried out. Finite element and probability of survival analyses were undertaken for the ceramic low heat rejection component.
NASA Technical Reports Server (NTRS)
Yonushonis, T. M.; Wiczynski, P. D.; Myers, M. R.; Anderson, D. D.; McDonald, A. C.; Weber, H. G.; Richardson, D. E.; Stafford, R. J.; Naylor, M. G.
1999-01-01
In-cylinder components and tribological system concepts were designed, fabricated and tested at conditions anticipated for a 55% thermal efficiency heavy duty diesel engine for the year 2000 and beyond. A Cummins L10 single cylinder research engine was used to evaluate a spherical joint piston and connecting rod with 19.3 MPa (2800 psi) peak cylinder pressure capability, a thermal fatigue resistant insulated cylinder head, radial combustion seal cylinder liners, a highly compliant steel top compression ring, a variable geometry turbocharger, and a microwave heated particulate trap. Components successfully demonstrated in the final test included spherical joint connecting rod with a fiber reinforced piston, high conformability steel top rings with wear resistant coatings, ceramic exhaust ports with strategic oil cooling and radial combustion seal cylinder liner with cooling jacket transfer fins. A Cummins 6B diesel was used to develop the analytical methods, materials, manufacturing technology and engine components for lighter weight diesel engines without sacrificing performance or durability. A 6B diesel engine was built and tested to calibrate analytical models for the aluminum cylinder head and aluminum block.
Zhu, Yong-Guan; Rosen, Barry P
2009-04-01
Phytoremediation to clean up arsenic-contaminated environments has been widely hailed as environmentally friendly and cost effective, and genetic engineering is believed to improve the efficiency and versatility of phytoremediation. Successful genetic engineering requires the thorough understanding of the mechanisms involved in arsenic tolerance and accumulation by natural plant species. Key mechanisms include arsenate reduction, arsenic sequestration in vacuoles of root or shoot, arsenic loading to the xylem, and volatilization through the leaves. Key advances include the identification of arsenic (As) translocation from root to shoot in the As hyperaccumulator, Pteris vittata, and the characterization of related key genes from hyperaccumulator and nonaccumulators. In this paper we have proposed three pathways for genetic engineering: arsenic sequestration in the root, hyperaccumulation of arsenic in aboveground tissues, and phytovolatilization.
Protein-based hydrogels for tissue engineering
Schloss, Ashley C.; Williams, Danielle M.; Regan, Lynne J.
2017-01-01
The tunable mechanical and structural properties of protein-based hydrogels make them excellent scaffolds for tissue engineering and repair. Moreover, using protein-based components provides the option to insert sequences associated with the promoting both cellular adhesion to the substrate and overall cell growth. Protein-based hydrogel components are appealing for their structural designability, specific biological functionality, and stimuli-responsiveness. Here we present highlights in the field of protein-based hydrogels for tissue engineering applications including design requirements, components, and gel types. PMID:27677513
A synthetic system for expression of components of a bacterial microcompartment.
Sargent, Frank; Davidson, Fordyce A; Kelly, Ciarán L; Binny, Rachelle; Christodoulides, Natasha; Gibson, David; Johansson, Emelie; Kozyrska, Katarzyna; Lado, Lucia Licandro; Maccallum, Jane; Montague, Rachel; Ortmann, Brian; Owen, Richard; Coulthurst, Sarah J; Dupuy, Lionel; Prescott, Alan R; Palmer, Tracy
2013-11-01
In general, prokaryotes are considered to be single-celled organisms that lack internal membrane-bound organelles. However, many bacteria produce proteinaceous microcompartments that serve a similar purpose, i.e. to concentrate specific enzymic reactions together or to shield the wider cytoplasm from toxic metabolic intermediates. In this paper, a synthetic operon encoding the key structural components of a microcompartment was designed based on the genes for the Salmonella propanediol utilization (Pdu) microcompartment. The genes chosen included pduA, -B, -J, -K, -N, -T and -U, and each was shown to produce protein in an Escherichia coli chassis. In parallel, a set of compatible vectors designed to express non-native cargo proteins was also designed and tested. Engineered hexa-His tags allowed isolation of the components of the microcompartments together with co-expressed, untagged, cargo proteins. Finally, an in vivo protease accessibility assay suggested that a PduD-GFP fusion could be protected from proteolysis when co-expressed with the synthetic microcompartment operon. This work gives encouragement that it may be possible to harness the genes encoding a non-native microcompartment for future biotechnological applications.
An Open Source Low-Cost Automatic System for Image-Based 3d Digitization
NASA Astrophysics Data System (ADS)
Menna, F.; Nocerino, E.; Morabito, D.; Farella, E. M.; Perini, M.; Remondino, F.
2017-11-01
3D digitization of heritage artefacts, reverse engineering of industrial components or rapid prototyping-driven design are key topics today. Indeed, millions of archaeological finds all over the world need to be surveyed in 3D either to allow convenient investigations by researchers or because they are inaccessible to visitors and scientists or, unfortunately, because they are seriously endangered by wars and terrorist attacks. On the other hand, in case of industrial and design components there is often the need of deformation analyses or physical replicas starting from reality-based 3D digitisations. The paper is aligned with these needs and presents the realization of the ORION (arduinO Raspberry pI rOtating table for image based 3D recostructioN) prototype system, with its hardware and software components, providing critical insights about its modular design. ORION is an image-based 3D reconstruction system based on automated photogrammetric acquisitions and processing. The system is being developed under a collaborative educational project between FBK Trento, the University of Trento and internship programs with high school in the Trentino province (Italy).
NASA Fastrac Engine Gas Generator Component Test Program and Results
NASA Technical Reports Server (NTRS)
Dennis, Henry J., Jr.; Sanders, T.
2000-01-01
Low cost access to space has been a long-time goal of the National Aeronautics and Space Administration (NASA). The Fastrac engine program was begun at NASA's Marshall Space Flight Center to develop a 60,000-pound (60K) thrust, liquid oxygen/hydrocarbon (LOX/RP), gas generator-cycle booster engine for a fraction of the cost of similar engines in existence. To achieve this goal, off-the-shelf components and readily available materials and processes would have to be used. This paper will present the Fastrac gas generator (GG) design and the component level hot-fire test program and results. The Fastrac GG is a simple, 4-piece design that uses well-defined materials and processes for fabrication. Thirty-seven component level hot-fire tests were conducted at MSFC's component test stand #116 (TS116) during 1997 and 1998. The GG was operated at all expected operating ranges of the Fastrac engine. Some minor design changes were required to successfully complete the test program as development issues arose during the testing. The test program data results and conclusions determined that the Fastrac GG design was well on the way to meeting the requirements of NASA's X-34 Pathfinder Program that chose the Fastrac engine as its main propulsion system.
Avco Lycoming QCGAT program design cycle, demonstrated performance and emissions
NASA Technical Reports Server (NTRS)
Fogel, P.; Koschier, A.
1980-01-01
A high bypass ratio, twin spool turbofan engine of modular design which incorporates a front fan module driven by a modified LTS101 core engine was tested. The engine is housed in a nacelle incorporating full length fan ducting with sound treatment in both the inlet and fan discharge flow paths. Design goals of components and results of component tests are presented together with full engine test results. The rationale behind the combustor design selected for the engine is presented as well as the emissions test results. Total system (engine and nacelle) test results are included.
NASA Engineers Test Combustion Chamber to Advance 3-D Printed Rocket Engine Design
2016-12-08
A series of test firings like this one in late August brought a group of engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama, a big step closer to their goal of a 100-percent 3-D printed rocket engine, said Andrew Hanks, test lead for the additively manufactured demonstration engine project. The main combustion chamber, fuel turbopump, fuel injector, valves and other components used in the tests were of the team's new design, and all major engine components except the main combustion chamber were 3-D printed. (NASA/MSFC)
Design study of a kinematic Stirling engine for dispered solar electric power systems
NASA Technical Reports Server (NTRS)
1980-01-01
The concept evaluation shows that the four cylinder double acting U type Stirling engine with annular regenerators is the most suitable engine type for the 15 kW solar application with respect to design, performance and cost. Results show that near term performance for a metallic Stirling engine is 42% efficiency. Further improved components show an impact on efficiency of the future metallic engine to 45%. Increase of heater temperature, through the introduction of ceramic components, contribute the greatest amount to achieve high efficiency goals. Future ceramic Stirling engines for solar applications show an efficiency of around 50%.
Overview of Materials Qualification Needs for Metal Additive Manufacturing
NASA Astrophysics Data System (ADS)
Seifi, Mohsen; Salem, Ayman; Beuth, Jack; Harrysson, Ola; Lewandowski, John J.
2016-03-01
This overview highlights some of the key aspects regarding materials qualification needs across the additive manufacturing (AM) spectrum. AM technology has experienced considerable publicity and growth in the past few years with many successful insertions for non-mission-critical applications. However, to meet the full potential that AM has to offer, especially for flight-critical components (e.g., rotating parts, fracture-critical parts, etc.), qualification and certification efforts are necessary. While development of qualification standards will address some of these needs, this overview outlines some of the other key areas that will need to be considered in the qualification path, including various process-, microstructure-, and fracture-modeling activities in addition to integrating these with lifing activities targeting specific components. Ongoing work in the Advanced Manufacturing and Mechanical Reliability Center at Case Western Reserve University is focusing on fracture and fatigue testing to rapidly assess critical mechanical properties of some titanium alloys before and after post-processing, in addition to conducting nondestructive testing/evaluation using micro-computerized tomography at General Electric. Process mapping studies are being conducted at Carnegie Mellon University while large area microstructure characterization and informatics (EBSD and BSE) analyses are being conducted at Materials Resources LLC to enable future integration of these efforts via an Integrated Computational Materials Engineering approach to AM. Possible future pathways for materials qualification are provided.
Advanced Constituents and Processes for Ceramic Composite Engine Components
NASA Technical Reports Server (NTRS)
Yun, H. M.; DiCarlo, J. A.; Bhatt, R. T.
2004-01-01
The successful replacement of metal alloys by ceramic matrix composites (CMC) in hot-section engine components will depend strongly on optimizing the processes and properties of the CMC microstructural constituents so that they can synergistically provide the total CMC system with improved temperature capability and with the key properties required by the components for long-term structural service. This presentation provides the results of recent activities at NASA aimed at developing advanced silicon carbide (Sic) fiber-reinforced hybrid Sic matrix composite systems that can operate under mechanical loading and oxidizing conditions for hundreds of hours at 2400 and 2600 F, temperatures well above current metal capability. These SiC/SiC composite systems are lightweight (-30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive engine environments. It is shown that the improved temperature capability of the SiC/SiC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays high thermal stability, creep resistance, rupture resistance, and thermal conductivity, and possesses an in-situ grown BN surface layer for added environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics. Further capability is then derived by using chemical vapor infiltration (CVI) to form the initial portion of the hybrid Sic matrix. Because of its high creep resistance and thermal conductivity, the CVI Sic matrix is a required base constituent for all the high temperature SiC/SiC systems. By subsequently thermo- mechanical-treating the CMC preform, which consists of the S ylramic-iBN fibers and CVI Sic matrix, process-related defects in the matrix are removed, further improving matrix and CMC creep resistance and conductivity.
Analysis of Turbulent Boundary-Layer over Rough Surfaces with Application to Projectile Aerodynamics
1988-12-01
12 V. APPLICATION IN COMPONENT BUILD-UP METHODOLOGIES ....................... 12 1. COMPONENT BUILD-UP IN DRAG...dimensional roughness. II. CLASSIFICATION OF PREDICTION METHODS Prediction methods can be classified into two main approache-: 1) Correlation methodologies ...data are availaNe. V. APPLICATION IN COMPONENT BUILD-UP METHODOLOGIES 1. COMPONENT BUILD-UP IN DRAG The new correlation can be used for an engine.ring
Integrating Water, Actors, and Structure to Study Socio-Hydro-Ecological Systems
NASA Astrophysics Data System (ADS)
Hale, R. L.; Armstrong, A.; Baker, M. A.; Bedingfield, S.; Betts, D.; Buahin, C. A.; Buchert, M.; Crowl, T.; Dupont, R.; Endter-Wada, J.; Flint, C.; Grant, J.; Hinners, S.; Horns, D.; Horsburgh, J. S.; Jackson-Smith, D.; Jones, A. S.; Licon, C.; Null, S. E.; Odame, A.; Pataki, D. E.; Rosenberg, D. E.; Runburg, M.; Stoker, P.; Strong, C.
2014-12-01
Urbanization, climate uncertainty, and ecosystem change represent major challenges for managing water resources. Water systems and the forces acting upon them are complex, and there is a need to understand and generically represent the most important system components and linkages. We developed a framework to facilitate understanding of water systems including potential vulnerabilities and opportunities for sustainability. Our goal was to produce an interdisciplinary framework for water resources research to address water issues across scales (e.g., city to region) and domains (e.g., water supply and quality, urban and transitioning landscapes). An interdisciplinary project (iUTAH - innovative Urban Transitions and Aridregion Hydro-sustainability) with a large (N=~100), diverse team having expertise spanning the hydrologic, biological, ecological, engineering, social, planning, and policy sciences motivated the development of this framework. The framework was developed through review of the literature, meetings with individual researchers, and workshops with participants. The Structure-Water-Actor Framework (SWAF) includes three main components: water (quality and quantity), structure (natural, built, and social), and actors (individual and organizational). Key linkages include: 1) ecological and hydrological processes, 2) ecosystem and geomorphic change, 3) planning, design, and policy, 4) perceptions, information, and experience, 5) resource access, and 6) operational water use and management. Our expansive view of structure includes natural, built, and social components, allowing us to examine a broad set of tools and levers for water managers and decision-makers to affect system sustainability and understand system outcomes. We validate the SWAF and illustrate its flexibility to generate insights for three research and management problems: green stormwater infrastructure in an arid environment, regional water supply and demand, and urban river restoration. These applications show that the framework can help identify key components and linkages across diverse water systems.
Preliminary design for a reverse Brayton cycle cryogenic cooler
NASA Technical Reports Server (NTRS)
Swift, Walter L.
1993-01-01
A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.
Preliminary design for a reverse Brayton cycle cryogenic cooler
NASA Astrophysics Data System (ADS)
Swift, Walter L.
1993-12-01
A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.
Advanced component technologies for energy-efficient turbofan engines
NASA Technical Reports Server (NTRS)
Saunders, N. T.
1980-01-01
The paper reviews NASA's Energy Efficient Engine Project which was initiated to provide the advanced technology base for a new generation of fuel-conservative engines for introduction into airline service by the late 1980s. Efforts in this project are directed at advancing engine component and systems technologies to a point of demonstrating technology-readiness by 1984. Early results indicate high promise in achieving most of the goals established in the project.
Engine Component Retirement for Cause. Volume 1. Executive Summary
1987-08-01
components of all future engines. A mejor factor in the success of this progrm in taking Retirement for Cause from a concept to reality was the high level of...engine was chosen as the demonstration/validation vehicle for the Retirement for Cause (RCF) program. It is an augmented turbofan engine in the...inspections using surface replication; aspect ratios were determined from post test fractography . The crack size observed from the testing was compared to
Performance deterioration of commercial high-bypass ratio turbofan engines
NASA Technical Reports Server (NTRS)
Mehalic, C. M.; Ziemianski, J. A.
1980-01-01
The results of engine performance deterioration investigations based on historical data, special engine tests, and specific tests to define the influence of flight loads and component clearances on performance are presented. The results of analyses of several damage mechanisms that contribute to performance deterioration such as blade tip rubs, airfoil surface roughness and erosion, and thermal distortion are also included. The significance of these damage mechanisms on component and overall engine performance is discussed.
600 C Logic Gates Using Silicon Carbide JFET's
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Beheim, Glenn M.; Salupo, Carl S.a
2000-01-01
Complex electronics and sensors are increasingly being relied on to enhance the capabilities and efficiency of modernjet aircraft. Some of these electronics and sensors monitor and control vital engine components and aerosurfaces that operate at high temperatures above 300 C. However, since today's silicon-based electronics technology cannot function at such high temperatures, these electronics must reside in environmentally controlled areas. This necessitates either the use of long wire runs between sheltered electronics and hot-area sensors and controls, or the fuel cooling of electronics and sensors located in high-temperature areas. Both of these low-temperature-electronics approaches suffer from serious drawbacks in terms of increased weight, decreased fuel efficiency, and reduction of aircraft reliability. A family of high-temperature electronics and sensors that could function in hot areas would enable substantial aircraft performance gains. Especially since, in the future, some turbine-engine electronics may need to function at temperatures as high as 600 C. This paper reports the fabrication and demonstration of the first semiconductor digital logic gates ever to function at 600 C. Key obstacles blocking the realization of useful 600 C turbine engine integrated sensor and control electronics are outlined.
Hybrid Wing Body Aircraft Acoustic Test Preparations and Facility Upgrades
NASA Technical Reports Server (NTRS)
Heath, Stephanie L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Haskin, Henry H.; Spalt, Taylor B.; Bahr, Christopher J.; Burley, Casey L.; Bartram, Scott M.; Humphreys, William M.;
2013-01-01
NASA is investigating the potential of acoustic shielding as a means to reduce the noise footprint at airport communities. A subsonic transport aircraft and Langley's 14- by 22-foot Subsonic Wind Tunnel were chosen to test the proposed "low noise" technology. The present experiment studies the basic components of propulsion-airframe shielding in a representative flow regime. To this end, a 5.8-percent scale hybrid wing body model was built with dual state-of-the-art engine noise simulators. The results will provide benchmark shielding data and key hybrid wing body aircraft noise data. The test matrix for the experiment contains both aerodynamic and acoustic test configurations, broadband turbomachinery and hot jet engine noise simulators, and various airframe configurations which include landing gear, cruise and drooped wing leading edges, trailing edge elevons and vertical tail options. To aid in this study, two major facility upgrades have occurred. First, a propane delivery system has been installed to provide the acoustic characteristics with realistic temperature conditions for a hot gas engine; and second, a traversing microphone array and side towers have been added to gain full spectral and directivity noise characteristics.
Mouse Models for Unraveling the Importance of Diet in Colon Cancer Prevention
Tammariello, Alexandra E.; Milner, John A.
2010-01-01
Diet and genetics are both considered important risk determinants for colorectal cancer, a leading cause of death worldwide. Several genetically engineered mouse models have been created, including the ApcMin mouse, to aid in the identification of key cancer related processes and to assist with the characterization of environmental factors, including the diet, which influence risk. Current research using these models provides evidence that several bioactive food components can inhibit genetically predisposed colorectal cancer, while others increase risk. Specifically, calorie restriction or increased exposure to n-3 fatty acids, sulforaphane, chafuroside, curcumin, and dibenzoylmethane were reported protective. Total fat, calories and all-trans retinoic acid are associated with an increased risk. Unraveling the importance of specific dietary components in these models is complicated by the basal diet used, the quantity of test components provided, and interactions among food components. Newer models are increasingly available to evaluate fundamental cellular processes, including DNA mismatch repair, immune function and inflammation as markers for colon cancer risk. Unfortunately, these models have been used infrequently to examine the influence of specific dietary components. The enhanced use of these models can shed mechanistic insights about the involvement of specific bioactive food and components and energy as determinants of colon cancer risk. However, the use of available mouse models to exactly represent processes important to human gastrointestinal cancers will remain a continued scientific challenge. PMID:20122631
Tags Extarction from Spatial Documents in Search Engines
NASA Astrophysics Data System (ADS)
Borhaninejad, S.; Hakimpour, F.; Hamzei, E.
2015-12-01
Nowadays the selective access to information on the Web is provided by search engines, but in the cases which the data includes spatial information the search task becomes more complex and search engines require special capabilities. The purpose of this study is to extract the information which lies in spatial documents. To that end, we implement and evaluate information extraction from GML documents and a retrieval method in an integrated approach. Our proposed system consists of three components: crawler, database and user interface. In crawler component, GML documents are discovered and their text is parsed for information extraction; storage. The database component is responsible for indexing of information which is collected by crawlers. Finally the user interface component provides the interaction between system and user. We have implemented this system as a pilot system on an Application Server as a simulation of Web. Our system as a spatial search engine provided searching capability throughout the GML documents and thus an important step to improve the efficiency of search engines has been taken.
Piston Ring Pressure Distribution
NASA Technical Reports Server (NTRS)
Kuhn, M.
1943-01-01
The discovery and introduction of the internal combustion engine has resulted in a very rapid development in machines utilizing the action of a piston. Design has been limited by the internal components of the engine, which has been subjected to ever increasing thermal and mechanical stresses, Of these internal engine components, the piston and piston rings are of particular importance and the momentary position of engine development is not seldom dependent upon the development of both of the components, The piston ring is a well-known component and has been used in its present shape in the steam engine of the last century, Corresponding to its importance, the piston ring has been a rich field for creative activity and it is noteworthy that in spite of this the ring has maintained its shape through the many years. From the many and complicated designs which have been suggested as a packing between piston and cylinder wall hardly one suggestion has remained which does not resemble the original design of cast iron rectangular ring.
Energy efficient engine low-pressure compressor component test hardware detailed design report
NASA Technical Reports Server (NTRS)
Michael, C. J.; Halle, J. E.
1981-01-01
The aerodynamic and mechanical design description of the low pressure compressor component of the Energy Efficient Engine were used. The component was designed to meet the requirements of the Flight Propulsion System while maintaining a low cost approach in providing a low pressure compressor design for the Integrated Core/Low Spool test required in the Energy Efficient Engine Program. The resulting low pressure compressor component design meets or exceeds all design goals with the exception of surge margin. In addition, the expense of hardware fabrication for the Integrated Core/Low Spool test has been minimized through the use of existing minor part hardware.
Systems engineering interfaces: A model based approach
NASA Astrophysics Data System (ADS)
Fosse, E.; Delp, C. L.
The engineering of interfaces is a critical function of the discipline of Systems Engineering. Included in interface engineering are instances of interaction. Interfaces provide the specifications of the relevant properties of a system or component that can be connected to other systems or components while instances of interaction are identified in order to specify the actual integration to other systems or components. Current Systems Engineering practices rely on a variety of documents and diagrams to describe interface specifications and instances of interaction. The SysML[1] specification provides a precise model based representation for interfaces and interface instance integration. This paper will describe interface engineering as implemented by the Operations Revitalization Task using SysML, starting with a generic case and culminating with a focus on a Flight System to Ground Interaction. The reusability of the interface engineering approach presented as well as its extensibility to more complex interfaces and interactions will be shown. Model-derived tables will support the case studies shown and are examples of model-based documentation products.
ERIC Educational Resources Information Center
Cummins, Sunday
2015-01-01
Although students do need hands-on experiences to master key skills in science, technology, and engineering, Cummins asserts, K-12 teachers should also help students understand key STEM concepts by reading, writing, and talking about the work of professional scientists and engineers. Cummins lists high-quality texts that help young people…
78 FR 76112 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-16
...: participation in the F/A-18 Engine Component Improvement Program (CIP), spare and repair parts, system...: participation in the F/A-18 Engine Component Improvement Program (CIP), spare and repair parts, system...
Stationary Engineers Apprenticeship. Related Training Modules. 10.1-10.5 Machine Components.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This packet of five learning modules on machine components is one of 20 such packets developed for apprenticeship training for stationary engineers. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, statement…
NASA Astrophysics Data System (ADS)
Feuerstein, Albert; Knapp, James; Taylor, Thomas; Ashary, Adil; Bolcavage, Ann; Hitchman, Neil
2008-06-01
The most advanced thermal barrier coating (TBC) systems for aircraft engine and power generation hot section components consist of electron beam physical vapor deposition (EBPVD) applied yttria-stabilized zirconia and platinum modified diffusion aluminide bond coating. Thermally sprayed ceramic and MCrAlY bond coatings, however, are still used extensively for combustors and power generation blades and vanes. This article highlights the key features of plasma spray and HVOF, diffusion aluminizing, and EBPVD coating processes. The coating characteristics of thermally sprayed MCrAlY bond coat as well as low density and dense vertically cracked (DVC) Zircoat TBC are described. Essential features of a typical EBPVD TBC coating system, consisting of a diffusion aluminide and a columnar TBC, are also presented. The major coating cost elements such as material, equipment and processing are explained for the different technologies, with a performance and cost comparison given for selected examples.
Germ Cell-less Promotes Centrosome Segregation to Induce Germ Cell Formation.
Lerit, Dorothy A; Shebelut, Conrad W; Lawlor, Kristen J; Rusan, Nasser M; Gavis, Elizabeth R; Schedl, Paul; Deshpande, Girish
2017-01-24
The primordial germ cells (PGCs) specified during embryogenesis serve as progenitors to the adult germline stem cells. In Drosophila, the proper specification and formation of PGCs require both centrosomes and germ plasm, which contains the germline determinants. Centrosomes are microtubule (MT)-organizing centers that ensure the faithful segregation of germ plasm into PGCs. To date, mechanisms that modulate centrosome behavior to engineer PGC development have remained elusive. Only one germ plasm component, Germ cell-less (Gcl), is known to play a role in PGC formation. Here, we show that Gcl engineers PGC formation by regulating centrosome dynamics. Loss of gcl leads to aberrant centrosome separation and elaboration of the astral MT network, resulting in inefficient germ plasm segregation and aborted PGC cellularization. Importantly, compromising centrosome separation alone is sufficient to mimic the gcl loss-of-function phenotypes. We conclude Gcl functions as a key regulator of centrosome separation required for proper PGC development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Onboard Nonlinear Engine Sensor and Component Fault Diagnosis and Isolation Scheme
NASA Technical Reports Server (NTRS)
Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong
2011-01-01
A method detects and isolates in-flight sensor, actuator, and component faults for advanced propulsion systems. In sharp contrast to many conventional methods, which deal with either sensor fault or component fault, but not both, this method considers sensor fault, actuator fault, and component fault under one systemic and unified framework. The proposed solution consists of two main components: a bank of real-time, nonlinear adaptive fault diagnostic estimators for residual generation, and a residual evaluation module that includes adaptive thresholds and a Transferable Belief Model (TBM)-based residual evaluation scheme. By employing a nonlinear adaptive learning architecture, the developed approach is capable of directly dealing with nonlinear engine models and nonlinear faults without the need of linearization. Software modules have been developed and evaluated with the NASA C-MAPSS engine model. Several typical engine-fault modes, including a subset of sensor/actuator/components faults, were tested with a mild transient operation scenario. The simulation results demonstrated that the algorithm was able to successfully detect and isolate all simulated faults as long as the fault magnitudes were larger than the minimum detectable/isolable sizes, and no misdiagnosis occurred
Initial test results from a prototype, 20 kW helium charged Stirling engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, M.A.; Taylor, D.R.
An alpha-configuration, helium charged Stirling engine with a predicted output of 20 kW indicated power has been developed by a British consortium of universities and industrial companies. The work performed by the Royal Naval Engineering College has been in computer assisted design and component testing, with future plans for full engine trials during 1984/85. The scope of this paper is to outline the data obtained during motoring trials of the engine block and crankcase assembly, together with details of modifications incorporated in the various components.
NASA Technical Reports Server (NTRS)
Ravenhall, R.; Salemme, C. T.
1977-01-01
A total of 38 quiet clean short haul experimental engine under the wing composite fan blades were manufactured for various component tests, process and tooling, checkout, and use in the QCSEE UTW engine. The component tests included frequency characterization, strain distribution, bench fatigue, platform static load, whirligig high cycle fatigue, whirligig low cycle fatigue, whirligig strain distribution, and whirligig over-speed. All tests were successfully completed. All blades planned for use in the engine were subjected to and passed a whirligig proof spin test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Robert S.; Benjamin, Jacob; Wright, Virginia L.
A continuing challenge for engineers who utilize digital systems is to understand the impact of cyber-attacks across the entire product and program lifecycle. This is a challenge due to the evolving nature of cyber threats that may impact the design, development, deployment, and operational phases of all systems. Cyber Informed Engineering is the process by which engineers are made aware of both how to use their engineering knowledge to positively impact the cyber security in the processes by which they architect and design components and the services and security of the components themselves.
AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIX, REVIEWING THE CONSTRUCTION OF ENGINE COMPONENTS.
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A REVIEW OF THE CONSTRUCTION AND OPERATION OF DIESEL ENGINE COMPONENTS. TOPICS ARE STATIONARY PARTS, ENGINE MOVING PARTS, PISTON RINGS, AND CONNECTING RODS AND PISTON PINS. THE MODULE CONSISTS OF AN INSTRUCTOR'S GUIDE, TRANSPARENCIES, A LIST OF SUGGESTED SUPPLEMENTARY MATERIALS, AND TRAINEE…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-04
... County (see Docket 29-2011). The facility is used to produce aircraft turbine engine components of forged... aircraft turbine engines for the U.S. market and export. The manufacturing process under FTZ procedures... procedures that applies to aircraft turbine engine components and forged rings of titanium (duty rates--free...
30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... with the engine operated as prescribed by MSHA. All parts of the engine, cooling system, and other... components of the cooling system. 36.48 Section 36.48 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.48 Tests of surface...
30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... with the engine operated as prescribed by MSHA. All parts of the engine, cooling system, and other... components of the cooling system. 36.48 Section 36.48 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.48 Tests of surface...
High-speed wavelength-division multiplexing quantum key distribution system.
Yoshino, Ken-ichiro; Fujiwara, Mikio; Tanaka, Akihiro; Takahashi, Seigo; Nambu, Yoshihiro; Tomita, Akihisa; Miki, Shigehito; Yamashita, Taro; Wang, Zhen; Sasaki, Masahide; Tajima, Akio
2012-01-15
A high-speed quantum key distribution system was developed with the wavelength-division multiplexing (WDM) technique and dedicated key distillation hardware engines. Two interferometers for encoding and decoding are shared over eight wavelengths to reduce the system's size, cost, and control complexity. The key distillation engines can process a huge amount of data from the WDM channels by using a 1 Mbit block in real time. We demonstrated a three-channel WDM system that simultaneously uses avalanche photodiodes and superconducting single-photon detectors. We achieved 12 h continuous key generation with a secure key rate of 208 kilobits per second through a 45 km field fiber with 14.5 dB loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis Schmitt; Daniel Olsen
2005-09-30
Three methods were utilized to analyze key components of slow-speed, large-bore, natural gas integral engines. These three methods included the application of computational fluid dynamics (CFD), dynamic modal analysis using finite element analysis (FEA), and a stress analysis method also using FEA. The CFD analysis focuses primarily on the fuel mixing in the combustion chamber of a TLA engine. Results indicate a significant increase in the homogeneity of the air and fuel using high-pressure fuel injection (HPFI) instead of standard low-pressure mechanical gas admission valve (MGAV). A modal analysis of three engine crankshafts (TLA-6, HBA-6, and GMV-10) is developed andmore » presented. Results indicate that each crankshaft has a natural frequency and corresponding speed that is well away from the typical engine operating speed. A frame stress analysis method is also developed and presented. Two different crankcases are examined. A TLA-6 crankcase is modeled and a stress analysis is performed. The method of dynamic load determination, model setup, and the results from the stress analysis are discussed. Preliminary results indicate a 10%-15% maximum increase in frame stress due to a 20% increase in HP. However, the high stress regions were localized. A new hydraulically actuated mechanical fuel valve is also developed and presented. This valve provides equivalent high-energy (supersonic) fuel injection comparable to a HPFI system, at 1/5th of the natural gas fuel pressure. This valve was developed in cooperation with the Dresser-Rand Corporation.« less
NASA Astrophysics Data System (ADS)
Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.
2018-02-01
In the recent years the development of turbomachinery materials performance enhancement plays a vital role especially in aircraft air breathing engines like turbojet engine, turboprop engine, turboshaft engine and turbofan engines. Especially the transonic flow engines required highly sophisticated materials where it can sustain the entire thrust which can create by the engine. The main objective of this paper is to give an overview of the present cost-effective and technological capabilities process for turbomachinery component materials. Especially the main focus is given to study the Electro physical, Photonic additive removal process and Electro chemical process for turbomachinery parts manufacture. The aeronautical propulsion based technologies are reviewed thoroughly where in surface reliability, geometrical precession, and material removal and highly strengthened composite material deposition rates usually difficult to cut dedicated steels, Titanium and Nickel based alloys. In this paper the past aeronautical and propulsion mechanical based manufacturing technologies, current sophisticated technologies and also future challenging material processing techniques are covered. The paper also focuses on the brief description of turbomachinery components of shaping process and coating in aeromechanical applications.
Intelligent Life-Extending Controls for Aircraft Engines Studied
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei
2005-01-01
Current aircraft engine controllers are designed and operated to provide desired performance and stability margins. Except for the hard limits for extreme conditions, engine controllers do not usually take engine component life into consideration during the controller design and operation. The end result is that aircraft pilots regularly operate engines under unnecessarily harsh conditions to strive for optimum performance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward an intelligent control concept that will include engine life as part of the controller design criteria. This research includes the study of the relationship between control action and engine component life as well as the design of an intelligent control algorithm to provide proper tradeoffs between performance and engine life. This approach is expected to maintain operating safety while minimizing overall operating costs. In this study, the thermomechanical fatigue (TMF) of a critical component was selected to demonstrate how an intelligent engine control algorithm can significantly extend engine life with only a very small sacrifice in performance. An intelligent engine control scheme based on modifying the high-pressure spool speed (NH) was proposed to reduce TMF damage from ground idle to takeoff. The NH acceleration schedule was optimized to minimize the TMF damage for a given rise-time constraint, which represents the performance requirement. The intelligent engine control scheme was used to simulate a commercial short-haul aircraft engine.
The software-cycle model for re-engineering and reuse
NASA Technical Reports Server (NTRS)
Bailey, John W.; Basili, Victor R.
1992-01-01
This paper reports on the progress of a study which will contribute to our ability to perform high-level, component-based programming by describing means to obtain useful components, methods for the configuration and integration of those components, and an underlying economic model of the costs and benefits associated with this approach to reuse. One goal of the study is to develop and demonstrate methods to recover reusable components from domain-specific software through a combination of tools, to perform the identification, extraction, and re-engineering of components, and domain experts, to direct the applications of those tools. A second goal of the study is to enable the reuse of those components by identifying techniques for configuring and recombining the re-engineered software. This component-recovery or software-cycle model addresses not only the selection and re-engineering of components, but also their recombination into new programs. Once a model of reuse activities has been developed, the quantification of the costs and benefits of various reuse options will enable the development of an adaptable economic model of reuse, which is the principal goal of the overall study. This paper reports on the conception of the software-cycle model and on several supporting techniques of software recovery, measurement, and reuse which will lead to the development of the desired economic model.
Software development environments: Status and trends
NASA Technical Reports Server (NTRS)
Duffel, Larry E.
1988-01-01
Currently software engineers are the essential integrating factors tying several components together. The components consist of process, methods, computers, tools, support environments, and software engineers. The engineers today empower the tools versus the tools empowering the engineers. Some of the issues in software engineering are quality, managing the software engineering process, and productivity. A strategy to accomplish this is to promote the evolution of software engineering from an ad hoc, labor intensive activity to a managed, technology supported discipline. This strategy may be implemented by putting the process under management control, adopting appropriate methods, inserting the technology that provides automated support for the process and methods, collecting automated tools into an integrated environment and educating the personnel.
Overview of thermal barrier coatings in diesel engines
NASA Technical Reports Server (NTRS)
Yonushonis, T. M.
1995-01-01
An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel applications through nondestructive evaluation, structural analysis modeling and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components. Data obtained from advanced diesel engines on the effect of thermal barrier coatings on engine fuel economy and emission has not been encouraging. Although the underlying metal component temperatures have been reduced through the use of thermal barrier coating, engine efficiency and emission trends have not been promising.
Zhu, Yong-Guan; Rosen, Barry P
2015-01-01
Phytoremediation to clean up arsenic-contaminated environments has been widely hailed as environmentally friendly and cost effective, and genetic engineering is believed to improve the efficiency and versatility of phytoremediation. Successful genetic engineering requires the thorough understanding of the mechanisms involved in arsenic tolerance and accumulation by natural plant species. Key mechanisms include arsenate reduction, arsenic sequestration in vacuoles of root or shoot, arsenic loading to the xylem, and volatilization through the leaves. Key advances include the identification of arsenic (As) translocation from root to shoot in the As hyperaccumulator, Pteris vittata, and the characterization of related key genes from hyperaccumulator and nonaccumulators. In this paper we have proposed three pathways for genetic engineering: arsenic sequestration in the root, hyperaccumulation of arsenic in aboveground tissues, and phytovolatilization. PMID:19303764
Aircraft Turbine Engine Control Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2014-01-01
This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface, interfacing directly with the flight management system to determine its mode of operation, and providing personalized engine control to optimize its performance given the current condition and mission objectives.
Small Engine Component Technology (SECT) studies
NASA Technical Reports Server (NTRS)
Meyer, P. K.; Harbour, L.
1986-01-01
A study was conducted to identify component technology requirements for small, expendable gas turbine engines that would result in substantial improvements in performance and cost by the year 2000. A subsonic, 2600 nautical mile (4815 km) strategic cruise missile mission was selected for study. A baseline (state-of-the-art) engine and missile configuration were defined to evaluate the advanced technology engines. Two advanced technology engines were configured and evaluated using advanced component efficiencies and ceramic composite materials; a 22:1 overall pressure ratio, 3.85 bypass ratio twin-spool turbofan; and an 8:1 overall pressure, 3.66 bypass ratio, single-spool recuperated turbofan with 0.85 recuperator effectiveness. Results of mission analysis indicated a reduction in fuel burn of 38 and 47 percent compared to the baseline engine when using the advanced turbofan and recuperated turbofan, respectively. While use of either advanced engine resulted in approximately a 25 percent reduction in missile size, the unit life cycle (LCC) cost reduction of 56 percent for the advanced turbofan relative to the baseline engine gave it a decisive advantage over the recuperated turbofan with 47 percent LCC reduction. An additional range improvement of 10 percent results when using a 56 percent loaded carbon slurry fuel with either engine. These results can be realized only if significant progress is attained in the fields of solid lubricated bearings, small aerodynamic component performance, composite ceramic materials and integration of slurry fuels. A technology plan outlining prospective programs in these fields is presented.
Advanced Turbine Technology Applications Project (ATTAP) 1993 annual report
NASA Technical Reports Server (NTRS)
1994-01-01
This report summarizes work performed by AlliedSignal Engines, a unit of AlliedSignal Aerospace Company, during calendar year 1993, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the U.S. Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATFAP). During 1993, the test bed used to demonstrate ceramic technology was changed from the AlliedSignal Engines/Garrett Model AGT101 regenerated gas turbine engine to the Model 331-200(CT) engine. The 331-200(CT) ceramic demonstrator is a fully-developed test platform based on the existing production AlliedSignal 331-200(ER) gas turbine auxiliary power unit (APU), and is well suited to evaluating ceramic turbine blades and nozzles. In addition, commonality of the 331-200(CT) engine with existing gas turbine APU's in commercial service provides the potential for field testing of ceramic components. The 1993 ATTAP activities emphasized design modifications of the 331-200 engine test bed to accommodate ceramic first-stage turbine nozzles and blades, fabrication of the ceramic components, ceramic component proof and rig tests, operational tests of the test bed equipped with the ceramic components, and refinement of critical ceramic design technologies.
CMC Technology Advancements for Gas Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2013-01-01
CMC research at NASA Glenn is focused on aircraft propulsion applications. The objective is to enable reduced engine emissions and fuel consumption for more environmentally friendly aircraft. Engine system studies show that incorporation of ceramic composites into turbine engines will enable significant reductions in emissions and fuel burn due to increased engine efficiency resulting from reduced cooling requirements for hot section components. This presentation will describe recent progress and challenges in developing fiber and matrix constituents for 2700 F CMC turbine applications. In addition, ongoing research in the development of durable environmental barrier coatings, ceramic joining integration technologies and life prediction methods for CMC engine components will be reviewed.
NASA Orbit Transfer Rocket Engine Technology Program
NASA Technical Reports Server (NTRS)
1984-01-01
The advanced expander cycle engine with a 15,000 lb thrust level and a 6:1 mixture ratio and optimized performance was used as the baseline for a design study of the hydrogen/oxgyen propulsion system for the orbit transfer vehicle. The critical components of this engine are the thrust chamber, the turbomachinery, the extendible nozzle system, and the engine throttling system. Turbomachinery technology is examined for gears, bearing, seals, and rapid solidification rate turbopump shafts. Continuous throttling concepts are discussed. Components of the OTV engine described include the thrust chamber/nozzle assembly design, nozzles, the hydrogen regenerator, the gaseous oxygen heat exchanger, turbopumps, and the engine control valves.
NASA Astrophysics Data System (ADS)
Steiner, Matthias
A statistically proven, series injection molding technique for ceramic components was developed for the construction of engines and gas turbines. The flow behavior of silicon injection-molding materials was characterized and improved. Hot-isostatic-pressing reaction bonded silicon nitride (HIPRBSN) was developed. A nondestructive component evaluation method was developed. An injection molding line for HIPRBSN engine components precombustion chamber, flame spreader, and valve guide was developed. This line allows the production of small series for engine tests.
Nonlinear dynamic simulation of single- and multi-spool core engines
NASA Technical Reports Server (NTRS)
Schobeiri, T.; Lippke, C.; Abouelkheir, M.
1993-01-01
In this paper a new computational method for accurate simulation of the nonlinear dynamic behavior of single- and multi-spool core engines, turbofan engines, and power generation gas turbine engines is presented. In order to perform the simulation, a modularly structured computer code has been developed which includes individual mathematical modules representing various engine components. The generic structure of the code enables the dynamic simulation of arbitrary engine configurations ranging from single-spool thrust generation to multi-spool thrust/power generation engines under adverse dynamic operating conditions. For precise simulation of turbine and compressor components, row-by-row calculation procedures were implemented that account for the specific turbine and compressor cascade and blade geometry and characteristics. The dynamic behavior of the subject engine is calculated by solving a number of systems of partial differential equations, which describe the unsteady behavior of the individual components. In order to ensure the capability, accuracy, robustness, and reliability of the code, comprehensive critical performance assessment and validation tests were performed. As representatives, three different transient cases with single- and multi-spool thrust and power generation engines were simulated. The transient cases range from operating with a prescribed fuel schedule, to extreme load changes, to generator and turbine shut down.
NASA Technical Reports Server (NTRS)
Little, Alan; Bose, Deepak; Karlgaard, Chris; Munk, Michelle; Kuhl, Chris; Schoenenberger, Mark; Antill, Chuck; Verhappen, Ron; Kutty, Prasad; White, Todd
2013-01-01
The Mars Science Laboratory (MSL) Entry, Descent and Landing Instrumentation (MEDLI) hardware was a first-of-its-kind sensor system that gathered temperature and pressure readings on the MSL heatshield during Mars entry on August 6, 2012. MEDLI began as challenging instrumentation problem, and has been a model of collaboration across multiple NASA organizations. After the culmination of almost 6 years of effort, the sensors performed extremely well, collecting data from before atmospheric interface through parachute deploy. This paper will summarize the history of the MEDLI project and hardware development, including key lessons learned that can apply to future instrumentation efforts. MEDLI returned an unprecedented amount of high-quality engineering data from a Mars entry vehicle. We will present the performance of the 3 sensor types: pressure, temperature, and isotherm tracking, as well as the performance of the custom-built sensor support electronics. A key component throughout the MEDLI project has been the ground testing and analysis effort required to understand the returned flight data. Although data analysis is ongoing through 2013, this paper will reveal some of the early findings on the aerothermodynamic environment that MSL encountered at Mars, the response of the heatshield material to that heating environment, and the aerodynamic performance of the entry vehicle. The MEDLI data results promise to challenge our engineering assumptions and revolutionize the way we account for margins in entry vehicle design.
Finite Element Analysis for Turbine Blades with Contact Problems
NASA Astrophysics Data System (ADS)
Yang, Yuan-Jian; Yang, Liang; Wang, Hai-Kun; Zhu, Shun-Peng; Huang, Hong-Zhong
2016-12-01
Turbine blades are one of the key components in a typical turbofan engine, which plays an important role in flight safety. In this paper, we establish a establishes a three-dimensional finite element model of the turbine blades, then analyses the strength of the blade in complicated conditions under the joint function of temperature load, centrifugal load, and aerodynamic load. Furthermore, contact analysis of blade tenon and dovetail slot is also carried out to study the stress based on the contact elements. Finally, the Von Mises stress-strain distributions are obtained to acquire the several dangerous points and maximum Von Mises stress, which provide the basis for life prediction of turbine blade.
A Survey of Usability Practices in Free/Libre/Open Source Software
NASA Astrophysics Data System (ADS)
Paul, Celeste Lyn
A review of case studies about usability in eight Free/Libre/Open Source Software (FLOSS) projects showed that an important issue regarding a usability initiative in the project was the lack of user research. User research is a key component in the user-centered design (UCD) process and a necessary step for creating usable products. Reasons why FLOSS projects suffered from a lack of user research included poor or unclear project leadership, cultural differences between developer and designers, and a lack of usability engineers. By identifying these critical issues, the FLOSS usability community can begin addressing problems in the efficacy of usability activities and work towards creating more usable FLOSS products.
NASA Technical Reports Server (NTRS)
Lee, Kang N.; Fox, Dennis S.; Robinson, R. Craig
2001-01-01
Silicon-based ceramics, such as SiC/SiC composites and Si3N4, are the prime candidates for hot section structural components of next-generation gas turbines. A key barrier to such an application is the rapid recession of silicon-based ceramics in combustion environments because of the volatilization of silica scale by water vapor (refs. 1 and 2). Environmental barrier coatings (EBC's) were developed to prevent recession in the High Speed Research--Enabling Propulsion Materials (HSR-EPM) Program (refs. 3 and 4). An investigation under the Ultra-Efficient Engine Technology Program was undertaken at the NASA Glenn Research Center to establish the upper temperature limit of the EPM EBC.
Polarization-induced surface charges in hydroxyapatite ceramics
NASA Astrophysics Data System (ADS)
Horiuchi, N.; Nakaguki, S.; Wada, N.; Nozaki, K.; Nakamura, M.; Nagai, A.; Katayama, K.; Yamashita, K.
2014-07-01
Calcium hydroxyapatite (HAp; Ca10(PO4)6(OH)2) is a well-known biomaterial that is the main inorganic component of bones and teeth. Control over the surface charge on HAp would be a key advance in the development of the material for tissue engineering. We demonstrate here that surface charge can be induced by an electrical poling process using the Kelvin method. Positive and negative charges were induced on the HAp surface in response to the applied electric field in the poling process. The surface charging is attributed to dipole polarization that is homogeneously distributed in HAp. Additionally, the surface charging is considered to originate from the organization of OH- ions into a polar phase in the structure.
NASA Astrophysics Data System (ADS)
Filiatrault, Andre; Sullivan, Timothy
2014-08-01
With the development and implementation of performance-based earthquake engineering, harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event, failure of architectural, mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover, nonstructural damage has limited the functionality of critical facilities, such as hospitals, following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore, it is not surprising that in many past earthquakes, losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore, the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings, or of rescue workers entering buildings. In comparison to structural components and systems, there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse, and the available codes and guidelines are usually, for the most part, based on past experiences, engineering judgment and intuition, rather than on objective experimental and analytical results. Often, design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components, identifying major knowledge gaps that will need to be filled by future research. Furthermore, considering recent trends in earthquake engineering, the paper explores how performance-based seismic design might be conceived for nonstructural components, drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.
Aloe Vera for Tissue Engineering Applications
Rahman, Shekh; Carter, Princeton; Bhattarai, Narayan
2017-01-01
Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biodegradability, biocompatibility, and low toxicity properties. Aloe vera has been reported to have many biologically active components. The bioactive components of aloe vera have effective antibacterial, anti-inflammatory, antioxidant, and immune-modulatory effects that promote both tissue regeneration and growth. The aloe vera plant, its bioactive components, extraction and processing, and tissue engineering prospects are reviewed in this article. The use of aloe vera as tissue engineering scaffolds, gels, and films is discussed, with a special focus on electrospun nanofibers. PMID:28216559
Aloe Vera for Tissue Engineering Applications.
Rahman, Shekh; Carter, Princeton; Bhattarai, Narayan
2017-02-14
Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biodegradability, biocompatibility, and low toxicity properties. Aloe vera has been reported to have many biologically active components. The bioactive components of aloe vera have effective antibacterial, anti-inflammatory, antioxidant, and immune-modulatory effects that promote both tissue regeneration and growth. The aloe vera plant, its bioactive components, extraction and processing, and tissue engineering prospects are reviewed in this article. The use of aloe vera as tissue engineering scaffolds, gels, and films is discussed, with a special focus on electrospun nanofibers.
Automotive Stirling Engine Mod 1 Design Review, volume 2
NASA Technical Reports Server (NTRS)
1982-01-01
The auxiliaries and the control system for the ASE MOD I: (1) provide the required fuel and air flows for a well controlled combustion process, generating heat to the Stirling cycle; (2) provide a driver acceptable method for controlling the power output of the engine; (3) provide adequate lubrication and cooling water circulation; (4) generate the electric energy required for engine and vehicle operation; (5) provide a driver acceptable method for starting, stopping and monitoring the engine; and (6) provide a guard system, that protects the engine at component or system malfunction. The control principles and the way the different components and sub-systems interact are described as well as the different auxiliaries, the air fuel system, the power control systems and the electronics. The arrangement and location of auxiliaries and other major components are also examined.
Certification of alternative aviation fuels and blend components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson III, George R.; Edwards, Tim; Corporan, Edwin
2013-01-15
Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meetingmore » the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.« less
Elevations, Major Component Isometric, Propellant Flow Schematic, and External Tank ...
Elevations, Major Component Isometric, Propellant Flow Schematic, and External Tank Connection to Shuttle Main Engines - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Research instrumentation for hot section components of turbine engines
NASA Technical Reports Server (NTRS)
Englund, D. R.
1986-01-01
Programs to develop research instrumentation for use on hot section components of turbine engines are discussed. These programs can be separated into two categories: one category includes instruments which can measure the environment within the combustor and turbine components, the other includes instruments which measure the response of engine components to the imposed environment. Included in the first category are instruments to measure total heat flux and fluctuating gas temperature. High temperature strain measuring systems, thin film sensors (e.g., turbine blade thermocouples) and a system to view the interior of a combustor during engine operation are programs which comprise the second category. The paper will describe the state of development of these sensors and measuring systems and, in some cases, show examples of measurements made with this instrumentation. The discussion will cover work done at NASA Lewis and at various contractor facilities.
Rezaeian, Sanaz; Zhong, Peng; Hartzell, Stephen; Zareian, Farzin
2015-01-01
Simulated earthquake ground motions can be used in many recent engineering applications that require time series as input excitations. However, applicability and validation of simulations are subjects of debate in the seismological and engineering communities. We propose a validation methodology at the waveform level and directly based on characteristics that are expected to influence most structural and geotechnical response parameters. In particular, three time-dependent validation metrics are used to evaluate the evolving intensity, frequency, and bandwidth of a waveform. These validation metrics capture nonstationarities in intensity and frequency content of waveforms, making them ideal to address nonlinear response of structural systems. A two-component error vector is proposed to quantify the average and shape differences between these validation metrics for a simulated and recorded ground-motion pair. Because these metrics are directly related to the waveform characteristics, they provide easily interpretable feedback to seismologists for modifying their ground-motion simulation models. To further simplify the use and interpretation of these metrics for engineers, it is shown how six scalar key parameters, including duration, intensity, and predominant frequency, can be extracted from the validation metrics. The proposed validation methodology is a step forward in paving the road for utilization of simulated ground motions in engineering practice and is demonstrated using examples of recorded and simulated ground motions from the 1994 Northridge, California, earthquake.
Maton, Kenneth I; Pollard, Shauna A; McDougall Weise, Tatiana V; Hrabowski, Freeman A
2012-01-01
The Meyerhoff Scholars Program at the University of Maryland, Baltimore County is widely viewed as a national model of a program that enhances the number of underrepresented minority students who pursue science, technology, engineering, and mathematics PhDs. The current article provides an overview of the program and the institution-wide change process that led to its development, as well as a summary of key outcome and process evaluation research findings. African American Meyerhoff students are 5× more likely than comparison students to pursue a science, technology, engineering, and mathematics PhD. Program components viewed by the students as most beneficial include financial scholarship, being a part of the Meyerhoff Program community, the Summer Bridge program, study groups, and summer research. Qualitative findings from interviews and focus groups demonstrate the importance of the Meyerhoff Program in creating a sense of belonging and a shared identity, encouraging professional development, and emphasizing the importance of academic skills. Among Meyerhoff students, several precollege and college factors have emerged as predictors of successful entrance into a PhD program in the science, technology, engineering, and mathematics fields, including precollege research excitement, precollege intrinsic math/science motivation, number of summer research experiences during college, and college grade point average. Limitations of the research to date are noted, and directions for future research are proposed. © 2012 Mount Sinai School of Medicine.
Engineering acyl carrier protein to enhance production of shortened fatty acids.
Liu, Xueliang; Hicks, Wade M; Silver, Pamela A; Way, Jeffrey C
2016-01-01
The acyl carrier protein (ACP) is an essential and ubiquitous component of microbial synthesis of fatty acids, the natural precursor to biofuels. Natural fatty acids usually contain long chains of 16 or more carbon atoms. Shorter carbon chains, with increased fuel volatility, are desired for internal combustion engines. Engineering the length specificity of key proteins in fatty acid metabolism, such as ACP, may enable microbial synthesis of these shorter chain fatty acids. We constructed a homology model of the Synechococcus elongatus ACP, showing a hydrophobic pocket harboring the growing acyl chain. Amino acids within the pocket were mutated to increase steric hindrance to the acyl chain. Certain mutant ACPs, when over-expressed in Escherichia coli, increased the proportion of shorter chain lipids; I75 W and I75Y showed the strongest effects. Expression of I75 W and I75Y mutant ACPs also increased production of lauric acid in E. coli that expressed the C12-specific acyl-ACP thioesterase from Cuphea palustris. We engineered the specificity of the ACP, an essential protein of fatty acid metabolism, to alter the E. coli lipid pool and enhance production of medium-chain fatty acids as biofuel precursors. These results indicate that modification of ACP itself could be combined with enzymes affecting length specificity in fatty acid synthesis to enhance production of commodity chemicals based on fatty acids.
Inspiring the Next Generation of Engineers and Scientists
NASA Astrophysics Data System (ADS)
Tambara, Kevin
2013-04-01
Students are usually not excited about abstract concepts, and teachers struggle to inject "pizzazz" into many of their lessons. K-12 teachers need opportunities and the associated pedagogical training to bring meaningful and authentic learning to their students. The professional educator community needs to develop a learning environment which connects desired content knowledge with science and engineering practices that students need to be successful future technology leaders. Furthermore, this environment must foster student exploration and discovery by encouraging them to use their natural creativity with newly acquired technical skills to complete assigned projects. These practices are explicitly listed in the US "Next Generation Science Standards" document that is due for final publication in the very near future. Education in America must unleash students' desires to create and make with their hands, using their intellect, and growing academic knowledge. In this submission I will share various student projects that I have created and implemented for middle and high school. For each project, students were required to learn and implement engineering best practices while designing, building, and testing prototype models, according to pre-assigned teacher specifications. As in all real-world engineering projects, students were required to analyze test data, re-design their models accordingly, and iterate the design process several times to meet specifications. Another key component to successful projects is collaboration between student team members. All my students come to realize that nothing of major significance is ever accomplished alone, that is, without the support of a team. I will highlight several projects that illustrate key engineering practices as well as lessons learned, for both student and teacher. Projects presented will include: magnetically levitated vehicles (maglev) races, solar-powered and mousetrap-powered cars and boats, Popsicle stick catapults and bridges, egg drop "lunar landers", egg-passenger car crashes, cardboard boat races (with human passengers), and working roller coasters made with only paper and tape. Each project requires minimal, low-cost materials commonly found at home or in local stores. I will share the most common student misperceptions about inquiry and problem-solving I have observed while working alongside my students during these projects.
1976-03-01
frequency noise transmission through turbine blade rows and addition of engine and component data to the prediction method for core noise. " Phase VI...lower turbine blade row attenuation for this low bypass engine . When the blade row attenuation is accounted for by means of a turbine work extrac...component and engine data. Currently, an in-depth program to investigate turbine blade row attenuation is underway (NAS3-19435 and DOT-FA75WA-3688). The
Engineering plant membranes using droplet interface bilayers.
Barlow, N E; Smpokou, E; Friddin, M S; Macey, R; Gould, I R; Turnbull, C; Flemming, A J; Brooks, N J; Ces, O; Barter, L M C
2017-03-01
Droplet interface bilayers (DIBs) have become widely recognised as a robust platform for constructing model membranes and are emerging as a key technology for the bottom-up assembly of synthetic cell-like and tissue-like structures. DIBs are formed when lipid-monolayer coated water droplets are brought together inside a well of oil, which is excluded from the interface as the DIB forms. The unique features of the system, compared to traditional approaches (e.g., supported lipid bilayers, black lipid membranes, and liposomes), is the ability to engineer multi-layered bilayer networks by connecting multiple droplets together in 3D, and the capability to impart bilayer asymmetry freely within these droplet architectures by supplying droplets with different lipids. Yet despite these achievements, one potential limitation of the technology is that DIBs formed from biologically relevant components have not been well studied. This could limit the reach of the platform to biological systems where bilayer composition and asymmetry are understood to play a key role. Herein, we address this issue by reporting the assembly of asymmetric DIBs designed to replicate the plasma membrane compositions of three different plant species; Arabidopsis thaliana , tobacco, and oats, by engineering vesicles with different amounts of plant phospholipids, sterols and cerebrosides for the first time. We show that vesicles made from our plant lipid formulations are stable and can be used to assemble asymmetric plant DIBs. We verify this using a bilayer permeation assay, from which we extract values for absolute effective bilayer permeation and bilayer stability. Our results confirm that stable DIBs can be assembled from our plant membrane mimics and could lead to new approaches for assembling model systems to study membrane translocation and to screen new agrochemicals in plants.
Systems engineering implementation in the preliminary design phase of the Giant Magellan Telescope
NASA Astrophysics Data System (ADS)
Maiten, J.; Johns, M.; Trancho, G.; Sawyer, D.; Mady, P.
2012-09-01
Like many telescope projects today, the 24.5-meter Giant Magellan Telescope (GMT) is truly a complex system. The primary and secondary mirrors of the GMT are segmented and actuated to support two operating modes: natural seeing and adaptive optics. GMT is a general-purpose telescope supporting multiple science instruments operated in those modes. GMT is a large, diverse collaboration and development includes geographically distributed teams. The need to implement good systems engineering processes for managing the development of systems like GMT becomes imperative. The management of the requirements flow down from the science requirements to the component level requirements is an inherently difficult task in itself. The interfaces must also be negotiated so that the interactions between subsystems and assemblies are well defined and controlled. This paper will provide an overview of the systems engineering processes and tools implemented for the GMT project during the preliminary design phase. This will include requirements management, documentation and configuration control, interface development and technical risk management. Because of the complexity of the GMT system and the distributed team, using web-accessible tools for collaboration is vital. To accomplish this GMTO has selected three tools: Cognition Cockpit, Xerox Docushare, and Solidworks Enterprise Product Data Management (EPDM). Key to this is the use of Cockpit for managing and documenting the product tree, architecture, error budget, requirements, interfaces, and risks. Additionally, drawing management is accomplished using an EPDM vault. Docushare, a documentation and configuration management tool is used to manage workflow of documents and drawings for the GMT project. These tools electronically facilitate collaboration in real time, enabling the GMT team to track, trace and report on key project metrics and design parameters.
Research of the high performance low temperature vortex street flowmeter
NASA Astrophysics Data System (ADS)
Gao, Feng; Chen, Yang; Zhang, Zhen-peng; Geng, Wei-guo
2007-07-01
Flow measurement is the key method for R&D and operation monitoring of liquid rocket engine. Therefore, it is important to measure flux of low temperature liquid propellants for the liquid hydrogen/liquid oxygen or the liquid oxygen/kerosene rocket engine. Presently in China, the level meter and the turbine flowmeter are usually used in the experimentation of the liquid hydrogen/liquid oxygen rocket engine. The level meter can only scale average flux and the precision of the turbine flowmeter (the measuring wild point is 1.5%) can not be ensured due to the reason which there is not devices of low temperature real-time demarcation in China. Therefore, it is required to research the high performance low temperature flow measurement equipment and the vortex street flowmeter is selected because of its advantages. In the paper, some key techniques of low temperature vortex street flowmeter are researched from the design aspect. Firstly, the basic theoretical research of vortex street flowmeter includes signal detection method, shape of vortex producer and effects of dimension of vertex producer to vortex quality. Secondly, low temperature vortex street flowmeter adopts the method of piezoelectric components stress mode. As for the weakness of phase-change, lattice change and fragility for many piezoelectric materials in low temperature, it can not be fulfilled piezoelectric signal and mechanism performance under this condition. Some piezoelectric materials which can be used in low temperature are illustrated in the paper by lots of research in order for the farther research. The article places emphasis upon low temperature trait of piezoelectric materials, and the structure designs of signal detector and calculation of stress, electric charge quantity and heat transfer.
Eoh, Joon H; Shen, Nian; Burke, Jacqueline A; Hinderer, Svenja; Xia, Zhiyong; Schenke-Layland, Katja; Gerecht, Sharon
2017-04-01
Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications. Obtaining robust, mature elastic fibers is a key obstacle in tissue-engineered blood vessels. Human induced-pluripotent stem cells have become of interest due to their ability to supplement tissue engineered scaffolds. Their ability to differentiate into cells of vascular lineages with defined phenotypes serves as a potential solution to a major cause of graft failure in which phenotypic shifts in smooth muscle cells lead to over proliferation and occlusion of the graft. Herein, we have differentiated human induced-pluripotent stem cells in a pulsatile flow bioreactor, resulting in vascular smooth muscle tissue with robust elastic fibers and enhanced functionality. This study highlights an effective approach to engineering elastic functional vascular smooth muscle tissue for tissue engineering and regenerative medicine applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A global model for steady state and transient S.I. engine heat transfer studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohac, S.V.; Assanis, D.N.; Baker, D.M.
1996-09-01
A global, systems-level model which characterizes the thermal behavior of internal combustion engines is described in this paper. Based on resistor-capacitor thermal networks, either steady-state or transient thermal simulations can be performed. A two-zone, quasi-dimensional spark-ignition engine simulation is used to determine in-cylinder gas temperature and convection coefficients. Engine heat fluxes and component temperatures can subsequently be predicted from specification of general engine dimensions, materials, and operating conditions. Emphasis has been placed on minimizing the number of model inputs and keeping them as simple as possible to make the model practical and useful as an early design tool. The successmore » of the global model depends on properly scaling the general engine inputs to accurately model engine heat flow paths across families of engine designs. The development and validation of suitable, scalable submodels is described in detail in this paper. Simulation sub-models and overall system predictions are validated with data from two spark ignition engines. Several sensitivity studies are performed to determine the most significant heat transfer paths within the engine and exhaust system. Overall, it has been shown that the model is a powerful tool in predicting steady-state heat rejection and component temperatures, as well as transient component temperatures.« less
ERIC Educational Resources Information Center
Lee, Lung-Sheng; Lai, Chun-Chin
2004-01-01
In comparison with engineering, engineering technology is more practical and purposeful. The engineering technology education programs in Taiwan have been mainly offered in 56 universities/colleges of technology (UTs/CTs) and are anticipated to continuously improve their performance to prepare quality engineering technologists. However, it is…