Sample records for engineering metabolic pathways

  1. Applied evolutionary theories for engineering of secondary metabolic pathways.

    PubMed

    Bachmann, Brian O

    2016-12-01

    An expanded definition of 'secondary metabolism' is emerging. Once the exclusive provenance of naturally occurring organisms, evolved over geological time scales, secondary metabolism increasingly encompasses molecules generated via human engineered biocatalysts and biosynthetic pathways. Many of the tools and strategies for enzyme and pathway engineering can find origins in evolutionary theories. This perspective presents an overview of selected proposed evolutionary strategies in the context of engineering secondary metabolism. In addition to the wealth of biocatalysts provided via secondary metabolic pathways, improving the understanding of biosynthetic pathway evolution will provide rich resources for methods to adapt to applied laboratory evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis.

    PubMed

    Pirie, Christopher M; De Mey, Marjan; Jones Prather, Kristala L; Ajikumar, Parayil Kumaran

    2013-04-19

    Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.

  3. One step DNA assembly for combinatorial metabolic engineering.

    PubMed

    Coussement, Pieter; Maertens, Jo; Beauprez, Joeri; Van Bellegem, Wouter; De Mey, Marjan

    2014-05-01

    The rapid and efficient assembly of multi-step metabolic pathways for generating microbial strains with desirable phenotypes is a critical procedure for metabolic engineering, and remains a significant challenge in synthetic biology. Although several DNA assembly methods have been developed and applied for metabolic pathway engineering, many of them are limited by their suitability for combinatorial pathway assembly. The introduction of transcriptional (promoters), translational (ribosome binding site (RBS)) and enzyme (mutant genes) variability to modulate pathway expression levels is essential for generating balanced metabolic pathways and maximizing the productivity of a strain. We report a novel, highly reliable and rapid single strand assembly (SSA) method for pathway engineering. The method was successfully optimized and applied to create constructs containing promoter, RBS and/or mutant enzyme libraries. To demonstrate its efficiency and reliability, the method was applied to fine-tune multi-gene pathways. Two promoter libraries were simultaneously introduced in front of two target genes, enabling orthogonal expression as demonstrated by principal component analysis. This shows that SSA will increase our ability to tune multi-gene pathways at all control levels for the biotechnological production of complex metabolites, achievable through the combinatorial modulation of transcription, translation and enzyme activity. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Elementary Mode Analysis: A Useful Metabolic Pathway Analysis Tool for Characterizing Cellular Metabolism

    PubMed Central

    Trinh, Cong T.; Wlaschin, Aaron; Srienc, Friedrich

    2010-01-01

    Elementary Mode Analysis is a useful Metabolic Pathway Analysis tool to identify the structure of a metabolic network that links the cellular phenotype to the corresponding genotype. The analysis can decompose the intricate metabolic network comprised of highly interconnected reactions into uniquely organized pathways. These pathways consisting of a minimal set of enzymes that can support steady state operation of cellular metabolism represent independent cellular physiological states. Such pathway definition provides a rigorous basis to systematically characterize cellular phenotypes, metabolic network regulation, robustness, and fragility that facilitate understanding of cell physiology and implementation of metabolic engineering strategies. This mini-review aims to overview the development and application of elementary mode analysis as a metabolic pathway analysis tool in studying cell physiology and as a basis of metabolic engineering. PMID:19015845

  5. Modularization of genetic elements promotes synthetic metabolic engineering.

    PubMed

    Qi, Hao; Li, Bing-Zhi; Zhang, Wen-Qian; Liu, Duo; Yuan, Ying-Jin

    2015-11-15

    In the context of emerging synthetic biology, metabolic engineering is moving to the next stage powered by new technologies. Systematical modularization of genetic elements makes it more convenient to engineer biological systems for chemical production or other desired purposes. In the past few years, progresses were made in engineering metabolic pathway using synthetic biology tools. Here, we spotlighted the topic of implementation of modularized genetic elements in metabolic engineering. First, we overviewed the principle developed for modularizing genetic elements and then discussed how the genetic modules advanced metabolic engineering studies. Next, we picked up some milestones of engineered metabolic pathway achieved in the past few years. Last, we discussed the rapid raised synthetic biology field of "building a genome" and the potential in metabolic engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Synthetic metabolism: metabolic engineering meets enzyme design.

    PubMed

    Erb, Tobias J; Jones, Patrik R; Bar-Even, Arren

    2017-04-01

    Metabolic engineering aims at modifying the endogenous metabolic network of an organism to harness it for a useful biotechnological task, for example, production of a value-added compound. Several levels of metabolic engineering can be defined and are the topic of this review. Basic 'copy, paste and fine-tuning' approaches are limited to the structure of naturally existing pathways. 'Mix and match' approaches freely recombine the repertoire of existing enzymes to create synthetic metabolic networks that are able to outcompete naturally evolved pathways or redirect flux toward non-natural products. The space of possible metabolic solution can be further increased through approaches including 'new enzyme reactions', which are engineered on the basis of known enzyme mechanisms. Finally, by considering completely 'novel enzyme chemistries' with de novo enzyme design, the limits of nature can be breached to derive the most advanced form of synthetic pathways. We discuss the challenges and promises associated with these different metabolic engineering approaches and illuminate how enzyme engineering is expected to take a prime role in synthetic metabolic engineering for biotechnology, chemical industry and agriculture of the future. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions.

    PubMed

    Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    By combining advanced omics technology and computational modeling, systems biologists have identified and inferred thousands of regulatory events and system-wide interactions of the bacterium Bacillus subtilis, which is commonly used both in the laboratory and in industry. This dissection of the multiple layers of regulatory networks and their interactions has provided invaluable information for unraveling regulatory mechanisms and guiding metabolic engineering. In this review, we discuss recent advances in the systems biology and metabolic engineering of B. subtilis and highlight current gaps in our understanding of global metabolism and global pathway engineering in this organism. We also propose future perspectives in the systems biology of B. subtilis and suggest ways that this approach can be used to guide metabolic engineering. Specifically, although hundreds of regulatory events have been identified or inferred via systems biology approaches, systematic investigation of the functionality of these events in vivo has lagged, thereby preventing the elucidation of regulatory mechanisms and further rational pathway engineering. In metabolic engineering, ignoring the engineering of multilayer regulation hinders metabolic flux redistribution. Post-translational engineering, allosteric engineering, and dynamic pathway analyses and control will also contribute to the modulation and control of the metabolism of engineered B. subtilis, ultimately producing the desired cellular traits. We hope this review will aid metabolic engineers in making full use of available systems biology datasets and approaches for the design and perfection of microbial cell factories through global metabolism optimization. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Rapid Optimization of Engineered Metabolic Pathways with Serine Integrase Recombinational Assembly (SIRA).

    PubMed

    Merrick, C A; Wardrope, C; Paget, J E; Colloms, S D; Rosser, S J

    2016-01-01

    Metabolic pathway engineering in microbial hosts for heterologous biosynthesis of commodity compounds and fine chemicals offers a cheaper, greener, and more reliable method of production than does chemical synthesis. However, engineering metabolic pathways within a microbe is a complicated process: levels of gene expression, protein stability, enzyme activity, and metabolic flux must be balanced for high productivity without compromising host cell viability. A major rate-limiting step in engineering microbes for optimum biosynthesis of a target compound is DNA assembly, as current methods can be cumbersome and costly. Serine integrase recombinational assembly (SIRA) is a rapid DNA assembly method that utilizes serine integrases, and is particularly applicable to rapid optimization of engineered metabolic pathways. Using six pairs of orthogonal attP and attB sites with different central dinucleotide sequences that follow SIRA design principles, we have demonstrated that ΦC31 integrase can be used to (1) insert a single piece of DNA into a substrate plasmid; (2) assemble three, four, and five DNA parts encoding the enzymes for functional metabolic pathways in a one-pot reaction; (3) generate combinatorial libraries of metabolic pathway constructs with varied ribosome binding site strengths or gene orders in a one-pot reaction; and (4) replace and add DNA parts within a construct through targeted postassembly modification. We explain the mechanism of SIRA and the principles behind designing a SIRA reaction. We also provide protocols for making SIRA reaction components and practical methods for applying SIRA to rapid optimization of metabolic pathways. © 2016 Elsevier Inc. All rights reserved.

  9. Expanding the metabolic engineering toolbox with directed evolution.

    PubMed

    Abatemarco, Joseph; Hill, Andrew; Alper, Hal S

    2013-12-01

    Cellular systems can be engineered into factories that produce high-value chemicals from renewable feedstock. Such an approach requires an expanded toolbox for metabolic engineering. Recently, protein engineering and directed evolution strategies have started to play a growing and critical role within metabolic engineering. This review focuses on the various ways in which directed evolution can be applied in conjunction with metabolic engineering to improve product yields. Specifically, we discuss the application of directed evolution on both catalytic and non-catalytic traits of enzymes, on regulatory elements, and on whole genomes in a metabolic engineering context. We demonstrate how the goals of metabolic pathway engineering can be achieved in part through evolving cellular parts as opposed to traditional approaches that rely on gene overexpression and deletion. Finally, we discuss the current limitations in screening technology that hinder the full implementation of a metabolic pathway-directed evolution approach. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. MESSI: metabolic engineering target selection and best strain identification tool.

    PubMed

    Kang, Kang; Li, Jun; Lim, Boon Leong; Panagiotou, Gianni

    2015-01-01

    Metabolic engineering and synthetic biology are synergistically related fields for manipulating target pathways and designing microorganisms that can act as chemical factories. Saccharomyces cerevisiae's ideal bioprocessing traits make yeast a very attractive chemical factory for production of fuels, pharmaceuticals, nutraceuticals as well as a wide range of chemicals. However, future attempts of engineering S. cerevisiae's metabolism using synthetic biology need to move towards more integrative models that incorporate the high connectivity of metabolic pathways and regulatory processes and the interactions in genetic elements across those pathways and processes. To contribute in this direction, we have developed Metabolic Engineering target Selection and best Strain Identification tool (MESSI), a web server for predicting efficient chassis and regulatory components for yeast bio-based production. The server provides an integrative platform for users to analyse ready-to-use public high-throughput metabolomic data, which are transformed to metabolic pathway activities for identifying the most efficient S. cerevisiae strain for the production of a compound of interest. As input MESSI accepts metabolite KEGG IDs or pathway names. MESSI outputs a ranked list of S. cerevisiae strains based on aggregation algorithms. Furthermore, through a genome-wide association study of the metabolic pathway activities with the strains' natural variation, MESSI prioritizes genes and small variants as potential regulatory points and promising metabolic engineering targets. Users can choose various parameters in the whole process such as (i) weight and expectation of each metabolic pathway activity in the final ranking of the strains, (ii) Weighted AddScore Fuse or Weighted Borda Fuse aggregation algorithm, (iii) type of variants to be included, (iv) variant sets in different biological levels.Database URL: http://sbb.hku.hk/MESSI/. © The Author(s) 2015. Published by Oxford University Press.

  11. Metabolite damage and repair in metabolic engineering design.

    PubMed

    Sun, Jiayi; Jeffryes, James G; Henry, Christopher S; Bruner, Steven D; Hanson, Andrew D

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.

  12. Protein design in systems metabolic engineering for industrial strain development.

    PubMed

    Chen, Zhen; Zeng, An-Ping

    2013-05-01

    Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Biofuel metabolic engineering with biosensors.

    PubMed

    Morgan, Stacy-Anne; Nadler, Dana C; Yokoo, Rayka; Savage, David F

    2016-12-01

    Metabolic engineering offers the potential to renewably produce important classes of chemicals, particularly biofuels, at an industrial scale. DNA synthesis and editing techniques can generate large pathway libraries, yet identifying the best variants is slow and cumbersome. Traditionally, analytical methods like chromatography and mass spectrometry have been used to evaluate pathway variants, but such techniques cannot be performed with high throughput. Biosensors - genetically encoded components that actuate a cellular output in response to a change in metabolite concentration - are therefore a promising tool for rapid and high-throughput evaluation of candidate pathway variants. Applying biosensors can also dynamically tune pathways in response to metabolic changes, improving balance and productivity. Here, we describe the major classes of biosensors and briefly highlight recent progress in applying them to biofuel-related metabolic pathway engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. [Biosynthesis of indigo and indirubin by whole-cell catalyst designed by combination of protein engineering and metabolic engineering].

    PubMed

    Li, Yang; Zhu, Junge; Wang, Jianjun; Xia, Huanzhang; Wu, Sheng

    2016-01-01

    The phenylacetone monooxygenase, isolated from Thermobifida fusca, mainly catalyzes Baeyer-Villiger oxidation reaction towards aromatic compounds. Met446 plays a vital role in catalytic promiscuity, based on the structure and function of phenylacetone monooxygenase. Mutation in Met446 locus can offer enzyme new catalytic feature to activate C-H bond, oxidizing indole to finally generate indigo and indirubin, but the yield was only 1.89 mg/L. In order to further improve the biosynthesis efficiency of the whole-cell catalyst, metabolic engineering was applied to change glucose metabolism pathway of Escherichia coli. Blocking glucose isomerase gene pgi led to pentose phosphate pathway instead of the glycolytic pathway to become the major metabolic pathways of glucose, which provided more cofactor NADPH needed in enzymatic oxidation of indole. Engineering the host E. coli led to synthesis of indigo and indirubin efficiency further increased to 25 mg/L. Combination of protein and metabolic engineering to design efficient whole-cell catalysts not only improves the synthesis of indigo and indirubin, but also provides a novel strategy for whole-cell catalyst development.

  15. Insulation of a synthetic hydrogen metabolism circuit in bacteria

    PubMed Central

    2010-01-01

    Background The engineering of metabolism holds tremendous promise for the production of desirable metabolites, particularly alternative fuels and other highly reduced molecules. Engineering approaches must redirect the transfer of chemical reducing equivalents, preventing these electrons from being lost to general cellular metabolism. This is especially the case for high energy electrons stored in iron-sulfur clusters within proteins, which are readily transferred when two such clusters are brought in close proximity. Iron sulfur proteins therefore require mechanisms to ensure interaction between proper partners, analogous to many signal transduction proteins. While there has been progress in the isolation of engineered metabolic pathways in recent years, the design of insulated electron metabolism circuits in vivo has not been pursued. Results Here we show that a synthetic hydrogen-producing electron transfer circuit in Escherichia coli can be insulated from existing cellular metabolism via multiple approaches, in many cases improving the function of the pathway. Our circuit is composed of heterologously expressed [Fe-Fe]-hydrogenase, ferredoxin, and pyruvate-ferredoxin oxidoreductase (PFOR), allowing the production of hydrogen gas to be coupled to the breakdown of glucose. We show that this synthetic pathway can be insulated through the deletion of competing reactions, rational engineering of protein interaction surfaces, direct protein fusion of interacting partners, and co-localization of pathway components on heterologous protein scaffolds. Conclusions Through the construction and characterization of a synthetic metabolic circuit in vivo, we demonstrate a novel system that allows for predictable engineering of an insulated electron transfer pathway. The development of this system demonstrates working principles for the optimization of engineered pathways for alternative energy production, as well as for understanding how electron transfer between proteins is controlled. PMID:20184755

  16. Modular electron transfer circuits for synthetic biology

    PubMed Central

    Agapakis, Christina M

    2010-01-01

    Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production. PMID:21468209

  17. Redesigning metabolism based on orthogonality principles

    PubMed Central

    Pandit, Aditya Vikram; Srinivasan, Shyam; Mahadevan, Radhakrishnan

    2017-01-01

    Modifications made during metabolic engineering for overproduction of chemicals have network-wide effects on cellular function due to ubiquitous metabolic interactions. These interactions, that make metabolic network structures robust and optimized for cell growth, act to constrain the capability of the cell factory. To overcome these challenges, we explore the idea of an orthogonal network structure that is designed to operate with minimal interaction between chemical production pathways and the components of the network that produce biomass. We show that this orthogonal pathway design approach has significant advantages over contemporary growth-coupled approaches using a case study on succinate production. We find that natural pathways, fundamentally linked to biomass synthesis, are less orthogonal in comparison to synthetic pathways. We suggest that the use of such orthogonal pathways can be highly amenable for dynamic control of metabolism and have other implications for metabolic engineering. PMID:28555623

  18. Combinatorial pathway optimization in Escherichia coli by directed co-evolution of rate-limiting enzymes and modular pathway engineering.

    PubMed

    Lv, Xiaomei; Gu, Jiali; Wang, Fan; Xie, Wenping; Liu, Min; Ye, Lidan; Yu, Hongwei

    2016-12-01

    Metabolic engineering of microorganisms for heterologous biosynthesis is a promising route to sustainable chemical production which attracts increasing research and industrial interest. However, the efficiency of microbial biosynthesis is often restricted by insufficient activity of pathway enzymes and unbalanced utilization of metabolic intermediates. This work presents a combinatorial strategy integrating modification of multiple rate-limiting enzymes and modular pathway engineering to simultaneously improve intra- and inter-pathway balance, which might be applicable for a range of products, using isoprene as an example product. For intra-module engineering within the methylerythritol-phosphate (MEP) pathway, directed co-evolution of DXS/DXR/IDI was performed adopting a lycopene-indicated high-throughput screening method developed herein, leading to 60% improvement of isoprene production. In addition, inter-module engineering between the upstream MEP pathway and the downstream isoprene-forming pathway was conducted via promoter manipulation, which further increased isoprene production by 2.94-fold compared to the recombinant strain with solely protein engineering and 4.7-fold compared to the control strain containing wild-type enzymes. These results demonstrated the potential of pathway optimization in isoprene overproduction as well as the effectiveness of combining metabolic regulation and protein engineering in improvement of microbial biosynthesis. Biotechnol. Bioeng. 2016;113: 2661-2669. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Recent advances in the metabolic engineering of lignan biosynthesis pathways for the production of transgenic plant-based foods and supplements.

    PubMed

    Satake, Honoo; Ono, Eiichiro; Murata, Jun

    2013-12-04

    Plant physiological, epidemiological, and food science studies have shed light on lignans as healthy diets for the reduction of the risk of lifestyle-related noncommunicable diseases and, thus, the demand for lignans has been rapidly increasing. However, the low efficiency and instability of lignan production via extraction from plant resources remain to be resolved, indicating the requirement for the development of new procedures for lignan production. The metabolic engineering of lignan-biosynthesizing plants is expected to be most promising for efficient, sustainable, and stable lignan production. This is supported by the recent verification of biosynthetic pathways of major dietary lignans and the exploration of lignan production via metabolic engineering using transiently gene-transfected or transgenic plants. The aim of this review is to present an overview of the biosynthetic pathways, biological activities, and metabolic engineering of lignans and also perspectives in metabolic engineering-based lignan production using transgenic plants for practical application.

  20. Metabolic Engineering VII Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Korpics

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniquesmore » important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.« less

  1. Systems metabolic engineering of microorganisms for natural and non-natural chemicals.

    PubMed

    Lee, Jeong Wook; Na, Dokyun; Park, Jong Myoung; Lee, Joungmin; Choi, Sol; Lee, Sang Yup

    2012-05-17

    Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of chemicals, fuels and materials from renewable resources. Metabolic engineering is a key enabling technology for transforming microorganisms into efficient cell factories for these compounds. Systems metabolic engineering, which incorporates the concepts and techniques of systems biology, synthetic biology and evolutionary engineering at the systems level, offers a conceptual and technological framework to speed the creation of new metabolic enzymes and pathways or the modification of existing pathways for the optimal production of desired products. Here we discuss the general strategies of systems metabolic engineering and examples of its application and offer insights as to when and how each of the different strategies should be used. Finally, we highlight the limitations and challenges to be overcome for the systems metabolic engineering of microorganisms at more advanced levels.

  2. Perspectives in metabolic engineering: understanding cellular regulation towards the control of metabolic routes.

    PubMed

    Zadran, Sohila; Levine, Raphael D

    2013-01-01

    Metabolic engineering seeks to redirect metabolic pathways through the modification of specific biochemical reactions or the introduction of new ones with the use of recombinant technology. Many of the chemicals synthesized via introduction of product-specific enzymes or the reconstruction of entire metabolic pathways into engineered hosts that can sustain production and can synthesize high yields of the desired product as yields of natural product-derived compounds are frequently low, and chemical processes can be both energy and material expensive; current endeavors have focused on using biologically derived processes as alternatives to chemical synthesis. Such economically favorable manufacturing processes pursue goals related to sustainable development and "green chemistry". Metabolic engineering is a multidisciplinary approach, involving chemical engineering, molecular biology, biochemistry, and analytical chemistry. Recent advances in molecular biology, genome-scale models, theoretical understanding, and kinetic modeling has increased interest in using metabolic engineering to redirect metabolic fluxes for industrial and therapeutic purposes. The use of metabolic engineering has increased the productivity of industrially pertinent small molecules, alcohol-based biofuels, and biodiesel. Here, we highlight developments in the practical and theoretical strategies and technologies available for the metabolic engineering of simple systems and address current limitations.

  3. Synthetic biology and metabolic engineering.

    PubMed

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  4. Creating metabolic demand as an engineering strategy in Pseudomonas putida - Rhamnolipid synthesis as an example.

    PubMed

    Tiso, Till; Sabelhaus, Petra; Behrens, Beate; Wittgens, Andreas; Rosenau, Frank; Hayen, Heiko; Blank, Lars Mathias

    2016-12-01

    Metabolic engineering of microbial cell factories for the production of heterologous secondary metabolites implicitly relies on the intensification of intracellular flux directed toward the product of choice. Apart from reactions following peripheral pathways, enzymes of the central carbon metabolism are usually targeted for the enhancement of precursor supply. In Pseudomonas putida , a Gram-negative soil bacterium, central carbon metabolism, i.e., the reactions required for the synthesis of all 12 biomass precursors, was shown to be regulated at the metabolic level and not at the transcriptional level. The bacterium's central carbon metabolism appears to be driven by demand to react rapidly to ever-changing environmental conditions. In contrast, peripheral pathways that are only required for growth under certain conditions are regulated transcriptionally. In this work, we show that this regulation regime can be exploited for metabolic engineering. We tested this driven-by-demand metabolic engineering strategy using rhamnolipid production as an example. Rhamnolipid synthesis relies on two pathways, i.e., fatty acid de novo synthesis and the rhamnose pathway, providing the required precursors hydroxyalkanoyloxy-alkanoic acid (HAA) and activated (dTDP-)rhamnose, respectively. In contrast to single-pathway molecules, rhamnolipid synthesis causes demand for two central carbon metabolism intermediates, i.e., acetyl-CoA for HAA and glucose-6-phosphate for rhamnose synthesis. Following the above-outlined strategy of driven by demand, a synthetic promoter library was developed to identify the optimal expression of the two essential genes ( rhlAB ) for rhamnolipid synthesis. The best rhamnolipid-synthesizing strain had a yield of 40% rhamnolipids on sugar [Cmol RL /Cmol Glc ], which is approximately 55% of the theoretical yield. The rate of rhamnolipid synthesis of this strain was also high. Compared to an exponentially growing wild type, the rhamnose pathway increased its flux by 300%, whereas the flux through de novo fatty acid synthesis increased by 50%. We show that the central carbon metabolism of P. putida is capable of meeting the metabolic demand generated by engineering transcription in peripheral pathways, thereby enabling a significant rerouting of carbon flux toward the product of interest, in this case, rhamnolipids of industrial interest.

  5. Metabolite damage and repair in metabolic engineering design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jiayi; Jeffryes, James G.; Henry, Christopher S.

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields,more » and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.« less

  6. Characterizing Strain Variation in Engineered E. coli Using a Multi-Omics-Based Workflow

    DOE PAGES

    Brunk, Elizabeth; George, Kevin W.; Alonso-Gutierrez, Jorge; ...

    2016-05-19

    Understanding the complex interactions that occur between heterologous and native biochemical pathways represents a major challenge in metabolic engineering and synthetic biology. We present a workflow that integrates metabolomics, proteomics, and genome-scale models of Escherichia coli metabolism to study the effects of introducing a heterologous pathway into a microbial host. This workflow incorporates complementary approaches from computational systems biology, metabolic engineering, and synthetic biology; provides molecular insight into how the host organism microenvironment changes due to pathway engineering; and demonstrates how biological mechanisms underlying strain variation can be exploited as an engineering strategy to increase product yield. As a proofmore » of concept, we present the analysis of eight engineered strains producing three biofuels: isopentenol, limonene, and bisabolene. Application of this workflow identified the roles of candidate genes, pathways, and biochemical reactions in observed experimental phenomena and facilitated the construction of a mutant strain with improved productivity. The contributed workflow is available as an open-source tool in the form of iPython notebooks.« less

  7. Metabolic engineering approaches for production of biochemicals in food and medicinal plants.

    PubMed

    Wilson, Sarah A; Roberts, Susan C

    2014-04-01

    Historically, plants are a vital source of nutrients and pharmaceuticals. Recent advances in metabolic engineering have made it possible to not only increase the concentration of desired compounds, but also introduce novel biosynthetic pathways to a variety of species, allowing for enhanced nutritional or commercial value. To improve metabolic engineering capabilities, new transformation techniques have been developed to allow for gene specific silencing strategies or stacking of multiple genes within the same region of the chromosome. The 'omics' era has provided a new resource for elucidation of uncharacterized biosynthetic pathways, enabling novel metabolic engineering approaches. These resources are now allowing for advanced metabolic engineering of plant production systems, as well as the synthesis of increasingly complex products in engineered microbial hosts. The status of current metabolic engineering efforts is highlighted for the in vitro production of paclitaxel and the in vivo production of β-carotene in Golden Rice and other food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Engineering Cellular Metabolism.

    PubMed

    Nielsen, Jens; Keasling, Jay D

    2016-03-10

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds, and pharmaceuticals. However, making cells into efficient factories is challenging because cells have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication between molecular pathways that resist efforts to divert resources. Here, we will review the current status and challenges of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A review of parameters and heuristics for guiding metabolic pathfinding.

    PubMed

    Kim, Sarah M; Peña, Matthew I; Moll, Mark; Bennett, George N; Kavraki, Lydia E

    2017-09-15

    Recent developments in metabolic engineering have led to the successful biosynthesis of valuable products, such as the precursor of the antimalarial compound, artemisinin, and opioid precursor, thebaine. Synthesizing these traditionally plant-derived compounds in genetically modified yeast cells introduces the possibility of significantly reducing the total time and resources required for their production, and in turn, allows these valuable compounds to become cheaper and more readily available. Most biosynthesis pathways used in metabolic engineering applications have been discovered manually, requiring a tedious search of existing literature and metabolic databases. However, the recent rapid development of available metabolic information has enabled the development of automated approaches for identifying novel pathways. Computer-assisted pathfinding has the potential to save biochemists time in the initial discovery steps of metabolic engineering. In this paper, we review the parameters and heuristics used to guide the search in recent pathfinding algorithms. These parameters and heuristics capture information on the metabolic network structure, compound structures, reaction features, and organism-specificity of pathways. No one metabolic pathfinding algorithm or search parameter stands out as the best to use broadly for solving the pathfinding problem, as each method and parameter has its own strengths and shortcomings. As assisted pathfinding approaches continue to become more sophisticated, the development of better methods for visualizing pathway results and integrating these results into existing metabolic engineering practices is also important for encouraging wider use of these pathfinding methods.

  10. Protein Design for Pathway Engineering

    PubMed Central

    Eriksen, Dawn T.; Lian, Jiazhang; Zhao, Huimin

    2013-01-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. PMID:23558037

  11. Protein design for pathway engineering.

    PubMed

    Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Modules for in vitro metabolic engineering: Pathway assembly for bio-based production of value-added chemicals.

    PubMed

    Taniguchi, Hironori; Okano, Kenji; Honda, Kohsuke

    2017-06-01

    Bio-based chemical production has drawn attention regarding the realization of a sustainable society. In vitro metabolic engineering is one of the methods used for the bio-based production of value-added chemicals. This method involves the reconstitution of natural or artificial metabolic pathways by assembling purified/semi-purified enzymes in vitro . Enzymes from distinct sources can be combined to construct desired reaction cascades with fewer biological constraints in one vessel, enabling easier pathway design with high modularity. Multiple modules have been designed, built, tested, and improved by different groups for different purpose. In this review, we focus on these in vitro metabolic engineering modules, especially focusing on the carbon metabolism, and present an overview of input modules, output modules, and other modules related to cofactor management.

  13. An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli.

    PubMed

    Yang, Xiaoyan; Yuan, Qianqian; Zheng, Yangyang; Ma, Hongwu; Chen, Tao; Zhao, Xueming

    2016-08-01

    To find new metabolic engineering strategies to improve the yield of acetone in Escherichia coli. Results of flux balance analysis from a modified Escherichia coli genome-scale metabolic network suggested that the introduction of a non-oxidative glycolysis (NOG) pathway would improve the theoretical acetone yield from 1 to 1.5 mol acetone/mol glucose. By inserting the fxpk gene encoding phosphoketolase from Bifidobacterium adolescentis into the genome, we constructed a NOG pathway in E.coli. The resulting strain produced 47 mM acetone from glucose under aerobic conditions in shake-flasks. The yield of acetone was improved from 0.38 to 0.47 mol acetone/mol glucose which is a significant over the parent strain. Guided by computational analysis of metabolic networks, we introduced a NOG pathway into E. coli and increased the yield of acetone, which demonstrates the importance of modeling analysis for the novel metabolic engineering strategies.

  14. Metabolic engineering of biosynthetic pathway for production of renewable biofuels.

    PubMed

    Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar; Dhar, Pawan Kumar

    2014-02-01

    Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.

  15. Metabolic Engineering for the Production of Natural Products

    PubMed Central

    Pickens, Lauren B.; Tang, Yi; Chooi, Yit-Heng

    2014-01-01

    Natural products and natural product derived compounds play an important role in modern healthcare as frontline treatments for many diseases and as inspiration for chemically synthesized therapeutics. With advances in sequencing and recombinant DNA technology, many of the biosynthetic pathways responsible for the production of these chemically complex and pharmaceutically valuable compounds have been elucidated. With an ever expanding toolkit of biosynthetic components, metabolic engineering is an increasingly powerful method to improve natural product titers and generate novel compounds. Heterologous production platforms have enabled access to pathways from difficult to culture strains; systems biology and metabolic modeling tools have resulted in increasing predictive and analytic capabilities; advances in expression systems and regulation have enabled the fine-tuning of pathways for increased efficiency, and characterization of individual pathway components has facilitated the construction of hybrid pathways for the production of new compounds. These advances in the many aspects of metabolic engineering have not only yielded fascinating scientific discoveries but also make it an increasingly viable approach for the optimization of natural product biosynthesis. PMID:22432617

  16. Engineering plant metabolism into microbes: from systems biology to synthetic biology.

    PubMed

    Xu, Peng; Bhan, Namita; Koffas, Mattheos A G

    2013-04-01

    Plant metabolism represents an enormous repository of compounds that are of pharmaceutical and biotechnological importance. Engineering plant metabolism into microbes will provide sustainable solutions to produce pharmaceutical and fuel molecules that could one day replace substantial portions of the current fossil-fuel based economy. Metabolic engineering entails targeted manipulation of biosynthetic pathways to maximize yields of desired products. Recent advances in Systems Biology and the emergence of Synthetic Biology have accelerated our ability to design, construct and optimize cell factories for metabolic engineering applications. Progress in predicting and modeling genome-scale metabolic networks, versatile gene assembly platforms and delicate synthetic pathway optimization strategies has provided us exciting opportunities to exploit the full potential of cell metabolism. In this review, we will discuss how systems and synthetic biology tools can be integrated to create tailor-made cell factories for efficient production of natural products and fuel molecules in microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.

    PubMed

    Hubmann, Georg; Thevelein, Johan M; Nevoigt, Elke

    2014-01-01

    The ease of highly sophisticated genetic manipulations in the yeast Saccharomyces cerevisiae has initiated numerous initiatives towards development of metabolically engineered strains for novel applications beyond its traditional use in brewing, baking, and wine making. In fact, baker's yeast has become a key cell factory for the production of various bulk and fine chemicals. Successful metabolic engineering requires fine-tuned adjustments of metabolic fluxes and coordination of multiple pathways within the cell. This has mostly been achieved by controlling gene expression at the transcriptional level, i.e., by using promoters with appropriate strengths and regulatory properties. Here we present an overview of natural and modified promoters, which have been used in metabolic pathway engineering of S. cerevisiae. Recent developments in creating promoters with tailor-made properties are also discussed.

  18. Metabolic engineering of Yarrowia lipolytica for industrial applications.

    PubMed

    Zhu, Quinn; Jackson, Ethel N

    2015-12-01

    Yarrowia lipolytica is a safe and robust yeast that has a history of industrial applications. Its physiological, metabolic and genomic characteristics have made it a superior host for metabolic engineering. The results of optimizing internal pathways and introducing new pathways have demonstrated that Y. lipolytica can be a platform cell factory for cost-effective production of chemicals and fuels derived from fatty acids, lipids and acetyl-CoA. Two products have been commercialized from metabolically engineered Y. lipolytica strains producing high amounts of omega-3 eicosapentaenoic acid, and more products are on the way to be produced at industrial scale. Here we review recent progress in metabolic engineering of Y. lipolytica for production of biodiesel fuel, functional fatty acids and carotenoids. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Pathway Design, Engineering, and Optimization.

    PubMed

    Garcia-Ruiz, Eva; HamediRad, Mohammad; Zhao, Huimin

    The microbial metabolic versatility found in nature has inspired scientists to create microorganisms capable of producing value-added compounds. Many endeavors have been made to transfer and/or combine pathways, existing or even engineered enzymes with new function to tractable microorganisms to generate new metabolic routes for drug, biofuel, and specialty chemical production. However, the success of these pathways can be impeded by different complications from an inherent failure of the pathway to cell perturbations. Pursuing ways to overcome these shortcomings, a wide variety of strategies have been developed. This chapter will review the computational algorithms and experimental tools used to design efficient metabolic routes, and construct and optimize biochemical pathways to produce chemicals of high interest.

  20. Thoughts on the Teaching of Metabolism

    ERIC Educational Resources Information Center

    Metzger, Robert P.

    2006-01-01

    Systems biology, metabolomics, metabolic engineering, and other recent developments in biochemistry suggest that future biochemists will require a detailed familiarity with the compounds and pathways of intermediary metabolism and their biochemical control. The challenge to the biochemistry instructor is the presentation of metabolic pathways in a…

  1. Toward metabolic engineering in the context of system biology and synthetic biology: advances and prospects.

    PubMed

    Liu, Yanfeng; Shin, Hyun-dong; Li, Jianghua; Liu, Long

    2015-02-01

    Metabolic engineering facilitates the rational development of recombinant bacterial strains for metabolite overproduction. Building on enormous advances in system biology and synthetic biology, novel strategies have been established for multivariate optimization of metabolic networks in ensemble, spatial, and dynamic manners such as modular pathway engineering, compartmentalization metabolic engineering, and metabolic engineering guided by genome-scale metabolic models, in vitro reconstitution, and systems and synthetic biology. Herein, we summarize recent advances in novel metabolic engineering strategies. Combined with advancing kinetic models and synthetic biology tools, more efficient new strategies for improving cellular properties can be established and applied for industrially important biochemical production.

  2. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jiazhang; Mishra, Shekhar; Zhao, Huimin

    Metabolic engineering aims to develop efficient cell factories by rewiring cellular metabolism. As one of the most commonly used cell factories, Saccharomyces cerevisiae has been extensively engineered to produce a wide variety of products at high levels from various feedstocks. In this paper, we summarize the recent development of metabolic engineering approaches to modulate yeast metabolism with representative examples. Particularly, we highlight new tools for biosynthetic pathway optimization (i.e. combinatorial transcriptional engineering and dynamic metabolic flux control) and genome engineering (i.e. clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) system based genome engineering and RNA interference assisted genome evolution)more » to advance metabolic engineering in yeast. Lastly, we also discuss the challenges and perspectives for high throughput metabolic engineering.« less

  3. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications

    DOE PAGES

    Lian, Jiazhang; Mishra, Shekhar; Zhao, Huimin

    2018-04-25

    Metabolic engineering aims to develop efficient cell factories by rewiring cellular metabolism. As one of the most commonly used cell factories, Saccharomyces cerevisiae has been extensively engineered to produce a wide variety of products at high levels from various feedstocks. In this paper, we summarize the recent development of metabolic engineering approaches to modulate yeast metabolism with representative examples. Particularly, we highlight new tools for biosynthetic pathway optimization (i.e. combinatorial transcriptional engineering and dynamic metabolic flux control) and genome engineering (i.e. clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) system based genome engineering and RNA interference assisted genome evolution)more » to advance metabolic engineering in yeast. Lastly, we also discuss the challenges and perspectives for high throughput metabolic engineering.« less

  4. Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose.

    PubMed

    Soma, Yuki; Fujiwara, Yuri; Nakagawa, Takuya; Tsuruno, Keigo; Hanai, Taizo

    2017-09-01

    γ-aminobutyric acid (GABA) is a drug and functional food additive and is used as a monomer for producing the biodegradable plastic, polyamide 4. Recently, direct GABA fermentation from glucose has been developed as an alternative to glutamate-based whole cell bioconversion. Although total productivity in fermentation is determined by the specific productivity and cell amount responsible for GABA production, the optimal metabolic state for GABA production conflicts with that for bacterial cell growth. Herein, we demonstrated metabolic state switching from the cell growth mode based on the metabolic pathways of the wild type strain to a GABA production mode based on a synthetic metabolic pathway in Escherichia coli through rewriting of the metabolic regulatory network and pathway engineering. The GABA production mode was achieved by multiple strategies such as conditional interruption of the TCA and glyoxylate cycles, engineering of GABA production pathway including a bypass for precursor metabolite supply, and upregulation of GABA transporter. As a result, we achieved 3-fold improvement in total GABA production titer and yield (4.8g/L, 49.2% (mol/mol glucose)) in batch fermentation compared to the case without metabolic state switching (1.6g/L, 16.4% (mol/mol glucose)). This study reports the highest GABA production performance among previous reports on GABA fermentation from glucose using engineered E. coli. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Metabolomics Analysis of the Toxic Effects of the Production of Lycopene and Its Precursors.

    PubMed

    Miguez, April M; McNerney, Monica P; Styczynski, Mark P

    2018-01-01

    Using cells as microbial factories enables highly specific production of chemicals with many advantages over chemical syntheses. A number of exciting new applications of this approach are in the area of precision metabolic engineering, which focuses on improving the specificity of target production. In recent work, we have used precision metabolic engineering to design lycopene-producing Escherichia coli for use as a low-cost diagnostic biosensor. To increase precursor availability and thus the rate of lycopene production, we heterologously expressed the mevalonate pathway. We found that simultaneous induction of these pathways increases lycopene production, but induction of the mevalonate pathway before induction of the lycopene pathway decreases both lycopene production and growth rate. Here, we aim to characterize the metabolic changes the cells may be undergoing during expression of either or both of these heterologous pathways. After establishing an improved method for quenching E. coli for metabolomics analysis, we used two-dimensional gas chromatography coupled to mass spectrometry (GCxGC-MS) to characterize the metabolomic profile of our lycopene-producing strains in growth conditions characteristic of our biosensor application. We found that the metabolic impacts of producing low, non-toxic levels of lycopene are of much smaller magnitude than the typical metabolic changes inherent to batch growth. We then used metabolomics to study differences in metabolism caused by the time of mevalonate pathway induction and the presence of the lycopene biosynthesis genes. We found that overnight induction of the mevalonate pathway was toxic to cells, but that the cells could recover if the lycopene pathway was not also heterologously expressed. The two pathways appeared to have an antagonistic metabolic effect that was clearly reflected in the cells' metabolic profiles. The metabolites homocysteine and homoserine exhibited particularly interesting behaviors and may be linked to the growth inhibition seen when the mevalonate pathway is induced overnight, suggesting potential future work that may be useful in engineering increased lycopene biosynthesis.

  6. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit

    PubMed Central

    Gupta, Apoorv; Brockman Reizman, Irene M.; Reisch, Christopher R.; Prather, Kristala L. J.

    2017-01-01

    Metabolic engineering of microorganisms to produce desirable products on an industrial scale can result in unbalanced cellular metabolic networks that reduce productivity and yield. Metabolic fluxes can be rebalanced using dynamic pathway regulation, but few broadly applicable tools are available to achieve this. We present a pathway-independent genetic control module that can be used to dynamically regulate the expression of target genes. We applied our module to identify the optimal point to redirect glycolytic flux into heterologous engineered pathways in Escherichia coli, resulting in 5.5-fold increased titres of myo-inositol and titers of glucaric acid that improved from unmeasurable quantities to >0.8 g/L. Scaled-up production in benchtop bioreactors resulted in almost 10-fold and 5-fold increases in titers of myo-inositol and glucaric acid. We also used our module to control flux into aromatic amino acid biosynthesis to increase titers of shikimate in E. coli from unmeasurable quantities to >100 mg/L. PMID:28191902

  7. Engineering of carboligase activity reaction in Candida glabrata for acetoin production.

    PubMed

    Li, Shubo; Xu, Nan; Liu, Liming; Chen, Jian

    2014-03-01

    Utilization of Candida glabrata overproducing pyruvate is a promising strategy for high-level acetoin production. Based on the known regulatory and metabolic information, acetaldehyde and thiamine were fed to identify the key nodes of carboligase activity reaction (CAR) pathway and provide a direction for engineering C. glabrata. Accordingly, alcohol dehydrogenase, acetaldehyde dehydrogenase, pyruvate decarboxylase, and butanediol dehydrogenase were selected to be manipulated for strengthening the CAR pathway. Following the rational metabolic engineering, the engineered strain exhibited increased acetoin biosynthesis (2.24 g/L). In addition, through in silico simulation and redox balance analysis, NADH was identified as the key factor restricting higher acetoin production. Correspondingly, after introduction of NADH oxidase, the final acetoin production was further increased to 7.33 g/L. By combining the rational metabolic engineering and cofactor engineering, the acetoin-producing C. glabrata was improved stepwise, opening a novel pathway for rational development of microorganisms for bioproduction. Copyright © 2013. Published by Elsevier Inc.

  8. Precise metabolic engineering of carotenoid biosynthesis in Escherichia coli towards a low-cost biosensor.

    PubMed

    Watstein, Daniel M; McNerney, Monica P; Styczynski, Mark P

    2015-09-01

    Micronutrient deficiencies, including zinc deficiency, are responsible for hundreds of thousands of deaths annually. A key obstacle to allocating scarce treatment resources is the ability to measure population blood micronutrient status inexpensively and quickly enough to identify those who most need treatment. This paper develops a metabolically engineered strain of Escherichia coli to produce different colored pigments (violacein, lycopene, and β-carotene) in response to different extracellular zinc levels, for eventual use in an inexpensive blood zinc diagnostic test. However, obtaining discrete color states in the carotenoid pathway required precise engineering of metabolism to prevent reaction at low zinc concentrations but allow complete reaction at higher concentrations, and all under the constraints of natural regulator limitations. Hence, the metabolic engineering challenge was not to improve titer, but to enable precise control of pathway state. A combination of gene dosage, post-transcriptional, and post-translational regulation was necessary to allow visible color change over physiologically relevant ranges representing a small fraction of the regulator's dynamic response range, with further tuning possible by modulation of precursor availability. As metabolic engineering expands its applications and develops more complex systems, tight control of system components will likely become increasingly necessary, and the approach presented here can be generalized to other natural sensing systems for precise control of pathway state. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Metabolic analyses elucidate non-trivial gene targets for amplifying dihydroartemisinic acid production in yeast

    PubMed Central

    Misra, Ashish; Conway, Matthew F.; Johnnie, Joseph; Qureshi, Tabish M.; Lige, Bao; Derrick, Anne M.; Agbo, Eddy C.; Sriram, Ganesh

    2013-01-01

    Synthetic biology enables metabolic engineering of industrial microbes to synthesize value-added molecules. In this, a major challenge is the efficient redirection of carbon to the desired metabolic pathways. Pinpointing strategies toward this goal requires an in-depth investigation of the metabolic landscape of the organism, particularly primary metabolism, to identify precursor and cofactor availability for the target compound. The potent antimalarial therapeutic artemisinin and its precursors are promising candidate molecules for production in microbial hosts. Recent advances have demonstrated the production of artemisinin precursors in engineered yeast strains as an alternative to extraction from plants. We report the application of in silico and in vivo metabolic pathway analyses to identify metabolic engineering targets to improve the yield of the direct artemisinin precursor dihydroartemisinic acid (DHA) in yeast. First, in silico extreme pathway (ExPa) analysis identified NADPH-malic enzyme and the oxidative pentose phosphate pathway (PPP) as mechanisms to meet NADPH demand for DHA synthesis. Next, we compared key DHA-synthesizing ExPas to the metabolic flux distributions obtained from in vivo 13C metabolic flux analysis of a DHA-synthesizing strain. This comparison revealed that knocking out ethanol synthesis and overexpressing glucose-6-phosphate dehydrogenase in the oxidative PPP (gene YNL241C) or the NADPH-malic enzyme ME2 (YKL029C) are vital steps toward overproducing DHA. Finally, we employed in silico flux balance analysis and minimization of metabolic adjustment on a yeast genome-scale model to identify gene knockouts for improving DHA yields. The best strategy involved knockout of an oxaloacetate transporter (YKL120W) and an aspartate aminotransferase (YKL106W), and was predicted to improve DHA yields by 70-fold. Collectively, our work elucidates multiple non-trivial metabolic engineering strategies for improving DHA yield in yeast. PMID:23898325

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karp, Peter D.

    Pathway Tools is a systems-biology software package written by SRI International (SRI) that produces Pathway/Genome Databases (PGDBs) for organisms with a sequenced genome. Pathway Tools also provides a wide range of capabilities for analyzing predicted metabolic networks and user-generated omics data. More than 5,000 academic, industrial, and government groups have licensed Pathway Tools. This user community includes researchers at all three DOE bioenergy centers, as well as academic and industrial metabolic engineering (ME) groups. An integral part of the Pathway Tools software is MetaCyc, a large, multiorganism database of metabolic pathways and enzymes that SRI and its academic collaborators manuallymore » curate. This project included two main goals: I. Enhance the MetaCyc content of bioenergy-related enzymes and pathways. II. Develop computational tools for engineering metabolic pathways that satisfy specified design goals, in particular for bioenergy-related pathways. In part I, SRI proposed to significantly expand the coverage of bioenergy-related metabolic information in MetaCyc, followed by the generation of organism-specific PGDBs for all energy-relevant organisms sequenced at the DOE Joint Genome Institute (JGI). Part I objectives included: 1: Expand the content of MetaCyc to include bioenergy-related enzymes and pathways. 2: Enhance the Pathway Tools software to enable display of complex polymer degradation processes. 3: Create new PGDBs for the energy-related organisms sequenced by JGI, update existing PGDBs with new MetaCyc content, and make these data available to JBEI via the BioCyc website. In part II, SRI proposed to develop an efficient computational tool for the engineering of metabolic pathways. Part II objectives included: 4: Develop computational tools for generating metabolic pathways that satisfy specified design goals, enabling users to specify parameters such as starting and ending compounds, and preferred or disallowed intermediate compounds. The pathways were to be generated using metabolic reactions from a reference database (DB). 5: Develop computational tools for ranking the pathways generated in objective (4) according to their optimality. The ranking criteria include stoichiometric yield, the number and cost of additional inputs and the cofactor compounds required by the pathway, pathway length, and pathway energetics. 6: Develop tools for visualizing generated pathways to facilitate the evaluation of a large space of generated pathways.« less

  11. A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery.

    PubMed

    Karim, Ashty S; Jewett, Michael C

    2016-07-01

    Speeding up design-build-test (DBT) cycles is a fundamental challenge facing biochemical engineering. To address this challenge, we report a new cell-free protein synthesis driven metabolic engineering (CFPS-ME) framework for rapid biosynthetic pathway prototyping. In our framework, cell-free cocktails for synthesizing target small molecules are assembled in a mix-and-match fashion from crude cell lysates either containing selectively enriched pathway enzymes from heterologous overexpression or directly producing pathway enzymes in lysates by CFPS. As a model, we apply our approach to n-butanol biosynthesis showing that Escherichia coli lysates support a highly active 17-step CoA-dependent n-butanol pathway in vitro. The elevated degree of flexibility in the cell-free environment allows us to manipulate physiochemical conditions, access enzymatic nodes, discover new enzymes, and prototype enzyme sets with linear DNA templates to study pathway performance. We anticipate that CFPS-ME will facilitate efforts to define, manipulate, and understand metabolic pathways for accelerated DBT cycles without the need to reengineer organisms. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  12. An Automated Pipeline for Engineering Many-Enzyme Pathways: Computational Sequence Design, Pathway Expression-Flux Mapping, and Scalable Pathway Optimization.

    PubMed

    Halper, Sean M; Cetnar, Daniel P; Salis, Howard M

    2018-01-01

    Engineering many-enzyme metabolic pathways suffers from the design curse of dimensionality. There are an astronomical number of synonymous DNA sequence choices, though relatively few will express an evolutionary robust, maximally productive pathway without metabolic bottlenecks. To solve this challenge, we have developed an integrated, automated computational-experimental pipeline that identifies a pathway's optimal DNA sequence without high-throughput screening or many cycles of design-build-test. The first step applies our Operon Calculator algorithm to design a host-specific evolutionary robust bacterial operon sequence with maximally tunable enzyme expression levels. The second step applies our RBS Library Calculator algorithm to systematically vary enzyme expression levels with the smallest-sized library. After characterizing a small number of constructed pathway variants, measurements are supplied to our Pathway Map Calculator algorithm, which then parameterizes a kinetic metabolic model that ultimately predicts the pathway's optimal enzyme expression levels and DNA sequences. Altogether, our algorithms provide the ability to efficiently map the pathway's sequence-expression-activity space and predict DNA sequences with desired metabolic fluxes. Here, we provide a step-by-step guide to applying the Pathway Optimization Pipeline on a desired multi-enzyme pathway in a bacterial host.

  13. Application of isotope labeling experiments and (13)C flux analysis to enable rational pathway engineering.

    PubMed

    McAtee, Allison G; Jazmin, Lara J; Young, Jamey D

    2015-12-01

    Isotope labeling experiments (ILEs) and (13)C flux analysis provide actionable information for metabolic engineers to identify knockout, overexpression, and/or media optimization targets. ILEs have been used in both academic and industrial labs to increase product formation, discover novel metabolic functions in previously uncharacterized organisms, and enhance the metabolic efficiency of host cell factories. This review highlights specific examples of how ILEs have been used in conjunction with enzyme or metabolic engineering to elucidate host cell metabolism and improve product titer, rate, or yield in a directed manner. We discuss recent progress and future opportunities involving the use of ILEs and (13)C flux analysis to characterize non-model host organisms and to identify and subsequently eliminate wasteful byproduct pathways or metabolic bottlenecks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. 2-Keto acids based biosynthesis pathways for renewable fuels and chemicals.

    PubMed

    Tashiro, Yohei; Rodriguez, Gabriel M; Atsumi, Shota

    2015-03-01

    Global energy and environmental concerns have driven the development of biological chemical production from renewable sources. Biological processes using microorganisms are efficient and have been traditionally utilized to convert biomass (i.e., glucose) to useful chemicals such as amino acids. To produce desired fuels and chemicals with high yield and rate, metabolic pathways have been enhanced and expanded with metabolic engineering and synthetic biology approaches. 2-Keto acids, which are key intermediates in amino acid biosynthesis, can be converted to a wide range of chemicals. 2-Keto acid pathways were engineered in previous research efforts and these studies demonstrated that 2-keto acid pathways have high potential for novel metabolic routes with high productivity. In this review, we discuss recently developed 2-keto acid-based pathways.

  15. Production of bulk chemicals via novel metabolic pathways in microorganisms.

    PubMed

    Shin, Jae Ho; Kim, Hyun Uk; Kim, Dong In; Lee, Sang Yup

    2013-11-01

    Metabolic engineering has been playing important roles in developing high performance microorganisms capable of producing various chemicals and materials from renewable biomass in a sustainable manner. Synthetic and systems biology are also contributing significantly to the creation of novel pathways and the whole cell-wide optimization of metabolic performance, respectively. In order to expand the spectrum of chemicals that can be produced biotechnologically, it is necessary to broaden the metabolic capacities of microorganisms. Expanding the metabolic pathways for biosynthesizing the target chemicals requires not only the enumeration of a series of known enzymes, but also the identification of biochemical gaps whose corresponding enzymes might not actually exist in nature; this issue is the focus of this paper. First, pathway prediction tools, effectively combining reactions that lead to the production of a target chemical, are analyzed in terms of logics representing chemical information, and designing and ranking the proposed metabolic pathways. Then, several approaches for potentially filling in the gaps of the novel metabolic pathway are suggested along with relevant examples, including the use of promiscuous enzymes that flexibly utilize different substrates, design of novel enzymes for non-natural reactions, and exploration of hypothetical proteins. Finally, strain optimization by systems metabolic engineering in the context of novel metabolic pathways constructed is briefly described. It is hoped that this review paper will provide logical ways of efficiently utilizing 'big' biological data to design and develop novel metabolic pathways for the production of various bulk chemicals that are currently produced from fossil resources. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Pathway engineering strategies for production of beneficial carotenoids in microbial hosts.

    PubMed

    Ye, Victor M; Bhatia, Sujata K

    2012-08-01

    Carotenoids, such as lycopene, β-carotene, zeaxanthin, canthaxanthin and astaxanthin have many benefits for human health. In addition to the functional role of carotenoids as vitamin A precursors, adequate consumption of carotenoids prevents the development of a variety of serious diseases. Biosynthesis of carotenoids is a complex process and it starts with the common isoprene precursors. Condensation of these precursors and subsequent modifications, by introducing hydroxyl- and keto-groups, leads to the generation of diversified carotenoid structures. To improve carotenoid production, metabolic engineering has been explored in bacteria, yeast, and algae. The success of the pathway engineering effort depends on the host metabolism, specific enzymes used, the enzyme expression levels, and the strategies employed. Despite the difficulty of pathway engineering for carotenoid production, great progress has been made over the past decade. We review metabolic engineering approaches used in a variety of microbial hosts for carotenoid biosynthesis. These advances will greatly expedite our efforts to bring the health benefits of carotenoids and other nutritional compounds to our diet.

  17. Rewriting the Metabolic Blueprint: Advances in Pathway Diversification in Microorganisms

    PubMed Central

    Hossain, Gazi Sakir; Nadarajan, Saravanan Prabhu; Zhang, Lei; Ng, Tee-Kheang; Foo, Jee Loon; Ling, Hua; Choi, Won Jae; Chang, Matthew Wook

    2018-01-01

    Living organisms have evolved over millions of years to fine tune their metabolism to create efficient pathways for producing metabolites necessary for their survival. Advancement in the field of synthetic biology has enabled the exploitation of these metabolic pathways for the production of desired compounds by creating microbial cell factories through metabolic engineering, thus providing sustainable routes to obtain value-added chemicals. Following the past success in metabolic engineering, there is increasing interest in diversifying natural metabolic pathways to construct non-natural biosynthesis routes, thereby creating possibilities for producing novel valuable compounds that are non-natural or without elucidated biosynthesis pathways. Thus, the range of chemicals that can be produced by biological systems can be expanded to meet the demands of industries for compounds such as plastic precursors and new antibiotics, most of which can only be obtained through chemical synthesis currently. Herein, we review and discuss novel strategies that have been developed to rewrite natural metabolic blueprints in a bid to broaden the chemical repertoire achievable in microorganisms. This review aims to provide insights on recent approaches taken to open new avenues for achieving biochemical production that are beyond currently available inventions. PMID:29483901

  18. Rewriting the Metabolic Blueprint: Advances in Pathway Diversification in Microorganisms.

    PubMed

    Hossain, Gazi Sakir; Nadarajan, Saravanan Prabhu; Zhang, Lei; Ng, Tee-Kheang; Foo, Jee Loon; Ling, Hua; Choi, Won Jae; Chang, Matthew Wook

    2018-01-01

    Living organisms have evolved over millions of years to fine tune their metabolism to create efficient pathways for producing metabolites necessary for their survival. Advancement in the field of synthetic biology has enabled the exploitation of these metabolic pathways for the production of desired compounds by creating microbial cell factories through metabolic engineering, thus providing sustainable routes to obtain value-added chemicals. Following the past success in metabolic engineering, there is increasing interest in diversifying natural metabolic pathways to construct non-natural biosynthesis routes, thereby creating possibilities for producing novel valuable compounds that are non-natural or without elucidated biosynthesis pathways. Thus, the range of chemicals that can be produced by biological systems can be expanded to meet the demands of industries for compounds such as plastic precursors and new antibiotics, most of which can only be obtained through chemical synthesis currently. Herein, we review and discuss novel strategies that have been developed to rewrite natural metabolic blueprints in a bid to broaden the chemical repertoire achievable in microorganisms. This review aims to provide insights on recent approaches taken to open new avenues for achieving biochemical production that are beyond currently available inventions.

  19. Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli.

    PubMed

    Shen, Claire R; Liao, James C

    2013-05-01

    Synthesis of a desired product can often be achieved via more than one metabolic pathway. Whether naturally evolved or synthetically engineered, these pathways often exhibit specific properties that are suitable for production under distinct conditions and host organisms. Synergy between pathways arises when the underlying pathway characteristics, such as reducing equivalent demand, ATP requirement, intermediate utilization, and cofactor preferences, are complementary to each other. Utilization of such pathways in combination leads to an increased metabolite productivity and/or yield compared to using each pathway alone. This work illustrates the principle of synergy between two different pathways for 1-propanol production in Escherichia coli. A model-guided design based on maximum theoretical yield calculations identified synergy of the native threonine pathway and the heterologous citramalate pathway in terms of production yield across all flux ratios between the two pathways. Characterization of the individual pathways by host gene deletions demonstrates their distinct metabolic characteristics: the necessity of TCA cycle for threonine pathway and the independence of TCA cycle for the citramalate pathway. The two pathways are also complementary in driving force demands. Production experiments verified the synergistic effects predicted by the yield model, in which the platform with dual pathway for 2-ketobutyrate synthesis achieved higher yield (0.15g/g of glucose) and productivity (0.12g/L/h) of 1-propanol than individual ones alone: the threonine pathway (0.09g/g; 0.04g/L/h) or the citramalate pathway (0.11g/g; 0.04g/L/h). Thus, incorporation of synergy into the design principle of metabolic engineering may improve the production yield and rate of the desired compound. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    PubMed Central

    He, Fei; Murabito, Ettore; Westerhoff, Hans V.

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. PMID:27075000

  1. Engineering Robustness of Microbial Cell Factories.

    PubMed

    Gong, Zhiwei; Nielsen, Jens; Zhou, Yongjin J

    2017-10-01

    Metabolic engineering and synthetic biology offer great prospects in developing microbial cell factories capable of converting renewable feedstocks into fuels, chemicals, food ingredients, and pharmaceuticals. However, prohibitively low production rate and mass concentration remain the major hurdles in industrial processes even though the biosynthetic pathways are comprehensively optimized. These limitations are caused by a variety of factors unamenable for host cell survival, such as harsh industrial conditions, fermentation inhibitors from biomass hydrolysates, and toxic compounds including metabolic intermediates and valuable target products. Therefore, engineered microbes with robust phenotypes is essential for achieving higher yield and productivity. In this review, the recent advances in engineering robustness and tolerance of cell factories is described to cope with these issues and briefly introduce novel strategies with great potential to enhance the robustness of cell factories, including metabolic pathway balancing, transporter engineering, and adaptive laboratory evolution. This review also highlights the integration of advanced systems and synthetic biology principles toward engineering the harmony of overall cell function, more than the specific pathways or enzymes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Toward Engineering Synthetic Microbial Metabolism

    PubMed Central

    McArthur, George H.; Fong, Stephen S.

    2010-01-01

    The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements in de novo DNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism. PMID:20037734

  3. Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels.

    PubMed

    Cheon, Seungwoo; Kim, Hye Mi; Gustavsson, Martin; Lee, Sang Yup

    2016-12-01

    As climate change has become one of the major global risks, our heavy dependence on petroleum-derived fuels has received much public attention. To solve such problems, production of sustainable fuels has been intensively studied over the past years. Thanks to recent advances in synthetic biology and metabolic engineering technologies, bio-based platforms for advanced biofuels production have been developed using various microorganisms. The strategies for production of advanced biofuels have converged upon four major metabolic routes: the 2-ketoacid pathway, the fatty acid synthesis (FAS) pathway, the isoprenoid pathway, and the reverse β-oxidation pathway. Additionally, the polyketide synthesis pathway has recently been attracting interest as a promising alternative biofuel production route. In this article, recent trends in advanced biofuels production are reviewed by categorizing them into three types of advanced biofuels: alcohols, biodiesel and jet fuel, and gasoline. Focus is given on the strategies of employing synthetic biology and metabolic engineering for the development of microbial strains producing advanced fuels. Finally, the prospects for future advances needed to achieve much more efficient bio-based production of advanced biofuels are discussed, focusing on designing advanced biofuel production pathways coupled with screening, modifying, and creating novel enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae

    Treesearch

    Yong-Su Jin; Thomas W. Jeffries

    2004-01-01

    Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast raditionally...

  5. Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived Compounds—Present and Future Strain Construction Strategies

    PubMed Central

    Averesch, Nils J. H.; Krömer, Jens O.

    2018-01-01

    The aromatic nature of shikimate pathway intermediates gives rise to a wealth of potential bio-replacements for commonly fossil fuel-derived aromatics, as well as naturally produced secondary metabolites. Through metabolic engineering, the abundance of certain intermediates may be increased, while draining flux from other branches off the pathway. Often targets for genetic engineering lie beyond the shikimate pathway, altering flux deep in central metabolism. This has been extensively used to develop microbial production systems for a variety of compounds valuable in chemical industry, including aromatic and non-aromatic acids like muconic acid, para-hydroxybenzoic acid, and para-coumaric acid, as well as aminobenzoic acids and aromatic α-amino acids. Further, many natural products and secondary metabolites that are valuable in food- and pharma-industry are formed outgoing from shikimate pathway intermediates. (Re)construction of such routes has been shown by de novo production of resveratrol, reticuline, opioids, and vanillin. In this review, strain construction strategies are compared across organisms and put into perspective with requirements by industry for commercial viability. Focus is put on enhancing flux to and through shikimate pathway, and engineering strategies are assessed in order to provide a guideline for future optimizations. PMID:29632862

  6. Current advance in biological production of malic acid using wild type and metabolic engineered strains.

    PubMed

    Dai, Zhongxue; Zhou, Huiyuan; Zhang, Shangjie; Gu, Honglian; Yang, Qiao; Zhang, Wenming; Dong, Weiliang; Ma, Jiangfeng; Fang, Yan; Jiang, Min; Xin, Fengxue

    2018-06-01

    Malic acid (2-hydroxybutanedioic acid) is a four-carbon dicarboxylic acid, which has attracted great interest due to its wide usage as a precursor of many industrially important chemicals in the food, chemicals, and pharmaceutical industries. Several mature routes for malic acid production have been developed, such as chemical synthesis, enzymatic conversion and biological fermentation. With depletion of fossil fuels and concerns regarding environmental issues, biological production of malic acid has attracted more attention, which mainly consists of three pathways, namely non-oxidative pathway, oxidative pathway and glyoxylate cycle. In recent decades, metabolic engineering of model strains, and process optimization for malic acid production have been rapidly developed. Hence, this review comprehensively introduces an overview of malic acid producers and highlight some of the successful metabolic engineering approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Construction and engineering of large biochemical pathways via DNA assembler

    PubMed Central

    Shao, Zengyi; Zhao, Huimin

    2015-01-01

    Summary DNA assembler enables rapid construction and engineering of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use two examples including the zeaxanthin biosynthetic pathway and the aureothin biosynthetic gene cluster to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for construct design, pathway assembly, pathway confirmation, and functional analysis are shown. The protocol for fine genetic modifications such as site-directed mutagenesis for engineering the aureothin gene cluster is also illustrated. PMID:23996442

  8. Protein engineering approaches to chemical biotechnology.

    PubMed

    Chen, Zhen; Zeng, An-Ping

    2016-12-01

    Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products. Copyright © 2016. Published by Elsevier Ltd.

  9. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars

    DOE PAGES

    Yang, Shihui; Mohagheghi, Ali; Franden, Mary Ann; ...

    2016-09-02

    To develop pathways for advanced biofuel production, and to understand the impact of host metabolism and environmental conditions on heterologous pathway engineering for economic advanced biofuels production from biomass, we seek to redirect the carbon flow of the model ethanologen Zymomonas mobilis to produce desirable hydrocarbon intermediate 2,3-butanediol (2,3-BDO). 2,3-BDO is a bulk chemical building block, and can be upgraded in high yields to gasoline, diesel, and jet fuel. 2,3-BDO biosynthesis pathways from various bacterial species were examined, which include three genes encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase. Bioinformatics analysis was carried out to pinpoint potential bottlenecks formore » high 2,3-BDO production. Different combinations of 2,3-BDO biosynthesis metabolic pathways using genes from different bacterial species have been constructed. Our results demonstrated that carbon flux can be deviated from ethanol production into 2,3-BDO biosynthesis, and all three heterologous genes are essential to efficiently redirect pyruvate from ethanol production for high 2,3-BDO production in Z. mobilis. The down-selection of best gene combinations up to now enabled Z. mobilis to reach the 2,3-BDO production of more than 10 g/L from glucose and xylose, as well as mixed C6/C5 sugar streams derived from the deacetylation and mechanical refining process. In conclusion, this study confirms the value of integrating bioinformatics analysis and systems biology data during metabolic engineering endeavors, provides guidance for value-added chemical production in Z. mobilis, and reveals the interactions between host metabolism, oxygen levels, and a heterologous 2,3-BDO biosynthesis pathway. Taken together, this work provides guidance for future metabolic engineering efforts aimed at boosting 2,3-BDO titer anaerobically.« less

  10. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shihui; Mohagheghi, Ali; Franden, Mary Ann

    To develop pathways for advanced biofuel production, and to understand the impact of host metabolism and environmental conditions on heterologous pathway engineering for economic advanced biofuels production from biomass, we seek to redirect the carbon flow of the model ethanologen Zymomonas mobilis to produce desirable hydrocarbon intermediate 2,3-butanediol (2,3-BDO). 2,3-BDO is a bulk chemical building block, and can be upgraded in high yields to gasoline, diesel, and jet fuel. 2,3-BDO biosynthesis pathways from various bacterial species were examined, which include three genes encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase. Bioinformatics analysis was carried out to pinpoint potential bottlenecks formore » high 2,3-BDO production. Different combinations of 2,3-BDO biosynthesis metabolic pathways using genes from different bacterial species have been constructed. Our results demonstrated that carbon flux can be deviated from ethanol production into 2,3-BDO biosynthesis, and all three heterologous genes are essential to efficiently redirect pyruvate from ethanol production for high 2,3-BDO production in Z. mobilis. The down-selection of best gene combinations up to now enabled Z. mobilis to reach the 2,3-BDO production of more than 10 g/L from glucose and xylose, as well as mixed C6/C5 sugar streams derived from the deacetylation and mechanical refining process. In conclusion, this study confirms the value of integrating bioinformatics analysis and systems biology data during metabolic engineering endeavors, provides guidance for value-added chemical production in Z. mobilis, and reveals the interactions between host metabolism, oxygen levels, and a heterologous 2,3-BDO biosynthesis pathway. Taken together, this work provides guidance for future metabolic engineering efforts aimed at boosting 2,3-BDO titer anaerobically.« less

  11. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Microalgal bioengineering for sustainable energy development: Recent transgenesis and metabolic engineering strategies.

    PubMed

    Banerjee, Chiranjib; Singh, Puneet Kumar; Shukla, Pratyoosh

    2016-03-01

    Exploring the efficiency of algae to produce remarkable products can be directly benefitted by studying its mechanism at systems level. Recent advents in biotechnology like flux balance analysis (FBA), genomics and in silico proteomics minimize the wet lab exertion. It is understood that FBA predicts the metabolic products, metabolic pathways and alternative pathway to maximize the desired product, and these are key components for microalgae bio-engineering. This review encompasses recent transgenesis techniques and metabolic engineering strategies applied to different microalgae for improving different traits. Further it also throws light on RNAi and riboswitch engineering based methods which may be advantageous for high throughput microalgal research. A valid and optimally designed microalga can be developed where every engineering strategies meet each other successfully and will definitely fulfill the market needs. It is also to be noted that Omics (viz. genetic and metabolic manipulation with bioinformatics) should be integrated to develop a strain which could prove to be a futuristic solution for sustainable development for energy. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Systems metabolic engineering strategies for the production of amino acids.

    PubMed

    Ma, Qian; Zhang, Quanwei; Xu, Qingyang; Zhang, Chenglin; Li, Yanjun; Fan, Xiaoguang; Xie, Xixian; Chen, Ning

    2017-06-01

    Systems metabolic engineering is a multidisciplinary area that integrates systems biology, synthetic biology and evolutionary engineering. It is an efficient approach for strain improvement and process optimization, and has been successfully applied in the microbial production of various chemicals including amino acids. In this review, systems metabolic engineering strategies including pathway-focused approaches, systems biology-based approaches, evolutionary approaches and their applications in two major amino acid producing microorganisms: Corynebacterium glutamicum and Escherichia coli, are summarized.

  14. Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation - A chance for metabolic engineering.

    PubMed

    Kracke, Frauke; Lai, Bin; Yu, Shiqin; Krömer, Jens O

    2018-01-01

    More and more microbes are discovered that are capable of extracellular electron transfer, a process in which they use external electrodes as electron donors or acceptors for metabolic reactions. This feature can be used to overcome cellular redox limitations and thus optimizing microbial production. The technologies, termed microbial electrosynthesis and electro-fermentation, have the potential to open novel bio-electro production platforms from sustainable energy and carbon sources. However, the performance of reported systems is currently limited by low electron transport rates between microbes and electrodes and our limited ability for targeted engineering of these systems due to remaining knowledge gaps about the underlying fundamental processes. Metabolic engineering offers many opportunities to optimize these processes, for instance by genetic engineering of pathways for electron transfer on the one hand and target product synthesis on the other hand. With this review, we summarize the status quo of knowledge and engineering attempts around chemical production in bio-electrochemical systems from a microbe perspective. Challenges associated with the introduction or enhancement of extracellular electron transfer capabilities into production hosts versus the engineering of target compound synthesis pathways in natural exoelectrogens are discussed. Recent advances of the research community in both directions are examined critically. Further, systems biology approaches, for instance using metabolic modelling, are examined for their potential to provide insight into fundamental processes and to identify targets for metabolic engineering. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Engineering metabolic pathways in plants by multigene transformation.

    PubMed

    Zorrilla-López, Uxue; Masip, Gemma; Arjó, Gemma; Bai, Chao; Banakar, Raviraj; Bassie, Ludovic; Berman, Judit; Farré, Gemma; Miralpeix, Bruna; Pérez-Massot, Eduard; Sabalza, Maite; Sanahuja, Georgina; Vamvaka, Evangelia; Twyman, Richard M; Christou, Paul; Zhu, Changfu; Capell, Teresa

    2013-01-01

    Metabolic engineering in plants can be used to increase the abundance of specific valuable metabolites, but single-point interventions generally do not improve the yields of target metabolites unless that product is immediately downstream of the intervention point and there is a plentiful supply of precursors. In many cases, an intervention is necessary at an early bottleneck, sometimes the first committed step in the pathway, but is often only successful in shifting the bottleneck downstream, sometimes also causing the accumulation of an undesirable metabolic intermediate. Occasionally it has been possible to induce multiple genes in a pathway by controlling the expression of a key regulator, such as a transcription factor, but this strategy is only possible if such master regulators exist and can be identified. A more robust approach is the simultaneous expression of multiple genes in the pathway, preferably representing every critical enzymatic step, therefore removing all bottlenecks and ensuring completely unrestricted metabolic flux. This approach requires the transfer of multiple enzyme-encoding genes to the recipient plant, which is achieved most efficiently if all genes are transferred at the same time. Here we review the state of the art in multigene transformation as applied to metabolic engineering in plants, highlighting some of the most significant recent advances in the field.

  16. Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria.

    PubMed

    Tan, Gao-Yi; Liu, Tiangang

    2017-01-01

    Natural products (NPs) and their derivatives are widely used as frontline treatments for many diseases. Actinobacteria spp. are used to produce most of NP antibiotics and have also been intensively investigated for NP production, derivatization, and discovery. However, due to the complicated transcriptional and metabolic regulation of NP biosynthesis in Actinobacteria, especially in the cases of genome mining and heterologous expression, it is often difficult to rationally and systematically engineer synthetic pathways to maximize biosynthetic efficiency. With the emergence of new tools and methods in metabolic engineering, the synthetic pathways of many chemicals, such as fatty acids and biofuels, in model organisms (e.g. Escherichia coli ), have been refactored to realize precise and flexible control of production. These studies also offer a promising approach for synthetic pathway refactoring in Actinobacteria. In this review, the great potential of Actinobacteria as a microbial cell factory for biosynthesis of NPs is discussed. To this end, recent progress in metabolic engineering of NP synthetic pathways in Actinobacteria are summarized and strategies and perspectives to rationally and systematically refactor synthetic pathways in Actinobacteria are highlighted. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose.

    PubMed

    Gaida, Stefan Marcus; Liedtke, Andrea; Jentges, Andreas Heinz Wilhelm; Engels, Benedikt; Jennewein, Stefan

    2016-01-13

    Sustainable alternatives for the production of fuels and chemicals are needed to reduce our dependency on fossil resources and to avoid the negative impact of their excessive use on the global climate. Lignocellulosic feedstock from agricultural residues, energy crops and municipal solid waste provides an abundant and carbon-neutral alternative, but it is recalcitrant towards microbial degradation and must therefore undergo extensive pretreatment to release the monomeric sugar units used by biofuel-producing microbes. These pretreatment steps can be reduced by using microbes such as Clostridium cellulolyticum that naturally digest lignocellulose, but this limits the range of biofuels that can be produced. We therefore developed a metabolic engineering approach in C. cellulolyticum to expand its natural product spectrum and to fine tune the engineered metabolic pathways. Here we report the metabolic engineering of C. cellulolyticum to produce n-butanol, a next-generation biofuel and important chemical feedstock, directly from crystalline cellulose. We introduced the CoA-dependent pathway for n-butanol synthesis from C. acetobutylicum and measured the expression of functional enzymes (using targeted proteomics) and the abundance of metabolic intermediates (by LC-MS/MS) to identify potential bottlenecks in the n-butanol biosynthesis pathway. We achieved yields of 40 and 120 mg/L n-butanol from cellobiose and crystalline cellulose, respectively, after cultivating the bacteria for 6 and 20 days. The analysis of enzyme activities and key intracellular metabolites provides a robust framework to determine the metabolic flux through heterologous pathways in C. cellulolyticum, allowing further improvements by fine tuning individual steps to improve the yields of n-butanol.

  18. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    PubMed

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. © 2016 The Author(s).

  19. Accessing Nature’s diversity through metabolic engineering and synthetic biology

    PubMed Central

    King, Jason R.; Edgar, Steven; Qiao, Kangjian; Stephanopoulos, Gregory

    2016-01-01

    In this perspective, we highlight recent examples and trends in metabolic engineering and synthetic biology that demonstrate the synthetic potential of enzyme and pathway engineering for natural product discovery. In doing so, we introduce natural paradigms of secondary metabolism whereby simple carbon substrates are combined into complex molecules through “scaffold diversification”, and subsequent “derivatization” of these scaffolds is used to synthesize distinct complex natural products. We provide examples in which modern pathway engineering efforts including combinatorial biosynthesis and biological retrosynthesis can be coupled to directed enzyme evolution and rational enzyme engineering to allow access to the “privileged” chemical space of natural products in industry-proven microbes. Finally, we forecast the potential to produce natural product-like discovery platforms in biological systems that are amenable to single-step discovery, validation, and synthesis for streamlined discovery and production of biologically active agents. PMID:27081481

  20. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase.

    PubMed

    Bommareddy, Rajesh Reddy; Chen, Zhen; Rappert, Sugima; Zeng, An-Ping

    2014-09-01

    Engineering the cofactor availability is a common strategy of metabolic engineering to improve the production of many industrially important compounds. In this work, a de novo NADPH generation pathway is proposed by altering the coenzyme specificity of a native NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to NADP, which consequently has the potential to produce additional NADPH in the glycolytic pathway. Specifically, the coenzyme specificity of GAPDH of Corynebacterium glutamicum is systematically manipulated by rational protein design and the effect of the manipulation for cellular metabolism and lysine production is evaluated. By a combinatorial modification of four key residues within the coenzyme binding sites, different GAPDH mutants with varied coenzyme specificity were constructed. While increasing the catalytic efficiency of GAPDH towards NADP enhanced lysine production in all of the tested mutants, the most significant improvement of lysine production (~60%) was achieved with the mutant showing similar preference towards both NAD and NADP. Metabolic flux analysis with (13)C isotope studies confirmed that there was no significant change of flux towards the pentose phosphate pathway and the increased lysine yield was mainly attributed to the NADPH generated by the mutated GAPDH. The present study highlights the importance of protein engineering as a key strategy in de novo pathway design and overproduction of desired products. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. Complete Biosynthesis of Anthocyanins Using E. coli Polycultures.

    PubMed

    Jones, J Andrew; Vernacchio, Victoria R; Collins, Shannon M; Shirke, Abhijit N; Xiu, Yu; Englaender, Jacob A; Cress, Brady F; McCutcheon, Catherine C; Linhardt, Robert J; Gross, Richard A; Koffas, Mattheos A G

    2017-06-06

    Fermentation-based chemical production strategies provide a feasible route for the rapid, safe, and sustainable production of a wide variety of important chemical products, ranging from fuels to pharmaceuticals. These strategies have yet to find wide industrial utilization due to their inability to economically compete with traditional extraction and chemical production methods. Here, we engineer for the first time the complex microbial biosynthesis of an anthocyanin plant natural product, starting from sugar. This was accomplished through the development of a synthetic, 4-strain Escherichia coli polyculture collectively expressing 15 exogenous or modified pathway enzymes from diverse plants and other microbes. This synthetic consortium-based approach enables the functional expression and connection of lengthy pathways while effectively managing the accompanying metabolic burden. The de novo production of specific anthocyanin molecules, such as calistephin, has been an elusive metabolic engineering target for over a decade. The utilization of our polyculture strategy affords milligram-per-liter production titers. This study also lays the groundwork for significant advances in strain and process design toward the development of cost-competitive biochemical production hosts through nontraditional methodologies. IMPORTANCE To efficiently express active extensive recombinant pathways with high flux in microbial hosts requires careful balance and allocation of metabolic resources such as ATP, reducing equivalents, and malonyl coenzyme A (malonyl-CoA), as well as various other pathway-dependent cofactors and precursors. To address this issue, we report the design, characterization, and implementation of the first synthetic 4-strain polyculture. Division of the overexpression of 15 enzymes and transcription factors over 4 independent strain modules allowed for the division of metabolic burden and for independent strain optimization for module-specific metabolite needs. This study represents the most complex synthetic consortia constructed to date for metabolic engineering applications and provides a new paradigm in metabolic engineering for the reconstitution of extensive metabolic pathways in nonnative hosts. Copyright © 2017 Jones et al.

  2. A Synthetic Recursive “+1” Pathway for Carbon Chain Elongation

    PubMed Central

    Marcheschi, Ryan J.; Li, Han; Zhang, Kechun; Noey, Elizabeth L.; Kim, Seonah; Chaubey, Asha; Houk, K. N.; Liao, James C.

    2013-01-01

    Nature uses four methods of carbon chain elongation for the production of 2-ketoacids, fatty acids, polyketides, and isoprenoids. Using a combination of quantum mechanical (QM) modeling, protein–substrate modeling, and protein and metabolic engineering, we have engineered the enzymes involved in leucine biosynthesis for use as a synthetic “+1” recursive metabolic pathway to extend the carbon chain of 2-ketoacids. This modified pathway preferentially selects longer-chain substrates for catalysis, as compared to the non-recursive natural pathway, and can recursively catalyze five elongation cycles to synthesize bulk chemicals, such as 1-heptanol, 1-octanol, and phenylpropanol directly from glucose. The “+1” chemistry is a valuable metabolic tool in addition to the “+5” chemistry and “+2” chemistry for the biosynthesis of isoprenoids, fatty acids, or polyketides. PMID:22242720

  3. Controlling cell-free metabolism through physiochemical perturbations.

    PubMed

    Karim, Ashty S; Heggestad, Jacob T; Crowe, Samantha A; Jewett, Michael C

    2018-01-01

    Building biosynthetic pathways and engineering metabolic reactions in cells can be time-consuming due to complexities in cellular metabolism. These complexities often convolute the combinatorial testing of biosynthetic pathway designs needed to define an optimal biosynthetic system. To simplify the optimization of biosynthetic systems, we recently reported a new cell-free framework for pathway construction and testing. In this framework, multiple crude-cell extracts are selectively enriched with individual pathway enzymes, which are then mixed to construct full biosynthetic pathways on the time scale of a day. This rapid approach to building pathways aids in the study of metabolic pathway performance by providing a unique freedom of design to modify and control biological systems for both fundamental and applied biotechnology. The goal of this work was to demonstrate the ability to probe biosynthetic pathway performance in our cell-free framework by perturbing physiochemical conditions, using n-butanol synthesis as a model. We carried out three unique case studies. First, we demonstrated the power of our cell-free approach to maximize biosynthesis yields by mapping physiochemical landscapes using a robotic liquid-handler. This allowed us to determine that NAD and CoA are the most important factors that govern cell-free n-butanol metabolism. Second, we compared metabolic profile differences between two different approaches for building pathways from enriched lysates, heterologous expression and cell-free protein synthesis. We discover that phosphate from PEP utilization, along with other physiochemical reagents, during cell-free protein synthesis-coupled, crude-lysate metabolic system operation inhibits optimal cell-free n-butanol metabolism. Third, we show that non-phosphorylated secondary energy substrates can be used to fuel cell-free protein synthesis and n-butanol biosynthesis. Taken together, our work highlights the ease of using cell-free systems to explore physiochemical perturbations and suggests the need for a more controllable, multi-step, separated cell-free framework for future pathway prototyping and enzyme discovery efforts. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria.

    PubMed

    Xiong, Wei; Lee, Tai-Chi; Rommelfanger, Sarah; Gjersing, Erica; Cano, Melissa; Maness, Pin-Ching; Ghirardi, Maria; Yu, Jianping

    2015-12-07

    Central carbon metabolism in cyanobacteria comprises the Calvin-Benson-Bassham (CBB) cycle, glycolysis, the pentose phosphate (PP) pathway and the tricarboxylic acid (TCA) cycle. Redundancy in this complex metabolic network renders the rational engineering of cyanobacterial metabolism for the generation of biomass, biofuels and chemicals a challenge. Here we report the presence of a functional phosphoketolase pathway, which splits xylulose-5-phosphate (or fructose-6-phosphate) to acetate precursor acetyl phosphate, in an engineered strain of the model cyanobacterium Synechocystis (ΔglgC/xylAB), in which glycogen synthesis is blocked, and xylose catabolism enabled through the introduction of xylose isomerase and xylulokinase. We show that this mutant strain is able to metabolise xylose to acetate on nitrogen starvation. To see whether acetate production in the mutant is linked to the activity of phosphoketolase, we disrupted a putative phosphoketolase gene (slr0453) in the ΔglgC/xylAB strain, and monitored metabolic flux using (13)C labelling; acetate and 2-oxoglutarate production was reduced in the light. A metabolic flux analysis, based on isotopic data, suggests that the phosphoketolase pathway metabolises over 30% of the carbon consumed by ΔglgC/xylAB during photomixotrophic growth on xylose and CO2. Disruption of the putative phosphoketolase gene in wild-type Synechocystis also led to a deficiency in acetate production in the dark, indicative of a contribution of the phosphoketolase pathway to heterotrophic metabolism. We suggest that the phosphoketolase pathway, previously uncharacterized in photosynthetic organisms, confers flexibility in energy and carbon metabolism in cyanobacteria, and could be exploited to increase the efficiency of cyanobacterial carbon metabolism and photosynthetic productivity.

  5. Metabolic engineering of Escherichia coli for the production of phenylpyruvate derivatives.

    PubMed

    Liu, Shuang Ping; Zhang, Liang; Mao, Jian; Ding, Zhong Yang; Shi, Gui Yang

    2015-11-01

    Phenylpyruvate derivatives (PPD), such as phenylpropanoids, DL-phenylglycine, dl-phenylalanine, and styrene, are biosynthesized using phenylpyruvate as the precursor. They are widely used in human health and nutrition products. Recently, metabolic engineering provides effective strategies to develop PPD producers. Based on phenylpyruvate-producing chassis, genetically defined PPD producers have been successfully constructed. In this work, the most recent information on genetics and on the molecular mechanisms regulating phenylpyruvate synthesis pathways in Escherichia coli are summarized, and the engineering strategies to construct the PPD producers are also discussed. The enzymes and pathways are proposed for PPD-producer constructions, and potential difficulties in strain construction are also identified and discussed. With respect to recent advances in synthetic biology, future strategies to construct efficiently producers are discussed. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Recent Advances in Microbial Production of Aromatic Chemicals and Derivatives.

    PubMed

    Noda, Shuhei; Kondo, Akihiko

    2017-08-01

    Along with the development of metabolic engineering and synthetic biology tools, various microbes are being used to produce aromatic chemicals. In microbes, aromatics are mainly produced via a common important precursor, chorismate, in the shikimate pathway. Natural or non-natural aromatics have been produced by engineering metabolic pathways involving chorismate. In the past decade, novel approaches have appeared to produce various aromatics or to increase their productivity, whereas previously, the targets were mainly aromatic amino acids and the strategy was deregulating feedback inhibition. In this review, we summarize recent studies of microbial production of aromatics based on metabolic engineering approaches. In addition, future perspectives and challenges in this research area are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Production of C2-C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies.

    PubMed

    Zhang, Ye; Liu, Dehua; Chen, Zhen

    2017-01-01

    C2-C4 diols classically derived from fossil resource are very important bulk chemicals which have been used in a wide range of areas, including solvents, fuels, polymers, cosmetics, and pharmaceuticals. Production of C2-C4 diols from renewable resources has received significant interest in consideration of the reducing fossil resource and the increasing environmental issues. While bioproduction of certain diols like 1,3-propanediol has been commercialized in recent years, biosynthesis of many other important C2-C4 diol isomers is highly challenging due to the lack of natural synthesis pathways. Recent advances in synthetic biology have enabled the de novo design of completely new pathways to non-natural molecules from renewable feedstocks. In this study, we review recent advances in bioproduction of C2-C4 diols, focusing on new metabolic pathways and metabolic engineering strategies being developed. We also discuss the challenges and future trends toward the development of economically competitive processes for bio-based diol production.

  8. Modular co-culture engineering, a new approach for metabolic engineering.

    PubMed

    Zhang, Haoran; Wang, Xiaonan

    2016-09-01

    With the development of metabolic engineering, employment of a selected microbial host for accommodation of a designed biosynthetic pathway to produce a target compound has achieved tremendous success in the past several decades. Yet, increasing requirements for sophisticated microbial biosynthesis call for establishment and application of more advanced metabolic engineering methodologies. Recently, important progress has been made towards employing more than one engineered microbial strains to constitute synthetic co-cultures and modularizing the biosynthetic labor between the co-culture members in order to improve bioproduction performance. This emerging approach, referred to as modular co-culture engineering in this review, presents a valuable opportunity for expanding the scope of the broad field of metabolic engineering. We highlight representative research accomplishments using this approach, especially those utilizing metabolic engineering tools for microbial co-culture manipulation. Key benefits and major challenges associated with modular co-culture engineering are also presented and discussed. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering.

    PubMed

    Fehér, Tamás; Planson, Anne-Gaëlle; Carbonell, Pablo; Fernández-Castané, Alfred; Grigoras, Ioana; Dariy, Ekaterina; Perret, Alain; Faulon, Jean-Loup

    2014-11-01

    Metabolic engineering has succeeded in biosynthesis of numerous commodity or high value compounds. However, the choice of pathways and enzymes used for production was many times made ad hoc, or required expert knowledge of the specific biochemical reactions. In order to rationalize the process of engineering producer strains, we developed the computer-aided design (CAD) tool RetroPath that explores and enumerates metabolic pathways connecting the endogenous metabolites of a chassis cell to the target compound. To experimentally validate our tool, we constructed 12 top-ranked enzyme combinations producing the flavonoid pinocembrin, four of which displayed significant yields. Namely, our tool queried the enzymes found in metabolic databases based on their annotated and predicted activities. Next, it ranked pathways based on the predicted efficiency of the available enzymes, the toxicity of the intermediate metabolites and the calculated maximum product flux. To implement the top-ranking pathway, our procedure narrowed down a list of nine million possible enzyme combinations to 12, a number easily assembled and tested. One round of metabolic network optimization based on RetroPath output further increased pinocembrin titers 17-fold. In total, 12 out of the 13 enzymes tested in this work displayed a relative performance that was in accordance with its predicted score. These results validate the ranking function of our CAD tool, and open the way to its utilization in the biosynthesis of novel compounds. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Computational Tools for Metabolic Engineering

    PubMed Central

    Copeland, Wilbert B.; Bartley, Bryan A.; Chandran, Deepak; Galdzicki, Michal; Kim, Kyung H.; Sleight, Sean C.; Maranas, Costas D.; Sauro, Herbert M.

    2012-01-01

    A great variety of software applications are now employed in the metabolic engineering field. These applications have been created to support a wide range of experimental and analysis techniques. Computational tools are utilized throughout the metabolic engineering workflow to extract and interpret relevant information from large data sets, to present complex models in a more manageable form, and to propose efficient network design strategies. In this review, we present a number of tools that can assist in modifying and understanding cellular metabolic networks. The review covers seven areas of relevance to metabolic engineers. These include metabolic reconstruction efforts, network visualization, nucleic acid and protein engineering, metabolic flux analysis, pathway prospecting, post-structural network analysis and culture optimization. The list of available tools is extensive and we can only highlight a small, representative portion of the tools from each area. PMID:22629572

  11. Flux analysis and metabolomics for systematic metabolic engineering of microorganisms.

    PubMed

    Toya, Yoshihiro; Shimizu, Hiroshi

    2013-11-01

    Rational engineering of metabolism is important for bio-production using microorganisms. Metabolic design based on in silico simulations and experimental validation of the metabolic state in the engineered strain helps in accomplishing systematic metabolic engineering. Flux balance analysis (FBA) is a method for the prediction of metabolic phenotype, and many applications have been developed using FBA to design metabolic networks. Elementary mode analysis (EMA) and ensemble modeling techniques are also useful tools for in silico strain design. The metabolome and flux distribution of the metabolic pathways enable us to evaluate the metabolic state and provide useful clues to improve target productivity. Here, we reviewed several computational applications for metabolic engineering by using genome-scale metabolic models of microorganisms. We also discussed the recent progress made in the field of metabolomics and (13)C-metabolic flux analysis techniques, and reviewed these applications pertaining to bio-production development. Because these in silico or experimental approaches have their respective advantages and disadvantages, the combined usage of these methods is complementary and effective for metabolic engineering. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds.

    PubMed

    Rodriguez, Alberto; Martínez, Juan A; Flores, Noemí; Escalante, Adelfo; Gosset, Guillermo; Bolivar, Francisco

    2014-09-09

    The production of aromatic amino acids using fermentation processes with recombinant microorganisms can be an advantageous approach to reach their global demands. In addition, a large array of compounds with alimentary and pharmaceutical applications can potentially be synthesized from intermediates of this metabolic pathway. However, contrary to other amino acids and primary metabolites, the artificial channelling of building blocks from central metabolism towards the aromatic amino acid pathway is complicated to achieve in an efficient manner. The length and complex regulation of this pathway have progressively called for the employment of more integral approaches, promoting the merge of complementary tools and techniques in order to surpass metabolic and regulatory bottlenecks. As a result, relevant insights on the subject have been obtained during the last years, especially with genetically modified strains of Escherichia coli. By combining metabolic engineering strategies with developments in synthetic biology, systems biology and bioprocess engineering, notable advances were achieved regarding the generation, characterization and optimization of E. coli strains for the overproduction of aromatic amino acids, some of their precursors and related compounds. In this paper we review and compare recent successful reports dealing with the modification of metabolic traits to attain these objectives.

  13. Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol.

    PubMed

    Liu, Jianming; Chan, Siu Hung Joshua; Brock-Nannestad, Theis; Chen, Jun; Lee, Sang Yup; Solem, Christian; Jensen, Peter Ruhdal

    2016-07-01

    Biocompatible chemistry is gaining increasing attention because of its potential within biotechnology for expanding the repertoire of biological transformations carried out by enzymes. Here we demonstrate how biocompatible chemistry can be used for synthesizing valuable compounds as well as for linking metabolic pathways to achieve redox balance and rescued growth. By comprehensive rerouting of metabolism, activation of respiration, and finally metal ion catalysis, we successfully managed to convert the homolactic bacterium Lactococcus lactis into a homo-diacetyl producer with high titer (95mM or 8.2g/L) and high yield (87% of the theoretical maximum). Subsequently, the pathway was extended to (S,S)-2,3-butanediol (S-BDO) through efficiently linking two metabolic pathways via chemical catalysis. This resulted in efficient homo-S-BDO production with a titer of 74mM (6.7g/L) S-BDO and a yield of 82%. The diacetyl and S-BDO production rates and yields obtained are the highest ever reported, demonstrating the promising combination of metabolic engineering and biocompatible chemistry as well as the great potential of L. lactis as a new production platform. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli.

    PubMed

    Zhu, Xinna; Tan, Zaigao; Xu, Hongtao; Chen, Jing; Tang, Jinlei; Zhang, Xueli

    2014-07-01

    Reducing equivalents are an important cofactor for efficient synthesis of target products. During metabolic evolution to improve succinate production in Escherichia coli strains, two reducing equivalent-conserving pathways were activated to increase succinate yield. The sensitivity of pyruvate dehydrogenase to NADH inhibition was eliminated by three nucleotide mutations in the lpdA gene. Pyruvate dehydrogenase activity increased under anaerobic conditions, which provided additional NADH. The pentose phosphate pathway and transhydrogenase were activated by increased activities of transketolase and soluble transhydrogenase SthA. These data suggest that more carbon flux went through the pentose phosphate pathway, thus leading to production of more reducing equivalent in the form of NADPH, which was then converted to NADH through soluble transhydrogenase for succinate production. Reverse metabolic engineering was further performed in a parent strain, which was not metabolically evolved, to verify the effects of activating these two reducing equivalent-conserving pathways for improving succinate yield. Activating pyruvate dehydrogenase increased succinate yield from 1.12 to 1.31mol/mol, whereas activating the pentose phosphate pathway and transhydrogenase increased succinate yield from 1.12 to 1.33mol/mol. Activating these two pathways in combination led to a succinate yield of 1.5mol/mol (88% of theoretical maximum), suggesting that they exhibited a synergistic effect for improving succinate yield. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Engineering Escherichia coli Nicotinic Acid Mononucleotide Adenylyltransferase for Fully Active Amidated NAD Biosynthesis.

    PubMed

    Wang, Xueying; Zhou, Yongjin J; Wang, Lei; Liu, Wujun; Liu, Yuxue; Peng, Chang; Zhao, Zongbao K

    2017-07-01

    NAD and its reduced form NADH function as essential redox cofactors and have major roles in determining cellular metabolic features. NAD can be synthesized through the deamidated and amidated pathways, for which the key reaction involves adenylylation of nicotinic acid mononucleotide (NaMN) and nicotinamide mononucleotide (NMN), respectively. In Escherichia coli , NAD de novo biosynthesis depends on the protein NadD-catalyzed adenylylation of NaMN to nicotinic acid adenine dinucleotide (NaAD), followed by NAD synthase-catalyzed amidation. In this study, we engineered NadD to favor NMN for improved amidated pathway activity. We designed NadD mutant libraries, screened by a malic enzyme-coupled colorimetric assay, and identified two variants, 11B4 (Y84V/Y118D) and 16D8 (A86W/Y118N), with a high preference for NMN. Whereas in the presence of NMN both variants were capable of enabling the viability of cells of E. coli BW25113-derived NAD-auxotrophic strain YJE003, for which the last step of the deamidated pathway is blocked, the 16D8 expression strain could grow without exogenous NMN and accumulated a higher cellular NAD(H) level than BW25113 in the stationary phase. These mutants established fully active amidated NAD biosynthesis and offered a new opportunity to manipulate NAD metabolism for biocatalysis and metabolic engineering. IMPORTANCE Adenylylation of nicotinic acid mononucleotide (NaMN) and adenylylation of nicotinamide mononucleotide (NMN), respectively, are the key steps in the deamidated and amidated pathways for NAD biosynthesis. In most organisms, canonical NAD biosynthesis follows the deamidated pathway. Here we engineered Escherichia coli NaMN adenylyltransferase to favor NMN and expressed the mutant enzyme in an NAD-auxotrophic E. coli strain that has the last step of the deamidated pathway blocked. The engineered strain survived in M9 medium, which indicated the implementation of a functional amidated pathway for NAD biosynthesis. These results enrich our understanding of NAD biosynthesis and are valuable for manipulation of NAD homeostasis for metabolic engineering. Copyright © 2017 American Society for Microbiology.

  16. Compartmentalization of metabolic pathways in yeast mitochondria improves production of branched chain alcohols

    PubMed Central

    Avalos, José L.; Fink, Gerald R.; Stephanopoulos, Gregory

    2013-01-01

    Efforts to improve the production of a compound of interest in Saccharomyces cerevisiae have mainly involved engineering or overexpression of cytoplasmic enzymes. We show that targeted expression of metabolic pathways to mitochondria can increase production levels compared with expression of the same pathways in the cytoplasm. Compartmentalisation of the Ehrlich pathway into mitochondria increased isobutanol production by 260%, whereas overexpression of the same pathway in the cytoplasm only improved yields by 10%, compared with a strain overexpressing only the first three steps of the biosynthetic pathway. Subcellular fractionation of engineered strains reveals that targeting the enzymes of the Ehrlich pathway to the mitochondria achieves higher local enzyme concentrations. Other benefits of compartmentalization may include increased availability of intermediates, removing the need to transport intermediates out of the mitochondrion, and reducing the loss of intermediates to competing pathways. PMID:23417095

  17. Novel technologies provide more engineering strategies for amino acid-producing microorganisms.

    PubMed

    Gu, Pengfei; Su, Tianyuan; Qi, Qingsheng

    2016-03-01

    Traditionally, amino acid-producing strains were obtained by random mutagenesis and subsequent selection. With the development of genetic and metabolic engineering techniques, various microorganisms with high amino acid production yields are now constructed by rational design of targeted biosynthetic pathways. Recently, novel technologies derived from systems and synthetic biology have emerged and open a new promising avenue towards the engineering of amino acid production microorganisms. In this review, these approaches, including rational engineering of rate-limiting enzymes, real-time sensing of end-products, pathway optimization on the chromosome, transcription factor-mediated strain improvement, and metabolic modeling and flux analysis, were summarized with regard to their application in microbial amino acid production.

  18. Complex systems in metabolic engineering.

    PubMed

    Winkler, James D; Erickson, Keesha; Choudhury, Alaksh; Halweg-Edwards, Andrea L; Gill, Ryan T

    2015-12-01

    Metabolic engineers manipulate intricate biological networks to build efficient biological machines. The inherent complexity of this task, derived from the extensive and often unknown interconnectivity between and within these networks, often prevents researchers from achieving desired performance. Other fields have developed methods to tackle the issue of complexity for their unique subset of engineering problems, but to date, there has not been extensive and comprehensive examination of how metabolic engineers use existing tools to ameliorate this effect on their own research projects. In this review, we examine how complexity affects engineering at the protein, pathway, and genome levels within an organism, and the tools for handling these issues to achieve high-performing strain designs. Quantitative complexity metrics and their applications to metabolic engineering versus traditional engineering fields are also discussed. We conclude by predicting how metabolic engineering practices may advance in light of an explicit consideration of design complexity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A portable expression resource for engineering cross-species genetic circuits and pathways

    PubMed Central

    Kushwaha, Manish; Salis, Howard M.

    2015-01-01

    Genetic circuits and metabolic pathways can be reengineered to allow organisms to process signals and manufacture useful chemicals. However, their functions currently rely on organism-specific regulatory parts, fragmenting synthetic biology and metabolic engineering into host-specific domains. To unify efforts, here we have engineered a cross-species expression resource that enables circuits and pathways to reuse the same genetic parts, while functioning similarly across diverse organisms. Our engineered system combines mixed feedback control loops and cross-species translation signals to autonomously self-regulate expression of an orthogonal polymerase without host-specific promoters, achieving nontoxic and tuneable gene expression in diverse Gram-positive and Gram-negative bacteria. Combining 50 characterized system variants with mechanistic modelling, we show how the cross-species expression resource's dynamics, capacity and toxicity are controlled by the control loops' architecture and feedback strengths. We also demonstrate one application of the resource by reusing the same genetic parts to express a biosynthesis pathway in both model and non-model hosts. PMID:26184393

  20. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.

    PubMed

    Wei, Na; Oh, Eun Joong; Million, Gyver; Cate, Jamie H D; Jin, Yong-Su

    2015-06-19

    The inability of fermenting microorganisms to use mixed carbon components derived from lignocellulosic biomass is a major technical barrier that hinders the development of economically viable cellulosic biofuel production. In this study, we integrated the fermentation pathways of both hexose and pentose sugars and an acetic acid reduction pathway into one Saccharomyces cerevisiae strain for the first time using synthetic biology and metabolic engineering approaches. The engineered strain coutilized cellobiose, xylose, and acetic acid to produce ethanol with a substantially higher yield and productivity than the control strains, and the results showed the unique synergistic effects of pathway coexpression. The mixed substrate coutilization strategy is important for making complete and efficient use of cellulosic carbon and will contribute to the development of consolidated bioprocessing for cellulosic biofuel. The study also presents an innovative metabolic engineering approach whereby multiple substrate consumption pathways can be integrated in a synergistic way for enhanced bioconversion.

  1. Stacking transgenes in forest trees.

    PubMed

    Halpin, Claire; Boerjan, Wout

    2003-08-01

    Huge potential exists for improving plant raw materials and foodstuffs via metabolic engineering. To date, progress has mostly been limited to modulating the expression of single genes of well-studied pathways, such as the lignin biosynthetic pathway, in model species. However, a recent report illustrates a new level of sophistication in metabolic engineering by overexpressing one lignin enzyme while simultaneously suppressing the expression of another lignin gene in a tree, aspen. This novel approach to multi-gene manipulation has succeeded in concurrently improving several wood-quality traits.

  2. Creation of a Genome-Wide Metabolic Pathway Database for Populus trichocarpa Using a New Approach for Reconstruction and Curation of Metabolic Pathways for Plants1[W][OA

    PubMed Central

    Zhang, Peifen; Dreher, Kate; Karthikeyan, A.; Chi, Anjo; Pujar, Anuradha; Caspi, Ron; Karp, Peter; Kirkup, Vanessa; Latendresse, Mario; Lee, Cynthia; Mueller, Lukas A.; Muller, Robert; Rhee, Seung Yon

    2010-01-01

    Metabolic networks reconstructed from sequenced genomes or transcriptomes can help visualize and analyze large-scale experimental data, predict metabolic phenotypes, discover enzymes, engineer metabolic pathways, and study metabolic pathway evolution. We developed a general approach for reconstructing metabolic pathway complements of plant genomes. Two new reference databases were created and added to the core of the infrastructure: a comprehensive, all-plant reference pathway database, PlantCyc, and a reference enzyme sequence database, RESD, for annotating metabolic functions of protein sequences. PlantCyc (version 3.0) includes 714 metabolic pathways and 2,619 reactions from over 300 species. RESD (version 1.0) contains 14,187 literature-supported enzyme sequences from across all kingdoms. We used RESD, PlantCyc, and MetaCyc (an all-species reference metabolic pathway database), in conjunction with the pathway prediction software Pathway Tools, to reconstruct a metabolic pathway database, PoplarCyc, from the recently sequenced genome of Populus trichocarpa. PoplarCyc (version 1.0) contains 321 pathways with 1,807 assigned enzymes. Comparing PoplarCyc (version 1.0) with AraCyc (version 6.0, Arabidopsis [Arabidopsis thaliana]) showed comparable numbers of pathways distributed across all domains of metabolism in both databases, except for a higher number of AraCyc pathways in secondary metabolism and a 1.5-fold increase in carbohydrate metabolic enzymes in PoplarCyc. Here, we introduce these new resources and demonstrate the feasibility of using them to identify candidate enzymes for specific pathways and to analyze metabolite profiling data through concrete examples. These resources can be searched by text or BLAST, browsed, and downloaded from our project Web site (http://plantcyc.org). PMID:20522724

  3. Synergizing 13C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production.

    PubMed

    Guo, Weihua; Sheng, Jiayuan; Feng, Xueyang

    Metabolic engineering of industrial microorganisms to produce chemicals, fuels, and drugs has attracted increasing interest as it provides an environment-friendly and renewable route that does not depend on depleting petroleum sources. However, the microbial metabolism is so complex that metabolic engineering efforts often have difficulty in achieving a satisfactory yield, titer, or productivity of the target chemical. To overcome this challenge, 13 C Metabolic Flux Analysis ( 13 C-MFA) has been developed to investigate rigorously the cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, 13 C-MFA has been widely used in academic labs and the biotechnology industry to pinpoint the key issues related to microbial-based chemical production and to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this chapter we introduce the basics of 13 C-MFA and illustrate how 13 C-MFA has been applied to synergize with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production.

  4. Harnessing biodiesel-producing microbes: from genetic engineering of lipase to metabolic engineering of fatty acid biosynthetic pathway.

    PubMed

    Yan, Jinyong; Yan, Yunjun; Madzak, Catherine; Han, Bingnan

    2017-02-01

    Microbial production routes, notably whole-cell lipase-mediated biotransformation and fatty-acids-derived biosynthesis, offer new opportunities for synthesizing biodiesel. They compare favorably to immobilized lipase and chemically catalyzed processes. Genetically modified whole-cell lipase-mediated in vitro route, together with in vivo and ex vivo microbial biosynthesis routes, constitutes emerging and rapidly developing research areas for effective production of biodiesel. This review presents recent advances in customizing microorganisms for producing biodiesel, via genetic engineering of lipases and metabolic engineering (including system regulation) of fatty-acids-derived pathways. Microbial hosts used include Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Aspergillus oryzae. These microbial cells can be genetically modified to produce lipases under different forms: intracellularly expressed, secreted or surface-displayed. They can be metabolically redesigned and systematically regulated to obtain balanced biodiesel-producing cells, as highlighted in this study. Such genetically or metabolically modified microbial cells can support not only in vitro biotransformation of various common oil feedstocks to biodiesel, but also de novo biosynthesis of biodiesel from glucose, glycerol or even cellulosic biomass. We believe that the genetically tractable oleaginous yeast Yarrowia lipolytica could be developed to an effective biodiesel-producing microbial cell factory. For this purpose, we propose several engineered pathways, based on lipase and wax ester synthase, in this promising oleaginous host.

  5. Engineering tolerance to industrially relevant stress factors in yeast cell factories.

    PubMed

    Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R; Thevelein, Johan M

    2017-06-01

    The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. © FEMS 2017.

  6. Engineering tolerance to industrially relevant stress factors in yeast cell factories

    PubMed Central

    Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R.

    2017-01-01

    Abstract The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. PMID:28586408

  7. Improving formaldehyde consumption drives methanol assimilation in engineered E. coli.

    PubMed

    Woolston, Benjamin M; King, Jason R; Reiter, Michael; Van Hove, Bob; Stephanopoulos, Gregory

    2018-06-19

    Due to volatile sugar prices, the food vs fuel debate, and recent increases in the supply of natural gas, methanol has emerged as a promising feedstock for the bio-based economy. However, attempts to engineer Escherichia coli to metabolize methanol have achieved limited success. Here, we provide a rigorous systematic analysis of several potential pathway bottlenecks. We show that regeneration of ribulose 5-phosphate in E. coli is insufficient to sustain methanol assimilation, and overcome this by activating the sedoheptulose bisphosphatase variant of the ribulose monophosphate pathway. By leveraging the kinetic isotope effect associated with deuterated methanol as a chemical probe, we further demonstrate that under these conditions overall pathway flux is kinetically limited by methanol dehydrogenase. Finally, we identify NADH as a potent kinetic inhibitor of this enzyme. These results provide direction for future engineering strategies to improve methanol utilization, and underscore the value of chemical biology methodologies in metabolic engineering.

  8. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production.

    PubMed

    Alonso-Gutierrez, Jorge; Chan, Rossana; Batth, Tanveer S; Adams, Paul D; Keasling, Jay D; Petzold, Christopher J; Lee, Taek Soon

    2013-09-01

    Limonene is a valuable monoterpene used in the production of several commodity chemicals and medicinal compounds. Among them, perillyl alcohol (POH) is a promising anti-cancer agent that can be produced by hydroxylation of limonene. We engineered E. coli with a heterologous mevalonate pathway and limonene synthase for production of limonene followed by coupling with a cytochrome P450, which specifically hydroxylates limonene to produce POH. A strain containing all mevalonate pathway genes in a single plasmid produced limonene at titers over 400mg/L from glucose, substantially higher than has been achieved in the past. Incorporation of a cytochrome P450 to hydroxylate limonene yielded approximately 100mg/L of POH. Further metabolic engineering of the pathway and in situ product recovery using anion exchange resins would make this engineered E. coli a potential production platform for any valuable limonene derivative. © 2013 Elsevier Inc. All rights reserved.

  9. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose.

    PubMed

    Kawaguchi, Hideo; Yoshihara, Kumiko; Hara, Kiyotaka Y; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2018-05-17

    L-Arabinose is the second most abundant component of hemicellulose in lignocellulosic biomass, next to D-xylose. However, few microorganisms are capable of utilizing pentoses, and catabolic genes and operons enabling bacterial utilization of pentoses are typically subject to carbon catabolite repression by more-preferred carbon sources, such as D-glucose, leading to a preferential utilization of D-glucose over pentoses. In order to simultaneously utilize both D-glucose and L-arabinose at the same rate, a modified metabolic pathway was rationally designed based on metabolome analysis. Corynebacterium glutamicum ATCC 31831 utilized D-glucose and L-arabinose simultaneously at a low concentration (3.6 g/L each) but preferentially utilized D-glucose over L-arabinose at a high concentration (15 g/L each), although L-arabinose and D-glucose were consumed at comparable rates in the absence of the second carbon source. Metabolome analysis revealed that phosphofructokinase and pyruvate kinase were major bottlenecks for D-glucose and L-arabinose metabolism, respectively. Based on the results of metabolome analysis, a metabolic pathway was engineered by overexpressing pyruvate kinase in combination with deletion of araR, which encodes a repressor of L-arabinose uptake and catabolism. The recombinant strain utilized high concentrations of D-glucose and L-arabinose (15 g/L each) at the same consumption rate. During simultaneous utilization of both carbon sources at high concentrations, intracellular levels of phosphoenolpyruvate declined and acetyl-CoA levels increased significantly as compared with the wild-type strain that preferentially utilized D-glucose. These results suggest that overexpression of pyruvate kinase in the araR deletion strain increased the specific consumption rate of L-arabinose and that citrate synthase activity becomes a new bottleneck in the engineered pathway during the simultaneous utilization of D-glucose and L-arabinose. Metabolome analysis identified potential bottlenecks in D-glucose and L-arabinose metabolism and was then applied to the following rational metabolic engineering. Manipulation of only two genes enabled simultaneous utilization of D-glucose and L-arabinose at the same rate in metabolically engineered C. glutamicum. This is the first report of rational metabolic design and engineering for simultaneous hexose and pentose utilization without inactivating the phosphotransferase system.

  10. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae.

    PubMed

    Da Silva, Nancy A; Srikrishnan, Sneha

    2012-03-01

    Metabolic pathway engineering in the yeast Saccharomyces cerevisiae leads to improved production of a wide range of compounds, ranging from ethanol (from biomass) to natural products such as sesquiterpenes. The introduction of multienzyme pathways requires precise control over the level and timing of expression of the associated genes. Gene number and promoter strength/regulation are two critical control points, and multiple studies have focused on modulating these in yeast. This MiniReview focuses on methods for introducing genes and controlling their copy number and on the many promoters (both constitutive and inducible) that have been successfully employed. The advantages and disadvantages of the methods will be presented, and applications to pathway engineering will be highlighted. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Systems Metabolic Engineering of Escherichia coli.

    PubMed

    Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup

    2016-05-01

    Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.

  12. Systems Metabolic Engineering of Escherichia coli.

    PubMed

    Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup

    2017-03-01

    Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.

  13. Photosynthetic CO2 Conversion to Fatty Acid Ethyl Esters (FAEEs) Using Engineered Cyanobacteria.

    PubMed

    Lee, Hyun Jeong; Choi, Jaeyeon; Lee, Sun-Mi; Um, Youngsoon; Sim, Sang Jun; Kim, Yunje; Woo, Han Min

    2017-02-15

    Metabolic engineering of cyanobacteria has received attention as a sustainable strategy to convert carbon dioxide to fatty acid-derived chemicals that are widely used in the food and chemical industries. Herein, Synechococcus elongatus PCC 7942, a model cyanobacterium, was engineered for the first time to produce fatty acid ethyl esters (FAEEs) from CO 2 . Due to the lack of an endogenous ethanol production pathway and wax ester synthase (AftA) activity in the wild-type cyanobacterium, we metabolically engineered S. elongatus PCC 7942 by expressing heterologous AftA and introducing the ethanol pathway, resulting in detectable peaks of FAEEs. To enhance FAEE production, a heterologous phosphoketolase pathway was introduced in the FAEE-producing strain to supply acetyl-CoA. Subsequent optimization of the cyanobacterial culture with a hexadecane overlay resulted in engineered S. elongatus PCC 7942 that produced photosynthetic FAEEs (10.0 ± 0.7 mg/L/OD 730 ) from CO 2 . This paper is the first report of photosynthetic production of FAEEs from CO 2 in cyanobacteria.

  14. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae

    PubMed Central

    Guo, Yakun; Dong, Junkai; Zhou, Tong; Auxillos, Jamie; Li, Tianyi; Zhang, Weimin; Wang, Lihui; Shen, Yue; Luo, Yisha; Zheng, Yijing; Lin, Jiwei; Chen, Guo-Qiang; Wu, Qingyu; Cai, Yizhi; Dai, Junbiao

    2015-01-01

    It is a routine task in metabolic engineering to introduce multicomponent pathways into a heterologous host for production of metabolites. However, this process sometimes may take weeks to months due to the lack of standardized genetic tools. Here, we present a method for the design and construction of biological parts based on the native genes and regulatory elements in Saccharomyces cerevisiae. We have developed highly efficient protocols (termed YeastFab Assembly) to synthesize these genetic elements as standardized biological parts, which can be used to assemble transcriptional units in a single-tube reaction. In addition, standardized characterization assays are developed using reporter constructs to calibrate the function of promoters. Furthermore, the assembled transcription units can be either assayed individually or applied to construct multi-gene metabolic pathways, which targets a genomic locus or a receiving plasmid effectively, through a simple in vitro reaction. Finally, using β-carotene biosynthesis pathway as an example, we demonstrate that our method allows us not only to construct and test a metabolic pathway in several days, but also to optimize the production through combinatorial assembly of a pathway using hundreds of regulatory biological parts. PMID:25956650

  15. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway.

    PubMed

    Yamada, Ryosuke; Wakita, Kazuki; Mitsui, Ryosuke; Ogino, Hiroyasu

    2017-09-01

    Utilization of renewable feedstocks for the production of bio-based chemicals such as d-lactic acid by engineering metabolic pathways in the yeast Saccharomyces cerevisiae has recently become an attractive option. In this study, to realize efficient d-lactic acid production by S. cerevisiae, the expression of 12 glycolysis-related genes and the Leuconostoc mesenteroides d-LDH gene was optimized using a previously developed global metabolic engineering strategy, and repeated batch fermentation was carried out using the resultant strain YPH499/dPdA3-34/DLDH/1-18. Stable d-lactic acid production through 10 repeated batch fermentations was achieved using YPH499/dPdA3-34/DLDH/1-18. The average d-lactic acid production, productivity, and yield with 10 repeated batch fermentations were 60.3 g/L, 2.80 g/L/h, and 0.646, respectively. The present study is the first report of the application of a global metabolic engineering strategy for bio-based chemical production, and it shows the potential for efficient production of such chemicals by global metabolic engineering of the yeast S. cerevisiae. Biotechnol. Bioeng. 2017;114: 2075-2084. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Biosynthetic Pathway and Metabolic Engineering of Plant Dihydrochalcones.

    PubMed

    Ibdah, Mwafaq; Martens, Stefan; Gang, David R

    2018-03-14

    Dihydrochalcones are plant natural products containing the phenylpropanoid backbone and derived from the plant-specific phenylpropanoid pathway. Dihydrochalcone compounds are important in plant growth and response to stresses and, thus, can have large impacts on agricultural activity. In recent years, these compounds have also received increased attention from the biomedical community for their potential as anticancer treatments and other benefits for human health. However, they are typically produced at relatively low levels in plants. Therefore, an attractive alternative is to express the plant biosynthetic pathway genes in microbial hosts and to engineer the metabolic pathway/host to improve the production of these metabolites. In the present review, we discuss in detail the functions of genes and enzymes involved in the biosynthetic pathway of the dihydrochalcones and the recent strategies and achievements used in the reconstruction of multi-enzyme pathways in microorganisms in efforts to be able to attain higher amounts of desired dihydrochalcones.

  17. Elucidation of new condition-dependent roles for fructose-1,6-bisphosphatase linked to cofactor balances

    PubMed Central

    Kilian, Stephanus G.; du Preez, James C.

    2017-01-01

    The cofactor balances in metabolism is of paramount importance in the design of a metabolic engineering strategy and understanding the regulation of metabolism in general. ATP, NAD+ and NADP+ balances are central players linking the various fluxes in central metabolism as well as biomass formation. NADP+ is especially important in the metabolic engineering of yeasts for xylose fermentation, since NADPH is required by most yeasts in the initial step of xylose utilisation, including the fast-growing Kluyveromyces marxianus. In this simulation study of yeast metabolism, the complex interplay between these cofactors was investigated; in particular, how they may affect the possible roles of fructose-1,6-bisphosphatase, the pentose phosphate pathway, glycerol production and the pyruvate dehydrogenase bypass. Using flux balance analysis, it was found that the potential role of fructose-1,6-bisphosphatase was highly dependent on the cofactor specificity of the oxidative pentose phosphate pathway and on the carbon source. Additionally, the excessive production of ATP under certain conditions might be involved in some of the phenomena observed, which may have been overlooked to date. Based on these findings, a strategy is proposed for the metabolic engineering of a future xylose-fermenting yeast for biofuel production. PMID:28542187

  18. Light-energy conversion in engineered microorganisms.

    PubMed

    Johnson, Ethan T; Schmidt-Dannert, Claudia

    2008-12-01

    Increasing interest in renewable resources by the energy and chemical industries has spurred new technologies both to capture solar energy and to develop biologically derived chemical feedstocks and fuels. Advances in molecular biology and metabolic engineering have provided new insights and techniques for increasing biomass and biohydrogen production, and recent efforts in synthetic biology have demonstrated that complex regulatory and metabolic networks can be designed and engineered in microorganisms. Here, we explore how light-driven processes may be incorporated into nonphotosynthetic microbes to boost metabolic capacity for the production of industrial and fine chemicals. Progress towards the introduction of light-driven proton pumping or anoxygenic photosynthesis into Escherichia coli to increase the efficiency of metabolically-engineered biosynthetic pathways is highlighted.

  19. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation

    USDA-ARS?s Scientific Manuscript database

    Saccharomyces strains engineered to ferment xylose using Scheffersomyces stipitis xylose reductase (XR) and xylitol dehydrogenase (XDH) genes appear to be limited by metabolic imbalances due to differing cofactor specificities of XR and XDH. The S. stipitis XR, which uses nicotinamide adenine dinucl...

  20. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae.

    PubMed

    Feng, Quanzhou; Liu, Z Lewis; Weber, Scott A; Li, Shizhong

    2018-01-01

    Haploid laboratory strains of Saccharomyces cerevisiae are commonly used for genetic engineering to enable their xylose utilization but little is known about the industrial yeast which is often recognized as diploid and as well as haploid and tetraploid. Here we report three unique signature pathway expression patterns and gene interactions in the centre metabolic pathways that signify xylose utilization of genetically engineered industrial yeast S. cerevisiae NRRL Y-50463, a diploid yeast. Quantitative expression analysis revealed outstanding high levels of constitutive expression of YXI, a synthesized yeast codon-optimized xylose isomerase gene integrated into chromosome XV of strain Y-50463. Comparative expression analysis indicated that the YXI was necessary to initiate the xylose metabolic pathway along with a set of heterologous xylose transporter and utilization facilitating genes including XUT4, XUT6, XKS1 and XYL2. The highly activated transketolase and transaldolase genes TKL1, TKL2, TAL1 and NQM1 as well as their complex interactions in the non-oxidative pentose phosphate pathway branch were critical for the serial of sugar transformation to drive the metabolic flow into glycolysis for increased ethanol production. The significantly increased expression of the entire PRS gene family facilitates functions of the life cycle and biosynthesis superpathway for the yeast. The outstanding higher levels of constitutive expression of YXI and the first insight into the signature pathway expression and the gene interactions in the closely related centre metabolic pathways from the industrial yeast aid continued efforts for development of the next-generation biocatalyst. Our results further suggest the industrial yeast is a desirable delivery vehicle for new strain development for efficient lignocellulose-to-advanced biofuels production.

  1. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae

    PubMed Central

    Feng, Quanzhou; Weber, Scott A.; Li, Shizhong

    2018-01-01

    Haploid laboratory strains of Saccharomyces cerevisiae are commonly used for genetic engineering to enable their xylose utilization but little is known about the industrial yeast which is often recognized as diploid and as well as haploid and tetraploid. Here we report three unique signature pathway expression patterns and gene interactions in the centre metabolic pathways that signify xylose utilization of genetically engineered industrial yeast S. cerevisiae NRRL Y-50463, a diploid yeast. Quantitative expression analysis revealed outstanding high levels of constitutive expression of YXI, a synthesized yeast codon-optimized xylose isomerase gene integrated into chromosome XV of strain Y-50463. Comparative expression analysis indicated that the YXI was necessary to initiate the xylose metabolic pathway along with a set of heterologous xylose transporter and utilization facilitating genes including XUT4, XUT6, XKS1 and XYL2. The highly activated transketolase and transaldolase genes TKL1, TKL2, TAL1 and NQM1 as well as their complex interactions in the non-oxidative pentose phosphate pathway branch were critical for the serial of sugar transformation to drive the metabolic flow into glycolysis for increased ethanol production. The significantly increased expression of the entire PRS gene family facilitates functions of the life cycle and biosynthesis superpathway for the yeast. The outstanding higher levels of constitutive expression of YXI and the first insight into the signature pathway expression and the gene interactions in the closely related centre metabolic pathways from the industrial yeast aid continued efforts for development of the next-generation biocatalyst. Our results further suggest the industrial yeast is a desirable delivery vehicle for new strain development for efficient lignocellulose-to-advanced biofuels production. PMID:29621349

  2. Cell-free metabolic engineering: Biomanufacturing beyond the cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudley, QM; Karim, AS; Jewett, MC

    2014-10-15

    Industrial biotechnology and microbial metabolic engineering are poised to help meet the growing demand for sustainable, low-cost commodity chemicals and natural products, yet the fraction of biochemicals amenable to commercial production remains limited. Common problems afflicting the current state-of-the-art include low volumetric productivities, build-up of toxic intermediates or products, and byproduct losses via competing pathways. To overcome these limitations, cell-free metabolic engineering (CFME) is expanding the scope of the traditional bioengineering model by using in vitro ensembles of catalytic proteins prepared from purified enzymes or crude lysates of cells for the production of target products. In recent years, the unprecedentedmore » level of control and freedom of design, relative to in vivo systems, has inspired the development of engineering foundations for cell-free systems. These efforts have led to activation of long enzymatic pathways (>8 enzymes), near theoretical conversion yields, productivities greater than 100 mg L-1 h(-1), reaction scales of >100 L, and new directions in protein purification, spatial organization, and enzyme stability. In the coming years, CFME will offer exciting opportunities to: (i) debug and optimize biosynthetic pathways; (ii) carry out design-build-test iterations without re-engineering organisms; and (iii) perform molecular transformations when bioconversion yields, productivities, or cellular toxicity limit commercial feasibility.« less

  3. Cell-Free Metabolic Engineering: Biomanufacturing beyond the cell

    PubMed Central

    Dudley, Quentin M.; Karim, Ashty S.; Jewett, Michael C.

    2014-01-01

    Industrial biotechnology and microbial metabolic engineering are poised to help meet the growing demand for sustainable, low-cost commodity chemicals and natural products, yet the fraction of biochemicals amenable to commercial production remains limited. Common problems afflicting the current state-of-the-art include low volumetric productivities, build-up of toxic intermediates or products, and byproduct losses via competing pathways. To overcome these limitations, cell-free metabolic engineering (CFME) is expanding the scope of the traditional bioengineering model by using in vitro ensembles of catalytic proteins prepared from purified enzymes or crude lysates of cells for the production of target products. In recent years, the unprecedented level of control and freedom of design, relative to in vivo systems, has inspired the development of engineering foundations for cell-free systems. These efforts have led to activation of long enzymatic pathways (>8 enzymes), near theoretical conversion yields, productivities greater than 100 mg L−1 hr−1, reaction scales of >100L, and new directions in protein purification, spatial organization and enzyme stability. In the coming years, CFME will offer exciting opportunities to (i) debug and optimize biosynthetic pathways, (ii) carry out design-build-test iterations without re-engineering organisms, and (iii) perform molecular transformations when bioconversion yields, productivities, or cellular toxicity limit commercial feasibility. PMID:25319678

  4. Progress in Metabolic Engineering of Saccharomyces cerevisiae

    PubMed Central

    Nevoigt, Elke

    2008-01-01

    Summary: The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial (“white”) biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate. PMID:18772282

  5. Engineered Photorespiratory Bypass Pathways Improve Photosynthetic Efficiency and Growth as Temperature Increases

    NASA Astrophysics Data System (ADS)

    Cavanagh, A. P.; South, P. F.; Ort, D. R.; Bernacchi, C.

    2017-12-01

    In C3 plants grown under ambient [CO2] at 25°C, 23% of the fixed carbon dioxide is lost to photorespiration, the energy expensive metabolic pathway that recycles toxic compounds produced by Rubisco oxygenation reactions. Furthermore, rates of photorespiration increase with rising temperature, as higher temperatures favor increased Rubisco oxygenation. Modelling suggests that the absence of photorespiration could improve gross photosynthesis by 12-55% under projected climate conditions; however, this is difficult to measure empirically, as photorespiration interacts with several metabolic pathways and is an essential process for all C3 plants grown at ambient [O2]. Introduced biochemical bypasses to the native photorespiration pathway hold promise as a strategy to mitigate the impact of temperature on photorespiratory losses. We grew tobacco containing engineered pathways to bypass photorespiration under ambient and elevated temperatures (+5°C) in the field to determine if bypassing photorespiration could mitigate high temperature induced losses in growth and physiology. Our preliminary results show that engineered plants have a higher quantum efficiency under heated conditions than do non-engineered plants, resulting in up to 20% lower yield losses under heated conditions compared to non-engineered plants. These results support the theoretical modelling of temperature impacts on photorespiratory losses, and suggest the bypassing photorespiration could be an important strategy to increase crop yields.

  6. A balanced ATP driving force module for enhancing photosynthetic biosynthesis of 3-hydroxybutyrate from CO2.

    PubMed

    Ku, Jason T; Lan, Ethan I

    2018-03-01

    Using engineered photoautotrophic microorganisms for the direct chemical synthesis from CO 2 is an attractive direction for both sustainability and CO 2 mitigation. However, the behaviors of non-native metabolic pathways may be difficult to control due to the different intracellular contexts between natural and heterologous hosts. While most metabolic engineering efforts focus on strengthening driving forces in pathway design to favor biochemical production in these organisms, excessive driving force may be detrimental to product biosynthesis due to imbalanced cellular intermediate distribution. In this study, an ATP-hydrolysis based driving force module was engineered into cyanobacterium Synechococcus elongatus PCC 7942 to produce 3-hydroxybutyrate (3HB), a valuable chemical feedstock for the synthesis of biodegradable plastics and antibiotics. However, while the ATP driving force module is effective for increasing product formation, uncontrolled accumulation of intermediate metabolites likely led to metabolic imbalance and thus to cell growth inhibition. Therefore, the ATP driving force module was reengineered by providing a reversible outlet for excessive carbon flux. Upon expression of this balanced ATP driving force module with 3HB biosynthesis, engineered strain produced 3HB with a cumulative titer of 1.2 g/L, a significant increase over the initial strain. This result highlighted the importance of pathway reversibility as an effective design strategy for balancing driving force and intermediate accumulation, thereby achieving a self-regulated control for increased net flux towards product biosynthesis. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.

    PubMed

    Gold, Nicholas D; Gowen, Christopher M; Lussier, Francois-Xavier; Cautha, Sarat C; Mahadevan, Radhakrishnan; Martin, Vincent J J

    2015-05-28

    L-tyrosine is a common precursor for a wide range of valuable secondary metabolites, including benzylisoquinoline alkaloids (BIAs) and many polyketides. An industrially tractable yeast strain optimized for production of L-tyrosine could serve as a platform for the development of BIA and polyketide cell factories. This study applied a targeted metabolomics approach to evaluate metabolic engineering strategies to increase the availability of intracellular L-tyrosine in the yeast Saccharomyces cerevisiae CEN.PK. Our engineering strategies combined localized pathway engineering with global engineering of central metabolism, facilitated by genome-scale steady-state modelling. Addition of a tyrosine feedback resistant version of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase Aro4 from S. cerevisiae was combined with overexpression of either a tyrosine feedback resistant yeast chorismate mutase Aro7, the native pentafunctional arom protein Aro1, native prephenate dehydrogenase Tyr1 or cyclohexadienyl dehydrogenase TyrC from Zymomonas mobilis. Loss of aromatic carbon was limited by eliminating phenylpyruvate decarboxylase Aro10. The TAL gene from Rhodobacter sphaeroides was used to produce coumarate as a simple test case of a heterologous by-product of tyrosine. Additionally, multiple strategies for engineering global metabolism to promote tyrosine production were evaluated using metabolic modelling. The T21E mutant of pyruvate kinase Cdc19 was hypothesized to slow the conversion of phosphoenolpyruvate to pyruvate and accumulate the former as precursor to the shikimate pathway. The ZWF1 gene coding for glucose-6-phosphate dehydrogenase was deleted to create an NADPH deficiency designed to force the cell to couple its growth to tyrosine production via overexpressed NADP(+)-dependent prephenate dehydrogenase Tyr1. Our engineered Zwf1(-) strain expressing TYRC ARO4(FBR) and grown in the presence of methionine achieved an intracellular L-tyrosine accumulation up to 520 μmol/g DCW or 192 mM in the cytosol, but sustained flux through this pathway was found to depend on the complete elimination of feedback inhibition and degradation pathways. Our targeted metabolomics approach confirmed a likely regulatory site at DAHP synthase and identified another possible cofactor limitation at prephenate dehydrogenase. Additionally, the genome-scale metabolic model identified design strategies that have the potential to improve availability of erythrose 4-phosphate for DAHP synthase and cofactor availability for prephenate dehydrogenase. We evaluated these strategies and provide recommendations for further improvement of aromatic amino acid biosynthesis in S. cerevisiae.

  8. Expanding the chemical diversity of natural esters by engineering a polyketide-derived pathway into Escherichia coli.

    PubMed

    Menendez-Bravo, Simón; Comba, Santiago; Sabatini, Martín; Arabolaza, Ana; Gramajo, Hugo

    2014-07-01

    Microbial fatty acid (FA)-derived molecules have emerged as promising alternatives to petroleum-based chemicals for reducing dependence on fossil hydrocarbons. However, native FA biosynthetic pathways often yield limited structural diversity, and therefore restricted physicochemical properties, of the end products by providing only a limited variety of usually linear hydrocarbons. Here we have engineered into Escherichia coli a mycocerosic polyketide synthase-based biosynthetic pathway from Mycobacterium tuberculosis and redefined its biological role towards the production of multi-methyl-branched-esters (MBEs) with novel chemical structures. Expression of FadD28, Mas and PapA5 enzymes enabled the biosynthesis of multi-methyl-branched-FA and their further esterification to an alcohol. The high substrate tolerance of these enzymes towards different FA and alcohol moieties resulted in the biosynthesis of a broad range of MBE. Further metabolic engineering of the MBE producer strain coupled this system to long-chain-alcohol biosynthetic pathways resulting in de novo production of branched wax esters following addition of only propionate. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Toward industrial production of isoprenoids in Escherichia coli: Lessons learned from CRISPR-Cas9 based optimization of a chromosomally integrated mevalonate pathway.

    PubMed

    Alonso-Gutierrez, Jorge; Koma, Daisuke; Hu, Qijun; Yang, Yuchen; Chan, Leanne J G; Petzold, Christopher J; Adams, Paul D; Vickers, Claudia E; Nielsen, Lars K; Keasling, Jay D; Lee, Taek S

    2018-04-01

    Escherichia coli has been the organism of choice for the production of different chemicals by engineering native and heterologous pathways. In the present study, we simultaneously address some of the main issues associated with E. coli as an industrial platform for isoprenoids, including an inability to grow on sucrose, a lack of endogenous control over toxic mevalonate (MVA) pathway intermediates, and the limited pathway engineering into the chromosome. As a proof of concept, we generated an E. coli DH1 strain able to produce the isoprenoid bisabolene from sucrose by integrating the cscAKB operon into the chromosome and by expressing a heterologous MVA pathway under stress-responsive control. Production levels dropped dramatically relative to plasmid-mediated expression when the entire pathway was integrated into the chromosome. In order to optimize the chromosomally integrated MVA pathway, we established a CRISPR-Cas9 system to rapidly and systematically replace promoter sequences. This strategy led to higher pathway expression and a fivefold improvement in bisabolene production. More interestingly, we analyzed proteomics data sets to understand and address some of the challenges associated with metabolic engineering of the chromosomally integrated pathway. This report shows that integrating plasmid-optimized operons into the genome and making them work optimally is not a straightforward task and any poor engineering choices on the chromosome may lead to cell death rather than just resulting in low titers. Based on these results, we also propose directions for chromosomal metabolic engineering. © 2017 Wiley Periodicals, Inc.

  10. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism

    PubMed Central

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-01-01

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids. PMID:27586788

  11. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism.

    PubMed

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-09-02

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids.

  12. Parallel labeling experiments for pathway elucidation and (13)C metabolic flux analysis.

    PubMed

    Antoniewicz, Maciek R

    2015-12-01

    Metabolic pathway models provide the foundation for quantitative studies of cellular physiology through the measurement of intracellular metabolic fluxes. For model organisms metabolic models are well established, with many manually curated genome-scale model reconstructions, gene knockout studies and stable-isotope tracing studies. However, for non-model organisms a similar level of knowledge is often lacking. Compartmentation of cellular metabolism in eukaryotic systems also presents significant challenges for quantitative (13)C-metabolic flux analysis ((13)C-MFA). Recently, innovative (13)C-MFA approaches have been developed based on parallel labeling experiments, the use of multiple isotopic tracers and integrated data analysis, that allow more rigorous validation of pathway models and improved quantification of metabolic fluxes. Applications of these approaches open new research directions in metabolic engineering, biotechnology and medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. In Metabolic Engineering of Eukaryotic Microalgae: Potential and Challenges Come with Great Diversity

    PubMed Central

    Gimpel, Javier A.; Henríquez, Vitalia; Mayfield, Stephen P.

    2015-01-01

    The great phylogenetic diversity of microalgae is corresponded by a wide arrange of interesting and useful metabolites. Nonetheless metabolic engineering in microalgae has been limited, since specific transformation tools must be developed for each species for either the nuclear or chloroplast genomes. Microalgae as production platforms for metabolites offer several advantages over plants and other microorganisms, like the ability of GMO containment and reduced costs in culture media, respectively. Currently, microalgae have proved particularly well suited for the commercial production of omega-3 fatty acids and carotenoids. Therefore most metabolic engineering strategies have been developed for these metabolites. Microalgal biofuels have also drawn great attention recently, resulting in efforts for improving the production of hydrogen and photosynthates, particularly triacylglycerides. Metabolic pathways of microalgae have also been manipulated in order to improve photosynthetic growth under specific conditions and for achieving trophic conversion. Although these pathways are not strictly related to secondary metabolites, the synthetic biology approaches could potentially be translated to this field and will also be discussed. PMID:26696985

  14. Engineering in complex systems.

    PubMed

    Bujara, Matthias; Panke, Sven

    2010-10-01

    The implementation of the engineering design cycle of measure, model, manipulate would drastically enhance the success rate of biotechnological designs. Recent progress for the three elements suggests that the scope of the traditional engineering paradigm in biotechnology is expanding. Substantial advances were made in dynamic in vivo analysis of metabolism, which is essential for the accurate prediction of metabolic pathway behavior. Novel methods that require variable degrees of system knowledge facilitate metabolic system manipulation. The combinatorial testing of pre-characterized parts is particularly promising, because it can profit from automation and limits the search space. Finally, conceptual advances in orthogonalizing cells should enhance the reliability of engineering designs in the future. Coupled to improved in silico models of metabolism, these advances should allow a more rational design of metabolic systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Pyruvate decarboxylase and alcohol dehydrogenase overexpression in Escherichia coli resulted in high ethanol production and rewired metabolic enzyme networks.

    PubMed

    Yang, Mingfeng; Li, Xuefeng; Bu, Chunya; Wang, Hui; Shi, Guanglu; Yang, Xiushan; Hu, Yong; Wang, Xiaoqin

    2014-11-01

    Pyruvate decarboxylase and alcohol dehydrogenase are efficient enzymes for ethanol production in Zymomonas mobilis. These two enzymes were over-expressed in Escherichia coli, a promising candidate for industrial ethanol production, resulting in high ethanol production in the engineered E. coli. To investigate the intracellular changes to the enzyme overexpression for homoethanol production, 2-DE and LC-MS/MS were performed. More than 1,000 protein spots were reproducibly detected in the gel by image analysis. Compared to the wild-type, 99 protein spots showed significant changes in abundance in the recombinant E. coli, in which 46 were down-regulated and 53 were up-regulated. Most proteins related to tricarboxylic acid cycle, glycerol metabolism and other energy metabolism were up-regulated, whereas proteins involved in glycolysis and glyoxylate pathway were down-regulated, indicating the rewired metabolism in the engineered E. coli. As glycolysis is the main pathway for ethanol production, and it was inhibited significantly in engineered E. coli, further efforts should be directed at minimizing the repression of glycolysis to optimize metabolism network for higher yields of ethanol production.

  16. Find_tfSBP: find thermodynamics-feasible and smallest balanced pathways with high yield from large-scale metabolic networks.

    PubMed

    Xu, Zixiang; Sun, Jibin; Wu, Qiaqing; Zhu, Dunming

    2017-12-11

    Biologically meaningful metabolic pathways are important references in the design of industrial bacterium. At present, constraint-based method is the only way to model and simulate a genome-scale metabolic network under steady-state criteria. Due to the inadequate assumption of the relationship in gene-enzyme-reaction as one-to-one unique association, computational difficulty or ignoring the yield from substrate to product, previous pathway finding approaches can't be effectively applied to find out the high yield pathways that are mass balanced in stoichiometry. In addition, the shortest pathways may not be the pathways with high yield. At the same time, a pathway, which exists in stoichiometry, may not be feasible in thermodynamics. By using mixed integer programming strategy, we put forward an algorithm to identify all the smallest balanced pathways which convert the source compound to the target compound in large-scale metabolic networks. The resulting pathways by our method can finely satisfy the stoichiometric constraints and non-decomposability condition. Especially, the functions of high yield and thermodynamics feasibility have been considered in our approach. This tool is tailored to direct the metabolic engineering practice to enlarge the metabolic potentials of industrial strains by integrating the extensive metabolic network information built from systems biology dataset.

  17. Non-invasive Assessments of Adipose Tissue Metabolism In Vitro.

    PubMed

    Abbott, Rosalyn D; Borowsky, Francis E; Quinn, Kyle P; Bernstein, David L; Georgakoudi, Irene; Kaplan, David L

    2016-03-01

    Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with non-invasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored.

  18. Non-invasive assessments of adipose tissue metabolism in vitro

    PubMed Central

    Abbott, Rosalyn D.; Borowsky, Francis E.; Quinn, Kyle P.; Bernstein, David L.; Georgakoudi, Irene; Kaplan, David L.

    2015-01-01

    Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with noninvasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored. PMID:26399988

  19. The path to next generation biofuels: successes and challenges in the era of synthetic biology

    PubMed Central

    2010-01-01

    Volatility of oil prices along with major concerns about climate change, oil supply security and depleting reserves have sparked renewed interest in the production of fuels from renewable resources. Recent advances in synthetic biology provide new tools for metabolic engineers to direct their strategies and construct optimal biocatalysts for the sustainable production of biofuels. Metabolic engineering and synthetic biology efforts entailing the engineering of native and de novo pathways for conversion of biomass constituents to short-chain alcohols and advanced biofuels are herewith reviewed. In the foreseeable future, formal integration of functional genomics and systems biology with synthetic biology and metabolic engineering will undoubtedly support the discovery, characterization, and engineering of new metabolic routes and more efficient microbial systems for the production of biofuels. PMID:20089184

  20. In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli.

    PubMed

    Zhu, Fayin; Zhong, Xiaofang; Hu, Mengzhu; Lu, Lei; Deng, Zixin; Liu, Tiangang

    2014-07-01

    Approaches using metabolic engineering and synthetic biology to overproduce terpenoids, such as the precursors of taxol and artemisinin, in microbial systems have achieved initial success. However, due to the lack of steady-state kinetic information and incomplete understanding of the terpenoid biosynthetic pathway, it has been difficult to build a highly efficient, universal system. Here, we reconstituted the mevalonate pathway to produce farnesene (a precursor of new jet fuel) in vitro using purified protein components. The information from this in vitro reconstituted system guided us to rationally optimize farnesene production in E. coli by quantitatively overexpressing each component. Targeted proteomic assays and intermediate assays were used to determine the metabolic status of each mutant. Through targeted engineering, farnesene production could be increased predictably step by step, up to 1.1 g/L (∼ 2,000 fold) 96 h after induction at the shake-flask scale. The strategy developed to release the potential of the mevalonate pathway for terpenoid overproduction should also work in other multistep synthetic pathways. © 2014 Wiley Periodicals, Inc.

  1. Metabolic engineering of yeast for production of fuels and chemicals.

    PubMed

    Nielsen, Jens; Larsson, Christer; van Maris, Antonius; Pronk, Jack

    2013-06-01

    Microbial production of fuels and chemicals from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. The yeast Saccharomyces cerevisiae offers many advantages as a platform cell factory for such applications. Already applied on a huge scale for bioethanol production, this yeast is easy to genetically engineer, its physiology, metabolism and genetics have been intensively studied and its robustness enables it to handle harsh industrial conditions. Introduction of novel pathways and optimization of its native cellular processes by metabolic engineering are rapidly expanding its range of cell-factory applications. Here we review recent scientific progress in metabolic engineering of S. cerevisiae for the production of bioethanol, advanced biofuels, and chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Engineering modular ester fermentative pathways in Escherichia coli.

    PubMed

    Layton, Donovan S; Trinh, Cong T

    2014-11-01

    Sensation profiles are observed all around us and are made up of many different molecules, such as esters. These profiles can be mimicked in everyday items for their uses in foods, beverages, cosmetics, perfumes, solvents, and biofuels. Here, we developed a systematic 'natural' way to derive these products via fermentative biosynthesis. Each ester fermentative pathway was designed as an exchangeable ester production module for generating two precursors- alcohols and acyl-CoAs that were condensed by an alcohol acyltransferase to produce a combinatorial library of unique esters. As a proof-of-principle, we coupled these ester modules with an engineered, modular, Escherichia coli chassis in a plug-and-play fashion to create microbial cell factories for enhanced anaerobic production of a butyrate ester library. We demonstrated tight coupling between the modular chassis and ester modules for enhanced product biosynthesis, an engineered phenotype useful for directed metabolic pathway evolution. Compared to the wildtype, the engineered cell factories yielded up to 48 fold increase in butyrate ester production from glucose. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Metabolic assessment of E. coli as a Biofactory for commercial products.

    PubMed

    Zhang, Xiaolin; Tervo, Christopher J; Reed, Jennifer L

    2016-05-01

    Metabolic engineering uses microorganisms to synthesize chemicals from renewable resources. Given the thousands of known metabolites, it is unclear what valuable chemicals could be produced by a microorganism and what native and heterologous reactions are needed for their synthesis. To answer these questions, a systematic computational assessment of Escherichia coli's potential ability to produce different chemicals was performed using an integrated metabolic model that included native E.coli reactions and known heterologous reactions. By adding heterologous reactions, a total of 1777 non-native products could theoretically be produced in E. coli under glucose minimal medium conditions, of which 279 non-native products have commercial applications. Synthesis pathways involving native and heterologous reactions were identified from eight central metabolic precursors to the 279 non-native commercial products. These pathways were used to evaluate the dependence on, and diversity of, native and heterologous reactions to produce each non-native commercial product, as well as to identify each product׳s closest central metabolic precursor. Analysis of the synthesis pathways (with 5 or fewer reaction steps) to non-native commercial products revealed that isopentenyl diphosphate, pyruvate, and oxaloacetate are the closest central metabolic precursors to the most non-native commercial products. Additionally, 4-hydroxybenzoate, tyrosine, and phenylalanine were found to be common precursors to a large number of non-native commercial products. Strains capable of producing high levels of these precursors could be further engineered to create strains capable of producing a variety of commercial non-native chemicals. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. The Future of Metabolic Engineering and Synthetic Biology: Towards a Systematic Practice

    PubMed Central

    Yadav, Vikramaditya G.; De Mey, Marjan; Lim, Chin Giaw; Ajikumar, Parayil Kumaran; Stephanopoulos, Gregory

    2012-01-01

    Industrial biotechnology promises to revolutionize conventional chemical manufacturing in the years ahead, largely owing to the excellent progress in our ability to re-engineer cellular metabolism. However, most successes of metabolic engineering have been confined to over-producing natively synthesized metabolites in E. coli and S. cerevisiae. A major reason for this development has been the descent of metabolic engineering, particularly secondary metabolic engineering, to a collection of demonstrations rather than a systematic practice with generalizable tools. Synthetic biology, a more recent development, faces similar criticisms. Herein, we attempt to lay down a framework around which bioreaction engineering can systematize itself just like chemical reaction engineering. Central to this undertaking is a new approach to engineering secondary metabolism known as ‘multivariate modular metabolic engineering’ (MMME), whose novelty lies in its assessment and elimination of regulatory and pathway bottlenecks by re-defining the metabolic network as a collection of distinct modules. After introducing the core principles of MMME, we shall then present a number of recent developments in secondary metabolic engineering that could potentially serve as its facilitators. It is hoped that the ever-declining costs of de novo gene synthesis; the improved use of bioinformatic tools to mine, sort and analyze biological data; and the increasing sensitivity and sophistication of investigational tools will make the maturation of microbial metabolic engineering an autocatalytic process. Encouraged by these advances, research groups across the world would take up the challenge of secondary metabolite production in simple hosts with renewed vigor, thereby adding to the range of products synthesized using metabolic engineering. PMID:22629571

  5. Enhancing microbial production of biofuels by expanding microbial metabolic pathways.

    PubMed

    Yu, Ping; Chen, Xingge; Li, Peng

    2017-09-01

    Fatty acid, isoprenoid, and alcohol pathways have been successfully engineered to produce biofuels. By introducing three genes, atfA, adhE, and pdc, into Escherichia coli to expand fatty acid pathway, up to 1.28 g/L of fatty acid ethyl esters can be achieved. The isoprenoid pathway can be expanded to produce bisabolene with a high titer of 900 mg/L in Saccharomyces cerevisiae. Short- and long-chain alcohols can also be effectively biosynthesized by extending the carbon chain of ketoacids with an engineered "+1" alcohol pathway. Thus, it can be concluded that expanding microbial metabolic pathways has enormous potential for enhancing microbial production of biofuels for future industrial applications. However, some major challenges for microbial production of biofuels should be overcome to compete with traditional fossil fuels: lowering production costs, reducing the time required to construct genetic elements and to increase their predictability and reliability, and creating reusable parts with useful and predictable behavior. To address these challenges, several aspects should be further considered in future: mining and transformation of genetic elements related to metabolic pathways, assembling biofuel elements and coordinating their functions, enhancing the tolerance of host cells to biofuels, and creating modular subpathways that can be easily interconnected. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  6. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering.

    PubMed

    Liu, Yang; Liu, Ye; Wang, Meng

    2017-01-01

    The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors.

  7. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering

    PubMed Central

    Liu, Yang; Liu, Ye; Wang, Meng

    2017-01-01

    The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors. PMID:29089935

  8. [Metabolic engineering of edible plant oils].

    PubMed

    Yue, Ai-Qin; Sun, Xi-Ping; Li, Run-Zhi

    2007-12-01

    Plant seed oil is the major source of many fatty acids for human nutrition, and also one of industrial feedstocks. Recent advances in understanding of the basic biochemistry of seed oil biosynthesis, coupled with cloning of the genes encoding the enzymes involved in fatty acid modification and oil accumulation, have set the stage for the metabolic engineering of oilseed crops that produce "designer" plant seed oils with the improved nutritional values for human being. In this review we provide an overview of seed oil biosynthesis/regulation and highlight the key enzymatic steps that are targets for gene manipulation. The strategies of metabolic engineering of fatty acids in oilseeds, including overexpression or suppression of genes encoding single or multi-step biosynthetic pathways and assembling the complete pathway for the synthesis of long-chain polyunsaturated fatty acids (e.g. arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid) are described in detail. The current "bottlenecks" in using common oilseeds as "bioreactors" for commercial production of high-value fatty acids are analyzed. It is also discussed that the future research focuses of oilseed metabolic engineering and the prospects in creating renewable sources and promoting the sustainable development of human society and economy.

  9. Comparing the impact of ultrafine particles from petrodiesel and biodiesel combustion to bacterial metabolism by targeted HPLC-MS/MS metabolic profiling.

    PubMed

    Zhong, Fanyi; Xu, Mengyang; Schelli, Katie; Rutowski, Joshua; Holmén, Britt A; Zhu, Jiangjiang

    2017-08-01

    Alterations of gut bacterial metabolism play an important role in their host metabolism, and can result in diseases such as obesity and diabetes. While many factors were discovered influencing the gut bacterial metabolism, exposure to ultrafine particles (UFPs) from engine combustions were recently proposed to be a potential risk factor for the perturbation of gut bacterial metabolism, and consequentially to obesity and diabetes development. This study focused on evaluation of how UFPs from diesel engine combustions impact gut bacterial metabolism. We hypothesize that UFPs from different type of diesel (petrodiesel vs. biodiesel) will both impact bacterial metabolism, and the degree of impact is also diesel type-dependent. Targeted metabolic profiling of 221 metabolites were applied to three model gut bacteria in vitro, Streptococcus salivarius, Lactobacillus acidophilus and Lactobacillus fermentum. UFPs from two types of fuels, petrodiesel (B0) and a biodiesel blend (B20: 20% soy biodiesel/80% B0 by volume), were exposed to the bacteria and their metabolic changes were compared. For each bacterial strain, metabolites with significantly changed abundance were observed in both perturbations, and all three strains have increased number of altered metabolites detected from B20 UFPs perturbation in comparison to B0 UFPs. Multivariate statistical analysis further confirmed that the metabolic profiles were clearly different between testing groups. Metabolic pathway analyses also demonstrated several important metabolic pathways, including pathways involves amino acids biosynthesis and sugar metabolism, were significantly impacted by UFPs exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Metabolic engineering with plants for a sustainable biobased economy.

    PubMed

    Yoon, Jong Moon; Zhao, Le; Shanks, Jacqueline V

    2013-01-01

    Plants are bona fide sustainable organisms because they accumulate carbon and synthesize beneficial metabolites from photosynthesis. To meet the challenges to food security and health threatened by increasing population growth and depletion of nonrenewable natural resources, recent metabolic engineering efforts have shifted from single pathways to holistic approaches with multiple genes owing to integration of omics technologies. Successful engineering of plants results in the high yield of biomass components for primary food sources and biofuel feedstocks, pharmaceuticals, and platform chemicals through synthetic biology and systems biology strategies. Further discovery of undefined biosynthesis pathways in plants, integrative analysis of discrete omics data, and diversified process developments for production of platform chemicals are essential to overcome the hurdles for sustainable production of value-added biomolecules from plants.

  11. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications.

    PubMed

    Otero, José Manuel; Vongsangnak, Wanwipa; Asadollahi, Mohammad A; Olivares-Hernandes, Roberto; Maury, Jérôme; Farinelli, Laurent; Barlocher, Loïc; Osterås, Magne; Schalk, Michel; Clark, Anthony; Nielsen, Jens

    2010-12-22

    The need for rapid and efficient microbial cell factory design and construction are possible through the enabling technology, metabolic engineering, which is now being facilitated by systems biology approaches. Metabolic engineering is often complimented by directed evolution, where selective pressure is applied to a partially genetically engineered strain to confer a desirable phenotype. The exact genetic modification or resulting genotype that leads to the improved phenotype is often not identified or understood to enable further metabolic engineering. In this work we performed whole genome high-throughput sequencing and annotation can be used to identify single nucleotide polymorphisms (SNPs) between Saccharomyces cerevisiae strains S288c and CEN.PK113-7D. The yeast strain S288c was the first eukaryote sequenced, serving as the reference genome for the Saccharomyces Genome Database, while CEN.PK113-7D is a preferred laboratory strain for industrial biotechnology research. A total of 13,787 high-quality SNPs were detected between both strains (reference strain: S288c). Considering only metabolic genes (782 of 5,596 annotated genes), a total of 219 metabolism specific SNPs are distributed across 158 metabolic genes, with 85 of the SNPs being nonsynonymous (e.g., encoding amino acid modifications). Amongst metabolic SNPs detected, there was pathway enrichment in the galactose uptake pathway (GAL1, GAL10) and ergosterol biosynthetic pathway (ERG8, ERG9). Physiological characterization confirmed a strong deficiency in galactose uptake and metabolism in S288c compared to CEN.PK113-7D, and similarly, ergosterol content in CEN.PK113-7D was significantly higher in both glucose and galactose supplemented cultivations compared to S288c. Furthermore, DNA microarray profiling of S288c and CEN.PK113-7D in both glucose and galactose batch cultures did not provide a clear hypothesis for major phenotypes observed, suggesting that genotype to phenotype correlations are manifested post-transcriptionally or post-translationally either through protein concentration and/or function. With an intensifying need for microbial cell factories that produce a wide array of target compounds, whole genome high-throughput sequencing and annotation for SNP detection can aid in better reducing and defining the metabolic landscape. This work demonstrates direct correlations between genotype and phenotype that provides clear and high-probability of success metabolic engineering targets. The genome sequence, annotation, and a SNP viewer of CEN.PK113-7D are deposited at http://www.sysbio.se/cenpk.

  12. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications

    PubMed Central

    2010-01-01

    Background The need for rapid and efficient microbial cell factory design and construction are possible through the enabling technology, metabolic engineering, which is now being facilitated by systems biology approaches. Metabolic engineering is often complimented by directed evolution, where selective pressure is applied to a partially genetically engineered strain to confer a desirable phenotype. The exact genetic modification or resulting genotype that leads to the improved phenotype is often not identified or understood to enable further metabolic engineering. Results In this work we performed whole genome high-throughput sequencing and annotation can be used to identify single nucleotide polymorphisms (SNPs) between Saccharomyces cerevisiae strains S288c and CEN.PK113-7D. The yeast strain S288c was the first eukaryote sequenced, serving as the reference genome for the Saccharomyces Genome Database, while CEN.PK113-7D is a preferred laboratory strain for industrial biotechnology research. A total of 13,787 high-quality SNPs were detected between both strains (reference strain: S288c). Considering only metabolic genes (782 of 5,596 annotated genes), a total of 219 metabolism specific SNPs are distributed across 158 metabolic genes, with 85 of the SNPs being nonsynonymous (e.g., encoding amino acid modifications). Amongst metabolic SNPs detected, there was pathway enrichment in the galactose uptake pathway (GAL1, GAL10) and ergosterol biosynthetic pathway (ERG8, ERG9). Physiological characterization confirmed a strong deficiency in galactose uptake and metabolism in S288c compared to CEN.PK113-7D, and similarly, ergosterol content in CEN.PK113-7D was significantly higher in both glucose and galactose supplemented cultivations compared to S288c. Furthermore, DNA microarray profiling of S288c and CEN.PK113-7D in both glucose and galactose batch cultures did not provide a clear hypothesis for major phenotypes observed, suggesting that genotype to phenotype correlations are manifested post-transcriptionally or post-translationally either through protein concentration and/or function. Conclusions With an intensifying need for microbial cell factories that produce a wide array of target compounds, whole genome high-throughput sequencing and annotation for SNP detection can aid in better reducing and defining the metabolic landscape. This work demonstrates direct correlations between genotype and phenotype that provides clear and high-probability of success metabolic engineering targets. The genome sequence, annotation, and a SNP viewer of CEN.PK113-7D are deposited at http://www.sysbio.se/cenpk. PMID:21176163

  13. Metabolic pathway rewiring in engineered cyanobacteria for solar-to-chemical and solar-to-fuel production from CO2.

    PubMed

    Woo, Han Min

    2018-01-01

    Photoautotrophic cyanobacteria have been developed to convert CO 2 to valuable chemicals and fuels as solar-to-chemical (S2C) and solar-to-fuel (S2F) platforms. Here, I describe the rewiring of the metabolic pathways in cyanobacteria to better understand the endogenous carbon flux and to enhance the yield of heterologous products. The plasticity of the cyanobacterial metabolism has been proposed to be advantageous for the development of S2C and S2F processes. The rewiring of the sugar catabolism and of the phosphoketolase pathway in the central cyanobacterial metabolism allowed for an enhancement in the level of target products by redirecting the carbon fluxes. Thus, metabolic pathway rewiring can promote the development of more efficient cyanobacterial cell factories for the generation of feasible S2C and S2F platforms.

  14. System-level perturbations of cell metabolism using CRISPR/Cas9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakočiūnas, Tadas; Jensen, Michael K.; Keasling, Jay D.

    CRISPR/Cas9 (clustered regularly interspaced palindromic repeats and the associated protein Cas9) techniques have made genome engineering and transcriptional reprogramming studies much more advanced and cost-effective. For metabolic engineering purposes, the CRISPR-based tools have been applied to single and multiplex pathway modifications and transcriptional regulations. The effectiveness of these tools allows researchers to implement genome-wide perturbations, test model-guided genome editing strategies, and perform transcriptional reprogramming perturbations in a more advanced manner than previously possible. In this mini-review we highlight recent studies adopting CRISPR/Cas9 for systems-level perturbations and model-guided metabolic engineering.

  15. Systems and synthetic metabolic engineering for amino acid production - the heartbeat of industrial strain development.

    PubMed

    Becker, Judith; Wittmann, Christoph

    2012-10-01

    With a world market of more than four million tons per year, l-amino acids are among the most important products in industrial biotechnology. The recent years have seen a tremendous progress in the development of tailor-made strains for such products, intensively driven from systems metabolic engineering, which upgrades strain engineering into a concept of optimization on a global scale. This concept seems especially valuable for efficient amino acid production, demanding for a global modification of pathway fluxes - a challenge with regard to the high complexity of the underlying metabolism, superimposed by various layers of metabolic and transcriptional control. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Metabolic flux analysis of carbon balance in Lactobacillus strains.

    PubMed

    Zhang, Yixing; Zeng, Fan; Hohn, Keith; Vadlani, Praveen V

    2016-11-01

    Metabolic flux analyses were performed based on the carbon balance of six different Lactobacillus strains used in this study. Results confirmed that L. delbrueckii, L. plantarum ATCC 21028, L. plantarum NCIMB 8826 ΔldhL1, L. plantarum NCIMB 8826 ΔldhL1-pCU-PxylAB, and L. plantarum NCIMB 8826 ΔldhL1-pLEM415-xylAB metabolized glucose via EMP: whereas, L. brevis metabolized glucose via PK pathway. Xylose was metabolized through the PK pathway in L. brevis, L. plantarum NCIMB 8826 ΔldhL1-pCU-PxylAB and L. plantarum NCIMB 8826 ΔldhL1-pLEM415-xylAB. Operation of both EMP and PK pathways was found in L. brevis, L. plantarum NCIMB 8826 ΔldhL1-pCU-PxylAB, and L. plantarum NCIMB 8826 ΔldhL1-pLEM415-xylAB when glucose plus xylose were used as carbon source. The information of detailed carbon flow may help the strain and biomass selection in a designed process of lactic acid biosynthesis. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1397-1403, 2016. © 2016 American Institute of Chemical Engineers.

  17. Insight into yeast: A study model of lipid metabolism and terpenoid biosynthesis.

    PubMed

    Hu, Cheng; Lu, Wenyu

    2015-01-01

    With the development of transcriptomics, metabolomics, proteomics, and mathematical modeling, yeast Saccharomyces cerevisiae is recently considered as a model studying strain by biologists who try to reveal the mystery of microorganic metabolism or develop heterologous pharmaceutical and economic products. Among S. cerevisiae metabolic research, lipid metabolism always attracts great interest because of its dominant role in cell physiology. Related researchers have developed multiple functions from cell membrane component such as adjustment to changing environment and impact on protein folding. Nowadays, many common human diseases such as diabetes mellitus, Alzheimer's disease, obesity, and atherosclerosis are related to lipid metabolism, which makes the study of lipids a desperate need. In addition to lipid metabolism, the study of the native mevalonic acid (MVA) pathway in S. cerevisiae has increased exponentially because of its huge potential to produce economically important products terpenoids. With the progress of technology in gene engineering and metabolic engineering, more and more biosynthetic pathways will be developed and put into industrial application. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  18. Advances in yeast genome engineering.

    PubMed

    David, Florian; Siewers, Verena

    2015-02-01

    Genome engineering based on homologous recombination has been applied to yeast for many years. However, the growing importance of yeast as a cell factory in metabolic engineering and chassis in synthetic biology demands methods for fast and efficient introduction of multiple targeted changes such as gene knockouts and introduction of multistep metabolic pathways. In this review, we summarize recent improvements of existing genome engineering methods, the development of novel techniques, for example for advanced genome redesign and evolution, and the importance of endonucleases as genome engineering tools. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  19. Engineering strategies for the fermentative production of plant alkaloids in yeast.

    PubMed

    Trenchard, Isis J; Smolke, Christina D

    2015-07-01

    Microbial hosts engineered for the biosynthesis of plant natural products offer enormous potential as powerful discovery and production platforms. However, the reconstruction of these complex biosynthetic schemes faces numerous challenges due to the number of enzymatic steps and challenging enzyme classes associated with these pathways, which can lead to issues in metabolic load, pathway specificity, and maintaining flux to desired products. Cytochrome P450 enzymes are prevalent in plant specialized metabolism and are particularly difficult to express heterologously. Here, we describe the reconstruction of the sanguinarine branch of the benzylisoquinoline alkaloid pathway in Saccharomyces cerevisiae, resulting in microbial biosynthesis of protoberberine, protopine, and benzophenanthridine alkaloids through to the end-product sanguinarine, which we demonstrate can be efficiently produced in yeast in the absence of the associated biosynthetic enzyme. We achieved titers of 676 μg/L stylopine, 548 μg/L cis-N-methylstylopine, 252 μg/L protopine, and 80 μg/L sanguinarine from the engineered yeast strains. Through our optimization efforts, we describe genetic and culture strategies supporting the functional expression of multiple plant cytochrome P450 enzymes in the context of a large multi-step pathway. Our results also provided insight into relationships between cytochrome P450 activity and yeast ER physiology. We were able to improve the production of critical intermediates by 32-fold through genetic techniques and an additional 45-fold through culture optimization. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Perturbation Experiments: Approaches for Metabolic Pathway Analysis in Bioreactors.

    PubMed

    Weiner, Michael; Tröndle, Julia; Albermann, Christoph; Sprenger, Georg A; Weuster-Botz, Dirk

    2016-01-01

    In the last decades, targeted metabolic engineering of microbial cells has become one of the major tools in bioprocess design and optimization. For successful application, a detailed knowledge is necessary about the relevant metabolic pathways and their regulation inside the cells. Since in vitro experiments cannot display process conditions and behavior properly, process data about the cells' metabolic state have to be collected in vivo. For this purpose, special techniques and methods are necessary. Therefore, most techniques enabling in vivo characterization of metabolic pathways rely on perturbation experiments, which can be divided into dynamic and steady-state approaches. To avoid any process disturbance, approaches which enable perturbation of cell metabolism in parallel to the continuing production process are reasonable. Furthermore, the fast dynamics of microbial production processes amplifies the need of parallelized data generation. These points motivate the development of a parallelized approach for multiple metabolic perturbation experiments outside the operating production reactor. An appropriate approach for in vivo characterization of metabolic pathways is presented and applied exemplarily to a microbial L-phenylalanine production process on a 15 L-scale.

  1. Metabolic pathways recruited in the production of a recombinant enveloped virus: mining targets for process and cell engineering.

    PubMed

    Rodrigues, A F; Formas-Oliveira, A S; Bandeira, V S; Alves, P M; Hu, W S; Coroadinha, A S

    2013-11-01

    Biopharmaceuticals derived from enveloped virus comprise an expanding market of vaccines, oncolytic vectors and gene therapy products. Thus, increased attention is given to the development of robust high-titer cell hosts for their manufacture. However, the knowledge on the physiological constraints modulating virus production is still scarce and the use of integrated strategies to improve hosts productivity and upstream bioprocess an under-explored territory. In this work, we conducted a functional genomics study, including the transcriptional profiling and central carbon metabolism analysis, following the metabolic changes in the transition 'parental-to-producer' of two human cell lines producing recombinant retrovirus. Results were gathered into three comprehensive metabolic maps, providing a broad and integrated overview of gene expression changes for both cell lines. Eight pathways were identified to be recruited in the virus production state: amino acid catabolism, carbohydrate catabolism and integration of the energy metabolism, nucleotide metabolism, glutathione metabolism, pentose phosphate pathway, polyamines biosynthesis and lipid metabolism. Their ability to modulate viral titers was experimentally challenged, leading to improved specific productivities of recombinant retrovirus up to 6-fold. Within recruited pathways in the virus production state, we sought for metabolic engineering gene targets in the low producing phenotypes. A mining strategy was used alternative to the traditional approach 'high vs. low producer' clonal comparison. Instead, 'high vs. low producer' from different genetic backgrounds (i.e. cell origins) were compared. Several genes were identified as limiting in the low-production phenotype, including two enzymes from cholesterol biosynthesis, two enzymes from glutathione biosynthesis and the regulatory machinery of polyamines biosynthesis. This is thus a frontier work, bridging fundamentals to technological research and contributing to enlarge our understanding of enveloped virus production dynamics in mammalian cell hosts. © 2013 Published by Elsevier Inc.

  2. Kinetic modeling of plant metabolism and its predictive power: peppermint essential oil biosynthesis as an example.

    PubMed

    Lange, Bernd Markus; Rios-Estepa, Rigoberto

    2014-01-01

    The integration of mathematical modeling with analytical experimentation in an iterative fashion is a powerful approach to advance our understanding of the architecture and regulation of metabolic networks. Ultimately, such knowledge is highly valuable to support efforts aimed at modulating flux through target pathways by molecular breeding and/or metabolic engineering. In this article we describe a kinetic mathematical model of peppermint essential oil biosynthesis, a pathway that has been studied extensively for more than two decades. Modeling assumptions and approximations are described in detail. We provide step-by-step instructions on how to run simulations of dynamic changes in pathway metabolites concentrations.

  3. Programmable genetic circuits for pathway engineering.

    PubMed

    Hoynes-O'Connor, Allison; Moon, Tae Seok

    2015-12-01

    Synthetic biology has the potential to provide decisive advances in genetic control of metabolic pathways. However, there are several challenges that synthetic biologists must overcome before this vision becomes a reality. First, a library of diverse and well-characterized sensors, such as metabolite-sensing or condition-sensing promoters, must be constructed. Second, robust programmable circuits that link input conditions with a specific gene regulation response must be developed. Finally, multi-gene targeting strategies must be integrated with metabolically relevant sensors and complex, robust logic. Achievements in each of these areas, which employ the CRISPR/Cas system, in silico modeling, and dynamic sensor-regulators, among other tools, provide a strong basis for future research. Overall, the future for synthetic biology approaches in metabolic engineering holds immense promise. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Leveraging algal omics to reveal potential targets for augmenting TAG accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Neha; Pienkos, Philip T.; Pruthi, Vikas

    Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. Here, this review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and informmore » future metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy.« less

  5. Leveraging Algal Omics to Reveal Potential Targets for Augmenting TAG Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarnieri, Michael T; Pienkos, Philip T; Arora, Neha

    2018-04-18

    Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. This review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and inform futuremore » metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy.« less

  6. Leveraging algal omics to reveal potential targets for augmenting TAG accumulation

    DOE PAGES

    Arora, Neha; Pienkos, Philip T.; Pruthi, Vikas; ...

    2018-04-18

    Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. Here, this review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and informmore » future metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy.« less

  7. Leveraging algal omics to reveal potential targets for augmenting TAG accumulation.

    PubMed

    Arora, Neha; Pienkos, Philip T; Pruthi, Vikas; Poluri, Krishna Mohan; Guarnieri, Michael T

    2018-04-18

    Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. This review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and inform future metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy. Copyright © 2018. Published by Elsevier Inc.

  8. Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae.

    PubMed

    Liu, Lifang; Martínez, José L; Liu, Zihe; Petranovic, Dina; Nielsen, Jens

    2014-01-01

    Due to limitations associated with whole blood for transfusions (antigen compatibility, transmission of infections, supply and storage), the use of cell-free hemoglobin as an oxygen carrier substitute has been in the center of research interest for decades. Human hemoglobin has previously been synthesized in yeast, however the challenge is to balance the expression of the two different globin subunits, as well as the supply of the prosthetic heme required for obtaining the active hemoglobin (α2β2). In this work we evaluated the expression of different combinations of α and β peptides and combined this with metabolic engineering of the heme biosynthetic pathway. Through evaluation of several different strategies we showed that engineering the biosynthesis pathway can substantially increase the heme level in yeast cells, and this resulted in a significant enhancement of human hemoglobin production. Besides demonstration of improved hemoglobin production our work demonstrates a novel strategy for improving the production of complex proteins, especially multimers with a prosthetic group. © 2013 Published by International Metabolic Engineering Society on behalf of International Metabolic Engineering Society.

  9. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions.

    PubMed

    Liu, Jiaheng; Li, Huiling; Zhao, Guangrong; Caiyin, Qinggele; Qiao, Jianjun

    2018-05-01

    NAD and NADP, a pivotal class of cofactors, which function as essential electron donors or acceptors in all biological organisms, drive considerable catabolic and anabolic reactions. Furthermore, they play critical roles in maintaining intracellular redox homeostasis. However, many metabolic engineering efforts in industrial microorganisms towards modification or introduction of metabolic pathways, especially those involving consumption, generation or transformation of NAD/NADP, often induce fluctuations in redox state, which dramatically impede cellular metabolism, resulting in decreased growth performance and biosynthetic capacity. Here, we comprehensively review the cofactor engineering strategies for solving the problematic redox imbalance in metabolism modification, as well as their features, suitabilities and recent applications. Some representative examples of in vitro biocatalysis are also described. In addition, we briefly discuss how tools and methods from the field of synthetic biology can be applied for cofactor engineering. Finally, future directions and challenges for development of cofactor redox engineering are presented.

  10. Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications.

    PubMed

    Kang, Zhen; Huang, Hao; Zhang, Yunfeng; Du, Guocheng; Chen, Jian

    2017-01-01

    Pichia pastoris: (reclassified as Komagataella phaffii), a methylotrophic yeast strain has been widely used for heterologous protein production because of its unique advantages, such as readily achievable high-density fermentation, tractable genetic modifications and typical eukaryotic post-translational modifications. More recently, P. pastoris as a metabolic pathway engineering platform has also gained much attention. In this mini-review, we addressed recent advances of molecular toolboxes, including synthetic promoters, signal peptides, and genome engineering tools that established for P. pastoris. Furthermore, the applications of P. pastoris towards synthetic biology were also discussed and prospected especially in the context of genome-scale metabolic pathway analysis.

  11. Biosensor-based engineering of biosynthetic pathways

    DOE PAGES

    Rogers, Jameson K.; Taylor, Noah D.; Church, George M.

    2016-03-18

    Biosynthetic pathways provide an enzymatic route from inexpensive renewable resources to valuable metabolic products such as pharmaceuticals and plastics. However, designing these pathways is challenging due to the complexities of biology. Advances in the design and construction of genetic variants has enabled billions of cells, each possessing a slightly different metabolic design, to be rapidly generated. However, our ability to measure the quality of these designs lags by several orders of magnitude. Recent research has enabled cells to report their own success in chemical production through the use of genetically encoded biosensors. A new engineering discipline is emerging around themore » creation and application of biosensors. Biosensors, implemented in selections and screens to identify productive cells, are paving the way for a new era of biotechnological progress.« less

  12. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived hydrocarbons.

    PubMed

    Zhang, Yiming; Nielsen, Jens; Liu, Zihe

    2018-06-05

    Fatty acid-derived hydrocarbons attract increasing attention as biofuels due to their immiscibility with water, high-energy content, low freezing point, and high compatibility with existing refineries and end-user infrastructures. Yeast Saccharomyces cerevisiae has advantages for production of fatty acid-derived hydrocarbons as its native routes toward fatty acid synthesis involve only a few reactions that allow more efficient conversion of carbon substrates. Here we describe major biosynthetic pathways of fatty acid-derived hydrocarbons in yeast, and summarize key metabolic engineering strategies, including enhancing precursor supply, eliminating competing pathways, and expressing heterologous pathways. With recent advances in yeast production of fatty acid-derived hydrocarbons, our review identifies key research challenges and opportunities for future optimization, and concludes with perspectives and outlooks for further research directions. © 2018 Wiley Periodicals, Inc.

  13. Combining chemoinformatics with bioinformatics: in silico prediction of bacterial flavor-forming pathways by a chemical systems biology approach "reverse pathway engineering".

    PubMed

    Liu, Mengjin; Bienfait, Bruno; Sacher, Oliver; Gasteiger, Johann; Siezen, Roland J; Nauta, Arjen; Geurts, Jan M W

    2014-01-01

    The incompleteness of genome-scale metabolic models is a major bottleneck for systems biology approaches, which are based on large numbers of metabolites as identified and quantified by metabolomics. Many of the revealed secondary metabolites and/or their derivatives, such as flavor compounds, are non-essential in metabolism, and many of their synthesis pathways are unknown. In this study, we describe a novel approach, Reverse Pathway Engineering (RPE), which combines chemoinformatics and bioinformatics analyses, to predict the "missing links" between compounds of interest and their possible metabolic precursors by providing plausible chemical and/or enzymatic reactions. We demonstrate the added-value of the approach by using flavor-forming pathways in lactic acid bacteria (LAB) as an example. Established metabolic routes leading to the formation of flavor compounds from leucine were successfully replicated. Novel reactions involved in flavor formation, i.e. the conversion of alpha-hydroxy-isocaproate to 3-methylbutanoic acid and the synthesis of dimethyl sulfide, as well as the involved enzymes were successfully predicted. These new insights into the flavor-formation mechanisms in LAB can have a significant impact on improving the control of aroma formation in fermented food products. Since the input reaction databases and compounds are highly flexible, the RPE approach can be easily extended to a broad spectrum of applications, amongst others health/disease biomarker discovery as well as synthetic biology.

  14. MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis.

    PubMed

    Lee, Dong-Yup; Yun, Hongsoek; Park, Sunwon; Lee, Sang Yup

    2003-11-01

    MetaFluxNet is a program package for managing information on the metabolic reaction network and for quantitatively analyzing metabolic fluxes in an interactive and customized way. It allows users to interpret and examine metabolic behavior in response to genetic and/or environmental modifications. As a result, quantitative in silico simulations of metabolic pathways can be carried out to understand the metabolic status and to design the metabolic engineering strategies. The main features of the program include a well-developed model construction environment, user-friendly interface for metabolic flux analysis (MFA), comparative MFA of strains having different genotypes under various environmental conditions, and automated pathway layout creation. http://mbel.kaist.ac.kr/ A manual for MetaFluxNet is available as PDF file.

  15. The regulatory software of cellular metabolism.

    PubMed

    Segrè, Daniel

    2004-06-01

    Understanding the regulation of metabolic pathways in the cell is like unraveling the 'software' that is running on the 'hardware' of the metabolic network. Transcriptional regulation of enzymes is an important component of this software. A recent systematic analysis of metabolic gene-expression data in Saccharomyces cerevisiae reveals a complex modular organization of co-expressed genes, which could increase our ability to understand and engineer cellular metabolic functions.

  16. Design and development of synthetic microbial platform cells for bioenergy

    PubMed Central

    Lee, Sang Jun; Lee, Sang-Jae; Lee, Dong-Woo

    2013-01-01

    The finite reservation of fossil fuels accelerates the necessity of development of renewable energy sources. Recent advances in synthetic biology encompassing systems biology and metabolic engineering enable us to engineer and/or create tailor made microorganisms to produce alternative biofuels for the future bio-era. For the efficient transformation of biomass to bioenergy, microbial cells need to be designed and engineered to maximize the performance of cellular metabolisms for the production of biofuels during energy flow. Toward this end, two different conceptual approaches have been applied for the development of platform cell factories: forward minimization and reverse engineering. From the context of naturally minimized genomes,non-essential energy-consuming pathways and/or related gene clusters could be progressively deleted to optimize cellular energy status for bioenergy production. Alternatively, incorporation of non-indigenous parts and/or modules including biomass-degrading enzymes, carbon uptake transporters, photosynthesis, CO2 fixation, and etc. into chassis microorganisms allows the platform cells to gain novel metabolic functions for bioenergy. This review focuses on the current progress in synthetic biology-aided pathway engineering in microbial cells and discusses its impact on the production of sustainable bioenergy. PMID:23626588

  17. Prospects of microbial cell factories developed through systems metabolic engineering.

    PubMed

    Gustavsson, Martin; Lee, Sang Yup

    2016-09-01

    While academic-level studies on metabolic engineering of microorganisms for production of chemicals and fuels are ever growing, a significantly lower number of such production processes have reached commercial-scale. In this work, we review the challenges associated with moving from laboratory-scale demonstration of microbial chemical or fuel production to actual commercialization, focusing on key requirements on the production organism that need to be considered during the metabolic engineering process. Metabolic engineering strategies should take into account techno-economic factors such as the choice of feedstock, the product yield, productivity and titre, and the cost effectiveness of midstream and downstream processes. Also, it is important to develop an industrial strain through metabolic engineering for pathway construction and flux optimization together with increasing tolerance to products and inhibitors present in the feedstock, and ensuring genetic stability and strain robustness under actual fermentation conditions. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Phosphoketolase pathway engineering for carbon-efficient biocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henard, Calvin Andrew; Freed, Emily Frances; Guarnieri, Michael Thomas

    2015-12-01

    Recent advances in metabolic engineering have facilitated the development of microbial biocatalysts capable of producing an array of bio-products, ranging from fuels to drug molecules. These bio-products are commonly generated through an acetyl-CoA intermediate, which serves as a key precursor in the biological conversion of carbon substrates. Moreover, conventional biocatalytic upgrading strategies proceeding through this route are limited by low carbon efficiencies, in large part due to carbon losses associated with pyruvate decarboxylation to acetyl-CoA. Bypass of pyruvate decarboxylation offers a means to dramatically enhance carbon yields and, in turn, bioprocess economics. Here, we discuss recent advances and prospects formore » employing the phosphoketolase pathway for direct biosynthesis of acetyl-CoA from carbon substrates, and phosphoketolase-based metabolic engineering strategies for carbon efficient biocatalysis.« less

  19. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer.

    PubMed

    Denby, Charles M; Li, Rachel A; Vu, Van T; Costello, Zak; Lin, Weiyin; Chan, Leanne Jade G; Williams, Joseph; Donaldson, Bryan; Bamforth, Charles W; Petzold, Christopher J; Scheller, Henrik V; Martin, Hector Garcia; Keasling, Jay D

    2018-03-20

    Flowers of the hop plant provide both bitterness and "hoppy" flavor to beer. Hops are, however, both a water and energy intensive crop and vary considerably in essential oil content, making it challenging to achieve a consistent hoppy taste in beer. Here, we report that brewer's yeast can be engineered to biosynthesize aromatic monoterpene molecules that impart hoppy flavor to beer by incorporating recombinant DNA derived from yeast, mint, and basil. Whereas metabolic engineering of biosynthetic pathways is commonly enlisted to maximize product titers, tuning expression of pathway enzymes to affect target production levels of multiple commercially important metabolites without major collateral metabolic changes represents a unique challenge. By applying state-of-the-art engineering techniques and a framework to guide iterative improvement, strains are generated with target performance characteristics. Beers produced using these strains are perceived as hoppier than traditionally hopped beers by a sensory panel in a double-blind tasting.

  20. Metabolic Engineering for Probiotics and their Genome-Wide Expression Profiling.

    PubMed

    Yadav, Ruby; Singh, Puneet K; Shukla, Pratyoosh

    2018-01-01

    Probiotic supplements in food industry have attracted a lot of attention and shown a remarkable growth in this field. Metabolic engineering (ME) approaches enable understanding their mechanism of action and increases possibility of designing probiotic strains with desired functions. Probiotic microorganisms generally referred as industrially important lactic acid bacteria (LAB) which are involved in fermenting dairy products, food, beverages and produces lactic acid as final product. A number of illustrations of metabolic engineering approaches in industrial probiotic bacteria have been described in this review including transcriptomic studies of Lactobacillus reuteri and improvement in exopolysaccharide (EPS) biosynthesis yield in Lactobacillus casei LC2W. This review summaries various metabolic engineering approaches for exploring metabolic pathways. These approaches enable evaluation of cellular metabolic state and effective editing of microbial genome or introduction of novel enzymes to redirect the carbon fluxes. In addition, various system biology tools such as in silico design commonly used for improving strain performance is also discussed. Finally, we discuss the integration of metabolic engineering and genome profiling which offers a new way to explore metabolic interactions, fluxomics and probiogenomics using probiotic bacteria like Bifidobacterium spp and Lactobacillus spp. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants

    DOE PAGES

    Schläpfer, Pascal; Zhang, Peifen; Wang, Chuan; ...

    2017-04-01

    Plant metabolism underpins many traits of ecological and agronomic importance. Plants produce numerous compounds to cope with their environments but the biosynthetic pathways for most of these compounds have not yet been elucidated. To engineer and improve metabolic traits, we will need comprehensive and accurate knowledge of the organization and regulation of plant metabolism at the genome scale. Here, we present a computational pipeline to identify metabolic enzymes, pathways, and gene clusters from a sequenced genome. Using this pipeline, we generated metabolic pathway databases for 22 species and identified metabolic gene clusters from 18 species. This unified resource can bemore » used to conduct a wide array of comparative studies of plant metabolism. Using the resource, we discovered a widespread occurrence of metabolic gene clusters in plants: 11,969 clusters from 18 species. The prevalence of metabolic gene clusters offers an intriguing possibility of an untapped source for uncovering new metabolite biosynthesis pathways. For example, more than 1,700 clusters contain enzymes that could generate a specialized metabolite scaffold (signature enzymes) and enzymes that modify the scaffold (tailoring enzymes). In four species with sufficient gene expression data, we identified 43 highly coexpressed clusters that contain signature and tailoring enzymes, of which eight were characterized previously to be functional pathways. Finally, we identified patterns of genome organization that implicate local gene duplication and, to a lesser extent, single gene transposition as having played roles in the evolution of plant metabolic gene clusters.« less

  2. Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants1[OPEN

    PubMed Central

    Zhang, Peifen; Kim, Taehyong; Banf, Michael; Chavali, Arvind K.; Nilo-Poyanco, Ricardo; Bernard, Thomas

    2017-01-01

    Plant metabolism underpins many traits of ecological and agronomic importance. Plants produce numerous compounds to cope with their environments but the biosynthetic pathways for most of these compounds have not yet been elucidated. To engineer and improve metabolic traits, we need comprehensive and accurate knowledge of the organization and regulation of plant metabolism at the genome scale. Here, we present a computational pipeline to identify metabolic enzymes, pathways, and gene clusters from a sequenced genome. Using this pipeline, we generated metabolic pathway databases for 22 species and identified metabolic gene clusters from 18 species. This unified resource can be used to conduct a wide array of comparative studies of plant metabolism. Using the resource, we discovered a widespread occurrence of metabolic gene clusters in plants: 11,969 clusters from 18 species. The prevalence of metabolic gene clusters offers an intriguing possibility of an untapped source for uncovering new metabolite biosynthesis pathways. For example, more than 1,700 clusters contain enzymes that could generate a specialized metabolite scaffold (signature enzymes) and enzymes that modify the scaffold (tailoring enzymes). In four species with sufficient gene expression data, we identified 43 highly coexpressed clusters that contain signature and tailoring enzymes, of which eight were characterized previously to be functional pathways. Finally, we identified patterns of genome organization that implicate local gene duplication and, to a lesser extent, single gene transposition as having played roles in the evolution of plant metabolic gene clusters. PMID:28228535

  3. Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schläpfer, Pascal; Zhang, Peifen; Wang, Chuan

    Plant metabolism underpins many traits of ecological and agronomic importance. Plants produce numerous compounds to cope with their environments but the biosynthetic pathways for most of these compounds have not yet been elucidated. To engineer and improve metabolic traits, we will need comprehensive and accurate knowledge of the organization and regulation of plant metabolism at the genome scale. Here, we present a computational pipeline to identify metabolic enzymes, pathways, and gene clusters from a sequenced genome. Using this pipeline, we generated metabolic pathway databases for 22 species and identified metabolic gene clusters from 18 species. This unified resource can bemore » used to conduct a wide array of comparative studies of plant metabolism. Using the resource, we discovered a widespread occurrence of metabolic gene clusters in plants: 11,969 clusters from 18 species. The prevalence of metabolic gene clusters offers an intriguing possibility of an untapped source for uncovering new metabolite biosynthesis pathways. For example, more than 1,700 clusters contain enzymes that could generate a specialized metabolite scaffold (signature enzymes) and enzymes that modify the scaffold (tailoring enzymes). In four species with sufficient gene expression data, we identified 43 highly coexpressed clusters that contain signature and tailoring enzymes, of which eight were characterized previously to be functional pathways. Finally, we identified patterns of genome organization that implicate local gene duplication and, to a lesser extent, single gene transposition as having played roles in the evolution of plant metabolic gene clusters.« less

  4. Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants.

    PubMed

    Schläpfer, Pascal; Zhang, Peifen; Wang, Chuan; Kim, Taehyong; Banf, Michael; Chae, Lee; Dreher, Kate; Chavali, Arvind K; Nilo-Poyanco, Ricardo; Bernard, Thomas; Kahn, Daniel; Rhee, Seung Y

    2017-04-01

    Plant metabolism underpins many traits of ecological and agronomic importance. Plants produce numerous compounds to cope with their environments but the biosynthetic pathways for most of these compounds have not yet been elucidated. To engineer and improve metabolic traits, we need comprehensive and accurate knowledge of the organization and regulation of plant metabolism at the genome scale. Here, we present a computational pipeline to identify metabolic enzymes, pathways, and gene clusters from a sequenced genome. Using this pipeline, we generated metabolic pathway databases for 22 species and identified metabolic gene clusters from 18 species. This unified resource can be used to conduct a wide array of comparative studies of plant metabolism. Using the resource, we discovered a widespread occurrence of metabolic gene clusters in plants: 11,969 clusters from 18 species. The prevalence of metabolic gene clusters offers an intriguing possibility of an untapped source for uncovering new metabolite biosynthesis pathways. For example, more than 1,700 clusters contain enzymes that could generate a specialized metabolite scaffold (signature enzymes) and enzymes that modify the scaffold (tailoring enzymes). In four species with sufficient gene expression data, we identified 43 highly coexpressed clusters that contain signature and tailoring enzymes, of which eight were characterized previously to be functional pathways. Finally, we identified patterns of genome organization that implicate local gene duplication and, to a lesser extent, single gene transposition as having played roles in the evolution of plant metabolic gene clusters. © 2017 American Society of Plant Biologists. All Rights Reserved.

  5. 13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production

    PubMed Central

    Guo, Weihua; Sheng, Jiayuan; Feng, Xueyang

    2015-01-01

    Metabolic engineering of various industrial microorganisms to produce chemicals, fuels, and drugs has raised interest since it is environmentally friendly, sustainable, and independent of nonrenewable resources. However, microbial metabolism is so complex that only a few metabolic engineering efforts have been able to achieve a satisfactory yield, titer or productivity of the target chemicals for industrial commercialization. In order to overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA) has been continuously developed and widely applied to rigorously investigate cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, many 13C-MFA studies have been performed in academic labs and biotechnology industries to pinpoint key issues related to microbe-based chemical production. Insightful information about the metabolic rewiring has been provided to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this review, we will introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied via integration with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production for various host microorganisms PMID:28952565

  6. Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae.

    PubMed

    Lane, Stephan; Dong, Jia; Jin, Yong-Su

    2018-07-01

    The substantial research efforts into lignocellulosic biofuels have generated an abundance of valuable knowledge and technologies for metabolic engineering. In particular, these investments have led to a vast growth in proficiency of engineering the yeast Saccharomyces cerevisiae for consuming lignocellulosic sugars, enabling the simultaneous assimilation of multiple carbon sources, and producing a large variety of value-added products by introduction of heterologous metabolic pathways. While microbial conversion of cellulosic sugars into large-volume low-value biofuels is not currently economically feasible, there may still be opportunities to produce other value-added chemicals as regulation of cellulosic sugar metabolism is quite different from glucose metabolism. This review summarizes these recent advances with an emphasis on employing engineered yeast for the bioconversion of lignocellulosic sugars into a variety of non-ethanol value-added products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering.

    PubMed

    Xie, Wenping; Lv, Xiaomei; Ye, Lidan; Zhou, Pingping; Yu, Hongwei

    2015-07-01

    Improved supply of farnesyl diphosphate (FPP) is often considered as a typical strategy for engineering Saccharomyces cerevisiae towards efficient terpenoid production. However, in the engineered strains with enhanced precursor supply, the production of the target metabolite is often impeded by insufficient capacity of the heterologous terpenoid pathways, which limits further conversion of FPP. Here, we tried to assemble an unimpeded biosynthesis pathway by combining directed evolution and metabolic engineering in S. cerevisiae for lycopene-overproduction. First, the catalytic ability of phytoene syntheses from different sources was investigated based on lycopene accumulation. Particularly, the lycopene cyclase function of the bifunctional enzyme CrtYB from Xanthophyllomyces dendrorhous was inactivated by deletion of functional domain and directed evolution to obtain mutants with solely phytoene synthase function. Coexpression of the resulting CrtYB11M mutant along with the CrtE and CrtI genes from X. dendrorhous, and the tHMG1 gene from S. cerevisiae led to production of 4.47 mg/g DCW (Dry cell weight) of lycopene and 25.66 mg/g DCW of the by-product squalene. To further increase the FPP competitiveness of the lycopene synthesis pathway, we tried to enhance the catalytic performance of CrtE by directed evolution and created a series of pathway variants by varying the copy number of Crt genes. Finally, fed-batch fermentation was conducted for the diploid strain YXWPD-14 resulting in accumulation of 1.61 g/L (24.41 mg/g DCW) of lycopene, meanwhile, the by-production of squalene was reduced to below 1 mg/g DCW. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.

    PubMed

    Wu, Meng-Ying; Sung, Li-Yu; Li, Hung; Huang, Chun-Hung; Hu, Yu-Chen

    2017-12-15

    Biosynthesis of 1,4-butanediol (1,4-BDO) in E. coli requires an artificial pathway that involves six genes and time-consuming, iterative genome engineering. CRISPR is an effective gene editing tool, while CRISPR interference (CRISPRi) is repurposed for programmable gene suppression. This study aimed to combine both CRISPR and CRISPRi for metabolic engineering of E. coli and 1,4-BDO production. We first exploited CRISPR to perform point mutation of gltA, replacement of native lpdA with heterologous lpdA, knockout of sad and knock-in of two large (6.0 and 6.3 kb in length) gene cassettes encoding the six genes (cat1, sucD, 4hbd, cat2, bld, bdh) in the 1,4-BDO biosynthesis pathway. The successive E. coli engineering enabled production of 1,4-BDO to a titer of 0.9 g/L in 48 h. By combining the CRISPRi system to simultaneously suppress competing genes that divert the flux from the 1,4-BDO biosynthesis pathway (gabD, ybgC and tesB) for >85%, we further enhanced the 1,4-BDO titer for 100% to 1.8 g/L while reducing the titers of byproducts gamma-butyrolactone and succinate for 55% and 83%, respectively. These data demonstrate the potential of combining CRISPR and CRISPRi for genome engineering and metabolic flux regulation in microorganisms such as E. coli and production of chemicals (e.g., 1,4-BDO).

  9. Toward solar biodiesel production from CO2 using engineered cyanobacteria.

    PubMed

    Woo, Han Min; Lee, Hyun Jeong

    2017-05-01

    Metabolic engineering of cyanobacteria has received attention as a sustainable strategy to convert carbon dioxide to various biochemicals including fatty acid-derived biodiesel. Recently, Synechococcus elongatus PCC 7942, a model cyanobacterium, has been engineered to convert CO2 to fatty acid ethyl esters (FAEEs) as biodiesel. Modular pathway has been constructed for FAEE production. Several metabolic engineering strategies were discussed to improve the production levels of FAEEs, including host engineering by improving CO2 fixation rate and photosynthetic efficiency. In addition, protein engineering of key enzyme in S. elongatus PCC 7942 was implemented to address issues on FAEE secretions toward sustainable FAEE production from CO2. Finally, advanced metabolic engineering will promote developing biosolar cell factories to convert CO2 to feasible amount of FAEEs toward solar biodiesel. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Enhancement of Naringenin Biosynthesis from Tyrosine by Metabolic Engineering of Saccharomyces cerevisiae.

    PubMed

    Lyu, Xiaomei; Ng, Kuan Rei; Lee, Jie Lin; Mark, Rita; Chen, Wei Ning

    2017-08-09

    Flavonoids are an important class of plant polyphenols that possess a variety of health benefits. In this work, S. cerevisiae was metabolically engineered to produce the flavonoid naringenin, using tyrosine as the precursor. Our strategy to improve naringenin production comprised three modules. In module 1, we employed a modified GAL system to overexpress the genes of the naringenin biosynthesis pathway and investigated their synergistic action. In module 2, we simultaneously up-regulated acetyl-CoA production and down-regulated fatty acid biosynthesis in order to increase the precursor supply, malonyl-CoA. In module 3, we engineered the tyrosine biosynthetic pathway to eliminate the feedback inhibition of tyrosine and also down-regulated competing pathways. It was found that modules 1 and 3 played important roles in improving naringenin production. We succeeded in producing up to ∼90 mg/L of naringenin in our final strain, which is a 20-fold increase as compared to the parental strain.

  11. In vitro metabolic engineering of bioelectricity generation by the complete oxidation of glucose.

    PubMed

    Zhu, Zhiguang; Zhang, Y-H Percival

    2017-01-01

    The direct generation of electricity from the most abundant renewable sugar, glucose, is an appealing alternative to the production of liquid biofuels and biohydrogen. However, enzyme-catalyzed bioelectricity generation from glucose suffers from low yields due to the incomplete oxidation of the six-carbon compound glucose via one or few enzymes. Here, we demonstrate a synthetic ATP- and CoA-free 12-enzyme pathway to implement the complete oxidation of glucose in vitro. This pathway is comprised of glucose phosphorylation via polyphosphate glucokinase, NADH generation catalyzed by glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), electron transfer from NADH to the anode, and glucose 6-phosphate regeneration via the non-oxidative pentose phosphate pathway and gluconeogenesis. The faraday efficiency from glucose to electrons via this pathway was as high as 98.8%, suggesting the generation of nearly 24 electrons per molecule of glucose. The generated current density was greatly increased from 2.8 to 6.9mAcm -2 by replacing a low-activity G6PDH with a high-activity G6PDH and introducing a new enzyme, 6-phosphogluconolactonase, between G6PDH and 6PGDH. These results suggest the great potential of high-yield bioelectricity generation through in vitro metabolic engineering. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  12. Metabolic Glyco-Engineering in Eukaryotic Cells and Selected Applications.

    PubMed

    Piller, Friedrich; Mongis, Aline; Piller, Véronique

    2015-01-01

    By metabolic glyco-engineering cellular glycoconjugates are modified through the incorporation of synthetic monosaccharides which are usually analogues of naturally present sugars. In order to get incorporated, the monosaccharides need to enter the cytoplasm and to be substrates for the enzymes necessary for their transformation into activated sugars, most often nucleotide sugars. These have to be substrates for glycosyltransferases which finally catalyze their incorporation into glycans. Such pathways are difficult to reconstitute in vitro and therefore new monosaccharide analogues have to be tested in tissue culture for their suitability in metabolic glyco-engineering. For this, glycosylation mutants are the most appropriate since they are unable to synthesize specific glycans but through the introduction of the monosaccharide analogues they may express some glycans at the cell surface with the unnatural sugar incorporated. The presence of those glycans can be easily and quantitatively detected by lectin binding or by chemical methods identifying specific sugars. Monosaccharide analogues can also block the pathways leading to sugar incorporation, thus inhibiting the synthesis of glycan structures which is also easily detectable at the cell surface by lectin labeling. The most useful and most frequently employed application of metabolic glyco-engineering is the introduction of reactive groups which can undergo bio-orthogonal click reactions for the efficient labeling of glycans at the surface of live cells.

  13. Understanding alternative fluxes/effluxes through comparative metabolic pathway analysis of phylum actinobacteria using a simplified approach.

    PubMed

    Verma, Mansi; Lal, Devi; Saxena, Anjali; Anand, Shailly; Kaur, Jasvinder; Kaur, Jaspreet; Lal, Rup

    2013-12-01

    Actinobacteria are known for their diverse metabolism and physiology. Some are dreadful human pathogens whereas some constitute the natural flora for human gut. Therefore, the understanding of metabolic pathways is a key feature for targeting the pathogenic bacteria without disturbing the symbiotic ones. A big challenge faced today is multiple drug resistance by Mycobacterium and other pathogens that utilize alternative fluxes/effluxes. With the availability of genome sequence, it is now feasible to conduct the comparative in silico analysis. Here we present a simplified approach to compare metabolic pathways so that the species specific enzyme may be traced and engineered for future therapeutics. The analyses of four key carbohydrate metabolic pathways, i.e., glycolysis, pyruvate metabolism, tri carboxylic acid cycle and pentose phosphate pathway suggest the presence of alternative fluxes. It was found that the upper pathway of glycolysis was highly variable in the actinobacterial genomes whereas lower glycolytic pathway was highly conserved. Likewise, pentose phosphate pathway was well conserved in contradiction to TCA cycle, which was found to be incomplete in majority of actinobacteria. The clustering based on presence and absence of genes of these metabolic pathways clearly revealed that members of different genera shared identical pathways and, therefore, provided an easy method to identify the metabolic similarities/differences between pathogenic and symbiotic organisms. The analyses could identify isoenzymes and some key enzymes that were found to be missing in some pathogenic actinobacteria. The present work defines a simple approach to explore the effluxes in four metabolic pathways within the phylum actinobacteria. The analysis clearly reflects that actinobacteria exhibit diverse routes for metabolizing substrates. The pathway comparison can help in finding the enzymes that can be used as drug targets for pathogens without effecting symbiotic organisms within the same host. This may help to prevail over the multiple drug resistance, for designing broad spectrum drugs, in food industries and other clinical research areas. © 2013.

  14. Transporter engineering in biomass utilization by yeast.

    PubMed

    Hara, Kiyotaka Y; Kobayashi, Jyumpei; Yamada, Ryosuke; Sasaki, Daisuke; Kuriya, Yuki; Hirono-Hara, Yoko; Ishii, Jun; Araki, Michihiro; Kondo, Akihiko

    2017-11-01

    Biomass resources are attractive carbon sources for bioproduction because of their sustainability. Many studies have been performed using biomass resources to produce sugars as carbon sources for cell factories. Expression of biomass hydrolyzing enzymes in cell factories is an important approach for constructing biomass-utilizing bioprocesses because external addition of these enzymes is expensive. In particular, yeasts have been extensively engineered to be cell factories that directly utilize biomass because of their manageable responses to many genetic engineering tools, such as gene expression, deletion and editing. Biomass utilizing bioprocesses have also been developed using these genetic engineering tools to construct metabolic pathways. However, sugar input and product output from these cells are critical factors for improving bioproduction along with biomass utilization and metabolic pathways. Transporters are key components for efficient input and output activities. In this review, we focus on transporter engineering in yeast to enhance bioproduction from biomass resources. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering.

    PubMed

    Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk

    2014-10-01

    Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. © 2014 American Society of Plant Biologists. All rights reserved.

  16. Plant Metabolic Modeling: Achieving New Insight into Metabolism and Metabolic Engineering

    PubMed Central

    Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk

    2014-01-01

    Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. PMID:25344492

  17. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    PubMed Central

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  18. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

    PubMed

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-10-11

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  19. Metabolic requirements for the maintenance of self-renewing stem cells

    PubMed Central

    Ito, Keisuke; Suda, Toshio

    2014-01-01

    A distinctive feature of stem cells is their capacity to self-renew to maintain pluripotency. Studies of genetically-engineered mouse models and recent advances in metabolomic analysis, particularly in haematopoietic stem cells, have deepened our understanding of the contribution made by metabolic cues to the regulation of stem cell self-renewal. Many types of stem cells heavily rely on anaerobic glycolysis, and stem cell function is also regulated by bioenergetic signalling, the AKT–mTOR pathway, Gln metabolism and fatty acid metabolism. As maintenance of a stem cell pool requires a finely-tuned balance between self-renewal and differentiation, investigations into the molecular mechanisms and metabolic pathways underlying these decisions hold great therapeutic promise. PMID:24651542

  20. Programmed Evolution for Optimization of Orthogonal Metabolic Output in Bacteria

    PubMed Central

    Eckdahl, Todd T.; Campbell, A. Malcolm; Heyer, Laurie J.; Poet, Jeffrey L.; Blauch, David N.; Snyder, Nicole L.; Atchley, Dustin T.; Baker, Erich J.; Brown, Micah; Brunner, Elizabeth C.; Callen, Sean A.; Campbell, Jesse S.; Carr, Caleb J.; Carr, David R.; Chadinha, Spencer A.; Chester, Grace I.; Chester, Josh; Clarkson, Ben R.; Cochran, Kelly E.; Doherty, Shannon E.; Doyle, Catherine; Dwyer, Sarah; Edlin, Linnea M.; Evans, Rebecca A.; Fluharty, Taylor; Frederick, Janna; Galeota-Sprung, Jonah; Gammon, Betsy L.; Grieshaber, Brandon; Gronniger, Jessica; Gutteridge, Katelyn; Henningsen, Joel; Isom, Bradley; Itell, Hannah L.; Keffeler, Erica C.; Lantz, Andrew J.; Lim, Jonathan N.; McGuire, Erin P.; Moore, Alexander K.; Morton, Jerrad; Nakano, Meredith; Pearson, Sara A.; Perkins, Virginia; Parrish, Phoebe; Pierson, Claire E.; Polpityaarachchige, Sachith; Quaney, Michael J.; Slattery, Abagael; Smith, Kathryn E.; Spell, Jackson; Spencer, Morgan; Taye, Telavive; Trueblood, Kamay; Vrana, Caroline J.; Whitesides, E. Tucker

    2015-01-01

    Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields – evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in energy, pharmaceuticals, chemical commodities, biomining, and bioremediation. PMID:25714374

  1. Programmed evolution for optimization of orthogonal metabolic output in bacteria.

    PubMed

    Eckdahl, Todd T; Campbell, A Malcolm; Heyer, Laurie J; Poet, Jeffrey L; Blauch, David N; Snyder, Nicole L; Atchley, Dustin T; Baker, Erich J; Brown, Micah; Brunner, Elizabeth C; Callen, Sean A; Campbell, Jesse S; Carr, Caleb J; Carr, David R; Chadinha, Spencer A; Chester, Grace I; Chester, Josh; Clarkson, Ben R; Cochran, Kelly E; Doherty, Shannon E; Doyle, Catherine; Dwyer, Sarah; Edlin, Linnea M; Evans, Rebecca A; Fluharty, Taylor; Frederick, Janna; Galeota-Sprung, Jonah; Gammon, Betsy L; Grieshaber, Brandon; Gronniger, Jessica; Gutteridge, Katelyn; Henningsen, Joel; Isom, Bradley; Itell, Hannah L; Keffeler, Erica C; Lantz, Andrew J; Lim, Jonathan N; McGuire, Erin P; Moore, Alexander K; Morton, Jerrad; Nakano, Meredith; Pearson, Sara A; Perkins, Virginia; Parrish, Phoebe; Pierson, Claire E; Polpityaarachchige, Sachith; Quaney, Michael J; Slattery, Abagael; Smith, Kathryn E; Spell, Jackson; Spencer, Morgan; Taye, Telavive; Trueblood, Kamay; Vrana, Caroline J; Whitesides, E Tucker

    2015-01-01

    Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields - evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in energy, pharmaceuticals, chemical commodities, biomining, and bioremediation.

  2. Metabolic engineering of microorganisms for the production of L-arginine and its derivatives.

    PubMed

    Shin, Jae Ho; Lee, Sang Yup

    2014-12-03

    L-arginine (ARG) is an important amino acid for both medicinal and industrial applications. For almost six decades, the research has been going on for its improved industrial level production using different microorganisms. While the initial approaches involved random mutagenesis for increased tolerance to ARG and consequently higher ARG titer, it is laborious and often leads to unwanted phenotypes, such as retarded growth. Discovery of L-glutamate (GLU) overproducing strains and using them as base strains for ARG production led to improved ARG production titer. Continued effort to unveil molecular mechanisms led to the accumulation of detailed knowledge on amino acid metabolism, which has contributed to better understanding of ARG biosynthesis and its regulation. Moreover, systems metabolic engineering now enables scientists and engineers to efficiently construct genetically defined microorganisms for ARG overproduction in a more rational and system-wide manner. Despite such effort, ARG biosynthesis is still not fully understood and many of the genes in the pathway are mislabeled. Here, we review the major metabolic pathways and its regulation involved in ARG biosynthesis in different prokaryotes including recent discoveries. Also, various strategies for metabolic engineering of bacteria for the overproduction of ARG are described. Furthermore, metabolic engineering approaches for producing ARG derivatives such as L-ornithine (ORN), putrescine and cyanophycin are described. ORN is used in medical applications, while putrescine can be used as a bio-based precursor for the synthesis of nylon-4,6 and nylon-4,10. Cyanophycin is also an important compound for the production of polyaspartate, another important bio-based polymer. Strategies outlined here will serve as a general guideline for rationally designing of cell-factories for overproduction of ARG and related compounds that are industrially valuable.

  3. Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity.

    PubMed

    Jang, Yu-Sin; Im, Jung Ae; Choi, So Young; Lee, Jung Im; Lee, Sang Yup

    2014-05-01

    A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetobutylicum was metabolically engineered for highly selective butyric acid production. For this purpose, the second butyrate kinase of C. acetobutylicum encoded by the bukII gene instead of butyrate kinase I encoded by the buk gene was employed. Furthermore, metabolic pathways were engineered to further enhance the NADH-driving force. Batch fermentation of the metabolically engineered C. acetobutylicum strain HCBEKW (pta(-), buk(-), ctfB(-) and adhE1(-)) at pH 6.0 resulted in the production of 32.5g/L of butyric acid with a butyric-to-acetic acid ratio (BA/AA ratio) of 31.3g/g from 83.3g/L of glucose. By further knocking out the hydA gene (encoding hydrogenase) in the HCBEKW strain, the butyric acid titer was not further improved in batch fermentation. However, the BA/AA ratio (28.5g/g) obtained with the HYCBEKW strain (pta(-), buk(-), ctfB(-), adhE1(-) and hydA(-)) was 1.6 times higher than that (18.2g/g) obtained with the HCBEKW strain at pH 5.0, while no improvement was observed at pH 6.0. These results suggested that the buk gene knockout was essential to get a high butyric acid selectivity to acetic acid in C. acetobutylicum. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Ketone isosteres of 2-N-acetamidosugars as substrates for metabolic cell surface engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hang, Howard C.; Bertozzi, Carolyn R.

    2000-08-22

    Novel chemical reactivity can be engendered on cell surfaces by the metabolic incorporation of unnatural sugars into cell surface glycoconjuagtes. 2-N-Acetamido sugars such as GalNAc and GlcNAc are abundant components of cell surface glycoconjugates, and hence attractive targets for metabolic cell surface engineering. Here we report (1) the synthesis of isosteric analogs bearing a ketone group in place of the N-acetamido group, and (2) evaluation of their metabolic incorporation into mammalian cell surface glycans. A ketone isostere of GalNAc was metabolized by CHO cells through the salvage pathway and delivered to O-linked glycoproteins on the cell surface. Its residence atmore » the core position of O-linked glycans is suggested by studies with a-benzyl GalNAc, an inhibitor of O-linked oligosaccharide extension. A mutant CHO cell line lacking endogenous UDP-GalNAc demonstrated enhanced metabolism of the GalNAc analog, suggesting that competition with native intermediates might limits enzymatic transformation in mammalian cells. A ketone isostere of GlcNAc could not be detected on CHO or human cell surfaces after incubation. Thus, the enzymes in the GlcNAc salvage pathway might be less permissive of unnatural substrates than those comprising the GalNAc salvage pathway. Alternatively, high levels of endogenous GlcNAc derivatives might compete with the ketone isostere and prevent its incorporation into oligosaccharides.« less

  5. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum.

    PubMed

    Thompson, R Adam; Layton, Donovan S; Guss, Adam M; Olson, Daniel G; Lynd, Lee R; Trinh, Cong T

    2015-11-01

    Clostridium thermocellum is an anaerobic, Gram-positive, thermophilic bacterium that has generated great interest due to its ability to ferment lignocellulosic biomass to ethanol. However, ethanol production is low due to the complex and poorly understood branched metabolism of C. thermocellum, and in some cases overflow metabolism as well. In this work, we developed a predictive stoichiometric metabolic model for C. thermocellum which incorporates the current state of understanding, with particular attention to cofactor specificity in the atypical glycolytic enzymes and the complex energy, redox, and fermentative pathways with the goal of aiding metabolic engineering efforts. We validated the model's capability to encompass experimentally observed phenotypes for the parent strain and derived mutants designed for significant perturbation of redox and energy pathways. Metabolic flux distributions revealed significant alterations in key metabolic branch points (e.g., phosphoenol pyruvate, pyruvate, acetyl-CoA, and cofactor nodes) in engineered strains for channeling electron and carbon fluxes for enhanced ethanol synthesis, with the best performing strain doubling ethanol yield and titer compared to the parent strain. In silico predictions of a redox-imbalanced genotype incapable of growth were confirmed in vivo, and a mutant strain was used as a platform to probe redox bottlenecks in the central metabolism that hinder efficient ethanol production. The results highlight the robustness of the redox metabolism of C. thermocellum and the necessity of streamlined electron flux from reduced ferredoxin to NAD(P)H for high ethanol production. The model was further used to design a metabolic engineering strategy to phenotypically constrain C. thermocellum to achieve high ethanol yields while requiring minimal genetic manipulations. The model can be applied to design C. thermocellum as a platform microbe for consolidated bioprocessing to produce ethanol and other reduced metabolites. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism

    PubMed Central

    Shimizu, Kazuyuki

    2013-01-01

    It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation. PMID:25937963

  7. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasoreck, Elise K.; Su, Jin; Silverman, Ian M.

    The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were similar to 4300-fold higher in C and CN lines than in N, but all accumulated similar to 150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level ofmore » transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. In conclusion, the mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering.« less

  8. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling

    DOE PAGES

    Pasoreck, Elise K.; Su, Jin; Silverman, Ian M.; ...

    2016-03-08

    The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were similar to 4300-fold higher in C and CN lines than in N, but all accumulated similar to 150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level ofmore » transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. In conclusion, the mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering.« less

  9. Metabolomics, Standards, and Metabolic Modeling for Synthetic Biology in Plants

    PubMed Central

    Hill, Camilla Beate; Czauderna, Tobias; Klapperstück, Matthias; Roessner, Ute; Schreiber, Falk

    2015-01-01

    Life on earth depends on dynamic chemical transformations that enable cellular functions, including electron transfer reactions, as well as synthesis and degradation of biomolecules. Biochemical reactions are coordinated in metabolic pathways that interact in a complex way to allow adequate regulation. Biotechnology, food, biofuel, agricultural, and pharmaceutical industries are highly interested in metabolic engineering as an enabling technology of synthetic biology to exploit cells for the controlled production of metabolites of interest. These approaches have only recently been extended to plants due to their greater metabolic complexity (such as primary and secondary metabolism) and highly compartmentalized cellular structures and functions (including plant-specific organelles) compared with bacteria and other microorganisms. Technological advances in analytical instrumentation in combination with advances in data analysis and modeling have opened up new approaches to engineer plant metabolic pathways and allow the impact of modifications to be predicted more accurately. In this article, we review challenges in the integration and analysis of large-scale metabolic data, present an overview of current bioinformatics methods for the modeling and visualization of metabolic networks, and discuss approaches for interfacing bioinformatics approaches with metabolic models of cellular processes and flux distributions in order to predict phenotypes derived from specific genetic modifications or subjected to different environmental conditions. PMID:26557642

  10. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels.

    PubMed

    Lee, Sung Kuk; Chou, Howard; Ham, Timothy S; Lee, Taek Soon; Keasling, Jay D

    2008-12-01

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  11. Metabolic pathways for lipid synthesis under nitrogen stress in Chlamydomonas and Nannochloropsis.

    PubMed

    Banerjee, Avik; Maiti, Subodh K; Guria, Chandan; Banerjee, Chiranjib

    2017-01-01

    Microalgae are currently being considered as a clean, sustainable and renewable energy source. Enzymes that catalyse the metabolic pathways for biofuel production are specific and require strict regulation and co-ordination. Thorough knowledge of these key enzymes along with their regulatory molecules is essential to enable rational metabolic engineering, to drive the metabolic flux towards the desired metabolites of importance. This paper reviews two key enzymes that play their role in production of bio-oil: DGAT (acyl-CoA:diacylglycerol acyltransferase) and PDAT (phospholipid:diacylglycerol acyltransferase). It also deals with the transcription factors that control the enzymes while cell undergoes a metabolic shift under stress. The paper also discusses the association of other enzymes and pathways that provide substrates and precursors for oil accumulation. Finally a futuristic solution has been proposed about a synthetic algal cell platform that would be committed towards biofuel synthesis.

  12. Microbial isoprenoid production: an example of green chemistry through metabolic engineering.

    PubMed

    Maury, Jérôme; Asadollahi, Mohammad A; Møller, Kasper; Clark, Anthony; Nielsen, Jens

    2005-01-01

    Saving energy, cost efficiency, producing less waste, improving the biodegradability of products, potential for producing novel and complex molecules with improved properties, and reducing the dependency on fossil fuels as raw materials are the main advantages of using biotechnological processes to produce chemicals. Such processes are often referred to as green chemistry or white biotechnology. Metabolic engineering, which permits the rational design of cell factories using directed genetic modifications, is an indispensable strategy for expanding green chemistry. In this chapter, the benefits of using metabolic engineering approaches for the development of green chemistry are illustrated by the recent advances in microbial production of isoprenoids, a diverse and important group of natural compounds with numerous existing and potential commercial applications. Accumulated knowledge on the metabolic pathways leading to the synthesis of the principal precursors of isoprenoids is reviewed, and recent investigations into isoprenoid production using engineered cell factories are described.

  13. Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production.

    PubMed

    George, Kevin W; Chen, Amy; Jain, Aakriti; Batth, Tanveer S; Baidoo, Edward E K; Wang, George; Adams, Paul D; Petzold, Christopher J; Keasling, Jay D; Lee, Taek Soon

    2014-08-01

    The ability to rapidly assess and optimize heterologous pathway function is critical for effective metabolic engineering. Here, we develop a systematic approach to pathway analysis based on correlations between targeted proteins and metabolites and apply it to the microbial production of isopentenol, a promising biofuel. Starting with a seven-gene pathway, we performed a correlation analysis to reduce pathway complexity and identified two pathway proteins as the primary determinants of efficient isopentenol production. Aided by the targeted quantification of relevant pathway intermediates, we constructed and subsequently validated a conceptual model of isopentenol pathway function. Informed by our analysis, we assembled a strain which produced isopentenol at a titer 1.5 g/L, or 46% of theoretical yield. Our engineering approach allowed us to accurately identify bottlenecks and determine appropriate pathway balance. Paired with high-throughput cloning techniques and analytics, this strategy should prove useful for the analysis and optimization of increasingly complex heterologous pathways. © 2014 Wiley Periodicals, Inc.

  14. Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies.

    PubMed

    O'Grady, John; Schwender, Jörg; Shachar-Hill, Yair; Morgan, John A

    2012-03-01

    For the past decade, flux maps have provided researchers with an in-depth perspective on plant metabolism. As a rapidly developing field, significant headway has been made recently in computation, experimentation, and overall understanding of metabolic flux analysis. These advances are particularly applicable to the study of plant metabolism. New dynamic computational methods such as non-stationary metabolic flux analysis are finding their place in the toolbox of metabolic engineering, allowing more organisms to be studied and decreasing the time necessary for experimentation, thereby opening new avenues by which to explore the vast diversity of plant metabolism. Also, improved methods of metabolite detection and measurement have been developed, enabling increasingly greater resolution of flux measurements and the analysis of a greater number of the multitude of plant metabolic pathways. Methods to deconvolute organelle-specific metabolism are employed with increasing effectiveness, elucidating the compartmental specificity inherent in plant metabolism. Advances in metabolite measurements have also enabled new types of experiments, such as the calculation of metabolic fluxes based on (13)CO(2) dynamic labelling data, and will continue to direct plant metabolic engineering. Newly calculated metabolic flux maps reveal surprising and useful information about plant metabolism, guiding future genetic engineering of crops to higher yields. Due to the significant level of complexity in plants, these methods in combination with other systems biology measurements are necessary to guide plant metabolic engineering in the future.

  15. Metabolic pathways for the whole community.

    PubMed

    Hanson, Niels W; Konwar, Kishori M; Hawley, Alyse K; Altman, Tomer; Karp, Peter D; Hallam, Steven J

    2014-07-22

    A convergence of high-throughput sequencing and computational power is transforming biology into information science. Despite these technological advances, converting bits and bytes of sequence information into meaningful insights remains a challenging enterprise. Biological systems operate on multiple hierarchical levels from genomes to biomes. Holistic understanding of biological systems requires agile software tools that permit comparative analyses across multiple information levels (DNA, RNA, protein, and metabolites) to identify emergent properties, diagnose system states, or predict responses to environmental change. Here we adopt the MetaPathways annotation and analysis pipeline and Pathway Tools to construct environmental pathway/genome databases (ePGDBs) that describe microbial community metabolism using MetaCyc, a highly curated database of metabolic pathways and components covering all domains of life. We evaluate Pathway Tools' performance on three datasets with different complexity and coding potential, including simulated metagenomes, a symbiotic system, and the Hawaii Ocean Time-series. We define accuracy and sensitivity relationships between read length, coverage and pathway recovery and evaluate the impact of taxonomic pruning on ePGDB construction and interpretation. Resulting ePGDBs provide interactive metabolic maps, predict emergent metabolic pathways associated with biosynthesis and energy production and differentiate between genomic potential and phenotypic expression across defined environmental gradients. This multi-tiered analysis provides the user community with specific operating guidelines, performance metrics and prediction hazards for more reliable ePGDB construction and interpretation. Moreover, it demonstrates the power of Pathway Tools in predicting metabolic interactions in natural and engineered ecosystems.

  16. Advances in engineered microorganisms for improving metabolic conversion via microgravity effects.

    PubMed

    Huangfu, Jie; Zhang, Genlin; Li, Jun; Li, Chun

    2015-01-01

    As an extreme and unique environment, microgravity has significant effects on microbial cellular processes, such as cell growth, gene expression, natural pathways and biotechnological products. Application of microgravity effects to identify the regulatory elements in reengineering microbial hosts will draw much more attention in further research. In this commentary, we discuss the microgravity effects in engineered microorganisms for improving metabolic conversion, including cell growth kinetics, antimicrobial susceptibility, resistance to stresses, secondary metabolites production, recombinant protein production and enzyme activity, as well as gene expression changes. Application of microgravity effects in engineered microorganisms could provide valuable platform for innovative approaches in bioprocessing technology to largely improve the metabolic conversion efficacy of biopharmaceutical products.

  17. Systematic engineering of the central metabolism in Escherichia coli for effective production of n-butanol.

    PubMed

    Saini, Mukesh; Li, Si-Yu; Wang, Ze Win; Chiang, Chung-Jen; Chao, Yun-Peng

    2016-01-01

    Microbes have been extensively explored for production of environment-friendly fuels and chemicals. The microbial fermentation pathways leading to these commodities usually involve many redox reactions. This makes the fermentative production of highly reduced products challenging, because there is a limited NADH output from glucose catabolism. Microbial production of n-butanol apparently represents one typical example. In this study, we addressed the issue by adjustment of the intracellular redox state in Escherichia coli. This was initiated with strain BuT-8 which carries the clostridial CoA-dependent synthetic pathway. Three metabolite nodes in the central metabolism of the strain were targeted for engineering. First, the pyruvate node was manipulated by enhancement of pyruvate decarboxylation in the oxidative pathway. Subsequently, the pentose phosphate (PP) pathway was amplified at the glucose-6-phosphate (G6P) node. The pathway for G6P isomerization was further blocked to force the glycolytic flux through the PP pathway. It resulted in a growth defect, and the cell growth was later recovered by limiting the tricarboxylic acid cycle at the acetyl-CoA node. Finally, the resulting strain exhibited a high NADH level and enabled production of 6.1 g/L n-butanol with a yield of 0.31 g/g-glucose and a productivity of 0.21 g/L/h. The production efficiency of fermentative products in microbes strongly depends on the intracellular redox state. This work illustrates the flexibility of pyruvate, G6P, and acetyl-CoA nodes at the junction of the central metabolism for engineering. In principle, high production of reduced products of interest can be achieved by individual or coordinated modulation of these metabolite nodes.

  18. Metabolic engineering for the production of 1,3-propanediol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, D.C.; Tong, I.T., Skraly, F.A.

    1993-12-31

    Metabolic engineering involves the use of recombinant DNA techniques for the modification of intermediary metabolic pathways. Microorganisms have recently been engineered to produce compounds such as indigo, ethanol, fatty acids and polyhydroxyalkanoates. As a model system for research in metabolic engineering, the authors have constructed a strain of the bacterium Escherichia coli, that is able to produce 1,3-propanediol (1,3-PD) from glycerol. This strain contains the genes for the glycerol deydratase and the 1,3-PD oxidoreductase from Klebsiella pneumoniae. The authors have also investigated genetic and environmental strategies for improving the yield and productivity of 1,3-PD by the engineered organism. In additionmore » to being a useful model system, 1,3-PD production is of current practical interest. First 1,3-PD (also known as trimethylene glycol) and 1,4-butanediol, the more readily available diols. Second, the volume of feedstock (glycerol) is expected to grow, as it is a by-product of the production of polyglycoside surfactants and biodiesel fluids.« less

  19. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol.

    PubMed

    Kay, Jennifer E; Jewett, Michael C

    2015-11-01

    Cell-free metabolic engineering (CFME) is emerging as a powerful approach for the production of target molecules and pathway debugging. Unfortunately, high cofactor costs, limited cofactor and energy regeneration, and low volumetric productivities hamper the widespread use and practical implementation of CFME technology. To address these challenges, we have developed a cell-free system that harnesses ensembles of catalytic proteins prepared from crude lysates, or extracts, of cells to fuel highly active heterologous metabolic conversions. As a model pathway, we selected conversion of glucose to 2,3-butanediol (2,3-BD), a medium level commodity chemical with many industrial applications. Specifically, we engineered a single strain of Escherichia coli to express three pathway enzymes necessary to make meso-2,3-BD (m2,3-BD). We then demonstrated that lysates from this strain, with addition of glucose and catalytic amounts of cofactors NAD+ and ATP, can produce m2,3-BD. Endogenous glycolytic enzymes convert glucose to pyruvate, the starting intermediate for m2,3-BD synthesis. Strikingly, with no strain optimization, we observed a maximal synthesis rate of m2,3-BD of 11.3 ± 0.1 g/L/h with a theoretical yield of 71% (0.36 g m2,3-BD/g glucose) in batch reactions. Titers reached 82 ± 8 g/L m2,3-BD in a 30 h fed-batch reaction. Our results highlight the ability for high-level co-factor regeneration in cell-free lysates. Further, they suggest exciting opportunities to use lysate-based systems to rapidly prototype metabolic pathways and carry out molecular transformations when bioconversion yields (g product/L), productivities (g product/L/h), or cellular toxicity limit commercial feasibility of whole-cell fermentation. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Metabolic Engineering of Probiotic Saccharomyces boulardii.

    PubMed

    Liu, Jing-Jing; Kong, In Iok; Zhang, Guo-Chang; Jayakody, Lahiru N; Kim, Heejin; Xia, Peng-Fei; Kwak, Suryang; Sung, Bong Hyun; Sohn, Jung-Hoon; Walukiewicz, Hanna E; Rao, Christopher V; Jin, Yong-Su

    2016-04-01

    Saccharomyces boulardiiis a probiotic yeast that has been used for promoting gut health as well as preventing diarrheal diseases. This yeast not only exhibits beneficial phenotypes for gut health but also can stay longer in the gut than Saccharomyces cerevisiae Therefore, S. boulardiiis an attractive host for metabolic engineering to produce biomolecules of interest in the gut. However, the lack of auxotrophic strains with defined genetic backgrounds has hampered the use of this strain for metabolic engineering. Here, we report the development of well-defined auxotrophic mutants (leu2,ura3,his3, and trp1) through clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-based genome editing. The resulting auxotrophic mutants can be used as a host for introducing various genetic perturbations, such as overexpression or deletion of a target gene, using existing genetic tools forS. cerevisiae We demonstrated the overexpression of a heterologous gene (lacZ), the correct localization of a target protein (red fluorescent protein) into mitochondria by using a protein localization signal, and the introduction of a heterologous metabolic pathway (xylose-assimilating pathway) in the genome ofS. boulardii We further demonstrated that human lysozyme, which is beneficial for human gut health, could be secreted by S. boulardii Our results suggest that more sophisticated genetic perturbations to improveS. boulardii can be performed without using a drug resistance marker, which is a prerequisite for in vivo applications using engineeredS. boulardii. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation

    PubMed Central

    Ruhal, Rohit; Kataria, Rashmi; Choudhury, Bijan

    2013-01-01

    Summary The current knowledge of trehalose biosynthesis under stress conditions is incomplete and needs further research. Since trehalose finds industrial and pharmaceutical applications, enhanced accumulation of trehalose in bacteria seems advantageous for commercial production. Moreover, physiological role of trehalose is a key to generate stress resistant bacteria by metabolic engineering. Although trehalose biosynthesis requires few metabolites and enzyme reactions, it appears to have a more complex metabolic regulation. Trehalose biosynthesis in bacteria is known through three pathways – OtsAB, TreYZ and TreS. The interconnections of in vivo synthesis of trehalose, glycogen or maltose were most interesting to investigate in recent years. Further, enzymes at different nodes (glucose-6-P, glucose-1-P and NDP-glucose) of metabolic pathways influence enhancement of trehalose accumulation. Most of the study of trehalose biosynthesis was explored in medically significant Mycobacterium, research model Escherichia coli, industrially applicable Corynebacterium and food and probiotic interest Propionibacterium freudenreichii. Therefore, the present review dealt with the trehalose metabolism in these bacteria. In addition, an effort was made to recognize how enzymes at different nodes of metabolic pathway can influence trehalose accumulation. PMID:23302511

  2. Volatile science? Metabolic engineering of terpenoids in plants.

    PubMed

    Aharoni, Asaph; Jongsma, Maarten A; Bouwmeester, Harro J

    2005-12-01

    Terpenoids are important for plant survival and also possess biological properties that are beneficial to humans. Here, we describe the state of the art in terpenoid metabolic engineering, showing that significant progress has been made over the past few years. Subcellular targeting of enzymes has demonstrated that terpenoid precursors in subcellular compartments are not as strictly separated as previously thought and that multistep pathway engineering is feasible, even across cell compartments. These engineered plants show that insect behavior is influenced by terpenoids. In the future, we expect rapid progress in the engineering of terpenoid production in plants. In addition to commercial applications, such transgenic plants should increase our understanding of the biological relevance of these volatile secondary metabolites.

  3. Computer-aided design for metabolic engineering.

    PubMed

    Fernández-Castané, Alfred; Fehér, Tamás; Carbonell, Pablo; Pauthenier, Cyrille; Faulon, Jean-Loup

    2014-12-20

    The development and application of biotechnology-based strategies has had a great socio-economical impact and is likely to play a crucial role in the foundation of more sustainable and efficient industrial processes. Within biotechnology, metabolic engineering aims at the directed improvement of cellular properties, often with the goal of synthesizing a target chemical compound. The use of computer-aided design (CAD) tools, along with the continuously emerging advanced genetic engineering techniques have allowed metabolic engineering to broaden and streamline the process of heterologous compound-production. In this work, we review the CAD tools available for metabolic engineering with an emphasis, on retrosynthesis methodologies. Recent advances in genetic engineering strategies for pathway implementation and optimization are also reviewed as well as a range of bionalytical tools to validate in silico predictions. A case study applying retrosynthesis is presented as an experimental verification of the output from Retropath, the first complete automated computational pipeline applicable to metabolic engineering. Applying this CAD pipeline, together with genetic reassembly and optimization of culture conditions led to improved production of the plant flavonoid pinocembrin. Coupling CAD tools with advanced genetic engineering strategies and bioprocess optimization is crucial for enhanced product yields and will be of great value for the development of non-natural products through sustainable biotechnological processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Engineered monoculture and co-culture of methylotrophic yeast for de novo production of monacolin J and lovastatin from methanol.

    PubMed

    Liu, Yiqi; Tu, Xiaohu; Xu, Qin; Bai, Chenxiao; Kong, Chuixing; Liu, Qi; Yu, Jiahui; Peng, Qiangqiang; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2018-01-01

    As a promising one-carbon renewable substrate for industrial biotechnology, methanol has attracted much attention. However, engineering of microorganisms for industrial production of pharmaceuticals using a methanol substrate is still in infancy. In this study, the methylotrophic yeast Pichia pastoris was used to produce anti-hypercholesterolemia pharmaceuticals, lovastatin and its precursor monacolin J, from methanol. The biosynthetic pathways for monacolin J and lovastatin were first assembled and optimized in single strains using single copies of the relevant biosynthetic genes, and yields of 60.0mg/L monacolin J and 14.4mg/L lovastatin were obtained using methanol following pH controlled monoculture. To overcome limitations imposed by accumulation of intermediates and metabolic stress in monoculture, approaches using pathway splitting and co-culture were developed. Two pathway splitting strategies for monacolin J, and four for lovastatin were tested at different metabolic nodes. Biosynthesis of monacolin J and lovastatin was improved by 55% and 71%, respectively, when the upstream and downstream modules were separately accommodated in two different fluorescent strains, split at the metabolic node of dihydromonacolin L. However, pathway distribution at monacolin J blocked lovastatin biosynthesis in all designs, mainly due to its limited ability of crossing cellular membranes. Bioreactor fermentations were tested for the optimal co-culture strategies, and yields of 593.9mg/L monacolin J and 250.8mg/L lovastatin were achieved. This study provides an alternative method for production of monacolin J and lovastatin and reveals the potential of a methylotrophic yeast to produce complicated pharmaceuticals from methanol. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. The metabolic co-regulator PGC1α suppresses prostate cancer metastasis

    PubMed Central

    Cortazar, Ana Rosa; Liu, Xiaojing; Urosevic, Jelena; Castillo-Martin, Mireia; Fernández-Ruiz, Sonia; Morciano, Giampaolo; Caro-Maldonado, Alfredo; Guiu, Marc; Zúñiga-García, Patricia; Graupera, Mariona; Bellmunt, Anna; Pandya, Pahini; Lorente, Mar; Martín-Martín, Natalia; Sutherland, James David; Sanchez-Mosquera, Pilar; Bozal-Basterra, Laura; Zabala-Letona, Amaia; Arruabarrena-Aristorena, Amaia; Berenguer, Antonio; Embade, Nieves; Ugalde-Olano, Aitziber; Lacasa-Viscasillas, Isabel; Loizaga-Iriarte, Ana; Unda-Urzaiz, Miguel; Schultz, Nikolaus; Aransay, Ana Maria; Sanz-Moreno, Victoria; Barrio, Rosa; Velasco, Guillermo; Pinton, Paolo; Cordon-Cardo, Carlos; Carracedo, Arkaitz

    2016-01-01

    Cellular transformation and cancer progression is accompanied by changes in the metabolic landscape. Master co-regulators of metabolism orchestrate the modulation of multiple metabolic pathways through transcriptional programs, and hence constitute a probabilistically parsimonious mechanism for general metabolic rewiring. Here we show that the transcriptional co-activator PGC1α suppresses prostate cancer progression and metastasis. A metabolic co-regulator data mining analysis unveiled that PGC1α is down-regulated in prostate cancer and associated to disease progression. Using genetically engineered mouse models and xenografts, we demonstrated that PGC1α opposes prostate cancer progression and metastasis. Mechanistically, the use of integrative metabolomics and transcriptomics revealed that PGC1α activates an Oestrogen-related receptor alpha (ERRα)-dependent transcriptional program to elicit a catabolic state and metastasis suppression. Importantly, a signature based on the PGC1α-ERRα pathway exhibited prognostic potential in prostate cancer, thus uncovering the relevance of monitoring and manipulating this pathway for prostate cancer stratification and treatment. PMID:27214280

  6. Recent Advances in the Recombinant Biosynthesis of Polyphenols

    PubMed Central

    Chouhan, Sonam; Sharma, Kanika; Zha, Jian; Guleria, Sanjay; Koffas, Mattheos A. G.

    2017-01-01

    Plants are the source of various natural compounds with pharmaceutical and nutraceutical importance which have shown numerous health benefits with relatively fewer side effects. However, extraction of these compounds from native producers cannot meet the ever-increasing demands of the growing population due to, among other things, the limited production of the active compound(s). Their production depends upon the metabolic demands of the plant and is also subjected to environmental conditions, abundance of crop species and seasonal variations. Moreover, their extraction from plants requires complex downstream processing and can also lead to the extinction of many useful plant varieties. Microbial engineering is one of the alternative approaches which can meet the global demand for natural products in an eco-friendly manner. Metabolic engineering of microbes or pathway reconstruction using synthetic biology tools and novel enzymes lead to the generation of a diversity of compounds (like flavonoids, stilbenes, anthocyanins etc.) and their natural and non-natural derivatives. Strain and pathway optimization, pathway regulation and tolerance engineering have produced microbial cell factories into which the metabolic pathway of plants can be introduced for the production of compounds of interest on an industrial scale in an economical and eco-friendly way. While microbial production of phytochemicals needs to further increase product titer if it is ever to become a commercial success. The present review covers the advancements made for the improvement of microbial cell factories in order to increase the product titer of recombinant polyphenolic compounds. PMID:29201020

  7. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum

    DOE PAGES

    Thompson, R. Adam; Layton, Donovan S.; Guss, Adam M.; ...

    2015-10-21

    Clostridium thermocellum is an anaerobic, Gram-positive, thermophilic bacterium that has generated great interest due to its ability to ferment lignocellulosic biomass to ethanol. However, ethanol production is low due to the complex and poorly understood branched metabolism of C. thermocellum, and in some cases overflow metabolism as well. In this work, we developed a predictive stoichiometric metabolic model for C. thermocellum which incorporates the current state of understanding, with particular attention to cofactor specificity in the atypical glycolytic enzymes and the complex energy, redox, and fermentative pathways with the goal of aiding metabolic engineering efforts. We validated the model smore » capability to encompass experimentally observed phenotypes for the parent strain and derived mutants designed for significant perturbation of redox and energy pathways. Metabolic flux distributions revealed significant alterations in key metabolic branch points (e.g., phosphoenol pyruvate, pyruvate, acetyl-CoA, and cofactor nodes) in engineered strains for channeling electron and carbon fluxes for enhanced ethanol synthesis, with the best performing strain doubling ethanol yield and titer compared to the parent strain. In silico predictions of a redox-imbalanced genotype incapable of growth were confirmed in vivo, and a mutant strain was used as a platform to probe redox bottlenecks in the central metabolism that hinder efficient ethanol production. The results highlight the robustness of the redox metabolism of C. thermocellum and the necessity of streamlined electron flux from reduced ferredoxin to NAD(P)H for high ethanol production. The model was further used to design a metabolic engineering strategy to phenotypically constrain C. thermocellum to achieve high ethanol yields while requiring minimal genetic manipulations. Furthermore, the model can be applied to design C. thermocellum as a platform microbe for consolidated bioprocessing to produce ethanol and other reduced metabolites.« less

  8. Impacts of genetically engineered alterations in carbon sink pathways on photosynthetic performance

    DOE PAGES

    Holland, Steven C.; Artier, Juliana; Miller, Neil T.; ...

    2016-10-05

    Genetic engineering of photosynthetic organisms typically redirects native metabolism towards desirable products, which thereby represent new metabolic sinks. There is limited information on how these modifications impact the evolved mechanisms of photosynthetic energy metabolism and cellular growth. Two engineered strains of Synechocystis sp. PCC 6803 with altered carbon sink capacity were assayed for their photosynthetic and CO 2 concentrating mechanism properties in conditions of high and low inorganic carbon (Ci) availability. In the ΔglgC mutant, glycogen cannot be synthesized and a carbon sink pathway has been effectively removed. The JU547 strain has been engineered by integration of the Pseudomonas syringaemore » ethylene forming enzyme and provides a new sink. When cultured under high carbon conditions, ΔglgC displayed diminished photochemical efficiency, a more reduced NADPH pool, delayed initiation of the Calvin-Benson-Bassham cycle, and impairment of linear and cyclic electron flows. It also exhibited a large decrease in photochemical quenching indicative of the accumulation of Q A-, normally associated with a reduced PQ pool, but appears instead to be the result of an undefined dissipative mechanism to spill excess energy. In the case of carbon sink integration, JU547 displayed slightly more oxidized PQ and NADPH pools and increased rates of cyclic electron flow and an enhanced demand for inorganic carbon as suggested by increase in the expression of the bicarbonate transporter, SbtA. Overall, the results highlight the importance of the native regulatory network of autotrophic metabolism in governing photosynthetic performance and provide cogent examples of both predicable and difficult to predict phenotypic consequences upon installation of new pathways in autotrophs.« less

  9. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose.

    PubMed

    Jiang, Jingjie; Yin, Hua; Wang, Shuai; Zhuang, Yibin; Liu, Shaowei; Liu, Tao; Ma, Yanhe

    2018-05-02

    Salidroside is an important plant-derived aromatic compound with diverse biological properties. Because of inadequate natural resources, the supply of salidroside is currently limited. In this work, we engineered the production of salidroside in yeast. First, the aromatic aldehyde synthase (AAS) from Petroselinum crispum was overexpressed in Saccharomyces cerevisiae when combined with endogenous Ehrlich pathway to produce tyrosol from tyrosine. Glucosyltransferases from different resources were tested for ideal production of salidroside in the yeast. Metabolic flux was enhanced toward tyrosine biosynthesis by overexpressing pathway genes and eliminating feedback inhibition. The pathway genes were integrated into yeast chromosome, leading to a recombinant strain that produced 239.5 mg/L salidroside and 965.4 mg/L tyrosol. The production of salidroside and tyrosol reached up to 732.5 and 1394.6 mg/L, respectively, by fed-batch fermentation. Our work provides an alternative way for industrial large-scale production of salidroside and tyrosol from S. cerevisiae.

  10. Metabolic Engineering of Probiotic Saccharomyces boulardii

    PubMed Central

    Liu, Jing-Jing; Kong, In Iok; Zhang, Guo-Chang; Jayakody, Lahiru N.; Kim, Heejin; Xia, Peng-Fei; Kwak, Suryang; Sung, Bong Hyun; Sohn, Jung-Hoon; Walukiewicz, Hanna E.; Rao, Christopher V.

    2016-01-01

    Saccharomyces boulardii is a probiotic yeast that has been used for promoting gut health as well as preventing diarrheal diseases. This yeast not only exhibits beneficial phenotypes for gut health but also can stay longer in the gut than Saccharomyces cerevisiae. Therefore, S. boulardii is an attractive host for metabolic engineering to produce biomolecules of interest in the gut. However, the lack of auxotrophic strains with defined genetic backgrounds has hampered the use of this strain for metabolic engineering. Here, we report the development of well-defined auxotrophic mutants (leu2, ura3, his3, and trp1) through clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-based genome editing. The resulting auxotrophic mutants can be used as a host for introducing various genetic perturbations, such as overexpression or deletion of a target gene, using existing genetic tools for S. cerevisiae. We demonstrated the overexpression of a heterologous gene (lacZ), the correct localization of a target protein (red fluorescent protein) into mitochondria by using a protein localization signal, and the introduction of a heterologous metabolic pathway (xylose-assimilating pathway) in the genome of S. boulardii. We further demonstrated that human lysozyme, which is beneficial for human gut health, could be secreted by S. boulardii. Our results suggest that more sophisticated genetic perturbations to improve S. boulardii can be performed without using a drug resistance marker, which is a prerequisite for in vivo applications using engineered S. boulardii. PMID:26850302

  11. A Method for Finding Metabolic Pathways Using Atomic Group Tracking.

    PubMed

    Huang, Yiran; Zhong, Cheng; Lin, Hai Xiang; Wang, Jianyi

    2017-01-01

    A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways.

  12. A Method for Finding Metabolic Pathways Using Atomic Group Tracking

    PubMed Central

    Zhong, Cheng; Lin, Hai Xiang; Wang, Jianyi

    2017-01-01

    A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways. PMID:28068354

  13. Tomato Fruits-A Platform for Metabolic Engineering of Terpenes.

    PubMed

    Gutensohn, M; Dudareva, N

    2016-01-01

    Terpenoids are a large and diverse class of plant metabolites including mono-, sesqui-, and diterpenes. They have numerous functions in basic physiological processes as well as the interaction of plants with their biotic and abiotic environment. Due to the tight regulation of biosynthetic pathways and the resulting limited natural availability of terpenes, there is a strong interest in increasing their production in plants by metabolic engineering for agricultural, pharmaceutical, and industrial applications. The tomato fruit system was developed as a platform for metabolic engineering of terpenes to overcome detrimental effects on overall plant growth and photosynthesis traits, which are affected when terpenoid engineering is performed in vegetative tissues. Here we describe how the use of fruit-specific promoters for transgene expression can avoid these unwanted effects. In addition, targeting the expression of the introduced terpene biosynthetic gene to fruit tissue can take advantage of the large precursor pool provided by the methylerythritol-phosphate (MEP) pathway, which is highly active during tomato fruit ripening to facilitate the accumulation of carotenoids. We also discuss how the production of high levels of target terpene compounds can be achieved in fruits by the expression of individual or a combination of (i) the MEP or mevalonic acid pathway enzymes, (ii) prenyltransferases, and/or (iii) terpene synthases. Finally, we provide a brief outline of how the emitted as well as internal pools of terpenes can be analyzed in transgenic tomato fruits. © 2016 Elsevier Inc. All rights reserved.

  14. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology.

    PubMed

    Pandey, Ramesh Prasad; Parajuli, Prakash; Koffas, Mattheos A G; Sohng, Jae Kyung

    2016-01-01

    In this review, we address recent advances made in pathway engineering, directed evolution, and systems/synthetic biology approaches employed in the production and modification of flavonoids from microbial cells. The review is divided into two major parts. In the first, various metabolic engineering and system/synthetic biology approaches used for production of flavonoids and derivatives are discussed broadly. All the manipulations/engineering accomplished on the microorganisms since 2000 are described in detail along with the biosynthetic pathway enzymes, their sources, structures of the compounds, and yield of each product. In the second part of the review, post-modifications of flavonoids by four major reactions, namely glycosylations, methylations, hydroxylations and prenylations using recombinant strains are described. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology willmore » provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.« less

  16. Systems metabolic engineering of Escherichia coli for L-threonine production.

    PubMed

    Lee, Kwang Ho; Park, Jin Hwan; Kim, Tae Yong; Kim, Hyun Uk; Lee, Sang Yup

    2007-01-01

    Amino-acid producers have traditionally been developed by repeated random mutagenesis owing to the difficulty in rationally engineering the complex and highly regulated metabolic network. Here, we report the development of the genetically defined L-threonine overproducing Escherichia coli strain by systems metabolic engineering. Feedback inhibitions of aspartokinase I and III (encoded by thrA and lysC, respectively) and transcriptional attenuation regulations (located in thrL) were removed. Pathways for Thr degradation were removed by deleting tdh and mutating ilvA. The metA and lysA genes were deleted to make more precursors available for Thr biosynthesis. Further target genes to be engineered were identified by transcriptome profiling combined with in silico flux response analysis, and their expression levels were manipulated accordingly. The final engineered E. coli strain was able to produce Thr with a high yield of 0.393 g per gram of glucose, and 82.4 g/l Thr by fed-batch culture. The systems metabolic engineering strategy reported here may be broadly employed for developing genetically defined organisms for the efficient production of various bioproducts.

  17. Comparative multi-goal tradeoffs in systems engineering of microbial metabolism

    PubMed Central

    2012-01-01

    Background Metabolic engineering design methodology has evolved from using pathway-centric, random and empirical-based methods to using systems-wide, rational and integrated computational and experimental approaches. Persistent during these advances has been the desire to develop design strategies that address multiple simultaneous engineering goals, such as maximizing productivity, while minimizing raw material costs. Results Here, we use constraint-based modeling to systematically design multiple combinations of medium compositions and gene-deletion strains for three microorganisms (Escherichia coli, Saccharomyces cerevisiae, and Shewanella oneidensis) and six industrially important byproducts (acetate, D-lactate, hydrogen, ethanol, formate, and succinate). We evaluated over 435 million simulated conditions and 36 engineering metabolic traits, including product rates, costs, yields and purity. Conclusions The resulting metabolic phenotypes can be classified into dominant clusters (meta-phenotypes) for each organism. These meta-phenotypes illustrate global phenotypic variation and sensitivities, trade-offs associated with multiple engineering goals, and fundamental differences in organism-specific capabilities. Given the increasing number of sequenced genomes and corresponding stoichiometric models, we envisage that the proposed strategy could be extended to address a growing range of biological questions and engineering applications. PMID:23009214

  18. Biosynthetic approaches to creating bioactive fungal metabolites: Pathway engineering and activation of secondary metabolism.

    PubMed

    Motoyama, Takayuki; Osada, Hiroyuki

    2016-12-15

    The diversity of natural products is greater than that of combinatorial chemistry compounds and is similar to that of drugs. Compounds rich in sp 3 carbons, such as natural products, typically exhibit high structural complexity and high specificity to molecular targets. Microorganisms can synthesize such sp 3 carbon-rich compounds and can be used as excellent factories for making bioactive compounds. Here, we mainly focus on pathway engineering of two sp 3 carbon-rich bioactive indole alkaloids, fumitremorgin C and terpendole E. We also demonstrate the importance of activation of secondary metabolism by focusing on tenuazonic acid, a bioactive tetramic acid compound, as an example. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks.

    PubMed

    Chen, Yun; Nielsen, Jens

    2013-12-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles.

    PubMed

    Kitayama, Tomoya; Kinoshita, Ayako; Sugimoto, Masahiro; Nakayama, Yoichi; Tomita, Masaru

    2006-07-17

    In order to improve understanding of metabolic systems there have been attempts to construct S-system models from time courses. Conventionally, non-linear curve-fitting algorithms have been used for modelling, because of the non-linear properties of parameter estimation from time series. However, the huge iterative calculations required have hindered the development of large-scale metabolic pathway models. To solve this problem we propose a novel method involving power-law modelling of metabolic pathways from the Jacobian of the targeted system and the steady-state flux profiles by linearization of S-systems. The results of two case studies modelling a straight and a branched pathway, respectively, showed that our method reduced the number of unknown parameters needing to be estimated. The time-courses simulated by conventional kinetic models and those described by our method behaved similarly under a wide range of perturbations of metabolite concentrations. The proposed method reduces calculation complexity and facilitates the construction of large-scale S-system models of metabolic pathways, realizing a practical application of reverse engineering of dynamic simulation models from the Jacobian of the targeted system and steady-state flux profiles.

  1. FMM: a web server for metabolic pathway reconstruction and comparative analysis.

    PubMed

    Chou, Chih-Hung; Chang, Wen-Chi; Chiu, Chih-Min; Huang, Chih-Chang; Huang, Hsien-Da

    2009-07-01

    Synthetic Biology, a multidisciplinary field, is growing rapidly. Improving the understanding of biological systems through mimicry and producing bio-orthogonal systems with new functions are two complementary pursuits in this field. A web server called FMM (From Metabolite to Metabolite) was developed for this purpose. FMM can reconstruct metabolic pathways form one metabolite to another metabolite among different species, based mainly on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and other integrated biological databases. Novel presentation for connecting different KEGG maps is newly provided. Both local and global graphical views of the metabolic pathways are designed. FMM has many applications in Synthetic Biology and Metabolic Engineering. For example, the reconstruction of metabolic pathways to produce valuable metabolites or secondary metabolites in bacteria or yeast is a promising strategy for drug production. FMM provides a highly effective way to elucidate the genes from which species should be cloned into those microorganisms based on FMM pathway comparative analysis. Consequently, FMM is an effective tool for applications in synthetic biology to produce both drugs and biofuels. This novel and innovative resource is now freely available at http://FMM.mbc.nctu.edu.tw/.

  2. A critique of the molecular target-based drug discovery paradigm based on principles of metabolic control: advantages of pathway-based discovery.

    PubMed

    Hellerstein, Marc K

    2008-01-01

    Contemporary drug discovery and development (DDD) is dominated by a molecular target-based paradigm. Molecular targets that are potentially important in disease are physically characterized; chemical entities that interact with these targets are identified by ex vivo high-throughput screening assays, and optimized lead compounds enter testing as drugs. Contrary to highly publicized claims, the ascendance of this approach has in fact resulted in the lowest rate of new drug approvals in a generation. The primary explanation for low rates of new drugs is attrition, or the failure of candidates identified by molecular target-based methods to advance successfully through the DDD process. In this essay, I advance the thesis that this failure was predictable, based on modern principles of metabolic control that have emerged and been applied most forcefully in the field of metabolic engineering. These principles, such as the robustness of flux distributions, address connectivity relationships in complex metabolic networks and make it unlikely a priori that modulating most molecular targets will have predictable, beneficial functional outcomes. These same principles also suggest, however, that unexpected therapeutic actions will be common for agents that have any effect (i.e., that complexity can be exploited therapeutically). A potential operational solution (pathway-based DDD), based on observability rather than predictability, is described, focusing on emergent properties of key metabolic pathways in vivo. Recent examples of pathway-based DDD are described. In summary, the molecular target-based DDD paradigm is built on a naïve and misleading model of biologic control and is not heuristically adequate for advancing the mission of modern therapeutics. New approaches that take account of and are built on principles described by metabolic engineers are needed for the next generation of DDD.

  3. Shikimic Acid Production in Escherichia coli: From Classical Metabolic Engineering Strategies to Omics Applied to Improve Its Production.

    PubMed

    Martínez, Juan Andrés; Bolívar, Francisco; Escalante, Adelfo

    2015-01-01

    Shikimic acid (SA) is an intermediate of the SA pathway that is present in bacteria and plants. SA has gained great interest because it is a precursor in the synthesis of the drug oseltamivir phosphate (OSF), an efficient inhibitor of the neuraminidase enzyme of diverse seasonal influenza viruses, the avian influenza virus H5N1, and the human influenza virus H1N1. For the purposes of OSF production, SA is extracted from the pods of Chinese star anise plants (Illicium spp.), yielding up to 17% of SA (dry basis content). The high demand for OSF necessary to manage a major influenza outbreak is not adequately met by industrial production using SA from plants sources. As the SA pathway is present in the model bacteria Escherichia coli, several "intuitive" metabolically engineered strains have been applied for its successful overproduction by biotechnological processes, resulting in strains producing up to 71 g/L of SA, with high conversion yields of up to 0.42 (mol SA/mol Glc), in both batch and fed-batch cultures using complex fermentation broths, including glucose as a carbon source and yeast extract. Global transcriptomic analyses have been performed in SA-producing strains, resulting in the identification of possible key target genes for the design of a rational strain improvement strategy. Because possible target genes are involved in the transport, catabolism, and interconversion of different carbon sources and metabolic intermediates outside the central carbon metabolism and SA pathways, as genes involved in diverse cellular stress responses, the development of rational cellular strain improvement strategies based on omics data constitutes a challenging task to improve SA production in currently overproducing engineered strains. In this review, we discuss the main metabolic engineering strategies that have been applied for the development of efficient SA-producing strains, as the perspective of omics analysis has focused on further strain improvement for the production of this valuable aromatic intermediate.

  4. Metabolic flux phenotype of tobacco hairy roots engineered for increased geraniol production.

    PubMed

    Masakapalli, Shyam K; Ritala, Anneli; Dong, Lemeng; van der Krol, Alexander R; Oksman-Caldentey, Kirsi-Marja; Ratcliffe, R George; Sweetlove, Lee J

    2014-03-01

    The goal of this study was to characterise the metabolic flux phenotype of transgenic tobacco (Nicotiana tabacum) hairy roots engineered for increased biosynthesis of geraniol, an intermediate of the terpenoid indole alkaloid pathway. Steady state, stable isotope labelling was used to determine flux maps of central carbon metabolism for transgenic lines over-expressing (i) plastid-targeted geraniol synthase (pGES) from Valeriana officinalis, and (ii) pGES in combination with plastid-targeted geranyl pyrophosphate synthase from Arabidopsis thaliana (pGES+pGPPS), as well as for wild type and control-vector-transformed roots. Fluxes were constrained by the redistribution of label from [1-¹³C]-, [2-¹³C]- or [¹³C6]glucose into amino acids, sugars and organic acids at isotopic steady state, and by biomass output fluxes determined from the fractionation of [U-¹⁴C]glucose into insoluble polymers. No significant differences in growth and biomass composition were observed between the lines. The pGES line accumulated significant amounts of geraniol/geraniol glycosides (151±24 ng/mg dry weight) and the de novo synthesis of geraniol in pGES was confirmed by ¹³C labelling analysis. The pGES+pGPPS also accumulated geraniol and geraniol glycosides, but to lower levels than the pGES line. Although there was a distinct impact of the transgenes at the level of geraniol synthesis, other network fluxes were unaffected, reflecting the capacity of central metabolism to meet the relatively modest demand for increased precursors in the transgenic lines. It is concluded that re-engineering of the terpenoid indole alkaloid pathway will only require simultaneous manipulation of the steps producing the pathway precursors that originate in central metabolism in tissues engineered to produce at least an order of magnitude more geraniol than has been achieved so far. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Shikimic Acid Production in Escherichia coli: From Classical Metabolic Engineering Strategies to Omics Applied to Improve Its Production

    PubMed Central

    Martínez, Juan Andrés; Bolívar, Francisco; Escalante, Adelfo

    2015-01-01

    Shikimic acid (SA) is an intermediate of the SA pathway that is present in bacteria and plants. SA has gained great interest because it is a precursor in the synthesis of the drug oseltamivir phosphate (OSF), an efficient inhibitor of the neuraminidase enzyme of diverse seasonal influenza viruses, the avian influenza virus H5N1, and the human influenza virus H1N1. For the purposes of OSF production, SA is extracted from the pods of Chinese star anise plants (Illicium spp.), yielding up to 17% of SA (dry basis content). The high demand for OSF necessary to manage a major influenza outbreak is not adequately met by industrial production using SA from plants sources. As the SA pathway is present in the model bacteria Escherichia coli, several “intuitive” metabolically engineered strains have been applied for its successful overproduction by biotechnological processes, resulting in strains producing up to 71 g/L of SA, with high conversion yields of up to 0.42 (mol SA/mol Glc), in both batch and fed-batch cultures using complex fermentation broths, including glucose as a carbon source and yeast extract. Global transcriptomic analyses have been performed in SA-producing strains, resulting in the identification of possible key target genes for the design of a rational strain improvement strategy. Because possible target genes are involved in the transport, catabolism, and interconversion of different carbon sources and metabolic intermediates outside the central carbon metabolism and SA pathways, as genes involved in diverse cellular stress responses, the development of rational cellular strain improvement strategies based on omics data constitutes a challenging task to improve SA production in currently overproducing engineered strains. In this review, we discuss the main metabolic engineering strategies that have been applied for the development of efficient SA-producing strains, as the perspective of omics analysis has focused on further strain improvement for the production of this valuable aromatic intermediate. PMID:26442259

  6. The Need for Integrated Approaches in Metabolic Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lechner, Anna; Brunk, Elizabeth; Keasling, Jay D.

    This review highlights state-of-the-art procedures for heterologous small-molecule biosynthesis, the associated bottlenecks, and new strategies that have the potential to accelerate future accomplishments in metabolic engineering. We emphasize that a combination of different approaches over multiple time and size scales must b e considered for successful pathway engineering in a heterologous host. We have classified these optimization procedures based on the "system" that is being manipulated: transcriptome, translatome, proteome, or reactome. By bridging multiple disciplines, including molecular biology, biochemistry, biophysics, and computational sciences, we can create an integral framework for the discovery and implementation of novel biosynthetic production routes.

  7. The Need for Integrated Approaches in Metabolic Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lechner, Anna; Brunk, Elizabeth; Keasling, Jay D.

    Highlights include state-of-the-art procedures for heterologous small-molecule biosynthesis, the associated bottlenecks, and new strategies that have the potential to accelerate future accomplishments in metabolic engineering. A combination of different approaches over multiple time and size scales must be considered for successful pathway engineering in a heterologous host. We have classified these optimization procedures based on the “system” that is being manipulated: transcriptome, translatome, proteome, or reactome. Here, by bridging multiple disciplines, including molecular biology, biochemistry, biophysics, and computational sciences, we can create an integral framework for the discovery and implementation of novel biosynthetic production routes.

  8. The Need for Integrated Approaches in Metabolic Engineering

    DOE PAGES

    Lechner, Anna; Brunk, Elizabeth; Keasling, Jay D.

    2016-08-15

    Highlights include state-of-the-art procedures for heterologous small-molecule biosynthesis, the associated bottlenecks, and new strategies that have the potential to accelerate future accomplishments in metabolic engineering. A combination of different approaches over multiple time and size scales must be considered for successful pathway engineering in a heterologous host. We have classified these optimization procedures based on the “system” that is being manipulated: transcriptome, translatome, proteome, or reactome. Here, by bridging multiple disciplines, including molecular biology, biochemistry, biophysics, and computational sciences, we can create an integral framework for the discovery and implementation of novel biosynthetic production routes.

  9. Strategies for engineering plant natural products: the iridoid-derived monoterpene indole alkaloids of Catharanthus roseus.

    PubMed

    O'Connor, Sarah E

    2012-01-01

    The manipulation of pathways to make unnatural variants of natural compounds, a process often termed combinatorial biosynthesis, has been robustly successful in prokaryotic systems. The development of approaches to generate new-to-nature compounds from plant-based pathways is, in comparison, much less advanced. Success will depend on the specific chemistry of the pathway, as well as on the suitability of the plant system for transformation and genetic manipulation. As plant pathways are elucidated, and can be heterologously expressed in hosts that are more amenable to genetic manipulation, biosynthetic production of new-to-nature compounds from plant pathways will become more widespread. In this chapter, some of the key strategies that have been developed for metabolic engineering of plant pathways, namely directed biosynthesis, mutasynthesis, and pathway incorporation of engineered enzymes are highlighted. The iridoid-derived monoterpene indole alkaloids from C. roseus, which are the focus of this chapter, provide an excellent system for developing these strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Advanced Stoichiometric Analysis of Metabolic Networks of Mammalian Systems

    PubMed Central

    Orman, Mehmet A.; Berthiaume, Francois; Androulakis, Ioannis P.; Ierapetritou, Marianthi G.

    2013-01-01

    Metabolic engineering tools have been widely applied to living organisms to gain a comprehensive understanding about cellular networks and to improve cellular properties. Metabolic flux analysis (MFA), flux balance analysis (FBA), and metabolic pathway analysis (MPA) are among the most popular tools in stoichiometric network analysis. Although application of these tools into well-known microbial systems is extensive in the literature, various barriers prevent them from being utilized in mammalian cells. Limited experimental data, complex regulatory mechanisms, and the requirement of more complex nutrient media are some major obstacles in mammalian cell systems. However, mammalian cells have been used to produce therapeutic proteins, to characterize disease states or related abnormal metabolic conditions, and to analyze the toxicological effects of some medicinally important drugs. Therefore, there is a growing need for extending metabolic engineering principles to mammalian cells in order to understand their underlying metabolic functions. In this review article, advanced metabolic engineering tools developed for stoichiometric analysis including MFA, FBA, and MPA are described. Applications of these tools in mammalian cells are discussed in detail, and the challenges and opportunities are highlighted. PMID:22196224

  11. Enhancing solubility of deoxyxylulose phosphate pathway enzymes for microbial isoprenoid production

    PubMed Central

    2012-01-01

    Background Recombinant proteins are routinely overexpressed in metabolic engineering. It is well known that some over-expressed heterologous recombinant enzymes are insoluble with little or no enzymatic activity. This study examined the solubility of over-expressed homologous enzymes of the deoxyxylulose phosphate pathway (DXP) and the impact of inclusion body formation on metabolic engineering of microbes. Results Four enzymes of this pathway (DXS, ISPG, ISPH and ISPA), but not all, were highly insoluble, regardless of the expression systems used. Insoluble dxs (the committed enzyme of DXP pathway) was found to be inactive. Expressions of fusion tags did not significantly improve the solubility of dxs. However, hypertonic media containing sorbitol, an osmolyte, successfully doubled the solubility of dxs, with the concomitant improvement in microbial production of the metabolite, DXP. Similarly, sorbitol significantly improved the production of soluble and functional ERG12, the committed enzyme in the mevalonate pathway. Conclusion This study demonstrated the unanticipated findings that some over-expressed homologous enzymes of the DXP pathway were highly insoluble, forming inclusion bodies, which affected metabolite formation. Sorbitol was found to increase both the solubility and function of some of these over-expressed enzymes, a strategy to increase the production of secondary metabolites. PMID:23148661

  12. Min Zhang | NREL

    Science.gov Websites

    Min Zhang Photo of Min Zhang Min Zhang Researcher V-Molecular Biology Min.Zhang@nrel.gov | 303-384 -7753 Research Interests Using a systems biology approach to identify, analyze, and engineer pathways Metabolic engineering Molecular biology Microbial physiology Systems biology Fermentation development Enzyme

  13. Plasmid-encoded biosynthetic genes alleviate metabolic disadvantages while increasing glucose conversion to shikimate in an engineered Escherichia coli strain.

    PubMed

    Rodriguez, Alberto; Martínez, Juan A; Millard, Pierre; Gosset, Guillermo; Portais, Jean-Charles; Létisse, Fabien; Bolivar, Francisco

    2017-06-01

    Metabolic engineering strategies applied over the last two decades to produce shikimate (SA) in Escherichia coli have resulted in a battery of strains bearing many expression systems. However, the effects that these systems have on the host physiology and how they impact the production of SA are still not well understood. In this work we utilized an engineered E. coli strain to determine the consequences of carrying a vector that promotes SA production from glucose with a high-yield but that is also expected to impose a significant cellular burden. Kinetic comparisons in fermentors showed that instead of exerting a negative effect, the sole presence of the plasmid increased glucose consumption without diminishing the growth rate. By constitutively expressing a biosynthetic operon from this vector, the more active glycolytic metabolism was exploited to redirect intermediates toward the production of SA, which further increased the glucose consumption rate and avoided excess acetate production. Fluxomics and metabolomics experiments revealed a global remodeling of the carbon and energy metabolism in the production strain, where the increased SA production reduced the carbon available for oxidative and fermentative pathways. Moreover, the results showed that the production of SA relies on a specific setup of the pentose phosphate pathway, where both its oxidative and non-oxidative branches are strongly activated to supply erythrose-4-phosphate and balance the NADPH requirements. This work improves our understanding of the metabolic reorganization observed in E. coli in response to the plasmid-based expression of the SA biosynthetic pathway. Biotechnol. Bioeng. 2017;114: 1319-1330. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Metabolic engineering of Corynebacterium crenatium for enhancing production of higher alcohols

    PubMed Central

    Su, Haifeng; Lin, Jiafu; Wang, GuangWei

    2016-01-01

    Biosynthesis approaches for the production of higher alcohols as a source of alternative fossil fuels have garnered increasing interest recently. However, there is little information available in the literature about using undirected whole-cell mutagenesis (UWCM) in vivo to improve higher alcohols production. In this study, for the first time, we approached this question from two aspects: first preferentially improving the capacity of expression host, and subsequently optimizing metabolic pathways using multiple genetic mutations to shift metabolic flux toward the biosynthetic pathway of target products to convert intermediate 2-keto acid compounds into diversified C4~C5 higher alcohols using UWCM in vivo, with the aim of improving the production. The results demonstrated the production of higher alcohols including isobutanol, 2-methyl-1-butanol, 3-methyl-1-butanol from glucose and duckweed under simultaneous saccharification and fermentation (SSF) scheme were higher based on the two aspects compared with only the use of wild-type stain as expression host. These findings showed that the improvement via UWCM in vivo in the two aspects for expression host and metabolic flux can facilitate the increase of higher alcohols production before using gene editing technology. Our work demonstrates that a multi-faceted approach for the engineering of novel synthetic pathways in microorganisms for improving biofuel production is feasible. PMID:27996038

  15. Improving Fatty Acid Availability for Bio-Hydrocarbon Production in Escherichia coli by Metabolic Engineering

    PubMed Central

    Lin, Fengming; Chen, Yu; Levine, Robert; Lee, Kilho; Yuan, Yingjin; Lin, Xiaoxia Nina

    2013-01-01

    Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR) to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoA△adhE△nuoA△ndh△pta△dld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT) enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation. PMID:24147139

  16. Metabolic engineering of Corynebacterium crenatium for enhancing production of higher alcohols

    NASA Astrophysics Data System (ADS)

    Su, Haifeng; Lin, Jiafu; Wang, Guangwei

    2016-12-01

    Biosynthesis approaches for the production of higher alcohols as a source of alternative fossil fuels have garnered increasing interest recently. However, there is little information available in the literature about using undirected whole-cell mutagenesis (UWCM) in vivo to improve higher alcohols production. In this study, for the first time, we approached this question from two aspects: first preferentially improving the capacity of expression host, and subsequently optimizing metabolic pathways using multiple genetic mutations to shift metabolic flux toward the biosynthetic pathway of target products to convert intermediate 2-keto acid compounds into diversified C4~C5 higher alcohols using UWCM in vivo, with the aim of improving the production. The results demonstrated the production of higher alcohols including isobutanol, 2-methyl-1-butanol, 3-methyl-1-butanol from glucose and duckweed under simultaneous saccharification and fermentation (SSF) scheme were higher based on the two aspects compared with only the use of wild-type stain as expression host. These findings showed that the improvement via UWCM in vivo in the two aspects for expression host and metabolic flux can facilitate the increase of higher alcohols production before using gene editing technology. Our work demonstrates that a multi-faceted approach for the engineering of novel synthetic pathways in microorganisms for improving biofuel production is feasible.

  17. Integrated RNA-seq and sRNA-seq analysis reveals miRNA effects on secondary metabolism in Solanum tuberosum L.

    PubMed

    Qiao, Yan; Zhang, Jinjin; Zhang, Jinwen; Wang, Zhiwei; Ran, An; Guo, Haixia; Wang, Di; Zhang, Junlian

    2017-02-01

    Light is a major environmental factor that affects metabolic pathways and stimulates the production of secondary metabolites in potato. However, adaptive changes in potato metabolic pathways and physiological functions triggered by light are partly explained by gene expression changes. Regulation of secondary metabolic pathways in potato has been extensively studied at transcriptional level, but little is known about the mechanisms of post-transcriptional regulation by miRNAs. To identify light-responsive miRNAs/mRNAs and construct putative metabolism pathways regulated by the miRNA-mRNA pairs, an integrated omics (sRNAome and transcriptome) analysis was performed to potato under light stimulus. A total of 31 and 48 miRNAs were identified to be differentially expressed in the leaves and tubers, respectively. Among the DEGs, 1353 genes in the leaves and 1841 genes in the tubers were upregulated, while 1595 genes in the leaves and 897 genes in the tubers were downregulated by light. Mapman enrichment analyses showed that genes related to MVA pathway, alkaloids-like, phenylpropanoids, flavonoids, and carotenoids metabolism were significantly upregulated, while genes associated with major CHO metabolism were repressed in the leaves and tubers. Integrated miRNA and mRNA profiles revealed that light-responsive miRNAs are important regulators in alkaloids metabolism, UMP salvage, lipid biosynthesis, and cellulose catabolism. Moreover, several miRNAs may participate in glycoalkaloids metabolism via JA signaling pathway, UDP-glucose biosynthesis and hydroxylation reaction. This study provides a global view of miRNA and mRNA expression profiles in potato response to light, our results suggest that miRNAs might play important roles in secondary metabolic pathways, especially in glycoalkaloid biosynthesis. The findings will enlighten us on the genetic regulation of secondary metabolite pathways and pave the way for future application of genetically engineered potato.

  18. Genome-Scale Metabolic Modeling of Archaea Lends Insight into Diversity of Metabolic Function

    PubMed Central

    2017-01-01

    Decades of biochemical, bioinformatic, and sequencing data are currently being systematically compiled into genome-scale metabolic reconstructions (GEMs). Such reconstructions are knowledge-bases useful for engineering, modeling, and comparative analysis. Here we review the fifteen GEMs of archaeal species that have been constructed to date. They represent primarily members of the Euryarchaeota with three-quarters comprising representative of methanogens. Unlike other reviews on GEMs, we specially focus on archaea. We briefly review the GEM construction process and the genealogy of the archaeal models. The major insights gained during the construction of these models are then reviewed with specific focus on novel metabolic pathway predictions and growth characteristics. Metabolic pathway usage is discussed in the context of the composition of each organism's biomass and their specific energy and growth requirements. We show how the metabolic models can be used to study the evolution of metabolism in archaea. Conservation of particular metabolic pathways can be studied by comparing reactions using the genes associated with their enzymes. This demonstrates the utility of GEMs to evolutionary studies, far beyond their original purpose of metabolic modeling; however, much needs to be done before archaeal models are as extensively complete as those for bacteria. PMID:28133437

  19. Engineering industrial oil biosynthesis: cloning and characterization of Kennedy pathway acyltransferases from novel oilseed species

    USDA-ARS?s Scientific Manuscript database

    For more than twenty years, various industrial, governmental, and academic laboratories have developed and refined genetic engineering strategies aimed at manipulating lipid metabolism in plants and microbes. The goal of these projects is to produce renewable specialized oils that can effectively c...

  20. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering.

    PubMed

    Crook, Nathan C; Schmitz, Alexander C; Alper, Hal S

    2014-05-16

    Reduction of endogenous gene expression is a fundamental operation of metabolic engineering, yet current methods for gene knockdown (i.e., genome editing) remain laborious and slow, especially in yeast. In contrast, RNA interference allows facile and tunable gene knockdown via a simple plasmid transformation step, enabling metabolic engineers to rapidly prototype knockdown strategies in multiple strains before expending significant cost to undertake genome editing. Although RNAi is naturally present in a myriad of eukaryotes, it has only been recently implemented in Saccharomyces cerevisiae as a heterologous pathway and so has not yet been optimized as a metabolic engineering tool. In this study, we elucidate a set of design principles for the construction of hairpin RNA expression cassettes in yeast and implement RNA interference to quickly identify routes for improvement of itaconic acid production in this organism. The approach developed here enables rapid prototyping of knockdown strategies and thus accelerates and reduces the cost of the design-build-test cycle in yeast.

  1. Genetic and metabolic engineering of microorganisms for the development of new flavor compounds from terpenic substrates.

    PubMed

    Bution, Murillo L; Molina, Gustavo; Abrahão, Meissa R E; Pastore, Gláucia M

    2015-01-01

    Throughout human history, natural products have been the basis for the discovery and development of therapeutics, cosmetic and food compounds used in industry. Many compounds found in natural organisms are rather difficult to chemically synthesize and to extract in large amounts, and in this respect, genetic and metabolic engineering are playing an increasingly important role in the production of these compounds, such as new terpenes and terpenoids, which may potentially be used to create aromas in industry. Terpenes belong to the largest class of natural compounds, are produced by all living organisms and play a fundamental role in human nutrition, cosmetics and medicine. Recent advances in systems biology and synthetic biology are allowing us to perform metabolic engineering at the whole-cell level, thus enabling the optimal design of microorganisms for the efficient production of drugs, cosmetic and food additives. This review describes the recent advances made in the genetic and metabolic engineering of the terpenes pathway with a particular focus on systems biotechnology.

  2. Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria.

    PubMed

    Choi, Sun Young; Lee, Hyun Jeong; Choi, Jaeyeon; Kim, Jiye; Sim, Sang Jun; Um, Youngsoon; Kim, Yunje; Lee, Taek Soon; Keasling, Jay D; Woo, Han Min

    2016-01-01

    Metabolic engineering of cyanobacteria has enabled photosynthetic conversion of CO2 to value-added chemicals as bio-solar cell factories. However, the production levels of isoprenoids in engineered cyanobacteria were quite low, compared to other microbial hosts. Therefore, modular optimization of multiple gene expressions for metabolic engineering of cyanobacteria is required for the production of farnesyl diphosphate-derived isoprenoids from CO2. Here, we engineered Synechococcus elongatus PCC 7942 with modular metabolic pathways consisting of the methylerythritol phosphate pathway enzymes and the amorphadiene synthase for production of amorpha-4,11-diene, resulting in significantly increased levels (23-fold) of amorpha-4,11-diene (19.8 mg/L) in the best strain relative to a parental strain. Replacing amorphadiene synthase with squalene synthase led to the synthesis of a high amount of squalene (4.98 mg/L/OD730). Overexpression of farnesyl diphosphate synthase is the most critical factor for the significant production, whereas overexpression of 1-deoxy-d-xylulose 5-phosphate reductase is detrimental to the cell growth and the production. Additionally, the cyanobacterial growth inhibition was alleviated by expressing a terpene synthase in S. elongatus PCC 7942 strain with the optimized MEP pathway only (SeHL33). This is the first demonstration of photosynthetic production of amorpha-4,11-diene from CO2 in cyanobacteria and production of squalene in S. elongatus PCC 7942. Our optimized modular OverMEP strain (SeHL33) with either co-expression of ADS or SQS demonstrated the highest production levels of amorpha-4,11-diene and squalene, which could expand the list of farnesyl diphosphate-derived isoprenoids from CO2 as bio-solar cell factories.

  3. Discovery of feed-forward regulation in L-tryptophan biosynthesis and its use in metabolic engineering of E. coli for efficient tryptophan bioproduction.

    PubMed

    Chen, Lin; Chen, Minliang; Ma, Chengwei; Zeng, An-Ping

    2018-05-05

    The L-tryptophan (Trp) biosynthesis pathway is highly regulated at multiple levels. The three types of regulations identified so far, namely repression, attenuation, and feedback inhibition have greatly impacted our understanding and engineering of cellular metabolism. In this study, feed-forward regulation is discovered as a novel regulation of this pathway and explored for engineering Escherichia coli for more efficient Trp biosynthesis. Specifically, indole glycerol phosphate synthase (IGPS) of the multifunctional enzyme TrpC from E. coli is found to be feed-forward inhibited by anthranilate noncompetitively. Surprisingly, IGPS of TrpC from both Saccharomyces cerevisiae and Aspergillus niger was found to be feed-forward activated, for which the glutamine aminotransferase domain is essential. The anthranilate binding site of IGPS from E. coli is identified and mutated, resulting in more tolerant variants for improved Trp biosynthesis. Furthermore, expressing the anthranilate-activated TrpC from A. niger in a previously engineered Trp producing E. coli strain S028 made the strain more robust in growth and more efficient in Trp production in bioreactor. It not only increased the Trp concentration from 19 to 29 g/L within 42 h, but also improved the maximum Trp yield from 0.15 to 0.18 g/g in simple fed-batch fermentations, setting a new level to rationally designed Trp producing strains. The findings are of fundamental interest for understanding and re-designing dynamics and control of metabolic pathways in general and provide a novel target and solution to engineering of E. coli for efficient Trp production particularly. Copyright © 2018. Published by Elsevier Inc.

  4. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae

    PubMed Central

    2011-01-01

    Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis) of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. Results In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP) [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Conclusions Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering. PMID:21219616

  5. Metabolic Design and Control for Production in Prokaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhabra, Swapnil R.; Keasling, J.D.

    2010-11-10

    Prokaryotic life on earth is manifested by its diversity and omnipresence. These microbes serve as natural sources of a large variety of compounds with the potential to serve the ever growing, medicinal, chemical and transportation needs of the human population. However, commercially viable production of these compounds can be realized only through significant improvement of the native production capacity of natural isolates. The most favorable way to achieve this goal is through the genetic manipulation of metabolic pathways that direct the production of these molecules. While random mutagenesis and screening have dominated the industrial production of such compounds in themore » past our increased understanding of microbial physiology over the last five decades has shifted this trend towards rational approaches for metabolic design. Major drivers of this trend include recombinant DNA technology, high throughput characterization of macromolecular cellular components, quantitative modeling for metabolic engine ring, targeted combinatorial engineering and synthetic biology. In this chapter we track the evolution of microbial engineering technologies from the black box era of random mutagenesis to the science and engineering-driven era of metabolic design.« less

  6. Metabolic engineering of Escherichia coli for production of 2-Phenylethylacetate from L-phenylalanine.

    PubMed

    Guo, Daoyi; Zhang, Lihua; Pan, Hong; Li, Xun

    2017-08-01

    In order to meet the need of consumer preferences for natural flavor compounds, microbial synthesis method has become a very attractive alternative to the chemical production. The 2-phenylethanol (2-PE) and its ester 2-phenylethylacetate (2-PEAc) are two extremely important flavor compounds with a rose-like odor. In recent years, Escherichia coli and yeast have been metabolically engineered to produce 2-PE. However, a metabolic engineering approach for 2-PEAc production is rare. Here, we designed and expressed a 2-PEAc biosynthetic pathway in E. coli. This pathway comprised four steps: aminotransferase (ARO8) for transamination of L-phenylalanine to phenylpyruvate, 2-keto acid decarboxylase KDC for the decarboxylation of the phenylpyruvate to phenylacetaldehyde, aldehyde reductase YjgB for the reduction of phenylacetaldehyde to 2-PE, alcohol acetyltransferase ATF1 for the esterification of 2-PE to 2-PEAc. Using the engineered E. coli strain for shake flasks cultivation with 1 g/L L-phenylalanine, we achieved co-production of 268 mg/L 2-PEAc and 277 mg/L 2-PE. Our results suggest that approximately 65% of L-phenylalanine was utilized toward 2-PEAc and 2-PE biosynthesis and thus demonstrate potential industrial applicability of this microbial platform. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. Development of Computational Tools for Metabolic Model Curation, Flux Elucidation and Strain Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maranas, Costas D

    An overarching goal of the Department of Energy mission is the efficient deployment and engineering of microbial and plant systems to enable biomass conversion in pursuit of high energy density liquid biofuels. This has spurred the pace at which new organisms are sequenced and annotated. This torrent of genomic information has opened the door to understanding metabolism in not just skeletal pathways and a handful of microorganisms but for truly genome-scale reconstructions derived for hundreds of microbes and plants. Understanding and redirecting metabolism is crucial because metabolic fluxes are unique descriptors of cellular physiology that directly assess the current cellularmore » state and quantify the effect of genetic engineering interventions. At the same time, however, trying to keep pace with the rate of genomic data generation has ushered in a number of modeling and computational challenges related to (i) the automated assembly, testing and correction of genome-scale metabolic models, (ii) metabolic flux elucidation using labeled isotopes, and (iii) comprehensive identification of engineering interventions leading to the desired metabolism redirection.« less

  8. Application of targeted proteomics to metabolically engineered Escherichia coli.

    PubMed

    Singh, Pragya; Batth, Tanveer S; Juminaga, Darmawi; Dahl, Robert H; Keasling, Jay D; Adams, Paul D; Petzold, Christopher J

    2012-04-01

    As synthetic biology matures to compete with chemical transformation of commodity and high-value compounds, a wide variety of well-characterized biological parts are needed to facilitate system design. Protein quantification based on selected-reaction monitoring (SRM) mass spectrometry compliments metabolite and transcript analysis for system characterization and optimizing flux through engineered pathways. By using SRM quantification, we assayed red fluorescent protein (RFP) expressed from plasmids containing several inducible and constitutive promoters and subsequently assessed protein production from the same promoters driving expression of eight mevalonate pathway proteins in Escherichia coli. For each of the promoter systems, the protein level for the first gene in the operon followed that of RFP, however, the levels of proteins produced from genes farther from the promoter were much less consistent. Second, we used targeted proteomics to characterize tyrosine biosynthesis pathway proteins after removal of native regulation. The changes were not expected to cause significant impact on protein levels, yet significant variation in protein abundance was observed and tyrosine production for these strains spanned a range from less than 1 mg/L to greater than 250 mg/L. Overall, our results underscore the importance of targeted proteomics for determining accurate protein levels in engineered systems and fine-tuning metabolic pathways. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Metabolic engineering for microbial production and applications of copolyesters consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates.

    PubMed

    Zou, Xiang Hui; Chen, Guo-Qiang

    2007-02-12

    Poly(hydroxyalkanoate)s (PHAs) are a class of microbially synthesized polyesters that combine biological properties, such as biocompatibility and biodegradability, and non-bioproperties such as thermoprocessability, piezoelectricity, and nonlinear optical activity. PHA monomer structures and their contents strongly affect the PHA properties. Using metabolic engineering approaches, PHA structures and contents can be manipulated to achieve controllable monomer and PHA cellular contents. This paper focuses on metabolic engineering methods to produce PHA consisting of 3-hydroxybutyrate (3HB) and medium-chain-length 3-hydroxyalkanoates (3HA) in recombinant microbial systems. This type of copolyester has mechanical and thermal properties similar to conventional plastics such as poly(propylene) and poly(ethylene terephthalate) (PET). In addition, pathways containing engineered PHA synthases have proven to be useful for enhanced PHA production with adjustable PHA monomers and contents. The applications of PHA as implant biomaterials are briefly discussed here. In the very near term, metabolic engineering will help solve many problems in promoting PHA as a new type of plastic material for many applications.

  10. Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell.

    PubMed

    Li, Feng; Li, Yuanxiu; Sun, Liming; Li, Xiaofei; Yin, Changji; An, Xingjuan; Chen, Xiaoli; Tian, Yao; Song, Hao

    2017-01-01

    The microbial fuel cell (MFC) is a green and sustainable technology for electricity energy harvest from biomass, in which exoelectrogens use metabolism and extracellular electron transfer pathways for the conversion of chemical energy into electricity. However, Shewanella oneidensis MR-1, one of the most well-known exoelectrogens, could not use xylose (a key pentose derived from hydrolysis of lignocellulosic biomass) for cell growth and power generation, which limited greatly its practical applications. Herein, to enable S. oneidensis to directly utilize xylose as the sole carbon source for bioelectricity production in MFCs, we used synthetic biology strategies to successfully construct four genetically engineered S. oneidensis (namely XE, GE, XS, and GS) by assembling one of the xylose transporters (from Candida intermedia and Clostridium acetobutylicum ) with one of intracellular xylose metabolic pathways (the isomerase pathway from Escherichia coli and the oxidoreductase pathway from Scheffersomyces stipites ), respectively. We found that among these engineered S. oneidensis strains, the strain GS (i.e. harbouring Gxf1 gene encoding the xylose facilitator from C. intermedi , and XYL1 , XYL2 , and XKS1 genes encoding the xylose oxidoreductase pathway from S. stipites ) was able to generate the highest power density, enabling a maximum electricity power density of 2.1 ± 0.1 mW/m 2 . To the best of our knowledge, this was the first report on the rationally designed Shewanella that could use xylose as the sole carbon source and electron donor to produce electricity. The synthetic biology strategies developed in this study could be further extended to rationally engineer other exoelectrogens for lignocellulosic biomass utilization to generate electricity power.

  11. Use of CellNetAnalyzer in biotechnology and metabolic engineering.

    PubMed

    von Kamp, Axel; Thiele, Sven; Hädicke, Oliver; Klamt, Steffen

    2017-11-10

    Mathematical models of the cellular metabolism have become an essential tool for the optimization of biotechnological processes. They help to obtain a systemic understanding of the metabolic processes in the used microorganisms and to find suitable genetic modifications maximizing the production performance. In particular, methods of stoichiometric and constraint-based modeling are frequently used in the context of metabolic and bioprocess engineering. Since metabolic networks can be complex and comprise hundreds or even thousands of metabolites and reactions, dedicated software tools are required for an efficient analysis. One such software suite is CellNetAnalyzer, a MATLAB package providing, among others, various methods for analyzing stoichiometric and constraint-based metabolic models. CellNetAnalyzer can be used via command-line based operations or via a graphical user interface with embedded network visualizations. Herein we will present key functionalities of CellNetAnalyzer for applications in biotechnology and metabolic engineering and thereby review constraint-based modeling techniques such as metabolic flux analysis, flux balance analysis, flux variability analysis, metabolic pathway analysis (elementary flux modes) and methods for computational strain design. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  12. Flavonoids: biosynthesis, biological functions, and biotechnological applications

    PubMed Central

    Falcone Ferreyra, María L.; Rius, Sebastián P.; Casati, Paula

    2012-01-01

    Flavonoids are widely distributed secondary metabolites with different metabolic functions in plants. The elucidation of the biosynthetic pathways, as well as their regulation by MYB, basic helix-loop-helix (bHLH), and WD40-type transcription factors, has allowed metabolic engineering of plants through the manipulation of the different final products with valuable applications. The present review describes the regulation of flavonoid biosynthesis, as well as the biological functions of flavonoids in plants, such as in defense against UV-B radiation and pathogen infection, nodulation, and pollen fertility. In addition, we discuss different strategies and achievements through the genetic engineering of flavonoid biosynthesis with implication in the industry and the combinatorial biosynthesis in microorganisms by the reconstruction of the pathway to obtain high amounts of specific compounds. PMID:23060891

  13. Heading in the right direction: thermodynamics-based network analysis and pathway engineering.

    PubMed

    Ataman, Meric; Hatzimanikatis, Vassily

    2015-12-01

    Thermodynamics-based network analysis through the introduction of thermodynamic constraints in metabolic models allows a deeper analysis of metabolism and guides pathway engineering. The number and the areas of applications of thermodynamics-based network analysis methods have been increasing in the last ten years. We review recent applications of these methods and we identify the areas that such analysis can contribute significantly, and the needs for future developments. We find that organisms with multiple compartments and extremophiles present challenges for modeling and thermodynamics-based flux analysis. The evolution of current and new methods must also address the issues of the multiple alternatives in flux directionalities and the uncertainties and partial information from analytical methods. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Modular design of metabolic network for robust production of n-butanol from galactose-glucose mixtures.

    PubMed

    Lim, Hyun Gyu; Lim, Jae Hyung; Jung, Gyoo Yeol

    2015-01-01

    Refactoring microorganisms for efficient production of advanced biofuel such as n-butanol from a mixture of sugars in the cheap feedstock is a prerequisite to achieve economic feasibility in biorefinery. However, production of biofuel from inedible and cheap feedstock is highly challenging due to the slower utilization of biomass-driven sugars, arising from complex assimilation pathway, difficulties in amplification of biosynthetic pathways for heterologous metabolite, and redox imbalance caused by consuming intracellular reducing power to produce quite reduced biofuel. Even with these problems, the microorganisms should show robust production of biofuel to obtain industrial feasibility. Thus, refactoring microorganisms for efficient conversion is highly desirable in biofuel production. In this study, we engineered robust Escherichia coli to accomplish high production of n-butanol from galactose-glucose mixtures via the design of modular pathway, an efficient and systematic way, to reconstruct the entire metabolic pathway with many target genes. Three modular pathways designed using the predictable genetic elements were assembled for efficient galactose utilization, n-butanol production, and redox re-balancing to robustly produce n-butanol from a sugar mixture of galactose and glucose. Specifically, the engineered strain showed dramatically increased n-butanol production (3.3-fold increased to 6.2 g/L after 48-h fermentation) compared to the parental strain (1.9 g/L) in galactose-supplemented medium. Moreover, fermentation with mixtures of galactose and glucose at various ratios from 2:1 to 1:2 confirmed that our engineered strain was able to robustly produce n-butanol regardless of sugar composition with simultaneous utilization of galactose and glucose. Collectively, modular pathway engineering of metabolic network can be an effective approach in strain development for optimal biofuel production with cost-effective fermentable sugars. To the best of our knowledge, this study demonstrated the first and highest n-butanol production from galactose in E. coli. Moreover, robust production of n-butanol with sugar mixtures with variable composition would facilitate the economic feasibility of the microbial process using a mixture of sugars from cheap biomass in the near future.

  15. Efflux systems in bacteria and their metabolic engineering applications.

    PubMed

    Jones, Christopher M; Hernández Lozada, Néstor J; Pfleger, Brian F

    2015-11-01

    The production of valuable chemicals from metabolically engineered microbes can be limited by excretion from the cell. Efflux is often overlooked as a bottleneck in metabolic pathways, despite its impact on alleviating feedback inhibition and product toxicity. In the past, it has been assumed that endogenous efflux pumps and membrane porins can accommodate product efflux rates; however, there are an increasing number of examples wherein overexpressing efflux systems is required to improve metabolite production. In this review, we highlight specific examples from the literature where metabolite export has been studied to identify unknown transporters, increase tolerance to metabolites, and improve the production capabilities of engineered bacteria. The review focuses on the export of a broad spectrum of valuable chemicals including amino acids, sugars, flavins, biofuels, and solvents. The combined set of examples supports the hypothesis that efflux systems can be identified and engineered to confer export capabilities on industrially relevant microbes.

  16. Microbial Production of Xylitol from L-arabinose by Metabolically Engineered Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    An Escherichia coli strain, ZUC99(pATX210), which can produce xylitol from L-arabinose at a high yield has been created by introducing a new bioconversion pathway into cells. This pathway consists of three enzymes: L-arabinose isomerase, which converts L-arabinose to L-ribulose; D-psicose 3-epimer...

  17. Enhancing a Pathway-Genome Database (PGDB) to capture subcellular localization of metabolites and enzymes: the nucleotide-sugar biosynthetic pathways of Populus trichocarpa.

    PubMed

    Nag, Ambarish; Karpinets, Tatiana V; Chang, Christopher H; Bar-Peled, Maor

    2012-01-01

    Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s). Database URL: The curated Populus PGDB is available in the BESC public portal at http://cricket.ornl.gov/cgi-bin/beocyc_home.cgi and the nucleotide-sugar biosynthetic pathways can be directly accessed at http://cricket.ornl.gov:1555/PTR/new-image?object=SUGAR-NUCLEOTIDES.

  18. Enhancing a Pathway-Genome Database (PGDB) to capture subcellular localization of metabolites and enzymes: the nucleotide-sugar biosynthetic pathways of Populus trichocarpa

    PubMed Central

    Nag, Ambarish; Karpinets, Tatiana V.; Chang, Christopher H.; Bar-Peled, Maor

    2012-01-01

    Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s). Database URL: The curated Populus PGDB is available in the BESC public portal at http://cricket.ornl.gov/cgi-bin/beocyc_home.cgi and the nucleotide-sugar biosynthetic pathways can be directly accessed at http://cricket.ornl.gov:1555/PTR/new-image?object=SUGAR-NUCLEOTIDES. PMID:22465851

  19. Synthetic biology for microbial production of lipid-based biofuels.

    PubMed

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. Published by Elsevier Ltd.

  20. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids

    PubMed Central

    Ferrer, J.-L.; Austin, M.B.; Stewart, C.; Noel, J.P.

    2010-01-01

    As a major component of plant specialized metabolism, phenylpropanoid biosynthetic pathways provide anthocyanins for pigmentation, flavonoids such as flavones for protection against UV photodamage, various flavonoid and isoflavonoid inducers of Rhizobium nodulation genes, polymeric lignin for structural support and assorted antimicrobial phytoalexins. As constituents of plant-rich diets and an assortment of herbal medicinal agents, the phenylpropanoids exhibit measurable cancer chemopreventive, antimitotic, estrogenic, antimalarial, antioxidant and antiasthmatic activities. The health benefits of consuming red wine, which contains significant amounts of 3,4′,5-trihydroxystilbene (resveratrol) and other phenylpropanoids, highlight the increasing awareness in the medical community and the public at large as to the potential dietary importance of these plant derived compounds. As recently as a decade ago, little was known about the three-dimensional structure of the enzymes involved in these highly branched biosynthetic pathways. Ten years ago, we initiated X-ray crystallographic analyses of key enzymes of this pathway, complemented by biochemical and enzyme engineering studies. We first investigated chalcone synthase (CHS), the entry point of the flavonoid pathway, and its close relative stilbene synthase (STS). Work soon followed on the O-methyl transferases (OMTs) involved in modifications of chalcone, isoflavonoids and metabolic precursors of lignin. More recently, our groups and others have extended the range of phenylpropanoid pathway structural investigations to include the upstream enzymes responsible for the initial recruitment of phenylalanine and tyrosine, as well as a number of reductases, acyltransferases and ancillary tailoring enzymes of phenylpropanoid-derived metabolites. These structure–function studies collectively provide a comprehensive view of an important aspect of phenylpropanoid metabolism. More specifically, these atomic resolution insights into the architecture and mechanistic underpinnings of phenylpropanoid metabolizing enzymes contribute to our understanding of the emergence and on-going evolution of specialized phenylpropanoid products, and underscore the molecular basis of metabolic biodiversity at the chemical level. Finally, the detailed knowledge of the structure, function and evolution of these enzymes of specialized metabolism provide a set of experimental templates for the enzyme and metabolic engineering of production platforms for diverse novel compounds with desirable dietary and medicinal properties. PMID:18272377

  1. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy.

    PubMed

    Lv, Xiaomei; Xie, Wenping; Lu, Wenqiang; Guo, Fei; Gu, Jiali; Yu, Hongwei; Ye, Lidan

    2014-09-30

    To explore the capacity of isoprene production in Saccharomyces cerevisiae, a rational push-pull-restrain strategy was proposed to engineer the mevalonic acid (MVA) and acetyl-CoA pathways. The strategy can be decomposed into the up-regulation of precursor supply in the acetyl-CoA module and the MVA pathway (push-strategy), increase of the isoprene branch flux (pull-strategy), and down-regulation of the competing pathway (restrain-strategy). Furthermore, to reduce the production cost arising from galactose addition and meanwhile maintain the high expression of Gal promoters, the galactose regulatory network was modulated by Gal80p deletion. Finally, the engineered strain YXM10-ispS-ispS could accumulate up to 37 mg/L isoprene (about 782-fold increase compared to the parental strain) under aerobic conditions with glycerol-sucrose as carbon source. In this way, a new potential platform for isoprene production was established via metabolic engineering of the yeast native pathways. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Quantitative Analysis of Energy Metabolic Pathways in MCF-7 Breast Cancer Cells by Selected Reaction Monitoring Assay*

    PubMed Central

    Drabovich, Andrei P.; Pavlou, Maria P.; Dimitromanolakis, Apostolos; Diamandis, Eleftherios P.

    2012-01-01

    To investigate the quantitative response of energy metabolic pathways in human MCF-7 breast cancer cells to hypoxia, glucose deprivation, and estradiol stimulation, we developed a targeted proteomics assay for accurate quantification of protein expression in glycolysis/gluconeogenesis, TCA cycle, and pentose phosphate pathways. Cell growth conditions were selected to roughly mimic the exposure of cells in the cancer tissue to the intermittent hypoxia, glucose deprivation, and hormonal stimulation. Targeted proteomics assay allowed for reproducible quantification of 76 proteins in four different growth conditions after 24 and 48 h of perturbation. Differential expression of a number of control and metabolic pathway proteins in response to the change of growth conditions was found. Elevated expression of the majority of glycolytic enzymes was observed in hypoxia. Cancer cells, as opposed to near-normal MCF-10A cells, exhibited significantly increased expression of key energy metabolic pathway enzymes (FBP1, IDH2, and G6PD) that are known to redirect cellular metabolism and increase carbon flux through the pentose phosphate pathway. Our quantitative proteomic protocol is based on a mass spectrometry-compatible acid-labile detergent and is described in detail. Optimized parameters of a multiplex selected reaction monitoring (SRM) assay for 76 proteins, 134 proteotypic peptides, and 401 transitions are included and can be downloaded and used with any SRM-compatible mass spectrometer. The presented workflow is an integrated tool for hypothesis-driven studies of mammalian cells as well as functional studies of proteins, and can greatly complement experimental methods in systems biology, metabolic engineering, and metabolic transformation of cancer cells. PMID:22535206

  3. In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation.

    PubMed

    Chen, Jin; Henson, Michael A

    2016-11-01

    Synthesis gas fermentation is one of the most promising routes to convert synthesis gas (syngas; mainly comprised of H 2 and CO) to renewable liquid fuels and chemicals by specialized bacteria. The most commonly studied syngas fermenting bacterium is Clostridium ljungdahlii, which produces acetate and ethanol as its primary metabolic byproducts. Engineering of C. ljungdahlii metabolism to overproduce ethanol, enhance the synthesize of the native byproducts lactate and 2,3-butanediol, and introduce the synthesis of non-native products such as butanol and butyrate has substantial commercial value. We performed in silico metabolic engineering studies using a genome-scale reconstruction of C. ljungdahlii metabolism and the OptKnock computational framework to identify gene knockouts that were predicted to enhance the synthesis of these native products and non-native products, introduced through insertion of the necessary heterologous pathways. The OptKnock derived strategies were often difficult to assess because increase product synthesis was invariably accompanied by decreased growth. Therefore, the OptKnock strategies were further evaluated using a spatiotemporal metabolic model of a syngas bubble column reactor, a popular technology for large-scale gas fermentation. Unlike flux balance analysis, the bubble column model accounted for the complex tradeoffs between increased product synthesis and reduced growth rates of engineered mutants within the spatially varying column environment. The two-stage methodology for deriving and evaluating metabolic engineering strategies was shown to yield new C. ljungdahlii gene targets that offer the potential for increased product synthesis under realistic syngas fermentation conditions. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Expanding Biosensing Abilities through Computer-Aided Design of Metabolic Pathways.

    PubMed

    Libis, Vincent; Delépine, Baudoin; Faulon, Jean-Loup

    2016-10-21

    Detection of chemical signals is critical for cells in nature as well as in synthetic biology, where they serve as inputs for designer circuits. Important progress has been made in the design of signal processing circuits triggering complex biological behaviors, but the range of small molecules recognized by sensors as inputs is limited. The ability to detect new molecules will increase the number of synthetic biology applications, but direct engineering of tailor-made sensors takes time. Here we describe a way to immediately expand the range of biologically detectable molecules by systematically designing metabolic pathways that transform nondetectable molecules into molecules for which sensors already exist. We leveraged computer-aided design to predict such sensing-enabling metabolic pathways, and we built several new whole-cell biosensors for molecules such as cocaine, parathion, hippuric acid, and nitroglycerin.

  5. An ancient Chinese wisdom for metabolic engineering: Yin-Yang

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Stephen G.; He, Lian; Wang, Qingzhao

    In ancient Chinese philosophy, Yin-Yang describes two contrary forces that are interconnected and interdependent. This concept also holds true in microbial cell factories, where Yin represents energy metabolism in the form of ATP, and Yang represents carbon metabolism. Current biotechnology can effectively edit the microbial genome or introduce novel enzymes to redirect carbon fluxes. On the other hand, microbial metabolism loses significant free energy as heat when converting sugar into ATP; while maintenance energy expenditures further aggravate ATP shortage. The limitation of cell “powerhouse” prevents hosts from achieving high carbon yields and rates. Via an Escherichia coli flux balance analysismore » model, we further demonstrate the penalty of ATP cost on biofuel synthesis. To ensure cell powerhouse being sufficient in microbial cell factories, we propose five principles: 1. Take advantage of native pathways for product synthesis. 2. Pursue biosynthesis relying only on pathways or genetic parts without significant ATP burden. 3. Combine microbial production with chemical conversions (semi-biosynthesis) to reduce biosynthesis steps. 4. Create “minimal cells” or use non-model microbial hosts with higher energy fitness. 5. Develop a photosynthesis chassis that can utilize light energy and cheap carbon feedstocks. Meanwhile, metabolic flux analysis can be used to quantify both carbon and energy metabolisms. The fluxomics results are essential to evaluate the industrial potential of laboratory strains, avoiding false starts and dead ends during metabolic engineering« less

  6. An ancient Chinese wisdom for metabolic engineering: Yin-Yang

    DOE PAGES

    Wu, Stephen G.; He, Lian; Wang, Qingzhao; ...

    2015-03-20

    In ancient Chinese philosophy, Yin-Yang describes two contrary forces that are interconnected and interdependent. This concept also holds true in microbial cell factories, where Yin represents energy metabolism in the form of ATP, and Yang represents carbon metabolism. Current biotechnology can effectively edit the microbial genome or introduce novel enzymes to redirect carbon fluxes. On the other hand, microbial metabolism loses significant free energy as heat when converting sugar into ATP; while maintenance energy expenditures further aggravate ATP shortage. The limitation of cell “powerhouse” prevents hosts from achieving high carbon yields and rates. Via an Escherichia coli flux balance analysismore » model, we further demonstrate the penalty of ATP cost on biofuel synthesis. To ensure cell powerhouse being sufficient in microbial cell factories, we propose five principles: 1. Take advantage of native pathways for product synthesis. 2. Pursue biosynthesis relying only on pathways or genetic parts without significant ATP burden. 3. Combine microbial production with chemical conversions (semi-biosynthesis) to reduce biosynthesis steps. 4. Create “minimal cells” or use non-model microbial hosts with higher energy fitness. 5. Develop a photosynthesis chassis that can utilize light energy and cheap carbon feedstocks. Meanwhile, metabolic flux analysis can be used to quantify both carbon and energy metabolisms. The fluxomics results are essential to evaluate the industrial potential of laboratory strains, avoiding false starts and dead ends during metabolic engineering« less

  7. Engineering Yarrowia lipolytica for Use in Biotechnological Applications: A Review of Major Achievements and Recent Innovations.

    PubMed

    Madzak, Catherine

    2018-06-25

    Yarrowia lipolytica is an oleaginous saccharomycetous yeast with a long history of industrial use. It aroused interest several decades ago as host for heterologous protein production. Thanks to the development of numerous molecular and genetic tools, Y. lipolytica is now a recognized system for expressing heterologous genes and secreting the corresponding proteins of interest. As genomic and transcriptomic tools increased our basic knowledge on this yeast, we can now envision engineering its metabolic pathways for use as whole-cell factory in various bioconversion processes. Y. lipolytica is currently being developed as a workhorse for biotechnology, notably for single-cell oil production and upgrading of industrial wastes into valuable products. As it becomes more and more difficult to keep up with an ever-increasing literature on Y. lipolytica engineering technology, this article aims to provide basic and actualized knowledge on this research area. The most useful reviews on Y. lipolytica biology, use, and safety will be evoked, together with a resume of the engineering tools available in this yeast. This mini-review will then focus on recently developed tools and engineering strategies, with a particular emphasis on promoter tuning, metabolic pathways assembly, and genome editing technologies.

  8. A combined approach of classical mutagenesis and rational metabolic engineering improves rapamycin biosynthesis and provides insights into methylmalonyl-CoA precursor supply pathway in Streptomyces hygroscopicus ATCC 29253.

    PubMed

    Jung, Won Seok; Yoo, Young Ji; Park, Je Won; Park, Sung Ryeol; Han, Ah Reum; Ban, Yeon Hee; Kim, Eun Ji; Kim, Eunji; Yoon, Yeo Joon

    2011-09-01

    Rapamycin is a macrocyclic polyketide with immunosuppressive, antifungal, and anticancer activity produced by Streptomyces hygroscopicus ATCC 29253. Rapamycin production by a mutant strain (UV2-2) induced by ultraviolet mutagenesis was improved by approximately 3.2-fold (23.6 mg/l) compared to that of the wild-type strain. The comparative analyses of gene expression and intracellular acyl-CoA pools between wild-type and the UV2-2 strains revealed that the increased production of rapamycin in UV2-2 was due to the prolonged expression of rapamycin biosynthetic genes, but a depletion of intracellular methylmalonyl-CoA limited the rapamycin biosynthesis of the UV2-2 strain. Therefore, three different metabolic pathways involved in the biosynthesis of methylmalonyl-CoA were evaluated to identify the effective precursor supply pathway that can support the high production of rapamycin: propionyl-CoA carboxylase (PCC), methylmalonyl-CoA mutase, and methylmalonyl-CoA ligase. Among them, only the PCC pathway along with supplementation of propionate was found to be effective for an increase in intracellular pool of methylmalonyl-CoA and rapamycin titers in UV2-2 strain (42.8 mg/l), indicating that the PCC pathway is a major methylmalonyl-CoA supply pathway in the rapamycin producer. These results demonstrated that the combined approach involving traditional mutagenesis and metabolic engineering could be successfully applied to the diagnosis of yield-limiting factors and the enhanced production of industrially and clinically important polyketide compounds.

  9. Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects

    PubMed Central

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-01-01

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations. PMID:25233369

  10. Synthetic biology and metabolic engineering for marine carotenoids: new opportunities and future prospects.

    PubMed

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-09-17

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.

  11. A Kinetic Modelling of Enzyme Inhibitions in the Central Metabolism of Yeast Cells

    NASA Astrophysics Data System (ADS)

    Kasbawati; Kalondeng, A.; Aris, N.; Erawaty, N.; Azis, M. I.

    2018-03-01

    Metabolic regulation plays an important role in the metabolic engineering of a cellular process. It is conducted to improve the productivity of a microbial process by identifying the important regulatory nodes of a metabolic pathway such as fermentation pathway. Regulation of enzymes involved in a particular pathway can be held to improve the productivity of the system. In the central metabolism of yeast cell, some enzymes are known as regulating enzymes that can be inhibited to increase the production of ethanol. In this research we study the kinetic modelling of the enzymes in the central pathway of yeast metabolism by taking into consideration the enzyme inhibition effects to the ethanol production. The existence of positive steady state solution and the stability of the system are also analysed to study the property and dynamical behaviour of the system. One stable steady state of the system is produced if some conditions are fulfilled. The conditions concern to the restriction of the maximum reactions of the enzymes in the pyruvate and acetaldehyde branch points. There exists a certain time of fermentation reaction at which a maximum and a minimum ethanol productions are attained after regulating the system. Optimal ethanol concentration is also produced for a certain initial concentration of inhibitor.

  12. Easy regulation of metabolic flux in Escherichia coli using an endogenous type I-E CRISPR-Cas system.

    PubMed

    Chang, Yizhao; Su, Tianyuan; Qi, Qingsheng; Liang, Quanfeng

    2016-11-15

    Clustered regularly interspaced short palindromic repeats interference (CRISPRi) is a recently developed powerful tool for gene regulation. In Escherichia coli, the type I CRISPR system expressed endogenously shall be easy for internal regulation without causing metabolic burden in compared with the widely used type II system, which expressed dCas9 as an additional plasmid. By knocking out cas3 and activating the expression of CRISPR-associated complex for antiviral defense (Cascade), we constructed a native CRISPRi system in E. coli. Downregulation of the target gene from 6 to 82% was demonstrated using green fluorescent protein. Regulation of the citrate synthase gene (gltA) in the TCA cycle affected host metabolism. The effect of metabolic flux regulation was demonstrated by the poly-3-hydroxbutyrate (PHB) accumulation in vivo. By regulating native gltA in E. coli using an engineered endogenous type I-E CRISPR system, we redirected metabolic flux from the central metabolic pathway to the PHB synthesis pathway. This study demonstrated that the endogenous type I-E CRISPR-Cas system is an easy and effective method for regulating internal metabolic pathways, which is useful for product synthesis.

  13. Rationally reduced libraries for combinatorial pathway optimization minimizing experimental effort.

    PubMed

    Jeschek, Markus; Gerngross, Daniel; Panke, Sven

    2016-03-31

    Rational flux design in metabolic engineering approaches remains difficult since important pathway information is frequently not available. Therefore empirical methods are applied that randomly change absolute and relative pathway enzyme levels and subsequently screen for variants with improved performance. However, screening is often limited on the analytical side, generating a strong incentive to construct small but smart libraries. Here we introduce RedLibs (Reduced Libraries), an algorithm that allows for the rational design of smart combinatorial libraries for pathway optimization thereby minimizing the use of experimental resources. We demonstrate the utility of RedLibs for the design of ribosome-binding site libraries by in silico and in vivo screening with fluorescent proteins and perform a simple two-step optimization of the product selectivity in the branched multistep pathway for violacein biosynthesis, indicating a general applicability for the algorithm and the proposed heuristics. We expect that RedLibs will substantially simplify the refactoring of synthetic metabolic pathways.

  14. Coutilization of D-Glucose, D-Xylose, and L-Arabinose in Saccharomyces cerevisiae by Coexpressing the Metabolic Pathways and Evolutionary Engineering

    PubMed Central

    Zhao, Jianzhi; Qiu, Chenxi; Wang, Shihao; Du, Binghai

    2017-01-01

    Efficient and cost-effective fuel ethanol production from lignocellulosic materials requires simultaneous cofermentation of all hydrolyzed sugars, mainly including D-glucose, D-xylose, and L-arabinose. Saccharomyces cerevisiae is a traditional D-glucose fermenting strain and could utilize D-xylose and L-arabinose after introducing the initial metabolic pathways. The efficiency and simultaneous coutilization of the two pentoses and D-glucose for ethanol production in S. cerevisiae still need to be optimized. Previously, we constructed an L-arabinose-utilizing S. cerevisiae BSW3AP. In this study, we further introduced the XI and XR-XDH metabolic pathways of D-xylose into BSW3AP to obtain D-glucose, D-xylose, and L-arabinose cofermenting strain. Benefits of evolutionary engineering: the resulting strain BSW4XA3 displayed a simultaneous coutilization of D-xylose and L-arabinose with similar consumption rates, and the D-glucose metabolic capacity was not decreased. After 120 h of fermentation on mixed D-glucose, D-xylose, and L-arabinose, BSW4XA3 consumed 24% more amounts of pentoses and the ethanol yield of mixed sugars was increased by 30% than that of BSW3AP. The resulting strain BSW4XA3 was a useful chassis for further enhancing the coutilization efficiency of mixed sugars for bioethanol production. PMID:28459063

  15. Comprehensive detection of genes causing a phenotype using phenotype sequencing and pathway analysis.

    PubMed

    Harper, Marc; Gronenberg, Luisa; Liao, James; Lee, Christopher

    2014-01-01

    Discovering all the genetic causes of a phenotype is an important goal in functional genomics. We combine an experimental design for detecting independent genetic causes of a phenotype with a high-throughput sequencing analysis that maximizes sensitivity for comprehensively identifying them. Testing this approach on a set of 24 mutant strains generated for a metabolic phenotype with many known genetic causes, we show that this pathway-based phenotype sequencing analysis greatly improves sensitivity of detection compared with previous methods, and reveals a wide range of pathways that can cause this phenotype. We demonstrate our approach on a metabolic re-engineering phenotype, the PEP/OAA metabolic node in E. coli, which is crucial to a substantial number of metabolic pathways and under renewed interest for biofuel research. Out of 2157 mutations in these strains, pathway-phenoseq discriminated just five gene groups (12 genes) as statistically significant causes of the phenotype. Experimentally, these five gene groups, and the next two high-scoring pathway-phenoseq groups, either have a clear connection to the PEP metabolite level or offer an alternative path of producing oxaloacetate (OAA), and thus clearly explain the phenotype. These high-scoring gene groups also show strong evidence of positive selection pressure, compared with strictly neutral selection in the rest of the genome.

  16. Metabolism of chlorofluorocarbons and polybrominated compounds by Pseudomonas putida G786(pHG-2) via an engineered metabolic pathway.

    PubMed Central

    Hur, H G; Sadowsky, M J; Wackett, L P

    1994-01-01

    The recombinant bacterium Pseudomonas putida G786(pHG-2) metabolizes pentachloroethane to glyoxylate and carbon dioxide, using cytochrome P-450CAM and toluene dioxygenase to catalyze consecutive reductive and oxidative dehalogenation reactions (L.P. Wackett, M.J. Sadowsky, L.N. Newman, H.-G. Hur, and S. Li, Nature [London] 368:627-629, 1994). The present study investigated metabolism of brominated and chlorofluorocarbon compounds by the recombinant strain. Under anaerobic conditions, P. putida G786(pHG-2) reduced 1,1,2,2-tetrabromoethane, 1,2-dibromo-1,2-dichloroethane, and 1,1,1,2-tetrachloro-2,2-difluoroethane to products bearing fewer halogen substituents. Under aerobic conditions, P. putida G786(pHG-2) oxidized cis- and trans-1,2-dibromoethenes, 1,1-dichloro-2,2-difluoroethene, and 1,2-dichloro-1-fluoroethene. Several compounds were metabolized by sequential reductive and oxidative reactions via the constructed metabolic pathway. For example, 1,1,2,2-tetrabromoethane was reduced by cytochrome P-450CAM to 1,2-dibromoethenes, which were subsequently oxidized by toluene dioxygenase. The same pathway metabolized 1,1,1,2-tetrachloro-2,2-difluoroethane to oxalic acid as one of the final products. The results obtained in this study indicate that P. putida G786(pHG-2) metabolizes polyfluorinated, chlorinated, and brominated compounds and further demonstrates the value of using a knowledge of catabolic enzymes and recombinant DNA technology to construct useful metabolic pathways. PMID:7993096

  17. Metabolism of chlorofluorocarbons and polybrominated compounds by Pseudomonas putida G786(pHG-2) via an engineered metabolic pathway.

    PubMed

    Hur, H G; Sadowsky, M J; Wackett, L P

    1994-11-01

    The recombinant bacterium Pseudomonas putida G786(pHG-2) metabolizes pentachloroethane to glyoxylate and carbon dioxide, using cytochrome P-450CAM and toluene dioxygenase to catalyze consecutive reductive and oxidative dehalogenation reactions (L.P. Wackett, M.J. Sadowsky, L.N. Newman, H.-G. Hur, and S. Li, Nature [London] 368:627-629, 1994). The present study investigated metabolism of brominated and chlorofluorocarbon compounds by the recombinant strain. Under anaerobic conditions, P. putida G786(pHG-2) reduced 1,1,2,2-tetrabromoethane, 1,2-dibromo-1,2-dichloroethane, and 1,1,1,2-tetrachloro-2,2-difluoroethane to products bearing fewer halogen substituents. Under aerobic conditions, P. putida G786(pHG-2) oxidized cis- and trans-1,2-dibromoethenes, 1,1-dichloro-2,2-difluoroethene, and 1,2-dichloro-1-fluoroethene. Several compounds were metabolized by sequential reductive and oxidative reactions via the constructed metabolic pathway. For example, 1,1,2,2-tetrabromoethane was reduced by cytochrome P-450CAM to 1,2-dibromoethenes, which were subsequently oxidized by toluene dioxygenase. The same pathway metabolized 1,1,1,2-tetrachloro-2,2-difluoroethane to oxalic acid as one of the final products. The results obtained in this study indicate that P. putida G786(pHG-2) metabolizes polyfluorinated, chlorinated, and brominated compounds and further demonstrates the value of using a knowledge of catabolic enzymes and recombinant DNA technology to construct useful metabolic pathways.

  18. Engineering of a Highly Efficient Escherichia coli Strain for Mevalonate Fermentation through Chromosomal Integration

    PubMed Central

    Wang, Jilong; Niyompanich, Suthamat; Tai, Yi-Shu; Wang, Jingyu; Bai, Wenqin; Mahida, Prithviraj; Gao, Tuo

    2016-01-01

    ABSTRACT Chromosomal integration of heterologous metabolic pathways is optimal for industrially relevant fermentation, as plasmid-based fermentation causes extra metabolic burden and genetic instabilities. In this work, chromosomal integration was adapted for the production of mevalonate, which can be readily converted into β-methyl-δ-valerolactone, a monomer for the production of mechanically tunable polyesters. The mevalonate pathway, driven by a constitutive promoter, was integrated into the chromosome of Escherichia coli to replace the native fermentation gene adhE or ldhA. The engineered strains (CMEV-1 and CMEV-2) did not require inducer or antibiotic and showed slightly higher maximal productivities (0.38 to ∼0.43 g/liter/h) and yields (67.8 to ∼71.4% of the maximum theoretical yield) than those of the plasmid-based fermentation. Since the glycolysis pathway is the first module for mevalonate synthesis, atpFH deletion was employed to improve the glycolytic rate and the production rate of mevalonate. Shake flask fermentation results showed that the deletion of atpFH in CMEV-1 resulted in a 2.1-fold increase in the maximum productivity. Furthermore, enhancement of the downstream pathway by integrating two copies of the mevalonate pathway genes into the chromosome further improved the mevalonate yield. Finally, our fed-batch fermentation showed that, with deletion of the atpFH and sucA genes and integration of two copies of the mevalonate pathway genes into the chromosome, the engineered strain CMEV-7 exhibited both high maximal productivity (∼1.01 g/liter/h) and high yield (86.1% of the maximum theoretical yield, 30 g/liter mevalonate from 61 g/liter glucose after 48 h in a shake flask). IMPORTANCE Metabolic engineering has succeeded in producing various chemicals. However, few of these chemicals are commercially competitive with the conventional petroleum-derived materials. In this work, chromosomal integration of the heterologous pathway and subsequent optimization strategies ensure stable and efficient (i.e., high-titer, high-yield, and high-productivity) production of mevalonate, which demonstrates the potential for scale-up fermentation. Among the optimization strategies, we demonstrated that enhancement of the glycolytic flux significantly improved the productivity. This result provides an example of how to tune the carbon flux for the optimal production of exogenous chemicals. PMID:27736790

  19. ATLAS of Biochemistry: A Repository of All Possible Biochemical Reactions for Synthetic Biology and Metabolic Engineering Studies.

    PubMed

    Hadadi, Noushin; Hafner, Jasmin; Shajkofci, Adrian; Zisaki, Aikaterini; Hatzimanikatis, Vassily

    2016-10-21

    Because the complexity of metabolism cannot be intuitively understood or analyzed, computational methods are indispensable for studying biochemistry and deepening our understanding of cellular metabolism to promote new discoveries. We used the computational framework BNICE.ch along with cheminformatic tools to assemble the whole theoretical reactome from the known metabolome through expansion of the known biochemistry presented in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We constructed the ATLAS of Biochemistry, a database of all theoretical biochemical reactions based on known biochemical principles and compounds. ATLAS includes more than 130 000 hypothetical enzymatic reactions that connect two or more KEGG metabolites through novel enzymatic reactions that have never been reported to occur in living organisms. Moreover, ATLAS reactions integrate 42% of KEGG metabolites that are not currently present in any KEGG reaction into one or more novel enzymatic reactions. The generated repository of information is organized in a Web-based database ( http://lcsb-databases.epfl.ch/atlas/ ) that allows the user to search for all possible routes from any substrate compound to any product. The resulting pathways involve known and novel enzymatic steps that may indicate unidentified enzymatic activities and provide potential targets for protein engineering. Our approach of introducing novel biochemistry into pathway design and associated databases will be important for synthetic biology and metabolic engineering.

  20. The logics of metabolic regulation in bacteria challenges biosensor-based metabolic engineering.

    PubMed

    Jules, Matthieu

    2017-12-11

    Synthetic Biology (SB) aims at the rational design and engineering of novel biological functions and systems. By facilitating the engineering of living organisms, SB promises to facilitate the development of many new applications for health, biomanufacturing, and the environment. Over the last decade, SB promoted the construction of libraries of components enabling the fine-tuning of genetic circuits expression and the development of novel genome engineering methodologies for many organisms of interest. SB thus opened new perspectives in the field of metabolic engineering, which was until then mainly limited to (over)producing naturally synthesized metabolic compounds. To engineer efficient cell factories, it is key to precisely reroute cellular resources from the central carbon metabolism (CCM) to the synthetic circuitry. This task is however difficult as there is still significant lack of knowledge regarding both the function of several metabolic components and the regulation of the CCM fluxes for many industrially important bacteria. Pyruvate is a pivotal metabolite at the heart of the CCM and a key precursor for the synthesis of several commodity compounds and fine chemicals. Numerous bacterial species can also use it as a carbon source when present in the environment but bacterial, pyruvate-specific uptake systems were to be discovered. This is an issue for metabolic engineering as one can imagine to make use of pyruvate transport systems to replenish synthetic metabolic pathways towards the synthesis of chemicals of interest. Here we describe a recent study (MBio 8(5): e00976-17), which identified and characterized a pyruvate transport system in the Gram-positive (G +ve ) bacterium Bacillus subtilis , a well-established biotechnological workhorse for the production of enzymes, fine chemicals and antibiotics. This study also revealed that the activity of the two-component system (TCS) responsible for its induction is retro-inhibited by the level of pyruvate influx. Following up on the open question which is whether this retro-inhibition is a generic mechanism for TCSs, we will discuss the implications in metabolic engineering.

  1. Comparative proteomic analysis of engineered Saccharomyces cerevisiae with enhanced free fatty acid accumulation.

    PubMed

    Chen, Liwei; Lee, Jaslyn Jie Lin; Zhang, Jianhua; Chen, Wei Ning

    2016-02-01

    The engineered Saccharomyces cerevisiae strain △faa1△faa4 [Acot5s] was demonstrated to accumulate more free fatty acids (FFA) previously. Here, comparative proteomic analysis was performed to get a global overview of metabolic regulation in the strain. Over 500 proteins were identified, and 82 of those proteins were found to change significantly in the engineered strains. Proteins involved in glycolysis, acetate metabolism, fatty acid synthesis, TCA cycle, glyoxylate cycle, the pentose phosphate pathway, respiration, transportation, and stress response were found to be upregulated in △faa1△faa4 [Acot5s] as compared to the wild type. On the other hand, proteins involved in glycerol, ethanol, ergosterol, and cell wall synthesis were downregulated. Taken together with our metabolite analysis, our results showed that the disruption of Faa1 and Faa4 and expression of Acot5s in the engineered strain △faa1△faa4 [Acot5s] not only relieved the feedback inhibition of fatty acyl-CoAs on fatty acid synthesis, but also caused a major metabolic rearrangement. The rearrangement redirected carbon flux toward the pathways which generate the essential substrates and cofactors for fatty acid synthesis, such as acetyl-CoA, ATP, and NADPH. Therefore, our results help shed light on the mechanism for the increased production of fatty acids in the engineered strains, which is useful in providing information for future studies in biofuel production.

  2. Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals.

    PubMed

    Nybo, S Eric; Khan, Nymul E; Woolston, Benjamin M; Curtis, Wayne R

    2015-07-01

    The ability of autotrophic organisms to fix CO2 presents an opportunity to utilize this 'greenhouse gas' as an inexpensive substrate for biochemical production. Unlike conventional heterotrophic microorganisms that consume carbohydrates and amino acids, prokaryotic chemolithoautotrophs have evolved the capacity to utilize reduced chemical compounds to fix CO2 and drive metabolic processes. The use of chemolithoautotrophic hosts as production platforms has been renewed by the prospect of metabolically engineered commodity chemicals and fuels. Efforts such as the ARPA-E electrofuels program highlight both the potential and obstacles that chemolithoautotrophic biosynthetic platforms provide. This review surveys the numerous advances that have been made in chemolithoautotrophic metabolic engineering with a focus on hydrogen oxidizing bacteria such as the model chemolithoautotrophic organism (Ralstonia), the purple photosynthetic bacteria (Rhodobacter), and anaerobic acetogens. Two alternative strategies of microbial chassis development are considered: (1) introducing or enhancing autotrophic capabilities (carbon fixation, hydrogen utilization) in model heterotrophic organisms, or (2) improving tools for pathway engineering (transformation methods, promoters, vectors etc.) in native autotrophic organisms. Unique characteristics of autotrophic growth as they relate to bioreactor design and process development are also discussed in the context of challenges and opportunities for genetic manipulation of organisms as production platforms. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli.

    PubMed

    Whitaker, W Brian; Jones, J Andrew; Bennett, R Kyle; Gonzalez, Jacqueline E; Vernacchio, Victoria R; Collins, Shannon M; Palmer, Michael A; Schmidt, Samuel; Antoniewicz, Maciek R; Koffas, Mattheos A; Papoutsakis, Eleftherios T

    2017-01-01

    Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using 13 C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolytic intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. By incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Identification of an itaconic acid degrading pathway in itaconic acid producing Aspergillus terreus.

    PubMed

    Chen, Mei; Huang, Xuenian; Zhong, Chengwei; Li, Jianjun; Lu, Xuefeng

    2016-09-01

    Itaconic acid, one of the most promising and flexible bio-based chemicals, is mainly produced by Aspergillus terreus. Previous studies to improve itaconic acid production in A. terreus through metabolic engineering were mainly focused on its biosynthesis pathway, while the itaconic acid-degrading pathway has largely been ignored. In this study, we used transcriptomic, proteomic, bioinformatic, and in vitro enzymatic analyses to identify three key enzymes, itaconyl-CoA transferase (IctA), itaconyl-CoA hydratase (IchA), and citramalyl-CoA lyase (CclA), that are involved in the catabolic pathway of itaconic acid in A. terreus. In the itaconic acid catabolic pathway in A. terreus, itaconic acid is first converted by IctA into itaconyl-CoA with succinyl-CoA as the CoA donor, and then itaconyl-CoA is hydrated into citramalyl-CoA by IchA. Finally, citramalyl-CoA is cleaved into acetyl-CoA and pyruvate by CclA. Moreover, IctA can also catalyze the reaction between citramalyl-CoA and succinate to generate succinyl-CoA and citramalate. These results, for the first time, identify the three key enzymes, IctA, IchA, and CclA, involved in the itaconic acid degrading pathway in itaconic acid producing A. terreus. The results will facilitate the improvement of itaconic acid production by metabolically engineering the catabolic pathway of itaconic acid in A. terreus.

  5. Metabolic Engineering of Actinobacillus succinogenes Provides Insights into Succinic Acid Biosynthesis.

    PubMed

    Guarnieri, Michael T; Chou, Yat-Chen; Salvachúa, Davinia; Mohagheghi, Ali; St John, Peter C; Peterson, Darren J; Bomble, Yannick J; Beckham, Gregg T

    2017-09-01

    Actinobacillus succinogenes , a Gram-negative facultative anaerobe, exhibits the native capacity to convert pentose and hexose sugars to succinic acid (SA) with high yield as a tricarboxylic acid (TCA) cycle intermediate. In addition, A. succinogenes is capnophilic, incorporating CO 2 into SA, making this organism an ideal candidate host for conversion of lignocellulosic sugars and CO 2 to an emerging commodity bioproduct sourced from renewable feedstocks. In this work, we report the development of facile metabolic engineering capabilities in A. succinogenes , enabling examination of SA flux determinants via knockout of the primary competing pathways-namely, acetate and formate production-and overexpression of the key enzymes in the reductive branch of the TCA cycle leading to SA. Batch fermentation experiments with the wild-type and engineered strains using pentose-rich sugar streams demonstrate that the overexpression of the SA biosynthetic machinery (in particular, the enzyme malate dehydrogenase) enhances flux to SA. Additionally, removal of competitive carbon pathways leads to higher-purity SA but also triggers the generation of by-products not previously described from this organism (e.g., lactic acid). The resultant engineered strains also lend insight into energetic and redox balance and elucidate mechanisms governing organic acid biosynthesis in this important natural SA-producing microbe. IMPORTANCE Succinic acid production from lignocellulosic residues is a potential route for enhancing the economic feasibility of modern biorefineries. Here, we employ facile genetic tools to systematically manipulate competing acid production pathways and overexpress the succinic acid-producing machinery in Actinobacillus succinogenes Furthermore, the resulting strains are evaluated via fermentation on relevant pentose-rich sugar streams representative of those from corn stover. Overall, this work demonstrates genetic modifications that can lead to succinic acid production improvements and identifies key flux determinants and new bottlenecks and energetic needs when removing by-product pathways in A. succinogenes metabolism. Copyright © 2017 American Society for Microbiology.

  6. Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol.

    PubMed

    Mazumdar, Suman; Clomburg, James M; Gonzalez, Ramon

    2010-07-01

    Given its availability and low price, glycerol has become an ideal feedstock for the production of fuels and chemicals. We recently reported the pathways mediating the metabolism of glycerol in Escherichia coli under anaerobic and microaerobic conditions. In this work, we engineer E. coli for the efficient conversion of glycerol to d-lactic acid (d-lactate), a negligible product of glycerol metabolism in wild-type strains. A homofermentative route for d-lactate production was engineered by overexpressing pathways involved in the conversion of glycerol to this product and blocking those leading to the synthesis of competing by-products. The former included the overexpression of the enzymes involved in the conversion of glycerol to glycolytic intermediates (GlpK-GlpD and GldA-DHAK pathways) and the synthesis of d-lactate from pyruvate (d-lactate dehydrogenase). On the other hand, the synthesis of succinate, acetate, and ethanol was minimized through two strategies: (i) inactivation of pyruvate-formate lyase (DeltapflB) and fumarate reductase (DeltafrdA) (strain LA01) and (ii) inactivation of fumarate reductase (DeltafrdA), phosphate acetyltransferase (Deltapta), and alcohol/acetaldehyde dehydrogenase (DeltaadhE) (strain LA02). A mutation that blocked the aerobic d-lactate dehydrogenase (Deltadld) also was introduced in both LA01 and LA02 to prevent the utilization of d-lactate. The most efficient strain (LA02Deltadld, with GlpK-GlpD overexpressed) produced 32 g/liter of d-lactate from 40 g/liter of glycerol at a yield of 85% of the theoretical maximum and with a chiral purity higher than 99.9%. This strain exhibited maximum volumetric and specific productivities for d-lactate production of 1.5 g/liter/h and 1.25 g/g cell mass/h, respectively. The engineered homolactic route generates 1 to 2 mol of ATP per mol of d-lactate and is redox balanced, thus representing a viable metabolic pathway.

  7. Engineering biosynthesis of high-value compounds in photosynthetic organisms.

    PubMed

    O'Neill, Ellis C; Kelly, Steven

    2017-09-01

    The photosynthetic, autotrophic lifestyle of plants and algae position them as ideal platform organisms for sustainable production of biomolecules. However, their use in industrial biotechnology is limited in comparison to heterotrophic organisms, such as bacteria and yeast. This usage gap is in part due to the challenges in generating genetically modified plants and algae and in part due to the difficulty in the development of synthetic biology tools for manipulating gene expression in these systems. Plant and algal metabolism, pre-installed with multiple biosynthetic modules for precursor compounds, bypasses the requirement to install these pathways in conventional production organisms, and creates new opportunities for the industrial production of complex molecules. This review provides a broad overview of the successes, challenges and future prospects for genetic engineering in plants and algae for enhanced or de novo production of biomolecules. The toolbox of technologies and strategies that have been used to engineer metabolism are discussed, and the potential use of engineered plants for industrial manufacturing of large quantities of high-value compounds is explored. This review also discusses the routes that have been taken to modify the profiles of primary metabolites for increasing the nutritional quality of foods as well as the production of specialized metabolites, cosmetics, pharmaceuticals and industrial chemicals. As the universe of high-value biosynthetic pathways continues to expand, and the tools to engineer these pathways continue to develop, it is likely plants and algae will become increasingly valuable for the biomanufacturing of high-value compounds.

  8. Genetic engineering of Escherichia coli to improve L-phenylalanine production.

    PubMed

    Liu, Yongfei; Xu, Yiran; Ding, Dongqin; Wen, Jianping; Zhu, Beiwei; Zhang, Dawei

    2018-01-30

    L-phenylalanine (L-Phe) is an essential amino acid for mammals and applications expand into human health and nutritional products. In this study, a system level engineering was conducted to enhance L-Phe biosynthesis in Escherichia coli. We inactivated the PTS system and recruited glucose uptake via combinatorial modulation of galP and glk to increase PEP supply in the Xllp01 strain. In addition, the HTH domain of the transcription factor TyrR was engineered to decrease the repression on the transcriptional levels of L-Phe pathway enzymes. Finally, proteomics analysis demonstrated the third step of the SHIK pathway (catalyzed via AroD) as the rate-limiting step for L-Phe production. After optimization of the aroD promoter strength, the titer of L-Phe increased by 13.3%. Analysis of the transcriptional level of genes involved in the central metabolic pathways and L-Phe biosynthesis via RT-PCR showed that the recombinant L-Phe producer exhibited a great capability in the glucose utilization and precursor (PEP and E4P) generation. Via systems level engineering, the L-Phe titer of Xllp21 strain reached 72.9 g/L in a 5 L fermenter under the non-optimized fermentation conditions, which was 1.62-times that of the original strain Xllp01. The metabolic engineering strategy reported here can be broadly employed for developing genetically defined organisms for the efficient production of other aromatic amino acids and derived compounds.

  9. Toward Genome-Based Metabolic Engineering in Bacteria.

    PubMed

    Oesterle, Sabine; Wuethrich, Irene; Panke, Sven

    2017-01-01

    Prokaryotes modified stably on the genome are of great importance for production of fine and commodity chemicals. Traditional methods for genome engineering have long suffered from imprecision and low efficiencies, making construction of suitable high-producer strains laborious. Here, we review the recent advances in discovery and refinement of molecular precision engineering tools for genome-based metabolic engineering in bacteria for chemical production, with focus on the λ-Red recombineering and the clustered regularly interspaced short palindromic repeats/Cas9 nuclease systems. In conjunction, they enable the integration of in vitro-synthesized DNA segments into specified locations on the chromosome and allow for enrichment of rare mutants by elimination of unmodified wild-type cells. Combination with concurrently developing improvements in important accessory technologies such as DNA synthesis, high-throughput screening methods, regulatory element design, and metabolic pathway optimization tools has resulted in novel efficient microbial producer strains and given access to new metabolic products. These new tools have made and will likely continue to make a big impact on the bioengineering strategies that transform the chemical industry. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export.

    PubMed

    Zelle, Rintze M; de Hulster, Erik; van Winden, Wouter A; de Waard, Pieter; Dijkema, Cor; Winkler, Aaron A; Geertman, Jan-Maarten A; van Dijken, Johannes P; Pronk, Jack T; van Maris, Antonius J A

    2008-05-01

    Malic acid is a potential biomass-derivable "building block" for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production from glucose proceeds via carboxylation of pyruvate, followed by reduction of oxaloacetate to malate. This redox- and ATP-neutral, CO(2)-fixing pathway has a theoretical maximum yield of 2 mol malate (mol glucose)(-1). A previously engineered glucose-tolerant, C(2)-independent pyruvate decarboxylase-negative S. cerevisiae strain was used as the platform to evaluate the impact of individual and combined introduction of three genetic modifications: (i) overexpression of the native pyruvate carboxylase encoded by PYC2, (ii) high-level expression of an allele of the MDH3 gene, of which the encoded malate dehydrogenase was retargeted to the cytosol by deletion of the C-terminal peroxisomal targeting sequence, and (iii) functional expression of the Schizosaccharomyces pombe malate transporter gene SpMAE1. While single or double modifications improved malate production, the highest malate yields and titers were obtained with the simultaneous introduction of all three modifications. In glucose-grown batch cultures, the resulting engineered strain produced malate at titers of up to 59 g liter(-1) at a malate yield of 0.42 mol (mol glucose)(-1). Metabolic flux analysis showed that metabolite labeling patterns observed upon nuclear magnetic resonance analyses of cultures grown on (13)C-labeled glucose were consistent with the envisaged nonoxidative, fermentative pathway for malate production. The engineered strains still produced substantial amounts of pyruvate, indicating that the pathway efficiency can be further improved.

  11. Engineering strategies for the fermentative production of plant alkaloids in yeast

    PubMed Central

    Trenchard, Isis J.; Smolke, Christina D.

    2015-01-01

    Microbial hosts engineered for the biosynthesis of plant natural products offer enormous potential as powerful discovery and production platforms. However, the reconstruction of these complex biosynthetic schemes faces numerous challenges due to the number of enzymatic steps and challenging enzyme classes associated with these pathways, which can lead to issues in metabolic load, pathway specificity, and maintaining flux to desired products. Cytochrome P450 enzymes are prevalent in plant specialized metabolism and are particularly difficult to express heterologously. Here, we describe the reconstruction of the sanguinarine branch of the benzylisoquinoline alkaloid pathway in Saccharomyces cerevisiae, resulting in microbial biosynthesis of protoberberine, protopine, and benzophenanthridine alkaloids through to the end-product sanguinarine, which we demonstrate can be efficiently produced in yeast in the absence of the associated biosynthetic enzyme. We achieved titers of 676 µg/L stylopine, 548 µg/L cis-N-methylstylopine, 252 µg/L protopine, and 80 µg/L sanguinarine from the engineered yeast strains. Through our optimization efforts, we describe genetic and culture strategies supporting the functional expression of multiple plant cytochrome P450 enzymes in the context of a large multi-step pathway. Our results also provided insight into relationships between cytochrome P450 activity and yeast ER physiology. We were able to improve the production of critical intermediates by 32-fold through genetic techniques and an additional 45-fold through culture optimization. PMID:25981946

  12. Improving metabolic efficiency of the reverse beta-oxidation cycle by balancing redox cofactor requirement.

    PubMed

    Wu, Junjun; Zhang, Xia; Zhou, Peng; Huang, Jiaying; Xia, Xiudong; Li, Wei; Zhou, Ziyu; Chen, Yue; Liu, Yinghao; Dong, Mingsheng

    2017-11-01

    Previous studies have made many exciting achievements on pushing the functional reversal of beta-oxidation cycle (r-BOX) to more widespread adoption for synthesis of a wide variety of fuels and chemicals. However, the redox cofactor requirement for the efficient operation of r-BOX remains unclear. In this work, the metabolic efficiency of r-BOX for medium-chain fatty acid (C 6 -C 10 , MCFA) production was optimized by redox cofactor engineering. Stoichiometric analysis of the r-BOX pathway and further experimental examination identified NADH as a crucial determinant of r-BOX process yield. Furthermore, the introduction of formate dehydrogenase from Candida boidinii using fermentative inhibitor byproduct formate as a redox NADH sink improved MCFA titer from initial 1.2g/L to 3.1g/L. Moreover, coupling of increasing the supply of acetyl-CoA with NADH to achieve fermentative redox balance enabled product synthesis at maximum titers. To this end, the acetate re-assimilation pathway was further optimized to increase acetyl-CoA availability associated with the new supply of NADH. It was found that the acetyl-CoA synthetase activity and intracellular ATP levels constrained the activity of acetate re-assimilation pathway, and 4.7g/L of MCFA titer was finally achieved after alleviating these two limiting factors. To the best of our knowledge, this represented the highest titer reported to date. These results demonstrated that the key constraint of r-BOX was redox imbalance and redox engineering could further unleash the lipogenic potential of this cycle. The redox engineering strategies could be applied to acetyl-CoA-derived products or other bio-products requiring multiple redox cofactors for biosynthesis. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Transcript level coordination of carbon pathways during silicon starvation-induced lipid accumulation in the diatom Thalassiosira pseudonana

    DOE PAGES

    Smith, Sarah R.; Gle, Corine; Abbriano, Raffaela M.; ...

    2016-02-04

    Diatoms are one of the most productive and successful photosynthetic taxa on Earth and possess attributes such as rapid growth rates and production of lipids, making them candidate sources of renewable fuels. Despite their significance, few details of the mechanisms used to regulate growth and carbon metabolism are currently known, hindering metabolic engineering approaches to enhance productivity. To characterize the transcript level component of metabolic regulation, genome-wide changes in transcript abundance were documented in the model diatom Thalassiosira pseudonana on a time-course of silicon starvation. Growth, cell cycle progression, chloroplast replication, fatty acid composition, pigmentation, and photosynthetic parameters were characterizedmore » alongside lipid accumulation. Extensive coordination of large suites of genes was observed, highlighting the existence of clusters of coregulated genes as a key feature of global gene regulation in T. pseudonana. The identity of key enzymes for carbon metabolic pathway inputs (photosynthesis) and outputs (growth and storage) reveals these clusters are organized to synchronize these processes. Coordinated transcript level responses to silicon starvation are probably driven by signals linked to cell cycle progression and shifts in photophysiology. A mechanistic understanding of how this is accomplished will aid efforts to engineer metabolism for development of algal-derived biofuels.« less

  14. A systems-level approach for metabolic engineering of yeast cell factories.

    PubMed

    Kim, Il-Kwon; Roldão, António; Siewers, Verena; Nielsen, Jens

    2012-03-01

    The generation of novel yeast cell factories for production of high-value industrial biotechnological products relies on three metabolic engineering principles: design, construction, and analysis. In the last two decades, strong efforts have been put on developing faster and more efficient strategies and/or technologies for each one of these principles. For design and construction, three major strategies are described in this review: (1) rational metabolic engineering; (2) inverse metabolic engineering; and (3) evolutionary strategies. Independent of the selected strategy, the process of designing yeast strains involves five decision points: (1) choice of product, (2) choice of chassis, (3) identification of target genes, (4) regulating the expression level of target genes, and (5) network balancing of the target genes. At the construction level, several molecular biology tools have been developed through the concept of synthetic biology and applied for the generation of novel, engineered yeast strains. For comprehensive and quantitative analysis of constructed strains, systems biology tools are commonly used and using a multi-omics approach. Key information about the biological system can be revealed, for example, identification of genetic regulatory mechanisms and competitive pathways, thereby assisting the in silico design of metabolic engineering strategies for improving strain performance. Examples on how systems and synthetic biology brought yeast metabolic engineering closer to industrial biotechnology are described in this review, and these examples should demonstrate the potential of a systems-level approach for fast and efficient generation of yeast cell factories. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. The Need for Integrated Approaches in Metabolic Engineering.

    PubMed

    Lechner, Anna; Brunk, Elizabeth; Keasling, Jay D

    2016-11-01

    This review highlights state-of-the-art procedures for heterologous small-molecule biosynthesis, the associated bottlenecks, and new strategies that have the potential to accelerate future accomplishments in metabolic engineering. We emphasize that a combination of different approaches over multiple time and size scales must be considered for successful pathway engineering in a heterologous host. We have classified these optimization procedures based on the "system" that is being manipulated: transcriptome, translatome, proteome, or reactome. By bridging multiple disciplines, including molecular biology, biochemistry, biophysics, and computational sciences, we can create an integral framework for the discovery and implementation of novel biosynthetic production routes. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  16. Synthetic biology for microbial production of lipid-based biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    d’Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel

    The risks of maintaining current CO 2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO 2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here in this paper we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. Lastly, we further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential ofmore » synthetic biology for sustainable manufacturing.« less

  17. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae.

    PubMed

    Zhou, Yikang; Li, Gang; Dong, Junkai; Xing, Xin-Hui; Dai, Junbiao; Zhang, Chong

    2018-05-01

    Facing boosting ability to construct combinatorial metabolic pathways, how to search the metabolic sweet spot has become the rate-limiting step. We here reported an efficient Machine-learning workflow in conjunction with YeastFab Assembly strategy (MiYA) for combinatorial optimizing the large biosynthetic genotypic space of heterologous metabolic pathways in Saccharomyces cerevisiae. Using β-carotene biosynthetic pathway as example, we first demonstrated that MiYA has the power to search only a small fraction (2-5%) of combinatorial space to precisely tune the expression level of each gene with a machine-learning algorithm of an artificial neural network (ANN) ensemble to avoid over-fitting problem when dealing with a small number of training samples. We then applied MiYA to improve the biosynthesis of violacein. Feed with initial data from a colorimetric plate-based, pre-screened pool of 24 strains producing violacein, MiYA successfully predicted, and verified experimentally, the existence of a strain that showed a 2.42-fold titer improvement in violacein production among 3125 possible designs. Furthermore, MiYA was able to largely avoid the branch pathway of violacein biosynthesis that makes deoxyviolacein, and produces very pure violacein. Together, MiYA combines the advantages of standardized building blocks and machine learning to accelerate the Design-Build-Test-Learn (DBTL) cycle for combinatorial optimization of metabolic pathways, which could significantly accelerate the development of microbial cell factories. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.

    PubMed

    Baritugo, Kei-Anne; Kim, Hee Taek; David, Yokimiko; Choi, Jong-Il; Hong, Soon Ho; Jeong, Ki Jun; Choi, Jong Hyun; Joo, Jeong Chan; Park, Si Jae

    2018-05-01

    Bio-based production of industrially important chemicals provides an eco-friendly alternative to current petrochemical-based processes. Because of the limited supply of fossil fuel reserves, various technologies utilizing microbial host strains for the sustainable production of platform chemicals from renewable biomass have been developed. Corynebacterium glutamicum is a non-pathogenic industrial microbial species traditionally used for L-glutamate and L-lysine production. It is a promising species for industrial production of bio-based chemicals because of its flexible metabolism that allows the utilization of a broad spectrum of carbon sources and the production of various amino acids. Classical breeding, systems, synthetic biology, and metabolic engineering approaches have been used to improve its applications, ranging from traditional amino-acid production to modern biorefinery systems for production of value-added platform chemicals. This review describes recent advances in the development of genetic engineering tools and techniques for the establishment and optimization of metabolic pathways for bio-based production of major C2-C6 platform chemicals using recombinant C. glutamicum.

  19. Systems Biocatalysis: Development and engineering of cell-free "artificial metabolisms" for preparative multi-enzymatic synthesis.

    PubMed

    Fessner, Wolf-Dieter

    2015-12-25

    Systems Biocatalysis is an emerging concept of organizing enzymes in vitro to construct complex reaction cascades for an efficient, sustainable synthesis of valuable chemical products. The strategy merges the synthetic focus of chemistry with the modular design of biological systems, which is similar to metabolic engineering of cellular production systems but can be realized at a far lower level of complexity from a true reductionist approach. Such operations are free from material erosion by competing metabolic pathways, from kinetic restrictions by physical barriers and regulating circuits, and from toxicity problems with reactive foreign substrates, which are notorious problems in whole-cell systems. A particular advantage of cell-free concepts arises from the inherent opportunity to construct novel biocatalytic reaction systems for the efficient synthesis of non-natural products ("artificial metabolisms") by using enzymes specifically chosen or engineered for non-natural substrate promiscuity. Examples illustrating the technology from our laboratory are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis

    PubMed Central

    Gnanasekaran, Thiyagarajan; Karcher, Daniel; Nielsen, Agnieszka Zygadlo; Martens, Helle Juel; Ruf, Stephanie; Kroop, Xenia; Olsen, Carl Erik; Motawie, Mohammed Saddik; Pribil, Mathias; Møller, Birger Lindberg; Bock, Ralph; Jensen, Poul Erik

    2016-01-01

    Plant chloroplasts are light-driven cell factories that have great potential to act as a chassis for metabolic engineering applications. Using plant chloroplasts, we demonstrate how photosynthetic reducing power can drive a metabolic pathway to synthesise a bio-active natural product. For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum (tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integrating CYP79A1, CYP71E1, and UGT85B1 into a neutral site of the N. tabacum chloroplast genome. The two P450s and the UGT85B1 were functional when expressed in the chloroplasts and converted endogenous tyrosine into dhurrin using electrons derived directly from the photosynthetic electron transport chain, without the need for the presence of an NADPH-dependent P450 oxidoreductase. The dhurrin produced in the engineered plants amounted to 0.1–0.2% of leaf dry weight compared to 6% in sorghum. The results obtained pave the way for plant P450s involved in the synthesis of economically important compounds to be engineered into the thylakoid membrane of chloroplasts, and demonstrate that their full catalytic cycle can be driven directly by photosynthesis-derived electrons. PMID:26969746

  1. Enhanced flux of substrates into polyamine biosynthesis but not ethylene in tomato fruit engineered with yeast S-adenosylmethionine decarboxylase gene

    Treesearch

    Yi Lasanajak; Rakesh Minocha; Subhash C. Minocha; Ravinder Goyal; Tahira Fatima; Avtar K. Handa; Autar K. Mattoo

    2014-01-01

    S-adenosylmethionine (SAM), a major substrate in 1-C metabolism is a common precursor in the biosynthetic pathways of polyamines and ethylene, two important plant growth regulators, which exhibit opposing developmental effects, especially during fruit ripening. However, the flux of various substrates including SAM into the two competing pathways in...

  2. Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis.

    PubMed

    Chen, Wei; Zhang, Shan; Jiang, Peixia; Yao, Jun; He, Yongzhi; Chen, Lincai; Gui, Xiwu; Dong, Zhiyang; Tang, Shuang-Yan

    2015-07-01

    Advanced high-throughput screening methods for small molecules may have important applications in the metabolic engineering of the biosynthetic pathways of these molecules. Ectoine is an excellent osmoprotectant that has been widely used in cosmetics. In this study, the Escherichia coli regulatory protein AraC was engineered to recognize ectoine as its non-natural effector and to activate transcription upon ectoine binding. As an endogenous reporter of ectoine, the mutated AraC protein was successfully incorporated into high-throughput screening of ectoine hyper-producing strains. The ectoine biosynthetic cluster from Halomonas elongata was cloned into E. coli. By engineering the rate-limiting enzyme L-2,4-diaminobutyric acid (DABA) aminotransferase (EctB), ectoine production and the specific activity of the EctB mutant were increased. Thus, these results demonstrated the effectiveness of engineering regulatory proteins into sensitive and rapid screening tools for small molecules and highlighted the importance and efficacy of directed evolution strategies applied to the engineering of genetic components for yield improvement in the biosynthesis of small molecules. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Prospects for engineering dynamic CRISPR-Cas transcriptional circuits to improve bioproduction.

    PubMed

    Fontana, Jason; Voje, William E; Zalatan, Jesse G; Carothers, James M

    2018-05-08

    Dynamic control of gene expression is emerging as an important strategy for controlling flux in metabolic pathways and improving bioproduction of valuable compounds. Integrating dynamic genetic control tools with CRISPR-Cas transcriptional regulation could significantly improve our ability to fine-tune the expression of multiple endogenous and heterologous genes according to the state of the cell. In this mini-review, we combine an analysis of recent literature with examples from our own work to discuss the prospects and challenges of developing dynamically regulated CRISPR-Cas transcriptional control systems for applications in synthetic biology and metabolic engineering.

  4. Metabolic Engineering of Clostridium cellulolyticum for Production of Isobutanol from Cellulose▿

    PubMed Central

    Higashide, Wendy; Li, Yongchao; Yang, Yunfeng; Liao, James C.

    2011-01-01

    Producing biofuels directly from cellulose, known as consolidated bioprocessing, is believed to reduce costs substantially compared to a process in which cellulose degradation and fermentation to fuel are accomplished in separate steps. Here we present a metabolic engineering example for the development of a Clostridium cellulolyticum strain for isobutanol synthesis directly from cellulose. This strategy exploits the host's natural cellulolytic activity and the amino acid biosynthesis pathway and diverts its 2-keto acid intermediates toward alcohol synthesis. Specifically, we have demonstrated the first production of isobutanol to approximately 660 mg/liter from crystalline cellulose by using this microorganism. PMID:21378054

  5. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria.

    PubMed

    Kanno, Masahiro; Carroll, Austin L; Atsumi, Shota

    2017-03-13

    Cyanobacteria have attracted much attention as hosts to recycle CO 2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO 2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO 2 and glucose, and produces 12.6 g l -1 of 2,3-butanediol with a rate of 1.1 g l -1  d -1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.

  6. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria

    NASA Astrophysics Data System (ADS)

    Kanno, Masahiro; Carroll, Austin L.; Atsumi, Shota

    2017-03-01

    Cyanobacteria have attracted much attention as hosts to recycle CO2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO2 and glucose, and produces 12.6 g l-1 of 2,3-butanediol with a rate of 1.1 g l-1 d-1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.

  7. Streptomyces species: Ideal chassis for natural product discovery and overproduction.

    PubMed

    Liu, Ran; Deng, Zixin; Liu, Tiangang

    2018-05-28

    There is considerable interest in mining organisms for new natural products (NPs) and in improving methods to overproduce valuable NPs. Because of the rapid development of tools and strategies for metabolic engineering and the markedly increased knowledge of the biosynthetic pathways and genetics of NP-producing organisms, genome mining and overproduction of NPs can be dramatically accelerated. In particular, Streptomyces species have been proposed as suitable chassis organisms for NP discovery and overproduction because of their many unique characteristics not shared with yeast, Escherichia coli, or other microorganisms. In this review, we summarize the methods for genome sequencing, gene cluster prediction, and gene editing in Streptomyces, as well as metabolic engineering strategies for NP overproduction and approaches for generating new products. Finally, two strategies for utilizing Streptomyces as the chassis for NP discovery and overproduction are emphasized. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels.

    PubMed

    Zhang, Yueping; Nielsen, Jens; Liu, Zihe

    2017-12-01

    Terpenoids represent a large class of natural products with significant commercial applications. These chemicals are currently mainly obtained through extraction from plants and microbes or through chemical synthesis. However, these sources often face challenges of unsustainability and low productivity. In order to address these issues, Escherichia coli and yeast have been metabolic engineered to produce non-native terpenoids. With recent reports of engineering yeast metabolism to produce several terpenoids at high yields, it has become possible to establish commercial yeast production of terpenoids that find applications as perfume ingredients, pharmaceuticals and advanced biofuels. In this review, we describe the strategies to rewire the yeast pathway for terpenoid biosynthesis. Recent advances will be discussed together with challenges and perspectives of yeast as a cell factory to produce different terpenoids. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocysti s sp. PCC 6803.

    PubMed

    Lin, Po-Cheng; Saha, Rajib; Zhang, Fuzhong; Pakrasi, Himadri B

    2017-12-13

    Isoprenoids are diverse natural compounds, which have various applications as pharmaceuticals, fragrances, and solvents. The low yield of isoprenoids in plants makes them difficult for cost-effective production, and chemical synthesis of complex isoprenoids is impractical. Microbial production of isoprenoids has been considered as a promising approach to increase the yield. In this study, we engineered the model cyanobacterium Synechocystis sp. PCC 6803 for sustainable production of a commercially valuable isoprenoid, limonene. Limonene synthases from the plants Mentha spicata and Citrus limon were expressed in cyanobacteria for limonene production. Production of limonene was two-fold higher with limonene synthase from M. spicata than that from C. limon. To enhance isoprenoid production, computational strain design was conducted by applying the OptForce strain design algorithm on Synechocystis 6803. Based on the metabolic interventions suggested by this algorithm, genes (ribose 5-phosphate isomerase and ribulose 5-phosphate 3-epimerase) in the pentose phosphate pathway were overexpressed, and a geranyl diphosphate synthase from the plant Abies grandis was expressed to optimize the limonene biosynthetic pathway. The optimized strain produced 6.7 mg/L of limonene, a 2.3-fold improvement in productivity. Thus, this study presents a feasible strategy to engineer cyanobacteria for photosynthetic production of isoprenoids.

  10. Metabolic engineering of E. coli top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM.

    PubMed

    Chakraborty, Debkumar; Gupta, Gaganjot; Kaur, Baljinder

    2016-12-01

    Metabolic engineering and construction of recombinant Escherichia coli strains carrying feruloyl-CoA synthetase and enoyl-CoA hydratase genes for the bioconversion of ferulic acid to vanillin offers an alternative way to produce vanillin. Isolation and designing of fcs and ech genes was carried out using computer assisted protocol and the designed vanillin biosynthetic gene cassette was cloned in pCCIBAC expression vector for introduction in E. coli top 10. Recombinant strain was implemented for the statistical optimization of process parameters influencing F A to vanillin biotransformation. CCD matrix constituted of process variables like FA concentration, time, temperature and biomass with intracellular, extracellular and total vanillin productions as responses. Production was scaled up and 68 mg/L of vanillin was recovered from 10 mg/L of FA using cell extracts from 1 mg biomass within 30 min. Kinetic activity of enzymes were characterized. From LCMS-ESI analysis a metabolic pathway of FA degradation and vanillin production was predicted. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Engineering triterpene metabolism in tobacco

    PubMed Central

    Shuiqin, Wu; Zuodong, Jiang; Chase, Kempinski; Eric Nybo, S.; Husodo, Satrio; Williams, Robert

    2013-01-01

    Terpenes comprise a distinct class of natural products that serve a diverse range of physiological functions, provide for interactions between plants and their environment and represent a resource for many kinds of practical applications. To better appreciate the importance of terpenes to overall growth and development, and to create a production capacity for specific terpenes of industrial interest, we have pioneered the development of strategies for diverting carbon flow from the native terpene biosynthetic pathways operating in the cytosol and plastid compartments of tobacco for the generation of specific classes of terpenes. In the current work, we demonstrate how difficult it is to divert the 5-carbon intermediates DMAPP and IPP from the mevalonate pathway operating in the cytoplasm for triterpene biosynthesis, yet diversion of the same intermediates from the methylerythritol phosphate pathway operating in the plastid compartment leads to the accumulation of very high levels of the triterpene squalene. This was assessed by the co-expression of an avian farnesyl diphosphate synthase and yeast squalene synthase genes targeting metabolism in the cytoplasm or chloroplast. We also evaluated the possibility of directing this metabolism to the secretory trichomes of tobacco by comparing the effects of trichome-specific gene promoters to strong, constitutive viral promoters. Surprisingly, when transgene expression was directed to trichomes, high-level squalene accumulation was observed, but overall plant growth and physiology were reduced up to 80 % of the non-transgenic controls. Our results support the notion that the biosynthesis of a desired terpene can be dramatically improved by directing that metabolism to a non-native cellular compartment, thus avoiding regulatory mechanisms that might attenuate carbon flux within an engineered pathway. PMID:22729821

  12. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway.

    PubMed

    Zhao, Yaru; Yang, Jianming; Qin, Bo; Li, Yonghao; Sun, Yuanzhang; Su, Sizheng; Xian, Mo

    2011-06-01

    Isoprene is an aviation fuel of high quality and an important polymer building block in the synthetic chemistry industry. In light of high oil prices, sustained availability, and environmental concerns, isoprene from renewable materials is contemplated as a substitute for petroleum-based product. Escherichia coli with advantages over other wild microorganisms, is considered as a powerful host for biofuels and chemicals. Here, we constructed a synthetic pathway of isoprene in E. coli by introducing an isoprene synthase (ispS) gene from Populus nigra, which catalyzes the conversion of dimethylallyl diphosphate (DMAPP) to isoprene. To improve the isoprene production, we overexpressed the native 1-deoxy-D: -xylulose-5-phosphate (DXP) synthase gene (dxs) and DXP reductoisomerase gene (dxr) in E. coli, which catalyzed the first step and the second step of MEP pathway, respectively. The fed-batch fermentation results showed that overexpression of DXS is helpful for the improvement of isoprene production. Surprisingly, heterologous expression of dxs and dxr from Bacillus subtilis in the E. coli expressing ispS resulted in a 2.3-fold enhancement of isoprene production (from 94 to 314 mg/L). The promising results showed that dxs and dxr from B. subtilis functioned more efficiently on the enhancement of isoprene production than native ones. This could be caused by the consequence of great difference in protein structures of the two original DXSs. It could be practical to produce isoprene in E. coli via MEP pathway through metabolic engineering. This work provides an alternative way for production of isoprene by engineered E. coli via MEP pathway through metabolic engineering.

  13. Computer-assisted engineering of the synthetic pathway for biodegradation of a toxic persistent pollutant.

    PubMed

    Kurumbang, Nagendra Prasad; Dvorak, Pavel; Bendl, Jaroslav; Brezovsky, Jan; Prokop, Zbynek; Damborsky, Jiri

    2014-03-21

    Anthropogenic halogenated compounds were unknown to nature until the industrial revolution, and microorganisms have not had sufficient time to evolve enzymes for their degradation. The lack of efficient enzymes and natural pathways can be addressed through a combination of protein and metabolic engineering. We have assembled a synthetic route for conversion of the highly toxic and recalcitrant 1,2,3-trichloropropane to glycerol in Escherichia coli, and used it for a systematic study of pathway bottlenecks. Optimal ratios of enzymes for the maximal production of glycerol, and minimal toxicity of metabolites were predicted using a mathematical model. The strains containing the expected optimal ratios of enzymes were constructed and characterized for their viability and degradation efficiency. Excellent agreement between predicted and experimental data was observed. The validated model was used to quantitatively describe the kinetic limitations of currently available enzyme variants and predict improvements required for further pathway optimization. This highlights the potential of forward engineering of microorganisms for the degradation of toxic anthropogenic compounds.

  14. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools.

    PubMed

    Siddiqui, Michael S; Thodey, Kate; Trenchard, Isis; Smolke, Christina D

    2012-03-01

    Secondary metabolites are an important source of high-value chemicals, many of which exhibit important pharmacological properties. These valuable natural products are often difficult to synthesize chemically and are commonly isolated through inefficient extractions from natural biological sources. As such, they are increasingly targeted for production by biosynthesis from engineered microorganisms. The budding yeast species Saccharomyces cerevisiae has proven to be a powerful microorganism for heterologous expression of biosynthetic pathways. S. cerevisiae's usefulness as a host organism is owed in large part to the wealth of knowledge accumulated over more than a century of intense scientific study. Yet many challenges are currently faced in engineering yeast strains for the biosynthesis of complex secondary metabolite production. However, synthetic biology is advancing the development of new tools for constructing, controlling, and optimizing complex metabolic pathways in yeast. Here, we review how the coupling between yeast biology and synthetic biology is advancing the use of S. cerevisiae as a microbial host for the construction of secondary metabolic pathways. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production.

    PubMed

    Anfelt, Josefine; Kaczmarzyk, Danuta; Shabestary, Kiyan; Renberg, Björn; Rockberg, Johan; Nielsen, Jens; Uhlén, Mathias; Hudson, Elton P

    2015-10-16

    There is a strong interest in using photosynthetic cyanobacteria as production hosts for biofuels and chemicals. Recent work has shown the benefit of pathway engineering, enzyme tolerance, and co-factor usage for improving yields of fermentation products. An n-butanol pathway was inserted into a Synechocystis mutant deficient in polyhydroxybutyrate synthesis. We found that nitrogen starvation increased specific butanol productivity up to threefold, but cessation of cell growth limited total n-butanol titers. Metabolite profiling showed that acetyl-CoA increased twofold during nitrogen starvation. Introduction of a phosphoketolase increased acetyl-CoA levels sixfold at nitrogen replete conditions and increased butanol titers from 22 to 37 mg/L at day 8. Flux balance analysis of photoautotrophic metabolism showed that a Calvin-Benson-Bassham-Phosphoketolase pathway had higher theoretical butanol productivity than CBB-Embden-Meyerhof-Parnas and a reduced butanol ATP demand. These results demonstrate that phosphoketolase overexpression and modulation of nitrogen levels are two attractive routes toward increased production of acetyl-CoA derived products in cyanobacteria and could be implemented with complementary metabolic engineering strategies.

  16. Biosynthesis and Metabolic Engineering of Anthocyanins in Arabidopsis thaliana

    PubMed Central

    Shi, Ming-Zhu; Xie, De-Yu

    2014-01-01

    Arabidopsis thaliana is the first model plant, the genome of which has been sequenced. In general, intensive studies on this model plant over the past nearly 30 years have led to many new revolutionary understandings in every single aspect of plant biology. Here, we review the current understanding of anthocyanin biosynthesis in this model plant. Although the investigation of anthocyanin structures in this model plant was not performed until 2002, numerous studies over the past three decades have been conducted to understand the biosynthesis of anthocyanins. To date, it appears that all pathway genes of anthocyanins have been molecularly, genetically and biochemically characterized in this plant. These fundamental accomplishments have made Arabidopsis an ideal model to understand the regulatory mechanisms of anthocyanin pathway. Several studies have revealed that the biosynthesis of anthocyanins is controlled by WD40-bHLH-MYB (WBM) transcription factor complexes under lighting conditions. However, how different regulatory complexes coordinately and specifically regulate the pathway genes of anthocyanins remains unclear. In this review, we discuss current progresses and findings including structural diversity, regulatory properties and metabolic engineering of anthocyanins in Arabidopsis thaliana. PMID:24354533

  17. Emerging engineering principles for yield improvement in microbial cell design.

    PubMed

    Comba, Santiago; Arabolaza, Ana; Gramajo, Hugo

    2012-01-01

    Metabolic Engineering has undertaken a rapid transformation in the last ten years making real progress towards the production of a wide range of molecules and fine chemicals using a designed cellular host. However, the maximization of product yields through pathway optimization is a constant and central challenge of this field. Traditional methods used to improve the production of target compounds from engineered biosynthetic pathways in non-native hosts include: codon usage optimization, elimination of the accumulation of toxic intermediates or byproducts, enhanced production of rate-limiting enzymes, selection of appropriate promoter and ribosome binding sites, application of directed evolution of enzymes, and chassis re-circuit. Overall, these approaches tend to be specific for each engineering project rather than a systematic practice based on a more generalizable strategy. In this mini-review, we highlight some novel and extensive approaches and tools intended to address the improvement of a target product formation, founded in sophisticated principles such as dynamic control, pathway genes modularization, and flux modeling.

  18. Emerging engineering principles for yield improvement in microbial cell design

    PubMed Central

    Comba, Santiago; Arabolaza, Ana; Gramajo, Hugo

    2012-01-01

    Metabolic Engineering has undertaken a rapid transformation in the last ten years making real progress towards the production of a wide range of molecules and fine chemicals using a designed cellular host. However, the maximization of product yields through pathway optimization is a constant and central challenge of this field. Traditional methods used to improve the production of target compounds from engineered biosynthetic pathways in non-native hosts include: codon usage optimization, elimination of the accumulation of toxic intermediates or byproducts, enhanced production of rate-limiting enzymes, selection of appropriate promoter and ribosome binding sites, application of directed evolution of enzymes, and chassis re-circuit. Overall, these approaches tend to be specific for each engineering project rather than a systematic practice based on a more generalizable strategy. In this mini-review, we highlight some novel and extensive approaches and tools intended to address the improvement of a target product formation, founded in sophisticated principles such as dynamic control, pathway genes modularization, and flux modeling. PMID:24688676

  19. Engineering cells for cell culture bioprocessing--physiological fundamentals.

    PubMed

    Seth, Gargi; Hossler, Patrick; Yee, Joon Chong; Hu, Wei-Shou

    2006-01-01

    In the past decade, we have witnessed a tremendous increase in the number of mammalian cell-derived therapeutic proteins with clinical applications. The success of making these life-saving biologics available to the public is partly due to engineering efforts to enhance process efficiency. To further improve productivity, much effort has been devoted to developing metabolically engineered producing cells, which possess characteristics favorable for large-scale bioprocessing. In this article we discuss the fundamental physiological basis for cell engineering. Different facets of cellular mechanisms, including metabolism, protein processing, and the balancing pathways of cell growth and apoptosis, contribute to the complex traits of favorable growth and production characteristics. We present our assessment of the current state of the art by surveying efforts that have already been undertaken in engineering cells for a more robust process. The concept of physiological homeostasis as a key determinant and its implications on cell engineering is emphasized. Integrating the physiological perspective with cell culture engineering will facilitate attainment of dream cells with superlative characteristics.

  20. 2008 Annual Report

    DTIC Science & Technology

    2008-01-01

    sensors. We will engineer a collection of protein-based switches that are capable of dynamically responding to our desired end-product D-BT over a...locations in the cells; (2) enables control over the molecular ratios of pathway enzymes; and (3) minimizes metabolic cross-talk and side reactions by...pathway enzymes into either static or dynamic channels will be performed by: (1) construction of fusion proteins (static); (2) post-translational protein

  1. Reprogrammed Glucose Metabolic Pathways of Inhibitor-Tolerant Yeast

    USDA-ARS?s Scientific Manuscript database

    Representative inhibitory compounds such as furfural and 5-hydroxymethylfurfural generated from lignocellulosic biomass pretreatment inhibit yeast growth and interfere with the subsequent ethanol fermentation. Evolutionary engineering under laboratory settings is a powerful tool that can be used to ...

  2. Reprogrammed glucose metabolic pathways of inhibitor-tolerant yeast

    USDA-ARS?s Scientific Manuscript database

    Representative inhibitory compounds such as furfural and 5-hydroxymethylfurfural generated from lignocellulosic biomass pretreatment inhibit yeast growth and interfere with the subsequent ethanol fermentation. Evolutionary engineering under laboratory settings is a powerful tool that can be used to...

  3. Gramene database: navigating plant comparative genomics resources

    USDA-ARS?s Scientific Manuscript database

    Gramene (http://www.gramene.org) is an online, open source, curated resource for plant comparative genomics and pathway analysis designed to support researchers working in plant genomics, breeding, evolutionary biology, system biology, and metabolic engineering. It exploits phylogenetic relationship...

  4. Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1).

    PubMed

    de la Torre, Andrea; Metivier, Aisha; Chu, Frances; Laurens, Lieve M L; Beck, David A C; Pienkos, Philip T; Lidstrom, Mary E; Kalyuzhnaya, Marina G

    2015-11-25

    Methane-utilizing bacteria (methanotrophs) are capable of growth on methane and are attractive systems for bio-catalysis. However, the application of natural methanotrophic strains to large-scale production of value-added chemicals/biofuels requires a number of physiological and genetic alterations. An accurate metabolic model coupled with flux balance analysis can provide a solid interpretative framework for experimental data analyses and integration. A stoichiometric flux balance model of Methylomicrobium buryatense strain 5G(B1) was constructed and used for evaluating metabolic engineering strategies for biofuels and chemical production with a methanotrophic bacterium as the catalytic platform. The initial metabolic reconstruction was based on whole-genome predictions. Each metabolic step was manually verified, gapfilled, and modified in accordance with genome-wide expression data. The final model incorporates a total of 841 reactions (in 167 metabolic pathways). Of these, up to 400 reactions were recruited to produce 118 intracellular metabolites. The flux balance simulations suggest that only the transfer of electrons from methanol oxidation to methane oxidation steps can support measured growth and methane/oxygen consumption parameters, while the scenario employing NADH as a possible source of electrons for particulate methane monooxygenase cannot. Direct coupling between methane oxidation and methanol oxidation accounts for most of the membrane-associated methane monooxygenase activity. However the best fit to experimental results is achieved only after assuming that the efficiency of direct coupling depends on growth conditions and additional NADH input (about 0.1-0.2 mol of incremental NADH per one mol of methane oxidized). The additional input is proposed to cover loss of electrons through inefficiency and to sustain methane oxidation at perturbations or support uphill electron transfer. Finally, the model was used for testing the carbon conversion efficiency of different pathways for C1-utilization, including different variants of the ribulose monophosphate pathway and the serine cycle. We demonstrate that the metabolic model can provide an effective tool for predicting metabolic parameters for different nutrients and genetic perturbations, and as such, should be valuable for metabolic engineering of the central metabolism of M. buryatense strains.

  5. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications.

    PubMed

    Löbs, Ann-Kathrin; Schwartz, Cory; Wheeldon, Ian

    2017-09-01

    Microbial production of chemicals and proteins from biomass-derived and waste sugar streams is a rapidly growing area of research and development. While the model yeast Saccharomyces cerevisia e is an excellent host for the conversion of glucose to ethanol, production of other chemicals from alternative substrates often requires extensive strain engineering. To avoid complex and intensive engineering of S. cerevisiae, other yeasts are often selected as hosts for bioprocessing based on their natural capacity to produce a desired product: for example, the efficient production and secretion of proteins, lipids, and primary metabolites that have value as commodity chemicals. Even when using yeasts with beneficial native phenotypes, metabolic engineering to increase yield, titer, and production rate is essential. The non-conventional yeasts Kluyveromyces lactis, K. marxianus, Scheffersomyces stipitis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris have been developed as eukaryotic hosts because of their desirable phenotypes, including thermotolerance, assimilation of diverse carbon sources, and high protein secretion. However, advanced metabolic engineering in these yeasts has been limited. This review outlines the challenges of using non-conventional yeasts for strain and pathway engineering, and discusses the developed solutions to these problems and the resulting applications in industrial biotechnology.

  6. Systems metabolic engineering: the creation of microbial cell factories by rational metabolic design and evolution.

    PubMed

    Furusawa, Chikara; Horinouchi, Takaaki; Hirasawa, Takashi; Shimizu, Hiroshi

    2013-01-01

    It is widely acknowledged that in order to establish sustainable societies, production processes should shift from petrochemical-based processes to bioprocesses. Because bioconversion technologies, in which biomass resources are converted to valuable materials, are preferable to processes dependent on fossil resources, the former should be further developed. The following two approaches can be adopted to improve cellular properties and obtain high productivity and production yield of target products: (1) optimization of cellular metabolic pathways involved in various bioprocesses and (2) creation of stress-tolerant cells that can be active even under severe stress conditions in the bioprocesses. Recent progress in omics analyses has facilitated the analysis of microorganisms based on bioinformatics data for molecular breeding and bioprocess development. Systems metabolic engineering is a new area of study, and it has been defined as a methodology in which metabolic engineering and systems biology are integrated to upgrade the designability of industrially useful microorganisms. This chapter discusses multi-omics analyses and rational design methods for molecular breeding. The first is an example of the rational design of metabolic networks for target production by flux balance analysis using genome-scale metabolic models. Recent progress in the development of genome-scale metabolic models and the application of these models to the design of desirable metabolic networks is also described in this example. The second is an example of evolution engineering with omics analyses for the creation of stress-tolerant microorganisms. Long-term culture experiments to obtain the desired phenotypes and omics analyses to identify the phenotypic changes are described here.

  7. Utilization of biodiesel by-product as substrate for high-production of β-farnesene via relatively balanced mevalonate pathway in Escherichia coli.

    PubMed

    You, Shengping; Yin, Qingdian; Zhang, Jianye; Zhang, Chengyu; Qi, Wei; Gao, Lan; Tao, Zhiping; Su, Rongxin; He, Zhimin

    2017-11-01

    Farnesene has been identified as suitable jet fuel substitutes and metabolic engineering for microbial production of farnesene is an alternative and attractive route. In this study, due to accumulation of toxic intermediate isopentenyl pyrophosphate (IPP), an engineered Escherichia coli strain harboring heterologous mevalonate pathway produced only 4.11mg/L β-farnesene. Through higher-level expression of isopentenyl diphosphate isomerase and farnesyl diphosphate synthase to minimize the accumulated IPP, another engineered strain with relatively balanced mevalonate pathway was constructed and had the highest production of β-farnesene to date (8.74g/L) by Escherichia coli in a lab bioreactor. Furthermore, this is the first report on utilization of biodiesel by-product (simple purification) as substrate for high-production of β-farnesene by the engineered strain optimized and β-farnesene concentration reached 2.83g/L in a lab bioreactor. Therefore, the engineered strain optimized could be used as a platform host for high-production of other terpenoids using biodiesel by-product as substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Selenium uptake, translocation, assimilation and metabolic fate in plants.

    PubMed

    Sors, T G; Ellis, D R; Salt, D E

    2005-12-01

    The chemical and physical resemblance between selenium (Se) and sulfur (S) establishes that both these elements share common metabolic pathways in plants. The presence of isologous Se and S compounds indicates that these elements compete in biochemical processes that affect uptake, translocation and assimilation throughout plant development. Yet, minor but crucial differences in reactivity and other metabolic interactions infer that some biochemical processes involving Se may be excluded from those relating to S. This review examines the current understanding of physiological and biochemical relationships between S and Se metabolism by highlighting their similarities and differences in relation to uptake, transport and assimilation pathways as observed in Se hyperaccumulator and non-accumulator plant species. The exploitation of genetic resources used in bioengineering strategies of plants is illuminating the function of sulfate transporters and key enzymes of the S assimilatory pathway in relation to Se accumulation and final metabolic fate. These strategies are providing the basic framework by which to resolve questions relating to the essentiality of Se in plants and the mechanisms utilized by Se hyperaccumulators to circumvent toxicity. In addition, such approaches may assist in the future application of genetically engineered Se accumulating plants for environmental renewal and human health objectives.

  9. De Novo Metabolic Engineering and the Promise of Synthetic DNA

    NASA Astrophysics Data System (ADS)

    Klein-Marcuschamer, Daniel; Yadav, Vikramaditya G.; Ghaderi, Adel; Stephanopoulos, Gregory N.

    The uncertain price and tight supply of crude oil and the ever-increasing demand for clean energy have prompted heightened attention to the development of sustainable fuel technologies that ensure continued economic development while maintaining stewardship of the environment. In the face of these enormous challenges, biomass has emerged as a viable alternative to petroleum for the production of energy, chemicals, and materials owing to its abundance, inexpensiveness, and carbon-neutrality. Moreover, the immense ease and efficiency of biological systems at converting biomass-derived feedstocks into fuels, chemicals, and materials has generated renewed interest in biotechnology as a replacement for traditional chemical processes. Aided by the ever-expanding repertoire of microbial genetics and plant biotechnology, improved understanding of gene regulation and cellular metabolism, and incessantly accumulating gene and protein data, scientists are now contemplating engineering microbial cell factories to produce fuels, chemical feedstocks, polymers and pharmaceuticals in an economically and environmentally sustainable way. This goal resonates with that of metabolic engineering - the improvement of cellular properties through the intelligent design, rational modification, or directed evolution of biochemical pathways, and arguably, metabolic engineering seems best positioned to achieve the concomittant goals of environmental stewardship and economic prolificity.

  10. Bacterial Diterpene Synthases: New Opportunities for Mechanistic Enzymology and Engineered Biosynthesis

    PubMed Central

    Smanski, Michael J.; Peterson, Ryan M.; Huang, Sheng-Xiong; Shen, Ben

    2012-01-01

    Diterpenoid biosynthesis has been extensively studied in plants and fungi, yet cloning and engineering diterpenoid pathways in these organisms remain challenging. Bacteria are emerging as prolific producers of diterpenoid natural products, and bacterial diterpene synthases are poised to make significant contributions to our understanding of terpenoid biosynthesis. Here we will first survey diterpenoid natural products of bacterial origin and briefly review their biosynthesis with emphasis on diterpene synthases (DTSs) that channel geranylgeranyl diphosphate to various diterpenoid scaffolds. We will then highlight differences of DTSs of bacterial and higher organism origins and discuss the challenges in discovering novel bacterial DTSs. We will conclude by discussing new opportunities for DTS mechanistic enzymology and applications of bacterial DTS in biocatalysis and metabolic pathway engineering. PMID:22445175

  11. Interfacing Biocompatible Reactions with Engineered Escherichia coli.

    PubMed

    Wallace, Stephen; Balskus, Emily P

    2017-01-01

    Biocompatible chemistry represents a new way of merging chemical and biological synthesis by interfacing nonenzymatic reactions with metabolic pathways. This approach can enable the production of nonnatural molecules directly from renewable starting materials via microbial fermentation. When developing a new biocompatible reaction certain criteria must be satisfied, i.e., the reaction must be (1) functional in aqueous growth media at ambient temperature and pH, (2) nontoxic to the producing microorganism, and (3) have negligible effects on the targeted metabolic pathway. This chapter provides a detailed outline of two biocompatible reaction procedures (hydrogenation and cyclopropanation), and describes some of the chemical and microbiological experiments and considerations required during biocompatible reaction development.

  12. Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism

    PubMed Central

    Flamholz, Avi; Reznik, Ed; Liebermeister, Wolfram; Milo, Ron

    2014-01-01

    In metabolism research, thermodynamics is usually used to determine the directionality of a reaction or the feasibility of a pathway. However, the relationship between thermodynamic potentials and fluxes is not limited to questions of directionality: thermodynamics also affects the kinetics of reactions through the flux-force relationship, which states that the logarithm of the ratio between the forward and reverse fluxes is directly proportional to the change in Gibbs energy due to a reaction (ΔrG′). Accordingly, if an enzyme catalyzes a reaction with a ΔrG′ of -5.7 kJ/mol then the forward flux will be roughly ten times the reverse flux. As ΔrG′ approaches equilibrium (ΔrG′ = 0 kJ/mol), exponentially more enzyme counterproductively catalyzes the reverse reaction, reducing the net rate at which the reaction proceeds. Thus, the enzyme level required to achieve a given flux increases dramatically near equilibrium. Here, we develop a framework for quantifying the degree to which pathways suffer these thermodynamic limitations on flux. For each pathway, we calculate a single thermodynamically-derived metric (the Max-min Driving Force, MDF), which enables objective ranking of pathways by the degree to which their flux is constrained by low thermodynamic driving force. Our framework accounts for the effect of pH, ionic strength and metabolite concentration ranges and allows us to quantify how alterations to the pathway structure affect the pathway's thermodynamics. Applying this methodology to pathways of central metabolism sheds light on some of their features, including metabolic bypasses (e.g., fermentation pathways bypassing substrate-level phosphorylation), substrate channeling (e.g., of oxaloacetate from malate dehydrogenase to citrate synthase), and use of alternative cofactors (e.g., quinone as an electron acceptor instead of NAD). The methods presented here place another arrow in metabolic engineers' quiver, providing a simple means of evaluating the thermodynamic and kinetic quality of different pathway chemistries that produce the same molecules. PMID:24586134

  13. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis.

    PubMed

    Gnanasekaran, Thiyagarajan; Karcher, Daniel; Nielsen, Agnieszka Zygadlo; Martens, Helle Juel; Ruf, Stephanie; Kroop, Xenia; Olsen, Carl Erik; Motawie, Mohammed Saddik; Pribil, Mathias; Møller, Birger Lindberg; Bock, Ralph; Jensen, Poul Erik

    2016-04-01

    Plant chloroplasts are light-driven cell factories that have great potential to act as a chassis for metabolic engineering applications. Using plant chloroplasts, we demonstrate how photosynthetic reducing power can drive a metabolic pathway to synthesise a bio-active natural product. For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum (tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integrating CYP79A1, CYP71E1, and UGT85B1 into a neutral site of the N. tabacum chloroplast genome. The two P450s and the UGT85B1 were functional when expressed in the chloroplasts and converted endogenous tyrosine into dhurrin using electrons derived directly from the photosynthetic electron transport chain, without the need for the presence of an NADPH-dependent P450 oxidoreductase. The dhurrin produced in the engineered plants amounted to 0.1-0.2% of leaf dry weight compared to 6% in sorghum. The results obtained pave the way for plant P450s involved in the synthesis of economically important compounds to be engineered into the thylakoid membrane of chloroplasts, and demonstrate that their full catalytic cycle can be driven directly by photosynthesis-derived electrons. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.

    PubMed

    Kildegaard, Kanchana R; Jensen, Niels B; Schneider, Konstantin; Czarnotta, Eik; Özdemir, Emre; Klein, Tobias; Maury, Jérôme; Ebert, Birgitta E; Christensen, Hanne B; Chen, Yun; Kim, Il-Kwon; Herrgård, Markus J; Blank, Lars M; Forster, Jochen; Nielsen, Jens; Borodina, Irina

    2016-03-15

    In the future, oil- and gas-derived polymers may be replaced with bio-based polymers, produced from renewable feedstocks using engineered cell factories. Acrylic acid and acrylic esters with an estimated world annual production of approximately 6 million tons by 2017 can be derived from 3-hydroxypropionic acid (3HP), which can be produced by microbial fermentation. For an economically viable process 3HP must be produced at high titer, rate and yield and preferably at low pH to minimize downstream processing costs. Here we describe the metabolic engineering of baker's yeast Saccharomyces cerevisiae for biosynthesis of 3HP via a malonyl-CoA reductase (MCR)-dependent pathway. Integration of multiple copies of MCR from Chloroflexus aurantiacus and of phosphorylation-deficient acetyl-CoA carboxylase ACC1 genes into the genome of yeast increased 3HP titer fivefold in comparison with single integration. Furthermore we optimized the supply of acetyl-CoA by overexpressing native pyruvate decarboxylase PDC1, aldehyde dehydrogenase ALD6, and acetyl-CoA synthase from Salmonella enterica SEacs (L641P). Finally we engineered the cofactor specificity of the glyceraldehyde-3-phosphate dehydrogenase to increase the intracellular production of NADPH at the expense of NADH and thus improve 3HP production and reduce formation of glycerol as by-product. The final strain produced 9.8 ± 0.4 g L(-1) 3HP with a yield of 13% C-mol C-mol(-1) glucose after 100 h in carbon-limited fed-batch cultivation at pH 5. The 3HP-producing strain was characterized by (13)C metabolic flux analysis and by transcriptome analysis, which revealed some unexpected consequences of the undertaken metabolic engineering strategy, and based on this data, future metabolic engineering directions are proposed. In this study, S. cerevisiae was engineered for high-level production of 3HP by increasing the copy numbers of biosynthetic genes and improving flux towards precursors and redox cofactors. This strain represents a good platform for further optimization of 3HP production and hence an important step towards potential commercial bio-based production of 3HP.

  15. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways

    DOE PAGES

    DeLoache, William C.; Russ, Zachary N.; Dueber, John E.

    2016-03-30

    Compartmentalization of enzymes into organelles is a promising strategy for limiting metabolic crosstalk and improving pathway efficiency, but improved tools and design rules are needed to make this strategy available to more engineered pathways. Here we focus on the Saccharomyces cerevisiae peroxisome and develop a sensitive high-throughput assay for peroxisomal cargo import. We identify an enhanced peroxisomal targeting signal type 1 (PTS1) for rapidly sequestering non-native cargo proteins. Additionally, we perform the first systematic in vivo measurements of nonspecific metabolite permeability across the peroxisomal membrane using a polymer exclusion assay. Finally, we apply these new insights to compartmentalize a two-enzymemore » pathway in the peroxisome and characterize the expression regimes where compartmentalization leads to improved product titre. Lastly, this work builds a foundation for using the peroxisome as a synthetic organelle, highlighting both promise and future challenges on the way to realizing this goal.« less

  16. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLoache, William C.; Russ, Zachary N.; Dueber, John E.

    Compartmentalization of enzymes into organelles is a promising strategy for limiting metabolic crosstalk and improving pathway efficiency, but improved tools and design rules are needed to make this strategy available to more engineered pathways. Here we focus on the Saccharomyces cerevisiae peroxisome and develop a sensitive high-throughput assay for peroxisomal cargo import. We identify an enhanced peroxisomal targeting signal type 1 (PTS1) for rapidly sequestering non-native cargo proteins. Additionally, we perform the first systematic in vivo measurements of nonspecific metabolite permeability across the peroxisomal membrane using a polymer exclusion assay. Finally, we apply these new insights to compartmentalize a two-enzymemore » pathway in the peroxisome and characterize the expression regimes where compartmentalization leads to improved product titre. Lastly, this work builds a foundation for using the peroxisome as a synthetic organelle, highlighting both promise and future challenges on the way to realizing this goal.« less

  17. Metabolic engineering of resveratrol and other longevity boosting compounds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y; Chen, H; Yu, O

    Resveratrol, a compound commonly found in red wine, has attracted many attentions recently. It is a diphenolic natural product accumulated in grapes and a few other species under stress conditions. It possesses a special ability to increase the life span of eukaryotic organisms, ranging from yeast, to fruit fly, to obese mouse. The demand for resveratrol as a food and nutrition supplement has increased significantly in recent years. Extensive work has been carried out to increase the production of resveratrol in plants and microbes. In this review, we will discuss the biosynthetic pathway of resveratrol and engineering methods to heterologouslymore » express the pathway in various organisms. We will outline the shortcuts and limitations of common engineering efforts. We will also discuss briefly the features and engineering challenges of other longevity boosting compounds.« less

  18. A modular metabolic engineering approach for the production of 1,2-propanediol from glycerol by Saccharomyces cerevisiae.

    PubMed

    Islam, Zia-Ul; Klein, Mathias; Aßkamp, Maximilian R; Ødum, Anders S R; Nevoigt, Elke

    2017-11-01

    Compared to sugars, a major advantage of using glycerol as a feedstock for industrial bioprocesses is the fact that this molecule is more reduced than sugars. A compound whose biotechnological production might greatly profit from the substrate's higher reducing power is 1,2-propanediol (1,2-PDO). Here we present a novel metabolic engineering approach to produce 1,2-PDO from glycerol in S. cerevisiae. Apart from implementing the heterologous methylglyoxal (MG) pathway for 1,2-PDO formation from dihydroxyacetone phosphate (DHAP) and expressing a heterologous glycerol facilitator, the employed genetic modifications included the replacement of the native FAD-dependent glycerol catabolic pathway by the 'DHA pathway' for delivery of cytosolic NADH and the reduction of triosephosphate isomerase (TPI) activity for increased precursor (DHAP) supply. The choice of the medium had a crucial impact on both the strength of the metabolic switch towards fermentation in general (as indicated by the production of ethanol and 1,2-PDO) and on the ratio at which these two fermentation products were formed. For example, virtually no 1,2-PDO but only ethanol was formed in synthetic glycerol medium with urea as the nitrogen source. When nutrient-limited complex YG medium was used, significant amounts of 1,2-PDO were formed and it became obvious that the concerted supply of NADH and DHAP are essential for boosting 1,2-PDO production. Additionally, optimizing the flux into the MG pathway improved 1,2-PDO formation at the expense of ethanol. Cultivation of the best-performing strain in YG medium and a controlled bioreactor set-up resulted in a maximum titer of > 4gL -1 1,2-PDO which, to the best of our knowledge, has been the highest titer of 1,2-PDO obtained in yeast so far. Surprisingly, significant 1,2-PDO production was also obtained in synthetic glycerol medium after changing the nitrogen source towards ammonium sulfate and adding a buffer. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Metabolic modelling in the development of cell factories by synthetic biology

    PubMed Central

    Jouhten, Paula

    2012-01-01

    Cell factories are commonly microbial organisms utilized for bioconversion of renewable resources to bulk or high value chemicals. Introduction of novel production pathways in chassis strains is the core of the development of cell factories by synthetic biology. Synthetic biology aims to create novel biological functions and systems not found in nature by combining biology with engineering. The workflow of the development of novel cell factories with synthetic biology is ideally linear which will be attainable with the quantitative engineering approach, high-quality predictive models, and libraries of well-characterized parts. Different types of metabolic models, mathematical representations of metabolism and its components, enzymes and metabolites, are useful in particular phases of the synthetic biology workflow. In this minireview, the role of metabolic modelling in synthetic biology will be discussed with a review of current status of compatible methods and models for the in silico design and quantitative evaluation of a cell factory. PMID:24688669

  20. Genetically Engineered Cyanobacteria

    NASA Technical Reports Server (NTRS)

    Zhou, Ruanbao (Inventor); Gibbons, William (Inventor)

    2015-01-01

    The disclosed embodiments provide cyanobacteria spp. that have been genetically engineered to have increased production of carbon-based products of interest. These genetically engineered hosts efficiently convert carbon dioxide and light into carbon-based products of interest such as long chained hydrocarbons. Several constructs containing polynucleotides encoding enzymes active in the metabolic pathways of cyanobacteria are disclosed. In many instances, the cyanobacteria strains have been further genetically modified to optimize production of the carbon-based products of interest. The optimization includes both up-regulation and down-regulation of particular genes.

  1. Simulation Modeling to Compare High-Throughput, Low-Iteration Optimization Strategies for Metabolic Engineering

    PubMed Central

    Heinsch, Stephen C.; Das, Siba R.; Smanski, Michael J.

    2018-01-01

    Increasing the final titer of a multi-gene metabolic pathway can be viewed as a multivariate optimization problem. While numerous multivariate optimization algorithms exist, few are specifically designed to accommodate the constraints posed by genetic engineering workflows. We present a strategy for optimizing expression levels across an arbitrary number of genes that requires few design-build-test iterations. We compare the performance of several optimization algorithms on a series of simulated expression landscapes. We show that optimal experimental design parameters depend on the degree of landscape ruggedness. This work provides a theoretical framework for designing and executing numerical optimization on multi-gene systems. PMID:29535690

  2. Evolution-guided optimization of biosynthetic pathways.

    PubMed

    Raman, Srivatsan; Rogers, Jameson K; Taylor, Noah D; Church, George M

    2014-12-16

    Engineering biosynthetic pathways for chemical production requires extensive optimization of the host cellular metabolic machinery. Because it is challenging to specify a priori an optimal design, metabolic engineers often need to construct and evaluate a large number of variants of the pathway. We report a general strategy that combines targeted genome-wide mutagenesis to generate pathway variants with evolution to enrich for rare high producers. We convert the intracellular presence of the target chemical into a fitness advantage for the cell by using a sensor domain responsive to the chemical to control a reporter gene necessary for survival under selective conditions. Because artificial selection tends to amplify unproductive cheaters, we devised a negative selection scheme to eliminate cheaters while preserving library diversity. This scheme allows us to perform multiple rounds of evolution (addressing ∼10(9) cells per round) with minimal carryover of cheaters after each round. Based on candidate genes identified by flux balance analysis, we used targeted genome-wide mutagenesis to vary the expression of pathway genes involved in the production of naringenin and glucaric acid. Through up to four rounds of evolution, we increased production of naringenin and glucaric acid by 36- and 22-fold, respectively. Naringenin production (61 mg/L) from glucose was more than double the previous highest titer reported. Whole-genome sequencing of evolved strains revealed additional untargeted mutations that likely benefit production, suggesting new routes for optimization.

  3. Synthetic gene circuits for metabolic control: design trade-offs and constraints

    PubMed Central

    Oyarzún, Diego A.; Stan, Guy-Bart V.

    2013-01-01

    A grand challenge in synthetic biology is to push the design of biomolecular circuits from purely genetic constructs towards systems that interface different levels of the cellular machinery, including signalling networks and metabolic pathways. In this paper, we focus on a genetic circuit for feedback regulation of unbranched metabolic pathways. The objective of this feedback system is to dampen the effect of flux perturbations caused by changes in cellular demands or by engineered pathways consuming metabolic intermediates. We consider a mathematical model for a control circuit with an operon architecture, whereby the expression of all pathway enzymes is transcriptionally repressed by the metabolic product. We address the existence and stability of the steady state, the dynamic response of the network under perturbations, and their dependence on common tuneable knobs such as the promoter characteristic and ribosome binding site (RBS) strengths. Our analysis reveals trade-offs between the steady state of the enzymes and the intermediates, together with a separation principle between promoter and RBS design. We show that enzymatic saturation imposes limits on the parameter design space, which must be satisfied to prevent metabolite accumulation and guarantee the stability of the network. The use of promoters with a broad dynamic range and a small leaky expression enlarges the design space. Simulation results with realistic parameter values also suggest that the control circuit can effectively upregulate enzyme production to compensate flux perturbations. PMID:23054953

  4. Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism

    PubMed Central

    Xu, Li-Qin; Liu, Yong-Jun; Yao, Kang; Liu, Hao-Hao; Tao, Xin-Yi; Wang, Feng-Qing; Wei, Dong-Zhi

    2016-01-01

    The catabolism of sterols in mycobacteria is highly important due to its close relevance in the pathogenesis of pathogenic strains and the biotechnological applications of nonpathogenic strains for steroid synthesis. However, some key metabolic steps remain unknown. In this study, the hsd4A gene from Mycobacterium neoaurum ATCC 25795 was investigated. The encoded protein, Hsd4A, was characterized as a dual-function enzyme, with both 17β-hydroxysteroid dehydrogenase and β-hydroxyacyl-CoA dehydrogenase activities in vitro. Using a kshAs-null strain of M. neoaurum ATCC 25795 (NwIB-XII) as a model, Hsd4A was further confirmed to exert dual-function in sterol catabolism in vivo. The deletion of hsd4A in NwIB-XII resulted in the production of 23,24-bisnorcholenic steroids (HBCs), indicating that hsd4A plays a key role in sterol side-chain degradation. Therefore, two competing pathways, the AD and HBC pathways, were proposed for the side-chain degradation. The proposed HBC pathway has great value in illustrating the production mechanism of HBCs in sterol catabolism and in developing HBCs producing strains for industrial application via metabolic engineering. Through the combined modification of hsd4A and other genes, three HBCs producing strains were constructed that resulted in promising productivities of 0.127, 0.109 and 0.074 g/l/h, respectively. PMID:26898409

  5. Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism.

    PubMed

    Xu, Li-Qin; Liu, Yong-Jun; Yao, Kang; Liu, Hao-Hao; Tao, Xin-Yi; Wang, Feng-Qing; Wei, Dong-Zhi

    2016-02-22

    The catabolism of sterols in mycobacteria is highly important due to its close relevance in the pathogenesis of pathogenic strains and the biotechnological applications of nonpathogenic strains for steroid synthesis. However, some key metabolic steps remain unknown. In this study, the hsd4A gene from Mycobacterium neoaurum ATCC 25795 was investigated. The encoded protein, Hsd4A, was characterized as a dual-function enzyme, with both 17β-hydroxysteroid dehydrogenase and β-hydroxyacyl-CoA dehydrogenase activities in vitro. Using a kshAs-null strain of M. neoaurum ATCC 25795 (NwIB-XII) as a model, Hsd4A was further confirmed to exert dual-function in sterol catabolism in vivo. The deletion of hsd4A in NwIB-XII resulted in the production of 23,24-bisnorcholenic steroids (HBCs), indicating that hsd4A plays a key role in sterol side-chain degradation. Therefore, two competing pathways, the AD and HBC pathways, were proposed for the side-chain degradation. The proposed HBC pathway has great value in illustrating the production mechanism of HBCs in sterol catabolism and in developing HBCs producing strains for industrial application via metabolic engineering. Through the combined modification of hsd4A and other genes, three HBCs producing strains were constructed that resulted in promising productivities of 0.127, 0.109 and 0.074 g/l/h, respectively.

  6. Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome.

    PubMed

    Beckers, Bram; Op De Beeck, Michiel; Weyens, Nele; Van Acker, Rebecca; Van Montagu, Marc; Boerjan, Wout; Vangronsveld, Jaco

    2016-02-23

    Cinnamoyl-CoA reductase (CCR), an enzyme central to the lignin biosynthetic pathway, represents a promising biotechnological target to reduce lignin levels and to improve the commercial viability of lignocellulosic biomass. However, silencing of the CCR gene results in considerable flux changes of the general and monolignol-specific lignin pathways, ultimately leading to the accumulation of various extractable phenolic compounds in the xylem. Here, we evaluated host genotype-dependent effects of field-grown, CCR-down-regulated poplar trees (Populus tremula × Populus alba) on the bacterial rhizosphere microbiome and the endosphere microbiome, namely the microbiota present in roots, stems, and leaves. Plant-associated bacteria were isolated from all plant compartments by selective isolation and enrichment techniques with specific phenolic carbon sources (such as ferulic acid) that are up-regulated in CCR-deficient poplar trees. The bacterial microbiomes present in the endosphere were highly responsive to the CCR-deficient poplar genotype with remarkably different metabolic capacities and associated community structures compared with the WT trees. In contrast, the rhizosphere microbiome of CCR-deficient and WT poplar trees featured highly overlapping bacterial community structures and metabolic capacities. We demonstrate the host genotype modulation of the plant microbiome by minute genetic variations in the plant genome. Hence, these interactions need to be taken into consideration to understand the full consequences of plant metabolic pathway engineering and its relation with the environment and the intended genetic improvement.

  7. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges.

    PubMed

    Banerjee, Chiranjib; Dubey, Kashyap K; Shukla, Pratyoosh

    2016-01-01

    The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based biofuel production is the various other complications involved in microalgal cultivation, its harvesting, concentration, drying and lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols (TAGs), which are main precursors in the production of lipid. The various aspects on metabolic pathway analysis of an oleaginous microalgae i.e., Chlamydomonas reinhardtii have elucidated some novel metabolically important genes and this enhances the lipid production in this microalgae. Adding to it, various other aspects in metabolic engineering using OptFlux and effectual bioprocess design also gives an interactive snapshot of enhancing lipid production which ultimately improvises the oil yield. This article reviews the current status of microalgal based technologies for biofuel production, bioreactor process design, flux analysis and it also provides various strategies to increase lipids accumulation via metabolic engineering.

  8. Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling.

    PubMed

    Gutierrez, Jahir M; Lewis, Nathan E

    2015-07-01

    Eukaryotic cell lines, including Chinese hamster ovary cells, yeast, and insect cells, are invaluable hosts for the production of many recombinant proteins. With the advent of genomic resources, one can now leverage genome-scale computational modeling of cellular pathways to rationally engineer eukaryotic host cells. Genome-scale models of metabolism include all known biochemical reactions occurring in a specific cell. By describing these mathematically and using tools such as flux balance analysis, the models can simulate cell physiology and provide targets for cell engineering that could lead to enhanced cell viability, titer, and productivity. Here we review examples in which metabolic models in eukaryotic cell cultures have been used to rationally select targets for genetic modification, improve cellular metabolic capabilities, design media supplementation, and interpret high-throughput omics data. As more comprehensive models of metabolism and other cellular processes are developed for eukaryotic cell culture, these will enable further exciting developments in cell line engineering, thus accelerating recombinant protein production and biotechnology in the years to come. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Reversal of β-oxidative pathways for the microbial production of chemicals and polymer building blocks.

    PubMed

    Kallscheuer, Nicolai; Polen, Tino; Bott, Michael; Marienhagen, Jan

    2017-07-01

    β-Oxidation is the ubiquitous metabolic strategy to break down fatty acids. In the course of this four-step process, two carbon atoms are liberated per cycle from the fatty acid chain in the form of acetyl-CoA. However, typical β-oxidative strategies are not restricted to monocarboxylic (fatty) acid degradation only, but can also be involved in the utilization of aromatic compounds, amino acids and dicarboxylic acids. Each enzymatic step of a typical β-oxidation cycle is reversible, offering the possibility to also take advantage of reversed metabolic pathways for applied purposes. In such cases, 3-oxoacyl-CoA thiolases, which catalyze the final chain-shortening step in the catabolic direction, mediate the condensation of an acyl-CoA starter molecule with acetyl-CoA in the anabolic direction. Subsequently, the carbonyl-group at C3 is stepwise reduced and dehydrated yielding a chain-elongated product. In the last years, several β-oxidation pathways have been studied in detail and reversal of these pathways already proved to be a promising strategy for the production of chemicals and polymer building blocks in several industrially relevant microorganisms. This review covers recent advancements in this field and discusses constraints and bottlenecks of this metabolic strategy in comparison to alternative production pathways. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Combinatorial analysis of enzymatic bottlenecks of L-tyrosine pathway by p-coumaric acid production in Saccharomyces cerevisiae.

    PubMed

    Mao, Jiwei; Liu, Quanli; Song, Xiaofei; Wang, Hesuiyuan; Feng, Hui; Xu, Haijin; Qiao, Mingqiang

    2017-07-01

    To identify new enzymatic bottlenecks of L-tyrosine pathway for further improving the production of L-tyrosine and its derivatives. When ARO4 and ARO7 were deregulated by their feedback resistant derivatives in the host strains, the ARO2 and TYR1 genes, coding for chorismate synthase and prephenate dehydrogenase were further identified as new important rate-limiting steps. The yield of p-coumaric acid in the feedback-resistant strain overexpressing ARO2 or TYR1, was significantly increased from 6.4 to 16.2 and 15.3 mg l -1 , respectively. Subsequently, we improved the strain by combinatorial engineering of pathway genes increasing the yield of p-coumaric acid by 12.5-fold (from 1.7 to 21.3 mg l -1 ) compared with the wild-type strain. Batch cultivations revealed that p-coumaric acid production was correlated with cell growth, and the formation of by-product acetate of the best producer NK-M6 increased to 31.1 mM whereas only 19.1 mM acetate was accumulated by the wild-type strain. Combinatorial metabolic engineering provides a new strategy for further improvement of L-tyrosine or other metabolic biosynthesis pathways in S. cerevisiae.

  11. Enhancing GDP-fucose production in recombinant Escherichia coli by metabolic pathway engineering.

    PubMed

    Zhai, Yafei; Han, Donglei; Pan, Ying; Wang, Shuaishuai; Fang, Junqiang; Wang, Peng; Liu, Xian-wei

    2015-02-01

    Guanosine 5'-diphosphate (GDP)-fucose is the indispensible donor substrate for fucosyltransferase-catalyzed synthesis of fucose-containing biomolecules, which have been found involving in various biological functions. In this work, the salvage pathway for GDP-fucose biosynthesis from Bacterioides fragilis was introduced into Escherichia coli. Besides, the biosynthesis of guanosine 5'-triphosphate (GTP), an essential substrate for GDP-fucose biosynthesis, was enhanced via overexpression of enzymes involved in the salvage pathway of GTP biosynthesis. The production capacities of metabolically engineered strains bearing different combinations of recombinant enzymes were compared. The shake flask fermentation of the strain expressing Fkp, Gpt, Gmk and Ndk obtained the maximum GDP-fucose content of 4.6 ± 0.22 μmol/g (dry cell mass), which is 4.2 fold that of the strain only expressing Fkp. Through fed-batch fermentation, the GDP-fucose content further rose to 6.6 ± 0.14 μmol/g (dry cell mass). In addition to a better productivity than previous fermentation processes based on the de novo pathway for GDP-fucose biosynthesis, the established schemes in this work also have the advantage to be a potential avenue to GDP-fucose analogs encompassing chemical modification on the fucose residue. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Strategies for microbial synthesis of high-value phytochemicals

    NASA Astrophysics Data System (ADS)

    Li, Sijin; Li, Yanran; Smolke, Christina D.

    2018-03-01

    Phytochemicals are of great pharmaceutical and agricultural importance, but often exhibit low abundance in nature. Recent demonstrations of industrial-scale production of phytochemicals in yeast have shown that microbial production of these high-value chemicals is a promising alternative to sourcing these molecules from native plant hosts. However, a number of challenges remain in the broader application of this approach, including the limited knowledge of plant secondary metabolism and the inefficient reconstitution of plant metabolic pathways in microbial hosts. In this Review, we discuss recent strategies to achieve microbial biosynthesis of complex phytochemicals, including strategies to: (1) reconstruct plant biosynthetic pathways that have not been fully elucidated by mining enzymes from native and non-native hosts or by enzyme engineering; (2) enhance plant enzyme activity, specifically cytochrome P450 activity, by improving efficiency, selectivity, expression or electron transfer; and (3) enhance overall reaction efficiency of multi-enzyme pathways by dynamic control, compartmentalization or optimization with the host's metabolism. We also highlight remaining challenges to — and future opportunities of — this approach.

  13. Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition.

    PubMed

    Chwa, Jun-Won; Kim, Wook Jin; Sim, Sang Jun; Um, Youngsoon; Woo, Han Min

    2016-08-01

    Capture and conversion of CO2 to valuable chemicals is intended to answer global challenges on environmental issues, climate change and energy security. Engineered cyanobacteria have been enabled to produce industry-relevant chemicals from CO2 . However, the final products from cyanobacteria have often been mixed with fermented metabolites during dark fermentation. In this study, our engineering of Synechococcus elongatus PCC 7942 enabled continuous conversion of CO2 to volatile acetone as sole product. This process occurred during lighted, aerobic culture via both ATP-driven malonyl-CoA synthesis pathway and heterologous phosphoketolase (PHK)-phosphotransacetylase (Pta) pathway. Because of strong correlations between the metabolic pathways of acetate and acetone, supplying the acetyl-CoA directly from CO2 in the engineered strain, led to sole production of acetone (22.48 mg/L ± 1.00) without changing nutritional constraints, and without an anaerobic shift. Our engineered S. elongatus strains, designed for acetone production, could be modified to create biosolar cell factories for sustainable photosynthetic production of acetyl-CoA-derived biochemicals. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Compound toxicity screening and structure-activity relationship modeling in Escherichia coli.

    PubMed

    Planson, Anne-Gaëlle; Carbonell, Pablo; Paillard, Elodie; Pollet, Nicolas; Faulon, Jean-Loup

    2012-03-01

    Synthetic biology and metabolic engineering are used to develop new strategies for producing valuable compounds ranging from therapeutics to biofuels in engineered microorganisms. When developing methods for high-titer production cells, toxicity is an important element to consider. Indeed the production rate can be limited due to toxic intermediates or accumulation of byproducts of the heterologous biosynthetic pathway of interest. Conversely, highly toxic molecules are desired when designing antimicrobials. Compound toxicity in bacteria plays a major role in metabolic engineering as well as in the development of new antibacterial agents. Here, we screened a diversified chemical library of 166 compounds for toxicity in Escherichia coli. The dataset was built using a clustering algorithm maximizing the chemical diversity in the library. The resulting assay data was used to develop a toxicity predictor that we used to assess the toxicity of metabolites throughout the metabolome. This new tool for predicting toxicity can thus be used for fine-tuning heterologous expression and can be integrated in a computational-framework for metabolic pathway design. Many structure-activity relationship tools have been developed for toxicology studies in eukaryotes [Valerio (2009), Toxicol Appl Pharmacol, 241(3): 356-370], however, to the best of our knowledge we present here the first E. coli toxicity prediction web server based on QSAR models (EcoliTox server: http://www.issb.genopole.fr/∼faulon/EcoliTox.php). Copyright © 2011 Wiley Periodicals, Inc.

  15. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production.

    PubMed

    Liu, Xiaonan; Ding, Wentao; Jiang, Huifeng

    2017-07-19

    Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.

  16. Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications.

    PubMed

    Ludwig-Müller, Jutta; Jahn, Linda; Lippert, Annemarie; Püschel, Joachim; Walter, Antje

    2014-11-01

    A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae.

    PubMed

    Vanegas, Katherina García; Lehka, Beata Joanna; Mortensen, Uffe Hasbro

    2017-02-08

    The yeast Saccharomyces cerevisiae is increasingly used as a cell factory. However, cell factory construction time is a major obstacle towards using yeast for bio-production. Hence, tools to speed up cell factory construction are desirable. In this study, we have developed a new Cas9/dCas9 based system, SWITCH, which allows Saccharomyces cerevisiae strains to iteratively alternate between a genetic engineering state and a pathway control state. Since Cas9 induced recombination events are crucial for SWITCH efficiency, we first developed a technique TAPE, which we have successfully used to address protospacer efficiency. As proof of concept of the use of SWITCH in cell factory construction, we have exploited the genetic engineering state of a SWITCH strain to insert the five genes necessary for naringenin production. Next, the naringenin cell factory was switched to the pathway control state where production was optimized by downregulating an essential gene TSC13, hence, reducing formation of a byproduct. We have successfully integrated two CRISPR tools, one for genetic engineering and one for pathway control, into one system and successfully used it for cell factory construction.

  18. Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel

    PubMed Central

    Sapcariu, Sean C.; Kanashova, Tamara; Dilger, Marco; Diabaté, Silvia; Oeder, Sebastian; Passig, Johannes; Radischat, Christian; Buters, Jeroen; Sippula, Olli; Streibel, Thorsten; Paur, Hanns-Rudolf; Schlager, Christoph; Mülhopt, Sonja; Stengel, Benjamin; Rabe, Rom; Harndorf, Horst; Krebs, Tobias; Karg, Erwin; Gröger, Thomas; Weiss, Carsten; Dittmar, Gunnar; Hiller, Karsten; Zimmermann, Ralf

    2016-01-01

    Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the response to combustion aerosols. PMID:27348622

  19. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop.

    PubMed

    Fuentes, Paulina; Zhou, Fei; Erban, Alexander; Karcher, Daniel; Kopka, Joachim; Bock, Ralph

    2016-06-14

    Artemisinin-based therapies are the only effective treatment for malaria, the most devastating disease in human history. To meet the growing demand for artemisinin and make it accessible to the poorest, an inexpensive and rapidly scalable production platform is urgently needed. Here we have developed a new synthetic biology approach, combinatorial supertransformation of transplastomic recipient lines (COSTREL), and applied it to introduce the complete pathway for artemisinic acid, the precursor of artemisinin, into the high-biomass crop tobacco. We first introduced the core pathway of artemisinic acid biosynthesis into the chloroplast genome. The transplastomic plants were then combinatorially supertransformed with cassettes for all additional enzymes known to affect flux through the artemisinin pathway. By screening large populations of COSTREL lines, we isolated plants that produce more than 120 milligram artemisinic acid per kilogram biomass. Our work provides an efficient strategy for engineering complex biochemical pathways into plants and optimizing the metabolic output.

  20. Identification of parallel and divergent optimization solutions for homologous metabolic enzymes

    DOE PAGES

    Standaert, Robert F.; Giannone, Richard J.; Michener, Joshua K.

    2018-04-18

    Here, metabolic pathway assembly typically involves the expression of enzymes from multiple organisms in a single heterologous host. Ensuring that each enzyme functions effectively can be challenging, since many potential factors can disrupt proper pathway flux. Here, we compared the performance of two enzyme homologs in a pathway engineered to allow Escherichia coli to grow on 4-hydroxybenzoate (4-HB), a byproduct of lignocellulosic biomass deconstruction. Single chromosomal copies of the 4-HB 3-monooxygenase genes pobA and praI, from Pseudomonas putida KT2440 and Paenibacillus sp. JJ-1B, respectively, were introduced into a strain able to metabolize protocatechuate (PCA), the oxidation product of 4-HB. Neithermore » enzyme initially supported consistent growth on 4-HB. Experimental evolution was used to identify mutations that improved pathway activity. For both enzymes, silent mRNA mutations were identified that increased enzyme expression. With pobA, duplication of the genes for PCA metabolism allowed growth on 4-HB. However, with praI, growth required a mutation in the 4-HB/PCA transporter pcaK that increased intracellular concentrations of 4-HB, suggesting that flux through PraI was limiting. These findings demonstrate the value of directed evolution strategies to rapidly identify and overcome diverse factors limiting enzyme activity.« less

  1. Identification of parallel and divergent optimization solutions for homologous metabolic enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Standaert, Robert F.; Giannone, Richard J.; Michener, Joshua K.

    Here, metabolic pathway assembly typically involves the expression of enzymes from multiple organisms in a single heterologous host. Ensuring that each enzyme functions effectively can be challenging, since many potential factors can disrupt proper pathway flux. Here, we compared the performance of two enzyme homologs in a pathway engineered to allow Escherichia coli to grow on 4-hydroxybenzoate (4-HB), a byproduct of lignocellulosic biomass deconstruction. Single chromosomal copies of the 4-HB 3-monooxygenase genes pobA and praI, from Pseudomonas putida KT2440 and Paenibacillus sp. JJ-1B, respectively, were introduced into a strain able to metabolize protocatechuate (PCA), the oxidation product of 4-HB. Neithermore » enzyme initially supported consistent growth on 4-HB. Experimental evolution was used to identify mutations that improved pathway activity. For both enzymes, silent mRNA mutations were identified that increased enzyme expression. With pobA, duplication of the genes for PCA metabolism allowed growth on 4-HB. However, with praI, growth required a mutation in the 4-HB/PCA transporter pcaK that increased intracellular concentrations of 4-HB, suggesting that flux through PraI was limiting. These findings demonstrate the value of directed evolution strategies to rapidly identify and overcome diverse factors limiting enzyme activity.« less

  2. Identification of parallel and divergent optimization solutions for homologous metabolic enzymes.

    PubMed

    Standaert, Robert F; Giannone, Richard J; Michener, Joshua K

    2018-06-01

    Metabolic pathway assembly typically involves the expression of enzymes from multiple organisms in a single heterologous host. Ensuring that each enzyme functions effectively can be challenging, since many potential factors can disrupt proper pathway flux. Here, we compared the performance of two enzyme homologs in a pathway engineered to allow Escherichia coli to grow on 4-hydroxybenzoate (4-HB), a byproduct of lignocellulosic biomass deconstruction. Single chromosomal copies of the 4-HB 3-monooxygenase genes pobA and praI , from Pseudomonas putida KT2440 and Paenibacillus sp. JJ-1B, respectively, were introduced into a strain able to metabolize protocatechuate (PCA), the oxidation product of 4-HB. Neither enzyme initially supported consistent growth on 4-HB. Experimental evolution was used to identify mutations that improved pathway activity. For both enzymes, silent mRNA mutations were identified that increased enzyme expression. With pobA , duplication of the genes for PCA metabolism allowed growth on 4-HB. However, with praI , growth required a mutation in the 4-HB/PCA transporter pcaK that increased intracellular concentrations of 4-HB, suggesting that flux through PraI was limiting. These findings demonstrate the value of directed evolution strategies to rapidly identify and overcome diverse factors limiting enzyme activity.

  3. Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown.

    PubMed

    Hasunuma, Tomohisa; Ishii, Jun; Kondo, Akihiko

    2015-12-01

    Conferring biomass hydrolysis activity on yeast through genetic engineering has paved the way for the development of groundbreaking processes for producing liquid fuels and commodity chemicals from lignocellulosic biomass. However, the overproduction and misfolding of heterologous and endogenous proteins can trigger cellular stress, increasing the metabolic burden and retarding growth. Improving the efficiency of lignocellulosic breakdown requires engineering of yeast secretory pathway based on system-wide metabolic analysis as well as DNA constructs for enhanced cellulase gene expression with advanced molecular biology tools. Also, yeast is subjected to severe stress due to toxic compounds generated during lignocellulose pretreatment in consolidated saccharification and fermentation processes. The prospect for development of robust yeast strains makes combining evolutionary and rational engineering strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein.

    PubMed

    Rodrigues, André L; Trachtmann, Nathalie; Becker, Judith; Lohanatha, Ananta F; Blotenberg, Jana; Bolten, Christoph J; Korneli, Claudia; de Souza Lima, André O; Porto, Luismar M; Sprenger, Georg A; Wittmann, Christoph

    2013-11-01

    Violacein and deoxyviolacein are interesting therapeutics against pathogenic bacteria and viruses as well as tumor cells. In the present work, systems-wide metabolic engineering was applied to target Escherichia coli, a widely accepted recombinant host in pharmaceutical biotechnology, for production of these high-value products. The basic producer, E. coli dVio-1, that expressed the vioABCE cluster from Chromobacterium violaceum under control of the inducible araC system, accumulated 180 mg L(-1) of deoxyviolacein. Targeted intracellular metabolite analysis then identified bottlenecks in tryptophan supporting pathways, the major product building block. This was used for comprehensive engineering of serine, chorismate and tryptophan biosynthesis and the non-oxidative pentose-phosphate pathway. The final strain, E. coli dVio-6, accumulated 320 mg L(-1) deoxyviolacein in shake flask cultures. The created chassis of a high-flux tryptophan pathway was complemented by genomic integration of the vioD gene of Janthinobacterium lividum, which enabled exclusive production of violacein. In a fed-batch process, the resulting producer E. coli Vio-4 accumulated 710 mg L(-1) of the desired product. With straightforward broth extraction and subsequent crystallization, violacein could be obtained with 99.8% purity. This demonstrates the potential of E. coli as a platform for production of tryptophan based therapeutics. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae

    PubMed Central

    2012-01-01

    Background Sesquiterpenes are a class of natural products with a diverse range of attractive industrial proprieties. Due to economic difficulties of sesquiterpene production via extraction from plants or chemical synthesis there is interest in developing alternative and cost efficient bioprocesses. The hydrocarbon α-santalene is a precursor of sesquiterpenes with relevant commercial applications. Here, we construct an efficient Saccharomyces cerevisiae cell factory for α-santalene production. Results A multistep metabolic engineering strategy targeted to increase precursor and cofactor supply was employed to manipulate the yeast metabolic network in order to redirect carbon toward the desired product. To do so, genetic modifications were introduced acting to optimize the farnesyl diphosphate branch point, modulate the mevalonate pathway, modify the ammonium assimilation pathway and enhance the activity of a transcriptional activator. The approach employed resulted in an overall α-santalene yield of a 0.0052 Cmmol (Cmmol glucose)-1 corresponding to a 4-fold improvement over the reference strain. This strategy, combined with a specifically developed continuous fermentation process, led to a final α-santalene productivity of 0.036 Cmmol (g biomass)-1 h-1. Conclusions The results reported in this work illustrate how the combination of a metabolic engineering strategy with fermentation technology optimization can be used to obtain significant amounts of the high-value sesquiterpene α-santalene. This represents a starting point toward the construction of a yeast “sesquiterpene factory” and for the development of an economically viable bio-based process that has the potential to replace the current production methods. PMID:22938570

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Steven C.; Artier, Juliana; Miller, Neil T.

    Genetic engineering of photosynthetic organisms typically redirects native metabolism towards desirable products, which thereby represent new metabolic sinks. There is limited information on how these modifications impact the evolved mechanisms of photosynthetic energy metabolism and cellular growth. Two engineered strains of Synechocystis sp. PCC 6803 with altered carbon sink capacity were assayed for their photosynthetic and CO 2 concentrating mechanism properties in conditions of high and low inorganic carbon (Ci) availability. In the ΔglgC mutant, glycogen cannot be synthesized and a carbon sink pathway has been effectively removed. The JU547 strain has been engineered by integration of the Pseudomonas syringaemore » ethylene forming enzyme and provides a new sink. When cultured under high carbon conditions, ΔglgC displayed diminished photochemical efficiency, a more reduced NADPH pool, delayed initiation of the Calvin-Benson-Bassham cycle, and impairment of linear and cyclic electron flows. It also exhibited a large decrease in photochemical quenching indicative of the accumulation of Q A-, normally associated with a reduced PQ pool, but appears instead to be the result of an undefined dissipative mechanism to spill excess energy. In the case of carbon sink integration, JU547 displayed slightly more oxidized PQ and NADPH pools and increased rates of cyclic electron flow and an enhanced demand for inorganic carbon as suggested by increase in the expression of the bicarbonate transporter, SbtA. Overall, the results highlight the importance of the native regulatory network of autotrophic metabolism in governing photosynthetic performance and provide cogent examples of both predicable and difficult to predict phenotypic consequences upon installation of new pathways in autotrophs.« less

  7. Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel.

    PubMed

    Blatti, Jillian L; Michaud, Jennifer; Burkart, Michael D

    2013-06-01

    Microalgae are a promising feedstock for biodiesel and other liquid fuels due to their fast growth rate, high lipid yields, and ability to grow in a broad range of environments. However, many microalgae achieve maximal lipid yields only under stress conditions hindering growth and providing compositions not ideal for biofuel applications. Metabolic engineering of algal fatty acid biosynthesis promises to create strains capable of economically producing fungible and sustainable biofuels. The algal fatty acid biosynthetic pathway has been deduced by homology to bacterial and plant systems, and much of our understanding is gleaned from basic studies in these systems. However, successful engineering of lipid metabolism in algae will necessitate a thorough characterization of the algal fatty acid synthase (FAS) including protein-protein interactions and regulation. This review describes recent efforts to engineer fatty acid biosynthesis toward optimizing microalgae as a biodiesel feedstock. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Metabolic Engineering of Actinobacillus succinogenes Provides Insights into Succinic Acid Biosynthesis

    PubMed Central

    Guarnieri, Michael T.; Chou, Yat-Chen; Salvachúa, Davinia; Mohagheghi, Ali; St. John, Peter C.; Peterson, Darren J.; Bomble, Yannick J.

    2017-01-01

    ABSTRACT Actinobacillus succinogenes, a Gram-negative facultative anaerobe, exhibits the native capacity to convert pentose and hexose sugars to succinic acid (SA) with high yield as a tricarboxylic acid (TCA) cycle intermediate. In addition, A. succinogenes is capnophilic, incorporating CO2 into SA, making this organism an ideal candidate host for conversion of lignocellulosic sugars and CO2 to an emerging commodity bioproduct sourced from renewable feedstocks. In this work, we report the development of facile metabolic engineering capabilities in A. succinogenes, enabling examination of SA flux determinants via knockout of the primary competing pathways—namely, acetate and formate production—and overexpression of the key enzymes in the reductive branch of the TCA cycle leading to SA. Batch fermentation experiments with the wild-type and engineered strains using pentose-rich sugar streams demonstrate that the overexpression of the SA biosynthetic machinery (in particular, the enzyme malate dehydrogenase) enhances flux to SA. Additionally, removal of competitive carbon pathways leads to higher-purity SA but also triggers the generation of by-products not previously described from this organism (e.g., lactic acid). The resultant engineered strains also lend insight into energetic and redox balance and elucidate mechanisms governing organic acid biosynthesis in this important natural SA-producing microbe. IMPORTANCE Succinic acid production from lignocellulosic residues is a potential route for enhancing the economic feasibility of modern biorefineries. Here, we employ facile genetic tools to systematically manipulate competing acid production pathways and overexpress the succinic acid-producing machinery in Actinobacillus succinogenes. Furthermore, the resulting strains are evaluated via fermentation on relevant pentose-rich sugar streams representative of those from corn stover. Overall, this work demonstrates genetic modifications that can lead to succinic acid production improvements and identifies key flux determinants and new bottlenecks and energetic needs when removing by-product pathways in A. succinogenes metabolism. PMID:28625987

  9. Metabolic Engineering of Actinobacillus succinogenes Provides Insights into Succinic Acid Biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarnieri, Michael T.; Chou, Yat -Chen; Salvachua, Davinia Rodriquez

    Actinobacillus succinogenes, a Gram-negative facultative anaerobe, exhibits the native capacity to convert pentose and hexose sugars to succinic acid (SA) with high yield as a tricarboxylic acid (TCA) cycle intermediate. In addition, A. succinogenes is capnophilic, incorporating CO 2 into SA, making this organism an ideal candidate host for conversion of lignocellulosic sugars and CO 2 to an emerging commodity bioproduct sourced from renewable feedstocks. In this work, we report the development of facile metabolic engineering capabilities in A. succinogenes, enabling examination of SA flux determinants via knockout of the primary competing pathways—namely, acetate and formate production—and overexpression of themore » key enzymes in the reductive branch of the TCA cycle leading to SA. Batch fermentation experiments with the wild-type and engineered strains using pentose-rich sugar streams demonstrate that the overexpression of the SA biosynthetic machinery (in particular, the enzyme malate dehydrogenase) enhances flux to SA. Additionally, removal of competitive carbon pathways leads to higher-purity SA but also triggers the generation of by-products not previously described from this organism (e.g., lactic acid). The resultant engineered strains also lend insight into energetic and redox balance and elucidate mechanisms governing organic acid biosynthesis in this important natural SA-producing microbe. IMPORTANCE Succinic acid production from lignocellulosic residues is a potential route for enhancing the economic feasibility of modern biorefineries. Here, we employ facile genetic tools to systematically manipulate competing acid production pathways and overexpress the succinic acid-producing machinery in Actinobacillus succinogenes. Furthermore, the resulting strains are evaluated via fermentation on relevant pentose-rich sugar streams representative of those from corn stover. Altogether, this work demonstrates genetic modifications that can lead to succinic acid production improvements and identifies key flux determinants and new bottlenecks and energetic needs when removing by-product pathways in A. succinogenes metabolism.« less

  10. Metabolic Engineering of Actinobacillus succinogenes Provides Insights into Succinic Acid Biosynthesis

    DOE PAGES

    Guarnieri, Michael T.; Chou, Yat -Chen; Salvachua, Davinia Rodriquez; ...

    2017-06-16

    Actinobacillus succinogenes, a Gram-negative facultative anaerobe, exhibits the native capacity to convert pentose and hexose sugars to succinic acid (SA) with high yield as a tricarboxylic acid (TCA) cycle intermediate. In addition, A. succinogenes is capnophilic, incorporating CO 2 into SA, making this organism an ideal candidate host for conversion of lignocellulosic sugars and CO 2 to an emerging commodity bioproduct sourced from renewable feedstocks. In this work, we report the development of facile metabolic engineering capabilities in A. succinogenes, enabling examination of SA flux determinants via knockout of the primary competing pathways—namely, acetate and formate production—and overexpression of themore » key enzymes in the reductive branch of the TCA cycle leading to SA. Batch fermentation experiments with the wild-type and engineered strains using pentose-rich sugar streams demonstrate that the overexpression of the SA biosynthetic machinery (in particular, the enzyme malate dehydrogenase) enhances flux to SA. Additionally, removal of competitive carbon pathways leads to higher-purity SA but also triggers the generation of by-products not previously described from this organism (e.g., lactic acid). The resultant engineered strains also lend insight into energetic and redox balance and elucidate mechanisms governing organic acid biosynthesis in this important natural SA-producing microbe. IMPORTANCE Succinic acid production from lignocellulosic residues is a potential route for enhancing the economic feasibility of modern biorefineries. Here, we employ facile genetic tools to systematically manipulate competing acid production pathways and overexpress the succinic acid-producing machinery in Actinobacillus succinogenes. Furthermore, the resulting strains are evaluated via fermentation on relevant pentose-rich sugar streams representative of those from corn stover. Altogether, this work demonstrates genetic modifications that can lead to succinic acid production improvements and identifies key flux determinants and new bottlenecks and energetic needs when removing by-product pathways in A. succinogenes metabolism.« less

  11. Engineering dynamic pathway regulation using stress-response promoters.

    PubMed

    Dahl, Robert H; Zhang, Fuzhong; Alonso-Gutierrez, Jorge; Baidoo, Edward; Batth, Tanveer S; Redding-Johanson, Alyssa M; Petzold, Christopher J; Mukhopadhyay, Aindrila; Lee, Taek Soon; Adams, Paul D; Keasling, Jay D

    2013-11-01

    Heterologous pathways used in metabolic engineering may produce intermediates toxic to the cell. Dynamic control of pathway enzymes could prevent the accumulation of these metabolites, but such a strategy requires sensors, which are largely unknown, that can detect and respond to the metabolite. Here we applied whole-genome transcript arrays to identify promoters that respond to the accumulation of toxic intermediates, and then used these promoters to control accumulation of the intermediate and improve the final titers of a desired product. We apply this approach to regulate farnesyl pyrophosphate (FPP) production in the isoprenoid biosynthetic pathway in Escherichia coli. This strategy improved production of amorphadiene, the final product, by twofold over that from inducible or constitutive promoters, eliminated the need for expensive inducers, reduced acetate accumulation and improved growth. We extended this approach to another toxic intermediate to demonstrate the broad utility of identifying novel sensor-regulator systems for dynamic regulation.

  12. Metabolic engineering of yeast for lignocellulosic biofuel production.

    PubMed

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Constraint-Based Modeling of Carbon Fixation and the Energetics of Electron Transfer in Geobacter metallireducens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feist, AM; Nagarajan, H; Rotaru, AE

    2014-04-24

    Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically withmore » formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species. Author Summary The ability of microorganisms to exchange electrons directly with their environment has large implications for our knowledge of industrial and environmental processes. For decades, it has been known that microbes can use electrodes as electron acceptors in microbial fuel cell settings. Geobacter metallireducens has been one of the model organisms for characterizing microbe-electrode interactions as well as environmental processes such as bioremediation. Here, we significantly expand the knowledge of metabolism and energetics of this model organism by employing constraint-based metabolic modeling. Through this analysis, we build the metabolic pathways necessary for carbon fixation, a desirable property for industrial chemical production. We further discover a novel growth condition which enables the characterization of autotrophic (i.e., carbon-fixing) metabolism in Geobacter. Importantly, our systems-level modeling approach helped elucidate the key metabolic pathways and the energetic cost associated with extracellular electron transfer. This model can be applied to characterize and engineer the metabolism and electron transfer capabilities of Geobacter for biotechnological applications.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwender, Jorg; Konig, Christina; Klapperstuck, Matthias

    An attempt has been made to define the extent to which metabolic flux in central plant metabolism is reflected by changes in the transcriptome and metabolome, based on an analysis of in vitro cultured immature embryos of two oilseed rape (Brassica napus) accessions which contrast for seed lipid accumulation. Metabolic flux analysis (MFA) was used to constrain a flux balance metabolic model which included 671 biochemical and transport reactions within the central metabolism. This highly confident flux information was eventually used for comparative analysis of flux vs. transcript (metabolite). Metabolite profiling succeeded in identifying 79 intermediates within the central metabolism,more » some of which differed quantitatively between the two accessions and displayed a significant shift corresponding to flux. An RNA-Seq based transcriptome analysis revealed a large number of genes which were differentially transcribed in the two accessions, including some enzymes/proteins active in major metabolic pathways. With a few exceptions, differential activity in the major pathways (glycolysis, TCA cycle, amino acid, and fatty acid synthesis) was not reflected in contrasting abundances of the relevant transcripts. The conclusion was that transcript abundance on its own cannot be used to infer metabolic activity/fluxes in central plant metabolism. Lastly, this limitation needs to be borne in mind in evaluating transcriptome data and designing metabolic engineering experiments.« less

  15. Quantitative petri net model of gene regulated metabolic networks in the cell.

    PubMed

    Chen, Ming; Hofestädt, Ralf

    2011-01-01

    A method to exploit hybrid Petri nets (HPN) for quantitatively modeling and simulating gene regulated metabolic networks is demonstrated. A global kinetic modeling strategy and Petri net modeling algorithm are applied to perform the bioprocess functioning and model analysis. With the model, the interrelations between pathway analysis and metabolic control mechanism are outlined. Diagrammatical results of the dynamics of metabolites are simulated and observed by implementing a HPN tool, Visual Object Net ++. An explanation of the observed behavior of the urea cycle is proposed to indicate possibilities for metabolic engineering and medical care. Finally, the perspective of Petri nets on modeling and simulation of metabolic networks is discussed.

  16. Isoprenoid-Based Biofuels: Homologous Expression and Heterologous Expression in Prokaryotes.

    PubMed

    Phulara, Suresh Chandra; Chaturvedi, Preeti; Gupta, Pratima

    2016-10-01

    Enthusiasm for mining advanced biofuels from microbial hosts has increased remarkably in recent years. Isoprenoids are one of the highly diverse groups of secondary metabolites and are foreseen as an alternative to petroleum-based fuels. Most of the prokaryotes synthesize their isoprenoid backbone via the deoxyxylulose-5-phosphate pathway from glyceraldehyde-3-phosphate and pyruvate, whereas eukaryotes synthesize isoprenoids via the mevalonate pathway from acetyl coenzyme A (acetyl-CoA). Microorganisms do not accumulate isoprenoids in large quantities naturally, which restricts their application for fuel purposes. Various metabolic engineering efforts have been utilized to overcome the limitations associated with their natural and nonnatural production. The introduction of heterologous pathways/genes and overexpression of endogenous/homologous genes have shown a remarkable increase in isoprenoid yield and substrate utilization in microbial hosts. Such modifications in the hosts' genomes have enabled researchers to develop commercially competent microbial strains for isoprenoid-based biofuel production utilizing a vast array of substrates. The present minireview briefly discusses the recent advancement in metabolic engineering efforts in prokaryotic hosts for the production of isoprenoid-based biofuels, with an emphasis on endogenous, homologous, and heterologous expression strategies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Isoprenoid-Based Biofuels: Homologous Expression and Heterologous Expression in Prokaryotes

    PubMed Central

    Phulara, Suresh Chandra; Chaturvedi, Preeti

    2016-01-01

    Enthusiasm for mining advanced biofuels from microbial hosts has increased remarkably in recent years. Isoprenoids are one of the highly diverse groups of secondary metabolites and are foreseen as an alternative to petroleum-based fuels. Most of the prokaryotes synthesize their isoprenoid backbone via the deoxyxylulose-5-phosphate pathway from glyceraldehyde-3-phosphate and pyruvate, whereas eukaryotes synthesize isoprenoids via the mevalonate pathway from acetyl coenzyme A (acetyl-CoA). Microorganisms do not accumulate isoprenoids in large quantities naturally, which restricts their application for fuel purposes. Various metabolic engineering efforts have been utilized to overcome the limitations associated with their natural and nonnatural production. The introduction of heterologous pathways/genes and overexpression of endogenous/homologous genes have shown a remarkable increase in isoprenoid yield and substrate utilization in microbial hosts. Such modifications in the hosts' genomes have enabled researchers to develop commercially competent microbial strains for isoprenoid-based biofuel production utilizing a vast array of substrates. The present minireview briefly discusses the recent advancement in metabolic engineering efforts in prokaryotic hosts for the production of isoprenoid-based biofuels, with an emphasis on endogenous, homologous, and heterologous expression strategies. PMID:27422837

  18. Metabolic engineering of microorganisms for the synthesis of plant natural products.

    PubMed

    Marienhagen, Jan; Bott, Michael

    2013-01-20

    Of more than 200,000 plant natural products known to date, many demonstrate important pharmacological activities or are of biotechnological significance. However, isolation from natural sources is usually limited by low abundance and environmental, seasonal as well as regional variation, whereas total chemical synthesis is typically commercially unfeasible considering the complex structures of most plant natural products. With advances in DNA sequencing and recombinant DNA technology many of the biosynthetic pathways responsible for the production of these valuable compounds have been elucidated, offering the opportunity of a functional integration of biosynthetic pathways in suitable microorganisms. This approach offers promise to provide sufficient quantities of the desired plant natural products from inexpensive renewable resources. This review covers recent advancements in the metabolic engineering of microorganisms for the production of plant natural products such as isoprenoids, phenylpropanoids and alkaloids, and highlights general approaches and strategies to gain access to the rich biochemical diversity of plants by employing the biosynthetic power of microorganisms. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Genome Engineering of the 2,3-Butanediol Biosynthetic Pathway for Tight Regulation in Cyanobacteria.

    PubMed

    Nozzi, Nicole E; Atsumi, Shota

    2015-11-20

    Cyanobacteria have gained popularity among the metabolic engineering community as a tractable photosynthetic host for renewable chemical production. However, though a number of successfully engineered production systems have been reported, long-term genetic stability remains an issue for cyanobacterial systems. The genetic engineering toolbox for cyanobacteria is largely lacking inducible systems for expression control. The characterization of tight regulation systems for use in cyanobacteria may help to alleviate this problem. In this work we explore the function of the IPTG inducible promoter P(L)lacO1 in the model cyanobacterium Synechococcus elongatus PCC 7942 as well as the effect of gene order within an operon on pathway expression. According to our experiments, P(L)lacO1 functions well as an inducible promoter in S. elongatus. Additionally, we found that gene order within an operon can strongly influence control of expression of each gene.

  20. The aromatic amino acids biosynthetic pathway: A core platform for products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lievense, J.C.; Frost, J.W.

    The aromatic amino acids biosynthetic pathway is viewed conventionally and primarily as the source of the amino acids L-tyrosine, L-phenylalanine. The authors have recognized the expanded role of the pathway as the major source of aromatic raw materials on earth. With the development of metabolic engineering approaches, it is now possible to biosynthesize a wide variety of aromatic compounds from inexpensive, clean, abundant, renewable sugars using fermentation methods. Examples of already and soon-to-be commercialized biosynthesis of such compounds are described. The long-term prospects are also assessed.

  1. Reassessing Escherichia coli as a cell factory for biofuel production.

    PubMed

    Wang, Chonglong; Pfleger, Brian F; Kim, Seon-Won

    2017-06-01

    Via metabolic engineering, industrial microorganisms have the potential to convert renewable substrates into a wide range of biofuels that can address energy security and environmental challenges associated with current fossil fuels. The user-friendly bacterium, Escherichia coli, remains one of the most frequently used hosts for demonstrating production of biofuel candidates including alcohol-, fatty acid- and terpenoid-based biofuels. In this review, we summarize the metabolic pathways for synthesis of these biofuels and assess enabling technologies that assist in regulating biofuel synthesis pathways and rapidly assembling novel E. coli strains. These advances maintain E. coli's position as a prominent host for developing cell factories for biofuel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cofactor engineering to regulate NAD+/NADH ratio with its application to phytosterols biotransformation.

    PubMed

    Su, Liqiu; Shen, Yanbing; Zhang, Wenkai; Gao, Tian; Shang, Zhihua; Wang, Min

    2017-10-30

    Cofactor engineering is involved in the modification of enzymes related to nicotinamide adenine dinucleotides (NADH and NAD + ) metabolism, which results in a significantly altered spectrum of metabolic products. Cofactor engineering plays an important role in metabolic engineering but is rarely reported in the sterols biotransformation process owing to its use of multi-catabolic enzymes, which promote multiple consecutive reactions. Androst-4-ene-3, 17-dione (AD) and androst-1, 4-diene-3, 17-dione (ADD) are important steroid medicine intermediates that are obtained via the nucleus oxidation and the side chain degradation of phytosterols by Mycobacterium. Given that the biotransformation from phytosterols to AD (D) is supposed to be a NAD + -dependent process, this work utilized cofactor engineering in Mycobacterium neoaurum and investigated the effect on cofactor and phytosterols metabolism. Through the addition of the coenzyme precursor of nicotinic acid in the phytosterols fermentation system, the intracellular NAD + /NADH ratio and the AD (D) production of M. neoaurum TCCC 11978 (MNR M3) were higher than in the control. Moreover, the NADH: flavin oxidoreductase was identified and was supposed to exert a positive effect on cofactor regulation and phytosterols metabolism pathways via comparative proteomic profiling of MNR cultured with and without phytosterols. In addition, the NADH: flavin oxidoreductase and a water-forming NADH oxidase from Lactobacillus brevis, were successfully overexpressed and heterologously expressed in MNR M3 to improve the intracellular ratio of NAD + /NADH. After 96 h of cultivation, the expression of these two enzymes in MNR M3 resulted in the decrease in intracellular NADH level (by 51 and 67%, respectively) and the increase in NAD + /NADH ratio (by 113 and 192%, respectively). Phytosterols bioconversion revealed that the conversion ratio of engineered stains was ultimately improved by 58 and 147%, respectively. The highest AD (D) conversion ratio by MNR M3N2 was 94% in the conversion system with soybean oil as reaction media to promote the solubility of phytosterols. The ratio of NAD + /NADH is an important factor for the transformation of phytosterols. Expression of NADH: flavin oxidoreductase and water-forming NADH oxidase in MNR improved AD (D) production. Besides the manipulation of key enzyme activities, which included in phytosterols degradation pathways, maintenance the balance of redox also played an important role in promoting steroid biotransformation. The recombinant MNR strain may be useful in industrial production.

  3. [Advances in metabolic engineering for the microbial production of naturally occurring terpenes-limonene and bisabolene: a mini review].

    PubMed

    Pang, Yaru; Hu, Zhihui; Xiao, Dongguang; Yu, Aiqun

    2018-01-25

    Limonene (C₁₀H₁₆) and bisabolene (C₁₅H₂₄) are both naturally occurring terpenes in plants. Depending on the number of C₅ units, limonene and bisabolene are recognized as representative monoterpenes and sesquiterpenes, respectively. Limonene and bisabolene are important pharmaceutical and nutraceutical products used in the prevention and treatment of cancer and many other diseases. In addition, they can be used as starting materials to produce a range of commercially valuable products, such as pharmaceuticals, nutraceuticals, cosmetics, and biofuels. The low abundance or yield of limonene and bisabolene in plants renders their isolation from plant sources non-economically viable. Isolation of limonene and bisabolene from plants also suffers from low efficiency and often requires harsh reaction conditions, prolonged reaction times, and expensive equipment cost. Recently, the rapid developments in metabolic engineering of microbes provide a promising alternative route for producing these plant natural products. Therefore, producing limonene and bisabolene by engineering microbial cells into microbial factories is becoming an attractive alternative approach that can overcome the bottlenecks, making it more sustainable, environmentally friendly and economically competitive. Here, we reviewed the status of metabolic engineering of microbes that produce limonene and bisabolene including microbial hosts, key enzymes, metabolic pathways and engineering of limonene/bisabolene biosynthesis. Furthermore, key challenges and future perspectives were discussed.

  4. Metabolic engineering of E.coli for the production of a precursor to artemisinin, an anti-malarial drug [Chapter 25 in Manual of Industrial Microbiology and Biotechnology, 3rd edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petzold, Christopher; Keasling, Jay

    This document is Chapter 25 in the Manual of Industrial Microbiology and Biotechnology, 3rd edition. Topics covered include: Incorporation of Amorpha-4,11-Diene Biosynthetic Pathway into E. coli; Amorpha-4,11-Diene Pathway Optimization; "-Omics" Analyses for Increased Amorpha-4,11-Diene Production; Biosynthetic Oxidation of Amorpha-4,11-Diene.

  5. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    PubMed Central

    Basen, Mirko; Schut, Gerrit J.; Nguyen, Diep M.; Lipscomb, Gina L.; Benn, Robert A.; Prybol, Cameron J.; Vaccaro, Brian J.; Poole, Farris L.; Kelly, Robert M.; Adams, Michael W. W.

    2014-01-01

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 °C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. By heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways. PMID:25368184

  6. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basen, M; Schut, GJ; Nguyen, DM

    2014-12-09

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 degrees C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. Bymore » heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways.« less

  7. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae.

    PubMed

    Lv, Xiaomei; Wang, Fan; Zhou, Pingping; Ye, Lidan; Xie, Wenping; Xu, Haoming; Yu, Hongwei

    2016-09-21

    Microbial production of isoprene from renewable feedstock is a promising alternative to traditional petroleum-based processes. Currently, efforts to improve isoprenoid production in Saccharomyces cerevisiae mainly focus on cytoplasmic engineering, whereas comprehensive engineering of multiple subcellular compartments is rarely reported. Here, we propose dual metabolic engineering of cytoplasmic and mitochondrial acetyl-CoA utilization to boost isoprene synthesis in S. cerevisiae. This strategy increases isoprene production by 2.1-fold and 1.6-fold relative to the recombinant strains with solely mitochondrial or cytoplasmic engineering, respectively. By combining a modified reiterative recombination system for rapid pathway assembly, a two-phase culture process for dynamic metabolic regulation, and aerobic fed-batch fermentation for sufficient supply of acetyl-coA and carbon, we achieve 2527, mg l(-1) of isoprene, which is the highest ever reported in engineered eukaryotes. We propose this strategy as an efficient approach to enhancing isoprene production in yeast, which might open new possibilities for bioproduction of other value-added chemicals.

  8. Bio-crude transcriptomics: gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa).

    PubMed

    Molnár, István; Lopez, David; Wisecaver, Jennifer H; Devarenne, Timothy P; Weiss, Taylor L; Pellegrini, Matteo; Hackett, Jeremiah D

    2012-10-30

    Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. Biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy. A de novo assembly of 1,334,609 next-generation pyrosequencing reads form the Showa strain of the B race of B. braunii yielded a transcriptomic database of 46,422 contigs with an average length of 756 bp. Contigs were annotated with pathway, ontology, and protein domain identifiers. Manual curation allowed the reconstruction of pathways that produce terpenoid liquid hydrocarbons from primary metabolites, and pathways that divert photosynthetic carbon into tetraterpenoid carotenoids, diterpenoids, and the prenyl chains of meroterpenoid quinones and chlorophyll. Inventories of machine-assembled contigs are also presented for reconstructed pathways for the biosynthesis of competing storage compounds including triacylglycerol and starch. Regeneration of S-adenosylmethionine, and the extracellular localization of the hydrocarbon oils by active transport and possibly autophagy are also investigated. The construction of an annotated transcriptomic database, publicly available in a web-based data depository and annotation tool, provides a foundation for metabolic pathway and network reconstruction, and facilitates further omics studies in the absence of a genome sequence for the Showa strain of B. braunii, race B. Further, the transcriptome database empowers future biosynthetic engineering approaches for strain improvement and the transfer of desirable traits to heterologous hosts.

  9. Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of N-Acetylglucosamine in Bacillus subtilis.

    PubMed

    Gu, Yang; Deng, Jieying; Liu, Yanfeng; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian; Liu, Long

    2017-10-01

    N-acetylglucosamine (GlcNAc) is an important amino sugar extensively used in the healthcare field. In a previous study, the recombinant Bacillus subtilis strain BSGN6-P xylA -glmS-pP43NMK-GNA1 (BN0-GNA1) had been constructed for microbial production of GlcNAc by pathway design and modular optimization. Here, the production of GlcNAc is further improved by rewiring both the glucose transportation and central metabolic pathways. First, the phosphotransferase system (PTS) is blocked by deletion of three genes, yyzE (encoding the PTS system transporter subunit IIA YyzE), ypqE (encoding the PTS system transporter subunit IIA YpqE), and ptsG (encoding the PTS system glucose-specific EIICBA component), resulting in 47.6% increase in the GlcNAc titer (from 6.5 ± 0.25 to 9.6 ± 0.16 g L -1 ) in shake flasks. Then, reinforcement of the expression of the glcP and glcK genes and optimization of glucose facilitator proteins are performed to promote glucose import and phosphorylation. Next, the competitive pathways for GlcNAc synthesis, namely glycolysis, peptidoglycan synthesis pathway, pentose phosphate pathway, and tricarboxylic acid cycle, are repressed by initiation codon-optimization strategies, and the GlcNAc titer in shake flasks is improved from 10.8 ± 0.25 to 13.2 ± 0.31 g L -1 . Finally, the GlcNAc titer is further increased to 42.1 ± 1.1 g L -1 in a 3-L fed-batch bioreactor, which is 1.72-fold that of the original strain, BN0-GNA1. This study shows considerably enhanced GlcNAc production, and the metabolic engineering strategy described here will be useful for engineering other prokaryotic microorganisms for the production of GlcNAc and related molecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bio-crude transcriptomics: Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)*

    PubMed Central

    2012-01-01

    Background Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. Biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy. Results A de novo assembly of 1,334,609 next-generation pyrosequencing reads form the Showa strain of the B race of B. braunii yielded a transcriptomic database of 46,422 contigs with an average length of 756 bp. Contigs were annotated with pathway, ontology, and protein domain identifiers. Manual curation allowed the reconstruction of pathways that produce terpenoid liquid hydrocarbons from primary metabolites, and pathways that divert photosynthetic carbon into tetraterpenoid carotenoids, diterpenoids, and the prenyl chains of meroterpenoid quinones and chlorophyll. Inventories of machine-assembled contigs are also presented for reconstructed pathways for the biosynthesis of competing storage compounds including triacylglycerol and starch. Regeneration of S-adenosylmethionine, and the extracellular localization of the hydrocarbon oils by active transport and possibly autophagy are also investigated. Conclusions The construction of an annotated transcriptomic database, publicly available in a web-based data depository and annotation tool, provides a foundation for metabolic pathway and network reconstruction, and facilitates further omics studies in the absence of a genome sequence for the Showa strain of B. braunii, race B. Further, the transcriptome database empowers future biosynthetic engineering approaches for strain improvement and the transfer of desirable traits to heterologous hosts. PMID:23110428

  11. Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis

    DOE PAGES

    Wang, Jack P.; Matthews, Megan L.; Williams, Cranos M.; ...

    2018-04-20

    A multi-omics quantitative integrative analysis of lignin biosynthesis can advance the strategic engineering of wood for timber, pulp, and biofuels. Lignin is polymerized from three monomers (monolignols) produced by a grid-like pathway. The pathway in wood formation of Populus trichocarpa has at least 21 genes, encoding enzymes that mediate 37 reactions on 24 metabolites, leading to lignin and affecting wood properties. We perturb these 21 pathway genes and integrate transcriptomic, proteomic, fluxomic and phenomic data from 221 lines selected from ~2000 transgenics (6-month-old). The integrative analysis estimates how changing expression of pathway gene or gene combination affects protein abundance, metabolic-flux,more » metabolite concentrations, and 25 wood traits, including lignin, tree-growth, density, strength, and saccharification. The analysis then predicts improvements in any of these 25 traits individually or in combinations, through engineering expression of specific monolignol genes. The analysis may lead to greater understanding of other pathways for improved growth and adaptation.« less

  12. Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jack P.; Matthews, Megan L.; Williams, Cranos M.

    A multi-omics quantitative integrative analysis of lignin biosynthesis can advance the strategic engineering of wood for timber, pulp, and biofuels. Lignin is polymerized from three monomers (monolignols) produced by a grid-like pathway. The pathway in wood formation of Populus trichocarpa has at least 21 genes, encoding enzymes that mediate 37 reactions on 24 metabolites, leading to lignin and affecting wood properties. We perturb these 21 pathway genes and integrate transcriptomic, proteomic, fluxomic and phenomic data from 221 lines selected from ~2000 transgenics (6-month-old). The integrative analysis estimates how changing expression of pathway gene or gene combination affects protein abundance, metabolic-flux,more » metabolite concentrations, and 25 wood traits, including lignin, tree-growth, density, strength, and saccharification. The analysis then predicts improvements in any of these 25 traits individually or in combinations, through engineering expression of specific monolignol genes. The analysis may lead to greater understanding of other pathways for improved growth and adaptation.« less

  13. Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis.

    PubMed

    Wang, Jack P; Matthews, Megan L; Williams, Cranos M; Shi, Rui; Yang, Chenmin; Tunlaya-Anukit, Sermsawat; Chen, Hsi-Chuan; Li, Quanzi; Liu, Jie; Lin, Chien-Yuan; Naik, Punith; Sun, Ying-Hsuan; Loziuk, Philip L; Yeh, Ting-Feng; Kim, Hoon; Gjersing, Erica; Shollenberger, Todd; Shuford, Christopher M; Song, Jina; Miller, Zachary; Huang, Yung-Yun; Edmunds, Charles W; Liu, Baoguang; Sun, Yi; Lin, Ying-Chung Jimmy; Li, Wei; Chen, Hao; Peszlen, Ilona; Ducoste, Joel J; Ralph, John; Chang, Hou-Min; Muddiman, David C; Davis, Mark F; Smith, Chris; Isik, Fikret; Sederoff, Ronald; Chiang, Vincent L

    2018-04-20

    A multi-omics quantitative integrative analysis of lignin biosynthesis can advance the strategic engineering of wood for timber, pulp, and biofuels. Lignin is polymerized from three monomers (monolignols) produced by a grid-like pathway. The pathway in wood formation of Populus trichocarpa has at least 21 genes, encoding enzymes that mediate 37 reactions on 24 metabolites, leading to lignin and affecting wood properties. We perturb these 21 pathway genes and integrate transcriptomic, proteomic, fluxomic and phenomic data from 221 lines selected from ~2000 transgenics (6-month-old). The integrative analysis estimates how changing expression of pathway gene or gene combination affects protein abundance, metabolic-flux, metabolite concentrations, and 25 wood traits, including lignin, tree-growth, density, strength, and saccharification. The analysis then predicts improvements in any of these 25 traits individually or in combinations, through engineering expression of specific monolignol genes. The analysis may lead to greater understanding of other pathways for improved growth and adaptation.

  14. Engineering of N-acetylglucosamine metabolism for improved antibiotic production in Streptomyces coelicolor A3(2) and an unsuspected role of NagA in glucosamine metabolism.

    PubMed

    Świątek, Magdalena A; Urem, Mia; Tenconi, Elodie; Rigali, Sébastien; van Wezel, Gilles P

    2012-01-01

    N-acetylglucosamine (GlcNAc), the monomer of chitin and constituent of bacterial peptidoglycan, is a preferred carbon and nitrogen source for streptomycetes. Recent studies have revealed new functions of GlcNAc in nutrient signaling of bacteria. Exposure to GlcNAc activates development and antibiotic production of Streptomyces coelicolor under poor growth conditions (famine) and blocks these processes under rich conditions (feast). Glucosamine-6-phosphate (GlcN-6P) is a key molecule in this signaling pathway and acts as an allosteric effector of a pleiotropic transcriptional repressor DasR, the regulon of which includes the GlcNAc metabolic enzymes N-actetylglucosamine-6-phosphate (GlcNAc-6P) deacetylase (NagA) and GlcN-6P deaminase (NagB). Intracellular accumulation of GlcNAc-6P and GlcN-6P enhanced production of the pigmented antibiotic actinorhodin. When the nagB mutant was challenged with GlcNAc or GlcN, spontaneous second-site mutations that relieved the toxicity of the accumulated sugar phosphates were obtained. Surprisingly, deletion of nagA also relieved toxicity of GlcN, indicating novel linkage between the GlcN and GlcNAc utilization pathways. The strongly enhanced antibiotic production observed for many suppressor mutants shows the potential of the modulation of GlcNAc and GlcN metabolism as a metabolic engineering tool toward the improvement of antibiotic productivity or even the discovery of novel compounds.

  15. Interaction of Engineered Nanoparticles with the Agri-environment.

    PubMed

    Pradhan, Saheli; Mailapalli, Damodhara Rao

    2017-09-27

    Nanoparticles with their unique surface properties can modulate the physiological, biochemical, and physicochemical pathways, such as photosynthesis, respiration, nitrogen metabolism, and solute transport. In this context, researchers have developed a wide range of engineered nanomaterials (ENMs) for the improvement of growth and productivity by modulating the metabolic pathways in plants. This class of tailor-made materials can potentially lead to the development of a new group of agrochemical nanofertilizers. However, there are reports that engineered nanomaterials could impart phytotoxicity to edible and medicinal plants. On the contrary, there is a series of ENMs that might be detrimental when applied directly and/or indirectly to the plants. These particles can sometimes readily aggregate and dissolute in the immediate vicinity; the free ions released from the nanomatrix can cause serious tissue injury and membrane dysfunction to the plant cell through oxidative stress. On that note, thorough studies on uptake, translocation, internalization, and nutritional quality assessment must be carried out to understand ENM-plant interactions. This review critically discusses the possible beneficial or adverse aftereffect of nanofertilizers in the immediate environment to interrelate the impacts of ENMs on the crop health and food security management.

  16. Opportunities and challenges for the sustainable production of structurally complex diterpenoids in recombinant microbial systems.

    PubMed

    Kemper, Katarina; Hirte, Max; Reinbold, Markus; Fuchs, Monika; Brück, Thomas

    2017-01-01

    With over 50.000 identified compounds terpenes are the largest and most structurally diverse group of natural products. They are ubiquitous in bacteria, plants, animals and fungi, conducting several biological functions such as cell wall components or defense mechanisms. Industrial applications entail among others pharmaceuticals, food additives, vitamins, fragrances, fuels and fuel additives. Central building blocks of all terpenes are the isoprenoid compounds isopentenyl diphosphate and dimethylallyl diphosphate. Bacteria like Escherichia coli harbor a native metabolic pathway for these isoprenoids that is quite amenable for genetic engineering. Together with recombinant terpene biosynthesis modules, they are very suitable hosts for heterologous production of high value terpenes. Yet, in contrast to the number of extracted and characterized terpenes, little is known about the specific biosynthetic enzymes that are involved especially in the formation of highly functionalized compounds. Novel approaches discussed in this review include metabolic engineering as well as site-directed mutagenesis to expand the natural terpene landscape. Focusing mainly on the validation of successful integration of engineered biosynthetic pathways into optimized terpene producing Escherichia coli , this review shall give an insight in recent progresses regarding manipulation of mostly diterpene synthases.

  17. Saccharomyces cerevisiae as a tool for mining, studying and engineering fungal polyketide synthases

    PubMed Central

    Bond, Carly; Tang, Yi; Li, Li

    2016-01-01

    Small molecule secondary metabolites produced by organisms such as plants, bacteria, and fungi form a fascinating and important group of natural products, many of which have shown promise as medicines. Fungi in particular have been important sources of natural product polyketide pharmaceuticals. While the structural complexity of these polyketides makes them interesting and useful bioactive compounds, these same features also make them difficult and expensive to prepare and scale-up using synthetic methods. Currently, nearly all commercial polyketides are prepared through fermentation or semi-synthesis. However, elucidation and engineering of polyketide pathways in the native filamentous fungi hosts are often hampered due to a lack of established genetic tools and of understanding of the regulation of fungal secondary metabolisms. Saccharomyces cerevisiae has many advantages beneficial to the study and development of polyketide pathways from filamentous fungi due to its extensive genetic toolbox and well-studied metabolism. This review highlights the benefits S. cerevisiae provides as a tool for mining, studying, and engineering fungal polyketide synthases (PKSs), as well as notable insights this versatile tool has given us into the mechanisms and products of fungal PKSs. PMID:26850128

  18. Saccharomyces cerevisiae as a tool for mining, studying and engineering fungal polyketide synthases.

    PubMed

    Bond, Carly; Tang, Yi; Li, Li

    2016-04-01

    Small molecule secondary metabolites produced by organisms such as plants, bacteria, and fungi form a fascinating and important group of natural products, many of which have shown promise as medicines. Fungi in particular have been important sources of natural product polyketide pharmaceuticals. While the structural complexity of these polyketides makes them interesting and useful bioactive compounds, these same features also make them difficult and expensive to prepare and scale-up using synthetic methods. Currently, nearly all commercial polyketides are prepared through fermentation or semi-synthesis. However, elucidation and engineering of polyketide pathways in the native filamentous fungi hosts are often hampered due to a lack of established genetic tools and of understanding of the regulation of fungal secondary metabolisms. Saccharomyces cerevisiae has many advantages beneficial to the study and development of polyketide pathways from filamentous fungi due to its extensive genetic toolbox and well-studied metabolism. This review highlights the benefits S. cerevisiae provides as a tool for mining, studying, and engineering fungal polyketide synthases (PKSs), as well as notable insights this versatile tool has given us into the mechanisms and products of fungal PKSs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Metabolic engineering of the shikimate pathway

    DOEpatents

    Juminaga, Darmawi; Keasling, Jay D.

    2017-01-10

    The present disclosure relates to engineered microorganisms that produce amino acids and amino acid intermediates. In particular, the disclosure relates to recombinant nucleic acids encoding operons that increase production of aromatic amino acids and the aromatic amino acid intermediate shikimate; microorganisms with increased production of aromatic amino acids and the aromatic amino acid intermediate shikimate; and methods related to the production of aromatic amino acids, the aromatic amino acid intermediate shikimate, and commodity chemicals derived therefrom.

  20. In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories

    PubMed Central

    2013-01-01

    Background Heterologous microbial production of rare plant terpenoids of medicinal or industrial interest is attracting more and more attention but terpenoid yields are still low. Escherichia coli and Saccharomyces cerevisiae are the most widely used heterologous hosts; a direct comparison of both hosts based on experimental data is difficult though. Hence, the terpenoid pathways of E. coli (via 1-deoxy-D-xylulose 5-phosphate, DXP) and S. cerevisiae (via mevalonate, MVA), the impact of the respective hosts metabolism as well as the impact of different carbon sources were compared in silico by means of elementary mode analysis. The focus was set on the yield of isopentenyl diphosphate (IPP), the general terpenoid precursor, to identify new metabolic engineering strategies for an enhanced terpenoid yield. Results Starting from the respective precursor metabolites of the terpenoid pathways (pyruvate and glyceraldehyde-3-phosphate for the DXP pathway and acetyl-CoA for the MVA pathway) and considering only carbon stoichiometry, the two terpenoid pathways are identical with respect to carbon yield. However, with glucose as substrate, the MVA pathway has a lower potential to supply terpenoids in high yields than the DXP pathway if the formation of the required precursors is taken into account, due to the carbon loss in the formation of acetyl-CoA. This maximum yield is further reduced in both hosts when the required energy and reduction equivalents are considered. Moreover, the choice of carbon source (glucose, xylose, ethanol or glycerol) has an effect on terpenoid yield with non-fermentable carbon sources being more promising. Both hosts have deficiencies in energy and redox equivalents for high yield terpenoid production leading to new overexpression strategies (heterologous enzymes/pathways) for an enhanced terpenoid yield. Finally, several knockout strategies are identified using constrained minimal cut sets enforcing a coupling of growth to a terpenoid yield which is higher than any yield published in scientific literature so far. Conclusions This study provides for the first time a comprehensive and detailed in silico comparison of the most prominent heterologous hosts E. coli and S. cerevisiae as terpenoid factories giving an overview on several promising metabolic engineering strategies paving the way for an enhanced terpenoid yield. PMID:24059635

  1. Metabolic pathway analysis and kinetic studies for production of nattokinase in Bacillus subtilis.

    PubMed

    Unrean, Pornkamol; Nguyen, Nhung H A

    2013-01-01

    We have constructed a reaction network model of Bacillus subtilis. The model was analyzed using a pathway analysis tool called elementary mode analysis (EMA). The analysis tool was used to study the network capabilities and the possible effects of altered culturing conditions on the production of a fibrinolytic enzyme, nattokinase (NK) by B. subtilis. Based on all existing metabolic pathways, the maximum theoretical yield for NK synthesis in B. subtilis under different substrates and oxygen availability was predicted and the optimal culturing condition for NK production was identified. To confirm model predictions, experiments were conducted by testing these culture conditions for their influence on NK activity. The optimal culturing conditions were then applied to batch fermentation, resulting in high NK activity. The EMA approach was also applied for engineering B. subtilis metabolism towards the most efficient pathway for NK synthesis by identifying target genes for deletion and overexpression that enable the cell to produce NK at the maximum theoretical yield. The consistency between experiments and model predictions proves the feasibility of EMA being used to rationally design culture conditions and genetic manipulations for the efficient production of desired products.

  2. Bridging the gap between fluxomics and industrial biotechnology.

    PubMed

    Feng, Xueyang; Page, Lawrence; Rubens, Jacob; Chircus, Lauren; Colletti, Peter; Pakrasi, Himadri B; Tang, Yinjie J

    2010-01-01

    Metabolic flux analysis is a vital tool used to determine the ultimate output of cellular metabolism and thus detect biotechnologically relevant bottlenecks in productivity. ¹³C-based metabolic flux analysis (¹³C-MFA) and flux balance analysis (FBA) have many potential applications in biotechnology. However, noteworthy hurdles in fluxomics study are still present. First, several technical difficulties in both ¹³C-MFA and FBA severely limit the scope of fluxomics findings and the applicability of obtained metabolic information. Second, the complexity of metabolic regulation poses a great challenge for precise prediction and analysis of metabolic networks, as there are gaps between fluxomics results and other omics studies. Third, despite identified metabolic bottlenecks or sources of host stress from product synthesis, it remains difficult to overcome inherent metabolic robustness or to efficiently import and express nonnative pathways. Fourth, product yields often decrease as the number of enzymatic steps increases. Such decrease in yield may not be caused by rate-limiting enzymes, but rather is accumulated through each enzymatic reaction. Fifth, a high-throughput fluxomics tool hasnot been developed for characterizing nonmodel microorganisms and maximizing their application in industrial biotechnology. Refining fluxomics tools and understanding these obstacles will improve our ability to engineer highly efficient metabolic pathways in microbial hosts.

  3. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae

    PubMed Central

    Oh, Eun Joong; Skerker, Jeffrey M.; Kim, Soo Rin; Wei, Na; Turner, Timothy L.; Maurer, Matthew J.; Arkin, Adam P.

    2016-01-01

    ABSTRACT Efficient microbial utilization of cellulosic sugars is essential for the economic production of biofuels and chemicals. Although the yeast Saccharomyces cerevisiae is a robust microbial platform widely used in ethanol plants using sugar cane and corn starch in large-scale operations, glucose repression is one of the significant barriers to the efficient fermentation of cellulosic sugar mixtures. A recent study demonstrated that intracellular utilization of cellobiose by engineered yeast expressing a cellobiose transporter (encoded by cdt-1) and an intracellular β-glucosidase (encoded by gh1-1) can alleviate glucose repression, resulting in the simultaneous cofermentation of cellobiose and nonglucose sugars. Here we report enhanced cellobiose fermentation by engineered yeast expressing cdt-1 and gh1-1 through laboratory evolution. When cdt-1 and gh1-1 were integrated into the genome of yeast, the single copy integrant showed a low cellobiose consumption rate. However, cellobiose fermentation rates by engineered yeast increased gradually during serial subcultures on cellobiose. Finally, an evolved strain exhibited a 15-fold-higher cellobiose fermentation rate. To identify the responsible mutations in the evolved strain, genome sequencing was performed. Interestingly, no mutations affecting cellobiose fermentation were identified, but the evolved strain contained 9 copies of cdt-1 and 23 copies of gh1-1. We also traced the copy numbers of cdt-1 and gh1-1 of mixed populations during the serial subcultures. The copy numbers of cdt-1 and gh1-1 in the cultures increased gradually with similar ratios as cellobiose fermentation rates of the cultures increased. These results suggest that the cellobiose assimilation pathway (transport and hydrolysis) might be a rate-limiting step in engineered yeast and copies of genes coding for metabolic enzymes might be amplified in yeast if there is a growth advantage. This study indicates that on-demand gene amplification might be an efficient strategy for yeast metabolic engineering. IMPORTANCE In order to enable rapid and efficient fermentation of cellulosic hydrolysates by engineered yeast, we delve into the limiting factors of cellobiose fermentation by engineered yeast expressing a cellobiose transporter (encoded by cdt-1) and an intracellular β-glucosidase (encoded by gh1-1). Through laboratory evolution, we isolated mutant strains capable of fermenting cellobiose much faster than a parental strain. Genome sequencing of the fast cellobiose-fermenting mutant reveals that there are massive amplifications of cdt-1 and gh1-1 in the yeast genome. We also found positive and quantitative relationships between the rates of cellobiose consumption and the copy numbers of cdt-1 and gh1-1 in the evolved strains. Our results suggest that the cellobiose assimilation pathway (transport and hydrolysis) might be a rate-limiting step for efficient cellobiose fermentation. We demonstrate the feasibility of optimizing not only heterologous metabolic pathways in yeast through laboratory evolution but also on-demand gene amplification in yeast, which can be broadly applicable for metabolic engineering. PMID:27084006

  4. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.

    PubMed

    Oh, Eun Joong; Skerker, Jeffrey M; Kim, Soo Rin; Wei, Na; Turner, Timothy L; Maurer, Matthew J; Arkin, Adam P; Jin, Yong-Su

    2016-06-15

    Efficient microbial utilization of cellulosic sugars is essential for the economic production of biofuels and chemicals. Although the yeast Saccharomyces cerevisiae is a robust microbial platform widely used in ethanol plants using sugar cane and corn starch in large-scale operations, glucose repression is one of the significant barriers to the efficient fermentation of cellulosic sugar mixtures. A recent study demonstrated that intracellular utilization of cellobiose by engineered yeast expressing a cellobiose transporter (encoded by cdt-1) and an intracellular β-glucosidase (encoded by gh1-1) can alleviate glucose repression, resulting in the simultaneous cofermentation of cellobiose and nonglucose sugars. Here we report enhanced cellobiose fermentation by engineered yeast expressing cdt-1 and gh1-1 through laboratory evolution. When cdt-1 and gh1-1 were integrated into the genome of yeast, the single copy integrant showed a low cellobiose consumption rate. However, cellobiose fermentation rates by engineered yeast increased gradually during serial subcultures on cellobiose. Finally, an evolved strain exhibited a 15-fold-higher cellobiose fermentation rate. To identify the responsible mutations in the evolved strain, genome sequencing was performed. Interestingly, no mutations affecting cellobiose fermentation were identified, but the evolved strain contained 9 copies of cdt-1 and 23 copies of gh1-1 We also traced the copy numbers of cdt-1 and gh1-1 of mixed populations during the serial subcultures. The copy numbers of cdt-1 and gh1-1 in the cultures increased gradually with similar ratios as cellobiose fermentation rates of the cultures increased. These results suggest that the cellobiose assimilation pathway (transport and hydrolysis) might be a rate-limiting step in engineered yeast and copies of genes coding for metabolic enzymes might be amplified in yeast if there is a growth advantage. This study indicates that on-demand gene amplification might be an efficient strategy for yeast metabolic engineering. In order to enable rapid and efficient fermentation of cellulosic hydrolysates by engineered yeast, we delve into the limiting factors of cellobiose fermentation by engineered yeast expressing a cellobiose transporter (encoded by cdt-1) and an intracellular β-glucosidase (encoded by gh1-1). Through laboratory evolution, we isolated mutant strains capable of fermenting cellobiose much faster than a parental strain. Genome sequencing of the fast cellobiose-fermenting mutant reveals that there are massive amplifications of cdt-1 and gh1-1 in the yeast genome. We also found positive and quantitative relationships between the rates of cellobiose consumption and the copy numbers of cdt-1 and gh1-1 in the evolved strains. Our results suggest that the cellobiose assimilation pathway (transport and hydrolysis) might be a rate-limiting step for efficient cellobiose fermentation. We demonstrate the feasibility of optimizing not only heterologous metabolic pathways in yeast through laboratory evolution but also on-demand gene amplification in yeast, which can be broadly applicable for metabolic engineering. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Microbial engineering for the production of advanced biofuels.

    PubMed

    Peralta-Yahya, Pamela P; Zhang, Fuzhong; del Cardayre, Stephen B; Keasling, Jay D

    2012-08-16

    Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels.

  6. Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum.

    PubMed

    Valgepea, Kaspar; Loi, Kim Q; Behrendorff, James B; Lemgruber, Renato de S P; Plan, Manuel; Hodson, Mark P; Köpke, Michael; Nielsen, Lars K; Marcellin, Esteban

    2017-05-01

    Acetogens are attractive organisms for the production of chemicals and fuels from inexpensive and non-food feedstocks such as syngas (CO, CO 2 and H 2 ). Expanding their product spectrum beyond native compounds is dictated by energetics, particularly ATP availability. Acetogens have evolved sophisticated strategies to conserve energy from reduction potential differences between major redox couples, however, this coupling is sensitive to small changes in thermodynamic equilibria. To accelerate the development of strains for energy-intensive products from gases, we used a genome-scale metabolic model (GEM) to explore alternative ATP-generating pathways in the gas-fermenting acetogen Clostridium autoethanogenum. Shadow price analysis revealed a preference of C. autoethanogenum for nine amino acids. This prediction was experimentally confirmed under heterotrophic conditions. Subsequent in silico simulations identified arginine (ARG) as a key enhancer for growth. Predictions were experimentally validated, and faster growth was measured in media containing ARG (t D ~4h) compared to growth on yeast extract (t D ~9h). The growth-boosting effect of ARG was confirmed during autotrophic growth. Metabolic modelling and experiments showed that acetate production is nearly abolished and fast growth is realised by a three-fold increase in ATP production through the arginine deiminase (ADI) pathway. The involvement of the ADI pathway was confirmed by metabolomics and RNA-sequencing which revealed a ~500-fold up-regulation of the ADI pathway with an unexpected down-regulation of the Wood-Ljungdahl pathway. The data presented here offer a potential route for supplying cells with ATP, while demonstrating the usefulness of metabolic modelling for the discovery of native pathways for stimulating growth or enhancing energy availability. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Overproduction of Geranylgeraniol by Metabolically Engineered Saccharomyces cerevisiae▿

    PubMed Central

    Tokuhiro, Kenro; Muramatsu, Masayoshi; Ohto, Chikara; Kawaguchi, Toshiya; Obata, Shusei; Muramoto, Nobuhiko; Hirai, Masana; Takahashi, Haruo; Kondo, Akihiko; Sakuradani, Eiji; Shimizu, Sakayu

    2009-01-01

    (E, E, E)-Geranylgeraniol (GGOH) is a valuable starting material for perfumes and pharmaceutical products. In the yeast Saccharomyces cerevisiae, GGOH is synthesized from the end products of the mevalonate pathway through the sequential reactions of farnesyl diphosphate synthetase (encoded by the ERG20 gene), geranylgeranyl diphosphate synthase (the BTS1 gene), and some endogenous phosphatases. We demonstrated that overexpression of the diacylglycerol diphosphate phosphatase (DPP1) gene could promote GGOH production. We also found that overexpression of a BTS1-DPP1 fusion gene was more efficient for producing GGOH than coexpression of these genes separately. Overexpression of the hydroxymethylglutaryl-coenzyme A reductase (HMG1) gene, which encodes the major rate-limiting enzyme of the mevalonate pathway, resulted in overproduction of squalene (191.9 mg liter−1) rather than GGOH (0.2 mg liter−1) in test tube cultures. Coexpression of the BTS1-DPP1 fusion gene along with the HMG1 gene partially redirected the metabolic flux from squalene to GGOH. Additional expression of a BTS1-ERG20 fusion gene resulted in an almost complete shift of the flux to GGOH production (228.8 mg liter−1 GGOH and 6.5 mg liter−1 squalene). Finally, we constructed a diploid prototrophic strain coexpressing the HMG1, BTS1-DPP1, and BTS1-ERG20 genes from multicopy integration vectors. This strain attained 3.31 g liter−1 GGOH production in a 10-liter jar fermentor with gradual feeding of a mixed glucose and ethanol solution. The use of bifunctional fusion genes such as the BTS1-DPP1 and ERG20-BTS1 genes that code sequential enzymes in the metabolic pathway was an effective method for metabolic engineering. PMID:19592534

  8. Transcript abundance on its own cannot be used to infer fluxes in central metabolism

    DOE PAGES

    Schwender, Jorg; Konig, Christina; Klapperstuck, Matthias; ...

    2014-11-28

    An attempt has been made to define the extent to which metabolic flux in central plant metabolism is reflected by changes in the transcriptome and metabolome, based on an analysis of in vitro cultured immature embryos of two oilseed rape (Brassica napus) accessions which contrast for seed lipid accumulation. Metabolic flux analysis (MFA) was used to constrain a flux balance metabolic model which included 671 biochemical and transport reactions within the central metabolism. This highly confident flux information was eventually used for comparative analysis of flux vs. transcript (metabolite). Metabolite profiling succeeded in identifying 79 intermediates within the central metabolism,more » some of which differed quantitatively between the two accessions and displayed a significant shift corresponding to flux. An RNA-Seq based transcriptome analysis revealed a large number of genes which were differentially transcribed in the two accessions, including some enzymes/proteins active in major metabolic pathways. With a few exceptions, differential activity in the major pathways (glycolysis, TCA cycle, amino acid, and fatty acid synthesis) was not reflected in contrasting abundances of the relevant transcripts. The conclusion was that transcript abundance on its own cannot be used to infer metabolic activity/fluxes in central plant metabolism. Lastly, this limitation needs to be borne in mind in evaluating transcriptome data and designing metabolic engineering experiments.« less

  9. A bioarchitectonic approach to the modular engineering of metabolism.

    PubMed

    Kerfeld, Cheryl A

    2017-09-26

    Dissociating the complexity of metabolic processes into modules is a shift in focus from the single gene/gene product to functional and evolutionary units spanning the scale of biological organization. When viewing the levels of biological organization through this conceptual lens, modules are found across the continuum: domains within proteins, co-regulated groups of functionally associated genes, operons, metabolic pathways and (sub)cellular compartments. Combining modules as components or subsystems of a larger system typically leads to increased complexity and the emergence of new functions. By virtue of their potential for 'plug and play' into new contexts, modules can be viewed as units of both evolution and engineering. Through consideration of lessons learned from recent efforts to install new metabolic modules into cells and the emerging understanding of the structure, function and assembly of protein-based organelles, bacterial microcompartments, a structural bioengineering approach is described: one that builds from an architectural vocabulary of protein domains. This bioarchitectonic approach to engineering cellular metabolism can be applied to microbial cell factories, used in the programming of members of synthetic microbial communities or used to attain additional levels of metabolic organization in eukaryotic cells for increasing primary productivity and as the foundation of a green economy.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  10. Agrigenomics for microalgal biofuel production: an overview of various bioinformatics resources and recent studies to link OMICS to bioenergy and bioeconomy.

    PubMed

    Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar

    2013-11-01

    Microalgal biofuels offer great promise in contributing to the growing global demand for alternative sources of renewable energy. However, to make algae-based fuels cost competitive with petroleum, lipid production capabilities of microalgae need to improve substantially. Recent progress in algal genomics, in conjunction with other "omic" approaches, has accelerated the ability to identify metabolic pathways and genes that are potential targets in the development of genetically engineered microalgal strains with optimum lipid content. In this review, we summarize the current bioeconomic status of global biofuel feedstocks with particular reference to the role of "omics" in optimizing sustainable biofuel production. We also provide an overview of the various databases and bioinformatics resources available to gain a more complete understanding of lipid metabolism across algal species, along with the recent contributions of "omic" approaches in the metabolic pathway studies for microalgal biofuel production.

  11. Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture

    PubMed Central

    Buehler, Edward A.; Mesbah, Ali

    2016-01-01

    Acetone-butanol-ethanol (ABE) fermentation by clostridia has shown promise for industrial-scale production of biobutanol. However, the continuous ABE fermentation suffers from low product yield, titer, and productivity. Systems analysis of the continuous ABE fermentation will offer insights into its metabolic pathway as well as into optimal fermentation design and operation. For the ABE fermentation in continuous Clostridium acetobutylicum culture, this paper presents a kinetic model that includes the effects of key metabolic intermediates and enzymes as well as culture pH, product inhibition, and glucose inhibition. The kinetic model is used for elucidating the behavior of the ABE fermentation under the conditions that are most relevant to continuous cultures. To this end, dynamic sensitivity analysis is performed to systematically investigate the effects of culture conditions, reaction kinetics, and enzymes on the dynamics of the ABE production pathway. The analysis provides guidance for future metabolic engineering and fermentation optimization studies. PMID:27486663

  12. Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803

    PubMed Central

    2014-01-01

    Background Molecular engineering of the intermediary physiology of cyanobacteria has become important for the sustainable production of biofuels and commodity compounds from CO2 and sunlight by “designer microbes.” The chemical commodity product L-lactic acid can be synthesized in one step from a key intermediary metabolite of these organisms, pyruvate, catalyzed by a lactate dehydrogenase. Synthetic biology engineering to make “designer microbes” includes the introduction and overexpression of the product-forming biochemical pathway. For further optimization of product formation, modifications in the surrounding biochemical network of intermediary metabolism have to be made. Results To improve light-driven L-lactic acid production from CO2, we explored several metabolic engineering design principles, using a previously engineered L-lactic acid producing mutant strain of Synechocystis sp. PCC6803 as the benchmark. These strategies included: (i) increasing the expression level of the relevant product-forming enzyme, lactate dehydrogenase (LDH), for example, via expression from a replicative plasmid; (ii) co-expression of a heterologous pyruvate kinase to increase the flux towards pyruvate; and (iii) knockdown of phosphoenolpyruvate carboxylase to decrease the flux through a competing pathway (from phosphoenolpyruvate to oxaloacetate). In addition, we tested selected lactate dehydrogenases, some of which were further optimized through site-directed mutagenesis to improve the enzyme’s affinity for the co-factor nicotinamide adenine dinucleotide phosphate (NADPH). The carbon partitioning between biomass and lactic acid was increased from about 5% to over 50% by strain optimization. Conclusion An efficient photosynthetic microbial cell factory will display a high rate and extent of conversion of substrate (CO2) into product (here: L-lactic acid). In the existing CO2-based cyanobacterial cell factories that have been described in the literature, by far most of the control over product formation resides in the genetically introduced fermentative pathway. Here we show that a strong promoter, in combination with increased gene expression, can take away a significant part of the control of this step in lactic acid production from CO2. Under these premises, modulation of the intracellular precursor, pyruvate, can significantly increase productivity. Additionally, production enhancement is achieved by protein engineering to increase co-factor specificity of the heterologously expressed LDH. PMID:24991233

  13. Metabolic Engineering oil biosyntesis pathways in Lesquerella Fendleri(Abstract)

    USDA-ARS?s Scientific Manuscript database

    Lesquerella fendleri (A. Gray) S. Wats. (Brassicaceae), being developed as a new industrial oilseed crop in the southwestern region of the United States, is valued for its unusual hydroxy fatty acid (HFA) in seed. The majority of HFA in L. fendleri is lesquerolic acid (14-hydroxy-eicos-cis-11-enoic...

  14. Analysis of metabolic networks of Streptomyces leeuwenhoekii C34 by means of a genome scale model: Prediction of modifications that enhance the production of specialized metabolites.

    PubMed

    Razmilic, Valeria; Castro, Jean F; Andrews, Barbara; Asenjo, Juan A

    2018-07-01

    The first genome scale model (GSM) for Streptomyces leeuwenhoekii C34 was developed to study the biosynthesis pathways of specialized metabolites and to find metabolic engineering targets for enhancing their production. The model, iVR1007, consists of 1,722 reactions, 1,463 metabolites, and 1,007 genes, it includes the biosynthesis pathways of chaxamycins, chaxalactins, desferrioxamines, ectoine, and other specialized metabolites. iVR1007 was validated using experimental information of growth on 166 different sources of carbon, nitrogen and phosphorous, showing an 83.7% accuracy. The model was used to predict metabolic engineering targets for enhancing the biosynthesis of chaxamycins and chaxalactins. Gene knockouts, such as sle03600 (L-homoserine O-acetyltransferase), and sle39090 (trehalose-phosphate synthase), that enhance the production of the specialized metabolites by increasing the pool of precursors were identified. Using the algorithm of flux scanning based on enforced objective flux (FSEOF) implemented in python, 35 and 25 over-expression targets for increasing the production of chaxamycin A and chaxalactin A, respectively, that were not directly associated with their biosynthesis routes were identified. Nineteen over-expression targets that were common to the two specialized metabolites studied, like the over-expression of the acetyl carboxylase complex (sle47660 (accA) and any of the following genes: sle44630 (accA_1) or sle39830 (accA_2) or sle27560 (bccA) or sle59710) were identified. The predicted knockouts and over-expression targets will be used to perform metabolic engineering of S. leeuwenhoekii C34 and obtain overproducer strains. © 2018 Wiley Periodicals, Inc.

  15. Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities.

    PubMed

    DePaoli, Henrique C; Borland, Anne M; Tuskan, Gerald A; Cushman, John C; Yang, Xiaohan

    2014-07-01

    To meet future food and energy security needs, which are amplified by increasing population growth and reduced natural resource availability, metabolic engineering efforts have moved from manipulating single genes/proteins to introducing multiple genes and novel pathways to improve photosynthetic efficiency in a more comprehensive manner. Biochemical carbon-concentrating mechanisms such as crassulacean acid metabolism (CAM), which improves photosynthetic, water-use, and possibly nutrient-use efficiency, represent a strategic target for synthetic biology to engineer more productive C3 crops for a warmer and drier world. One key challenge for introducing multigene traits like CAM onto a background of C3 photosynthesis is to gain a better understanding of the dynamic spatial and temporal regulatory events that underpin photosynthetic metabolism. With the aid of systems and computational biology, vast amounts of experimental data encompassing transcriptomics, proteomics, and metabolomics can be related in a network to create dynamic models. Such models can undergo simulations to discover key regulatory elements in metabolism and suggest strategic substitution or augmentation by synthetic components to improve photosynthetic performance and water-use efficiency in C3 crops. Another key challenge in the application of synthetic biology to photosynthesis research is to develop efficient systems for multigene assembly and stacking. Here, we review recent progress in computational modelling as applied to plant photosynthesis, with attention to the requirements for CAM, and recent advances in synthetic biology tool development. Lastly, we discuss possible options for multigene pathway construction in plants with an emphasis on CAM-into-C3 engineering. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Metabolic and process engineering for biodesulfurization in Gram-negative bacteria.

    PubMed

    Martínez, I; El-Said Mohamed, M; Santos, V E; García, J L; García-Ochoa, F; Díaz, E

    2017-11-20

    Microbial desulfurization or biodesulfurization (BDS) is an attractive low-cost and environmentally friendly complementary technology to the hydrotreating chemical process based on the potential of certain bacteria to specifically remove sulfur from S-heterocyclic compounds of crude fuels that are recalcitrant to the chemical treatments. The 4S or Dsz sulfur specific pathway for dibenzothiophene (DBT) and alkyl-substituted DBTs, widely used as model S-heterocyclic compounds, has been extensively studied at the physiological, biochemical and genetic levels mainly in Gram-positive bacteria. Nevertheless, several Gram-negative bacteria have been also used in BDS because they are endowed with some properties, e.g., broad metabolic versatility and easy genetic and genomic manipulation, that make them suitable chassis for systems metabolic engineering strategies. A high number of recombinant bacteria, many of which are Pseudomonas strains, have been constructed to overcome the major bottlenecks of the desulfurization process, i.e., expression of the dsz operon, activity of the Dsz enzymes, retro-inhibition of the Dsz pathway, availability of reducing power, uptake-secretion of substrate and intermediates, tolerance to organic solvents and metals, and other host-specific limitations. However, to attain a BDS process with industrial applicability, it is necessary to apply all the knowledge and advances achieved at the genetic and metabolic levels to the process engineering level, i.e., kinetic modelling, scale-up of biphasic systems, enhancing mass transfer rates, biocatalyst separation, etc. The production of high-added value products derived from the organosulfur material present in oil can be regarded also as an economically viable process that has barely begun to be explored. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering.

    PubMed

    Abbas, Farhat; Ke, Yanguo; Yu, Rangcai; Yue, Yuechong; Amanullah, Sikandar; Jahangir, Muhammad Muzammil; Fan, Yanping

    2017-11-01

    Terpenoids play several physiological and ecological functions in plant life through direct and indirect plant defenses and also in human society because of their enormous applications in the pharmaceutical, food and cosmetics industries. Through the aid of genetic engineering its role can by magnified to broad spectrum by improving genetic ability of crop plants, enhancing the aroma quality of fruits and flowers and the production of pharmaceutical terpenoids contents in medicinal plants. Terpenoids are structurally diverse and the most abundant plant secondary metabolites, playing an important role in plant life through direct and indirect plant defenses, by attracting pollinators and through different interactions between the plants and their environment. Terpenoids are also significant because of their enormous applications in the pharmaceutical, food and cosmetics industries. Due to their broad distribution and functional versatility, efforts are being made to decode the biosynthetic pathways and comprehend the regulatory mechanisms of terpenoids. This review summarizes the recent advances in biosynthetic pathways, including the spatiotemporal, transcriptional and post-transcriptional regulatory mechanisms. Moreover, we discuss the multiple functions of the terpene synthase genes (TPS), their interaction with the surrounding environment and the use of genetic engineering for terpenoid production in model plants. Here, we also provide an overview of the significance of terpenoid metabolic engineering in crop protection, plant reproduction and plant metabolic engineering approaches for pharmaceutical terpenoids production and future scenarios in agriculture, which call for sustainable production platforms by improving different plant traits.

  18. Incorporating comparative genomics into the design-test-learn cycle of microbial strain engineering.

    PubMed

    Sardi, Maria; Gasch, Audrey P

    2017-08-01

    Engineering microbes with new properties is an important goal in industrial engineering, to establish biological factories for production of biofuels, commodity chemicals and pharmaceutics. But engineering microbes to produce new compounds with high yield remains a major challenge toward economically viable production. Incorporating several modern approaches, including synthetic and systems biology, metabolic modeling and regulatory rewiring, has proven to significantly advance industrial strain engineering. This review highlights how comparative genomics can also facilitate strain engineering, by identifying novel genes and pathways, regulatory mechanisms and genetic background effects for engineering. We discuss how incorporating comparative genomics into the design-test-learn cycle of strain engineering can provide novel information that complements other engineering strategies. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints

    DOE PAGES

    Sánchez, Benjamín J.; Zhang, Cheng; Nilsson, Avlant; ...

    2017-03-08

    Genome-scale metabolic models (GEMs) are widely used to calculate metabolic phenotypes. They rely on defining a set of constraints, the most common of which is that the production of metabolites and/or growth are limited by the carbon source uptake rate. However, enzyme abundances and kinetics, which act as limitations on metabolic fluxes, are not taken into account. Here, we present GECKO, a method that enhances a GEM to account for enzymes as part of reactions, thereby ensuring that each metabolic flux does not exceed its maximum capacity, equal to the product of the enzyme's abundance and turnover number. We appliedmore » GECKO to a Saccharomyces cerevisiae GEM and demonstrated that the new model could correctly describe phenotypes that the previous model could not, particularly under high enzymatic pressure conditions, such as yeast growing on different carbon sources in excess, coping with stress, or overexpressing a specific pathway. GECKO also allows to directly integrate quantitative proteomics data; by doing so, we significantly reduced flux variability of the model, in over 60% of metabolic reactions. Additionally, the model gives insight into the distribution of enzyme usage between and within metabolic pathways. The developed method and model are expected to increase the use of model-based design in metabolic engineering.« less

  20. Retrobiosynthetic nuclear magnetic resonance analysis of amino acid biosynthesis and intermediary metabolism. Metabolic flux in developing maize kernels.

    PubMed

    Glawischnig, E; Gierl, A; Tomas, A; Bacher, A; Eisenreich, W

    2001-03-01

    Information on metabolic networks could provide the basis for the design of targets for metabolic engineering. To study metabolic flux in cereals, developing maize (Zea mays) kernels were grown in sterile culture on medium containing [U-(13)C(6)]glucose or [1,2-(13)C(2)]acetate. After growth, amino acids, lipids, and sitosterol were isolated from kernels as well as from the cobs, and their (13)C isotopomer compositions were determined by quantitative nuclear magnetic resonance spectroscopy. The highly specific labeling patterns were used to analyze the metabolic pathways leading to amino acids and the triterpene on a quantitative basis. The data show that serine is generated from phosphoglycerate, as well as from glycine. Lysine is formed entirely via the diaminopimelate pathway and sitosterol is synthesized entirely via the mevalonate route. The labeling data of amino acids and sitosterol were used to reconstruct the labeling patterns of key metabolic intermediates (e.g. acetyl-coenzyme A, pyruvate, phosphoenolpyruvate, erythrose 4-phosphate, and Rib 5-phosphate) that revealed quantitative information about carbon flux in the intermediary metabolism of developing maize kernels. Exogenous acetate served as an efficient precursor of sitosterol, as well as of amino acids of the aspartate and glutamate family; in comparison, metabolites formed in the plastidic compartments showed low acetate incorporation.

  1. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez, Benjamín J.; Zhang, Cheng; Nilsson, Avlant

    Genome-scale metabolic models (GEMs) are widely used to calculate metabolic phenotypes. They rely on defining a set of constraints, the most common of which is that the production of metabolites and/or growth are limited by the carbon source uptake rate. However, enzyme abundances and kinetics, which act as limitations on metabolic fluxes, are not taken into account. Here, we present GECKO, a method that enhances a GEM to account for enzymes as part of reactions, thereby ensuring that each metabolic flux does not exceed its maximum capacity, equal to the product of the enzyme's abundance and turnover number. We appliedmore » GECKO to a Saccharomyces cerevisiae GEM and demonstrated that the new model could correctly describe phenotypes that the previous model could not, particularly under high enzymatic pressure conditions, such as yeast growing on different carbon sources in excess, coping with stress, or overexpressing a specific pathway. GECKO also allows to directly integrate quantitative proteomics data; by doing so, we significantly reduced flux variability of the model, in over 60% of metabolic reactions. Additionally, the model gives insight into the distribution of enzyme usage between and within metabolic pathways. The developed method and model are expected to increase the use of model-based design in metabolic engineering.« less

  2. Terpenoids and Their Biosynthesis in Cyanobacteria

    PubMed Central

    Pattanaik, Bagmi; Lindberg, Pia

    2015-01-01

    Terpenoids, or isoprenoids, are a family of compounds with great structural diversity which are essential for all living organisms. In cyanobacteria, they are synthesized from the methylerythritol-phosphate (MEP) pathway, using glyceraldehyde 3-phosphate and pyruvate produced by photosynthesis as substrates. The products of the MEP pathway are the isomeric five-carbon compounds isopentenyl diphosphate and dimethylallyl diphosphate, which in turn form the basic building blocks for formation of all terpenoids. Many terpenoid compounds have useful properties and are of interest in the fields of pharmaceuticals and nutrition, and even potentially as future biofuels. The MEP pathway, its function and regulation, and the subsequent formation of terpenoids have not been fully elucidated in cyanobacteria, despite its relevance for biotechnological applications. In this review, we summarize the present knowledge about cyanobacterial terpenoid biosynthesis, both regarding the native metabolism and regarding metabolic engineering of cyanobacteria for heterologous production of non-native terpenoids. PMID:25615610

  3. Amino acid catabolism-directed biofuel production in Clostridium sticklandii: An insight into model-driven systems engineering.

    PubMed

    Sangavai, C; Chellapandi, P

    2017-12-01

    Model-driven systems engineering has been more fascinating process for the microbial production of biofuel and bio-refineries in chemical and pharmaceutical industries. Genome-scale modeling and simulations have been guided for metabolic engineering of Clostridium species for the production of organic solvents and organic acids. Among them, Clostridium sticklandii is one of the potential organisms to be exploited as a microbial cell factory for biofuel production. It is a hyper-ammonia producing bacterium and is able to catabolize amino acids as important carbon and energy sources via Stickland reactions and the development of the specific pathways. Current genomic and metabolic aspects of this bacterium are comprehensively reviewed herein, which provided information for learning about protein catabolism-directed biofuel production. It has a metabolic potential to drive energy and direct solventogenesis as well as acidogenesis from protein catabolism. It produces by-products such as ethanol, acetate, n -butanol, n -butyrate and hydrogen from amino acid catabolism. Model-driven systems engineering of this organism would improve the performance of the industrial sectors and enhance the industrial economy by using protein-based waste in environment-friendly ways.

  4. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop

    PubMed Central

    Fuentes, Paulina; Zhou, Fei; Erban, Alexander; Karcher, Daniel; Kopka, Joachim; Bock, Ralph

    2016-01-01

    Artemisinin-based therapies are the only effective treatment for malaria, the most devastating disease in human history. To meet the growing demand for artemisinin and make it accessible to the poorest, an inexpensive and rapidly scalable production platform is urgently needed. Here we have developed a new synthetic biology approach, combinatorial supertransformation of transplastomic recipient lines (COSTREL), and applied it to introduce the complete pathway for artemisinic acid, the precursor of artemisinin, into the high-biomass crop tobacco. We first introduced the core pathway of artemisinic acid biosynthesis into the chloroplast genome. The transplastomic plants were then combinatorially supertransformed with cassettes for all additional enzymes known to affect flux through the artemisinin pathway. By screening large populations of COSTREL lines, we isolated plants that produce more than 120 milligram artemisinic acid per kilogram biomass. Our work provides an efficient strategy for engineering complex biochemical pathways into plants and optimizing the metabolic output. DOI: http://dx.doi.org/10.7554/eLife.13664.001 PMID:27296645

  5. Overproduction of Fatty Acid Ethyl Esters by the Oleaginous Yeast Yarrowia lipolytica through Metabolic Engineering and Process Optimization.

    PubMed

    Gao, Qi; Cao, Xuan; Huang, Yu-Ying; Yang, Jing-Lin; Chen, Jun; Wei, Liu-Jing; Hua, Qiang

    2018-05-18

    Recent advances in the production of biofuels by microbes have attracted attention due to increasingly limited fossil fuels. Biodiesels, especially fatty acid ethyl esters (FAEEs), are considered a potentially fully sustainable fuel in the near future due to similarities with petrodiesels and compatibility with existing infrastructure. However, biosynthesis of FAEEs is limited by the supply of precursor lipids and acetyl-CoA. In the present study, we explored the production potential of an engineered biosynthetic pathway coupled to the addition of ethanol in the oleaginous yeast Yarrowia lipolytica. This type of yeast is able to supply a greater amount of precursor lipids than species typically used. To construct the FAEEs synthesis pathway, WS genes that encode wax ester synthases (WSs) from different species were codon-optimized and heterologously expressed in Y. lipolytica. The most productive engineered strain was found to express a WS gene from Marinobacter hydrocarbonoclasticus strain DSM 8798. To stepwisely increase FAEEs production, we optimized the promoter of WS overexpression, eliminated β-oxidation by deleting the PEX10 gene in our engineered strains, and redirected metabolic flux toward acetyl-CoA. The new engineered strain, coupled with an optimized ethanol concentration, led to an approximate 5.5-fold increase in extracellular FAEEs levels compared to the wild-type strain and a maximum FAEEs titer of 1.18 g/L in shake flask cultures. In summary, the present study demonstrated that an engineered Y. lipolytica strain possessed a high capacity for FAEEs production and may serve as a platform for more efficient biodiesel production in the future.

  6. Scaffoldless engineered enzyme assembly for enhanced methanol utilization

    DOE PAGES

    Price, J. Vincent; Chen, Long; Whitaker, W. Brian; ...

    2016-10-24

    Methanol is an important feedstock derived from natural gas and can be chemically converted into commodity and specialty chemicals at high pressure and temperature. Although biological conversion of methanol can proceed at ambient conditions, there is a dearth of engineered microorganisms that use methanol to produce metabolites. In nature, methanol dehydrogenase (Mdh), which converts methanol to formaldehyde, highly favors the reverse reaction. Thus, efficient coupling with the irreversible sequestration of formaldehyde by 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloseisomerase (Phi) serves as the key driving force to pull the pathway equilibrium toward central metabolism. An emerging strategy to promote efficient substrate channelingmore » is to spatially organize pathway enzymes in an engineered assembly to provide kinetic driving forces that promote carbon flux in a desirable direction. Here, we report a scaffoldless, self-assembly strategy to organize Mdh, Hps, and Phi into an engineered supramolecular enzyme complex using an SH3–ligand interaction pair, which enhances methanol conversion to fructose-6-phosphate (F6P). To increase methanol consumption, an “NADH Sink” was created using Escherichia coli lactate dehydrogenase as an NADH scavenger, thereby preventing reversible formaldehyde reduction. Combination of the two strategies improved in vitro F6P production by 97-fold compared with unassembled enzymes. The beneficial effect of supramolecular enzyme assembly was also realized in vivo as the engineered enzyme assembly improved whole-cell methanol consumption rate by ninefold. This approach will ultimately allow direct coupling of enhanced F6P synthesis with other metabolic engineering strategies for the production of many desired metabolites from methanol.« less

  7. Scaffoldless engineered enzyme assembly for enhanced methanol utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, J. Vincent; Chen, Long; Whitaker, W. Brian

    Methanol is an important feedstock derived from natural gas and can be chemically converted into commodity and specialty chemicals at high pressure and temperature. Although biological conversion of methanol can proceed at ambient conditions, there is a dearth of engineered microorganisms that use methanol to produce metabolites. In nature, methanol dehydrogenase (Mdh), which converts methanol to formaldehyde, highly favors the reverse reaction. Thus, efficient coupling with the irreversible sequestration of formaldehyde by 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloseisomerase (Phi) serves as the key driving force to pull the pathway equilibrium toward central metabolism. An emerging strategy to promote efficient substrate channelingmore » is to spatially organize pathway enzymes in an engineered assembly to provide kinetic driving forces that promote carbon flux in a desirable direction. Here, we report a scaffoldless, self-assembly strategy to organize Mdh, Hps, and Phi into an engineered supramolecular enzyme complex using an SH3–ligand interaction pair, which enhances methanol conversion to fructose-6-phosphate (F6P). To increase methanol consumption, an “NADH Sink” was created using Escherichia coli lactate dehydrogenase as an NADH scavenger, thereby preventing reversible formaldehyde reduction. Combination of the two strategies improved in vitro F6P production by 97-fold compared with unassembled enzymes. The beneficial effect of supramolecular enzyme assembly was also realized in vivo as the engineered enzyme assembly improved whole-cell methanol consumption rate by ninefold. This approach will ultimately allow direct coupling of enhanced F6P synthesis with other metabolic engineering strategies for the production of many desired metabolites from methanol.« less

  8. Scaffoldless engineered enzyme assembly for enhanced methanol utilization

    PubMed Central

    Price, J. Vincent; Chen, Long; Whitaker, W. Brian; Papoutsakis, Eleftherios; Chen, Wilfred

    2016-01-01

    Methanol is an important feedstock derived from natural gas and can be chemically converted into commodity and specialty chemicals at high pressure and temperature. Although biological conversion of methanol can proceed at ambient conditions, there is a dearth of engineered microorganisms that use methanol to produce metabolites. In nature, methanol dehydrogenase (Mdh), which converts methanol to formaldehyde, highly favors the reverse reaction. Thus, efficient coupling with the irreversible sequestration of formaldehyde by 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloseisomerase (Phi) serves as the key driving force to pull the pathway equilibrium toward central metabolism. An emerging strategy to promote efficient substrate channeling is to spatially organize pathway enzymes in an engineered assembly to provide kinetic driving forces that promote carbon flux in a desirable direction. Here, we report a scaffoldless, self-assembly strategy to organize Mdh, Hps, and Phi into an engineered supramolecular enzyme complex using an SH3–ligand interaction pair, which enhances methanol conversion to fructose-6-phosphate (F6P). To increase methanol consumption, an “NADH Sink” was created using Escherichia coli lactate dehydrogenase as an NADH scavenger, thereby preventing reversible formaldehyde reduction. Combination of the two strategies improved in vitro F6P production by 97-fold compared with unassembled enzymes. The beneficial effect of supramolecular enzyme assembly was also realized in vivo as the engineered enzyme assembly improved whole-cell methanol consumption rate by ninefold. This approach will ultimately allow direct coupling of enhanced F6P synthesis with other metabolic engineering strategies for the production of many desired metabolites from methanol. PMID:27791059

  9. Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine

    PubMed Central

    2013-01-01

    Background L-ornithine is effective in the treatment of liver diseases and helps strengthen the heart. The commercial applications mean that efficient biotechnological production of L-ornithine has become increasingly necessary. Adaptive evolution strategies have been proven a feasible and efficient technique to achieve improved cellular properties without requiring metabolic or regulatory details of the strain. The evolved strains can be further optimised by metabolic engineering. Thus, metabolic evolution strategy was used for engineering Corynebacterium glutamicum to enhance L-ornithine production. Results A C. glutamicum strain was engineered by using a combination of gene deletions and adaptive evolution with 70 passages of growth-based selection. The metabolically evolved C. glutamicum strain, named ΔAPE6937R42, produced 24.1 g/L of L-ornithine in a 5-L bioreactor. The mechanism used by C. glutamicum ΔAPE6937R42 to produce L-ornithine was investigated by analysing transcriptional levels of select genes and NADPH contents. The upregulation of the transcription levels of genes involved in the upstream pathway of glutamate biosynthesis and the elevated NADPH concentration caused by the upregulation of the transcriptional level of the ppnK gene promoted L-ornithine production in C. glutamicum ΔAPE6937R42. Conclusions The availability of NADPH plays an important role in L-ornithine production in C. glutamicum. Our results demonstrated that the combination of growth-coupled evolution with analysis of transcript abundances provides a strategy to engineer microbial strains for improving production of target compounds. PMID:23725060

  10. Electron acceptor redox potential globally regulates transcriptomic profiling in Shewanella decolorationis S12

    NASA Astrophysics Data System (ADS)

    Lian, Yingli; Yang, Yonggang; Guo, Jun; Wang, Yan; Li, Xiaojing; Fang, Yun; Gan, Lixia; Xu, Meiying

    2016-08-01

    Electron acceptor redox potential (EARP) was presumed to be a determining factor for microbial metabolism in many natural and engineered processes. However, little is known about the potentially global effects of EARP on bacteria. In this study, we compared the physiological and transcriptomic properties of Shewanella decolorationis S12 respiring with different EARPs in microbial electrochemical systems to avoid the effects caused by the other physicochemical properties of real electron acceptor. Results showed that the metabolic activities of strain S12 were nonlinear responses to EARP. The tricarboxylic acid cycle for central carbon metabolism was down-regulated while glyoxylate shunt was up-regulated at 0.8 V compared to 0.2 and -0.2 V, which suggested that EARP is an important but not the only determinant for metabolic pathways of strain S12. Moreover, few cytochrome c genes were differentially expressed at different EARPs. The energy intensive flagella assembly and assimilatory sulfur metabolism pathways were significantly enriched at 0.8 V, which suggested strain S12 had stronger electrokinesis behavior and oxidative stress-response at high EARP. This study provides the first global information of EARP regulations on microbial metabolism, which will be helpful for understanding microorganism respiration.

  11. Metabolic engineering of Escherichia coli for production of valerenadiene.

    PubMed

    Nybo, S Eric; Saunders, Jacqueline; McCormick, Sean P

    2017-11-20

    Valeriana officinalis is a medicinal herb which produces a suite of compounds in its root tissue useful for treatment of anxiety and insomnia. The sesquiterpene components of the root extract, valerenic acid and valerena-1,10-diene, are thought to contribute to most of the observed anxiolytic of Valerian root preparations. However, valerenic acid and its biosynthetic intermediates are only produced in low quantities in the roots of V. officinalis. Thus, in this report, Escherichia coli was metabolically engineered to produce substantial quantities of valerena-1,10-diene in shake flask fermentations with decane overlay. Expression of the wildtype valerenadiene synthase gene (pZE-wvds) resulted in production of 12μg/mL in LB cultures using endogenous FPP metabolism. Expression of a codon-optimized version of the valerenadiene synthase gene (pZE-cvds) resulted in 3-fold higher titers of valerenadiene (32μg/mL). Co-expression of pZE-cvds with an engineered methyl erythritol phosphate (MEP) pathway improved valerenadiene titers 65-fold to 2.09mg/L valerenadiene. Optimization of the fermentation medium to include glycerol supplementation enhanced yields by another 5.5-fold (11.0mg/L valerenadiene). The highest production of valerenadiene resulted from engineering the codon-optimized valerenadiene synthase gene under strong P trc and P T7 promoters and via co-expression of an exogenous mevalonate (MVA) pathway. These efforts resulted in an E. coli production strain that produced 62.0mg/L valerenadiene (19.4mg/L/OD 600 specific productivity). This E. coli production platform will serve as the foundation for the synthesis of novel valerenic acid analogues potentially useful for the treatment of anxiety disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Biotechnology of polyketides: New breath of life for the novel antibiotic genetic pathways discovery through metagenomics

    PubMed Central

    Gomes, Elisângela Soares; Schuch, Viviane; de Macedo Lemos, Eliana Gertrudes

    2013-01-01

    The discovery of secondary metabolites produced by microorganisms (e.g., penicillin in 1928) and the beginning of their industrial application (1940) opened new doors to what has been the main medication source for the treatment of infectious diseases and tumors. In fact, approximately 80 years after the discovery of the first antibiotic compound, and despite all of the warnings about the failure of the “goose that laid the golden egg,” the potential of this wealth is still inexorable: simply adjust the focus from “micro” to “nano”, that means changing the look from microorganisms to nanograms of DNA. Then, the search for new drugs, driven by genetic engineering combined with metagenomic strategies, shows us a way to bypass the barriers imposed by methodologies limited to isolation and culturing. However, we are far from solving the problem of supplying new molecules that are effective against the plasticity of multi- or pan-drug-resistant pathogens. Although the first advances in genetic engineering date back to 1990, there is still a lack of high-throughput methods to speed up the screening of new genes and design new molecules by recombination of pathways. In addition, it is necessary an increase in the variety of heterologous hosts and improvements throughout the full drug discovery pipeline. Among numerous studies focused on this subject, those on polyketide antibiotics stand out for the large technical-scientific efforts that established novel solutions for the transfer/engineering of major metabolic pathways using transposons and other episomes, overcoming one of the main methodological constraints for the heterologous expression of major pathways. In silico prediction analysis of three-dimensional enzymatic structures and advances in sequencing technologies have expanded access to the metabolic potential of microorganisms. PMID:24688489

  13. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing.

    PubMed

    van Rossum, Harmen M; Kozak, Barbara U; Pronk, Jack T; van Maris, Antonius J A

    2016-07-01

    Saccharomyces cerevisiae is an important industrial cell factory and an attractive experimental model for evaluating novel metabolic engineering strategies. Many current and potential products of this yeast require acetyl coenzyme A (acetyl-CoA) as a precursor and pathways towards these products are generally expressed in its cytosol. The native S. cerevisiae pathway for production of cytosolic acetyl-CoA consumes 2 ATP equivalents in the acetyl-CoA synthetase reaction. Catabolism of additional sugar substrate, which may be required to generate this ATP, negatively affects product yields. Here, we review alternative pathways that can be engineered into yeast to optimize supply of cytosolic acetyl-CoA as a precursor for product formation. Particular attention is paid to reaction stoichiometry, free-energy conservation and redox-cofactor balancing of alternative pathways for acetyl-CoA synthesis from glucose. A theoretical analysis of maximally attainable yields on glucose of four compounds (n-butanol, citric acid, palmitic acid and farnesene) showed a strong product dependency of the optimal pathway configuration for acetyl-CoA synthesis. Moreover, this analysis showed that combination of different acetyl-CoA production pathways may be required to achieve optimal product yields. This review underlines that an integral analysis of energy coupling and redox-cofactor balancing in precursor-supply and product-formation pathways is crucial for the design of efficient cell factories. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Engineering Pseudomonas putida KT2440 for Efficient Ethylene Glycol Utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckham, Gregg T; Franden, Mary A; Thelhawadigedara, Lahiru Niroshan Jayakody

    Ethylene glycol is used as a raw material in the production of polyethylene terephthalate, in antifreeze, as a gas hydrate inhibitor in pipelines, and for many other industrial applications. It is metabolized by aerobic microbial processes via the highly toxic intermediates glycolaldehyde and glycolate through C2 metabolic pathways. Pseudomonas putida KT2440, which has been engineered for environmental remediation applications given its high toxicity tolerance and broad substrate specificity, is not able to efficiently metabolize ethylene glycol, despite harboring putative genes for this purpose. To further expand the metabolic portfolio of P. putida, we elucidated the metabolic pathway to enable ethylenemore » glycol via systematic overexpression of glyoxylate carboligase (gcl) in combination with other genes. Quantitative reverse transcription polymerase chain reaction demonstrated that all of the four genes in genomic proximity to gcl (hyi, glxR, ttuD, and pykF) are transcribed as an operon. Where the expression of only two genes (gcl and glxR) resulted in growth in ethylene glycol, improved growth and ethylene glycol utilization were observed when the entire gcl operon was expressed. Both glycolaldehyde and glyoxal inhibit growth in concentrations of ethylene glycol above 50 mM. To overcome this bottleneck, the additional overexpression of the glycolate oxidase (glcDEF) operon removes the glycolate bottleneck and minimizes the production of these toxic intermediates, permitting growth in up to 2 M (~124 g/L) and complete consumption of 0.5 M (31 g/L) ethylene glycol in shake flask experiments. In addition, the engineered strain enables conversion of ethylene glycol to medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Overall, this study provides a robust P. putida KT2440 strain for ethylene glycol consumption, which will serve as a foundational strain for further biocatalyst development for applications in the remediation of waste polyester plastics and biomass-derived wastewater streams.« less

  15. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization.

    PubMed

    Franden, Mary Ann; Jayakody, Lahiru N; Li, Wing-Jin; Wagner, Neil J; Cleveland, Nicholas S; Michener, William E; Hauer, Bernhard; Blank, Lars M; Wierckx, Nick; Klebensberger, Janosch; Beckham, Gregg T

    2018-06-07

    Ethylene glycol is used as a raw material in the production of polyethylene terephthalate, in antifreeze, as a gas hydrate inhibitor in pipelines, and for many other industrial applications. It is metabolized by aerobic microbial processes via the highly toxic intermediates glycolaldehyde and glycolate through C2 metabolic pathways. Pseudomonas putida KT2440, which has been engineered for environmental remediation applications given its high toxicity tolerance and broad substrate specificity, is not able to efficiently metabolize ethylene glycol, despite harboring putative genes for this purpose. To further expand the metabolic portfolio of P. putida, we elucidated the metabolic pathway to enable ethylene glycol via systematic overexpression of glyoxylate carboligase (gcl) in combination with other genes. Quantitative reverse transcription polymerase chain reaction demonstrated that all of the four genes in genomic proximity to gcl (hyi, glxR, ttuD, and pykF) are transcribed as an operon. Where the expression of only two genes (gcl and glxR) resulted in growth in ethylene glycol, improved growth and ethylene glycol utilization were observed when the entire gcl operon was expressed. Both glycolaldehyde and glyoxal inhibit growth in concentrations of ethylene glycol above 50 mM. To overcome this bottleneck, the additional overexpression of the glycolate oxidase (glcDEF) operon removes the glycolate bottleneck and minimizes the production of these toxic intermediates, permitting growth in up to 2 M (~124 g/L) and complete consumption of 0.5 M (31 g/L) ethylene glycol in shake flask experiments. In addition, the engineered strain enables conversion of ethylene glycol to medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Overall, this study provides a robust P. putida KT2440 strain for ethylene glycol consumption, which will serve as a foundational strain for further biocatalyst development for applications in the remediation of waste polyester plastics and biomass-derived wastewater streams. Copyright © 2018. Published by Elsevier Inc.

  16. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose.

    PubMed

    Lee, Won-Heong; Jin, Yong-Su

    2017-09-28

    In simultaneous saccharification and fermentation (SSF) for production of cellulosic biofuels, engineered Saccharomyces cerevisiae capable of fermenting cellobiose has provided several benefits, such as lower enzyme costs and faster fermentation rate compared with wild-type S. cerevisiae fermenting glucose. In this study, the effects of an alternative intracellular cellobiose utilization pathway-a phosphorolytic pathway based on a mutant cellodextrin transporter (CDT-1 (F213L)) and cellobiose phosphorylase (SdCBP)-was investigated by comparing with a hydrolytic pathway based on the same transporter and an intracellular β-glucosidase (GH1-1) for their SSF performances under various conditions. Whereas the phosphorolytic and hydrolytic cellobiose-fermenting S. cerevisiae strains performed similarly under the anoxic SSF conditions, the hydrolytic S. cerevisiae performed slightly better than the phosphorolytic S. cerevisiae under the microaerobic SSF conditions. Nonetheless, the phosphorolytic S. cerevisiae expressing the mutant CDT-1 showed better ethanol production than the glucose-fermenting S. cerevisiae with an extracellular β-glucosidase, regardless of SSF conditions. These results clearly prove that introduction of the intracellular cellobiose metabolic pathway into yeast can be effective on cellulosic ethanol production in SSF. They also demonstrate that enhancement of cellobiose transport activity in engineered yeast is the most important factor affecting the efficiency of SSF of cellulose.

  17. On the role of GAPDH isoenzymes during pentose fermentation in engineered Saccharomyces cerevisiae.

    PubMed

    Linck, Annabell; Vu, Xuan-Khang; Essl, Christine; Hiesl, Charlotte; Boles, Eckhard; Oreb, Mislav

    2014-05-01

    In the metabolic network of the cell, many intermediary products are shared between different pathways. d-Glyceraldehyde-3-phosphate, a glycolytic intermediate, is a substrate of GAPDH but is also utilized by transaldolase and transketolase in the scrambling reactions of the nonoxidative pentose phosphate pathway. Recent efforts to engineer baker's yeast strains capable of utilizing pentose sugars present in plant biomass rely on increasing the carbon flux through this pathway. However, the competition between transaldolase and GAPDH for d-glyceraldehyde-3-phosphate produced in the first transketolase reaction compromises the carbon balance of the pathway, thereby limiting the product yield. Guided by the hypothesis that reduction in GAPDH activity would increase the availability of d-glyceraldehyde-3-phosphate for transaldolase and thereby improve ethanol production during fermentation of pentoses, we performed a comprehensive characterization of the three GAPDH isoenzymes in baker's yeast, Tdh1, Tdh2, and Tdh3 and analyzed the effect of their deletion on xylose utilization by engineered strains. Our data suggest that overexpression of transaldolase is a more promising strategy than reduction in GAPDH activity to increase the flux through the nonoxidative pentose phosphate pathway. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Direct Conversion of CO2 to α-Farnesene Using Metabolically Engineered Synechococcus elongatus PCC 7942.

    PubMed

    Lee, Hyun Jeong; Lee, Jiwon; Lee, Sun-Mi; Um, Youngsoon; Kim, Yunje; Sim, Sang Jun; Choi, Jong-Il; Woo, Han Min

    2017-12-06

    Direct conversion of carbon dioxide (CO 2 ) to value-added chemicals by engineering of cyanobacteria has received attention as a sustainable strategy in food and chemical industries. Herein, Synechococcus elongatus PCC 7942, a model cyanobacterium, was engineered to produce α-farnesene from CO 2 . As a result of the lack of farnesene synthase (FS) activity in the wild-type cyanobacterium, we metabolically engineered S. elongatus PCC 7942 to express heterologous FS from either Norway spruce or apple fruit, resulting in detectable peaks of α-farnesene. To enhance α-farnesene production, an optimized methylerythritol phosphate (MEP) pathway was introduced in the farnesene-producing strain to supply farnesyl diphosphate. Subsequent cyanobacterial culture with a dodecane overlay resulted in photosynthetic production of α-farnesene (4.6 ± 0.4 mg/L in 7 days) from CO 2 . To the best of our knowledge, this is the first report of the photosynthetic production of α-farnesene from CO 2 in the unicellular cyanobacterium S. elongatus PCC 7942.

  19. Engineering microbes for isoprene production.

    PubMed

    Ye, Lidan; Lv, Xiaomei; Yu, Hongwei

    2016-11-01

    Isoprene is facing a growing global market due to its wide industrial applications. Current industrial production of isoprene is almost entirely petroleum-based, which is influenced by the shrinking C5 supply, while the natural emission of isoprene is predominantly contributed by plants. To bridge the need gap, a highly efficient fermentation-based process for isoprene production might be a suitable and sustainable solution, and extensive research works have been performed to achieve this goal. Here we review the accomplishments in this field by summarizing the history and prospects of microbial isoprene production. The natural producers and biosynthesis pathways of isoprene, the key enzyme isoprene synthase and the metabolic engineering strategies adopted for developing isoprene-producing microorganisms are introduced. In particular, strategies employed for achieving engineered strains with improved performance indices are discussed based on the published papers and patents. The perspectives on further performance improvements and potential future strategies are presented as well. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Increased titer and reduced lactate accumulation in recombinant retrovirus production through the down-regulation of HIF1 and PDK.

    PubMed

    Rodrigues, A F; Guerreiro, M R; Formas-Oliveira, A S; Fernandes, P; Blechert, A-K; Genzel, Y; Alves, P M; Hu, W S; Coroadinha, A S

    2016-01-01

    Many mammalian cell lines used in the manufacturing of biopharmaceuticals exhibit high glycolytic flux predominantly channeled to the production of lactate. The accumulation of lactate in culture reduces cell viability and may also decrease product quality. In this work, we engineered a HEK 293 derived cell line producing a recombinant gene therapy retroviral vector, by down-regulating hypoxia inducible factor 1 (HIF1) and pyruvate dehydrogenase kinase (PDK). Specific productivity of infectious viral titers could be increased more than 20-fold for single gene knock-down (HIF1 or PDK) and more than 30-fold under combined down-regulation. Lactate production was reduced up to 4-fold. However, the reduction in lactate production, alone, was not sufficient to enhance the titer: high-titer clones also showed significant enrollment of metabolic routes not related to lactate production. Transcriptome analysis indicated activation of biological amines metabolism, detoxification routes, including glutathione metabolism, pentose phosphate pathway, glycogen biosynthesis and amino acid catabolism. The latter were validated by enzyme activity assays and metabolite profiling, respectively. High-titer clones also presented substantially increased transcript levels of the viral genes expression cassettes. The results herein presented demonstrate the impact of HIF1 and PDK down-regulation on the production performance of a mammalian cell line, reporting one of the highest fold-increase in specific productivity of infectious virus titers achieved by metabolic engineering. They additionally highlight the contribution of secondary pathways, beyond those related to lactate production, that can be also explored to pursue improved metabolic status favoring a high-producing phenotype. © 2015 Wiley Periodicals, Inc.

  1. A Systems Biology View of Responses to Lignin Biosynthesis Perturbations in Arabidopsis[W

    PubMed Central

    Vanholme, Ruben; Storme, Véronique; Vanholme, Bartel; Sundin, Lisa; Christensen, Jørgen Holst; Goeminne, Geert; Halpin, Claire; Rohde, Antje; Morreel, Kris; Boerjan, Wout

    2012-01-01

    Lignin engineering is an attractive strategy to improve lignocellulosic biomass quality for processing to biofuels and other bio-based products. However, lignin engineering also results in profound metabolic consequences in the plant. We used a systems biology approach to study the plant’s response to lignin perturbations. To this end, inflorescence stems of 20 Arabidopsis thaliana mutants, each mutated in a single gene of the lignin biosynthetic pathway (phenylalanine ammonia-lyase1 [PAL1], PAL2, cinnamate 4-hydroxylase [C4H], 4-coumarate:CoA ligase1 [4CL1], 4CL2, caffeoyl-CoA O-methyltransferase1 [CCoAOMT1], cinnamoyl-CoA reductase1 [CCR1], ferulate 5-hydroxylase [F5H1], caffeic acid O-methyltransferase [COMT], and cinnamyl alcohol dehydrogenase6 [CAD6], two mutant alleles each), were analyzed by transcriptomics and metabolomics. A total of 566 compounds were detected, of which 187 could be tentatively identified based on mass spectrometry fragmentation and many were new for Arabidopsis. Up to 675 genes were differentially expressed in mutants that did not have any obvious visible phenotypes. Comparing the responses of all mutants indicated that c4h, 4cl1, ccoaomt1, and ccr1, mutants that produced less lignin, upregulated the shikimate, methyl-donor, and phenylpropanoid pathways (i.e., the pathways supplying the monolignols). By contrast, f5h1 and comt, mutants that provoked lignin compositional shifts, downregulated the very same pathways. Reductions in the flux to lignin were associated with the accumulation of various classes of 4-O- and 9-O-hexosylated phenylpropanoids. By combining metabolomic and transcriptomic data in a correlation network, system-wide consequences of the perturbations were revealed and genes with a putative role in phenolic metabolism were identified. Together, our data provide insight into lignin biosynthesis and the metabolic network it is embedded in and provide a systems view of the plant’s response to pathway perturbations. PMID:23012438

  2. Pathway engineering of Enterobacter aerogenes to improve acetoin production by reducing by-products formation.

    PubMed

    Jang, Ji-Woong; Jung, Hwi-Min; Im, Dae-Kyun; Jung, Moo-Young; Oh, Min-Kyu

    2017-11-01

    Enterobacter aerogenes was metabolically engineered for acetoin production. To remove the pathway enzymes that catalyzed the formation of by-products, the three genes encoding a lactate dehydrogenase (ldhA) and two 2,3-butanediol dehydrogenases (budC, and dhaD), respectively, were deleted from the genome. The acetoin production was higher under highly aerobic conditions. However, an extracellular glucose oxidative pathway in E. aerogenes was activated under the aerobic conditions, resulting in the accumulation of 2-ketogluconate. To decrease the accumulation of this by-product, the gene encoding a glucose dehydrogenase (gcd) was also deleted. The resulting strain did not produce 2-ketogluconate but produced significant amounts of acetoin, with concentration reaching 71.7g/L with 2.87g/L/h productivity in fed-batch fermentation. This result demonstrated the importance of blocking the glucose oxidative pathway under highly aerobic conditions for acetoin production using E. aerogenes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Zymomonas mobilis: a novel platform for future biorefineries.

    PubMed

    He, Ming Xiong; Wu, Bo; Qin, Han; Ruan, Zhi Yong; Tan, Fu Rong; Wang, Jing Li; Shui, Zong Xia; Dai, Li Chun; Zhu, Qi Li; Pan, Ke; Tang, Xiao Yu; Wang, Wen Guo; Hu, Qi Chun

    2014-01-01

    Biosynthesis of liquid fuels and biomass-based building block chemicals from microorganisms have been regarded as a competitive alternative route to traditional. Zymomonas mobilis possesses a number of desirable characteristics for its special Entner-Doudoroff pathway, which makes it an ideal platform for both metabolic engineering and commercial-scale production of desirable bio-products as the same as Escherichia coli and Saccharomyces cerevisiae based on consideration of future biomass biorefinery. Z. mobilis has been studied extensively on both fundamental and applied level, which will provide a basis for industrial biotechnology in the future. Furthermore, metabolic engineering of Z. mobilis for enhancing bio-ethanol production from biomass resources has been significantly promoted by different methods (i.e. mutagenesis, adaptive laboratory evolution, specific gene knock-out, and metabolic engineering). In addition, the feasibility of representative metabolites, i.e. sorbitol, bionic acid, levan, succinic acid, isobutanol, and isobutanol produced by Z. mobilis and the strategies for strain improvements are also discussed or highlighted in this paper. Moreover, this review will present some guidelines for future developments in the bio-based chemical production using Z. mobilis as a novel industrial platform for future biofineries.

  4. Engineering electron metabolism to increase ethanol production in Clostridium thermocellum.

    PubMed

    Lo, Jonathan; Olson, Daniel G; Murphy, Sean Jean-Loup; Tian, Liang; Hon, Shuen; Lanahan, Anthony; Guss, Adam M; Lynd, Lee R

    2017-01-01

    The NfnAB (NADH-dependent reduced ferredoxin: NADP + oxidoreductase) and Rnf (ion-translocating reduced ferredoxin: NAD + oxidoreductase) complexes are thought to catalyze electron transfer between reduced ferredoxin and NAD(P) + . Efficient electron flux is critical for engineering fuel production pathways, but little is known about the relative importance of these enzymes in vivo. In this study we investigate the importance of the NfnAB and Rnf complexes in Clostridium thermocellum for growth on cellobiose and Avicel using gene deletion, enzyme assays, and fermentation product analysis. The NfnAB complex does not seem to play a major role in metabolism, since deletion of nfnAB genes had little effect on the distribution of fermentation products. By contrast, the Rnf complex appears to play an important role in ethanol formation. Deletion of rnf genes resulted in a decrease in ethanol formation. Overexpression of rnf genes resulted in an increase in ethanol production of about 30%, but only in strains where the hydG hydrogenase maturation gene was also deleted. Copyright © 2016 International Metabolic Engineering Society. All rights reserved.

  5. Genome engineering for improved recombinant protein expression in Escherichia coli.

    PubMed

    Mahalik, Shubhashree; Sharma, Ashish K; Mukherjee, Krishna J

    2014-12-19

    A metabolic engineering perspective which views recombinant protein expression as a multistep pathway allows us to move beyond vector design and identify the downstream rate limiting steps in expression. In E.coli these are typically at the translational level and the supply of precursors in the form of energy, amino acids and nucleotides. Further recombinant protein production triggers a global cellular stress response which feedback inhibits both growth and product formation. Countering this requires a system level analysis followed by a rational host cell engineering to sustain expression for longer time periods. Another strategy to increase protein yields could be to divert the metabolic flux away from biomass formation and towards recombinant protein production. This would require a growth stoppage mechanism which does not affect the metabolic activity of the cell or the transcriptional or translational efficiencies. Finally cells have to be designed for efficient export to prevent buildup of proteins inside the cytoplasm and also simplify downstream processing. The rational and the high throughput strategies that can be used for the construction of such improved host cell platforms for recombinant protein expression is the focus of this review.

  6. Challenges and Advances for Genetic Engineering of Non-model Bacteria and Uses in Consolidated Bioprocessing

    PubMed Central

    Yan, Qiang; Fong, Stephen S.

    2017-01-01

    Metabolic diversity in microorganisms can provide the basis for creating novel biochemical products. However, most metabolic engineering projects utilize a handful of established model organisms and thus, a challenge for harnessing the potential of novel microbial functions is the ability to either heterologously express novel genes or directly utilize non-model organisms. Genetic manipulation of non-model microorganisms is still challenging due to organism-specific nuances that hinder universal molecular genetic tools and translatable knowledge of intracellular biochemical pathways and regulatory mechanisms. However, in the past several years, unprecedented progress has been made in synthetic biology, molecular genetics tools development, applications of omics data techniques, and computational tools that can aid in developing non-model hosts in a systematic manner. In this review, we focus on concerns and approaches related to working with non-model microorganisms including developing molecular genetics tools such as shuttle vectors, selectable markers, and expression systems. In addition, we will discuss: (1) current techniques in controlling gene expression (transcriptional/translational level), (2) advances in site-specific genome engineering tools [homologous recombination (HR) and clustered regularly interspaced short palindromic repeats (CRISPR)], and (3) advances in genome-scale metabolic models (GSMMs) in guiding design of non-model species. Application of these principles to metabolic engineering strategies for consolidated bioprocessing (CBP) will be discussed along with some brief comments on foreseeable future prospects. PMID:29123506

  7. Non-photosynthetic plastids as hosts for metabolic engineering.

    PubMed

    Mellor, Silas Busck; Behrendorff, James B Y H; Nielsen, Agnieszka Zygadlo; Jensen, Poul Erik; Pribil, Mathias

    2018-04-13

    Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most unexploited plant-specific resource. Plant cells contain organelles called plastids that retain their own genome, harbour unique biosynthetic pathways and differentiate into distinct plastid types upon environmental and developmental cues. Chloroplasts, the plastid type hosting the photosynthetic processes in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis and storage of particular classes of compounds, might prove more suitable for engineering the production and storage of non-native metabolites without affecting plant fitness. This review provides the current state of knowledge on the molecular mechanisms involved in plastid differentiation and focuses on non-photosynthetic plastids as alternative biotechnological platforms for metabolic engineering. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Metabolomic response of a marine bacterium to 3,6-anhydro-l-galactose, the rare sugar from red macroalgae, as the sole carbon source.

    PubMed

    Yun, Eun Ju; Yu, Sora; Kim, Sooah; Kim, Kyoung Heon

    2018-03-20

    Marine red macroalgae have received much attention as sustainable resources for producing bio-based products. Therefore, understanding the metabolic pathways of carbohydrates from red macroalgae, in fermentative microorganisms, is crucial for efficient bioconversion of the carbohydrates into bio-based products. Recently, the novel catabolic pathway of 3,6-anhydro-l-galactose (AHG), the main component of red macroalgae, was discovered in a marine bacterium, Vibrio sp. strain EJY3. However, the global metabolic network in response to AHG remains unclear. Here, the intracellular metabolites of EJY3 grown on AHG, glucose, or galactose were comparatively profiled using gas chromatography/time-of-flight mass spectrometry. The global metabolite profiling results revealed that the metabolic profile for AHG significantly differed from those for other common sugars. Specifically, the metabolic intermediate of the AHG pathway, 3,6-anhydrogalactonate, was detected during growth only in the presence of AHG; thus, the recently discovered key steps in AHG catabolism was found not to occur in the catabolism of other common sugars. Moreover, the levels of metabolic intermediates related to glycerolipid metabolism and valine biosynthesis were higher with AHG than those with other sugars. These comprehensive metabolomic analytical results for AHG in this marine bacterium can be used as the basis for having fermentative microbial strains to engineered to efficiently utilize AHG from macroalgal biomass. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Engineering of protein folding and secretion-strategies to overcome bottlenecks for efficient production of recombinant proteins.

    PubMed

    Delic, Marizela; Göngrich, Rebecca; Mattanovich, Diethard; Gasser, Brigitte

    2014-07-20

    Recombinant protein production has developed into a huge market with enormous positive implications for human health and for the future direction of a biobased economy. Limitations in the economic and technical feasibility of production processes are often related to bottlenecks of in vivo protein folding. Based on cell biological knowledge, some major bottlenecks have been overcome by the overexpression of molecular chaperones and other folding related proteins, or by the deletion of deleterious pathways that may lead to misfolding, mistargeting, or degradation. While important success could be achieved by this strategy, the list of reported unsuccessful cases is disappointingly long and obviously dependent on the recombinant protein to be produced. Singular engineering of protein folding steps may not lead to desired results if the pathway suffers from several limitations. In particular, the connection between folding quality control and proteolytic degradation needs further attention. Based on recent understanding that multiple steps in the folding and secretion pathways limit productivity, synergistic combinations of the cell engineering approaches mentioned earlier need to be explored. In addition, systems biology-based whole cell analysis that also takes energy and redox metabolism into consideration will broaden the knowledge base for future rational engineering strategies.

  10. Leucine zipper-mediated targeting of multi-enzyme cascade reactions to inclusion bodies in Escherichia coli for enhanced production of 1-butanol.

    PubMed

    Han, Gui Hwan; Seong, Wonjae; Fu, Yaoyao; Yoon, Paul K; Kim, Seong Keun; Yeom, Soo-Jin; Lee, Dae-Hee; Lee, Seung-Goo

    2017-03-01

    Metabolons in nature have evolved to facilitate more efficient catalysis of multistep reactions through the co-localization of functionally related enzymes to cellular organelles or membrane structures. To mimic the natural metabolon architecture, we present a novel artificial metabolon that was created by targeting multi-enzyme cascade reactions onto inclusion body (IB) in Escherichia coli. The utility of this system was examined by co-localizing four heterologous enzymes of the 1-butanol pathway onto an IB that was formed in E. coli through overexpression of the cellulose binding domain (CBD) of Cellulomonas fimi exoglucanase. To target the 1-butanol pathway enzymes to the CBD IB, we utilized a peptide-peptide interaction between leucine zipper (LZ) peptides. We genetically fused the LZ peptide to the N-termini of four heterologous genes involved in the synthetic 1-butanol pathway, whereas an antiparallel LZ peptide was fused to the CBD gene. The in vivo activity of the CBD IB-based metabolon was examined through the determination of 1-butanol synthesis using E. coli transformed with two plasmids containing the LZ-fused CBD and LZ-fused 1-butanol pathway genes, respectively. In vivo synthesis of 1-butanol using the engineered E. coli yielded 1.98g/L of 1-butanol from glucose, representing a 1.5-fold increase over that obtained from E. coli expressing the LZ-fused 1-butanol pathway genes alone. In an attempt to examine the in vitro 1-butanol productivity, we reconstituted CBD IB-based metabolon using CBD IB and individual enzymes of 1-butanol pathway. The 1-butanol productivity of in vitro reconstituted CBD IB-based metabolon using acetoacetyl-CoA as the starting material was 2.29mg/L/h, 7.9-fold higher than that obtained from metabolon-free enzymes of 1-butanol pathway. Therefore, this novel CBD-based artificial metabolon may prove useful in metabolic engineering both in vivo and in vitro for the efficient production of desired products. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Systematic engineering of pentose phosphate pathway improves Escherichia coli succinate production.

    PubMed

    Tan, Zaigao; Chen, Jing; Zhang, Xueli

    2016-01-01

    Succinate biosynthesis of Escherichia coli is reducing equivalent-dependent and the EMP pathway serves as the primary reducing equivalent source under anaerobic condition. Compared with EMP, pentose phosphate pathway (PPP) is reducing equivalent-conserving but suffers from low efficacy. In this study, the ribosome binding site library and modified multivariate modular metabolic engineering (MMME) approaches are employed to overcome the low efficacy of PPP and thus increase succinate production. Altering expression levels of different PPP enzymes have distinct effects on succinate production. Specifically, increased expression of five enzymes, i.e., Zwf, Pgl, Gnd, Tkt, and Tal, contributes to increased succinate production, while the increased expression of two enzymes, i.e., Rpe and Rpi, significantly decreases succinate production. Modular engineering strategy is employed to decompose PPP into three modules according to position and function. Engineering of Zwf/Pgl/Gnd and Tkt/Tal modules effectively increases succinate yield and production, while engineering of Rpe/Rpi module decreases. Imbalance of enzymatic reactions in PPP is alleviated using MMME approach. Finally, combinational utilization of engineered PPP and SthA transhydrogenase enables succinate yield up to 1.61 mol/mol glucose, which is 94% of theoretical maximum yield (1.71 mol/mol) and also the highest succinate yield in minimal medium to our knowledge. In summary, we systematically engineered the PPP for improving the supply of reducing equivalents and thus succinate production. Besides succinate, these PPP engineering strategies and conclusions can also be applicable to the production of other reducing equivalent-dependent biorenewables.

  12. Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae

    PubMed Central

    2011-01-01

    Background The robustness of Saccharomyces cerevisiae in facilitating industrial-scale production of ethanol extends its utilization as a platform to synthesize other metabolites. Metabolic engineering strategies, typically via pathway overexpression and deletion, continue to play a key role for optimizing the conversion efficiency of substrates into the desired products. However, chemical production titer or yield remains difficult to predict based on reaction stoichiometry and mass balance. We sampled a large space of data of chemical production from S. cerevisiae, and developed a statistics-based model to calculate production yield using input variables that represent the number of enzymatic steps in the key biosynthetic pathway of interest, metabolic modifications, cultivation modes, nutrition and oxygen availability. Results Based on the production data of about 40 chemicals produced from S. cerevisiae, metabolic engineering methods, nutrient supplementation, and fermentation conditions described therein, we generated mathematical models with numerical and categorical variables to predict production yield. Statistically, the models showed that: 1. Chemical production from central metabolic precursors decreased exponentially with increasing number of enzymatic steps for biosynthesis (>30% loss of yield per enzymatic step, P-value = 0); 2. Categorical variables of gene overexpression and knockout improved product yield by 2~4 folds (P-value < 0.1); 3. Addition of notable amount of intermediate precursors or nutrients improved product yield by over five folds (P-value < 0.05); 4. Performing the cultivation in a well-controlled bioreactor enhanced the yield of product by three folds (P-value < 0.05); 5. Contribution of oxygen to product yield was not statistically significant. Yield calculations for various chemicals using the linear model were in fairly good agreement with the experimental values. The model generally underestimated the ethanol production as compared to other chemicals, which supported the notion that the metabolism of Saccharomyces cerevisiae has historically evolved for robust alcohol fermentation. Conclusions We generated simple mathematical models for first-order approximation of chemical production yield from S. cerevisiae. These linear models provide empirical insights to the effects of strain engineering and cultivation conditions toward biosynthetic efficiency. These models may not only provide guidelines for metabolic engineers to synthesize desired products, but also be useful to compare the biosynthesis performance among different research papers. PMID:21689458

  13. Microbial synthesis of medium-chain chemicals from renewables.

    PubMed

    Sarria, Stephen; Kruyer, Nicholas S; Peralta-Yahya, Pamela

    2017-12-01

    Linear, medium-chain (C8-C12) hydrocarbons are important components of fuels as well as commodity and specialty chemicals. As industrial microbes do not contain pathways to produce medium-chain chemicals, approaches such as overexpression of endogenous enzymes or deletion of competing pathways are not available to the metabolic engineer; instead, fatty acid synthesis and reversed β-oxidation are manipulated to synthesize medium-chain chemical precursors. Even so, chain lengths remain difficult to control, which means that purification must be used to obtain the desired products, titers of which are typically low and rarely exceed milligrams per liter. By engineering the substrate specificity and activity of the pathway enzymes that generate the fatty acyl intermediates and chain-tailoring enzymes, researchers can boost the type and yield of medium-chain chemicals. Development of technologies to both manipulate chain-tailoring enzymes and to assay for products promises to enable the generation of g/L yields of medium-chain chemicals.

  14. Integration and Validation of the Genome-Scale Metabolic Models of Pichia pastoris: A Comprehensive Update of Protein Glycosylation Pathways, Lipid and Energy Metabolism

    PubMed Central

    Tomàs-Gamisans, Màrius; Ferrer, Pau; Albiol, Joan

    2016-01-01

    Motivation Genome-scale metabolic models (GEMs) are tools that allow predicting a phenotype from a genotype under certain environmental conditions. GEMs have been developed in the last ten years for a broad range of organisms, and are used for multiple purposes such as discovering new properties of metabolic networks, predicting new targets for metabolic engineering, as well as optimizing the cultivation conditions for biochemicals or recombinant protein production. Pichia pastoris is one of the most widely used organisms for heterologous protein expression. There are different GEMs for this methylotrophic yeast of which the most relevant and complete in the published literature are iPP668, PpaMBEL1254 and iLC915. However, these three models differ regarding certain pathways, terminology for metabolites and reactions and annotations. Moreover, GEMs for some species are typically built based on the reconstructed models of related model organisms. In these cases, some organism-specific pathways could be missing or misrepresented. Results In order to provide an updated and more comprehensive GEM for P. pastoris, we have reconstructed and validated a consensus model integrating and merging all three existing models. In this step a comprehensive review and integration of the metabolic pathways included in each one of these three versions was performed. In addition, the resulting iMT1026 model includes a new description of some metabolic processes. Particularly new information described in recently published literature is included, mainly related to fatty acid and sphingolipid metabolism, glycosylation and cell energetics. Finally the reconstructed model was tested and validated, by comparing the results of the simulations with available empirical physiological datasets results obtained from a wide range of experimental conditions, such as different carbon sources, distinct oxygen availability conditions, as well as producing of two different recombinant proteins. In these simulations, the iMT1026 model has shown a better performance than the previous existing models. PMID:26812499

  15. Integration and Validation of the Genome-Scale Metabolic Models of Pichia pastoris: A Comprehensive Update of Protein Glycosylation Pathways, Lipid and Energy Metabolism.

    PubMed

    Tomàs-Gamisans, Màrius; Ferrer, Pau; Albiol, Joan

    2016-01-01

    Genome-scale metabolic models (GEMs) are tools that allow predicting a phenotype from a genotype under certain environmental conditions. GEMs have been developed in the last ten years for a broad range of organisms, and are used for multiple purposes such as discovering new properties of metabolic networks, predicting new targets for metabolic engineering, as well as optimizing the cultivation conditions for biochemicals or recombinant protein production. Pichia pastoris is one of the most widely used organisms for heterologous protein expression. There are different GEMs for this methylotrophic yeast of which the most relevant and complete in the published literature are iPP668, PpaMBEL1254 and iLC915. However, these three models differ regarding certain pathways, terminology for metabolites and reactions and annotations. Moreover, GEMs for some species are typically built based on the reconstructed models of related model organisms. In these cases, some organism-specific pathways could be missing or misrepresented. In order to provide an updated and more comprehensive GEM for P. pastoris, we have reconstructed and validated a consensus model integrating and merging all three existing models. In this step a comprehensive review and integration of the metabolic pathways included in each one of these three versions was performed. In addition, the resulting iMT1026 model includes a new description of some metabolic processes. Particularly new information described in recently published literature is included, mainly related to fatty acid and sphingolipid metabolism, glycosylation and cell energetics. Finally the reconstructed model was tested and validated, by comparing the results of the simulations with available empirical physiological datasets results obtained from a wide range of experimental conditions, such as different carbon sources, distinct oxygen availability conditions, as well as producing of two different recombinant proteins. In these simulations, the iMT1026 model has shown a better performance than the previous existing models.

  16. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering.

    PubMed

    Ninh, Pham Huynh; Honda, Kohsuke; Sakai, Takaaki; Okano, Kenji; Ohtake, Hisao

    2015-01-01

    In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively. © 2014 Wiley Periodicals, Inc.

  17. Transhydrogenase Promotes the Robustness and Evolvability of E. coli Deficient in NADPH Production

    PubMed Central

    Chou, Hsin-Hung; Marx, Christopher J.; Sauer, Uwe

    2015-01-01

    Metabolic networks revolve around few metabolites recognized by diverse enzymes and involved in myriad reactions. Though hub metabolites are considered as stepping stones to facilitate the evolutionary expansion of biochemical pathways, changes in their production or consumption often impair cellular physiology through their system-wide connections. How does metabolism endure perturbations brought immediately by pathway modification and restore hub homeostasis in the long run? To address this question we studied laboratory evolution of pathway-engineered Escherichia coli that underproduces the redox cofactor NADPH on glucose. Literature suggests multiple possibilities to restore NADPH homeostasis. Surprisingly, genetic dissection of isolates from our twelve evolved populations revealed merely two solutions: (1) modulating the expression of membrane-bound transhydrogenase (mTH) in every population; (2) simultaneously consuming glucose with acetate, an unfavored byproduct normally excreted during glucose catabolism, in two subpopulations. Notably, mTH displays broad phylogenetic distribution and has also played a predominant role in laboratory evolution of Methylobacterium extorquens deficient in NADPH production. Convergent evolution of two phylogenetically and metabolically distinct species suggests mTH as a conserved buffering mechanism that promotes the robustness and evolvability of metabolism. Moreover, adaptive diversification via evolving dual substrate consumption highlights the flexibility of physiological systems to exploit ecological opportunities. PMID:25715029

  18. Study of the role of anaerobic metabolism in succinate production by Enterobacter aerogenes.

    PubMed

    Tajima, Yoshinori; Kaida, Kenichi; Hayakawa, Atsushi; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Fudou, Ryosuke; Matsui, Kazuhiko; Usuda, Yoshihiro; Sode, Koji

    2014-09-01

    Succinate is a core biochemical building block; optimizing succinate production from biomass by microbial fermentation is a focus of basic and applied biotechnology research. Lowering pH in anaerobic succinate fermentation culture is a cost-effective and environmentally friendly approach to reducing the use of sub-raw materials such as alkali, which are needed for neutralization. To evaluate the potential of bacteria-based succinate fermentation under weak acidic (pH <6.2) and anaerobic conditions, we characterized the anaerobic metabolism of Enterobacter aerogenes AJ110637, which rapidly assimilates glucose at pH 5.0. Based on the profile of anaerobic products, we constructed single-gene knockout mutants to eliminate the main anaerobic metabolic pathways involved in NADH re-oxidation. These single-gene knockout studies showed that the ethanol synthesis pathway serves as the dominant NADH re-oxidation pathway in this organism. To generate a metabolically engineered strain for succinate production, we eliminated ethanol formation and introduced a heterogeneous carboxylation enzyme, yielding E. aerogenes strain ΔadhE/PCK. The strain produced succinate from glucose with a 60.5% yield (grams of succinate produced per gram of glucose consumed) at pH <6.2 and anaerobic conditions. Thus, we showed the potential of bacteria-based succinate fermentation under weak acidic conditions.

  19. Effects of a cocaine hydrolase engineered from human butyrylcholinesterase on metabolic profile of cocaine in rats.

    PubMed

    Chen, Xiabin; Zheng, Xirong; Zhou, Ziyuan; Zhan, Chang-Guo; Zheng, Fang

    2016-11-25

    Accelerating cocaine metabolism through enzymatic hydrolysis at cocaine benzoyl ester is recognized as a promising therapeutic approach for cocaine abuse treatment. Our more recently designed A199S/F227A/S287G/A328W/Y332G mutant of human BChE, denoted as cocaine hydrolase-3 (CocH3), has a considerably improved catalytic efficiency against cocaine and has been proven active in blocking cocaine-induced toxicity and physiological effects. In the present study, we have further characterized the effects of CocH3 on the detailed metabolic profile of cocaine in rats administrated intravenously (IV) with 5 mg/kg cocaine, demonstrating that IV administration of 0.15 mg/kg CocH3 dramatically changed the metabolic profile of cocaine. Without CocH3 administration, the dominant cocaine-metabolizing pathway in rats was cocaine methyl ester hydrolysis to benzoylecgonine (BZE). With the CocH3 administration, the dominant cocaine-metabolizing pathway in rats became cocaine benzoyl ester hydrolysis to ecgonine methyl ester (EME), and the other two metabolic pathways (i.e. cocaine methyl ester hydrolysis to BZE and cocaine oxidation to norcocaine) became insignificant. The CocH3-catalyzed cocaine benzoyl ester hydrolysis to EME was so efficient such that the measured maximum blood cocaine concentration (∼38 ng/ml) was significantly lower than the threshold blood cocaine concentration (∼72 ng/ml) required to produce any measurable physiological effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae.

    PubMed

    Li, Mingji; Borodina, Irina

    2015-02-01

    Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof-of-concept chemicals have been made in yeast, only a very small fraction of those has reached commercial-scale production so far. The limiting factor is the high research cost associated with the development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae We describe computational tools for the prediction of biochemical pathways, molecular biology methods for assembly of DNA parts into pathways, and for introducing the pathways into the host, and finally approaches for optimizing performance of the introduced pathways. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  1. Production of caffeoylmalic acid from glucose in engineered Escherichia coli.

    PubMed

    Li, Tianzhen; Zhou, Wei; Bi, Huiping; Zhuang, Yibin; Zhang, Tongcun; Liu, Tao

    2018-07-01

    To achieve biosynthesis of caffeoylmalic acid from glucose in engineered Escherichia coli. We constructed the biosynthetic pathway of caffeoylmalic acid in E. coli by co-expression of heterologous genes RgTAL, HpaBC, At4CL2 and HCT2. To enhance the production of caffeoylmalic acid, we optimized the tyrosine metabolic pathway of E. coli to increase the supply of the substrate caffeic acid. Consequently, an E. coli-E. coli co-culture system was used for the efficient production of caffeoylmalic acid. The final titer of caffeoylmalic acid reached 570.1 mg/L. Microbial production of caffeoylmalic acid using glucose has application potential. In addition, microbial co-culture is an efficient tool for producing caffeic acid esters.

  2. Engineering isoprene synthesis in cyanobacteria.

    PubMed

    Chaves, Julie E; Melis, Anastasios

    2018-04-24

    The renewable production of isoprene (Isp) hydrocarbons, to serve as fuel and synthetic chemistry feedstock, has attracted interest in the field recently. Isp (C 5 H 8 ) is naturally produced from sunlight, CO 2 and H 2 O photosynthetically in terrestrial plant chloroplasts via the terpenoid biosynthetic pathway and emitted in the atmosphere as a response to heat stress. Efforts to institute a high capacity continuous and renewable process have included heterologous expression of the Isp synthesis pathway in photosynthetic microorganisms. This review examines the premise and promise emanating from this relatively new research effort. Also examined are the metabolic engineering approaches applied in the quest of renewable Isp hydrocarbons production, the progress achieved so far, and barriers encountered along the way. © 2018 Federation of European Biochemical Societies.

  3. Metabolic engineering of Klebsiella pneumoniae for the de novo production of 2-butanol as a potential biofuel.

    PubMed

    Chen, Zhen; Wu, Yao; Huang, Jinhai; Liu, Dehua

    2015-12-01

    Butanol isomers are important bulk chemicals and promising fuel substitutes. The inevitable toxicity of n-butanol and isobutanol to microbial cells hinders their final titers. In this study, we attempt to engineer Klebsiella pneumoniae for the de novo production of 2-butanol, another butanol isomer which shows lower toxicity than n-butanol and isobutanol. 2-Butanol synthesis was realized by the extension of the native meso-2,3-butanediol synthesis pathway with the introduction of diol dehydratase and secondary alcohol dehydrogenase. By the screening of different secondary alcohol dehydrogenases and diol dehydratases, 320mg/L of 2-butanol was produced by the best engineered K. pneumoniae. The production was increased to 720mg/L by knocking out the ldhA gene and appropriate addition of coenzyme B12. Further improvement of 2-butanol to 1030mg/L was achieved by protein engineering of diol dehydratase. This work lays the basis for the metabolic engineering of microorganism for the production of 2-butanol as potential biofuel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Engineering redox homeostasis to develop efficient alcohol-producing microbial cell factories.

    PubMed

    Zhao, Chunhua; Zhao, Qiuwei; Li, Yin; Zhang, Yanping

    2017-06-24

    The biosynthetic pathways of most alcohols are linked to intracellular redox homeostasis, which is crucial for life. This crucial balance is primarily controlled by the generation of reducing equivalents, as well as the (reduction)-oxidation metabolic cycle and the thiol redox homeostasis system. As a main oxidation pathway of reducing equivalents, the biosynthesis of most alcohols includes redox reactions, which are dependent on cofactors such as NADH or NADPH. Thus, when engineering alcohol-producing strains, the availability of cofactors and redox homeostasis must be considered. In this review, recent advances on the engineering of cellular redox homeostasis systems to accelerate alcohol biosynthesis are summarized. Recent approaches include improving cofactor availability, manipulating the affinity of redox enzymes to specific cofactors, as well as globally controlling redox reactions, indicating the power of these approaches, and opening a path towards improving the production of a number of different industrially-relevant alcohols in the near future.

  5. Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Eric J.; Burton, Rodney; Mahalik, Jyoti P.

    As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as “building blocks” for a rangemore » of customized intracellular scaffolds. As a result, we summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering.« less

  6. Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications

    DOE PAGES

    Young, Eric J.; Burton, Rodney; Mahalik, Jyoti P.; ...

    2017-07-31

    As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as “building blocks” for a rangemore » of customized intracellular scaffolds. As a result, we summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering.« less

  7. Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications

    PubMed Central

    Young, Eric J.; Burton, Rodney; Mahalik, Jyoti P.; Sumpter, Bobby G.; Fuentes-Cabrera, Miguel; Kerfeld, Cheryl A.; Ducat, Daniel C.

    2017-01-01

    As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as “building blocks” for a range of customized intracellular scaffolds. We summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering. PMID:28824573

  8. Plant synthetic biology for molecular engineering of signalling and development.

    PubMed

    Nemhauser, Jennifer L; Torii, Keiko U

    2016-03-02

    Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.

  9. Engineered Respiro-Fermentative Metabolism for the Production of Biofuels and Biochemicals from Fatty Acid-Rich Feedstocks▿ †

    PubMed Central

    Dellomonaco, Clementina; Rivera, Carlos; Campbell, Paul; Gonzalez, Ramon

    2010-01-01

    Although lignocellulosic sugars have been proposed as the primary feedstock for the biological production of renewable fuels and chemicals, the availability of fatty acid (FA)-rich feedstocks and recent progress in the development of oil-accumulating organisms make FAs an attractive alternative. In addition to their abundance, the metabolism of FAs is very efficient and could support product yields significantly higher than those obtained from lignocellulosic sugars. However, FAs are metabolized only under respiratory conditions, a metabolic mode that does not support the synthesis of fermentation products. In the work reported here we engineered several native and heterologous fermentative pathways to function in Escherichia coli under aerobic conditions, thus creating a respiro-fermentative metabolic mode that enables the efficient synthesis of fuels and chemicals from FAs. Representative biofuels (ethanol and butanol) and biochemicals (acetate, acetone, isopropanol, succinate, and propionate) were chosen as target products to illustrate the feasibility of the proposed platform. The yields of ethanol, acetate, and acetone in the engineered strains exceeded those reported in the literature for their production from sugars, and in the cases of ethanol and acetate they also surpassed the maximum theoretical values that can be achieved from lignocellulosic sugars. Butanol was produced at yields and titers that were between 2- and 3-fold higher than those reported for its production from sugars in previously engineered microorganisms. Moreover, our work demonstrates production of propionate, a compound previously thought to be synthesized only by propionibacteria, in E. coli. Finally, the synthesis of isopropanol and succinate was also demonstrated. The work reported here represents the first effort toward engineering microorganisms for the conversion of FAs to the aforementioned products. PMID:20525863

  10. Metabolic Flux Between Unsaturated and Saturated Fatty Acids is Controlled by the FabA:FabB Ratio in the Fully Reconstituted Fatty Acid Biosynthetic Pathway of E. coli#

    PubMed Central

    Xiao, Xirui; Yu, Xingye; Khosla, Chaitan

    2013-01-01

    The entire fatty acid biosynthetic pathway from Escherichia coli, starting from the acetyl-CoA carboxylase, has been reconstituted in vitro from fourteen purified protein components. Radiotracer analysis verified stoichiometric conversion of acetyl-CoA and NAD(P)H into the free fatty acid product, allowing implementation of a facile spectrophotometric assay for kinetic analysis of this multi-enzyme system. At steady state, a maximum turnover rate of 0.5 s−1 was achieved. Under optimal turnover conditions, the predominant products were C16 and C18 saturated as well as monounsaturated fatty acids. The reconstituted system allowed us to quantitatively interrogate the factors that influence metabolic flux toward unsaturated versus saturated fatty acids. In particular, the concentrations of the dehydratase FabA and the β-ketoacyl synthase FabB were found to be crucial for controlling this property. By altering these variables, the percentage of unsaturated fatty acid produced could be adjusted between 10 and 50% without significantly affecting the maximum turnover rate of the pathway. Our reconstituted system provides a powerful tool to understand and engineer rate-limiting and regulatory steps in this complex and practically significant metabolic pathway. PMID:24147979

  11. Synthetic and systems biology for microbial production of commodity chemicals.

    PubMed

    Chubukov, Victor; Mukhopadhyay, Aindrila; Petzold, Christopher J; Keasling, Jay D; Martín, Héctor García

    2016-01-01

    The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges start at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.

  12. Synthetic and systems biology for microbial production of commodity chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubukov, Victor; Mukhopadhyay, Aindrila; Petzold, Christopher J.

    The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges startmore » at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.« less

  13. Synthetic and systems biology for microbial production of commodity chemicals

    DOE PAGES

    Chubukov, Victor; Mukhopadhyay, Aindrila; Petzold, Christopher J.; ...

    2016-04-07

    The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges startmore » at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.« less

  14. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii.

    PubMed

    Boyle, Nanette R; Morgan, John A

    2009-01-07

    Photosynthetic organisms convert atmospheric carbon dioxide into numerous metabolites along the pathways to make new biomass. Aquatic photosynthetic organisms, which fix almost half of global inorganic carbon, have great potential: as a carbon dioxide fixation method, for the economical production of chemicals, or as a source for lipids and starch which can then be converted to biofuels. To harness this potential through metabolic engineering and to maximize production, a more thorough understanding of photosynthetic metabolism must first be achieved. A model algal species, C. reinhardtii, was chosen and the metabolic network reconstructed. Intracellular fluxes were then calculated using flux balance analysis (FBA). The metabolic network of primary metabolism for a green alga, C. reinhardtii, was reconstructed using genomic and biochemical information. The reconstructed network accounts for the intracellular localization of enzymes to three compartments and includes 484 metabolic reactions and 458 intracellular metabolites. Based on BLAST searches, one newly annotated enzyme (fructose-1,6-bisphosphatase) was added to the Chlamydomonas reinhardtii database. FBA was used to predict metabolic fluxes under three growth conditions, autotrophic, heterotrophic and mixotrophic growth. Biomass yields ranged from 28.9 g per mole C for autotrophic growth to 15 g per mole C for heterotrophic growth. The flux balance analysis model of central and intermediary metabolism in C. reinhardtii is the first such model for algae and the first model to include three metabolically active compartments. In addition to providing estimates of intracellular fluxes, metabolic reconstruction and modelling efforts also provide a comprehensive method for annotation of genome databases. As a result of our reconstruction, one new enzyme was annotated in the database and several others were found to be missing; implying new pathways or non-conserved enzymes. The use of FBA to estimate intracellular fluxes also provides flux values that can be used as a starting point for rational engineering of C. reinhardtii. From these initial estimates, it is clear that aerobic heterotrophic growth on acetate has a low yield on carbon, while mixotrophically and autotrophically grown cells are significantly more carbon efficient.

  15. 13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Amit; Ando, David; Gin, Jennifer

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for downregulation in terms of acetyl-CoA consumption. Thesemore » genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg/L of free fatty acids. With the addition of ATP citrate lyase and downregulation of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by ~70%.« less

  16. 13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids

    DOE PAGES

    Ghosh, Amit; Ando, David; Gin, Jennifer; ...

    2016-10-05

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for downregulation in terms of acetyl-CoA consumption. Thesemore » genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg/L of free fatty acids. With the addition of ATP citrate lyase and downregulation of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by ~70%.« less

  17. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals

    PubMed Central

    Xu, Peng; Qiao, Kangjian; Ahn, Woo Suk; Stephanopoulos, Gregory

    2016-01-01

    Harnessing lipogenic pathways and rewiring acyl-CoA and acyl-ACP (acyl carrier protein) metabolism in Yarrowia lipolytica hold great potential for cost-efficient production of diesel, gasoline-like fuels, and oleochemicals. Here we assessed various pathway engineering strategies in Y. lipolytica toward developing a yeast biorefinery platform for sustainable production of fuel-like molecules and oleochemicals. Specifically, acyl-CoA/acyl-ACP processing enzymes were targeted to the cytoplasm, peroxisome, or endoplasmic reticulum to generate fatty acid ethyl esters and fatty alkanes with tailored chain length. Activation of endogenous free fatty acids and the subsequent reduction of fatty acyl-CoAs enabled the efficient synthesis of fatty alcohols. Engineering a hybrid fatty acid synthase shifted the free fatty acids to a medium chain-length scale. Manipulation of alternative cytosolic acetyl-CoA pathways partially decoupled lipogenesis from nitrogen starvation and unleashed the lipogenic potential of Y. lipolytica. Taken together, the strategies reported here represent promising steps to develop a yeast biorefinery platform that potentially upgrades low-value carbons to high-value fuels and oleochemicals in a sustainable and environmentally friendly manner. PMID:27621436

  18. Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes.

    PubMed

    Vargas-Tah, Alejandra; Gosset, Guillermo

    2015-01-01

    The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement.

  19. Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes

    PubMed Central

    Vargas-Tah, Alejandra; Gosset, Guillermo

    2015-01-01

    The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement. PMID:26347861

  20. 13C-based metabolic flux analysis: fundamentals and practice.

    PubMed

    Yang, Tae Hoon

    2013-01-01

    Isotope-based metabolic flux analysis is one of the emerging technologies applied to system level metabolic phenotype characterization in metabolic engineering. Among the developed approaches, (13)C-based metabolic flux analysis has been established as a standard tool and has been widely applied to quantitative pathway characterization of diverse biological systems. To implement (13)C-based metabolic flux analysis in practice, comprehending the underlying mathematical and computational modeling fundamentals is of importance along with carefully conducted experiments and analytical measurements. Such knowledge is also crucial when designing (13)C-labeling experiments and properly acquiring key data sets essential for in vivo flux analysis implementation. In this regard, the modeling fundamentals of (13)C-labeling systems and analytical data processing are the main topics we will deal with in this chapter. Along with this, the relevant numerical optimization techniques are addressed to help implementation of the entire computational procedures aiming at (13)C-based metabolic flux analysis in vivo.

Top