Sample records for engineering nuclear technology

  1. An Historical Perspective of the NERVA Nuclear Rocket Engine Technology Program

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Finger, H. B.

    1991-01-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  2. Nuclear electric propulsion technologies - Overview of the NASA/DoE/DoD Nuclear Electric Propulsion Workshop

    NASA Technical Reports Server (NTRS)

    Barnett, John W.

    1991-01-01

    Nuclear propulsion technology offers substantial benefits to the ambitious piloted and robotic solar system exploration missions of the Space Exploration Initiative (SEI). This paper summarizes a workshop jointly sponsored by NASA, DoE, and DoD to assess candidate nuclear electric propulsion technologies. Twenty-one power and propulsion concepts are reviewed. Nuclear power concepts include solid and gaseous fuel concepts, with static and dynamic power conversion. Propulsion concepts include steady state and pulsed electromagnetic engines, a pulsed electrothermal engine, and a steady state electrostatic engine. The technologies vary widely in maturity. The workshop review panels concluded that compelling benefits would accrue from the development of nuclear electric propulsion systems, and that a focused, well-funded program is required to prepare the technologies for SEI missions.

  3. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    NASA Astrophysics Data System (ADS)

    Hamid, Nasri A.; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    2015-04-01

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO2 emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes the progress of teaching and learning in nuclear engineering and technology at UNITEN that include curriculum development, students' enrolment and performance, and teaching staff's human resource development.

  4. Current state of nuclear fuel cycles in nuclear engineering and trends in their development according to the environmental safety requirements

    NASA Astrophysics Data System (ADS)

    Vislov, I. S.; Pischulin, V. P.; Kladiev, S. N.; Slobodyan, S. M.

    2016-08-01

    The state and trends in the development of nuclear fuel cycles in nuclear engineering, taking into account the ecological aspects of using nuclear power plants, are considered. An analysis of advantages and disadvantages of nuclear engineering, compared with thermal engineering based on organic fuel types, was carried out. Spent nuclear fuel (SNF) reprocessing is an important task in the nuclear industry, since fuel unloaded from modern reactors of any type contains a large amount of radioactive elements that are harmful to the environment. On the other hand, the newly generated isotopes of uranium and plutonium should be reused to fabricate new nuclear fuel. The spent nuclear fuel also includes other types of fission products. Conditions for SNF handling are determined by ecological and economic factors. When choosing a certain handling method, one should assess these factors at all stages of its implementation. There are two main methods of SNF handling: open nuclear fuel cycle, with spent nuclear fuel assemblies (NFAs) that are held in storage facilities with their consequent disposal, and closed nuclear fuel cycle, with separation of uranium and plutonium, their purification from fission products, and use for producing new fuel batches. The development of effective closed fuel cycles using mixed uranium-plutonium fuel can provide a successful development of the nuclear industry only under the conditions of implementation of novel effective technological treatment processes that meet strict requirements of environmental safety and reliability of process equipment being applied. The diversity of technological processes is determined by different types of NFA devices and construction materials being used, as well as by the composition that depends on nuclear fuel components and operational conditions for assemblies in the nuclear power reactor. This work provides an overview of technological processes of SNF treatment and methods of handling of nuclear fuel assemblies. Based on analysis of modern engineering solutions on SNF regeneration, it has been concluded that new reprocessing technologies should meet the ecological safety requirements, provide a more extensive use of the resource base of nuclear engineering, allow the production of valuable and trace elements on an industrial scale, and decrease radioactive waste release.

  5. Development of undergraduate nuclear security curriculum at College of Engineering, Universiti Tenaga Nasional

    NASA Astrophysics Data System (ADS)

    Hamid, Nasri A.; Mujaini, Madihah; Mohamed, Abdul Aziz

    2017-01-01

    The Center for Nuclear Energy (CNE), College of Engineering, Universiti Tenaga Nasional (UNITEN) has a great responsibility to undertake educational activities that promote developing human capital in the area of nuclear engineering and technology. Developing human capital in nuclear through education programs is necessary to support the implementation of nuclear power projects in Malaysia in the near future. In addition, the educational program must also meet the nuclear power industry needs and requirements. In developing a certain curriculum, the contents must comply with the university's Outcomes Based Education (OBE) philosophy. One of the important courses in the nuclear curriculum is in the area of nuclear security. Basically the nuclear security course covers the current issues of law, politics, military strategy, and technology with regard to weapons of mass destruction and related topics in international security, and review legal regulations and political relationship that determine the state of nuclear security at the moment. In addition, the course looks into all aspects of the nuclear safeguards, builds basic knowledge and understanding of nuclear non-proliferation, nuclear forensics and nuclear safeguards in general. The course also discusses tools used to combat nuclear proliferation such as treaties, institutions, multilateral arrangements and technology controls. In this paper, we elaborate the development of undergraduate nuclear security course at the College of Engineering, Universiti Tenaga Nasional. Since the course is categorized as mechanical engineering subject, it must be developed in tandem with the program educational objectives (PEO) of the Bachelor of Mechanical Engineering program. The course outcomes (CO) and transferrable skills are also identified. Furthermore, in aligning the CO with program outcomes (PO), the PO elements need to be emphasized through the CO-PO mapping. As such, all assessments and distribution of Bloom Taxonomy levels are assigned in accordance with the CO-PO mapping. Finally, the course has to fulfill the International Engineering Alliance (IEA) Graduate Attributes of the Washington Accord.

  6. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. D. Staiger

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  7. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    NASA Astrophysics Data System (ADS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-08-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  8. A Program for Cultivating Nuclear Talent at Engineering Educational Institute in a Remote Area from Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsuyoshi

    Recently, in Japan, the number of students who hope for finding employment at the nuclear power company has decreased as students‧ concern for the nuclear power industry decreases. To improve the situation, Ministry of Education, Culture, Sports, Science and Technology launched the program of cultivating talent for nuclear power which supports research and education of nuclear power in the academic year of 2007. Supported by the program, Kushiro College of Technology conducted several activities concerning nuclear power for about a year. The students came to be interested in nuclear engineering through these activities and its results.

  9. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamid, Nasri A., E-mail: Nasri@uniten.edu.my; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO{sub 2} emission. The commitment by the government has been mademore » clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes the progress of teaching and learning in nuclear engineering and technology at UNITEN that include curriculum development, students’ enrolment and performance, and teaching staff’s human resource development.« less

  10. Optimizing Chemical-Vapor-Deposition Diamond for Nitrogen-Vacancy Center Ensemble Magnetrometry

    DTIC Science & Technology

    2017-06-01

    Ju Li Battelle Energy Alliance Professor of Nuclear Science and Engineering Professor of Materials Science and Engineering...Sciences, U. S. Air Force Academy (2015) Submitted to the Department of Nuclear Science and Engineering in partial fulfillment of the requirements for the...degree of Master of Science in Nuclear Science and Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2017 c○ Massachusetts Institute of

  11. A Programmatic and Engineering Approach to the Development of a Nuclear Thermal Rocket for Space Exploration

    NASA Technical Reports Server (NTRS)

    Bordelon, Wayne J., Jr.; Ballard, Rick O.; Gerrish, Harold P., Jr.

    2006-01-01

    With the announcement of the Vision for Space Exploration on January 14, 2004, there has been a renewed interest in nuclear thermal propulsion. Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions; however, the cost to develop a nuclear thermal rocket engine system is uncertain. Key to determining the engine development cost will be the engine requirements, the technology used in the development and the development approach. The engine requirements and technology selection have not been defined and are awaiting definition of the Mars architecture and vehicle definitions. The paper discusses an engine development approach in light of top-level strategic questions and considerations for nuclear thermal propulsion and provides a suggested approach based on work conducted at the NASA Marshall Space Flight Center to support planning and requirements for the Prometheus Power and Propulsion Office. This work is intended to help support the development of a comprehensive strategy for nuclear thermal propulsion, to help reduce the uncertainty in the development cost estimate, and to help assess the potential value of and need for nuclear thermal propulsion for a human Mars mission.

  12. A Nuclear Tech Course = Nuclear Technology in War and Peace: A Study of Issues and Choices.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    A nuclear technology college course for engineering students is outlined and described. The course begins with an historical account of the scientific discoveries leading up to the uranium experiments of Hahn and Strassman in Germany and the subsequent explanation of nuclear fission by Meitner and Frisch. The technological achievements of the…

  13. 1st International Nuclear Science and Technology Conference 2014 (INST2014)

    NASA Astrophysics Data System (ADS)

    2015-04-01

    Nuclear technology has played an important role in many aspects of our lives, including agriculture, energy, materials, medicine, environment, forensics, healthcare, and frontier research. The International Nuclear Science and Technology Conference (INST) aims to bring together scientists, engineers, academics, and students to share knowledge and experiences about all aspects of nuclear sciences. INST has evolved from a series of national conferences in Thailand called Nuclear Science and Technology (NST) Conference, which has been held for 11 times, the first being in 1986. INST2014 was held in August 2014 and hosted by Thailand Institute of Nuclear Technology (TINT). The theme was "Driving the future with nuclear technology". The conference working language was English. The proceedings were peer reviewed and considered for publication. The topics covered in the conference were: • Agricultural and food applications [AGR] • Environmental applications [ENV] • Radiation processing and industrial applications [IND] • Medical and nutritional applications [MED] • Nuclear physics and engineering [PHY] • Nuclear and radiation safety [SAF] • Other related topics [OTH] • Device and instrument presentation [DEV] Awards for outstanding oral and poster presentations will be given to qualified students who present their work during the conference.

  14. JPRS report: Science and technology. USSR: Engineering and equipment

    NASA Astrophysics Data System (ADS)

    1991-10-01

    A bibliography is given of U.S.S.R. research in engineering and equipment. Topics covered include aviation, space technology, optics, high energy devices, nuclear energy, and industrial technology, planning, and productivity.

  15. Nuclear Security Education Program at the Pennsylvania State University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uenlue, Kenan; The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304; Jovanovic, Igor

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basismore » of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale Reactor (PSBR), gamma irradiation facilities (in-pool irradiator, dry irradiator, and hot cells), neutron beam laboratory, radiochemistry laboratories, and various radiation detection and measurement laboratories. A new nuclear security education laboratory was created with DOE NNSA- GTRI funds at RSEC. The nuclear security graduate level curriculum enables the PSU to educate and train future nuclear security experts, both within the United States as well as worldwide. The nuclear security education program at Penn State will grant a Master's degree in nuclear security starting fall 2015. The PSU developed two courses: Nuclear Security- Detector And Source Technologies and Nuclear Security- Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements (Laboratory). Course descriptions and course topics of these courses are described briefly: - Nuclear Security - Detector and Source Technologies; - Nuclear Security - Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Laboratory.« less

  16. Nuclear electric propulsion mission engineering study. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.

  17. Early Program Development

    NASA Image and Video Library

    2004-04-15

    This artist's concept illustrates the NERVA (Nuclear Engine for Rocket Vehicle Application) engine's hot bleed cycle in which a small amount of hydrogen gas is diverted from the thrust nozzle, thus eliminating the need for a separate system to drive the turbine. The NERVA engine, based on KIWI nuclear reactor technology, would power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which the Marshall Space Flight Center had development responsibility.

  18. The bungling giant: Atomic Energy Canada Limited and next-generation nuclear technology, 1980--1994

    NASA Astrophysics Data System (ADS)

    Slater, Ian James

    From 1980--1994 Atomic Energy Canada Limited (AECL), the Crown Corporation responsible for the development of nuclear technology in Canada, ventured into the market for small-scale, decentralized power systems with the Slowpoke Energy System (SES), a 10MW nuclear reactor for space heating in urban and remote areas. The SES was designed to be "passively" or "inherently" safe, such that even the most catastrophic failure of the system would not result in a serious accident (e.g. a meltdown or an explosion). This Canadian initiative, a beneficiary of the National Energy Program, was the first and by far the most successful attempt at a passively safe, decentralized nuclear power system anywhere in the world. Part one uses archival documentation and interviews with project leaders to reconstruct the history of the SES. The standard explanations for the failure of the project, cheap oil, public resistance to the technology, and lack of commercial expertise, are rejected. Part two presents an alternative explanation for the failure of AECL to commercialize the SES. In short, technological momentum towards large-scale nuclear designs led to structural restrictions for the SES project. These restrictions manifested themselves internally to the company (e.g., marginalization of the SES) and externally to the company (e.g., licensing). In part three, the historical lessons of the SES are used to refine one of the central tenets of Popper's political philosophy, "piecemeal social engineering." Popper's presentation of the idea is lacking in detail; the analysis of the SES provides some empirical grounding for the concept. I argue that the institutions surrounding traditional nuclear power represent a form utopian social engineering, leading to consequences such as the suspension of civil liberties to guarantee security of the technology. The SES project was an example of a move from the utopian social engineering of large-scale centralized nuclear technology to the piecemeal social engineering of small-scale, safer and simpler decentralized nuclear heating.

  19. Early Program Development

    NASA Image and Video Library

    1963-01-01

    This artist's concept from 1963 shows a proposed NERVA (Nuclear Engine for Rocket Vehicle Application) incorporating the NRX-A1, the first NERVA-type cold flow reactor. The NERVA engine, based on Kiwi nuclear reactor technology, was intended to power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which Marshall Space Flight Center had development responsibility.

  20. An historical collection of papers on nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    The present volume of historical papers on nuclear thermal propulsion (NTP) encompasses NTP technology development regarding solid-core NTP technology, advanced concepts from the early years of NTP research, and recent activities in the field. Specific issues addressed include NERVA rocket-engine technology, the development of nuclear rocket propulsion at Los Alamos, fuel-element development, reactor testing for the Rover program, and an overview of NTP concepts and research emphasizing two decades of NASA research. Also addressed are the development of the 'nuclear light bulb' closed-cycle gas core and a demonstration of a fissioning UF6 gas in an argon vortex. The recent developments reviewed include the application of NTP to NASA's Lunar Space Transportation System, the use of NTP for the Space Exploration Initiative, and the development of nuclear rocket engines in the former Soviet Union.

  1. Nuclear electric propulsion mission engineering study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.

  2. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staiger, Merle Daniel; M. C. Swenson

    2005-01-01

    This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-sitemore » facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.« less

  3. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbst, A.K.; Rogers, A.Z.; McCray, J.A.

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

  4. Advanced Nuclear Technologies

    Science.gov Websites

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research of the nuclear energy age, scientists and engineers have conceived and developed advanced

  5. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safetymore » requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.« less

  6. Blazing the trailway: Nuclear electric propulsion and its technology program plans

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1992-01-01

    An overview is given of the plans for a program in nuclear electric propulsion (NEP) technology for space applications being considered by NASA, DOE, and DOD. Possible missions using NEP are examined, and NEP technology plans are addressed regarding concept development, systems engineering, nuclear fuels, power conversion, thermal management, power management and distribution, electric thrusters, facilities, and issues related to safety and environment. The programmatic characteristics are considered.

  7. Laboratory Directed Research and Development FY2010 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, K J

    2011-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader nationalmore » needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.« less

  8. Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2015-01-01

    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.

  9. Current status of nuclear engineering education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palladino, N.J.

    1975-09-01

    The 65 colleges and universities offering undergraduate degrees in nuclear engineering and the 15 schools offering strong nuclear engineering options are, in general, doing a good job to meet the current spectrum of job opportunities. But, nuclear engineering programs are not producing enough graduates to meet growing demands. They currently receive little aid and support from their customers --industry and government--in the form of scholarships, grants, faculty research support, student thesis and project support, or student summer jobs. There is not enough interaction between industry and universities. Most nuclear engineering programs are geared too closely to the technology of themore » present family of reactors and too little to the future breeder reactors and controlled thermonuclear reactors. In addition, nuclear engineering programs attract too few women and members of minority ethnic groups. Further study of the reasons for this fact is needed so that effective corrective action can be taken. Faculty in nuclear engineering programs should assume greater initiative to provide attractive and objective nuclear energy electives for technical and nontechnical students in other disciplines to improve their technical understanding of the safety and environmental issues involved. More aggressive and persistent efforts must be made by nuclear engineering schools to obtain industry support and involvement in their programs. (auth)« less

  10. JPRS Report. Science & Technology, USSR: Engineering & Equipment.

    DTIC Science & Technology

    1988-12-19

    unlimited Science & Technology USSR: Engineering & Equipment ^PRODUCED BY ^J’ODNALTECSL OF AMERCE SPR/NGnEL^ff’^1-INFORMATION S 22161 SERVICE...rv> DTIC QUALITY mSHBOTSD j5 Science & Technology USSR: Engineering & Equipment JPRS-UEQ-88-006 CONTENTS 19 DECEMBER 1988 Nuclear Energy Fuel...PROMYSHLENNOST, No 4, Apr 88] 36 Determining the Demand for Automated Foundry Equipment [A.A. Panov; MEKHAN1ZATS1YA IAVTOMATIZATSIYA PROIZVODSTVA, Apr 88] 40

  11. Enhancement of Teaching and Learning of the Fundamentals of Nuclear Engineering Using Multimedia Courseware.

    ERIC Educational Resources Information Center

    Keyvan, Shahla A.; Pickard, Rodney; Song, Xiaolong

    1997-01-01

    Computer-aided instruction incorporating interactive multimedia and network technologies can boost teaching effectiveness and student learning. This article describes the development and implementation of network server-based interactive multimedia courseware for a fundamental course in nuclear engineering. A student survey determined that 80% of…

  12. Engineering in an age of anxiety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberg, A.M.

    Public fears of nuclear or chemical accidents should challenge engineers to build systems that are inherently safe. Much of our national anxiety focuses on modern technology. This anxiety places constraints on our technologies. Probabilistic risk assessment (PBA) has become an accepted tool for determining the safety of a device. Although PBA is widely accepted by engineers, it will not allay the public's anxieties. To concede that a technology has the potential for causing a major disaster, even if the probability of occurrence is minute, is unacceptable in the age of anxiety. The search for inherent safety concepts, that - informedmore » skeptics - and the public will accept, continues. The greenhouse effect may be decisive in spurring the demand for inherently safe nuclear technology. Ultimately what the public requires by way of assurance may well depend on the alternatives available. 11 refs.« less

  13. The nuclear thermal electric rocket: a proposed innovative propulsion concept for manned interplanetary missions

    NASA Astrophysics Data System (ADS)

    Dujarric, C.; Santovincenzo, A.; Summerer, L.

    2013-03-01

    Conventional propulsion technology (chemical and electric) currently limits the possibilities for human space exploration to the neighborhood of the Earth. If farther destinations (such as Mars) are to be reached with humans on board, a more capable interplanetary transfer engine featuring high thrust, high specific impulse is required. The source of energy which could in principle best meet these engine requirements is nuclear thermal. However, the nuclear thermal rocket technology is not yet ready for flight application. The development of new materials which is necessary for the nuclear core will require further testing on ground of full-scale nuclear rocket engines. Such testing is a powerful inhibitor to the nuclear rocket development, as the risks of nuclear contamination of the environment cannot be entirely avoided with current concepts. Alongside already further matured activities in the field of space nuclear power sources for generating on-board power, a low level investigation on nuclear propulsion has been running since long within ESA, and innovative concepts have already been proposed at an IAF conference in 1999 [1, 2]. Following a slow maturation process, a new concept was defined which was submitted to a concurrent design exercise in ESTEC in 2007. Great care was taken in the selection of the design parameters to ensure that this quite innovative concept would in all respects likely be feasible with margins. However, a thorough feasibility demonstration will require a more detailed design including the selection of appropriate materials and the verification that these can withstand the expected mechanical, thermal, and chemical environment. So far, the predefinition work made clear that, based on conservative technology assumptions, a specific impulse of 920 s could be obtained with a thrust of 110 kN. Despite the heavy engine dry mass, a preliminary mission analysis using conservative assumptions showed that the concept was reducing the required Initial Mass in Low Earth Orbit compared to conventional nuclear thermal rockets for a human mission to Mars. Of course, the realization of this concept still requires proper engineering and the dimensioning of quite unconventional machinery. A patent was filed on the concept. Because of the operating parameters of the nuclear core, which are very specific to this type of concept, it seems possible to test on ground this kind of engine at full scale in close loop using a reasonable size test facility with safe and clean conditions. Such tests can be conducted within fully confined enclosure, which would substantially increase the associated inherent nuclear safety levels. This breakthrough removes a showstopper for nuclear rocket engines development. The present paper will disclose the NTER (Nuclear Thermal Electric Rocket) engine concept, will present some of the results of the ESTEC concurrent engineering exercise, and will explain the concept for the NTER on-ground testing facility. Regulations and safety issues related to the development and implementation of the NTER concept will be addressed as well.

  14. Conceptual design studies and experiments related to cavity exhaust systems for nuclear light bulb configurations

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.; Stoeffler, R. C.

    1972-01-01

    Investigations of various phases of gaseous nuclear rocket technology have been conducted. The principal research efforts have recently been directed toward the closed-cycle, vortex-stabilized nuclear light bulb engine and toward a small-scale fissioning uranium plasma experiment that could be conducted in the Los Alamos Scientific Laboratory's Nuclear Furnace. The engine concept is based on the transfer of energy by thermal radiation from gaseous fissioning uranium, through a transparent wall, to hydrogen propellant. The reference engine configuration is comprised of seven unit cavities, each having its own fuel transparent wall and propellant duct. The basic design of the engine is described. Subsequent studies performed to supplement and investigate the basic design are reported. Summaries of other nuclear light bulb research programs are included.

  15. "Cloud" functions and templates of engineering calculations for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Ochkov, V. F.; Orlov, K. A.; Ko, Chzho Ko

    2014-10-01

    The article deals with an important problem of setting up computer-aided design calculations of various circuit configurations and power equipment carried out using the templates and standard computer programs available in the Internet. Information about the developed Internet-based technology for carrying out such calculations using the templates accessible in the Mathcad Prime software package is given. The technology is considered taking as an example the solution of two problems relating to the field of nuclear power engineering.

  16. Nuclear Concepts & Technological Issues Institute: Teacher Activity Booklet.

    ERIC Educational Resources Information Center

    Davison, Candace C., Ed.; Lunetta, Lois W., Ed.

    For many summers the Radiation Science and Engineering Center at Pennsylvania State University has been the site of a Nuclear Concepts and Technological Issues Institute for secondary school science teachers. As a culminating activity of the institute teachers develop lesson plans, laboratory experiments, demonstrations, or other activities and…

  17. Reexamining the Ethics of Nuclear Technology.

    PubMed

    Andrianov, Andrei; Kanke, Victor; Kuptsov, Ilya; Murogov, Viktor

    2015-08-01

    This article analyzes the present status, development trends, and problems in the ethics of nuclear technology in light of a possible revision of its conceptual foundations. First, to better recognize the current state of nuclear technology ethics and related problems, this article focuses on presenting a picture of the evolution of the concepts and recent achievements related to technoethics, based on the ethics of responsibility. The term 'ethics of nuclear technology' describes a multidisciplinary endeavor to examine the problems associated with nuclear technology through ethical frameworks and paradigms. Second, to identify the reasons for the intensification of efforts to develop ethics in relation to nuclear technology, this article presents an analysis of the recent situation and future prospects of nuclear technology deployment. This includes contradictions that have aggravated nuclear dilemmas and debates stimulated by the shortcomings of nuclear technology, as well as the need for the further development of a nuclear culture paradigm that is able to provide a conceptual framework to overcome nuclear challenges. Third, efforts in the field of nuclear technology ethics are presented as a short overview of particular examples, and the major findings regarding obstacles to the development of nuclear technology ethics are also summarized. Finally, a potential methodological course is proposed to overcome inaction in this field; the proposed course provides for the further development of nuclear technology ethics, assuming the axiological multidisciplinary problematization of the main concepts in nuclear engineering through the basic ethical paradigms: analytical, hermeneutical, and poststructuralist.

  18. Science, Technology and Human Values.

    ERIC Educational Resources Information Center

    Batt, James R., Ed.; And Others

    1975-01-01

    Articles included in this publication represent such topics as: Science and Technology, Reproduction in the Twenty-First Century, Ethical Implications of Nuclear Technology, Bioethics, Genetic Engineering, World Food Supplies, and The Humanists Respond. (EB)

  19. Nuclear Power Plant Technician

    ERIC Educational Resources Information Center

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  20. Free piston space Stirling technology program

    NASA Technical Reports Server (NTRS)

    Dochat, G. R.; Dhar, M.

    1989-01-01

    MTI recently completed an initial technology feasibility program for NASA by designing, fabricating and testing a space power demonstrator engine (SPDE). This program, which confirms the potential of free-piston Stirling engines, provided the major impetus to initiate a free-piston Stirling space engine (SSE) technology program. The accomplishments of the SPDE program are reviewed, and an overview of the SSE technology program and technical status to date is provided. It is shown that progress in both programs continues to justify its potential for either nuclear or solar space power missions.

  1. Nuclear Materials Science

    NASA Astrophysics Data System (ADS)

    Whittle, Karl

    2016-06-01

    Concerns around global warming have led to a nuclear renaissance in many countries, meanwhile the nuclear industry is warning already of a need to train more nuclear engineers and scientists, who are needed in a range of areas from healthcare and radiation detection to space exploration and advanced materials as well as for the nuclear power industry. Here Karl Whittle provides a solid overview of the intersection of nuclear engineering and materials science at a level approachable by advanced students from materials, engineering and physics. The text explains the unique aspects needed in the design and implementation of materials for use in demanding nuclear settings. In addition to material properties and their interaction with radiation the book covers a range of topics including reactor design, fuels, fusion, future technologies and lessons learned from past incidents. Accompanied by problems, videos and teaching aids the book is suitable for a course text in nuclear materials and a reference for those already working in the field.

  2. Nuclear science abstracts (NSA) database 1948--1974 (on the Internet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Nuclear Science Abstracts (NSA) is a comprehensive abstract and index collection of the International Nuclear Science and Technology literature for the period 1948 through 1976. Included are scientific and technical reports of the US Atomic Energy Commission, US Energy Research and Development Administration and its contractors, other agencies, universities, and industrial and research organizations. Coverage of the literature since 1976 is provided by Energy Science and Technology Database. Approximately 25% of the records in the file contain abstracts. These are from the following volumes of the print Nuclear Science Abstracts: Volumes 12--18, Volume 29, and Volume 33. The database containsmore » over 900,000 bibliographic records. All aspects of nuclear science and technology are covered, including: Biomedical Sciences; Metals, Ceramics, and Other Materials; Chemistry; Nuclear Materials and Waste Management; Environmental and Earth Sciences; Particle Accelerators; Engineering; Physics; Fusion Energy; Radiation Effects; Instrumentation; Reactor Technology; Isotope and Radiation Source Technology. The database includes all records contained in Volume 1 (1948) through Volume 33 (1976) of the printed version of Nuclear Science Abstracts (NSA). This worldwide coverage includes books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal literature. This database is now available for searching through the GOV. Research Center (GRC) service. GRC is a single online web-based search service to well known Government databases. Featuring powerful search and retrieval software, GRC is an important research tool. The GRC web site is at http://grc.ntis.gov.« less

  3. Reactor physics teaching and research in the Swiss nuclear engineering master

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chawla, R.; Paul Scherrer Inst., CH-5232 Villigen PSI

    Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)

  4. Nuclear Cryogenic Propulsion Stage Affordable Development Strategy

    NASA Technical Reports Server (NTRS)

    Doughty, Glen E.; Gerrish, H. P.; Kenny, R. J.

    2014-01-01

    The development of nuclear power for space use in nuclear thermal propulsion (NTP) systems will involve significant expenditures of funds and require major technology development efforts. The development effort must be economically viable yet sufficient to validate the systems designed. Efforts are underway within the National Aeronautics and Space Administration's (NASA) Nuclear Cryogenic Propulsion Stage Project (NCPS) to study what a viable program would entail. The study will produce an integrated schedule, cost estimate and technology development plan. This will include the evaluation of various options for test facilities, types of testing and use of the engine, components, and technology developed. A "Human Rating" approach will also be developed and factored into the schedule, budget and technology development approach.

  5. Fuel Cycle Technologies 2014 Achievement Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Bonnie C.

    2015-01-01

    The Fuel Cycle Technologies (FCT) program supports the Department of Energy’s (DOE’s) mission to: “Enhance U.S. security and economic growth through transformative science, technology innovation, and market solutions to meet our energy, nuclear security, and environmental challenges.” Goal 1 of DOE’s Strategic Plan is to innovate energy technologies that enhance U.S. economic growth and job creation, energy security, and environmental quality. FCT does this by investing in advanced technologies that could transform the nuclear fuel cycle in the decades to come. Goal 2 of DOE’s Strategic Plan is to strengthen national security by strengthening key science, technology, and engineering capabilities.more » FCT does this by working closely with the National Nuclear Security Administration and the U.S Department of State to develop advanced technologies that support the Nation’s nuclear nonproliferation goals.« less

  6. Vendor advertorial issue, 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    The focus of the July-August issue is on vendor advertorials. Major articles/reports in this issue include: A fascinating technology, by Andy White, GE Energy; Exciting times for the nuclear industry, by John Polcyn, AECL Technologies; SG replacement oversight program, by Ram Prabhakar, Palo Verde Nuclear Generating Station; Modifications for improvement, by Herbert Deutschmann, Swiss Federal Nuclear Safety Inspectorate, HSK, Switzerland; and, Human factor approach in engineering, by Laure Quentin, EDF and Didier Niger, UNIPE, France.

  7. Sandia technology engineering and science accomplishments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-01

    Sandia is a DOE multiprogram engineering and science laboratory with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. We have major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. Our principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. Selected unclassified technical activities and accomplishments are reported here. Topics include advanced manufacturing technologies, intelligent machines, computationalmore » simulation, sensors and instrumentation, information management, energy and environment, and weapons technology.« less

  8. Thrust Vector Control for Nuclear Thermal Rockets

    NASA Technical Reports Server (NTRS)

    Ensworth, Clinton B. F.

    2013-01-01

    Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.

  9. Ground test facility for SEI nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Harmon, Charles D.; Ottinger, Cathy A.; Sanchez, Lawrence C.; Shipers, Larry R.

    1992-07-01

    Nuclear (fission) thermal propulsion has been identified as a critical technology for a manned mission to Mars by the year 2019. Facilities are required that will support ground tests to qualify the nuclear rocket engine design, which must support a realistic thermal and neutronic environment in which the fuel elements will operate at a fraction of the power for a flight weight reactor/engine. This paper describes the design of a fuel element ground test facility, with a strong emphasis on safety and economy. The details of major structures and support systems of the facility are discussed, and a design diagram of the test facility structures is presented.

  10. Standards in nuclear science and technology. A bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1973-09-01

    Abstracts of 1803 U. S. and non-U. S. publications concerning a broad range of standards used in nuclear science and technology are included. The publication dates span the period 1962 through 1972, inclusive. Abstracts are arranged chronologically within four categories entitled Reactors and Engineering, Instruments and Calibration, Radiation and Radiation Protection, and Miscellaneous. A subject index is also included. (auth)

  11. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce G. Schnitzler; Stanley K. Borowski

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified asmore » the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were constrained to fit within the payload volume of the then planned space shuttle. The SNRE core design utilized hexagonal fuel elements and hexagonal structural support elements. The total number of elements can be varied to achieve engine designs of higher or lower thrust levels. Some variation in the ratio of fuel elements to structural elements is also possible. Options for SNRE-based engine designs in the 25,000-lbf thrust range were described in a recent (2010) Joint Propulsion Conference paper. The reported designs met or exceeded the performance characteristics baselined in the DRA 5.0 Study. Lower thrust SNRE-based designs were also described in a recent (2011) Joint Propulsion Conference paper. Recent activities have included parallel evaluation and design efforts on fast spectrum engines employing refractory metal alloy fuels. These efforts include evaluation of both heritage designs from the Argonne National Laboratory (ANL) and General Electric Company GE-710 Programs as well as more recent designs. Results are presented for a number of not-yet optimized fast spectrum engine options.« less

  12. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Schnitzler, Bruce G.; Borowski, Stanley K.

    2012-01-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were constrained to fit within the payload volume of the then planned space shuttle. The SNRE core design utilized hexagonal fuel elements and hexagonal structural support elements. The total number of elements can be varied to achieve engine designs of higher or lower thrust levels. Some variation in the ratio of fuel elements to structural elements is also possible. Options for SNRE-based engine designs in the 25,000-lbf thrust range were described in a recent (2010) Joint Propulsion Conference paper. The reported designs met or exceeded the performance characteristics baselined in the DRA 5.0 Study. Lower thrust SNRE-based designs were also described in a recent (2011) Joint Propulsion Conference paper. Recent activities have included parallel evaluation and design efforts on fast spectrum engines employing refractory metal alloy fuels. These efforts include evaluation of both heritage designs from the Argonne National Laboratory (ANL) and General Electric Company GE-710 Programs as well as more recent designs. Results are presented for a number of not-yet optimized fast spectrum engine options.

  13. Worldwide Report, Nuclear Development and Proliferation

    DTIC Science & Technology

    1985-08-21

    Junior, Secretariat of Industry, Commerce, Science and Technology; Celso Pinto Ferraz, Secretariat of Industry, Commerce, Science and Technology; and...Castro, superintendent; Dr Carlos de Souza Pinto ; and Dr Paulo Cesar Leone. Message to the Stockholders and the Public In 1984, the attention of the...settlement of accounts. Sao Paulo, 20 February 1985 Engineer Alberto Pereira Castro, superintending director; Engineer Carlos Sousa Pinto , director

  14. Evaluation of Recent Upgrades to the NESS (Nuclear Engine System Simulation) Code

    NASA Technical Reports Server (NTRS)

    Fittje, James E.; Schnitzler, Bruce G.

    2008-01-01

    The Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for exploratory expeditions to the moon, Mars, and beyond. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the Rover/NERVA program from 1955 to 1973. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design, and a comparison of its results to the Small Nuclear Rocket Engine (SNRE) design.

  15. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    NASA Astrophysics Data System (ADS)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact nuclear reactors and radiation protection, thermal physics, physical chemistry and technology of liquid metal coolants, and physics of radiation-induced defects, and radiation materials science. The activity of the institute is aimed at solving matters concerned with technological development of large-scale nuclear power engineering on the basis of a closed nuclear fuel cycle with the use of fast-neutron reactors (referred to henceforth as fast reactors), development of innovative nuclear and conventional technologies, and extension of their application fields.

  16. Review of FY 2001 Development Work for Vitrification of Sodium Bearing Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Dean Dalton; Barnes, Charles Marshall

    2002-09-01

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.

  17. WMD Forecasting in Historical and Contemporary Perspective

    DTIC Science & Technology

    2010-03-01

    a nuclear weapon; Use of a nuclear weapon; Withdrawal from the NPT; Emergence of a nuclear-exports grey market; Widespread dissemination of...Many studies saw technology diffusion and the globalization of commerce as ineluctable forces that contribute to the spread of nuclear (and other...engineering diffuses , the spread of biological weapon capabilities among state actors can be expected to expand in advanced and developing states. This

  18. Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Corban, Robert R.; Mcguire, Melissa L.; Beke, Erik G.

    1995-01-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a reference 240 t-class heavy lift launch vehicle (HLLV) and smaller 120 t HLLV option. Attractive performance characteristics and high-leverage technologies associated with both the engine and stage are identified, and supporting parametric sensitivity data is provided. The potential for commonality of engine and stage components to satisfy a broad range of lunar and Mars missions is also discussed.

  19. Multi-University Southeast INIE Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayman Hawari; Nolan Hertel; Mohamed Al-Sheikhly

    2 Project Summary: The Multi-University Southeast INIE Consortium (MUSIC) was established in response to the US Department of Energy’s (DOE) Innovations in Nuclear Infrastructure and Education (INIE) program. MUSIC was established as a consortium composed of academic members and national laboratory partners. The members of MUSIC are the nuclear engineering programs and research reactors of Georgia Institute of Technology (GIT), North Carolina State University (NCSU), University of Maryland (UMD), University of South Carolina (USC), and University of Tennessee (UTK). The University of Florida (UF), and South Carolina State University (SCSU) were added to the MUSIC membership in the second year.more » In addition, to ensure proper coordination between the academic community and the nation’s premier research and development centers in the fields of nuclear science and engineering, MUSIC created strategic partnerships with Oak Ridge National Laboratory (ORNL) including the Spallation Neutron Source (SNS) project and the Joint Institute for Neutron Scattering (JINS), and the National Institute of Standards and Technology (NIST). A partnership was also created with the Armed Forces Radiobiology Research Institute (AFRRI) with the aim of utilizing their reactor in research if funding becomes available. Consequently, there are three university research reactors (URRs) within MUSIC, which are located at NCSU (1-MW PULSTAR), UMD (0.25-MW TRIGA) and UF (0.10-MW Argonaut), and the AFRRI reactor (1-MW TRIGA MARK F). The overall objectives of MUSIC are: a) Demonstrate that University Research Reactors (URR) can be used as modern and innovative instruments of research in the basic and applied sciences, which include applications in fundamental physics, materials science and engineering, nondestructive examination, elemental analysis, and contributions to research in the health and medical sciences, b) Establish a strong technical collaboration between the nuclear engineering faculty and the MUSIC URRs. This will be achieved by involving the faculty in the development of state-of-the-art research facilities at the URRs and subsequently, in the utilization of these facilities, c) Facilitate the use of the URRs by the science and engineering faculty within the individual institutions and by the general community of science and engineering, d) Develop a far-reaching educational component that is capable of addressing the needs of the nuclear science and engineering community. Specifically, the aim of this component will be to perform public outreach activities, contribute to the active recruitment of the next generation of nuclear professionals, strengthen the education of nuclear engineering students, and promote nuclear engineering education for minority students.« less

  20. Thrust Area Report, Engineering Research, Development and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Programmore » has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.« less

  1. Subscale Validation of the Subsurface Active Filtration of Exhaust (SAFE) Approach to NTP Ground Testing

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.

    2015-01-01

    Brief History of NTP: Project Rover Began in 1950s by Los Alamos Scientific Labs (now Los Alamos National Labs) and ran until 1970s Tested a series of nuclear reactor engines of varying size at Nevada Test Site (now Nevada National Security Site) Ranged in scale from 111 kN (25 klbf) to 1.1 MN (250 klbf) Included Nuclear Furnace-1 tests Demonstrated the viability and capability of a nuclear rocket engine test program One of Kennedys 4 goals during famous moon speech to Congress Nuclear Engines for Rocket Vehicle Applications (NERVA) Atomic Energy Commission and NASA joint venture started in 1964 Parallel effort to Project Rover was focused on technology demonstration Tested XE engine, a 245-kN (55-klbf) engine to demonstrate startup shutdown sequencing. Hot-hydrogen stream is passed directly through fuel elements potential for radioactive material to be eroded into gaseous fuel flow as identified in previous programs NERVA and Project Rover (1950s-70s) were able to test in open atmosphere similar to conventional rocket engine test stands today Nuclear Furance-1 tests employed a full scrubber system Increased government and environmental regulations prohibit the modern testing in open atmosphere. Since the 1960s, there has been an increasing cessation on open air testing of nuclear material Political and national security concerns further compound the regulatory environment

  2. NATIONAL ENVIRONMENTAL/ENERGY WORKFORCE ASSESSMENT. ENERGY PROGRAMS

    EPA Science Inventory

    The programs included in this volume are evidence that people are doing more than just talking about our energy future. In addition to well-established programs in nuclear engineering, mining, petroleum and natural gas technology and engineering, there are programs in energy conv...

  3. Nuclear pumped lasers: Advantages of O2 (1 delta)

    NASA Technical Reports Server (NTRS)

    Taylor, J. J.

    1979-01-01

    Nuclear pumped laser technology was evaluated as a possible future weapons contender. It was determined that in order to become a primary weapon the following engineering problems must be solved: shielding, heat dissipation, high efficiency fixed focus pumping, good beam quality, and thermal blooming.

  4. JOWOG 22/2 - Actinide Chemical Technology (July 9-13, 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Jay M.; Lopez, Jacquelyn C.; Wayne, David M.

    2012-07-05

    The Plutonium Science and Manufacturing Directorate provides world-class, safe, secure, and reliable special nuclear material research, process development, technology demonstration, and manufacturing capabilities that support the nation's defense, energy, and environmental needs. We safely and efficiently process plutonium, uranium, and other actinide materials to meet national program requirements, while expanding the scientific and engineering basis of nuclear weapons-based manufacturing, and while producing the next generation of nuclear engineers and scientists. Actinide Process Chemistry (NCO-2) safely and efficiently processes plutonium and other actinide compounds to meet the nation's nuclear defense program needs. All of our processing activities are done in amore » world class and highly regulated nuclear facility. NCO-2's plutonium processing activities consist of direct oxide reduction, metal chlorination, americium extraction, and electrorefining. In addition, NCO-2 uses hydrochloric and nitric acid dissolutions for both plutonium processing and reduction of hazardous components in the waste streams. Finally, NCO-2 is a key team member in the processing of plutonium oxide from disassembled pits and the subsequent stabilization of plutonium oxide for safe and stable long-term storage.« less

  5. Historically Black Colleges and Universities Nuclear Energy Training Program: Summary of program activities, fiscal year 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-04-27

    The Historically Black Colleges and Universities Nuclear Energy Training (HBCU NET) Program, funded by DOE, Office of Nuclear Energy and administered by ORAU, began in February 1984. The program provides support for training, study, research participation, and academic enrichment of students and faculty at designated HBCUs in nuclear science, nuclear engineering, and other nuclear-related technologes and disciplines. The program is composed of undergraduate scholarships, graduate fellowships, student and faculty research participation, and an annual student training institute.

  6. Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

  7. Final Progress Report for Award DE-FG07-05ID14637.pdf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathy Dixon

    2012-03-09

    2004-2011 Final Report for AFCI University Fellowship Program. The goal of this effort was to be supportive of university students and university programs - particularly those students and programs that will help to strengthen the development of nuclear-related fields. The program also supported the stability of the nuclear infrastructure and developed research partnerships that are helping to enlarge the national nuclear science technology base. In this fellowship program, the U.S. Department of Energy sought master's degree students in nuclear, mechanical, or chemical engineering, engineering/applied physics, physics, chemistry, radiochemistry, or fields of science and engineering applicable to the AFCI/Gen IV/GNEP missionsmore » in order to meet future U.S. nuclear program needs. The fellowship program identified candidates and selected full time students of high-caliber who were taking nuclear courses as part of their degree programs. The DOE Academic Program Managers encouraged fellows to pursue summer internships at national laboratories and supported the students with appropriate information so that both the fellows and the nation's nuclear energy objectives were successful.« less

  8. 77 FR 51518 - Alternative Personnel Management System (APMS) at the National Institute of Standards and Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... for all positions within the Scientific and Engineering (ZP) career path at the Pay Band III and above, for Nuclear Reactor Operator positions in the Scientific and Engineering Technician (ZT) career path... and Engineering Technician (ZT) career path at the Pay Band III and above, and for all positions in...

  9. Space Nuclear Facility test capability at the Baikal-1 and IGR sites Semipalatinsk-21, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Hill, T. J.; Stanley, M. L.; Martinell, J. S.

    1993-01-01

    The International Space Technology Assessment Program was established 1/19/92 to take advantage of the availability of Russian space technology and hardware. DOE had two delegations visit CIS and assess its space nuclear power and propulsion technologies. The visit coincided with the Conference on Nuclear Power Engineering in Space Nuclear Rocket Engines at Semipalatinsk-21 (Kurchatov, Kazakhstan) on Sept. 22-25, 1992. Reactor facilities assessed in Semipalatinski-21 included the IVG-1 reactor (a nuclear furnace, which has been modified and now called IVG-1M), the RA reactor, and the Impulse Graphite Reactor (IGR), the CIS version of TREAT. Although the reactor facilities are being maintained satisfactorily, the support infrastructure appears to be degrading. The group assessment is based on two half-day tours of the Baikals-1 test facility and a brief (2 hr) tour of IGR; because of limited time and the large size of the tour group, it was impossible to obtain answers to all prepared questions. Potential benefit is that CIS fuels and facilities may permit USA to conduct a lower priced space nuclear propulsion program while achieving higher performance capability faster, and immediate access to test facilities that cannot be available in this country for 5 years. Information needs to be obtained about available data acquisition capability, accuracy, frequency response, and number of channels. Potential areas of interest with broad application in the U.S. nuclear industry are listed.

  10. Additive Manufacturing and High-Performance Computing: a Disruptive Latent Technology

    NASA Astrophysics Data System (ADS)

    Goodwin, Bruce

    2015-03-01

    This presentation will discuss the relationship between recent advances in Additive Manufacturing (AM) technology, High-Performance Computing (HPC) simulation and design capabilities, and related advances in Uncertainty Quantification (UQ), and then examines their impacts upon national and international security. The presentation surveys how AM accelerates the fabrication process, while HPC combined with UQ provides a fast track for the engineering design cycle. The combination of AM and HPC/UQ almost eliminates the engineering design and prototype iterative cycle, thereby dramatically reducing cost of production and time-to-market. These methods thereby present significant benefits for US national interests, both civilian and military, in an age of austerity. Finally, considering cyber security issues and the advent of the ``cloud,'' these disruptive, currently latent technologies may well enable proliferation and so challenge both nuclear and non-nuclear aspects of international security.

  11. Space Propulsion Technology Program Overview

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1991-01-01

    The topics presented are covered in viewgraph form. Focused program elements are: (1) transportation systems, which include earth-to-orbit propulsion, commercial vehicle propulsion, auxiliary propulsion, advanced cryogenic engines, cryogenic fluid systems, nuclear thermal propulsion, and nuclear electric propulsion; (2) space platforms, which include spacecraft on-board propulsion, and station keeping propulsion; and (3) technology flight experiments, which include cryogenic orbital N2 experiment (CONE), SEPS flight experiment, and cryogenic orbital H2 experiment (COHE).

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salnykov, A. A., E-mail: admin@rasnpp.org.ru

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  13. Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Dickens, Ricky; Houts, Michael; Pearson, Boise; Webster, Kenny; Gibson, Marc; Qualls, Lou; Poston, Dave; Werner, Jim; Radel, Ross

    2011-01-01

    The Nuclear Systems Team at NASA Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and Mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program, which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter for tests at MSFC. When tested at NASA Glenn Research Center (GRC) the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumentation (temperature, pressure, flow) for data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.

  14. Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit

    NASA Astrophysics Data System (ADS)

    Godfroy, T.; Dickens, R.; Houts, M.; Pearson, B.; Webster, K.; Gibson, M.; Qualls, L.; Poston, D.; Werner, J.; Radel, R.

    The Nuclear Systems Team at Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter when being tested at MSFC. When tested at GRC the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumenta- tion (temperature, pressure, flow) data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.

  15. Enrichment Zoning Options for the Small Nuclear Rocket Engine (SNRE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce G. Schnitzler; Stanley K. Borowski

    2010-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. In NASA’s recent Mars Design Reference Architecture (DRA) 5.0 study (NASA-SP-2009-566, July 2009), nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option because of its high thrust and high specific impulse (-900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. An extensive nuclear thermal rocket technology development effortmore » was conducted from 1955-1973 under the Rover/NERVA Program. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art design incorporating lessons learned from the very successful technology development program. Past activities at the NASA Glenn Research Center have included development of highly detailed MCNP Monte Carlo transport models of the SNRE and other small engine designs. Preliminary core configurations typically employ fuel elements with fixed fuel composition and fissile material enrichment. Uniform fuel loadings result in undesirable radial power and temperature profiles in the engines. Engine performance can be improved by some combination of propellant flow control at the fuel element level and by varying the fuel composition. Enrichment zoning at the fuel element level with lower enrichments in the higher power elements at the core center and on the core periphery is particularly effective. Power flattening by enrichment zoning typically results in more uniform propellant exit temperatures and improved engine performance. For the SNRE, element enrichment zoning provided very flat radial power profiles with 551 of the 564 fuel elements within 1% of the average element power. Results for this and alternate enrichment zoning options for the SNRE are compared.« less

  16. 76 FR 78889 - Alternative Personnel Management System (APMS) at the National Institute of Standards and Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ... NIST in the Scientific and Engineering (ZP) career path at the Pay Band III and above, for Nuclear Reactor Operator positions in the Scientific and Engineering (ZT) career path at Pay Band III and above..., for a period of one year for all positions within the Scientific and Engineering (ZP) career path at...

  17. 77 FR 48128 - Alternative Personnel Management System (APMS) at the National Institute of Standards and Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... positions in NIST's Scientific and Engineering Technician (ZT) career path at the Pay Band III and above, and for all positions in NIST's Scientific and Engineering (ZP) career path at the Pay Band III and... Engineering (ZP) career path at the Pay Band III and above, for Nuclear Reactor Operator positions in the...

  18. Publications of LASL research, 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, A.K.

    1975-05-01

    This bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-Los Alamos reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, and U. S. patents. Publications by LASL authors which are not records of Laboratory-sponsored work are included when the Library becomes aware of them. The entries are arranged in sections by broad subject categories; within each section they are alphabetical by title. The following subject categories are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equationmore » of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma studies; earth science and engineering; energy (non-nuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronic and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). Author, numerical and KWIC indexes are included. (RWR)« less

  19. Performance Criteria of Nuclear Space Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Shepherd, L. R.

    Future exploration of the solar system on a major scale will require propulsion systems capable of performance far greater than is achievable with the present generation of rocket engines using chemical propellants. Viable missions going deeper into interstellar space will be even more demanding. Propulsion systems based on nuclear energy sources, fission or (eventually) fusion offer the best prospect for meeting the requirements. The most obvious gain coming from the application of nuclear reactions is the possibility, at least in principle, of obtaining specific impulses a thousandfold greater than can be achieved in chemically energised rockets. However, practical considerations preclude the possibility of exploiting the full potential of nuclear energy sources in any engines conceivable in terms of presently known technology. Achievable propulsive power is a particularly limiting factor, since this determines the acceleration that may be obtained. Conventional chemical rocket engines have specific propulsive powers (power per unit engine mass) in the order of gigawatts per tonne. One cannot envisage the possibility of approaching such a level of performance by orders of magnitude in presently conceivable nuclear propulsive systems. The time taken, under power, to reach a given terminal velocity is proportional to the square of the engine's exhaust velocity and the inverse of its specific power. An assessment of various nuclear propulsion concepts suggests that, even with the most optimistic assumptions, it could take many hundreds of years to attain the velocities necessary to reach the nearest stars. Exploration within a range of the order of a thousand AU, however, would appear to offer viable prospects, even with the low levels of specific power of presently conceivable nuclear engines.

  20. [Prospects of systemic radioecology in solving innovative tasks of nuclear power engineering].

    PubMed

    Spiridonov, S I

    2014-01-01

    A need of systemic radioecological studies in the strategy developed by the atomic industry in Russia in the XXI century has been justified. The priorities in the radioecology of nuclear power engineering of natural safety associated with the development of the radiation-migration equivalence concept, comparative evaluation of innovative nuclear technologies and forecasting methods of various emergencies have been identified. Also described is an algorithm for the integrated solution of these tasks that includes elaboration of methodological approaches, methods and software allowing dose burdens to humans and biota to be estimated. The rationale of using radioecological risks for the analysis of uncertainties in the environmental contamination impacts,at different stages of the existing and innovative nuclear fuel cycles is shown.

  1. NASA Propulsion Engineering Research Center, volume 2

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On 8-9 Sep. 1993, the Propulsion Engineering Research Center (PERC) at The Pennsylvania State University held its Fifth Annual Symposium. PERC was initiated in 1988 by a grant from the NASA Office of Aeronautics and Space Technology as a part of the University Space Engineering Research Center (USERC) program; the purpose of the USERC program is to replenish and enhance the capabilities of our Nation's engineering community to meet its future space technology needs. The Centers are designed to advance the state-of-the-art in key space-related engineering disciplines and to promote and support engineering education for the next generation of engineers for the national space program and related commercial space endeavors. Research on the following areas was initiated: liquid, solid, and hybrid chemical propulsion, nuclear propulsion, electrical propulsion, and advanced propulsion concepts.

  2. Publications of LASL research, 1972--1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, L.

    1977-04-01

    This bibliography is a compilation of unclassified work done at the Los Alamos Scientific Laboratory and published during the years 1972 to 1976. Publications too late for inclusion in earlier compilations are also listed. Declassification of previously classified reports is considered to constitute publication. The bibliography includes LASL reports, journal articles, books, conference papers, papers published in congressional hearings, theses, patents, etc. The following subject areas are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energymore » (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). (RWR)« less

  3. Nuclear Thermal Rocket (Ntr) Propulsion: A Proven Game-Changing Technology for Future Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR represents the next evolutionary step in high performance rocket propulsion. It generates high thrust and has a specific impulse (Isp) of approx.900 seconds (s) or more V twice that of today s best chemical rockets. The technology is also proven. During the previous Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) nuclear rocket programs, 20 rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability V all the requirements needed for a human mission to Mars. Ceramic metal cermet fuel was also pursued, as a backup option. The NTR also has significant growth and evolution potential. Configured as a bimodal system, it can generate electrical power for the spacecraft. Adding an oxygen afterburner nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, simple assembly and mission operations. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program V the 25,000 lbf (25 klbf) Pewee engine is sufficient for human Mars missions when used in a clustered engine arrangement. The Copernicus crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth asteroid (NEA) and Mars orbital missions prior to a Mars landing mission. Initially, the basic Copernicus vehicle can enable reusable 1-year round trip human missions to candidate NEAs like 1991 JW and Apophis in the late 2020 s to check out vehicle systems. Afterwards, the Copernicus spacecraft and its 2 key components, now configured as an Earth Return Vehicle / propellant tanker, would be used for a short round trip (approx.18 - 20 months)/short orbital stay (60 days) Mars / Phobos survey mission in 2033 using a split mission approach. The paper also discusses NASA s current Foundational Technology Development activities and its pre-decisional plans for future system-level Technology Demonstrations that include ground testing a small (approx.7.5 klbf) scalable NTR before the decade is out with a flight test shortly thereafter.

  4. Mass Media and the Debate about Nuclear Power.

    ERIC Educational Resources Information Center

    Sawyer, Thomas M.

    Many factors contribute to the difficulties the media have in dealing with science, engineering, and technology. These difficulties were pointed up in the media coverage of the March 1979 accident at the Three Mile Island nuclear plant, which reflected confusion and lack of understanding and which combined with other factors (including the movie…

  5. Development of Mechanics in Support of Rocket Technology in Ukraine

    NASA Astrophysics Data System (ADS)

    Prisnyakov, Vladimir

    2003-06-01

    The paper analyzes the advances of mechanics made in Ukraine in resolving various problems of space and rocket technology such as dynamics and strength of rockets and rocket engines, rockets of different purpose, electric rocket engines, and nonstationary processes in various systems of rockets accompanied by phase transitions of working media. Achievements in research on the effect of vibrations and gravitational fields on the behavior of space-rocket systems are also addressed. Results obtained in investigating the reliability and structural strength durability conditions for nuclear installations, solid- and liquid-propellant engines, and heat pipes are presented

  6. FY10 Engineering Innovations, Research and Technology Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, M A; Aceves, S M; Paulson, C N

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&Dmore » 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.« less

  7. Affordable Development and Demonstration of a Small NTR engine and Stage: A Preliminary NASA, DOE, and Industry Assessment

    NASA Technical Reports Server (NTRS)

    Borowski, S. K.; Sefcik, R. J.; Fittje, J. E.; McCurdy, D. R.; Qualls, A. L.; Schnitzler, B. G; Werner, J.; Weitzberg, A.; Joyner, C. R.

    2015-01-01

    In FY'11, Nuclear Thermal Propulsion (NTP) was identified as a key propulsion option under the Advanced In-Space Propulsion (AISP) component of NASA's Exploration Technology Development and Demonstration (ETDD) program A strategy was outlined by GRC and NASA HQ that included 2 key elements -"Foundational Technology Development" followed by specific "Technology Demonstration" projects. The "Technology Demonstration "element proposed ground technology demonstration (GTD) testing in the early 2020's, followed by a flight technology demonstration (FTD) mission by approx. 2025. In order to reduce development costs, the demonstration projects would focus on developing a small, low thrust (approx. 7.5 -16.5 klb(f)) engine that utilizes a "common" fuel element design scalable to the higher thrust (approx. 25 klb(f)) engines used in NASA's Mars DRA 5.0 study(NASA-SP-2009-566). Besides reducing development costs and allowing utilization of existing, flight proven engine hard-ware (e.g., hydrogen pumps and nozzles), small, lower thrust ground and flight demonstration engines can validate the technology and offer improved capability -increased payloads and decreased transit times -valued for robotic science missions identified in NASA's Decadal Study.

  8. Status of DEMO-FNS development

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Shpanskiy, Yu. S.; DEMO-FNS Team

    2017-07-01

    Fusion-fission hybrid facility based on superconducting tokamak DEMO-FNS is developed in Russia for integrated commissioning of steady-state and nuclear fusion technologies at the power level up to 40 MW for fusion and 400 MW for fission reactions. The project status corresponds to the transition from a conceptual design to an engineering one. This facility is considered, in RF, as the main source of technological and nuclear science information, which should complement the ITER research results in the fields of burning plasma physics and control.

  9. The Rationale/Benefits of Nuclear Thermal Rocket Propulsion for NASA's Lunar Space Transportation System

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    1994-01-01

    The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.

  10. Use of liquid metals in nuclear and thermonuclear engineering, and in other innovative technologies

    NASA Astrophysics Data System (ADS)

    Rachkov, V. I.; Arnol'dov, M. N.; Efanov, A. D.; Kalyakin, S. G.; Kozlov, F. A.; Loginov, N. I.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    By now, a good deal of experience has been gained with using liquid metals as coolants in nuclear power installations; extensive knowledge has been gained about the physical, thermophysical, and physicochemical properties of these coolants; and the scientific principles and a set of methods and means for handling liquid metals as coolants for nuclear power installations have been elaborated. Prototype and commercialgrade sodium-cooled NPP power units have been developed, including the BOR-60, BN-350, and BN-600 power units (the Soviet Union); the Rapsodie, Phenix, and Superphenix power units (France), the EBR-II power unit (the United States); and the PFR power unit (the United Kingdom). In Russia, dedicated nuclear power installations have been constructed, including those with a lead-bismuth coolant for nuclear submarines and with sodium-potassium alloy for spacecraft (the Buk and Topol installations), which have no analogs around the world. Liquid metals (primarily lithium and its alloy with lead) hold promise for use in thermonuclear power engineering, where they can serve not only as a coolant, but also as tritium-producing medium. In this article, the physicochemical properties of liquid metal coolants, as well as practical experience gained from using them in nuclear and thermonuclear power engineering and in innovative technologies are considered, and the lines of further research works are formulated. New results obtained from investigations carried out on the Pb-Bi and Pb for the SVBR and BREST fast-neutron reactors (referred to henceforth as fast reactors) and for controlled accelerator systems are described.

  11. An overview of the ENEA activities in the field of coupled codes NPP simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parisi, C.; Negrenti, E.; Sepielli, M.

    2012-07-01

    In the framework of the nuclear research activities in the fields of safety, training and education, ENEA (the Italian National Agency for New Technologies, Energy and the Sustainable Development) is in charge of defining and pursuing all the necessary steps for the development of a NPP engineering simulator at the 'Casaccia' Research Center near Rome. A summary of the activities in the field of the nuclear power plants simulation by coupled codes is here presented with the long term strategy for the engineering simulator development. Specifically, results from the participation in international benchmarking activities like the OECD/NEA 'Kalinin-3' benchmark andmore » the 'AER-DYN-002' benchmark, together with simulations of relevant events like the Fukushima accident, are here reported. The ultimate goal of such activities performed using state-of-the-art technology is the re-establishment of top level competencies in the NPP simulation field in order to facilitate the development of Enhanced Engineering Simulators and to upgrade competencies for supporting national energy strategy decisions, the nuclear national safety authority, and the R and D activities on NPP designs. (authors)« less

  12. Studies of Fission Fragment Rocket Engine Propelled Spacecraft

    NASA Technical Reports Server (NTRS)

    Werka, Robert O.; Clark, Rodney; Sheldon, Rob; Percy, Thomas K.

    2014-01-01

    The NASA Office of Chief Technologist has funded from FY11 through FY14 successive studies of the physics, design, and spacecraft integration of a Fission Fragment Rocket Engine (FFRE) that directly converts the momentum of fission fragments continuously into spacecraft momentum at a theoretical specific impulse above one million seconds. While others have promised future propulsion advances if only you have the patience, the FFRE requires no waiting, no advances in physics and no advances in manufacturing processes. Such an engine unequivocally can create a new era of space exploration that can change spacecraft operation. The NIAC (NASA Institute for Advanced Concepts) Program Phase 1 study of FY11 first investigated how the revolutionary FFRE technology could be integrated into an advanced spacecraft. The FFRE combines existent technologies of low density fissioning dust trapped electrostatically and high field strength superconducting magnets for beam management. By organizing the nuclear core material to permit sufficient mean free path for escape of the fission fragments and by collimating the beam, this study showed the FFRE could convert nuclear power to thrust directly and efficiently at a delivered specific impulse of 527,000 seconds. The FY13 study showed that, without increasing the reactor power, adding a neutral gas to the fission fragment beam significantly increased the FFRE thrust through in a manner analogous to a jet engine afterburner. This frictional interaction of gas and beam resulted in an engine that continuously produced 1000 pound force of thrust at a delivered impulse of 32,000 seconds, thereby reducing the currently studied DRM 5 round trip mission to Mars from 3 years to 260 days. By decreasing the gas addition, this same engine can be tailored for much lower thrust at much higher impulse to match missions to more distant destinations. These studies created host spacecraft concepts configured for manned round trip journeys. While the vehicles are very large, they are primarily made up of a habitat payload on one end, the engine on the opposite end and a connecting spine containing radiator acreage needed to reject the heat of this powerful, but inefficient engine. These studies concluded that the engine and spacecraft are within today's technology, could be built, tested, launched on several SLS launchers, integrated, checked out, maintained at an in-space LEO base, and operated for decades just as Caribbean cruise ships operate today. The nuclear issues were found to be far less daunting that [than for] current nuclear engines. The FFRE produces very small amounts of radioactive efflux compared to their impulse, easily contained in an evacuated "bore-hole" test site. The engine poses no launch risk since it is simply a structure containing no fissionable material. The nuclear fuel is carried to orbit in containers highly crash-proofed for launch accidents from which it, in a liquid medium, is injected into the FFRE. The radioactive exhaust, with a velocity above 300 kilometers per second rapidly leaves the solar system.

  13. Biotechnology: Genetically Engineered Pathogens (The Counterproliferation Papers, Future Warfare Series No. 53)

    DTIC Science & Technology

    2010-06-01

    ENGINEERED PATHOGENS ....... 8 Binary biological weapons ...the crossroads of radicalism and technology. When the spread of chemical and biological and nuclear weapons , along with ballistic missile...and individuals, given the opportunity to employ biological weapons , will most likely use it to inflict harm and terror on the United States and its

  14. Upgrades to the NESS (Nuclear Engine System Simulation) Code

    NASA Technical Reports Server (NTRS)

    Fittje, James E.

    2007-01-01

    In support of the President's Vision for Space Exploration, the Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for human expeditions to the moon and Mars. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the 1960's and 1970's. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design.

  15. Advanced Nuclear Technology. Using Technology for Small Modular Reactor Staff Optimization, Improved Effectiveness, and Cost Containment, 3002007071

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loflin, Leonard

    Through this grant, the U.S. Department of Energy (DOE) will review several functional areas within a nuclear power plant, including fire protection, operations and operations support, refueling, training, procurement, maintenance, site engineering, and others. Several functional areas need to be examined since there appears to be no single staffing area or approach that alone has the potential for significant staff optimization at new nuclear power plants. Several of the functional areas will require a review of technology options such as automation, remote monitoring, fleet wide monitoring, new and specialized instrumentation, human factors engineering, risk informed analysis and PRAs, component andmore » system condition monitoring and reporting, just in time training, electronic and automated procedures, electronic tools for configuration management and license and design basis information, etc., that may be applied to support optimization. Additionally, the project will require a review key regulatory issues that affect staffing and could be optimized with additional technology input. Opportunities to further optimize staffing levels and staffing functions by selection of design attributes of physical systems and structures need also be identified. A goal of this project is to develop a prioritized assessment of the functional areas, and R&D actions needed for those functional areas, to provide the best optimization« less

  16. Nuclear energy related capabilities at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickering, Susan Y.

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing themore » nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.« less

  17. The Effect of Operating Temperature on Open, Multimegawatt Space Power Systems

    DTIC Science & Technology

    1988-04-01

    Chemical and Nuclear Engineering Department Albuquerque, NM 87131 Attn: M. El-Genk University of Wisconsin Fussion Technology Institute 1500...Space Power Systems: A Simplified Axial Flow Gas Turbine Model," 5th Symposium on Space Nuclear Power Systems, January 1988, Albuquerque, New Mexico... Nuclear Power Division 3315 Old Forest Road P.O. Box 10935 Lynchburg, VA 24506-0935 Attn: B. J. Short Battelle Pacific Northwest Lab. P. 0. BOX 999

  18. Nuclear-safety institution in France: emergence and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallet, B.M.

    1986-01-01

    This research work examines the social construction of the nuclear-safety institution in France, and the concurrent increased focus on the nuclear-risk issue. Emphasis on risk and safety, as primarily technical issues, can partly be seen as a strategy. Employed by power elites in the nuclear technostructure, this diverts emphasis away from controversial and normative questions regarding the political and social consequences of technology to questions of technology that appear to be absolute to the technology itself. Nuclear safety, which started from a preoccupation with risk related to the nuclear energy research and development process, is examined using the analytic conceptmore » of field. As a social arena patterned to achieve specific tasks, this field is dominated by a body of state engineers recognized to have high-level scientific and administrative competences. It is structured by procedures and administrative hierarchies as well as by technical rules, norms, and standards. These are formalized and rationalized through technical, economic, political, and social needs; over time; they consolidate the field into an institution. The study documents the nuclear-safety institution as an integral part of the nuclear technostructure, which has historically used the specificity of its expertise as a buffer against outside interference.« less

  19. Graduate Research Assistant Program for Professional Development at Oak Ridge National Laboratory (ORNL) Global Nuclear Security Technology Division (GNSTD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eipeldauer, Mary D; Shelander Jr, Bruce R

    2012-01-01

    The southeast is a highly suitable environment for establishing a series of nuclear safety, security and safeguards 'professional development' courses. Oak Ridge National Laboratory (ORNL) provides expertise in the research component of these subjects while the Y-12 Nuclear Security Complex handles safeguards/security and safety applications. Several universities (i.e., University of Tennessee, Knoxville (UTK), North Carolina State University, University of Michigan, and Georgia Technology Institute) in the region, which offer nuclear engineering and public policy administration programs, and the Howard Baker Center for Public Policy make this an ideal environment for learning. More recently, the Institute for Nuclear Security (INS) wasmore » established between ORNL, Y-12, UTK and Oak Ridge Associate Universities (ORAU), with a focus on five principal areas. These areas include policy, law, and diplomacy; education and training; science and technology; operational and intelligence capability building; and real-world missions and applications. This is a new approach that includes professional development within the graduate research assistant program addressing global needs in nuclear security, safety and safeguards.« less

  20. The European Safeguards Research and Development Association Addresses Safeguards and Nonproliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssens-Maenhout, Greet; Kusumi, R.; Daures, Pascal A.

    2010-06-16

    The renaissance of efforts to expand the use of nuclear energy requires the parallel development of a renewed and more sophisticated work force. Growth in the nuclear sector with high standard of safety, safeguards and security requires skilled staff for design, operations, inspections etc. High-quality nuclear technology educational programs are diminished from past years, and the ability of universities to attract students and to meet future staffing requirements of the nuclear industry is becoming seriously compromised. Thus, education and training in nuclear engineering and sciences is one of the cornerstones for the nuclear sector. Teaching in the nuclear field stillmore » seems strongly influenced by national history but it is time to strengthen resources and collaborate. Moreover with the current nuclear security threats it becomes critical that nuclear technology experts master the basic principles not only of safety, but also of nuclear safeguards, nonproliferation and nuclear security. In Europe the European Nuclear Education Network (ENEN) Association has established the certificate 'European Master of Science in Nuclear Engineering (EMSNE)' as the classic nuclear engineering program covering reactor operation and nuclear safety. However, it does not include courses on nonproliferation, safeguards, or dual-use technologies. The lack of education in nuclear safeguards was tackled by the European Safeguards Research and Development Association (ESARDA), through development and implementation of safeguards course modules. Since 2005 the ESARDA Working Group, called the Training and Knowledge Management Working Group, (TKMWG) has worked with the Joint Research Centre (JRC) in Ispra, Italy to organize a Nuclear Safeguards and Nonproliferation course. This five-day course is held each spring at the JRC, and continues to show increasing interest as evidenced by the positive responses of international lecturers and students. The standard set of lectures covers a broad range of subjects, including nuclear material accountancy principles, legal definitions and the regulatory base and inspection tools and techniques. This 60% core part is given by representatives from regulatory bodies (The International Atomic Energy Agency (IAEA), Institute for Radiological Protection and Nuclear Safety, Directorate General for Nuclear Energy and Transport), industry (AREVA, British Nuclear Group), and research (Stockholm University, Hamburg University, Joint Research Centre-Institute of Transuranic Elements, and Joint Research Centre-Institute for the Protection of the Citizen). The remaining part is completed with topical lectures addressed by invited lecturers, such as from Pacific Northwest National Laboratory and the IAEA addressing topics of physical protection, illicit trafficking, the Iraq case study, exercises, including satellite imagery interpretation etc. With this structure of a stable core plus a variable set of invited lectures, the course will remain sustainable and up-to-date. A syllabus provides the students a homogeneous set of information material in nuclear safeguards and nonproliferation matters at the European and international level. In this way, the ESARDA TKMWG aims to contribute to a two-fold scientific-technical and political-juridical education and training.« less

  1. Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Alice M.; Marra, John E.; Wilmarth, William R.

    2013-07-03

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate theirmore » technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). Thus, the demonstration can be accomplished by leveraging the incremental cost of performing demonstrations without needing to cover the full operational cost of the facility. Current Center activities have been focused on integrating advanced safeguards monitoring technologies demonstrations into the SRS H-Canyon and advanced location technologies demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and customers as well as providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (as well as to offsite venues) so that future demonstrations can be done more efficiently and provide an opportunity to utilize these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs DOE-Nuclear Energy (DOE-NE) to advance the research for next generation fuel cycle technologies. The concept is to install processing equipment on frames. The frames are then positioned into an H-Canyon cell and testing in a relevant radiological environment involving prototypic radioactive materials can be performed.« less

  2. Nuclear Thermal Propulsion (NTP): A Proven Growth Technology for Human NEO/Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The nuclear thermal rocket (NTR) represents the next "evolutionary step" in high performance rocket propulsion. Unlike conventional chemical rockets that produce their energy through combustion, the NTR derives its energy from fission of Uranium-235 atoms contained within fuel elements that comprise the engine s reactor core. Using an "expander" cycle for turbopump drive power, hydrogen propellant is raised to a high pressure and pumped through coolant channels in the fuel elements where it is superheated then expanded out a supersonic nozzle to generate high thrust. By using hydrogen for both the reactor coolant and propellant, the NTR can achieve specific impulse (Isp) values of 900 seconds (s) or more - twice that of today s best chemical rockets. From 1955 - 1972, twenty rocket reactors were designed, built and ground tested in the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs. These programs demonstrated: (1) high temperature carbide-based nuclear fuels; (2) a wide range of thrust levels; (3) sustained engine operation; (4) accumulated lifetime at full power; and (5) restart capability - all the requirements needed for a human Mars mission. Ceramic metal "cermet" fuel was pursued as well, as a backup option. The NTR also has significant "evolution and growth" capability. Configured as a "bimodal" system, it can generate its own electrical power to support spacecraft operational needs. Adding an oxygen "afterburner" nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, no large technology scale-ups are required for NTP either. In fact, the smallest engine tested during the Rover program - the 25,000 lbf (25 klbf) "Pewee" engine is sufficient when used in a clustered engine arrangement. The "Copernicus" crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth object (NEO) and Mars orbital missions prior to a Mars landing mission. The paper also discusses NASA s current activities and future plans for NTP development that include system-level Technology Demonstrations - specifically ground testing a small, scalable NTR by 2020, with a flight test shortly thereafter.

  3. SP-100 program developments

    NASA Technical Reports Server (NTRS)

    Schnyer, A. D.; Sholtis, J. A., Jr.; Wahlquist, E. J.; Verga, R. L.; Wiley, R. L.

    1985-01-01

    An update is provided on the status of the Sp-100 Space Reactor Power Program. The historical background that led to the program is reviewed and the overall program objectives and development approach are discussed. The results of the mission studies identify applications for which space nuclear power is desirable and even essential. Results of a series of technology feasibility experiments are expected to significantly improve the earlier technology data base for engineering development. The conclusion is reached that a nuclear reactor space power system can be developed by the early 1990s to meet emerging mission performance requirements.

  4. FY 1999 Laboratory Directed Research and Development annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PJ Hughes

    2000-06-13

    A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.

  5. Assessing the Effects of Organizational Changes within the Office of the Secretary of Defense on the Nuclear Mission

    DTIC Science & Technology

    2016-09-01

    School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial...chemical and biological defense programs for OSD and his/her official title was changed to Assistant to the Secretary of Defense for Nuclear, Chemical...weapons program was no longer the true 27 focus in this office. The current title of this office is Assistant Secretary of Defense for Nuclear

  6. New Window into the Human Body

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Michael Vannier, MD, a former NASA engineer, recognized the similarity between NASA's computerized image processing technology and nuclear magnetic resonance. With technical assistance from Kennedy Space Center, he developed a computer program for Mallinckrodt Institute of Radiology enabling Nuclear Magnetic Resonance (NMR) to scan body tissue for earlier diagnoses. Dr. Vannier feels that "satellite imaging" has opened a new window into the human body.

  7. Nuclear and Radioisotope Propulsion and Power in the Atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Widdicombe, T.

    A brief history of the use of nuclear fuelled powerplant in space is given along with some working principles of the technology, and recent proposals for spacecraft for the exploration of Titan utilising radioisotope generators are surveyed. Nuclear reaction engines are studied with specific consideration given to their use in Titan's atmosphere, and speculative modifications to one particular spacecraft concept originally conceived of for the exploration of Mars are proposed. A hybrid device producing mechanical power from nuclear decay heat is also suggested for future investigation.

  8. The ENABLER - Based on proven NERVA technology

    NASA Astrophysics Data System (ADS)

    Livingston, Julie M.; Pierce, Bill L.

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial mass in low Earth orbit and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tommorrow's space propulsion needs.

  9. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)

    1991-01-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects.

  10. Technology needs for lunar and Mars space transfer systems

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.; Cothran, Bradley C.; Donahue, Benjamin; Mcghee, Jerry

    1991-01-01

    The determination of appropriate space transportation technologies and operating modes is discussed with respect to both lunar and Mars missions. Three levels of activity are set forth to examine the sensitivity of transportation preferences including 'minimum,' 'full science,' and 'industrialization and settlement' categories. High-thrust-profile missions for lunar and Mars transportation are considered in terms of their relative advantages, and transportation options are defined in terms of propulsion and braking technologies. Costs and life-cycle cost estimates are prepared for the transportation preferences by using a parametric cost model, and a return-on-investment summary is given. Major technological needs for the programs are listed and include storable propulsion systems; cryogenic engines and fluids management; aerobraking; and nuclear thermal, nuclear electric, electric, and solar electric propulsion technologies.

  11. Affordable Development and Demonstration of a Small NTR Engine and Stage: How Small is Big Enough?

    NASA Technical Reports Server (NTRS)

    Borowski, S. K.; Sefcik, R. J.; Fittje, J. E.; McCurdy, D. R.; Qualls, A. L.; Schnitzler, B. G.; Werner, J.; Weitzberg, A.; Joyner, C. R.

    2015-01-01

    In FY11, NASA formulated a plan for Nuclear Thermal Propulsion (NTP) development that included Foundational Technology Development followed by system-level Technology Demonstrations The ongoing NTP project, funded by NASAs Advanced Exploration Systems (AES) program, is focused on Foundational Technology Development and includes 5 key task activities:(1) Fuel element fabrication and non-nuclear validation testing of heritage fuel options;(2) Engine conceptual design;(3) Mission analysis and engine requirements definition;(4) Identification of affordable options for ground testing; and(5) Formulation of an affordable and sustainable NTP development program Performance parameters for Point of Departure designs for a small criticality-limited and full size 25 klbf-class engine were developed during FYs 13-14 using heritage fuel element designs for both RoverNERVA Graphite Composite (GC) and Ceramic Metal (Cermet) fuel forms To focus the fuel development effort and maximize use of its resources, the AES program decided, in FY14, that a leader-follower down selection between GC and cermet fuel was required An Independent Review Panel (IRP) was convened by NASA and tasked with reviewing the available fuel data and making a recommendation to NASA. In February 2015, the IRP recommended and the AES program endorsed GC as the leader fuel In FY14, a preliminary development schedule DDTE plan was produced by GRC, DOE industry for the AES program. Assumptions, considerations and key task activities are presented here Two small (7.5 and 16.5 klbf) engine sizes were considered for ground and flight technology demonstration within a 10-year timeframe; their ability to support future human exploration missions was also examined and a recommendation on a preferred size is provided.

  12. 76 FR 539 - Alternative Personnel Management System (APMS) at the National Institute of Standards and Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... and Engineering (ZP) career path at the Pay Band III and above, for Nuclear Reactor Operator positions in the Scientific and Engineering Technician (ZT) career path at Pay Band III and above, and for all... FR 54604), OPM concurred that all occupations in the ZP career path at the band III and above...

  13. Laboratory Directed Research and Development Annual Report for 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Pamela J.

    2012-04-09

    This report documents progress made on all LDRD-funded projects during fiscal year 2011. The following topics are discussed: (1) Advanced sensors and instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and space sciences; (5) Energy supply and use; (6) Engineering and manufacturing processes; (7) Materials science and technology; (8) Mathematics and computing sciences; (9) Nuclear science and engineering; and (10) Physics.

  14. Space rocket engine on the base of the reactor-pumped laser for the interplanetary flights and earth orbital applications

    NASA Astrophysics Data System (ADS)

    Gulevich, Andrey V.; Dyachenko, Peter P.; Kukharchuk, Oleg F.; Zrodnikov, Anatoly V.

    2000-01-01

    In this report the concept of vehicle-based reactor-laser engine for long time interplanetary and interorbital (LEO to GEO) flights is proposed. Reactor-pumped lasers offer the perspective way to create on the base of modern nuclear and lasers technologies the low mass and high energy density, repetitively pulsed vehicle-based laser of average power 100 kW. Nowadays the efficiency of nuclear-to-optical energy conversion reached the value of 2-3%. The demo model of reactor-pumped laser facility is under construction in Institute for Physics and Power Engineering (Obninsk, Russia). It enable us to hope that using high power laser on board of the vehicle could make the effective space laser engine possible. Such engine may provide the high specific impulse ~1000-2000 s with the thrust up to 10-100 n. Some calculation results of the characteristics of vehicle-based reactor-laser thermal engine concept are also presented. .

  15. SSTAC/ARTS Review of the Draft Integrated Technology Plan (ITP). Volume 2: Propulsion Systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The topics addressed are: (1) space propulsion technology program overview; (2) space propulsion technology program fact sheet; (3) low thrust propulsion; (4) advanced propulsion concepts; (5) high-thrust chemical propulsion; (6) cryogenic fluid management; (7) NASA CSTI earth-to-orbit propulsion; (8) advanced main combustion chamber program; (9) earth-to-orbit propulsion turbomachinery; (10) transportation technology; (11) space chemical engines technology; (12) nuclear propulsion; (13) spacecraft on-board propulsion; and (14) low-cost commercial transport.

  16. Preconceptual design of a fluoride high temperature salt-cooled engineering demonstration reactor: Motivation and overview

    DOE PAGES

    Qualls, A. Louis; Betzler, Benjamin R.; Brown, Nicholas R.; ...

    2016-12-21

    Engineering demonstration reactors are nuclear reactors built to establish proof of concept for technology options that have never been built. Examples of engineering demonstration reactors include Peach Bottom 1 for high temperature gas-cooled reactors (HTGRs) and Experimental Breeder Reactor-II (EBR-II) for sodium-cooled fast reactors. Historically, engineering demonstrations have played a vital role in advancing the technology readiness level of reactor technologies. Our paper details a preconceptual design for a fluoride salt-cooled engineering demonstration reactor. The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would usemore » tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 7LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. The design philosophy of the FHR DR was focused on safety, near-term deployment, and flexibility. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated as an engineering demonstration with minimal risk and cost. These technologies include TRISO particle fuel, replaceable core structures, and consistent structural material selection for core structures and the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Important capabilities to be demonstrated by building and operating the FHR DR include fabrication and operation of high temperature reactors; heat exchanger performance (including passive decay heat removal); pump performance; and reactivity control; salt chemistry control to maximize vessel life; tritium management; core design methodologies; salt procurement, handling, maintenance and ultimate disposal. It is recognized that non-nuclear separate and integral test efforts (e.g., heated salt loops or loops using simulant fluids) are necessary to develop the technologies that will be demonstrated in the FHR DR.« less

  17. Preconceptual design of a fluoride high temperature salt-cooled engineering demonstration reactor: Motivation and overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qualls, A. Louis; Betzler, Benjamin R.; Brown, Nicholas R.

    Engineering demonstration reactors are nuclear reactors built to establish proof of concept for technology options that have never been built. Examples of engineering demonstration reactors include Peach Bottom 1 for high temperature gas-cooled reactors (HTGRs) and Experimental Breeder Reactor-II (EBR-II) for sodium-cooled fast reactors. Historically, engineering demonstrations have played a vital role in advancing the technology readiness level of reactor technologies. Our paper details a preconceptual design for a fluoride salt-cooled engineering demonstration reactor. The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would usemore » tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 7LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. The design philosophy of the FHR DR was focused on safety, near-term deployment, and flexibility. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated as an engineering demonstration with minimal risk and cost. These technologies include TRISO particle fuel, replaceable core structures, and consistent structural material selection for core structures and the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Important capabilities to be demonstrated by building and operating the FHR DR include fabrication and operation of high temperature reactors; heat exchanger performance (including passive decay heat removal); pump performance; and reactivity control; salt chemistry control to maximize vessel life; tritium management; core design methodologies; salt procurement, handling, maintenance and ultimate disposal. It is recognized that non-nuclear separate and integral test efforts (e.g., heated salt loops or loops using simulant fluids) are necessary to develop the technologies that will be demonstrated in the FHR DR.« less

  18. Physical Limitations of Nuclear Propulsion for Earth to Orbit

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Patton, Bruce; Rhys, Noah O.; Schafer, Charles F. (Technical Monitor)

    2001-01-01

    An assessment of current nuclear propulsion technology for application in Earth to Orbit (ETO) missions has been performed. It can be shown that current nuclear thermal rocket motors are not sufficient to provide single stage performance as has been stated by previous studies. Further, when taking a systems level approach, it can be shown that NTRs do not compete well with chemical engines where thrust to weight ratios of greater than I are necessary, except possibly for the hybrid chemical/nuclear LANTR (LOX Augmented Nuclear Thermal Rocket) engine. Also, the ETO mission requires high power reactors and consequently large shielding weights compared to NTR space missions where shadow shielding can be used. In the assessment, a quick look at the conceptual ASPEN vehicle proposed in 1962 in provided. Optimistic NTR designs are considered in the assessment as well as discussion on other conceptual nuclear propulsion systems that have been proposed for ETO. Also, a quick look at the turbulent, convective heat transfer relationships that restrict the exchange of nuclear energy to thermal energy in the working fluid and consequently drive the reactor mass is included.

  19. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 3, technologies 2: Power conversion

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    The major power conversion concepts considered for the Megawatt Class Nuclear Space Power System (MCNSPS) are discussed. These concepts include: (1) Rankine alkali-metal-vapor turbine alternators; (2) in-core thermionic conversion; (3) Brayton gas turbine alternators; and (4) free piston Stirling engine linear alternators. Considerations important to the coupling of these four conversion alternatives to an appropriate nuclear reactor heat source are examined along with the comparative performance characteristics of the combined systems meeting MCNSPS requirements.

  20. Uncrackable code for nuclear weapons

    ScienceCinema

    Hart, Mark

    2018-05-11

    Mark Hart, a scientist and engineer in Lawrence Livermore National Laboratory's (LLNL) Defense Technologies Division, has developed a new approach for ensuring nuclear weapons and their components can't fall prey to unauthorized use. The beauty of his approach: Let the weapon protect itself. "Using the random process of nuclear radioactive decay is the gold standard of random number generators," said Mark Hart. "You’d have a better chance of winning both Mega Millions and Powerball on the same day than getting control of IUC-protected components."

  1. Uncrackable code for nuclear weapons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Mark

    Mark Hart, a scientist and engineer in Lawrence Livermore National Laboratory's (LLNL) Defense Technologies Division, has developed a new approach for ensuring nuclear weapons and their components can't fall prey to unauthorized use. The beauty of his approach: Let the weapon protect itself. "Using the random process of nuclear radioactive decay is the gold standard of random number generators," said Mark Hart. "You’d have a better chance of winning both Mega Millions and Powerball on the same day than getting control of IUC-protected components."

  2. Utility operations review of North Carolina State University BSNE curriculum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, E.A.; Faggart, E.M.; Jackson, G.D.

    1988-01-01

    The industry advisors group of the North Carolina State University (NCSU) Department of Nuclear Engineering raised the question of how well the curriculum for a bachelor of science in nuclear engineering (BSNE) meets the needs of educating students to enter the nuclear operations field. The concern was that the nuclear industry has evolved from a design to an operations mode, but that the BSNE curriculum may not have responded to this evolution. To address this issue, a group of four persons qualified as senior reactor operators with operational experience from different utilities was selected. The authors are the members ofmore » this review group. All are degreed personnel, with three BSNE graduates from NCSU, and all have participated in nuclear plant startups and currently work at nuclear plant sites. The group prepared by reviewing the curriculum before arriving on campus, including the report developed for the Accreditation Board for Engineering and Technology. During our two-day campus visit, we reviewed course materials, interviewed professors, and toured laboratory and reactor facilities in order to get more insight into the breadth and thrust of the BSNE curriculum. The observations and recommendations contained in this paper were developed based on these reviews and discussions and represent the opinions of the authors and not necessarily their companies.« less

  3. Nuclear thermal source transfer unit, post-blast soil sample drying system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ralph S.; Valencia, Matthew J

    Los Alamos National Laboratory states that its mission is “To solve national security challenges through scientific excellence.” The Science Undergraduate Laboratory Internship (SULI) programs exists to engage undergraduate students in STEM work by providing opportunity to work at DOE facilities. As an undergraduate mechanical engineering intern under the SULI program at Los Alamos during the fall semester of 2016, I had the opportunity to contribute to the mission of the Laboratory while developing skills in a STEM discipline. I worked with Technology Applications, an engineering group that supports non-proliferation, counter terrorism, and emergency response missions. This group specializes in toolmore » design, weapons engineering, rapid prototyping, and mission training. I assisted with two major projects during my appointment Los Alamos. The first was a thermal source transportation unit, intended to safely contain a nuclear thermal source during transit. The second was a soil drying unit for use in nuclear postblast field sample collection. These projects have given me invaluable experience working alongside a team of professional engineers. Skills developed include modeling, simulation, group design, product and system design, and product testing.« less

  4. Report of the Defense Science Board Task Force on Critical Homeland Infrastructure Protection

    DTIC Science & Technology

    2007-01-01

    nuclear, radiation and explosive hazards; • Monitoring “people of interest” while protecting civil liberties; • Detection of hostile intent; • Detect...Guardian DARPA Overview Mr. Roger Gibbs DARPA LLNL Technologies in Support of Infrastructure Protection Mr. Don Prosnitz LLNL Sandia National...Mechanical Engineers AT/FP Antiterrorism/Force Protection CBRNE Chemical Biological Radiological Nuclear Explosive CERT Commuter Emergency Response Team

  5. Overview of codes and tools for nuclear engineering education

    NASA Astrophysics Data System (ADS)

    Yakovlev, D.; Pryakhin, A.; Medvedeva, L.

    2017-01-01

    The recent world trends in nuclear education have been developed in the direction of social education, networking, virtual tools and codes. MEPhI as a global leader on the world education market implements new advanced technologies for the distance and online learning and for student research work. MEPhI produced special codes, tools and web resources based on the internet platform to support education in the field of nuclear technology. At the same time, MEPhI actively uses codes and tools from the third parties. Several types of the tools are considered: calculation codes, nuclear data visualization tools, virtual labs, PC-based educational simulators for nuclear power plants (NPP), CLP4NET, education web-platforms, distance courses (MOOCs and controlled and managed content systems). The university pays special attention to integrated products such as CLP4NET, which is not a learning course, but serves to automate the process of learning through distance technologies. CLP4NET organizes all tools in the same information space. Up to now, MEPhI has achieved significant results in the field of distance education and online system implementation.

  6. Design consideration for a nuclear electric propulsion system

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Pawlik, E. V.

    1978-01-01

    A study is currently underway to design a nuclear electric propulsion vehicle capable of performing detailed exploration of the outer-planets. Primary emphasis is on the power subsystem. Secondary emphasis includes integration into a spacecraft, and integration with the thrust subsystem and science package or payload. The results of several design iterations indicate an all-heat-pipe system offers greater reliability, elimination of many technology development areas and a specific weight of under 20 kg/kWe at the 400 kWe power level. The system is compatible with a single Shuttle launch and provides greater safety than could be obtained with designs using pumped liquid metal cooling. Two configurations, one with the reactor and power conversion forward on the spacecraft with the ion engines aft and the other with reactor, power conversion and ion engines aft were selected as dual baseline designs based on minimum weight, minimum required technology development and maximum growth potential and flexibility.

  7. Current Status and Recent Research Achievements in SiC/SiC Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katoh, Yutai; Snead, Lance L.; Henager, Charles H.

    2014-12-01

    The development and maturation of the silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen the evolution from fundamental development and understanding of the material system and its behavior in a hostile irradiation environment to the current effort which essentially is a broad-based program of technology, directed at moving this material class from a laboratory curiosity to an engineering material. This paper lays out the recent international scientific and technological achievements in the development of SiC/SiC composite material technologies for fusion application and will discuss future research directions. It also reviews the materials system inmore » the larger context of progress to maturity as an engineering material for both the larger nuclear community and for general engineering applications.« less

  8. Kennedy Space Center's Partnership with Graftel Incorporated

    NASA Technical Reports Server (NTRS)

    Dunn, Carol Anne

    2010-01-01

    NASA Kennedy Space Center (KSC) has recently partnered with Graftel Incorporated under an exclusive license agreement for the manufacture and sale of the Smart Current Signature Sensor. The Smart Current Signature Sensor and software were designed and developed to be utilized on any application using solenoid valves. The system monitors the electrical and mechanical health of solenoids by comparing the electrical current profile of each solenoid actuation to a typical current profile and reporting deviation from its learned behavior. The objective of this partnership with Graftel is for them to develop the technology into a hand-held testing device for their customer base in the Nuclear Power Industry. The device will be used to perform diagnostic testing on electromechanical valves used in Nuclear Power plants. Initially, Graftel plans to have working units within the first year of license in order to show customers and allow them to put purchase requests into their next year's budget. The subject technology under discussion was commercialized by the Kennedy Space Center Technology Programs and Partnerships Office, which patented the technology and licensed it to Graftel, Inc., a company providing support, instrumentation, and calibration services to the nuclear community and private sector for over 10 years. For the nuclear power industry, Graftel designs, manufacturers, and calibrates a full line of testing instrumentation. Grafters smart sensors have been in use in the United States since 1993 and have proved to decrease set-up time and test durations. The project was funded by Non-Destructive Engineering, and it is felt that this technology will have more emphasis on future vehicles. Graftel plans to market the Current Signature Sensor to the Electric Utility industry. Graftel currently supplies product and services to the Nuclear Power Industry in the United States as well as internationally. Product and services sold are used in non-destructive testing for valves, penetrations and other applications. Graftel also supplies testing services to an industrial customer base. The customer base includes 90 percent of the U.S. Nuclear plants and plants in Brazil, Europe, and Asia. Graftel works internationally with two representative groups and employees and has ten people at the principle location and a group of contract engineers around the country.

  9. Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, A.M.; Marra, J.E.; Wilmarth, W.R.

    2013-07-01

    The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-goingmore » missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.« less

  10. 2006 Joint Chemical Biological, Radiological and Nuclear (CBRN) Conference and Exhibition

    DTIC Science & Technology

    2006-06-28

    methods that might counter or cancel our current military advantages • Defeat terrorist networks • Defend homeland in depth • Prevent acquisition or...Systems approach to the detection of chemical and biological agents with a focus on genetically engineered organisms ( GMOs )/genetically engineered...and possessing breakthrough technological capabilities intended to supplant U.S. advantages in particular operational domains. (capsize our power

  11. Cryogenic Fluid Management Technology and Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian D.; Caffrey, Jarvis; Hedayat, Ali; Stephens, Jonathan; Polsgrove, Robert

    2016-01-01

    Cryogenic fluid management (CFM) is critical to the success of future nuclear thermal propulsion powered vehicles. While this is an issue for any propulsion system utilizing cryogenic propellants, this is made more challenging by the radiation flux produced by the reactor in a nuclear thermal rocket (NTR). Managing the cryogenic fuel to prevent propellant loss to boil off and leakage is needed to limit the required quantity of propellant to a reasonable level. Analysis shows deposition of energy into liquid hydrogen fuel tanks in the vicinity of the nuclear thermal engine. This is on top of ambient environment sources of heat. Investments in cryogenic/thermal management systems (some of which are ongoing at various organizations) are needed in parallel to nuclear thermal engine development in order to one day see the successful operation of an entire stage. High durability, low thermal conductivity insulation is one developmental need. Light weight cryocoolers capable of removing heat from large fluid volumes at temperatures as low as approx. 20 K are needed to remove heat leak from the propellant of an NTR. Valve leakage is an additional CFM issue of great importance. Leakage rates of state of the art, launch vehicle size valves (which is approximately the size valves needed for a Mars transfer vehicle) are quite high and would result in large quantities of lost propellant over a long duration mission. Additionally, the liquid acquisition system inside the propellant tank must deliver properly conditioned propellant to the feed line for successful engine operation and avoid intake of warm or gaseous propellant. Analysis of the thermal environment and the CFM technology development are discussed in the accompanying presentation.

  12. The ENABLER—based on proven NERVA technology

    NASA Astrophysics Data System (ADS)

    Livingston, Julie M.; Pierce, Bill L.

    1991-01-01

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial Mass In Low Earth Orbit (IMLEO) and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tomorrow's space propulsion needs.

  13. Engineering Design and Automation in the Applied Engineering Technologies (AET) Group at Los Alamos National Laboratory.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wantuck, P. J.; Hollen, R. M.

    2002-01-01

    This paper provides an overview of some design and automation-related projects ongoing within the Applied Engineering Technologies (AET) Group at Los Alamos National Laboratory. AET uses a diverse set of technical capabilities to develop and apply processes and technologies to applications for a variety of customers both internal and external to the Laboratory. The Advanced Recovery and Integrated Extraction System (ARIES) represents a new paradigm for the processing of nuclear material from retired weapon systems in an environment that seeks to minimize the radiation dose to workers. To achieve this goal, ARIES relies upon automation-based features to handle and processmore » the nuclear material. Our Chemical Process Development Team specializes in fuzzy logic and intelligent control systems. Neural network technology has been utilized in some advanced control systems developed by team members. Genetic algorithms and neural networks have often been applied for data analysis. Enterprise modeling, or discrete event simulation, as well as chemical process simulation has been employed for chemical process plant design. Fuel cell research and development has historically been an active effort within the AET organization. Under the principal sponsorship of the Department of Energy, the Fuel Cell Team is now focusing on technologies required to produce fuel cell compatible feed gas from reformation of a variety of conventional fuels (e.g., gasoline, natural gas), principally for automotive applications. This effort involves chemical reactor design and analysis, process modeling, catalyst analysis, as well as full scale system characterization and testing. The group's Automation and Robotics team has at its foundation many years of experience delivering automated and robotic systems for nuclear, analytical chemistry, and bioengineering applications. As an integrator of commercial systems and a developer of unique custom-made systems, the team currently supports the automation needs of many Laboratory programs.« less

  14. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Hoover, Mark D.

    1991-07-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects. (For individual items see A93-13752 to A93-13937)

  15. Nuclear fission: the interplay of science and technology.

    PubMed

    Stoneham, A M

    2010-07-28

    When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component.

  16. Idaho National Laboratory Research & Development Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stricker, Nicole

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and governmentmore » agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.« less

  17. Building on the past, planning for the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodall, D.M.

    1996-12-31

    A University Working Conference (UWC) sponsored by the American Nuclear Society (ANS) was held on June 14 and 15, 1996, prior to the ANS Annual Meeting in Reno, Nevada. With a theme of {open_quotes}Building on the Past, Planning for the Future,{close_quotes} the meeting was the successor to the first UWC held in Philadelphia, Pennsylvania, in 1995. This workshop refined the recommendations to the national nuclear engineering academic community of the earlier UWC on strategies for success in the 21st century. This UWC had 40 attendees from academe and industry, and the program was developed around the outcomes of the Philadelphiamore » meeting. The general chair of UWC96 was Don Miller of Ohio State University, while the author of this paper served as the technical program chair. Assistant technical program chairs included Madeline Feltus of Pennsylvania State University, Dan Bullen of Iowa State University, and Gilbert Brown of the University of Massachusetts Lowell. A working conference is often loosely structured, with an informal, flexible program, consisting of a few highlight or keynote presentations followed by workshop sessions devoted to a theme area. The workshop sessions at this meeting included the following: 1. strategic planning in today`s climate; 2. university/industry research collaboration; 3. profiles of nuclear engineering and radiological engineering students, now and in the future; 4. accreditation issues, especially ABET`s engineering 2000; 5. employment of nuclear and radiological engineers; 6. new program thrusts in nuclear engineering departments; 7. uses of new technology in the classroom and laboratory; 8. internet access to information for education; 9. distance education/remote delivery of curricula.« less

  18. Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, Anne C.

    1999-07-01

    The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsiblemore » for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to scientific, politician, and military participants in this project. I analyze how and when participants in the H-bomb project recognized both blatant and subtle problems facing the project, how scientists solved them, and the relationship this process had to official nuclear weapons policies. Consequently, I show how the practice of nuclear weapons science in the postwar period became an extremely complex, technologically-based endeavor.« less

  19. Cyber security evaluation of II&C technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Ken

    The Light Water Reactor Sustainability (LWRS) Program is a research and development program sponsored by the Department of Energy, which is conducted in close collaboration with industry to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants The LWRS Program serves to help the US nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Within the LWRS Program, the Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway conducts targeted research and development (R&D) tomore » address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. The II&C Pathway is conducted by Idaho National Laboratory (INL). Cyber security is a common concern among nuclear utilities and other nuclear industry stakeholders regarding the digital technologies that are being developed under this program. This concern extends to the point of calling into question whether these types of technologies could ever be deployed in nuclear plants given the possibility that the information in them can be compromised and the technologies themselves can potentially be exploited to serve as attack vectors for adversaries. To this end, a cyber security evaluation has been conducted of these technologies to determine whether they constitute a threat beyond what the nuclear plants already manage within their regulatory-required cyber security programs. Specifically, the evaluation is based on NEI 08-09, which is the industry’s template for cyber security programs and evaluations, accepted by the Nuclear Regulatory Commission (NRC) as responsive to the requirements of the nuclear power plant cyber security regulation found in 10 CFR 73.54. The evaluation was conducted by a cyber security team with expertise in nuclear utility cyber security programs and experience in conducting these evaluations. The evaluation has determined that, for the most part, cyber security will not be a limiting factor in the application of these technologies to nuclear power plant applications.« less

  20. JPRS Report, Science & Technology, Japan.

    DTIC Science & Technology

    1988-08-03

    SHIMBUN, 4 Feb 88] 72 Advanced Reactor Design System To Be Developed [GENSHIRYOKU SANGYO SHIMBUN, 4 Feb 88] 73 Functional Testing on " Mutsu ...new types of reactors. 13008 74 NUCLEAR ENGINEERING FUNCTIONAL TESTING ON " MUTSU " SCHEDULED 43062060c Tokyo GENSHIRYOKU SANGYO SHIMBUN in Japanese...and to rebuild the power supply rectifiers used in the instrumentation controls on the nuclear powered ship, the " Mutsu ," which was launched on 27

  1. Raising Nuclear Thermal Propulsion (NTP) Technology Readiness Above 3

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2014-01-01

    NTP development is currently supported by the NASA program office "Advanced Exploration Systems". The concept is a main propulsion option being considered for human missions to Mars in the 2030's. Major NTP development took place in the 1960's and 1970's under the Rover/NERVA program. The technology had matured to TRL 6 and was preparing to go to TRL 7 with a prototype flight engine before the program was cancelled. Over the last 40 years, a variety of continuations started, but only lasted a few years each. The Rover/NERVA infrastructure is almost all gone. The only remains are a few pieces of hardware, final reports and a few who worked the Rover/NERVA. Two types of nuclear fuel are being investigated to meet the current engine design specific impulse of 900 seconds compared to approximately 850 seconds demonstrated during Rover/NERVA. One is a continuation of composite fuel with new coatings to better control mid-band corrosion. The other type is a CERMET fuel made of Tungsten and UO2. Both fuels are being made from Rover/NERVA lessons learned, but with slightly different recipes to increase fuel endurance at higher operating temperatures. The technology readiness level (TRL) of these current modified reactor fuels is approximately TRL 3. To keep the development cost low and help mature the TRL level past 4 quickly, a few special non-nuclear test facilities have been made to test surrogate fuel, with depleted uranium, as coupons and full length elements. Both facilities utilize inductive heating and are licensed to handle depleted uranium. TRL 5 requires exposing the fuel to a nuclear environment and TRL 6 requires a prototype ground or flight engine system test. Currently, three different NTP ground test facility options are being investigated: exhaust scrubber, bore hole, and total exhaust containment. In parallel, a prototype flight demonstration test is also being studied. The first human mission to Mars in the 2030's is currently 2033. For an advanced propulsion concept to be seriously considered for use, the engine development plans need to show it is feasible and affordable to reach TRL 8 by 2027 and can be qualified for human mission use.

  2. A Potential NASA Research Reactor to Support NTR Development

    NASA Technical Reports Server (NTRS)

    Eades, Michael; Gerrish, Harold; Hardin, Leroy

    2013-01-01

    In support of efforts for research into the design and development of a man rated Nuclear Thermal Rocket (NTR) engine, the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed research reactor. The proposed reactor would be licensed by NASA and operated jointly by NASA and university partners. The purpose of this reactor would be to perform further research into the technologies and systems needed for a successful NTR project and promote nuclear training and education.

  3. A Closed Brayton Power Conversion Unit Concept for Nuclear Electric Propulsion for Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Joyner, Claude Russell; Fowler, Bruce; Matthews, John

    2003-01-01

    In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt & Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level.

  4. Measurement of Sedimentary Interbed Hydraulic Properties and Their Hydrologic Influence near the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory

    USGS Publications Warehouse

    Perkins, Kim S.

    2003-01-01

    Disposal of wastewater to unlined infiltration ponds near the Idaho Nuclear Technology and Engineering Center (INTEC), formerly known as the Idaho Chemical Processing Plant, at the Idaho National Engineering and Environmental Laboratory (INEEL) has resulted in the formation of perched water bodies in the unsaturated zone (Cecil and others, 1991). The unsaturated zone at INEEL comprises numerous basalt flows interbedded with thinner layers of coarse- to fine-grained sediments and perched ground-water zones exist at various depths associated with massive basalts, basalt-flow contacts, sedimentary interbeds, and sediment-basalt contacts. Perched ground water is believed to result from large infiltration events such as seasonal flow in the Big Lost River and wastewater discharge to infiltration ponds. Evidence from a large-scale tracer experiment conducted in 1999 near the Radioactive Waste Management Complex (RWMC), approximately 13 km from the INTEC, indicates that rapid lateral flow of perched water in the unsaturated zone may be an important factor in contaminant transport at the INEEL (Nimmo and others, 2002b). Because sedimentary interbeds, and possibly baked-zone alterations at sediment-basalt contacts (Cecil and other, 1991) play an important role in the generation of perched water it is important to assess the hydraulic properties of these units.

  5. Current status and recent research achievements in SiC/SiC composites

    NASA Astrophysics Data System (ADS)

    Katoh, Y.; Snead, L. L.; Henager, C. H.; Nozawa, T.; Hinoki, T.; Iveković, A.; Novak, S.; Gonzalez de Vicente, S. M.

    2014-12-01

    The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications.

  6. Enterprise SRS: Leveraging Ongoing Operations to Advance National Programs - 13108

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J.E.; Murray, A.M.; McGuire, P.W.

    2013-07-01

    The SRS is re-purposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in amore » relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established the Center for Applied Nuclear Materials Processing and Engineering Research (CANMPER). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by leveraging SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. CANMPER will coordinate the demonstration of R and D technologies and serve as the interface between the engineering-scale demonstration and the R and D programs, essentially providing cradle-to-grave support to the R and D team during the demonstration. While the initial focus of CANMPER will be on the effective use of SRS assets for these demonstrations, CANMPER also will work with research teams to identify opportunities to perform R and D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). The demonstration can be accomplished in a more cost-effective manner through the use of existing facilities in conjunction with ongoing missions. Essentially, the R and D program would not need to pay the full operational cost of a facility, just the incremental cost of performing the demonstration. Current CANMPER activities have been focused on integrating advanced safeguards monitoring technology demonstrations into the SRS H-Canyon and advanced location technology demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and program owners. In addition these demonstrations are providing CANMPER with an improved protocol for demonstration management that can be exercised across the entire SRS (and to offsite venues) to ensure that future demonstrations are done efficiently and provide an opportunity to use these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs of three major program offices: DOE-EM, DOE-Nuclear Energy (DOE-NE), and the NNSA. Given the modular design of H-Canyon, the demonstrations would be accomplished using a process frame. The demonstration equipment would be installed on the process frame and that frame would then be positioned into an H Canyon cell so that the demonstration is performed in a radiological environment involving prototypic nuclear materials. (authors)« less

  7. Status of the advanced Stirling conversion system project for 25 kW dish Stirling applications

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1991-01-01

    Heat engines were evaluated for terrestrial Solar Distributed Heat Receivers. The Stirling engine was identified as one of the most promising heat engines for terrestrial applications. Technology development is also conducted for Stirling convertors directed toward a dynamic power source for space applications. Space power requirements include high reliability with very long life, low vibration, and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other.

  8. Development of an Indirect Stereolithography Technology for Scaffold Fabrication with a Wide Range of Biomaterial Selectivity

    PubMed Central

    Kang, Hyun-Wook

    2012-01-01

    Tissue engineering, which is the study of generating biological substitutes to restore or replace tissues or organs, has the potential to meet current needs for organ transplantation and medical interventions. Various approaches have been attempted to apply three-dimensional (3D) solid freeform fabrication technologies to tissue engineering for scaffold fabrication. Among these, the stereolithography (SL) technology not only has the highest resolution, but also offers quick fabrication. However, a lack of suitable biomaterials is a barrier to applying the SL technology to tissue engineering. In this study, an indirect SL method that combines the SL technology and a sacrificial molding process was developed to address this challenge. A sacrificial mold with an inverse porous shape was fabricated from an alkali-soluble photopolymer by the SL technology. A sacrificial molding process was then developed for scaffold construction using a variety of biomaterials. The results indicated a wide range of biomaterial selectivity and a high resolution. Achievable minimum pore and strut sizes were as large as 50 and 65 μm, respectively. This technology can also be used to fabricate three-dimensional organ shapes, and combined with traditional fabrication methods to construct a new type of scaffold with a dual-pore size. Cytotoxicity tests, as well as nuclear magnetic resonance and gel permeation chromatography analyses, showed that this technology has great potential for tissue engineering applications. PMID:22443315

  9. Design process of the nanofluid injection mechanism in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kang, Myoung-Suk; Jee, Changhyun; Park, Sangjun; Bang, In Choel; Heo, Gyunyoung

    2011-04-01

    Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs). This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs) assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD) in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner.

  10. Design process of the nanofluid injection mechanism in nuclear power plants

    PubMed Central

    2011-01-01

    Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs). This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs) assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD) in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner. PMID:21711896

  11. Design process of the nanofluid injection mechanism in nuclear power plants.

    PubMed

    Kang, Myoung-Suk; Jee, Changhyun; Park, Sangjun; Bang, In Choel; Heo, Gyunyoung

    2011-04-27

    Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs). This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs) assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD) in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner.

  12. A Mock UF6 Feed and Withdrawal System for Testing Safeguards Monitoring Systems and Strategies Intended for Nuclear Fuel Enrichment and Processing Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krichinsky, Alan M; Bates, Bruce E; Chesser, Joel B

    2009-12-01

    This report describes an engineering-scale, mock UF6 feed and withdrawal (F&W) system, its operation, and its intended uses. This system has been assembled to provide a test bed for evaluating and demonstrating new methodologies that can be used in remote, unattended, continuous monitoring of nuclear material process operations. These measures are being investigated to provide independent inspectors improved assurance that operations are being conducted within declared parameters, and to increase the overall effectiveness of safeguarding nuclear material. Testing applicable technologies on a mock F&W system, which uses water as a surrogate for UF6, enables thorough and cost-effective investigation of hardware,more » software, and operational strategies before their direct installation in an industrial nuclear material processing environment. Electronic scales used for continuous load-cell monitoring also are described as part of the basic mock F&W system description. Continuous monitoring components on the mock F&W system are linked to a data aggregation computer by a local network, which also is depicted. Data collection and storage systems are described only briefly in this report. The mock UF{sub 6} F&W system is economical to operate. It uses a simple process involving only a surge tank between feed tanks and product and withdrawal (or waste) tanks. The system uses water as the transfer fluid, thereby avoiding the use of hazardous UF{sub 6}. The system is not tethered to an operating industrial process involving nuclear materials, thereby allowing scenarios (e.g., material diversion) that cannot be conducted otherwise. These features facilitate conducting experiments that yield meaningful results with a minimum of expenditure and quick turnaround time. Technologies demonstrated on the engineering-scale system lead to field trials (described briefly in this report) for determining implementation issues and performance of the monitoring technologies under plant operating conditions. The ultimate use of technologies tested on the engineering-scale test bed is to work with safeguards agencies to install them in operating plants (e.g., enrichment and fuel processing plants), thereby promoting new safeguards measures with minimal impact to operating plants. In addition, this system is useful in identifying features for new plants that can be incorporated as part of 'safeguards by design,' in which load cells and other monitoring technologies are specified to provide outputs for automated monitoring and inspector evaluation.« less

  13. Wireless online position monitoring of manual valve types for plant configuration management in nuclear power plants

    DOE PAGES

    Agarwal, Vivek; Buttles, John W.; Beaty, Lawrence H.; ...

    2016-10-05

    In the current competitive energy market, the nuclear industry is committed to lower the operations and maintenance cost; increase productivity and efficiency while maintaining safe and reliable operation. The present operating model of nuclear power plants is dependent on large technical staffs that put the nuclear industry at long-term economic disadvantage. Technology can play a key role in nuclear power plant configuration management in offsetting labor costs by automating manually performed plant activities. The technology being developed, tested, and demonstrated in this paper will enable the continued safe operation of today’s fleet of light water reactors by providing the technicalmore » means to monitor components in plants today that are only routinely monitored through manual activities. The wireless enabled valve position indicators that are the subject of this paper are able to provide a valid position indication available continuously, rather than only periodically. As a result, a real-time (online) availability of valve positions using an affordable technologies are vital to plant configuration when compared with long-term labor rates, and provide information that can be used for a variety of plant engineering, maintenance, and management applications.« less

  14. Wireless online position monitoring of manual valve types for plant configuration management in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Vivek; Buttles, John W.; Beaty, Lawrence H.

    In the current competitive energy market, the nuclear industry is committed to lower the operations and maintenance cost; increase productivity and efficiency while maintaining safe and reliable operation. The present operating model of nuclear power plants is dependent on large technical staffs that put the nuclear industry at long-term economic disadvantage. Technology can play a key role in nuclear power plant configuration management in offsetting labor costs by automating manually performed plant activities. The technology being developed, tested, and demonstrated in this paper will enable the continued safe operation of today’s fleet of light water reactors by providing the technicalmore » means to monitor components in plants today that are only routinely monitored through manual activities. The wireless enabled valve position indicators that are the subject of this paper are able to provide a valid position indication available continuously, rather than only periodically. As a result, a real-time (online) availability of valve positions using an affordable technologies are vital to plant configuration when compared with long-term labor rates, and provide information that can be used for a variety of plant engineering, maintenance, and management applications.« less

  15. Contributions of the SCK.CEN Academy to education and training in nuclear science and technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coeck, Michele

    Thanks to its thorough experience in the field of nuclear science and technology, its innovative research and the availability of large and unique nuclear installations, SCK.CEN is not only a renowned nuclear research institution, but also an important partner for nuclear education and training in Belgium as well as at international level. Within the SCK.CEN Academy, more than 60 years of nuclear expertise and experience gained from our different research projects is collected and transferred. In the interest of maintaining a competent workforce in industry, Healthcare, research, and policy, and of transferring nuclear knowledge and skills to the next generations,more » the SCK.CEN Academy takes it as its mission to: - provide guidance for students and early-stage researchers; - organize academic courses and customized training for professionals; - offer policy support with regard to education and training matters; - care for critical-intellectual capacities for society. Specifically in the domain of nuclear instrumentation the SCK.CEN Academy provides an opportunity to students at Bachelor, Master and PhD level to make use of the SCK.CEN infrastructure to support their thesis research or to perform an internship with the aim to improve and extend their knowledge and skills in a specific research or technical domain. Further, they can contribute to new findings in the field of nuclear instrumentation. The students are guided by our scientists, engineers and technicians who have years of experience in the relevant field. In addition, the SCK.CEN Academy contributes to traditional university education programs and delivers courses in several nuclear topics such as dosimetry. We also coordinate the Belgian Nuclear higher Engineering Network (BNEN), a one year (60 ECTS) master-after-master specialization in nuclear engineering in which 6 Belgian universities and SCK.CEN are involved. Beyond the contributions to academic education, we also provide several customized training programs tailored to the needs of the learners in terms of content, duration, level, language, location, etc. Complementary to the theoretical classes, ample attention is given to practical sessions and technical visits are foreseen which enable trainees to enrich and illustrate their acquired knowledge with the practice of real-life situations. In this poster presentation an overview will be given of the activities in the domains described above. Moreover it will be shown how these initiatives are embedded in the most recent European approaches to nuclear education and training via collaboration in several EU projects and networks. (authors)« less

  16. Knowledge management: Role of the the Radiation Safety Information Computational Center (RSICC)

    NASA Astrophysics Data System (ADS)

    Valentine, Timothy

    2017-09-01

    The Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL) is an information analysis center that collects, archives, evaluates, synthesizes and distributes information, data and codes that are used in various nuclear technology applications. RSICC retains more than 2,000 software packages that have been provided by code developers from various federal and international agencies. RSICC's customers (scientists, engineers, and students from around the world) obtain access to such computing codes (source and/or executable versions) and processed nuclear data files to promote on-going research, to ensure nuclear and radiological safety, and to advance nuclear technology. The role of such information analysis centers is critical for supporting and sustaining nuclear education and training programs both domestically and internationally, as the majority of RSICC's customers are students attending U.S. universities. Additionally, RSICC operates a secure CLOUD computing system to provide access to sensitive export-controlled modeling and simulation (M&S) tools that support both domestic and international activities. This presentation will provide a general review of RSICC's activities, services, and systems that support knowledge management and education and training in the nuclear field.

  17. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1990-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.

  18. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    NASA Astrophysics Data System (ADS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.

  19. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1990-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's

  20. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irving, J.S.

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  1. Satellite power system: Engineering and economic analysis summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A system engineering and economic analysis was conducted to establish typical reference baselines for the photovoltaic, solar thermal, and nuclear satellite power systems. Tentative conclusions indicate that feasibility and economic viability are characteristic of the Satellite Power System. Anticipated technology related to manufacturing, construction, and maintenance operations is described. Fuel consumption, environmental effects, and orbital transfer are investigated. Space shuttles, local space transportation, and the heavy lift launch vehicle required are also discussed.

  2. Metals and Ceramics Division progress report for period ending December 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Weir, J.R. Jr.

    1993-04-01

    This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.

  3. 78 FR 20625 - Spent Nuclear Fuel Management at the Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... processing is a chemical separations process that involves dissolving spent fuel in nitric acid and... Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact... chemical properties, and radionuclide inventory. The fuel groups and the seven technologies that could be...

  4. Mission to Mars using integrated propulsion concepts: considerations, opportunities, and strategies.

    PubMed

    Accettura, Antonio G; Bruno, Claudio; Casotto, Stefano; Marzari, Francesco

    2004-04-01

    The aim of this paper is to evaluate the feasibility of a mission to Mars using the Integrated Propulsion Systems (IPS) which means to couple Nuclear-MPD-ISPU propulsion systems. In particular both mission analysis and propulsion aspects are analyzed together with technological aspects. Identifying possible mission scenarios will lead to the study of possible strategies for Mars Exploration and also of methods for reducing cost. As regard to IPS, the coupling between Nuclear Propulsion (Rubbia's engine) and Superconductive MPD propulsion is considered for the Earth-Mars trajectories: major emphasis is given to the advantages of such a system. The In Situ Resource Utilization (ISRU) concerns on-Mars operations; In Situ Propellant Utilization (ISPU) is foreseen particularly for LOX-CH4 engines for Mars Ascent Vehicles and this possibility is analyzed from a technological point of view. Tether Systems are also considered during interplanetary trajectories and as space elevators on Mars orbit. Finally strategic considerations associated to this mission are considered also. c2003 Elsevier Ltd. All rights reserved.

  5. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Blanford; E. Keldrauk; M. Laufer

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement,more » and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using factory prefabricated structural modules, for application to external event shell and base isolated structures.« less

  6. Enterprise SRS: leveraging ongoing operations to advance radioactive waste management technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Alice M.; Wilmarth, William; Marra, John E.

    2013-07-01

    The Savannah River Site (SRS) is re-purposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate theirmore » technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by using SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R and D technologies and serve as the interface between the engineering-scale demonstration and the R and D programs, essentially providing cradle-to-grave support to the R and D team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform R and D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). These demonstrations can be accomplished in a more cost-effective manner through the use of existing facilities in conjunction with ongoing missions. Essentially, the R and D program would not need to pay the full operational cost of a facility, just the incremental cost of performing the demonstration. Current Center activities have been focused on integrating advanced safeguards monitoring technology demonstrations into the SRS H-Canyon and advanced location technology demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and program owners. In addition these demonstrations are providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (and to offsite venues) to ensure that future demonstrations are done efficiently and provide an opportunity to use these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future use of SRS assets is the demonstration of new radioactive waste management technologies critical for advancing the mission needs of the DOE-EM program offices in their efforts to cleanup 107 sites across the United States. Of particular interest is the demonstration of separations technologies in H-Canyon. Given the modular design of H-Canyon, those demonstrations would be accomplished using a process frame. The demonstration equipment would be installed on the process frame and that frame would then be positioned into an H-Canyon cell so that the demonstration is performed in a radiological environment involving prototypic nuclear materials. (authors)« less

  7. The line-emitting gas in active galaxies - A probe of the nuclear engine

    NASA Technical Reports Server (NTRS)

    Veilleux, Sylvain

    1993-01-01

    This paper reviews some of the basic questions regarding the structure of the engine powering active galactic nuclei (AGN), the nature of the interaction between the AGN and the host galaxy, and the origin and evolution of AGN. The study of the dynamics and physical characteristics of the line-emitting gas in these objects has proven fruitful in addressing many of these issues. Recent advances in optical and infrared detector technology combined with the development of superior ground-based instruments have produced efficient new tools for the study of the line-emitting gas on nuclear and Galactic scales. Programs which take advantage of two of these new techniques, Fabry-Perot imaging spectroscopy and infrared spectroscopy, are described in this paper. The origin of nuclear activity in galaxies is also addressed in a third project which aims at determining the nature of luminous infrared galaxies.

  8. The WPI reactor-readying for the next generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobek, L.M.

    1993-01-01

    Built in 1959, the 10-kW open-pool nuclear training reactor at Worcester Polytechnic Institute (WPI) was one of the first such facilities in the nation located on a university campus. Since then, the reactor and its related facilities have been used to train two generations of nuclear engineers and scientists for the nuclear industry. With the use of nuclear technology playing an increasing role in many segments of the economy, WPI with its nuclear reactor facility is committed to continuing its mission of training future nuclear engineers and scientists. The WPI reactor includes a 6-in. beam port, graphite thermal column, andmore » in-core sample facility. The reactor, housed in an open 8000-gal tank of water, is designed so that the core is readily accessible. Both the control console and the peripheral counting equipment used for student projects and laboratory exercises are located in the reactor room. This arrangement provides convenience and flexibility in using the reactor for foil activations in neutron flux measurements, diffusion measurements, radioactive decay measurements, and the neutron activation of samples for analysis. In 1988, the reactor was successfully converted to low-enriched uranium fuel.« less

  9. Impact Upon U.S. Security of a South African Nuclear Weapons Capability.

    DTIC Science & Technology

    1981-04-01

    Simon Brand, dubbed the international companies as the " engine of growth" for the South African economy. The petroleum market, automobile industry , and...thereby halting the flow of metals key to high technology industries which in turn, are critical to U.S. national security. Should Washington’s...to produce nuclear weapons." * More specifically, we found that South Africa has: A sufficient scientific and industrial base on which to conduct

  10. Sandia National Laboratories focus issue: introduction.

    PubMed

    Boye, Robert

    2014-08-20

    For more than six decades, Sandia has provided the critical science and technology to address the nation's most challenging issues. Our original nuclear weapons mission has been complemented with work in defense systems, energy and climate, as well as international and homeland security. Our vision is to be a premier science and engineering laboratory for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe.

  11. Ordnance News

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bofman, Ryan K.

    Since July of 2016 I have been assigned as a Guest Scientist at Los Alamos National Laboratory under the Training With Industries (TWI) Program. Los Alamos National Laboratory has proven to be a challenging and rewarding assignment in which I have found myself at the cutting edge of technologies pertinent to the Explosive Ordnance Disposal career field. In the last 7 months I have had the pleasure of working in an applications group that conducts research at the DOE “Q” and SCI levels. The group “uses a broad range of engineering and scientific expertise to support nuclear counter proliferation (NCP),more » nuclear counter terrorism (NCT), and nuclear emergency response (ER) missions. The Group contributes to national programs intended to protect, deter, and respond to weapons of mass destruction through tailored training and by using specialized applied electromagnetic solutions, rapid prototyping, designing/building/testing/delivering tools and trainers along with novel safing technologies, RF solutions, and cyberphysical applications”. While the specifics of the work performed are classified, the groups “core expertise includes pulsed power; EMP effects; nuclear weapons engineering; weapons effects and materials; predictive/hydrodynamic modeling and testing; firing and penalty systems; x-ray and non-destructive evaluation of threat devices; applied physics; advanced RF systems; powerline communications; novel electronics; 3-D printing of specialized components and cyber assessment/response technologies”. (int.lanl.gov/org/padgs/threat-identification-response/analytics-intelligencetechnology/ a-3/index.shtml)« less

  12. Near Earth Asteroid Human Mission Possibilities Using Nuclear Thermal Rocket (NTR) Propulsion

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR is a proven technology that generates high thrust and has a specific impulse (Isp (is) approximately 900 s) twice that of today's best chemical rockets. During the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs, twenty rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability - all the requirements needed for a human mission to Mars. Ceramic metal fuel was also evaluated as a backup option. In NASA's recent Mars Design reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program - the 25 klbf 'Pewee' engine is sufficient for a human Mars mission when used in a clustered engine configuration. The 'Copernicus crewed NTR Mars transfer vehicle design developed for DRA 5.0 has significant capability that can enable reusable '1-year' round trip human missions to candidate near Earth asteroids (NEAs) like 1991 JW in 2027, or 2000 SG344 and Apophis in 2028. A robotic precursor mission to 2000 SG344 in late 2023 could provide an attractive Flight Technology Demonstration of a small NTR engine that is scalable to the 25 klbf-class engine used for human missions 5 years later. In addition to the detailed scientific data gathered from on-site inspection, human NEA missions would also provide a valuable 'check out' function for key elements of the NTR transfer vehicle (its propulsion module, TransHab and life support systems, etc.) in a 'deep space' environment prior to undertaking the longer duration Mars orbital and landing missions that would follow. The initial mass in low Earth orbit required for a mission to Apophis is approximately 323 t consisting of the NTR propulsion module ((is) approximately 138 t), the integrated saddle truss and LH2 drop tank assembly ((is) approximately 123 t), and the 6-crew payload element ((is) approximately 62 t). The later includes a multi-mission Space Excursion Vehicle (MMSEV) used for close-up examination and sample gathering. The total burn time and required restarts on the three 25 klbf 'Pewee-class' engines operating at Isp (is) approximately 906 s, are approximately 76.2 minutes and 4, respectively, well below the 2 hours and 27 restarts demonstrated on the NERVA eXperimental Engine, the NRX-XE. The paper examines the benefits, requirements and characteristics of using NTP for the above NEA missions. The impacts on vehicle design of HLV payload volume and lift capability, crew size, and reusability are also quantified.

  13. Reactor technology assessment and selection utilizing systems engineering approach

    NASA Astrophysics Data System (ADS)

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In

    2014-02-01

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  14. Affordable Development and Qualification Strategy for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.; Doughty, Glen E.; Bhattacharyya, Samit K.

    2013-01-01

    Nuclear Thermal Propulsion (NTP) is a concept which uses a nuclear reactor to heat a propellant to high temperatures without combustion and can achieve significantly greater specific impulse than chemical engines. NTP has been considered many times for human and cargo missions beyond low earth orbit. A lot of development and technical maturation of NTP components took place during the Rover/NERVA program of the 60's and early 70's. Other NTP programs and studies followed attempting to further mature the NTP concept and identify a champion customer willing to devote the funds and support the development schedule to a demonstration mission. Budgetary constraints require the use of an affordable development and qualification strategy that takes into account all the previous work performed on NTP to construct an existing database, and include lessons learned and past guidelines followed. Current guidelines and standards NASA uses for human rating chemical rocket engines is referenced. The long lead items for NTP development involve the fuel elements of the reactor and ground testing the engine system, subsystem, and components. Other considerations which greatly impact the development plans includes the National Space Policy, National Environmental Policy Act, Presidential Directive/National Security Council Memorandum #25 (Scientific or Technological Experiments with Possible Large-Scale Adverse Environmental Effects and Launch of Nuclear Systems into Space), and Safeguards and Security. Ground testing will utilize non-nuclear test capabilities to help down select components and subsystems before testing in a nuclear environment to save time and cost. Existing test facilities with minor modifications will be considered to the maximum extent practical. New facilities will be designed to meet minimum requirements. Engine and test facility requirements are based on the driving mission requirements with added factors of safety for better assurance and reliability. Emphasis will be placed on small engines, since the smaller the NTP engine, the easier it is to transport, assemble/disassemble, and filter the exhaust during tests. A new ground test concept using underground bore holes (modeled after the underground nuclear test program) to filter the NTP engine exhaust is being considered. The NTP engine system design, development, test, and evaluation plan includes many engine components and subsystems, which are very similar to those used in chemical engines, and can be developed in conjunction with them Other less mature NTP engine components and subsystems (e.g., reactor) will be thoroughly analyzed and tested to acceptable levels recommended by the referenced standards and guidelines. The affordable development strategy also considers a prototype flight test, as a final step in the development process. Preliminary development schedule estimates show that an aggressive development schedule (without much margin) will be required to be flight ready for a 2033 human mission to Mars.

  15. Nuclear Rocket Technology Conference

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The Lewis Research Center has a strong interest in nuclear rocket propulsion and provides active support of the graphite reactor program in such nonnuclear areas as cryogenics, two-phase flow, propellant heating, fluid systems, heat transfer, nozzle cooling, nozzle design, pumps, turbines, and startup and control problems. A parallel effort has also been expended to evaluate the engineering feasibility of a nuclear rocket reactor using tungsten-matrix fuel elements and water as the moderator. Both of these efforts have resulted in significant contributions to nuclear rocket technology. Many successful static firings of nuclear rockets have been made with graphite-core reactors. Sufficient information has also been accumulated to permit a reasonable Judgment as to the feasibility of the tungsten water-moderated reactor concept. We therefore consider that this technoIogy conference on the nuclear rocket work that has been sponsored by the Lewis Research Center is timely. The conference has been prepared by NASA personnel, but the information presented includes substantial contributions from both NASA and AEC contractors. The conference excludes from consideration the many possible mission requirements for nuclear rockets. Also excluded is the direct comparison of nuclear rocket types with each other or with other modes of propulsion. The graphite reactor support work presented on the first day of the conference was partly inspired through a close cooperative effort between the Cleveland extension of the Space Nuclear Propulsion Office (headed by Robert W. Schroeder) and the Lewis Research Center. Much of this effort was supervised by Mr. John C. Sanders, chairman for the first day of the conference, and by Mr. Hugh M. Henneberry. The tungsten water-moderated reactor concept was initiated at Lewis by Mr. Frank E. Rom and his coworkers. The supervision of the recent engineering studies has been shared by Mr. Samuel J. Kaufman, chairman for the second day of the conference, and Mr. Roy V. Humble. Dr. John C. Eward served as general chairman for the conference.

  16. MITEE-B: A Compact Ultra Lightweight Bi-Modal Nuclear Propulsion Engine for Robotic Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Paniagua, John; Borowski, Stanley

    2003-01-01

    Nuclear thermal propulsion (NTP) enables unique new robotic planetary science missions that are impossible with chemical or nuclear electric propulsion systems. A compact and ultra lightweight bi-modal nuclear engine, termed MITEE-B (MInature ReacTor EnginE - Bi-Modal) can deliver 1000's of kilograms of propulsive thrust when it operates in the NTP mode, and many kilowatts of continuous electric power when it operates in the electric generation mode. The high propulsive thrust NTP mode enables spacecraft to land and takeoff from the surface of a planet or moon, to hop to multiple widely separated sites on the surface, and virtually unlimited flight in planetary atmospheres. The continuous electric generation mode enables a spacecraft to replenish its propellant by processing in-situ resources, provide power for controls, instruments, and communications while in space and on the surface, and operate electric propulsion units. Six examples of unique and important missions enabled by the MITEE-B engine are described, including: (1) Pluto lander and sample return; (2) Europa lander and ocean explorer; (3) Mars Hopper; (4) Jupiter atmospheric flyer; (5) SunBurn hypervelocity spacecraft; and (6) He3 mining from Uranus. Many additional important missions are enabled by MITEE-B. A strong technology base for MITEE-B already exists. With a vigorous development program, it could be ready for initial robotic science and exploration missions by 2010 AD. Potential mission benefits include much shorter in-space times, reduced IMLEO requirements, and replenishment of supplies from in-situ resources.

  17. Nuclear Thermal Rocket - Arc Jet Integrated System Model

    NASA Technical Reports Server (NTRS)

    Taylor, Brian D.; Emrich, William

    2016-01-01

    In the post-shuttle era, space exploration is moving into a new regime. Commercial space flight is in development and is planned to take on much of the low earth orbit space flight missions. With the development of a heavy lift launch vehicle, the Space Launch, System, NASA has become focused on deep space exploration. Exploration into deep space has traditionally been done with robotic probes. More ambitious missions such as manned missions to asteroids and Mars will require significant technology development. Propulsion system performance is tied to the achievability of these missions and the requirements of other developing technologies that will be required. Nuclear thermal propulsion offers a significant improvement over chemical propulsion while still achieving high levels of thrust. Opportunities exist; however, to build upon what would be considered a standard nuclear thermal engine to attain improved performance, thus further enabling deep space missions. This paper discuss the modeling of a nuclear thermal system integrated with an arc jet to further augment performance. The performance predictions and systems impacts are discussed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carruth, R.C.; Sotos, W.G.

    As the nation`s nuclear power plants age, the need to consider upgrading of their electronic protection and control systems becomes more urgent. Hardware obsolescence and mechanical wear out resulting from frequent calibration and surveillance play a major role in defining their useful life. At Cook Nuclear Plant, a decision was made to replace a major portion of the plant`s protection and control systems with newer technology. This paper describes the engineering processes involved in this successful upgrade and explains the basis for many decisions made while performing the digital upgrade.

  19. A method to select human-system interfaces for nuclear power plants

    DOE PAGES

    Hugo, Jacques Victor; Gertman, David Ira

    2015-10-19

    The new generation of nuclear power plants (NPPs) will likely make use of state-of-the-art technologies in many areas of the plant. The analysis, design, and selection of advanced human–system interfaces (HSIs) constitute an important part of power plant engineering. Designers need to consider the new capabilities afforded by these technologies in the context of current regulations and new operational concepts, which is why they need a more rigorous method by which to plan the introduction of advanced HSIs in NPP work areas. Much of current human factors research stops at the user interface and fails to provide a definitive processmore » for integration of end user devices with instrumentation and control (I&C) and operational concepts. The current lack of a clear definition of HSI technology, including the process for integration, makes characterization and implementation of new and advanced HSIs difficult. This paper describes how new design concepts in the nuclear industry can be analyzed and how HSI technologies associated with new industrial processes might be considered. Furthermore, it also describes a basis for an understanding of human as well as technology characteristics that could be incorporated into a prioritization scheme for technology selection and deployment plans.« less

  20. Innovate or Die: Innovation and Technology for Special Operations

    DTIC Science & Technology

    2010-12-01

    in Physics, Astronomy , and Nuclear Engineering. Dr. Spulak has been an adjunct professor of Political Science at the University of New Mexico in U.S...objectives, creativity is the ability to rapidly change the operational method to something different from what conventional forces can use: the ability to...emphasizes the importance of friction:7 There are other aspects of human conflict that will not change no matter what advances in technology or

  1. Careers in Atomic Energy, Understanding the Atom Series, Revised.

    ERIC Educational Resources Information Center

    McIlhenny, Loyce J.

    This booklet identifies careers in nuclear energy and suggests preparation for such careers. Suggested are the types of courses in high school and college necessary for work in physical, biological, and veterinary sciences, engineering, medicine, scientific writing, and supporting fields such as nursing and laboratory technology. Brief…

  2. Propulsion Research and Technology: Overview

    NASA Technical Reports Server (NTRS)

    Cole, John; Schmidt, George

    1999-01-01

    Propulsion is unique in being the main delimiter on how far and how fast one can travel in space. It is the lack of truly economical high-performance propulsion systems that continues to limit and restrict the extent of human endeavors in space. Therefore the goal of propulsion research is to conceive and investigate new, revolutionary propulsion concepts. This presentation reviews the development of new propulsion concepts. Some of these concepts are: (1) Rocket-based Combined Cycle (RBCC) propulsion, (2) Alternative combined Cycle engines suc2 as the methanol ramjet , and the liquid air cycle engines, (3) Laser propulsion, (4) Maglifter, (5) pulse detonation engines, (6) solar thermal propulsion, (7) multipurpose hydrogen test bed (MHTB) and other low-G cryogenic fluids, (8) Electric propulsion, (9) nuclear propulsion, (10) Fusion Propulsion, and (11) Antimatter technology. The efforts of the NASA centers in this research is also spotlighted.

  3. Sandia technology: Engineering and science applications

    NASA Astrophysics Data System (ADS)

    Maydew, M. C.; Parrot, H.; Dale, B. C.; Floyd, H. L.; Leonard, J. A.; Parrot, L.

    1990-12-01

    This report discusses: protecting environment, safety, and health; Sandia's quality initiative; Sandia vigorously pursues technology transfer; scientific and technical education support programs; nuclear weapons development; recognizing battlefield targets with trained artificial neural networks; battlefield robotics: warfare at a distance; a spinning shell sizes up the enemy; thwarting would-be nuclear terrorists; unattended video surveillance system for nuclear facilities; making the skies safer for travelers; onboard instrumentation system to evaluate performance of stockpile bombs; keeping track with lasers; extended-life lithium batteries; a remote digital video link acquires images securely; guiding high-performance missiles with laser gyroscopes; nonvolatile memory chips for space applications; initiating weapon explosives with lasers; next-generation optoelectronics and microelectronics technology developments; chemometrics: new methods for improving chemical analysis; research team focuses ion beam to record-breaking intensities; standardizing the volt to quantum accuracy; new techniques improve robotic software development productivity; a practical laser plasma source for generating soft x-rays; exploring metal grain boundaries; massively parallel computing; modeling the amount of desiccant needed for moisture control; attacking pollution with sunshine; designing fuel-conversion catalysts with computers; extending a nuclear power plant's useful life; plasma-facing components for the International Thermonuclear Experimental Reactor.

  4. Security Hardened Cyber Components for Nuclear Power Plants: Phase I SBIR Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franusich, Michael D.

    SpiralGen, Inc. built a proof-of-concept toolkit for enhancing the cyber security of nuclear power plants and other critical infrastructure with high-assurance instrumentation and control code. The toolkit is based on technology from the DARPA High-Assurance Cyber Military Systems (HACMS) program, which has focused on applying the science of formal methods to the formidable set of problems involved in securing cyber physical systems. The primary challenges beyond HACMS in developing this toolkit were to make the new technology usable by control system engineers and compatible with the regulatory and commercial constraints of the nuclear power industry. The toolkit, packaged as amore » Simulink add-on, allows a system designer to assemble a high-assurance component from formally specified and proven blocks and generate provably correct control and monitor code for that subsystem.« less

  5. Decommissioning of German Research Reactors Under the Governance of the Federal Ministry of Education and Research - 12154

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigl, M.

    2012-07-01

    Since 1956, nuclear research and development (R and D) in Germany has been supported by the Federal Government. The goal was to help German industry to become competitive in all fields of nuclear technology. National research centers were established and demonstration plants were built. In the meantime, all these facilities were shut down and are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactormore » with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. Another big project was finished in 2008. The Forschungs-Reaktor Juelich 1 (FRJ1), a research reactor with a thermal power of 10 MW was completely dismantled and in September 2008 an oak tree was planted on a green field at the site, where the FRJ1 was standing before. This is another example for German success in the field of D and D. Within these projects a lot of new solutions and innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). Some examples are underwater-cutting technologies like plasma arc cutting and contact arc metal cutting. This clearly shows that research on the field of D and D is important for the future. Moreover, these research activities are important to save the know-how in nuclear engineering in Germany and will enable enterprises to compete on the increasing market of D and D services. The author assumes that an efficient decommissioning of nuclear installations will help stabilize the credibility of nuclear energy. Some critics of nuclear energy are insisting that a return to 'green field sites' is not possible. The successful completion of two big D and D projects (HDR and KKN), which reached green field conditions, are showing quite the contrary. Moreover, research on D and D technologies offers the possibility to educate students on a field of nuclear technology, which will be very important in the future. In these days D and D companies are seeking for a lot of young engineers and this will not change in the coming years. (authors)« less

  6. Feasibility study of a gamma camera for monitoring nuclear materials in the PRIDE facility

    NASA Astrophysics Data System (ADS)

    Jo, Woo Jin; Kim, Hyun-Il; An, Su Jung; Lee, Chae Young; Song, Han-Kyeol; Chung, Yong Hyun; Shin, Hee-Sung; Ahn, Seong-Kyu; Park, Se-Hwan

    2014-05-01

    The Korea Atomic Energy Research Institute (KAERI) has been developing pyroprocessing technology, in which actinides are recovered together with plutonium. There is no pure plutonium stream in the process, so it has an advantage of proliferation resistance. Tracking and monitoring of nuclear materials through the pyroprocess can significantly improve the transparency of the operation and safeguards. An inactive engineering-scale integrated pyroprocess facility, which is the PyRoprocess Integrated inactive DEmonstration (PRIDE) facility, was constructed to demonstrate engineering-scale processes and the integration of each unit process. the PRIDE facility may be a good test bed to investigate the feasibility of a nuclear material monitoring system. In this study, we designed a gamma camera system for nuclear material monitoring in the PRIDE facility by using a Monte Carlo simulation, and we validated the feasibility of this system. Two scenarios, according to locations of the gamma camera, were simulated using GATE (GEANT4 Application for Tomographic Emission) version 6. A prototype gamma camera with a diverging-slat collimator was developed, and the simulated and experimented results agreed well with each other. These results indicate that a gamma camera to monitor the nuclear material in the PRIDE facility can be developed.

  7. Control console replacement at the WPI Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less

  8. Nuclear plants gain integrated information systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villavicencio-Ramirez, A.; Rodriquez-Alvarez, J.M.

    1994-10-01

    With the objective of simplifying the complex mesh of computing devices employed within nuclear power plants, modern technology and integration techniques are being used to form centralized (but backed up) databases and distributed processing and display networks. Benefits are immediate as a result of the integration and the use of standards. The use of a unique data acquisition and database subsystem optimizes the high costs of engineering, as this task is done only once for the life span of the system. This also contributes towards a uniform user interface and allows for graceful expansion and maintenance. This article features anmore » integrated information system, Sistema Integral de Informacion de Proceso (SIIP). The development of this system enabled the Laguna Verde Nuclear Power plant to fully use the already existing universe of signals and its related engineering during all plant conditions, namely, start up, normal operation, transient analysis, and emergency operation. Integrated systems offer many advantages over segregated systems, and this experience should benefit similar development efforts in other electric power utilities, not only for nuclear but also for other types of generating plants.« less

  9. The Story of the Nuclear Rocket: Back to the Future

    NASA Astrophysics Data System (ADS)

    Dewar, James A.

    2002-01-01

    The United States had a nuclear rocket development program from 1955-1973 called Project Rover/NERVA. Twenty reactor tests demonstrated conclusively the superiority, flexibility and reliability of nuclear rocket engines over their chemical counterparts. This paper surveys the technical accomplishments from that perspective, to help illustrate why many call for the program's reestablishment. Most focus on the large NERVA, but this review will consider the little known Small Nuclear Engine. KIWI-B1B was one of the first tests in which nuclear rockets demonstrated their superiority. It ejected its core as it rose to 1000MW (a megawatt equals 50 pounds of thrust). This seems contradictory, how can a `failure' demonstrate superiority? Precisely in this: the reactor remained controllable going to and from 1000MW, still ejecting its core, but still turning out power. That gave insurance to a mission. A solid or liquid chemical engine suffering similar damage would likely shutdown or blow up. KIWI-TNT and Phoebus-1A had planned and unplanned accidents. That verified the safety of nuclear engines in launch operations. NRX/EST and XE-Prime proved they could startup reliably under their own power in a simulated space environment and change power without loss of specific impulse or control, from 20MW to 1000MW and back. That gave flexibility for mid-course corrections, maneuvering between orbits or breaking into orbit. Pewee and the Nuclear Furnace tested fuels to achieve 10 hours of engine operation with 60 recycles (stops and starts). That meant an engine could perform multiple missions. Work started on fuels promising1000 seconds of specific impulse. That meant increased power and payload capacity and speed. This contrasts with the 450 seconds of LOX/LH2. The NERVA of 1971 would be 1500MW, with 10/60 capability and 825 seconds of a specific impulse. Later generation NERVAs would be in excess of 1000 seconds, 3000MW and 10/60. The Nixon Administration cancelled it in 1971. After its demise, the Small Nuclear Engine appeared for unmanned missions. To fit in the space shuttle's 15 by 60 foot cargo bay, the 10 foot long engine would be 400MW, weigh 5600 pounds and use slush hydrogen. That left 50 feet and almost 60,000 pounds for the tank, propellant and payload that could vary in size, but it was nominally 5 tons. It would cost 500 million (in1972 dollars) and take a decade to develop. It had NERVA's operating characteristics, but subsequent generation systems envisioned longer engine life and recycle capability and specific impulses of 1000+ seconds. Nixon ended this in 1973. By reconsidering it instead of a nuclear electric engine that serves only space science, the nation could gain a fast, powerful system that would radically change most future unmanned space missions. With its recycle capability, a single engine could ferry large scientific payloads swiftly throughout the solar system. Yet it also could propel heavy national security and commercial payloads to geo-synchronous orbit. NASA might even offer a satellite retrieval service. Thus, one lesson is clear: it is 1960s era technology, but the Small Engine is not obsolete. If developed, it would serve not just one, but three users yet have growth potential for decades for an ever more expansive space program.

  10. Study of influence of plastic scintillators thicknesses to detect Beta particles and Gamma radiation by means of spectral analysis of {sup 90}Sr, {sup 90}Y and {sup 137}Cs sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Pereira, Maria da Conceicao Costa

    2015-07-01

    The Nuclear and Energy Research Institute - IPEN, offers post-graduate programs, namely: Nuclear Technology - Applications (TNA), Nuclear Technology - Materials (TNM), Nuclear Technology - Reactors (TNR). The Institute programs mission is to form expert technicians, physicists and engineers with a strong knowledge in their discipline to work in the nuclear area. The course: 'Theoretical Fundamentals and Practices of the Instrumentation used in Nuclear Data Acquisition' covers the use of laboratory nuclear instrumentation and the accomplishment of experiments to obtain nuclear parameters. One of these experimental exercises is object of this work: 'Study of influence of plastic scintillators to detectmore » Beta particles and Gamma radiation by means of spectral analysis of {sup 90}Sr, {sup 90}Y and {sup 137}Cs sources'. The use of scintillators plastic for the detection has the advantage of low cost, high mechanical strength, is not hygroscopic and can be manufactured in large volumes. This work aims to present the analysis of relative efficiency of detection of plastic scintillators of various thicknesses for beta particles and gamma radiation by the spectrum of {sup 137}Cs and {sup 90}Sr. Due to lack of resolution of the detectors plastic scintillators we worked with relative efficiency. The evaluation was done by reading deposited energy, using the software MAESTRO, for each detector thickness. For beta particles was observed an ideal thickness around 3 mm and the better photon efficiency was observed with increasing the thickness of the detector. The present experiment does not intend to establish a new technique for this subject: it solely aims student's practical exercises in nuclear properties of elements and detectors being part of the nuclear experimental course. (authors)« less

  11. ``Recycling'' Nuclear Power Plant Waste: Technical Difficulties and Proliferation Concerns

    NASA Astrophysics Data System (ADS)

    Lyman, Edwin

    2007-04-01

    One of the most vexing problems associated with nuclear energy is the inability to find a technically and politically viable solution for the disposal of long-lived radioactive waste. The U.S. plan to develop a geologic repository for spent nuclear fuel at Yucca Mountain in Nevada is in jeopardy, as a result of managerial incompetence, political opposition and regulatory standards that may be impossible to meet. As a result, there is growing interest in technologies that are claimed to have the potential to drastically reduce the amount of waste that would require geologic burial and the length of time that the waste would require containment. A scenario for such a vision was presented in the December 2005 Scientific American. While details differ, these technologies share a common approach: they require chemical processing of spent fuel to extract plutonium and other long-lived actinide elements, which would then be ``recycled'' into fresh fuel for advanced reactors and ``transmuted'' into shorter-lived fission products. Such a scheme is the basis for the ``Global Nuclear Energy Partnership,'' a major program unveiled by the Department of Energy (DOE) in early 2006. This concept is not new, but has been studied for decades. Major obstacles include fundamental safety issues, engineering feasibility and cost. Perhaps the most important consideration in the post-9/11 era is that these technologies involve the separation of plutonium and other nuclear weapon-usable materials from highly radioactive fission products, providing opportunities for terrorists seeking to obtain nuclear weapons. While DOE claims that it will only utilize processes that do not produce ``separated plutonium,'' it has offered no evidence that such technologies would effectively deter theft. It is doubtful that DOE's scheme can be implemented without an unacceptable increase in the risk of nuclear terrorism.

  12. US/CIS integrated NTRE

    NASA Astrophysics Data System (ADS)

    Bulman, M. J.; Culver, D. W.; McIlwain, M. C.; Rochow, Richard; D'Yakov, E. K.; Smetannikov, V. P.

    1993-06-01

    The paper describes the Nuclear Thermal Energy (NTRE) engine, developed by taking advantage of mature fuel technology developed in the former Soviet Union, thus shortening the development schedule of this engine for moon and Mars explorations. The near-term NTRE engine has a number of features that provide safety, mission performance, cost, and risk benefits. These include: (1) high-temperature long-life CIS fuel, (2) high-pressure recuperated expander cycle, (3) assured restart, (4) long-life cooled nozzle with thin inner wall, (5) long-life turbopumps, (6) heat radiation and electrical power generation, and (7) component integration synergy. Diagrams of the reactor core, the recuperated bottoming cycle flow schematic, and the recuperated bottoming cycle engine schematic are presented.

  13. Integrative Curriculum Development in Nuclear Education and Research Vertical Enhancement Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egarievwe, Stephen U.; Jow, Julius O.; Edwards, Matthew E.

    Using a vertical education enhancement model, a Nuclear Education and Research Vertical Enhancement (NERVE) program was developed. The NERVE program is aimed at developing nuclear engineering education and research to 1) enhance skilled workforce development in disciplines relevant to nuclear power, national security and medical physics, and 2) increase the number of students and faculty from underrepresented groups (women and minorities) in fields related to the nuclear industry. The program uses multi-track training activities that vertically cut across the several education domains: undergraduate degree programs, graduate schools, and post-doctoral training. In this paper, we present the results of an integrativemore » curriculum development in the NERVE program. The curriculum development began with nuclear content infusion into existing science, engineering and technology courses. The second step involved the development of nuclear engineering courses: 1) Introduction to Nuclear Engineering, 2) Nuclear Engineering I, and 2) Nuclear Engineering II. The third step is the establishment of nuclear engineering concentrations in two engineering degree programs: 1) electrical engineering, and 2) mechanical engineering. A major outcome of the NERVE program is a collaborative infrastructure that uses laboratory work, internships at nuclear facilities, on-campus research, and mentoring in collaboration with industry and government partners to provide hands-on training for students. The major activities of the research and education collaborations include: - One-week spring training workshop at Brookhaven National Laboratory: The one-week training and workshop is used to enhance research collaborations and train faculty and students on user facilities/equipment at Brookhaven National Laboratory, and for summer research internships. Participants included students, faculty members at Alabama A and M University and research collaborators at BNL. The activities include 1) tour and introduction to user facilities/equipment at BNL that are used for research in room-temperature semiconductor nuclear detectors, 2) presentations on advances on this project and on wide band-gap semiconductor nuclear detectors in general, and 3) graduate students' research presentations. - Invited speakers and lectures: This brings collaborating research scientist from BNL to give talks and lectures on topics directly related to the project. Attendance includes faculty members, researchers and students throughout the university. - Faculty-students team summer research at BNL: This DOE and National Science Foundation (NSF) program help train students and faculty members in research. Faculty members go on to establish research collaborations with scientists at BNL, develop and submit research proposals to funding agencies, transform research experience at BNL to establish and enhance reach capabilities at home institution, and integrate their research into teaching through class projects and hands-on training for students. The students go on to participate in research work at BNL and at home institution, co-author research papers for conferences and technical journals, and transform their experiences into developing senior and capstone projects. - Grant proposal development: Faculty members in the NERVE program collaborate with BNL scientists to develop proposals, which often help to get external funding needed to expand and sustain the continuity of research activities and supports for student's wages and scholarships (stipends, tuition and fees). - Faculty development and mentoring: The above collaboration activities help faculty professional development. The experiences, grants, joint publications in technical journals, and supervision of student's research, including thesis and dissertation research projects, contribute greatly to faculty development. Senior scientists at BNL and senior faculty members on campus jointly mentor junior faculty members to enhance their professional growth. - Graduate thesis and dissertation research: Brookhaven National Laboratory provides unique opportunities and outstanding research resources for the NERVE program graduate research. Scientists from BNL serve in master's degree thesis and PhD dissertation committees, where they play active roles in the supervision of the research. (authors)« less

  14. Affordable Development and Demonstration of a Small Nuclear Thermal Rocket (NTR) Engine and Stage: How Small Is Big Enough?

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Sefcik, Robert J.; Fittje, James E.; McCurdy, David R.; Qualls, Arthur L.; Schnitzler, Bruce G.; Werner, James E.; Weitzberg, Abraham; Joyner, Claude R.

    2016-01-01

    The Nuclear Thermal Rocket (NTR) derives its energy from fission of uranium-235 atoms contained within fuel elements that comprise the engine's reactor core. It generates high thrust and has a specific impulse potential of approximately 900 specific impulse - a 100 percent increase over today's best chemical rockets. The Nuclear Thermal Propulsion (NTP) project, funded by NASA's Advanced Exploration Systems (AES) program, includes five key task activities: (1) Recapture, demonstration, and validation of heritage graphite composite (GC) fuel (selected as the Lead Fuel option); (2) Engine Conceptual Design; (3) Operating Requirements Definition; (4) Identification of Affordable Options for Ground Testing; and (5) Formulation of an Affordable Development Strategy. During fiscal year (FY) 2014, a preliminary Design Development Test and Evaluation (DDT&E) plan and schedule for NTP development was outlined by the NASA Glenn Research Center (GRC), Department of Energy (DOE) and industry that involved significant system-level demonstration projects that included Ground Technology Demonstration (GTD) tests at the Nevada National Security Site (NNSS), followed by a Flight Technology Demonstration (FTD) mission. To reduce cost for the GTD tests and FTD mission, small NTR engines, in either the 7.5 or 16.5 kilopound-force thrust class, were considered. Both engine options used GC fuel and a common fuel element (FE) design. The small approximately 7.5 kilopound-force criticality-limited engine produces approximately157 thermal megawatts and its core is configured with parallel rows of hexagonal-shaped FEs and tie tubes (TTs) with a FE to TT ratio of approximately 1:1. The larger approximately 16.5 kilopound-force Small Nuclear Rocket Engine (SNRE), developed by Los Alamos National Laboratory (LANL) at the end of the Rover program, produces approximately 367 thermal megawatts and has a FE to TT ratio of approximately 2:1. Although both engines use a common 35-inch (approximately 89-centimeters) -long FE, the SNRE's larger diameter core contains approximately 300 more FEs needed to produce an additional 210 thermal megawatts of power. To reduce the cost of the FTD mission, a simple one-burn lunar flyby mission was considered to reduce the liquid hydrogen (LH2) propellant loading, the stage size and complexity. Use of existing and flight proven liquid rocket and stage hardware (e.g., from the RL10B-2 engine and Delta Cryogenic Second Stage) was also maximized to further aid affordability. This paper examines the pros and cons of using these two small engine options, including their potential to support future human exploration missions to the Moon, near Earth asteroids (NEA), and Mars, and recommends a preferred size. It also provides a preliminary assessment of the key activities, development options, and schedule required to affordably build, ground test and fly a small NTR engine and stage within a 10-year timeframe.

  15. Quantifying the Metrics That Characterize Safety Culture of Three Engineered Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Julie; Ernesti, Mary; Tokuhiro, Akira

    2002-07-01

    With potential energy shortages and increasing electricity demand, the nuclear energy option is being reconsidered in the United States. Public opinion will have a considerable voice in policy decisions that will 'road-map' the future of nuclear energy in this country. This report is an extension of the last author's work on the 'safety culture' associated with three engineered systems (automobiles, commercial airplanes, and nuclear power plants) in Japan and the United States. Safety culture, in brief is defined as a specifically developed culture based on societal and individual interpretations of the balance of real, perceived, and imagined risks versus themore » benefits drawn from utilizing a given engineered systems. The method of analysis is a modified scale analysis, with two fundamental Eigen-metrics, time- (t) and number-scales (N) that describe both engineered systems and human factors. The scale analysis approach is appropriate because human perception of risk, perception of benefit and level of (technological) acceptance are inherently subjective, therefore 'fuzzy' and rarely quantifiable in exact magnitude. Perception of risk, expressed in terms of the psychometric factors 'dread risk' and 'unknown risk', contains both time- and number-scale elements. Various engineering system accidents with fatalities, reported by mass media are characterized by t and N, and are presented in this work using the scale analysis method. We contend that level of acceptance infers a perception of benefit at least two orders larger magnitude than perception of risk. The 'amplification' influence of mass media is also deduced as being 100- to 1000-fold the actual number of fatalities/serious injuries in a nuclear-related accident. (authors)« less

  16. HFE safety reviews of advanced nuclear power plant control rooms

    NASA Technical Reports Server (NTRS)

    Ohara, John

    1994-01-01

    Advanced control rooms (ACR's) will utilize human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role and means of interacting with the system. The Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) aspects of HSI's to ensure that they are designed to good HFE principles and support performance and reliability in order to protect public health and safety. However, the only available NRC guidance was developed more than ten years ago, and does not adequately address the human performance issues and technology changes associated with ACR's. Accordingly, a new approach to ACR safety reviews was developed based upon the concept of 'convergent validity'. This approach to ACR safety reviews is described.

  17. U.S.-Russian Cooperation in Science and Technology: A Case Study of the TOPAZ Space-Based Nuclear Reactor International Program

    NASA Astrophysics Data System (ADS)

    Dabrowski, Richard S.

    2014-08-01

    The TOPAZ International Program (TIP) was the final name given to a series of projects to purchase and test the TOPAZ-II, a space-based nuclear reactor of a type that had been further developed in the Soviet Union than in the United States. In the changing political situation associated with the break-up of the Soviet Union it became possible for the United States to not just purchase the system, but also to employ Russian scientists, engineers and testing facilities to verify its reliability. The lessons learned from the TIP illuminate some of the institutional and cultural challenges to U.S. - Russian cooperation in technology research which remain true today.

  18. Consortium for Verification Technology Fellowship Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, Lorraine E.

    2017-06-01

    As one recipient of the Consortium for Verification Technology (CVT) Fellowship, I spent eight days as a visiting scientist at the University of Michigan, Department of Nuclear Engineering and Radiological Sciences (NERS). During this time, I participated in multiple department and research group meetings and presentations, met with individual faculty and students, toured multiple laboratories, and taught one-half of a one-unit class on Risk Analysis in Nuclear Arms control (six 1.5 hour lectures). The following report describes some of the interactions that I had during my time as well as a brief discussion of the impact of this fellowship onmore » members of the consortium and on me/my laboratory’s technical knowledge and network.« less

  19. Plutonium: Advancing our Understanding to Support Sustainable Nuclear Fuel Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, Amanda M.; Adami, Susan R.; Casella, Amanda

    With Global energy needs increasing, real energy solutions to meet demands now, are needed. Fossil fuels are not an ideal candidate to meet these needs because of their negative impact on the environment. Renewables such as wind and solar have huge potential, but still need major technological advancements (particularly in the area of battery storage) before they can effectively meet growing world needs. The best option for meeting large energy needs without a large carbon footprint is nuclear energy. Of course, nuclear energy can face a fair amount of opposition and concern. However, through modern engineering and science many ofmore » these concerns can now be addressed. Many safety concerns can be met by engineering advancements, but perhaps the biggest area of concern is what to do with the used nuclear fuel after it is removed from the reactor. Currently the United States (and several other countries) utilize an open fuel cycle, meaning fuel is only used once and then discarded. It should be noted that fuel coming out of a reactor has utilized approximately 1% of the total energy that could be produced by the uranium in the fuel rod. The answer here is to close the fuel cycle and recycle the nuclear materials. By reprocessing used nuclear fuel, all the U can be repurposed without requiring disposal. The various fission products can be removed and either discarded (hugely reduced waste volume) or more reasonably, utilized in specialty reactors to make more energy or needed research/medical isotopes. While reprocessing technology is currently advanced enough to meet energy needs, completing research to improve and better understand these techniques is still needed. Better understanding behavior of fission products is one area of important research. Despite it being discovered over 75 years ago, plutonium is still an exciting element to study because of the complex solution chemistry it exhibits. In aqueous solutions Pu can exist simultaneously in multiple oxidation states, including 3+, 4+, and 6+. It also readily forms a variety of metal-ligand complexes depending on solution pH and available ligands. Understanding of the behavior of Pu in solution remains an important area of research today, with relevance to developing sustainable nuclear fuel cycles, minimizing its impact on the environment, and detecting and preventing the spread of nuclear weapons technology.« less

  20. Research Technology

    NASA Image and Video Library

    2002-07-01

    Dr. Tom Markusic, a propulsion research engineer at the Marshall Space Flight Center (MSFC), adjusts a diagnostic laser while a pulsed plasma thruster (PPT) fires in a vacuum chamber in the background. NASA/MSFC's Propulsion Research Center (PRC) is presently investigating plasma propulsion for potential use on future nuclear-powered spacecraft missions, such as human exploration of Mars.

  1. Safety and maintenance engineering: A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A compilation is presented for the dissemination of information on technological developments which have potential utility outside the aerospace and nuclear communities. Safety of personnel engaged in the handling of hazardous materials and equipment, protection of equipment from fire, high wind, or careless handling by personnel, and techniques for the maintenance of operating equipment are reported.

  2. Affordable Development and Demonstrationof a Small NTR Engine and Stage: A Preliminary NASA, DOE and Industry Assessment

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Sefcik, Robert J.; Qualls, A. L.; Schnitzler, B.G.; Joyner, C. R.

    2014-01-01

    Formulation of Affordable and Sustainable NTP Development Strategy is Underway Involving NASA, DOE and Industry. In FY11, Nuclear Thermal Propulsion (NTP) was identified as a key propulsion option under the Advanced In-Space Propulsion (AISP) component of NASA's Exploration Technology Development and Demonstration (ETDD) program.

  3. Purgeable organic compounds at or near the Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory, Idaho, 2015

    USGS Publications Warehouse

    Maimer, Neil V.; Bartholomay, Roy C.

    2016-05-25

    During 2015, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected groundwater samples from 31 wells at or near the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Laboratory for purgeable organic compounds (POCs). The samples were collected and analyzed for the purpose of evaluating whether purge water from wells located inside an areal polygon established downgradient of the INTEC must be treated as a Resource Conservation and Recovery Act listed waste.POC concentrations in water samples from 29 of 31 wells completed in the eastern Snake River Plain aquifer were greater than their detection limit, determined from detection and quantitation calculation software, for at least one to four POCs. Of the 29 wells with concentrations greater than their detection limits, only 20 had concentrations greater than the laboratory reporting limit as calculated with detection and quantitation calculation software. None of the concentrations exceeded any maximum contaminant levels established for public drinking water supplies. Most commonly detected compounds were 1,1,1-trichoroethane, 1,1-dichloroethene, and trichloroethene.

  4. ENTERPRISE SRS: LEVERAGING ONGOING OPERATIONS TO ADVANCE RADIOACTIVE WASTE MANAGEMENT TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, A.; Wilmarth, W.; Marra, J.

    2013-05-16

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for “all things nuclear” as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate theirmore » technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by using SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the R&D team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform R&D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE’s critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). These demonstrations can be accomplished in a more cost-effective manner through the use of existing facilities in conjunction with ongoing missions. Essentially, the R&D program would not need to pay the full operational cost of a facility, just the incremental cost of performing the demonstration. Current Center activities have been focused on integrating advanced safeguards monitoring technology demonstrations into the SRS H-Canyon and advanced location technology demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and program owners. In addition these demonstrations are providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (and to offsite venues) to ensure that future demonstrations are done efficiently and provide an opportunity to use these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future use of SRS assets is the demonstration of new radioactive waste management technologies critical for advancing the mission needs of the DOE-EM program offices in their efforts to cleanup 107 sites across the United States. Of particular interest is the demonstration of separations technologies in H-Canyon. Given the modular design of H-Canyon, those demonstrations would be accomplished using a process frame. The demonstration equipment would be installed on the process frame and that frame would then be positioned into an H-Canyon cell so that the demonstration is performed in a radiological environment involving prototypic nuclear materials.« less

  5. The NASA-JPL advanced propulsion program

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1994-01-01

    The NASA Advanced Propulsion Concepts (APC) program at the Jet Propulsion Laboratory (JPL) consists of two main areas: The first involves cooperative modeling and research activities between JPL and various universities and industry; the second involves research at universities and industry that is directly supported by JPL. The cooperative research program consists of mission studies, research and development of ion engine technology using C-60 (Buckminsterfullerene) propellant, and research and development of lithium-propellant Lorentz-force accelerator (LFA) engine technology. The university/industry- supported research includes research (modeling and proof-of-concept experiments) in advanced, long-life electric propulsion, and in fusion propulsion. These propulsion concepts were selected primarily to cover a range of applications from near-term to far-term missions. For example, the long-lived pulsed-xenon thruster research that JPL is supporting at Princeton University addresses the near-term need for efficient, long-life attitude control and station-keeping propulsion for Earth-orbiting spacecraft. The C-60-propellant ion engine has the potential for good efficiency in a relatively low specific impulse (Isp) range (10,000 - 30,000 m/s) that is optimum for relatively fast (less than 100 day) cis-lunar (LEO/GEO/Lunar) missions employing near-term, high-specific mass electric propulsion vehicles. Research and modeling on the C-60-ion engine are currently being performed by JPL (engine demonstration), Caltech (C-60 properties), MIT (plume modeling), and USC (diagnostics). The Li-propellant LFA engine also has good efficiency in the modest Isp range (40,000 - 50,000 m/s) that is optimum for near-to-mid-term megawatt-class solar- and nuclear-electric propulsion vehicles used for Mars missions transporting cargo (in support of a piloted mission). Research and modeling on the Li-LFA engine are currently being performed by JPL (cathode development), Moscow Aviation Institute (engine testing), Thermacore (electrode development), as well as at MIT (plume modeling), and USC (diagnostics). Also, the mission performance of a nuclear-electric propulsion (NEP) Li-LFA Mars cargo vehicle is being modeled by JPL (mission analysis; thruster and power processor modeling) and the Rocketdyne Energy Technology and Engineering Center (ETEC) (power system modeling). Finally, the fusion propulsion research activities that JPL is supporting at Pennsylvania State University (PSU) and at Lawrenceville Plasma Physics (LPP) are aimed at far-term fast (less than 100 day round trip) piloted Mars missions and, in the very far term, interstellar missions.

  6. A preliminary systems-engineering study of an advanced nuclear-electrolytic hydrogen-production facility

    NASA Technical Reports Server (NTRS)

    Escher, W. J. D.; Donakowski, T. D.; Tison, R. R.

    1975-01-01

    An advanced nuclear-electrolytic hydrogen-production facility concept was synthesized at a conceptual level with the objective of minimizing estimated hydrogen-production costs. The concept is a closely-integrated, fully-dedicated (only hydrogen energy is produced) system whose components and subsystems are predicted on ''1985 technology.'' The principal components are: (1) a high-temperature gas-cooled reactor (HTGR) operating a helium-Brayton/ammonia-Rankine binary cycle with a helium reactor-core exit temperature of 980 C, (2) acyclic d-c generators, (3) high-pressure, high-current-density electrolyzers based on solid-polymer electrolyte technology. Based on an assumed 3,000 MWt HTGR the facility is capable of producing 8.7 million std cu m/day of hydrogen at pipeline conditions, 6,900 kPa. Coproduct oxygen is also available at pipeline conditions at one-half this volume. It has further been shown that the incorporation of advanced technology provides an overall efficiency of about 43 percent, as compared with 25 percent for a contemporary nuclear-electric plant powering close-coupled contemporary industrial electrolyzers.

  7. Ceramics engineering today and tomorrow: Impact on energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korwin, M.L.

    1997-12-01

    Ceramic engineering has had a profound impact on the development and use of energy. Perhaps nothing has influenced the growth of human society as much as the presence of energy technology. Today, ceramics are incorporated at all levels of the energy discipline, including dams, electric insulators, capacitors, refractories and fiberglass for home insulation. Tomorrow, leaders are going to expect new ways of harnessing, using and conserving clean and abundant energy. Superconductors and nuclear containment vessels are two developing areas of new ceramic applications. With new environmental regulations, the time of passing-on accepted methods of fabrication will come to an end.more » Ceramic engineers of the future will need to better understand the mechanisms of how materials behave. Through continuous research and joint efforts between different ceramic fields, the future of energy and power, and the technology that it will bring, looks most promising.« less

  8. Paleomagnetism of Basaltic Lava Flows in Coreholes ICPP 213, ICPP-214, ICPP-215, and USGS 128 Near the Vadose Zone Research Park, Idaho Nuclear Technology and Engineering Center, Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Champion, Duane E.; Herman, Theodore C.

    2003-01-01

    A paleomagnetic study was conducted on basalt from 41 lava flows represented in about 2,300 ft of core from coreholes ICPP-213, ICPP-214, ICPP-215, and USGS 128. These wells are in the area of the Idaho Nuclear Technology and Engineering Center (INTEC) Vadose Zone Research Park within the Idaho National Engineering and Environmental Laboratory (INEEL). Paleomagnetic measurements were made on 508 samples from the four coreholes, which are compared to each other, and to surface outcrop paleomagnetic data. In general, subhorizontal lines of correlation exist between sediment layers and between basalt layers in the area of the new percolation ponds. Some of the basalt flows and flow sequences are strongly correlative at different depth intervals and represent important stratigraphic unifying elements. Some units pinch out, or thicken or thin even over short separation distances of about 1,500 ft. A more distant correlation of more than 1 mile to corehole USGS 128 is possible for several of the basalt flows, but at greater depth. This is probably due to the broad subsidence of the eastern Snake River Plain centered along its topographic axis located to the south of INEEL. This study shows this most clearly in the oldest portions of the cored sections that have differentially subsided the greatest amount.

  9. Innovative Techniques Simplify Vibration Analysis

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the early years of development, Marshall Space Flight Center engineers encountered challenges related to components in the space shuttle main engine. To assess the problems, they evaluated the effects of vibration and oscillation. To enhance the method of vibration signal analysis, Marshall awarded Small Business Innovation Research (SBIR) contracts to AI Signal Research, Inc. (ASRI), in Huntsville, Alabama. ASRI developed a software package called PC-SIGNAL that NASA now employs on a daily basis, and in 2009, the PKP-Module won Marshall s Software of the Year award. The technology is also used in many industries: aircraft and helicopter, rocket engine manufacturing, transportation, and nuclear power."

  10. Eugene P. Wigner's Visionary Contributions to Generations-I through IV Fission Reactors

    NASA Astrophysics Data System (ADS)

    Carré, Frank

    2014-09-01

    Among Europe's greatest scientists who fled to Britain and America in the 1930s, Eugene P. Wigner made instrumental advances in reactor physics, reactor design and technology, and spent nuclear fuel processing for both purposes of developing atomic weapons during world-war II and nuclear power afterwards. Wigner who had training in chemical engineering and self-education in physics first gained recognition for his remarkable articles and books on applications of Group theory to Quantum mechanics, Solid state physics and other topics that opened new branches of Physics.

  11. Job Prospects for Nuclear Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    As the debate over nuclear safety continues, the job market remains healthy for nuclear engineers. The average salary offered to new nuclear engineers with bachelor's degrees is $27,400. Salary averages and increases compare favorably with other engineering disciplines. Various job sources in the field are noted. (JN)

  12. Space and Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2007-01-01

    In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is expected within the next 30 to 50 years, as predicted by the Hubbert model and confirmed by other global energy consumption prognoses. Having invested national resources into the development of NGNP, the technology and experience accumulated during the project needs to be documented clearly and in sufficient detail for young engineers coming on-board at both DOE and NASA to acquire it. Hands on training on reactor operation, test rigs of turbomachinery, and heat exchanger components, as well as computational tools will be needed. Senior scientist/engineers involved with the development of NGNP should also be encouraged to participate as lecturers, instructors, or adjunct professors at local universities having engineering (mechanical, electrical, nuclear/chemical, and/or materials) as one of their fields of study.

  13. Annual INTEC Groundwater Monitoring Report for Group 5 - Snake River Plain Aquifer (2001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roddy, Michael Scott

    2002-02-01

    This report describes the monitoring activities conducted and presents the results of groundwater sampling and water-level measurements from October 2000 to September 2001. Groundwater samples were initially collected from 41 wells from the Idaho Nuclear Technology and Engineering Center and the Central Facilities Area and analyzed for iodine-129, strontium-90, tritium, gross alpha, gross beta, technetium-99, uranium isotopes, plutonium isotopes, neptunium-237, americium-241, gamma spectrometry, and mercury. Samples from 41 wells were collected in April and May 2001. Additional sampling was conducted in August 2001 and included the two CFA production wells, the CFA point of compliance for the production wells, onemore » well that was previously sampled and five additional monitoring wells. Iodine-129 and strontium-90 were the only analytes above their respective maximum contaminant levels. Iodine-129 was detected just above its maximum contaminant level of 1 pCi/L at two of the Central Facilities Area landfill wells. Iodine-129 was detected in the CFA production wells at 0.35±0.083 pCi/L in CFA-1, but was below detectable activity in CFA-2. Strontium-90 was above its maximum contaminant level of 8 pCi/L in several wells near the Idaho Nuclear Technology and Engineering Center but was below its maximum contaminant level in the downgradient wells at the Central Facilities Area landfills. Sr-90 was not detected in the CFA production wells. Gross beta results generally mirrored the results for strontium-90 and technetium-99. Plutonium isotopes and neptunium-237 were not detected. Uranium-233/234 and uranium-238 isotopes were detected in all samples. Concentrations of background and site wells were similar and are within background limits for total uranium determined by the USGS, suggesting that the concentrations are background. Uranium-235/236 was detected in 11 samples, but all the detected concentrations were similar and near the minimum detectable activity. Americium-241 was detected at three locations near the minimum detectable activity of approximately 0.07 pCi/L. The gamma spectrometry results detected cesium-137 in three samples, potassium-40 at eight locations, and radium-226 at one location. Mercury was below its maximum contaminant level of 2 µg/L in all samples. Gamma spectrometry results for the CFA production wells did not detect any analytes. Water-level measurements were taken from wells in the Idaho Nuclear Technology and Engineering Center, Central Facilities Area, and the area south of Central Facilities Area to evaluate groundwater flow directions. Water-level measurements indicated groundwater flow to the south-southwest from the Idaho Nuclear Technology and Engineering Center.« less

  14. Normal accidents: Living with high-risk technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perrow, Ch.

    1984-01-01

    It was a major nuclear accident, the one at Three Mile Island in 1979, that turned Perrow's attention to accidents in general. A specialist in the sociology of organizations, he soon learned that events at TMI were not simply the result of an engineering failure or the result of operator error; rather, they were a consequence of systems failure. What the author learned from his research into the accident at TMI is that there was no coherent theory of accidents in either the engineering or the social science literature, so he set out to create one. This book discusses themore » science of accident research. Since Perrow is an outsider to all of the many technical fields reviewed in the book, ranging from nuclear power to marine transport to DNA research, experts may challenge his sources and point out his errors. Perrow's central thesis is that accidents are inevitable - that is, they are ''normal'' - in technologies that have two system characteristics that he terms ''interactive complexity'' and ''tight coupling''. Using these concepts, Perrow constructs a theory of systems which he believes to be unique in the literature on accidents and the literature on organizations. His theory concentrates upon the properties of systems themselves, rather than on the errors that owners, designers and operators make in running them. He seeks a more basic explanation than operator error; faulty design or equipment; inadequately trained personnel; or the system is too big, under-financed or mismanaged. Nuclear power in the United States may not survive its current economic and regulatory troubles, but discussion continues. Only a small part of the debate concerns plant safety: economic competitiveness, nuclear arms proliferation and nuclear waste disposal are the salient themes.« less

  15. Reference Book of Nuclear Testing Contractors 1945-1965. Revision 1

    DTIC Science & Technology

    1987-05-30

    Corps of Engineers W49-129-Eng-148 Armour Research Foundation of Illinois Institute of Technology Project 3.3 AF 33(038)9761 (Air Material Command...VnVnPT^^flW1iVi’U’*J ’^." v*-" I*H*JI w VI«HIIWIWI^I ^ -i« - BUSTER JANGLE Armour Research Foundation Illinois Institute of Technology Chicago, IL...v TUMBLER SNAPPER Armour Research Foundation (ARF) AF 33(616)3218 Bendix Corp/Bendix Aviation Aviation Pacific Division Development

  16. Analysis of Alternatives (AoA) of Open Colllaboration and Research Capabilities Collaboratipon in Research and Engineering in Advanced Technology and Education and High-Performance Computing Innovation Center (HPCIC) on the LVOC.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrieling, P. Douglas

    2016-01-01

    The Livermore Valley Open Campus (LVOC), a joint initiative of the National Nuclear Security Administration (NNSA), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL), enhances the national security missions of NNSA by promoting greater collaboration between world-class scientists at the national security laboratories, and their partners in industry and academia. Strengthening the science, technology, and engineering (ST&E) base of our nation is one of the NNSA’s top goals. By conducting coordinated and collaborative programs, LVOC enhances both the NNSA and the broader national science and technology base, and helps to ensure the health of core capabilities at LLNLmore » and SNL. These capabilities must remain strong to enable the laboratories to execute their primary mission for NNSA.« less

  17. Public perceptions of the risks of an unfamiliar technology: The case of using nuclear energy sources for space missions

    NASA Astrophysics Data System (ADS)

    Maharik, Michael

    This thesis addresses the public perception of the risk of a technology not widely known to laypeople. Its aims were (1) to characterize public perceptions of the risk of using nuclear energy in space and decisions related to this risk, and (2) to extend the 'mental model' methodology to studying public perception of unfamiliar, risky technologies. A model of the physical processes capable of creating risks from using nuclear energy sources in space was first constructed. Then, knowledge and beliefs related to this topic were elicited from three different groups of people. The generality of the findings was examined in a constructive replication with environmentally-oriented people. The possibility of involving the public in decision-making processes related to engineering macro-design was then investigated. Finally, a communication regarding these risk processes was developed and evaluated in an experiment comparing it with communications produced by NASA. Although they included large portions of the expert model, people's beliefs also had gaps and misconceptions. Respondents often used scientific terms without a clear understanding of what they meant. Respondents' mental models sometimes contained scattered and inconsistent entries. The impact of pre-existing mental models was clearly seen. Different groups of people had different patterns of knowledge and beliefs. Nevertheless, respondents expressed reasonable and coherent opinions on choices among engineering options. The CMU brochure, derived from the study of readers' existing mental models, provided a better risk communication tool than NASA's material, reflecting primarily experts' perspective. The better performance of subjects reading either brochure generally reflected adding knowledge on issues that they had not previously known, rather than correcting wrong beliefs. The communication study confirmed a hypothesis that improving knowledge on risk processes related to the use of a technology causes a more favorable attitude towards that technology. Recommendations related to the design and targeting of risk communication, and to public participation in decision-making on using new and risky technologies, are derived. Additional studies that will elicit laypeople's definitions of risk related to specific technologies, and link their detailed understanding of risk-development processes to the perceived dimensions of risk, are suggested.

  18. Technical status of the International Monitoring System for the Comprehensive Nuclear-Test-Ban Treaty

    NASA Astrophysics Data System (ADS)

    Grenard, P.

    2009-04-01

    The International Monitoring System (IMS) for the Comprehensive Nuclear Test-ban-Treaty Organization is a global Network of stations for detecting and providing evidence of possible nuclear explosions. Upon completion, the IMS will consist of 321 monitoring facilities and 16 radionuclide laboratories distributed worldwide in locations designated by the Treaty. Many of these sites are located in areas that are remote and difficult to access, posing major engineering and logistical challenges. The IMS uses seismic, hydroacoustic and infrasound monitoring waveform technologies to detect signals released from an explosion or a naturally occurring event (e.g. earthquakes) in the underground, underwater and atmospheric environments. The radionuclide technology as an integral part of the IMS uses air samples to collect particular matter from the atmosphere. Samples are then analyzed for evidence of physical products created by a nuclear explosion and carried through the atmosphere. The certification process of the IMS stations assures their compliance with the IMS technical requirements. In 2008 significant progress was made towards the completion of the IMS Network. So far 75% of the IMS stations have been built and certified.

  19. Summary of findings of the R&D committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenley, C.R.; Kokenge, B.R.

    1996-05-01

    In March 1995, the Department of Energy`s (DOE) Nuclear Materials Stabilization Task Group (NMST) chartered a committee to formulate a research and development (R&D) plan in response to Sub-recommendation (2) of Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. The NMSTG was established as an organizational unit operating under the auspices of the DOE Office of the Environmental Management. As a result of its efforts, the Research Committee concluded that, in general, the technology needs for stabilizing 94-1 nuclear materials are being adequately met by existing or planned DOE programs. At the same time, the committee, in the form ofmore » recommendations, noted specific R&D program areas that should be addressed by the NMSTG. These recommendations are documented in the R&D plan and formulated based on: (1) existing {open_quotes}gaps{close_quotes} in DOE`s R&D stabilization program, (2) the relative maturity of various technologies, and (3) other important R&D program issues that, in the judgement of the committee, should be addressed by the NMSTG. A systems engineering approach, derived form the aerospace industry, was applied to the various stabilization technologies to assess their relative maturity and availability for use in treating 94-1 nuclear materials.« less

  20. Upgrading the fuel-handling machine of the Novovoronezh nuclear power plant unit no. 5

    NASA Astrophysics Data System (ADS)

    Terekhov, D. V.; Dunaev, V. I.

    2014-02-01

    The calculation of safety parameters was carried out in the process of upgrading the fuel-handling machine (FHM) of the Novovoronezh nuclear power plant (NPP) unit no. 5 based on the results of quantitative safety analysis of nuclear fuel transfer operations using a dynamic logical-and-probabilistic model of the processing procedure. Specific engineering and design concepts that made it possible to reduce the probability of damaging the fuel assemblies (FAs) when performing various technological operations by an order of magnitude and introduce more flexible algorithms into the modernized FHM control system were developed. The results of pilot operation during two refueling campaigns prove that the total reactor shutdown time is lowered.

  1. Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.

    2004-01-01

    An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.

  2. Recent advancements in cloning by somatic cell nuclear transfer.

    PubMed

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-05

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.

  3. Recent advancements in cloning by somatic cell nuclear transfer

    PubMed Central

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model. PMID:23166393

  4. Control console replacement at the WPI Reactor. [Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less

  5. US nuclear engineering education: Status and prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    This study, conducted under the auspices of the Energy Engineering Board of the National Research Council, examines the status of and outlook for nuclear engineering education in the United States. The study resulted from a widely felt concern about the downward trends in student enrollments in nuclear engineering, in both graduate and undergraduate programs. Concerns have also been expressed about the declining number of US university nuclear engineering departments and programs, the aging of their faculties, the appropriateness of their curricula and research funding for industry and government needs, the availability of scholarships and research funding, and the increasing ratiomore » of foreign to US graduate students. A fundamental issue is whether the supply of nuclear engineering graduates will be adequate for the future. Although such issues are more general, pertaining to all areas of US science and engineering education, they are especially acute for nuclear engineering education. 30 refs., 12 figs., 20 tabs.« less

  6. Reducing Risk for the Next Generation Nuclear Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project.more » Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.« less

  7. Educational Innovation in the Design of an Online Nuclear Engineering Curriculum

    ERIC Educational Resources Information Center

    Hall, Simin; Jones, Brett D.; Amelink, Catherine; Hu, Deyu

    2013-01-01

    The purpose of this paper is to describe the development and implementation phases of online graduate nuclear engineering courses that are part of the Graduate Nuclear Engineering Certificate program at Virginia Tech. Virginia Tech restarted its nuclear engineering program in the Fall of 2007 with 60 students, and by 2009, the enrollment had grown…

  8. Calculated concentrations of any radionuclide deposited on the ground by release from underground nuclear detonations, tests of nuclear rockets, and tests of nuclear ramjet engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, H.G.

    1981-11-01

    This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines.

  9. MITEE: A Compact Ultralight Nuclear Thermal Propulsion Engine for Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Powell, J.; Maise, G.; Paniagua, J.

    2001-01-01

    A new approach for a near-term compact, ultralight nuclear thermal propulsion engine, termed MITEE (Miniature Reactor Engine) is described. MITEE enables a wide range of new and unique planetary science missions that are not possible with chemical rockets. With U-235 nuclear fuel and hydrogen propellant the baseline MITEE engine achieves a specific impulse of approximately 1000 seconds, a thrust of 28,000 newtons, and a total mass of only 140 kilograms, including reactor, controls, and turbo-pump. Using higher performance nuclear fuels like U-233, engine mass can be reduced to as little as 80 kg. Using MITEE, V additions of 20 km/s for missions to outer planets are possible compared to only 10 km/s for H2/O2 engines. The much greater V with MITEE enables much faster trips to the outer planets, e.g., two years to Jupiter, three years to Saturn, and five years to Pluto, without needing multiple planetary gravity assists. Moreover, MITEE can utilize in-situ resources to further extend mission V. One example of a very attractive, unique mission enabled by MITEE is the exploration of a possible subsurface ocean on Europa and the return of samples to Earth. Using MITEE, a spacecraft would land on Europa after a two-year trip from Earth orbit and deploy a small nuclear heated probe that would melt down through its ice sheet. The probe would then convert to a submersible and travel through the ocean collecting samples. After a few months, the probe would melt its way back up to the MITEE lander, which would have replenished its hydrogen propellant by melting and electrolyzing Europa surface ice. The spacecraft would then return to Earth. Total mission time is only five years, starting from departure from Earth orbit. Other unique missions include Neptune and Pluto orbiter, and even a Pluto sample return. MITEE uses the cermet Tungsten-UO2 fuel developed in the 1960's for the 710 reactor program. The W-UO2 fuel has demonstrated capability to operate in 3000 K hydrogen for many hours - a much longer period than the approximately one hour burn time for MITEE. Using this cermet fuel, and technology available from other nuclear propulsion programs, MITEE could be developed and ready for implementation in a relatively short time, i.e., approximately seven years. An overview description of the MITEE engine and its performance capabilities is provided.

  10. Guidelines for Implementation of an Advanced Outage Control Center to Improve Outage Coordination, Problem Resolution, and Outage Risk Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. Germain, Shawn W.; Farris, Ronald K.; Whaley, April M.

    This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provide the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The purpose of this research is to improve management of nuclear powermore » plant (NPP) outages through the development of an advanced outage control center (AOCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This technical report for industry implementation outlines methods and considerations for the establishment of an AOCC. This report provides a process for implementation of a change management plan, evaluation of current outage processes, the selection of technology, and guidance for the implementation of the selected technology. Methods are presented for both adoption of technologies within an existing OCC and for a complete OCC replacement, including human factors considerations for OCC design and setup.« less

  11. Turbopump options for nuclear thermal rockets

    NASA Astrophysics Data System (ADS)

    Bissell, W. R.; Gunn, S. V.

    1992-07-01

    Several turbopump options for delivering liquid nitrogen to nuclear thermal rocket (NTR) engines were evaluated and compared. Axial and centrifugal flow pumps were optimized, with and without boost pumps, utilizing current design criteria within the latest turbopump technology limits. Two possible NTR design points were used, a modest pump pressure rise of 1,743 psia and a relatively higher pump pressure rise of 4,480 psia. Both engines utilized the expander cycle to maximize engine performance for the long duration mission. Pump suction performance was evaluated. Turbopumps with conventional cavitating inducers were compared with zero NPSH (saturated liquid in the tanks) pumps over a range of tank saturation pressures, with and without boost pumps. Results indicate that zero NSPH pumps at high tank vapor pressures, 60 psia, are very similar to those with the finite NPSHs. At low vapor pressures efficiencies fall and turbine pressure ratios increase leading to decreased engine chamber pressures and or increased pump pressure discharges and attendant high-pressure component weights. It may be concluded that zero tank NSPH capabilities can be obtained with little penalty to the engine systems but boost pumps are needed if tank vapor pressure drops below 30 psia. Axial pumps have slight advantages in weight and chamber pressure capability while centrifugal pumps have a greater operating range.

  12. Low Thrust, Deep Throttling, US/CIS Integrated NTRE

    NASA Astrophysics Data System (ADS)

    Culver, Donald W.; Kolganov, Vyacheslav; Rochow, Richard F.

    1994-07-01

    In 1993 our international team performed a follow-on ``Nuclear Thermal Rocket Engine (NTRE) Extended Life Feasibility Assessment'' study for the Nuclear Propulsion Office (NPO) at NASAs Lewis Research Center. The main purpose of this study was to complete the 1992 study matrix to assess NTRE designs at thrust levels of 22.5, 11.3, and 6.8 tonnes, using Commonwealth of Independent States (CIS) reactor technology. An additional Aerojet goal was to continue improving the NTRE concept we had generated. Deep throttling, mission performance optimized engine design parametrics, and reliability/cost enhancing engine system simplifications were studied, because they seem to be the last three basic design improvements sorely needed by post-NERVA NTRE. Deep throttling improves engine life by eliminating damaging thermal and mechanical shocks caused by after-cooling with pulsed coolant flow. Alternately, it improves mission performance with steady flow after-cooling by minimizing reactor over-cooling. Deep throttling also provides a practical transition from high pressures and powers of the high thrust power cycle to the low pressures and powers of our electric power generating mode. Two deep throttling designs are discussed; a workable system that was studied and a simplified system that is recommended for future study. Mission-optimized engine thrust/weight (T/W) and Isp predictions are included along with system flow schemes and concept sketches.

  13. The international emergency management and engineering conference 1995: Proceedings. Globalization of emergency management and engineering: National and international issues concerning research and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, J.D.; Wybo, J.L.; Buisson, L.

    1995-12-31

    This conference was held May 9--12, 1995 in Nice, France. The purpose of this conference was to provide a forum for exchange of state-of-the-art information to cope more effectively with emergencies. Attention is focused on advance technology from both a managerial and a scientific viewpoint. Interests include computers and communication systems as well as the social science and management aspects involved in emergency management and engineering. The major sections are: Management and Social Sciences; Training; Natural Disasters; Nuclear Hazards; Chemical Hazards; Research; and Applications. Individual papers have been processed separately for inclusion in the appropriate data bases.

  14. Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanliang; Butt, Darryl; Agarwal, Vivek

    2015-07-01

    The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well asmore » spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugo, Jacques Victor; Gertman, David Ira

    The new generation of nuclear power plants (NPPs) will likely make use of state-of-the-art technologies in many areas of the plant. The analysis, design, and selection of advanced human–system interfaces (HSIs) constitute an important part of power plant engineering. Designers need to consider the new capabilities afforded by these technologies in the context of current regulations and new operational concepts, which is why they need a more rigorous method by which to plan the introduction of advanced HSIs in NPP work areas. Much of current human factors research stops at the user interface and fails to provide a definitive processmore » for integration of end user devices with instrumentation and control (I&C) and operational concepts. The current lack of a clear definition of HSI technology, including the process for integration, makes characterization and implementation of new and advanced HSIs difficult. This paper describes how new design concepts in the nuclear industry can be analyzed and how HSI technologies associated with new industrial processes might be considered. Furthermore, it also describes a basis for an understanding of human as well as technology characteristics that could be incorporated into a prioritization scheme for technology selection and deployment plans.« less

  16. Job Prospects for Nuclear Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1987-01-01

    Discusses trends in job opportunities for nuclear engineers. Lists some of the factors influencing increases and decreases in the demand for nuclear engineers. Describes the effects on career opportunities from recent nuclear accidents, military research and development, and projected increases of demand for electricity. (TW)

  17. Rebuilding the space technology base

    NASA Technical Reports Server (NTRS)

    Povinelli, Frederick P.; Stephenson, Frank W.; Sokoloski, Martin M.; Montemerlo, Melvin D.; Venneri, Samuel L.; Mulville, Daniel R.; Hirschbein, Murray S.; Smith, Paul H.; Schnyer, A. Dan; Lum, Henry

    1989-01-01

    NASA's Civil Space Technology Initiative (CSTI) will not only develop novel technologies for space exploration and exploitation, but also take mature technologies into their demonstration phase in earth orbit. In the course of five years, CSTI will pay off in ground- and space-tested hardware, software, processes, methods for low-orbit transport and operation, and fundamental scientific research on the orbital environment. Attention is given to LOX/hydrogen and LOX/hydrocarbon reusable engines, liquid/solid fuel hybrid boosters, and aeroassist flight experiments for the validation of aerobraking with atmospheric friction. Also discussed are advanced scientific sensors, systems autonomy and telerobotics, control of flexible structures, precise segmented reflectors, high-rate high-capacity data handling, and advanced nuclear power systems.

  18. Rover/NERVA-derived near-term nuclear propulsion

    NASA Technical Reports Server (NTRS)

    1993-01-01

    FY-92 accomplishments centered on conceptual design and analyses for 25, 50, and 75 K engines with emphasis on the 50 K engine. During the first period of performance, flow and energy balances were prepared for each of these configurations and thrust-to-weight values were estimated. A review of fuel technology and key data from the Rover/NERVA program established a baseline for proven reactor performance and areas of enhancement to meet near-term goals. Studies were performed of the criticality and temperature profiles for probable fuel and moderator loadings for the three engine sizes, with a more detailed analysis of the 50 K size. During the second period of performance, analyses of the 50 K engine continued. A chamber/nozzle contour was selected and heat transfer and fatigue analyses were performed for likely construction materials. Reactor analyses were performed to determine component radiation heating rates, reactor radiation fields, water immersion poisoning requirements, temperature limits for restartability, and a tie-tube thermal analysis. Finally, a brief assessment of key enabling technologies was made, with a view toward identifying development issues and identification of the critical path toward achieving engine qualification within 10 years.

  19. Nuclear Technology. Course 27: Metrology. Module 27-4, Angle Measurement Instruments, Optical Projections and Surface Texture Gages.

    ERIC Educational Resources Information Center

    Selleck, Ben; Espy, John

    This fourth in a series of eight modules for a course titled Metrology describes the universal bevel protractor and the sine bar, the engineering microscope and optical projector, and several types of surface texture gages. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3)…

  20. Readiness Review of BWXT for Fabrication of AGR 5/6/7 Compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Douglas William; Sharp, Michelle Tracy

    In support of preparations for fabricating compacts for the Advanced Gas Reactor (AGR) fuel qualification irradiation experiments (AGR-5/6/7), Idaho National Laboratory (INL) conducted a readiness review of the BWX Technology (BWXT) procedures, processes, and equipment associated with compact fabrication activities at the BWXT Nuclear Operations Group (BWXT-NOG) facility outside Lynchburg, VirginiaVA. The readiness review used quality assurance requirements taken from the American Society of Mechanical Engineers (ASME) Nuclear Quality Assurance Standard (NQA-1-2008/1a-2009) as a basis to assess readiness to start compact fabrication.

  1. Publications of LASL research, 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, A.K.

    1976-09-01

    This bibliography lists unclassified 1975 publications of work done at the Los Alamos Scientific Laboratory and those earlier publications that were received too late for inclusion in earlier compilations. Papers published in 1975 are included regardless of when they were actually written. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted. The bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-Los Alamos reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, andmore » U.S. Patents. Publications by LASL authors which are not records of Laboratory-sponsored work are included when the Library becomes aware of them. The entries are arranged in sections by the following broad subject categories: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energy (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). Author, numerical, and KWIC indexes are included. (RWR)« less

  2. Affordable Development and Demonstration of a Small NTR Engine and Stage: A Preliminary NASA, DOE, and Industry Assessment

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Sefcik, Robert J.; Fittje, James E.; McCurdy, David R.; Qualls, Arthur L.; Schnitzler, Bruce G.; Werner, James E.; Weitzberg, Abraham; Joyner, Claude R.

    2015-01-01

    The Nuclear Thermal Rocket (NTR) represents the next evolutionary step in cryogenic liquid rocket engines. Deriving its energy from fission of uranium-235 atoms contained within fuel elements that comprise the engine's reactor core, the NTR can generate high thrust at a specific impulse of approx. 900 seconds or more - twice that of today's best chemical rockets. In FY'11, as part of the AISP project, NASA proposed a Nuclear Thermal Propulsion (NTP) effort that envisioned two key activities - "Foundational Technology Development" followed by system-level "Technology Demonstrations". Five near-term NTP activities identified for Foundational Technology Development became the basis for the NCPS project started in FY'12 and funded by NASA's AES program. During Phase 1 (FY'12-14), the NCPS project was focused on (1) Recapturing fuel processing techniques and fabricating partial length "heritage" fuel elements for the two candidate fuel forms identified by NASA and the DOE - NERVA graphite "composite" and the uranium dioxide (UO2) in tungsten "cermet". The Phase 1 effort also included: (2) Engine Conceptual Design; (3) Mission Analysis and Requirements Definition; (4) Identification of Affordable Options for Ground Testing; and (5) Formulation of an Affordable and Sustainable NTP Development Strategy. During FY'14, a preliminary plan for DDT&E was outlined by GRC, the DOE and industry for NASA HQ that involved significant system-level demonstration projects that included GTD tests at the NNSS, followed by a FTD mission. To reduce development costs, the GTD and FTD tests use a small, low thrust (approx. 7.5 or 16.5 klbf) engine. Both engines use graphite composite fuel and a "common" fuel element design that is scalable to higher thrust (approx. 25 klbf) engines by increasing the number of elements in a larger diameter core that can produce greater thermal power output. To keep the FTD mission cost down, a simple "1-burn" lunar flyby mission was considered along with maximizing the use of existing and flight proven liquid rocket and stage hardware (e.g., from the RL10-B2 engine and Delta Cryogenic Second Stage) to further ensure affordability. This paper provides a preliminary NASA, DOE and industry assessment of what is required - the key DDT&E activities, development options, and the associated schedule - to affordably build, ground test and fly a small NTR engine and stage within a 10-year timeframe.

  3. US Nuclear Engineering Education: Status and prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    This study, conducted under the auspices of the Energy Engineering Board of the National Research Council, examines the status of and outlook for nuclear engineering education in the United States. The study, as described in this report resulted from a widely felt concern about the downward trends in student enrollments in nuclear engineering, in both graduate and undergraduate programs. Concerns have also been expressed about the declining number of US university nuclear engineering departments and programs, the ageing of their faculties, the appropriateness of their curricula and research funding for industry and government needs, the availability of scholarships and researchmore » funding, and the increasing ratio of foreign to US graduate students. A fundamental issue is whether the supply of nuclear engineering graduates will be adequate for the future. Although such issues are more general, pertaining to all areas of US science and engineering education, they are especially acute for nuclear engineering education. 30 refs., 24 figs., 49 tabs.« less

  4. A comparison of energy conversion systems for meeting the power requirements of manned rover for Mars missions

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S.; Morley, Nicholas; Cataldo, Robert; Bloomfield, Harvey

    1990-01-01

    Several types of conversion systems of interest for a nuclear Mars manned application are examined, including: free-piston Stirling engines (FPSE), He/Xe closed Brayton cycle (CBC), CO2 open Brayton, and SiGe/GaP thermoelectric systems. Optimization studies were conducted to determine the impact of the conversion system on the overall mass of the nuclear power system and the mobility power requirement of the rover vehicle. The results of an analysis of a manned Mars rover equipped with a nuclear reactor power system show that the free-piston Stirling engine and the He/Xe closed Brayton cycle are the best available options for minimizing the overall mass and electric power requirements of the rover vehicle. While the current development of Brayton technology is further advanced than that of FPSE, the FPSE could provide approximately 13.5 percent lower mass than the He/Xe closed Brayton system. Results show that a specific mass of 160 is achievable with FPSE, for which the mass of the radiation shield (2.8 tons) is about half that for He/Xe CBC (5 tons).

  5. CESAR robotics and intelligent systems research for nuclear environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1992-07-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less

  6. CESAR robotics and intelligent systems research for nuclear environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1992-01-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less

  7. Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.

    2012-01-01

    With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].

  8. Multi-sensor radiation detection, imaging, and fusion

    NASA Astrophysics Data System (ADS)

    Vetter, Kai

    2016-01-01

    Glenn Knoll was one of the leaders in the field of radiation detection and measurements and shaped this field through his outstanding scientific and technical contributions, as a teacher, his personality, and his textbook. His Radiation Detection and Measurement book guided me in my studies and is now the textbook in my classes in the Department of Nuclear Engineering at UC Berkeley. In the spirit of Glenn, I will provide an overview of our activities at the Berkeley Applied Nuclear Physics program reflecting some of the breadth of radiation detection technologies and their applications ranging from fundamental studies in physics to biomedical imaging and to nuclear security. I will conclude with a discussion of our Berkeley Radwatch and Resilient Communities activities as a result of the events at the Dai-ichi nuclear power plant in Fukushima, Japan more than 4 years ago.

  9. YUCCA MOUNTAIN PROJECT - A BRIEFING --

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NA

    2003-08-05

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statementmore » for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet.« less

  10. Chemical Technology Division: Progress report, January 1, 1987--June 30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-02-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period January 1, 1987, to June 30, 1988. The following major areas are covered: waste management and environmental programs, radiochemical and reactor engineering programs, basic science and technology, Nuclear Regulatory Commission programs, and administrative resources and facilities. The Administrative Summary, an appendix, presents a comprehensive listing of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this period. A staffing level and financial summary and lists of seminars and Chem Tech consultants for the period aremore » also included.« less

  11. Manpower Assessment Brief #44: NUCLEAR ENGINEERING Enrollments Decreased at All Levels in 1998. Undergraduate and Doctoral Degrees Decreased, While Master's Degrees Increased Slightly.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirley, Duveen

    1999-05-04

    The survey of "Nuclear Engineering Enrollments and Degrees, 1998" was sent to 45 institutions offering a major in nuclear engineering or an option program in another discipline or department (for example, electrical or mechanical engineering) equivalent to a major that qualifies the graduates to perform as nuclear engineers. This document provides statistical data on undergraduate and graduate enrollments and degrees, employment and post-graduation plans, and foreign national participation.

  12. Genome engineering in cattle: recent technological advancements.

    PubMed

    Wang, Zhongde

    2015-02-01

    Great strides in technological advancements have been made in the past decade in cattle genome engineering. First, the success of cloning cattle by somatic cell nuclear transfer (SCNT) or chromatin transfer (CT) is a significant advancement that has made obsolete the need for using embryonic stem (ES) cells to conduct cell-mediated genome engineering, whereby site-specific genetic modifications can be conducted in bovine somatic cells via DNA homologous recombination (HR) and whereby genetically engineered cattle can subsequently be produced by animal cloning from the genetically modified cells. With this approach, a chosen bovine genomic locus can be precisely modified in somatic cells, such as to knock out (KO) or knock in (KI) a gene via HR, a gene-targeting strategy that had almost exclusively been used in mouse ES cells. Furthermore, by the creative application of embryonic cloning to rejuvenate somatic cells, cattle genome can be sequentially modified in the same line of somatic cells and complex genetic modifications have been achieved in cattle. Very recently, the development of designer nucleases-such as zinc finger nucleases (ZFNs) and transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-has enabled highly efficient and more facile genome engineering in cattle. Most notably, by employing such designer nucleases, genomes can be engineered at single-nucleotide precision; this process is now often referred to as genome or gene editing. The above achievements are a drastic departure from the traditional methods of creating genetically modified cattle, where foreign DNAs are randomly integrated into the animal genome, most often along with the integrations of bacterial or viral DNAs. Here, I review the most recent technological developments in cattle genome engineering by highlighting some of the major achievements in creating genetically engineered cattle for agricultural and biomedical applications.

  13. Ship-Based Nuclear Energy Systems for Accelerating Developing World Socioeconomic Advance

    NASA Astrophysics Data System (ADS)

    Petroski, Robert; Wood, Lowell

    2014-07-01

    Technological, economic, and policy aspects of supplying energy to newly industrializing and developing countries using ship-deployed nuclear energy systems are described. The approach analyzed comprises nuclear installations of up to gigawatt scale deployed within currently mass-produced large ship hulls which are capable of flexibly supplying energy for electricity, water desalination and district heating-&-cooling with low latencies and minimized shoreside capital expenditures. Nuclear energy is uniquely suited for mobile deployment due to its combination of extraordinary energy density and high power density, which enable enormous supplies of energy to be deployed at extremely low marginal costs. Nuclear installations on ships also confer technological advantages by essentially eliminating risk from earthquakes, tsunamis, and floods; taking advantage of assured access to an effectively unlimited amount of cooling water, and involving minimal onshore preparations and commitments. Instances of floating nuclear power stations that have been proposed in the past, some of which are currently being pursued, have generally been based on conventional LWR technology, moreover without flexibility or completeness of power output options. We consider nuclear technology options for their applicability to the unique opportunities and challenges of a marine environment, with special attention given to low-pressure, high thermal margin systems with continuous and assured afterheat dissipation into the ambient seawater. Such systems appear promising for offering an exceptionally high degree of safety while using a maximally simple set of components. We furthermore consider systems tailored to Developing World contexts, which satisfy societal requirements beyond electrification, e.g., flexible sourcing of potable water and HVAC services, servicing time-varying user requirements, and compatibility with the full spectrum of local renewable energy supplies, specifically including those having intermittency characteristics. Consideration is directed to the relative economics of ship-based and land-based nuclear power stations, and the costs of undersea transmission lines and suitable moorings are discussed, as well as station-maintenance expenses. Potential cost savings from reduced seismic engineering, serialized production, and reduction/elimination of site-specific engineering are determined to be likely to enable large floating nuclear energy systems to be deployed at both significantly lower cost and with lower financial risk than comparable land-based systems. Such plants thus appear to be a compelling option for agilely supplying flexible energy-flows to developing regions, especially as they allow major components of the overhead costs and time-delays of large-scale energy systems to be avoided. Finally, the critical set of issues related to appropriately regulating and insuring floating nuclear power plants designed for export is examined. Approaches to ensuring adequate safety and environmental stewardship while properly allocating risks between system owners/operators and host countries of floating nuclear energy systems are discussed, along with possible pathways toward implementation. Robustness of exemplary nuclear energy systems from all forms of misuse, including materials diversion, is noted, thus ensuring suitability for complications-free, non-discriminatory global deployments. Availability of abundant, low-cost nuclear energy which can flexibly satisfy the full spectrum of energy demands of the economies of developing countries will inevitably result in significantly earlier and more environmentally-sound energy intensification of societies enjoying such advantages. This will help spur autocatalytic gains in human well-being and economic development rates similar to those seen in the developed world during the last two-thirds of a century, while avoiding some of the undesirable sideeffects often associated with those gains. Quantitative estimates of these considerations are offered.

  14. Preparing to understand and use science in the real world: interdisciplinary study concentrations at the Technical University of Darmstadt.

    PubMed

    Liebert, Wolfgang J

    2013-12-01

    In order to raise awareness of the ambiguous nature of scientific-technological progress, and of the challenging problems it raises, problems which are not easily addressed by courses in a single discipline and cannot be projected onto disciplinary curricula, Technical University of Darmstadt has established three interdisciplinary study concentrations: "Technology and International Development", "Environmental Sciences", and "Sustainable Shaping of Technology and Science". These three programmes seek to overcome the limitations of strictly disciplinary research and teaching by developing an integrated, problem-oriented approach. For example, one course considers fundamental nuclear dilemmas and uses role-playing techniques to address a controversy in the area of nuclear security. At the same time, incorporating interdisciplinary teaching into a university that is organized around mono- or multi-disciplinary faculties also poses a number of challenges. Recognition in disciplinary curricula, and appropriate organizational support and funding are examples of those challenges. It is expected that science and engineering students, empowered by such interdisciplinary study programmes, will be better prepared to act responsibly with regard to scientific and technological challenges.

  15. Flow Induced Vibration Program at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    1984-01-01

    The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  16. The Aviation Paradox: Why We Can 'Know' Jetliners But Not Reactors.

    PubMed

    Downer, John

    2017-01-01

    Publics and policymakers increasingly have to contend with the risks of complex, safety-critical technologies, such as airframes and reactors. As such, 'technological risk' has become an important object of modern governance, with state regulators as core agents, and 'reliability assessment' as the most essential metric. The Science and Technology Studies (STS) literature casts doubt on whether or not we should place our faith in these assessments because predictively calculating the ultra-high reliability required of such systems poses seemingly insurmountable epistemological problems. This paper argues that these misgivings are warranted in the nuclear sphere, despite evidence from the aviation sphere suggesting that such calculations can be accurate. It explains why regulatory calculations that predict the reliability of new airframes cannot work in principle, and then it explains why those calculations work in practice. It then builds on this explanation to argue that the means by which engineers manage reliability in aviation is highly domain-specific, and to suggest how a more nuanced understanding of jetliners could inform debates about nuclear energy.

  17. A case study for retaining nuclear power experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckjord, E.S.

    1996-12-31

    Nuclear engineering departments at U.S. universities are rethinking curricula to focus on essentials. Prospective engineers must know nuclear engineering disciplines, but knowing how their engineering forebears solved important problems will empower them even more by learning some history along with engineering. I suggest a way to retain experience, giving an example: the emergency core cooling system (ECCS) controversy and resolution.

  18. Technology Implementation Plan: Irradiation Testing and Qualification for Nuclear Thermal Propulsion Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas J.; Howard, Richard H.; Rader, Jordan D.

    This document is a notional technology implementation plan (TIP) for the development, testing, and qualification of a prototypic fuel element to support design and construction of a nuclear thermal propulsion (NTP) engine, specifically its pre-flight ground test. This TIP outlines a generic methodology for the progression from non-nuclear out-of-pile (OOP) testing through nuclear in-pile (IP) testing, at operational temperatures, flows, and specific powers, of an NTP fuel element in an existing test reactor. Subsequent post-irradiation examination (PIE) will occur in existing radiological facilities. Further, the methodology is intended to be nonspecific with respect to fuel types and irradiation or examinationmore » facilities. The goals of OOP and IP testing are to provide confidence in the operational performance of fuel system concepts and provide data to program leadership for system optimization and fuel down-selection. The test methodology, parameters, collected data, and analytical results from OOP, IP, and PIE will be documented for reference by the NTP operator and the appropriate regulatory and oversight authorities. Final full-scale integrated testing would be performed separately by the reactor operator as part of the preflight ground test.« less

  19. Propulsion at the Marshall Space Flight Center - A brief history

    NASA Technical Reports Server (NTRS)

    Jones, L. W.; Fisher, M. F.; Mccool, A. A.; Mccarty, J. P.

    1991-01-01

    The history of propulsion development at the NASA Marshall Space Flight Center is summarized, beginning with the development of the propulsion system for the Redstone missile. This course of propulsion development continues through the Jupiter IRBM, the Saturn family of launch vehicles and the engines that powered them, the Centaur upper stage and RL-10 engine, the Reactor In-Flight Test stage and the NERVA nuclear engine. The Space Shuttle Main Engine and Solid Rocket Boosters are covered, as are spacecraft propulsion systems, including the reaction control systems for the High Energy Astronomy Observatory and the Space Station. The paper includes a description of several technology efforts such as those in high pressure turbomachinery, aerospike engines, and the AS203 cyrogenic fluid management flight experiment. These and other propulsion projects are documented, and the scope of activities in support of these efforts at Marshall delineated.

  20. Summary of space nuclear reactor power systems, 1983--1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressedmore » from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.« less

  1. Summary of space nuclear reactor power systems, 1983 - 1992

    NASA Astrophysics Data System (ADS)

    Buden, D.

    1993-08-01

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987-88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  2. Nuclear power: levels of safety.

    PubMed

    Lidsky, L M

    1988-02-01

    The rise and fall of the nuclear power industry in the United States is a well-documented story with enough socio-technological conflict to fill dozens of scholarly, and not so scholarly, books. Whatever the reasons for the situation we are now in, and no matter how we apportion the blame, the ultimate choice of whether to use nuclear power in this country is made by the utilities and by the public. Their choices are, finally, based on some form of risk-benefit analysis. Such analysis is done in well-documented and apparently logical form by the utilities and in a rather more inchoate but not necessarily less accurate form by the public. Nuclear power has failed in the United States because both the real and perceived risks outweigh the potential benefits. The national decision not to rely upon nuclear power in its present form is not an irrational one. A wide ranging public balancing of risk and benefit requires a classification of risk which is clear and believable for the public to be able to assess the risks associated with given technological structures. The qualitative four-level safety ladder provides such a framework. Nuclear reactors have been designed which fit clearly and demonstrably into each of the possible qualitative safety levels. Surprisingly, it appears that safer may also mean cheaper. The intellectual and technical prerequisites are in hand for an important national decision. Deployment of a qualitatively different second generation of nuclear reactors can have important benefits for the United States. Surprisingly, it may well be the "nuclear establishment" itself, with enormous investments of money and pride in the existing nuclear systems, that rejects second generation reactors. It may be that we will not have a second generation of reactors until the first generation of nuclear engineers and nuclear power advocates has retired.

  3. Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A; Burks, Barry L; Quigley, Keith D

    2001-09-28

    The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. Thismore » review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.« less

  4. Nuclear Engine System Simulation (NESS) version 2.0

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.

  5. Laboratory directed research and development. FY 1995 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  6. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1986-01-01

    Free piston Stirling technology is applicable for both solar and nuclear powered systems. As such, the Lewis Research Center serves as the project office to manage the newly initiated SP-100 Advanced Technology Program. This five year program provides the technology push for providing significant component and subsystem options for increased efficiency, reliability and survivability, and power output growth at reduced specific mass. One of the major elements of the program is the development of advanced power conversion concepts of which the Stirling cycle is a viable candidate. Under this program the research findings of the 25 kWe opposed piston Space Power Demonstrator Engine (SPDE) are presented. Included in the SPDE discussions are initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators. Projections are made for future space power requirements over the next few decades. And a cursory comparison is presented showing the mass benefits that a Stirling system has over a Brayton system for the same peak temperature and output power.

  7. An Overview of In-Space Propulsion and Cryogenics Fluids Management Efforts for 2014 SBIR Phases I and II

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency programs. This report highlights 11 of the innovative SBIR 2014 Phase I and II projects from 2010 to 2012 that focus on one of NASA Glenn Research Center's six core competencies-In-Space Propulsion and Cryogenic Fluids Management. The technologies cover a wide spectrum of applications such as divergent field annular ion engines, miniature nontoxic nitrous oxide-propane propulsion, noncatalytic ignition systems for high-performance advanced monopropellant thrusters, nontoxic storable liquid propulsion, and superconducting electric boost pumps for nuclear thermal propulsion. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  8. On Unsaturated Soil Mechanics - Personal Views on Current Research

    NASA Astrophysics Data System (ADS)

    Pande, G. N.; Pietruszczak, S.

    2015-09-01

    This paper presents the authors' personal views on current research being conducted by various research groups around the world in the broad area of mechanics of unsaturated geomaterials in general and soils in particular. The topic is of interest to a wide spectrum of scientists and engineers working in diverse areas such as geology and geophysics, powder technology, agricultural, petroleum, chemical, geotechnical, civil, environmental and nuclear engineering. Even if we restrict ourselves to civil, geotechnical and environmental engineering, it is noted that a plethora of hypotheses as well as a number of empirical and semi-empirical relations have been introduced for describing the mechanics of unsaturated porous media. However, many of these proposed advances as well as methods of testing may lack sound theoretical basis.

  9. Clustered engine study

    NASA Technical Reports Server (NTRS)

    Shepard, Kyle; Sager, Paul; Kusunoki, Sid; Porter, John; Campion, AL; Mouritzan, Gunnar; Glunt, George; Vegter, George; Koontz, Rob

    1993-01-01

    Several topics are presented in viewgraph form which together encompass the preliminary assessment of nuclear thermal rocket engine clustering. The study objectives, schedule, flow, and groundrules are covered. This is followed by the NASA groundrules mission and our interpretation of the associated operational scenario. The NASA reference vehicle is illustrated, then the four propulsion system options are examined. Each propulsion system's preliminary design, fluid systems, operating characteristics, thrust structure, dimensions, and mass properties are detailed as well as the associated key propulsion system/vehicle interfaces. A brief series of systems analysis is also covered including: thrust vector control requirements, engine out possibilities, propulsion system failure modes, surviving system requirements, and technology requirements. An assessment of vehicle/propulsion system impacts due to the lessons learned are presented.

  10. Technology Development Activities for the Space Environment and its Effects on Spacecraft

    NASA Technical Reports Server (NTRS)

    Kauffman, Billy; Hardage, Donna; Minor, Jody; Barth, Janet; LaBel, Ken

    2003-01-01

    Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how emerging microelectronics will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the push to use Commercial-off-the-shelf (COTS) and shrinking microelectronics behind less shielding and the potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will describe the relationship between the Living With a Star (LWS): Space Environment Testbeds (SET) Project and NASA's Space Environments and Effects (SEE) Program and their technology development activities funded as a result from the recent SEE Program's NASA Research Announcement.

  11. Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Caffrey, Jarvis; Hedayat, Ali; Stephens, Jonathan; Polsgrove, Robert

    2015-01-01

    The purpose of this paper is to investigate, facilitate a discussion and determine a path forward for technology development of cryogenic fluid management technology that is necessary for long duration deep space missions utilizing nuclear thermal propulsion systems. There are a number of challenges in managing cryogenic liquids that must be addressed before long durations missions into deep space, such as a trip to Mars can be successful. The leakage rate of hydrogen from pressure vessels, seals, lines and valves is a critical factor that must be controlled and minimized. For long duration missions, hydrogen leakage amounts to large increases in hydrogen and therefore vehicle mass. The size of a deep space vehicle, such as a mars transfer vehicle, must be kept small to control cost and the logistics of a multi launch, assembled in orbit vehicle. The boil off control of the cryogenic fluid is an additional obstacle to long duration missions. The boil off caused by heat absorption results in the growth of the propellant needs of the vehicle and therefore vehicle mass. This is a significant problem for a vehicle using nuclear (fission) propulsion systems. Radiation from the engines deposits large quantities of heat into the cryogenic fluid, greatly increasing boil off beyond that caused by environmental heat leakage. Addressing and resolving these challenges is critical to successful long duration space exploration. This paper discusses the state of the technology needed to address these challenges and discuss the path forward needed in technology development.

  12. Implanting a Discipline: The Academic Trajectory of Nuclear Engineering in the USA and UK

    ERIC Educational Resources Information Center

    Johnston, Sean F.

    2009-01-01

    The nuclear engineer emerged as a new form of recognised technical professional between 1940 and the early 1960s as nuclear fission, the chain reaction and their applications were explored. The institutionalization of nuclear engineering--channelled into new national laboratories and corporate design offices during the decade after the war, and…

  13. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  14. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  15. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  16. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  17. Nuclear Thermal Propulsion Development Risks

    NASA Technical Reports Server (NTRS)

    Kim, Tony

    2015-01-01

    There are clear advantages of development of a Nuclear Thermal Propulsion (NTP) for a crewed mission to Mars. NTP for in-space propulsion enables more ambitious space missions by providing high thrust at high specific impulse ((is) approximately 900 sec) that is 2 times the best theoretical performance possible for chemical rockets. Missions can be optimized for maximum payload capability to take more payload with reduced total mass to orbit; saving cost on reduction of the number of launch vehicles needed. Or missions can be optimized to minimize trip time significantly to reduce the deep space radiation exposure to the crew. NTR propulsion technology is a game changer for space exploration to Mars and beyond. However, 'NUCLEAR' is a word that is feared and vilified by some groups and the hostility towards development of any nuclear systems can meet great opposition by the public as well as from national leaders and people in authority. The public often associates the 'nuclear' word with weapons of mass destruction. The development NTP is at risk due to unwarranted public fears and clear honest communication of nuclear safety will be critical to the success of the development of the NTP technology. Reducing cost to NTP development is critical to its acceptance and funding. In the past, highly inflated cost estimates of a full-scale development nuclear engine due to Category I nuclear security requirements and costly regulatory requirements have put the NTP technology as a low priority. Innovative approaches utilizing low enriched uranium (LEU). Even though NTP can be a small source of radiation to the crew, NTP can facilitate significant reduction of crew exposure to solar and cosmic radiation by reducing trip times by 3-4 months. Current Human Mars Mission (HMM) trajectories with conventional propulsion systems and fuel-efficient transfer orbits exceed astronaut radiation exposure limits. Utilizing extra propellant from one additional SLS launch and available energy in the NTP fuel, HMM radiation exposure can be reduced significantly.

  18. The International Safety Framework for nuclear power source applications in outer space-Useful and substantial guidance

    NASA Astrophysics Data System (ADS)

    Summerer, L.; Wilcox, R. E.; Bechtel, R.; Harbison, S.

    2015-06-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space was adopted, following a multi-year process that involved all major space faring nations under the auspices of a partnership between the UN Committee on the Peaceful Uses of Outer Space and the International Atomic Energy Agency. The Safety Framework reflects an international consensus on best practices to achieve safety. Following the 1992 UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second attempt by the international community to draft guidance promoting the safety of applications of nuclear power sources in space missions. NPS applications in space have unique safety considerations compared with terrestrial applications. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. Potential accident conditions could expose nuclear power sources to extreme physical conditions. The Safety Framework is structured to provide guidance for both the programmatic and technical aspects of safety. In addition to sections containing specific guidance for governments and for management, it contains technical guidance pertinent to the design, development and all mission phases of space NPS applications. All sections of the Safety Framework contain elements directly relevant to engineers and space mission designers for missions involving space nuclear power sources. The challenge for organisations and engineers involved in the design and development processes of space nuclear power sources and applications is to implement the guidance provided in the Safety Framework by integrating it into the existing standard space mission infrastructure of design, development and operational requirements, practices and processes. This adds complexity to the standard space mission and launch approval processes. The Safety Framework is deliberately generic to remain relevantly independent of technological progress, of national organisational setups and of space mission types. Implementing its guidance therefore leaves room for interpretation and adaptation. Relying on reported practices, we analyse the guidance particularly relevant to engineers and space mission designers.

  19. Nuclear Engineering Technologists in the Nuclear Power Era

    ERIC Educational Resources Information Center

    Wang, C. H.; And Others

    1974-01-01

    Describes manpower needs in nuclear engineering in the areas of research and development, architectural engineering and construction supervision, power reactor operations, and regulatory tasks. Outlines a suitable curriculum to prepare students for the tasks related to construction and operation of power reactors. (GS)

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laughlin, Gary L.

    The International, Homeland, and Nuclear Security (IHNS) Program Management Unit (PMU) oversees a broad portfolio of Sandia’s programs in areas ranging from global nuclear security to critical asset protection. We use science and technology, innovative research, and global engagement to counter threats, reduce dangers, and respond to disasters. The PMU draws on the skills of scientists and engineers from across Sandia. Our programs focus on protecting US government installations, safeguarding nuclear weapons and materials, facilitating nonproliferation activities, securing infrastructures, countering chemical and biological dangers, and reducing the risk of terrorist threats. We conduct research in risk and threat analysis, monitoringmore » and detection, decontamination and recovery, and situational awareness. We develop technologies for verifying arms control agreements, neutralizing dangerous materials, detecting intruders, and strengthening resiliency. Our programs use Sandia’s High-Performance Computing resources for predictive modeling and simulation of interdependent systems, for modeling dynamic threats and forecasting adaptive behavior, and for enabling decision support and processing large cyber data streams. In this report, we highlight four advanced computation projects that illustrate the breadth of the IHNS mission space.« less

  1. The ORNL Chemical Technology Division, 1950-1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolley, R.L.; Genung, R.K.; McNeese, L.E.

    1994-10-01

    This document attempts to reconstruct the role played by the Chemical Technology Division (Chem Tech) of the Oak Ridge National Laboratory (ORNL) in the atomic era since the 1940`s related to the development and production of nuclear weapons and power reactors. Chem Tech`s early contributions were landmark pioneering studies. Unknown and dimly perceived problems like chemical hazards, radioactivity, and criticality had to be dealt with. New chemical concepts and processes had to be developed to test the new theories being developed by physicists. New engineering concepts had to be developed and demonstrated in order to build facilities and equipment thatmore » had never before been attempted. Chem Tech`s role was chemical separations, especially uranium and plutonium, and nuclear fuel reprocessing. With diversification of national and ORNL missions, Chem Tech undertook R&D studies in many areas including biotechnology; clinical and environmental chemistry; nuclear reactors; safety regulations; effective and safe waste management and disposal; computer modeling and informational databases; isotope production; and environmental control. The changing mission of Chem Tech are encapsulated in the evolving activities.« less

  2. NASA's Kilopower Reactor Development and the Path to Higher Power Missions

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Oleson, Steven R.; Poston, David I.; McClure, Patrick

    2017-01-01

    The development of NASAs Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.

  3. NASA's Kilopower Reactor Development and the Path to Higher Power Missions

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Oleson, Steven R.; Poston, Dave I.; McClure, Patrick

    2017-01-01

    The development of NASA's Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.

  4. Radioisotope Electric Propulsion (REP): A Near-Term Approach to Nuclear Propulsion

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Manzella, David H.; Kamhawi, Hani; Kremic, Tibor; Oleson, Steven R.; Dankanich, John W.; Dudzinski, Leonard A.

    2009-01-01

    Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.

  5. Organizational/institutional factors affecting performance in the nuclear power industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, J.L.

    1992-01-01

    The dramatic macro experiences occurring at Three Mile Island and Chernobyl as well as the cumulative micro experiences represented by sky-rocketing costs and public concerns have demonstrated how the institutionally and organizationally related aspects of the nuclear power industry have dominated and shaped the technical ones. Further, given the relatively stable or evolutionary nature of the technology as it is currently applied, these institutional and organizational factors contain the roots of most of the complications/problems associated with the industry relative to achieving any or all of its future performance objectives (technical, economic, and safety). Some technology transfer was attempted bymore » the author from the field of general systems/cybernetics, which was explicitly aimed at dealing with the organizational/institutional factors, i.e., the problems and issues were approached using principles and methodology substantially different from that typically seen from applications based on the more traditional paradigmic engineering/industrial management orientation.« less

  6. Physics and nuclear power

    NASA Astrophysics Data System (ADS)

    Buttery, N. E.

    2008-03-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors.

  7. Characterization of Interface State Density of Ni/p-GaN Structures by Capacitance/Conductance-Voltage-Frequency Measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-Fu; Zhang, He-Qiu; Liang, Hong-Wei; Peng, Xin-Cun; Zou, Ji-Jun; Tang, Bin; Du, Guo-Tong

    2017-08-01

    Not Available Supported by the Natural Science Foundation of Jiangxi Province under Grant No 20133ACB20005, the Key Program of National Natural Science Foundation of China under Grant No 41330318, the Key Program of Science and Technology Research of Ministry of Education under Grant No NRE1515, the Foundation of Training Academic and Technical Leaders for Main Majors of Jiangxi Province under Grant No 20142BCB22006, the Research Foundation of Education Bureau of Jiangxi Province under Grant No GJJ14501, and the Engineering Research Center of Nuclear Technology Application (East China Institute of Technology) Ministry of Education under Grant No HJSJYB2016-1.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jun-hyung

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a hugemore » opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)« less

  9. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spentmore » nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including unenriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to divert in large quantities. This report discusses the application of the LIFE concept to nonproliferation issues, initially looking at the LIFE (Laser Inertial Fusion-Fission Energy) engine as a means of completely burning WG Pu and HEU. By combining a neutron-rich inertial fusion point source with energy-rich fission, the once-through closed fuel-cycle LIFE concept has the following characteristics: it is capable of efficiently burning excess weapons or separated civilian plutonium and highly enriched uranium; the fission blanket is sub-critical at all times (keff < 0.95); because LIFE can operate well beyond the point at which light water reactors (LWRs) need to be refueled due to burn-up of fissile material and the resulting drop in system reactivity, fuel burn-up of 99% or more appears feasible. The objective of this work is to develop LIFE technology for burning of WG-Pu and HEU.« less

  10. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division, April--June 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R.T.

    The Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and thermodynamics, Separations and Materials Synthesis, Solution Thermodynamics, biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  11. Proceedings of the American Power Conference. Volume 60-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, A.E.

    1998-12-01

    The American Power Conference, 60th annual meeting, 1998, addressed reliability and economy as related to technology for competition and globalization. The topics of the papers included needs and advances in power engineering education, global climate change, distributed generation, the critical role of the nations largest coal, nuclear and hydropower stations, advances in generation technology, financing electric power projects, successful deregulation, year 2000 outlook for equipment conflict with information and control, system planning, asset management, relay and communication, particulate and SO{sub x} control, environmental protection compliance strategies, fuel cells, gas turbines, renewable energy, steam turbines, and cost reduction strategies.

  12. Proceedings of the American Power Conference. Volume 60-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, A.E.

    1998-12-01

    The American Power Conference, 60th annual meeting, 1998, addressed reliability and economy as related to technology for competition and globalization. The topics of the papers included needs and advances in power engineering education, global climate change, distributed generation, the critical role of the nations largest coal, nuclear and hydropower stations, advances in generation technology, financing electric power projects, successful deregulation, year 2000 outlook for equipment conflict with information and control, system planning, asset management, relay and communication, particulate and SO{sub x} control, environmental protection compliance strategies, fuel cells, gas turbines, renewable energy, steam turbines, and cost reduction strategies.

  13. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end ofmore » its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.« less

  14. R&D Plan for Army Applications of AI/Robotics.

    DTIC Science & Technology

    1982-05-01

    Research, Development, and Acquisition (Army) OCE--Office, Chief of Engineers HTTG--High Technology Test Group DNA--Defense Nuclear Agency Contractors...comparison, include both trailer and van-mounted tools and * testing equipment that are generally of sufficient weight and bulk to be mounted and used on a...interactive diagnosis and corrective maintenance information for surface-to-surface missile launching systems beyond the capability of automet’. test equipment

  15. JPRS Report Science & Technology Japan

    DTIC Science & Technology

    1989-10-25

    Testing Slated for New BWR Fuel Assemblies [GENSHIRYOKU SANGYO SHIMBUN, 25 May 89] .... 37 Nuclear Fuel Planning System Developed [GENSHIRYOKU... Development (Debt) 13,272 ((Debt) 3,839) 7,995 (3,610) In addition, the budget has guaranteed that the following programs will proceed according... develop a combined cycle engine that will be capable of attaining high reliability and good fuel consumption at a wide range of speeds from low speed to

  16. On fundamentally new sources of energy for rockets in the early works of the pioneers of astronautics

    NASA Technical Reports Server (NTRS)

    Melkumov, T. M.

    1977-01-01

    The research for more efficient methods of propelling a spacecraft, than can be achieved with chemical energy, was studied. During a time when rockets for space flight had not actually been built pioneers in rocket technology were already concerned with this problem. Alternative sources proposed at that time, were nuclear and solar energy. Basic engineering problems of each source were investigated.

  17. JPRS Report, Science & Technology Japan.

    DTIC Science & Technology

    1989-07-11

    Kimura , honorary professor, Tokyo University, as the leader) to design research for the recovery of rare metals and the annihilation of radioactivity...et al.; JOURNAL OF THE JAPANESE ASSOCIATION OF CRYSTAL GROWTH, 10 Jul 88] 39 Optical Absorption of Ti:Al203 Single Crystal [Shigeyuki Kimura ...IGENSH1RY0KU SANGYO SHIMBUN, 26 Jan 89] 132 Atomic Lasers for Uranium Enrichment Tested IGENSHIRYOKU SANGYO SHIMBUN, 2 Feb 89] 133 NUCLEAR ENGINEERING

  18. Mid-Infrared Laser Absorption Diagnostics for Combustion and Propulsion Applications

    DTIC Science & Technology

    2010-12-01

    Combustion and Propulsion Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-07-1-0844 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew A...Institute Mechancial, Aerospace, and Nuclear Engineering Dept Troy NY 12180-3590 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING...absorption sensors based on quantum cascade laser (QCL) technology for combustion and propulsion applications. To demonstrate the potential of mid-IR QCL

  19. Creep of Hi-Nicalon S Fiber Tows at Elevated Temperature in Air and in Steam

    DTIC Science & Technology

    2013-03-01

    materials”[28]. Materials have always been a limiting factor in the advancements of technology. The ever increasing demand for aerospace vehicles that are...matrix composites are designed to have load-carrying capacity at high temperatures in extreme environments. Ceramic matrix composites are prime...engines, gas turbines for electrical power/steam cogeneration , as well as nuclear power plant components. It is recognized that the structural

  20. 2006 JSOU/NDIA SO/LIC Chapter Essays

    DTIC Science & Technology

    2006-06-01

    Sloan Ph.D., Comparative Politics University of Central Florida Robert G. Spulak, Jr. Ph.D., Physics /Nuclear Engineering Sandia National...each other. However, a virtual approach that leverages technology widens and enriches the opportunity for contact and is not limited by physical ...www.iep.utm.edu/j/justwar.htm [accessed 17 May 2004]. In Strategy and War Academic Year 2006 Coursebook , edited by Sharon McBride et al. (Maxwell AFB, AL: Air

  1. Human Factors Principles in Information Dashboard Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugo, Jacques V.; St. Germain, Shawn

    When planning for control room upgrades, nuclear power plants have to deal with a multitude of engineering and operational impacts. This will inevitably include several human factors considerations, including physical ergonomics of workstations, viewing angles, lighting, seating, new communication requirements, and new concepts of operation. In helping nuclear power utilities to deal with these challenges, the Idaho National Laboratory (INL) has developed effective methods to manage the various phases of the upgrade life cycle. These methods focus on integrating human factors engineering processes with the plant’s systems engineering process, a large part of which is the development of end-state conceptsmore » for control room modernization. Such an end-state concept is a description of a set of required conditions that define the achievement of the plant’s objectives for the upgrade. Typically, the end-state concept describes the transition of a conventional control room, over time, to a facility that employs advanced digital automation technologies in a way that significantly improves system reliability, reduces human and control room-related hazards, reduces system and component obsolescence, and significantly improves operator performance. To make the various upgrade phases as concrete and as visible as possible, an end-state concept would include a set of visual representations of the control room before and after various upgrade phases to provide the context and a framework within which to consider the various options in the upgrade. This includes the various control systems, human-system interfaces to be replaced, and possible changes to operator workstations. This paper describes how this framework helps to ensure an integrated and cohesive outcome that is consistent with human factors engineering principles and also provide substantial improvement in operator performance. The paper further describes the application of this integrated approach in the strategic modernization program at a nuclear power plant where legacy systems are upgraded to advanced digital technologies through a systematic process that links human factors principles to the systems engineering process. This approach will help to create an integrated control room architecture beyond what is possible for individual subsystem upgrades alone. In addition, several human factors design and evaluation methods were used to develop the end-state concept, including interactive sessions with operators in INL’s Human System Simulation Laboratory, three-dimensional modeling to visualize control board changes.« less

  2. Turbulent Flow Simulation at the Exascale: Opportunities and Challenges Workshop: August 4-5, 2015, Washington, D.C.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprague, Michael A.; Boldyrev, Stanislav; Fischer, Paul

    This report details the impact exascale will bring to turbulent-flow simulations in applied science and technology. The need for accurate simulation of turbulent flows is evident across the DOE applied-science and engineering portfolios, including combustion, plasma physics, nuclear-reactor physics, wind energy, and atmospheric science. The workshop brought together experts in turbulent-flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants defined a research agenda and path forward that will enable scientists and engineers to continually leverage, engage, and direct advances in computational systems on the path to exascale computing.

  3. Rocketdyne/Westinghouse nuclear thermal rocket engine modeling

    NASA Technical Reports Server (NTRS)

    Glass, James F.

    1993-01-01

    The topics are presented in viewgraph form and include the following: systems approach needed for nuclear thermal rocket (NTR) design optimization; generic NTR engine power balance codes; rocketdyne nuclear thermal system code; software capabilities; steady state model; NTR engine optimizer code-logic; reactor power calculation logic; sample multi-component configuration; NTR design code output; generic NTR code at Rocketdyne; Rocketdyne NTR model; and nuclear thermal rocket modeling directions.

  4. NASA Propulsion Engineering Research Center, volume 1

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Over the past year, the Propulsion Engineering Research Center at The Pennsylvania State University continued its progress toward meeting the goals of NASA's University Space Engineering Research Centers (USERC) program. The USERC program was initiated in 1988 by the Office of Aeronautics and Space Technology to provide an invigorating force to drive technology advancements in the U.S. space industry. The Propulsion Center's role in this effort is to provide a fundamental basis from which the technology advances in propulsion can be derived. To fulfill this role, an integrated program was developed that focuses research efforts on key technical areas, provides students with a broad education in traditional propulsion-related science and engineering disciplines, and provides minority and other under-represented students with opportunities to take their first step toward professional careers in propulsion engineering. The program is made efficient by incorporating government propulsion laboratories and the U.S. propulsion industry into the program through extensive interactions and research involvement. The Center is comprised of faculty, professional staff, and graduate and undergraduate students working on a broad spectrum of research issues related to propulsion. The Center's research focus encompasses both current and advanced propulsion concepts for space transportation, with a research emphasis on liquid propellant rocket engines. The liquid rocket engine research includes programs in combustion and turbomachinery. Other space transportation modes that are being addressed include anti-matter, electric, nuclear, and solid propellant propulsion. Outside funding supports a significant fraction of Center research, with the major portion of the basic USERC grant being used for graduate student support and recruitment. The remainder of the USERC funds are used to support programs to increase minority student enrollment in engineering, to maintain Center infrastructure, and to develop research capability in key new areas. Significant research programs in propulsion systems for air and land transportation complement the space propulsion focus. The primary mission of the Center is student education. The student program emphasizes formal class work and research in classical engineering and science disciplines with applications to propulsion.

  5. Running SW4 On New Commodity Technology Systems (CTS-1) Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, Arthur J.; Petersson, N. Anders; Pitarka, Arben

    We have recently been running earthquake ground motion simulations with SW4 on the new capacity computing systems, called the Commodity Technology Systems - 1 (CTS-1) at Lawrence Livermore National Laboratory (LLNL). SW4 is a fourth order time domain finite difference code developed by LLNL and distributed by the Computational Infrastructure for Geodynamics (CIG). SW4 simulates seismic wave propagation in complex three-dimensional Earth models including anelasticity and surface topography. We are modeling near-fault earthquake strong ground motions for the purposes of evaluating the response of engineered structures, such as nuclear power plants and other critical infrastructure. Engineering analysis of structures requiresmore » the inclusion of high frequencies which can cause damage, but are often difficult to include in simulations because of the need for large memory to model fine grid spacing on large domains.« less

  6. A Historical and Engineering View of Power Transmission Systems in Kansai Electric Power Co., Inc.

    NASA Astrophysics Data System (ADS)

    Ito, Shunichi; Akiyama, Tetsuo

    During our work in operations related to power transmission technology, we have encountered various natural calamities and man-made disasters. Over the years, we learned many valuable lessons from these bitter experiences, and we now have more reliable, cost-effective and flexible electric power systems. This paper describes the new technologies we have introduced in the facilities making up the power systems and how we operate these systems and facilities. It also takes up the Southern Hyogo Earthquake and loss of Ohi nuclear power generation due to galloping phenomena as typical examples showing how a set of measures as mentioned above substantially improved the reliability of the electric power systems to such an extent that the Japanese electric power systems have attained the world's highest level of reliability. These facts prove that steady and continuous efforts are a prerequisite to success for all power engineers.

  7. Space Environments and Effects (SEE) Program: Spacecraft Charging Technology Development Activities

    NASA Technical Reports Server (NTRS)

    Kauffman, Billy; Hardage, Donna; Minor, Jody

    2003-01-01

    Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how materials and spacecraft systems will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the continued push to use Commercial-off-the-shelf (COTS) microelectronics, potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will introduce the SEE Program, briefly discuss past and currently sponsored spacecraft charging activities and possible future endeavors.

  8. Space Environments and Effects (SEE) Program: Spacecraft Charging Technology Development Activities

    NASA Technical Reports Server (NTRS)

    Kauffman, B.; Hardage, D.; Minor, J.

    2004-01-01

    Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how materials and spacecraft systems will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the continued push to use Commercial-off-the-Shelf (COTS) microelectronics, potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will introduce the SEE Program, briefly discuss past and currently sponsored spacecraft charging activities and possible future endeavors.

  9. Status of nuclear Class 1 component requalification: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, W.E.

    1986-12-01

    Qualification relates to assurance of acceptability of the component with respect to structural integrity, operability and functional capability. Requalification is required if existing qualification is lost because of: expiration of the qualified service life (life extension); reactivation of a cancelled or suspended plant; failure to conform with certain requirements of the Technical Specifications, or revision to the applicable Regulatory requirements. The alternatives to requalification are replacement or removal from service. The choice between requalification, replacement and removal from service is governed by economics. The purpose of requalification standards is to ensure the acceptability of the requalification process. A previous EPRImore » Report prepared by Teledyne Engineering Services (TES) (NP-1921) developed a rationale for, and a draft of, a generic requalification standard for Class 1 Pressure Boundary Components presently considered by the Boiler and Pressure Vessel Code published by The American Society of Mechanical Engineers (ASME/BPVC). International Energy Associates Limited (IEA) prepared another report for EPRI shortly thereafter (NP-2418), which reviewed the economic and technologies factors of nuclear plant life extension, and concluded that NP-1921 makes a strong case that the nuclear industry will benefit from the development of the proposed standard.« less

  10. Technicians Manufacture a Nozzle for the Kiwi B-1-B Engine

    NASA Image and Video Library

    1964-05-21

    Technicians manufacture a nozzle for the Kiwi B-1-B nuclear rocket engine in the Fabrication Shop’s vacuum oven at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test basic nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The final phase of the program, called Reactor-In-Flight-Test, would be an actual launch test. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The turbopump, which pumped the fuels from the storage tanks to the engine, was the primary tool for restarting the engine. The NERVA had to be able to restart in space on its own using a safe preprogrammed startup system. Lewis researchers endeavored to design and test this system. This non-nuclear Kiwi engine, seen here, was being prepared for tests at Lewis’ High Energy Rocket Engine Research Facility (B-1) located at Plum Brook Station. The tests were designed to start an unfueled Kiwi B-1-B reactor and its Aerojet Mark IX turbopump without any external power.

  11. Teaching Problem-Solving Skills to Nuclear Engineering Students

    ERIC Educational Resources Information Center

    Waller, E.; Kaye, M. H.

    2012-01-01

    Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and…

  12. Nuclear Engineering Enrollments and Degrees, 1982.

    ERIC Educational Resources Information Center

    Sweeney, Deborah H.; And Others

    This report presents data on the number of students enrolled and the number of bachelor's, master's, and doctoral degrees awarded in academic year 1981-82 from 72 United States institutions offering degree programs in nuclear engineering or nuclear options within other engineering fields. Presented as well are historical data for the last decade…

  13. Brief 76 Nuclear Engineering Enrollments and Degrees Survey, 2015 Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The 2015 Nuclear Engineering Enrollments and Degrees Survey reports degrees granted between September 1, 2014 and August 31, 2015. Enrollment information refers to the fall term 2015. The enrollments and degrees data comprises students majoring in nuclear engineering or in an option program equivalent to a major. Thirty-five academic programs reported having nuclear engineering programs during 2015, and data was received from all thirty-five programs. The report includes enrollment information on undergraduate students and graduate students and information by degree level for post-graduation plans.

  14. Brief 74 Nuclear Engineering Enrollments and Degrees Survey, 2014 Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2015-03-15

    The 2014 survey includes degrees granted between September 1, 2013 and August 31, 2014, and enrollments for fall 2014. There are three academic programs new to this year's survey. Thirty-five academic programs reported having nuclear engineering programs during 2014, and data were provided by all thirty-five. The enrollments and degrees data include students majoring in nuclear engineering or in an option program equivalent to a major. Two nuclear engineering programs have indicated that health physics option enrollments and degrees are also reported in the health physics enrollments and degrees survey.

  15. Investigation of gaseous nuclear rocket technology

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.

    1972-01-01

    The experimental and theoretical investigations conducted during the period from September 1969 through September 1972 are reported which were directed toward obtaining information necessary to determine the feasibility of the full-scale nuclear light bulb engine, and of small-scale nuclear tests involving fissioning uranium plasmas in a unit cell installed in a driver reactor, such as the Nuclear Furnace. Emphasis was placed on development of RF simulations of conditions expected in nuclear tests in the Nuclear Furnace. The work included investigations of the following: (1) the fluid mechanics and containment characteristics of one-component and two-component vortex flows, both unheated and RF-induction heated; (2) heating of particle-seeded streams by thermal radiation from a dc arc to simulate propellant heating; (3) condensation and separation phenomena for metal-vapor/heated-gas mixtures to provide information for conceptual designs of components of fuel exhaust and recycle systems; (4) the characteristics of the radiant energy spectrum emitted from the fuel region, with emphasis on definition of fuel and buffer-gas region seed systems to reduce the ultraviolet radiation emitted from the nuclear fuel; and (5) the effects of nuclear radiation on the optical transmission characteristics of transparent materials.

  16. Robust Exploration and Commercial Missions to the Moon Using Nuclear Thermal Rocket Propulsion and Lunar Liquid Oxygen Derived from FeO-Rich Pyroclasitc Deposits

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.

    2018-01-01

    The nuclear thermal rocket (NTR) has frequently been identified as a key space asset required for the human exploration of Mars. This proven technology can also provide the affordable access through cislunar space necessary for commercial development and sustained human presence on the Moon. It is a demonstrated technology capable of generating both high thrust and high specific impulse (I(sub sp) approx. 900 s) twice that of today's best chemical rockets. Nuclear lunar transfer vehicles-consisting of a propulsion stage using three approx. 16.5-klb(sub f) small nuclear rocket engines (SNREs), an in-line propellant tank, plus the payload-are reusable, enabling a variety of lunar missions. These include cargo delivery and crewed lunar landing missions. Even weeklong ''tourism'' missions carrying passengers into lunar orbit for a day of sightseeing and picture taking are possible. The NTR can play an important role in the next phase of lunar exploration and development by providing a robust in-space lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supported by a variety of commercial activities such as in-situ propellant production used to supply strategically located propellant depots and transportation nodes. The use of lunar liquid oxygen (LLO2) derived from iron oxide (FeO)-rich volcanic glass beads, found in numerous pyroclastic deposits on the Moon, can significantly reduce the launch mass requirements from Earth by enabling reusable, surface-based lunar landing vehicles (LLVs)that use liquid oxygen and hydrogen (LO2/LH2) chemical rocket engines. Afterwards, a LO2/LH2 propellant depot can be established in lunar equatorial orbit to supply the LTS. At this point a modified version of the conventional NTR-called the LO2-augmented NTR, or LANTR-is introduced into the LTS allowing bipropellant operation and leveraging the mission benefits of refueling with lunar-derived propellants for Earth return. The bipropellant LANTR engine utilizes the large divergent section of its nozzle as an ''afterburner'' into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engine's choked sonic throat-essentially ''scramjet propulsion in reverse.'' By varying the oxygen-to-hydrogen mixture ratio, LANTR engines can operate over a range of thrust and I(sub sp) values while the reactor core power level remains relatively constant. A LANTR-based LTS offers unique mission capabilities including short-transit-time crewed cargo transports. Even a ''commuter'' shuttle service may be possible allowing ''one-way'' trip times to and from the Moon on the order of 36 hours or less. If only 1% of the extracted LLO2 propellant from identified resource sites were available for use in lunar orbit, such a supply could support daily commuter flights to the Moon for many thousands of years! This report outlines an evolutionary architecture and examines a variety of mission types and transfer vehicle designs, along with the increasing demands on LLO2 production as mission complexity and velocity change delta V requirements increase. A comparison of vehicle features and engine operating characteristics, for both NTR and LANTR engines, is also provided along with a discussion of the propellant production and mining requirements associated with using FeO-rich volcanic glass as source material.

  17. A Boiling-Potassium Fluoride Reactor for an Artificial-Gravity NEP Vehicle

    NASA Technical Reports Server (NTRS)

    Sorensen, Kirk; Juhasz, Albert

    2007-01-01

    Several years ago a rotating manned spacecraft employing nuclear-electric propulsion was examined for Mars exploration. The reactor and its power conversion system essentially served as the counter-mass to an inflatable manned module. A solid-core boiling potassium reactor based on the MPRE concept of the 1960s was baselined in that study. This paper proposes the use of a liquid-fluoride reactor, employing direct boiling of potassium in the core, as a means to overcome some of the residual issues with the MPRE reactor concept. Several other improvements to the rotating Mars vehicle are proposed as well, such as Canfield joints to enable the electric engines to track the inertial thrust vector during rotation, and innovative "cold-ion" engine technologies to improve engine performance.

  18. Nuclear Physics Made Very, Very Easy

    NASA Technical Reports Server (NTRS)

    Hanlen, D. F.; Morse, W. J.

    1968-01-01

    The fundamental approach to nuclear physics was prepared to introduce basic reactor principles to various groups of non-nuclear technical personnel associated with NERVA Test Operations. NERVA Test Operations functions as the field test group for the Nuclear Rocket Engine Program. Nuclear Engine for Rocket Vehicle Application (NERVA) program is the combined efforts of Aerojet-General Corporation as prime contractor, and Westinghouse Astronuclear Laboratory as the major subcontractor, for the assembly and testing of nuclear rocket engines. Development of the NERVA Program is under the direction of the Space Nuclear Propulsion Office, a joint agency of the U.S. Atomic Energy Commission and the National Aeronautics and Space Administration.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Kenneth; Oxstrand, Johanna

    The Digital Architecture effort is a part of the Department of Energy (DOE) sponsored Light-Water Reactor Sustainability (LWRS) Program conducted at Idaho National Laboratory (INL). The LWRS program is performed in close collaboration with industry research and development (R&D) programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants (NPPs). One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Therefore,more » a major objective of the LWRS program is the development of a seamless digital environment for plant operations and support by integrating information from plant systems with plant processes for nuclear workers through an array of interconnected technologies. In order to get the most benefits of the advanced technology suggested by the different research activities in the LWRS program, the nuclear utilities need a digital architecture in place to support the technology. A digital architecture can be defined as a collection of information technology (IT) capabilities needed to support and integrate a wide-spectrum of real-time digital capabilities for nuclear power plant performance improvements. It is not hard to imagine that many processes within the plant can be largely improved from both a system and human performance perspective by utilizing a plant wide (or near plant wide) wireless network. For example, a plant wide wireless network allows for real time plant status information to easily be accessed in the control room, field workers’ computer-based procedures can be updated based on the real time plant status, and status on ongoing procedures can be incorporated into smart schedules in the outage command center to allow for more accurate planning of critical tasks. The goal of the digital architecture project is to provide a long-term strategy to integrate plant systems, plant processes, and plant workers. This include technologies to improve nuclear worker efficiency and human performance; to offset a range of plant surveillance and testing activities with new on-line monitoring technologies; improve command, control, and collaboration in settings such as outage control centers and work execution centers; and finally to improve operator performance with new operator aid technologies for the control room. The requirements identified through the activities in the Digital Architecture project will be used to estimate the amount of traffic on the network and hence estimating the minimal bandwidth needed.« less

  20. Institutional plan FY 1999--FY 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-10-01

    Los Alamos has a well-defined and nationally important mission: to reduce the global nuclear danger. This central national security mission consists of four main elements: stockpile stewardship, nuclear materials management, nonproliferation and arms control, and cleanup of the environmental legacy of nuclear weapons activities. The Laboratory provides support for and ensures confidence in the nation`s nuclear stockpile without nuclear testing. This challenge requires the Laboratory to continually hone its scientific acumen and technological capabilities to perform this task reliably using an interdisciplinary approach and advanced experimental and modeling techniques. In the last two National Defense Authorization Acts, Congress identified themore » need to protect the nation from the proliferation of weapons of mass destruction, which includes nuclear, chemical, and biological weapons, and their potential use by terrorists. Los Alamos is applying multidisciplinary science and engineering skills to address these problems. In addition, the Laboratory`s critical programmatic roles in stockpile stewardship and threat reduction are complemented by its waste management operations and environmental restoration work. Information on specific programs is available in Section 2 of this document.« less

  1. Modular Growth NTR Space Transportation System for Future NASA Human Lunar, NEA and Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The nuclear thermal rocket (NTR) is a proven, high thrust propulsion technology that has twice the specific impulse (I(sub sp) approx.900 s) of today's best chemical rockets. During the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs, twenty rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability - everything required for affordable human missions beyond LEO. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower IMLEO, versatile vehicle design, and growth potential. Furthermore, the NTR requires no large technology scale-ups since the smallest engine tested during the Rover program - the 25 klb(sub f) "Pewee" engine is sufficient for human Mars missions when used in a clustered engine configuration. The "Copernicus" crewed Mars transfer vehicle developed for DRA 5.0 was an expendable design sized for fast-conjunction, long surface stay Mars missions. It therefore has significant propellant capacity allowing a reusable "1-year" round trip human mission to a large, high energy near Earth asteroid (NEA) like Apophis in 2028. Using a "split mission" approach, Copernicus and its two key elements - a common propulsion stage and integrated "saddle truss" and LH2 drop tank assembly - configured as an Earth Return Vehicle / propellant tanker, can also support a short round trip (approx.18 month) / short orbital stay (60 days) Mars reconnaissance mission in the early 2030's before a landing is attempted. The same short stay orbital mission can be performed with an "all-up" vehicle by adding an "in-line" LH2 tank to Copernicus to supply the extra propellant needed for this higher energy, opposition-class mission. To transition to a reusable Mars architecture, Copernicus' saddle truss / drop tank assembly is replaced by an in-line tank and "star truss" assembly with paired modular drop tanks to further increase the vehicle's propellant capacity. Shorter "1-way" transit time fast-conjunction Mars missions are another possibility using this vehicle configuration but, as with reusability, increased launch mass is required. "Scaled down" versions of Copernicus (sized to a SLS lift capability of approx.70 t - 100 t) can be developed initially allowing reusable lunar cargo delivery and crewed landing missions, easy NEA missions (e.g., 2000 SG344 also in 2028) or an expendable mission to Apophis. Mission scenario descriptions, key vehicle features and operational characteristics are provided along with a brief discussion of NASA's current activities and its "pre-decisional" plans for future NTR development.

  2. A SUMMARY COMPARISON OF DESIGN EVALUATION TECHNIQUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spielman, Zachary; Hill, Rachael

    The United States’ fleet of Nuclear Reactors is considering modernizing their control rooms and instrumentation as an effort to avoid component obsolescence, keep up with competing industries, and cater to a new work force among others. Multiple technologies have potential to improve the control room. In attempts to evaluate the available options researchers employ a variety of measures to ensure the best candidate is used in a modernizing effort. The NRC is in charge of ensuring any new design has been thoroughly vetted before approving a license. Laid out in NUREG-0711 “Human Factors Engineering Program Review Model” is the reviewmore » criteria for design validation. As there are a variety of measures currently used to evaluate candidate technologies, this paper seeks to identify weaknesses in the common measures used to design and validate technology in control room modernization efforts. Identifying where measurements are not meeting the criteria will help the control room modernization research platform identify where measurement development needs to occur. This will help ensure that current performance measurements are producing as reliable results as possible to select the right technology to integrate into nuclear operating control rooms.« less

  3. A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Adams, Robert B.; Bechtel, Ryan D.; Borowski, Stanley K.; George, Jeffrey A.

    2013-01-01

    The potential capability of NTP is game changing for space exploration. A first generation NCPS could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Near-term NCPS systems would provide a foundation for the development of significantly more advanced, higher performance systems. John F. Kennedy made his historic special address to Congress on the importance of space on May 25, 1961, "First, I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth..." This was accomplished. John F. Kennedy also made a second request, "Secondly... accelerate development of the Rover nuclear rocket. This gives promise of some day providing a means for even more exciting and ambitious exploration of space, perhaps beyond the Moon, perhaps to the very end of the solar system itself." The investment in the Rover nuclear rocket program provided the foundation of technology that gives us assurance for greater performing rockets that are capable of taking us further into space. Combined with current technologies, the vision to go beyond the Moon and to the very end of the solar system can be realized with space nuclear propulsion and power.

  4. Investigating the Potential Barrier Function of Nanostructured Materials Formed in Engineered Barrier Systems (EBS) Designed for Nuclear Waste Isolation.

    PubMed

    Cuevas, Jaime; Ruiz, Ana Isabel; Fernández, Raúl

    2018-02-21

    Clay and cement are known nano-colloids originating from natural processes or traditional materials technology. Currently, they are used together as part of the engineered barrier system (EBS) to isolate high-level nuclear waste (HLW) metallic containers in deep geological repositories (DGR). The EBS should prevent radionuclide (RN) migration into the biosphere until the canisters fail, which is not expected for approximately 10 3  years. The interactions of cementitious materials with bentonite swelling clay have been the scope of our research team at the Autonomous University of Madrid (UAM) with participation in several European Union (EU) projects from 1998 up to now. Here, we describe the mineral and chemical nature and microstructure of the alteration rim generated by the contact between concrete and bentonite. Its ability to buffer the surrounding chemical environment may have potential for further protection against RN migration. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nuclear eclectic power.

    PubMed

    Rose, D J

    1974-04-19

    The uranium and thorium resources, the technology, and the social impacts all seem to presage an even sharper increase in nuclear power for electric generation than had hitherto been predicted. There are more future consequences. The "hydrogen economy." Nuclear power plants operate best at constant power and full load. Thus, a largely nuclear electric economy has the problem of utilizing substantial off-peak capacity; the additional energy generation can typically be half the normal daily demand. Thus, the option of generating hydrogen as a nonpolluting fuel receives two boosts: excess nuclear capacity to produce it, plus much higher future costs for oil and natural gas. However, the so-called "hydrogen economy" must await the excess capacity, which will not occur until the end of the century. Nonelectric uses. By analyses similar to those performed here, raw nuclear heat can be shown to be cheaper than heat from many other fuel sources, especially nonpolluting ones. This will be particularly true as domestic natural gas supplies become more scarce. Nuclear heat becomes attractive for industrial purposes, and even for urban district heating, provided (i) the temperature is high enough (this is no problem for district heating, but could be for industry; the HTGR's and breeders, with 600 degrees C or more available, have the advantage); (ii) there is a market for large quantities (a heat rate of 3800 Mw thermal, the reactor size permitted today, will heat Boston, with some to spare); and (iii) the social costs become more definitely resolved in favor of nuclear power. Capital requirements. Nuclear-electric installations are very capital-intensive. One trillion dollars for the plants, backup industry, and so forth is only 2 percent of the total gross national product (GNP) between 1974 and 2000, at a growth rate of 4 percent per year. But capital accumulation tends to run at about 10 percent of the GNP, so the nuclear requirements make a sizable perturbation. Also increasing the electric share of energy provision means increasing electric power utilization, which has a high technological content and demands yet more capital. Thus, provision of capital is a major problem ahead, especially for electric utilities. The need for people. The supply of available trained technologists, environmental engineers, and so on, especially in the architect-engineer profession, is insufficient for the task ahead, especially since the same categories of people will be in demand to build up a synthetic fuels industry and do other new things. Beyond these specific items and beyond the technological discussion, one can feel deeper currents running in this debate. Issues that started out seeming technological ended up being mainly societal: prevention of clandestine use, either by vigilance or by public spirit; a determination to maintain quality and to safeguard wastes that transcends narrow interests; a perception of social benefits and damage much more holistic than before; the need to manage programs more openly and better than before. Questions and doubts become more acute, answers and methods less sure. Here is a final question. We have never before been given a virtually infinite resource of something we craved. So far, increasingly large amounts of energy have been used to turn resources into junk, from which activity we derive ephemeral benefit and pleasure; the track record is not too good. What will we do now?

  6. Advanced Hall Electric Propulsion for Future In-space Transportation

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    2001-01-01

    The Hall thruster is an electric propulsion device used for multiple in-space applications including orbit raising, on-orbit maneuvers, and de-orbit functions. These in-space propulsion functions are currently performed by toxic hydrazine monopropellant or hydrazine derivative/nitrogen tetroxide bi-propellant thrusters. The Hall thruster operates nominally in the 1500 sec specific impulse regime. It provides greater thrust to power than conventional gridded ion engines, thus reducing trip times and operational life when compared to that technology in Earth orbit applications. The technology in the far term, by adding a second acceleration stage, has shown promise of providing over 4000s Isp, the regime of the gridded ion engine and necessary for deep space applications. The Hall thruster system consists of three parts, the thruster, the power processor, and the propellant system. The technology is operational and commercially available at the 1.5 kW power level and 5 kW application is underway. NASA is looking toward 10 kW and eventually 50 kW-class engines for ambitious space transportation applications. The former allows launch vehicle step-down for GEO missions and demanding planetary missions such as Europa Lander, while the latter allows quick all-electric propulsion LEO to GEO transfers and non-nuclear transportation human Mars missions.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopper, Calvin Mitchell

    In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safetymore » engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National Laboratory (SNL) hands-on criticality experiments training, and the US DOE National Criticality Experiment Research Center (NCERC) hands-on criticality experiments training that is jointly supported by LLNL and LANL and located at the Nevada National Security Site (NNSS) This paper provides the description of the bases, content, and conduct of the piloted, and future US DOE NCSP Criticality Safety Engineer Training and Education Project.« less

  8. Underscoring the influence of inorganic chemistry on nuclear imaging with radiometals.

    PubMed

    Zeglis, Brian M; Houghton, Jacob L; Evans, Michael J; Viola-Villegas, Nerissa; Lewis, Jason S

    2014-02-17

    Over the past several decades, radionuclides have matured from largely esoteric and experimental technologies to indispensible components of medical diagnostics. Driving this transition, in part, have been mutually necessary advances in biomedical engineering, nuclear medicine, and cancer biology. Somewhat unsung has been the seminal role of inorganic chemistry in fostering the development of new radiotracers. In this regard, the purpose of this Forum Article is to more visibly highlight the significant contributions of inorganic chemistry to nuclear imaging by detailing the development of five metal-based imaging agents: (64)Cu-ATSM, (68)Ga-DOTATOC, (89)Zr-transferrin, (99m)Tc-sestamibi, and (99m)Tc-colloids. In a concluding section, several unmet needs both in and out of the laboratory will be discussed to stimulate conversation between inorganic chemists and the imaging community.

  9. Underscoring the Influence of Inorganic Chemistry on Nuclear Imaging with Radiometals

    PubMed Central

    Zeglis, Brian M.; Houghton, Jacob L.; Evans, Michael J.; Viola-Villegas, Nerissa; Lewis, Jason S.

    2014-01-01

    Over the past several decades, radionuclides have matured from largely esoteric and experimental technologies to indispensible components of medical diagnostics. Driving this transition, in part, have been mutually necessary advances in biomedical engineering, nuclear medicine, and cancer biology. Somewhat unsung has been the seminal role of inorganic chemistry in fostering the development of new radiotracers. In this regard, the purpose of this Forum Article is to more visibly highlight the significant contributions of inorganic chemistry to nuclear imaging by detailing the development of five metal-based imaging agents: 64Cu-ATSM, 68Ga-DOTATOC, 89Zr-transferrin, 99mTc-sestamibi, and 99mTc-colloids. In a concluding section, several unmet needs both in and out of the laboratory will be discussed to stimulate conversation between inorganic chemists and the imaging community. PMID:24313747

  10. HZETRN: A heavy ion/nucleon transport code for space radiations

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Chun, Sang Y.; Badavi, Forooz F.; Townsend, Lawrence W.; Lamkin, Stanley L.

    1991-01-01

    The galactic heavy ion transport code (GCRTRN) and the nucleon transport code (BRYNTRN) are integrated into a code package (HZETRN). The code package is computer efficient and capable of operating in an engineering design environment for manned deep space mission studies. The nuclear data set used by the code is discussed including current limitations. Although the heavy ion nuclear cross sections are assumed constant, the nucleon-nuclear cross sections of BRYNTRN with full energy dependence are used. The relation of the final code to the Boltzmann equation is discussed in the context of simplifying assumptions. Error generation and propagation is discussed, and comparison is made with simplified analytic solutions to test numerical accuracy of the final results. A brief discussion of biological issues and their impact on fundamental developments in shielding technology is given.

  11. Taking a fresh look at boiling heat transfer on the road to improved nuclear economics and efficiency

    DOE PAGES

    Pointer, William David; Baglietto, Emilio

    2016-05-01

    Here, in the effort to reinvigorate innovation in the way we design, build, and operate the nuclear power generating stations of today and tomorrow, nothing can be taken for granted. Not even the seemingly familiar physics of boiling water. The Consortium for the Advanced Simulation of Light Water Reactors, or CASL, is focused on the deployment of advanced modeling and simulation capabilities to enable the nuclear industry to reduce uncertainties in the prediction of multi-physics phenomena and continue to improve the performance of today’s Light Water Reactors and their fuel. An important part of the CASL mission is the developmentmore » of a next generation thermal hydraulics simulation capability, integrating the history of engineering models based on experimental experience with the computing technology of the future.« less

  12. Program For Optimization Of Nuclear Rocket Engines

    NASA Technical Reports Server (NTRS)

    Plebuch, R. K.; Mcdougall, J. K.; Ridolphi, F.; Walton, James T.

    1994-01-01

    NOP is versatile digital-computer program devoloped for parametric analysis of beryllium-reflected, graphite-moderated nuclear rocket engines. Facilitates analysis of performance of engine with respect to such considerations as specific impulse, engine power, type of engine cycle, and engine-design constraints arising from complications of fuel loading and internal gradients of temperature. Predicts minimum weight for specified performance.

  13. System 80+{trademark} standard design incorporates radiation protection lessons learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crom, T.D.; Naugle, C.L.; Turk, R.S.

    1995-03-01

    Many lessons have been learned from the current generation of nuclear plants in the area of radiation protection. The following paper will outline how the lessons learned have been incorporated into the design and operational philosophy of the System 80+{trademark} Standard Design currently under development by ABB Combustion Engineering (ABB-CE) with support from Duke Engineering and Services, Inc. and Stone and Webster Engineering Corporation in the Balance-of-Plant design. The System 80+{trademark} Standard Design is a complete nuclear power plant for national and international markets, designed in direct response to utility needs for the 1990`s, and scheduled for Nuclear Regulatory Commissionmore » (NRC) Design Certification under the new standardization rule (10 CFR Part 52). System 80+{trademark} is a natural extension of System 80{sup R} technology, an evolutionary change based on proven Nuclear Steam Supply System (NSSS) in operation at Palo Verde in Arizona and under construction at Yonggwang in the Republic of Korea. The System 80+{trademark} Containment and much of the Balance of Plant design is based upon Duke Power Company`s Cherokee Plant, which was partially constructed in the late 1970`s, but, was later canceled (due to rapid declined in electrical load growth). The System 80+{trademark} Standard Design meets the requirements given in the Electric Power Research Institute (EPRI) Advanced Light Water Reactor (ALWR) Requirements Document. One of these requirements is to limit the occupational exposure to 100 person-rem/yr. This paper illustrates how this goal can be achieved through the incorporation of lessons learned, innovative design, and the implementation of a common sense approach to operation and maintenances practices.« less

  14. Recent progress and problems in animal cloning.

    PubMed

    Tsunoda, Y; Kato, Y

    2002-01-01

    It is remarkable that mammalian somatic cell nuclei can form whole individuals if they are transferred to enucleated oocytes. Advancements in nuclear transfer technology can now be applied for genetic improvement and increase of farm animals, rescue of endangered species, and assisted reproduction and tissue engineering in humans. Since July 1998, more than 200 calves have been produced by nuclear transfer of somatic cell nuclei in Japan, but half of them were stillborn or died within several months of parturition. Morphologic abnormalities have also been observed in cloned calves and embryonic stem cell-derived mice. In this review, we discuss the present situation and problems with animal cloning and the possibility for its application to human medicine.

  15. Creation of security engineering programs by the Southwest Surety Institute

    NASA Astrophysics Data System (ADS)

    Romero, Van D.; Rogers, Bradley; Winfree, Tim; Walsh, Dan; Garcia, Mary Lynn

    1998-12-01

    The Southwest Surety Institute includes Arizona State University (ASU), Louisiana State University (LSU), New Mexico Institute of Mining and Technology (NM Tech), New Mexico State University (NMSU), and Sandia National Laboratories (SNL). The universities currently offer a full spectrum of post-secondary programs in security system design and evaluation, including an undergraduate minor, a graduate program, and continuing education programs. The programs are based on the methodology developed at Sandia National Laboratories over the past 25 years to protect critical nuclear assets. The programs combine basic concepts and principles from business, criminal justice, and technology to create an integrated performance-based approach to security system design and analysis. Existing university capabilities in criminal justice (NMSU), explosives testing and technology (NM Tech and LSU), and engineering technology (ASU) are leveraged to provide unique science-based programs that will emphasize the use of performance measures and computer analysis tools to prove the effectiveness of proposed systems in the design phase. Facility managers may then balance increased protection against the cost of implementation and risk mitigation, thereby enabling effective business decisions. Applications expected to benefit from these programs include corrections, law enforcement, counter-terrorism, critical infrastructure protection, financial and medical care fraud, industrial security, and border security.

  16. 75 FR 43208 - Withdrawal of Regulatory Guide 5.17

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC 20555.... Introduction The U.S. Nuclear Regulatory Commission (NRC) is withdrawing Regulatory Guide 5.17, ``Truck... Development Branch, Division of Engineering, Office of Nuclear Regulatory Research. [FR Doc. 2010-18077 Filed...

  17. Researcher Poses with a Nuclear Rocket Model

    NASA Image and Video Library

    1961-11-21

    A researcher at the NASA Lewis Research Center with slide ruler poses with models of the earth and a nuclear-propelled rocket. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The nuclear rocket model in this photograph includes a reactor at the far right with a hydrogen propellant tank and large radiator below. The payload or crew would be at the far left, distanced from the reactor.

  18. Cognitive engineering and health informatics: Applications and intersections.

    PubMed

    Hettinger, A Zachary; Roth, Emilie M; Bisantz, Ann M

    2017-03-01

    Cognitive engineering is an applied field with roots in both cognitive science and engineering that has been used to support design of information displays, decision support, human-automation interaction, and training in numerous high risk domains ranging from nuclear power plant control to transportation and defense systems. Cognitive engineering provides a set of structured, analytic methods for data collection and analysis that intersect with and complement methods of Cognitive Informatics. These methods support discovery of aspects of the work that make performance challenging, as well as the knowledge, skills, and strategies that experts use to meet those challenges. Importantly, cognitive engineering methods provide novel representations that highlight the inherent complexities of the work domain and traceable links between the results of cognitive analyses and actionable design requirements. This article provides an overview of relevant cognitive engineering methods, and illustrates how they have been applied to the design of health information technology (HIT) systems. Additionally, although cognitive engineering methods have been applied in the design of user-centered informatics systems, methods drawn from informatics are not typically incorporated into a cognitive engineering analysis. This article presents a discussion regarding ways in which data-rich methods can inform cognitive engineering. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Revitalizing Fusion via Fission Fusion

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2001-10-01

    Existing tokamaks could generate significant nuclear fuel. TFTR, operating steady state with DT might generate enough fuel for a 300 MW nuclear reactor. The immediate goals of the magnetic fusion program would necessarily shift from a study of advanced plasma regimes in larger sized devices, to mostly known plasmas regimes, but at steady state or high duty cycle operation in DT plasmas. The science and engineering of breeding blankets would be equally important. Follow on projects could possibly produce nuclear fuel in large quantity at low price. Although today there is strong opposition to nuclear power in the United States, in a 21st century world of 10 billion people, all of whom will demand a middle class life style, nuclear energy will be important. Concern over greenhouse gases will also drive the world toward nuclear power. There are studies indicating that the world will need 10 TW of carbon free energy by 2050. It is difficult to see how this can be achieved without the breeding of nuclear fuel. By using the thorium cycle, proliferation risks are minimized. [1], [2]. 1 W. Manheimer, Fusion Technology, 36, 1, 1999, 2.W. Manheimer, Physics and Society, v 29, #3, p5, July, 2000

  20. 75 FR 79049 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ..., Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission... INFORMATION: I. Introduction The U.S. Nuclear Regulatory Commission (NRC) is issuing a revision to an existing... Development Branch, Division of Engineering, Office of Nuclear Regulatory Research. [FR Doc. 2010-31731 Filed...

  1. Milestones in welding technology

    NASA Astrophysics Data System (ADS)

    Dolby, Richard E.

    2013-09-01

    Sir Alan's PhD thesis describes his research into cracking during arc welding of armour steels. Throughout his career, he had a strong interest in defects of all types, how they formed in metallic structures and how the larger ones could be detected and sized by non-destructive techniques. He was also vitally concerned with how defects impacted on the engineering integrity of welded structures, particularly the risk of fracture in nuclear plant. This study presents a view of some of the major milestones in global welding technology that took place over the 60 or more years of Sir Alan's career and highlights those where he had a personal and direct involvement.

  2. Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Rene Gerardo; Hutchinson, Jesson D.; Mcclure, Patrick Ray

    2015-08-20

    The intent of the integral experiment request IER 299 (called KiloPower by NASA) is to assemble and evaluate the operational performance of a compact reactor configuration that closely resembles the flight unit to be used by NASA to execute a deep space exploration mission. The reactor design will include heat pipes coupled to Stirling engines to demonstrate how one can generate electricity when extracting energy from a “nuclear generated” heat source. This series of experiments is a larger scale follow up to the DUFF series of experiments1,2 that were performed using the Flat-Top assembly.

  3. Performance Assessments of Generic Nuclear Waste Repositories in Shale

    NASA Astrophysics Data System (ADS)

    Stein, E. R.; Sevougian, S. D.; Mariner, P. E.; Hammond, G. E.; Frederick, J.

    2017-12-01

    Simulations of deep geologic disposal of nuclear waste in a generic shale formation showcase Geologic Disposal Safety Assessment (GDSA) Framework, a toolkit for repository performance assessment (PA) whose capabilities include domain discretization (Cubit), multiphysics simulations (PFLOTRAN), uncertainty and sensitivity analysis (Dakota), and visualization (Paraview). GDSA Framework is used to conduct PAs of two generic repositories in shale. The first considers the disposal of 22,000 metric tons heavy metal of commercial spent nuclear fuel. The second considers disposal of defense-related spent nuclear fuel and high level waste. Each PA accounts for the thermal load and radionuclide inventory of applicable waste types, components of the engineered barrier system, and components of the natural barrier system including the host rock shale and underlying and overlying stratigraphic units. Model domains are half-symmetry, gridded with Cubit, and contain between 7 and 22 million grid cells. Grid refinement captures the detail of individual waste packages, emplacement drifts, access drifts, and shafts. Simulations are run in a high performance computing environment on as many as 2048 processes. Equations describing coupled heat and fluid flow and reactive transport are solved with PFLOTRAN, an open-source, massively parallel multiphase flow and reactive transport code. Additional simulated processes include waste package degradation, waste form dissolution, radioactive decay and ingrowth, sorption, solubility, advection, dispersion, and diffusion. Simulations are run to 106 y, and radionuclide concentrations are observed within aquifers at a point approximately 5 km downgradient of the repository. Dakota is used to sample likely ranges of input parameters including waste form and waste package degradation rates and properties of engineered and natural materials to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2017- 8305 A

  4. STEM Leader from the Roeper School: An Interview with Nuclear Engineer Clair J. Sullivan

    ERIC Educational Resources Information Center

    Ambrose, Don

    2016-01-01

    Clair J. Sullivan is an assistant professor in the Department of Nuclear, Plasma and Radiological Engineering at the University of Illinois at Urbana-Champaign (UIUC). Her research interests include radiation detection and measurements; gamma-ray spectroscopy; automated isotope identification algorithms; nuclear forensics; nuclear security;…

  5. Non-Nuclear Testing of Compact Reactor Technologies at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Pearson, J. Boise; Godfroy, Thomas J.

    2011-01-01

    Safe, reliable, compact, autonomous, long-life fission systems have numerous potential applications, both terrestrially and in space. Technologies and facilities developed in support of these systems could be useful to a variety of concepts. At moderate power levels, fission systems can be designed to operate for decades without the need for refueling. In addition, fast neutron damage to cladding and structural materials can be maintained at an acceptable level. Nuclear design codes have advanced to the stage where high confidence in the behavior and performance of a system can be achieved prior to initial testing. To help ensure reactor affordability, an optimal strategy must be devised for development and qualification. That strategy typically involves a combination of non-nuclear and nuclear testing. Non-nuclear testing is particularly useful for concepts in which nuclear operating characteristics are well understood and nuclear effects such as burnup and radiation damage are not likely to be significant. To be mass efficient, a SFPS must operate at higher coolant temperatures and use different types of power conversion than typical terrestrial reactors. The primary reason is the difficulty in rejecting excess heat to space. Although many options exist, NASA s current reference SFPS uses a fast spectrum, pumped-NaK cooled reactor coupled to a Stirling power conversion subsystem. The reference system uses technology with significant terrestrial heritage while still providing excellent performance. In addition, technologies from the SFPS system could be applicable to compact terrestrial systems. Recent non-nuclear testing at NASA s Early Flight Fission Test Facility (EFF-TF) has helped assess the viability of the reference SFPS and evaluate methods for system integration. In July, 2011 an Annular Linear Induction Pump (ALIP) provided by Idaho National Laboratory was tested at the EFF-TF to assess performance and verify suitability for use in a10 kWe technology demonstration unit (TDU). In November, 2011 testing of a 37-pin core simulator (designed in conjunction with Los Alamos National Laboratory) for use with the TDU will occur. Previous testing at the EFFTF has included the thermal and mechanical coupling of a pumped NaK loop to Stirling engines (provided by GRC). Testing related to heat pipe cooled systems, gas cooled systems, heat exchangers, and other technologies has also been performed. Integrated TDU testing will begin at GRC in 2013. Thermal simulators developed at the EFF-TF are capable of operating over the temperature and power range typically of interest to compact reactors. Small and large diameter simulators have been developed, and simulators (coupled with the facility) are able to closely match the axial and radial power profile of all potential systems of interest. A photograph of the TDU core simulator during assembly is provided in Figure 2.

  6. Scientific and Technical Manpower Requirements of Selected Segments of the Atomic Energy Field. Final Report.

    ERIC Educational Resources Information Center

    Voight, Keith L.

    The primary purpose of the study was to develop a supply/demand ratio for nuclear degree scientists and engineers from July 1969 through 1973. The need by private industry and electric utilities for scientists and engineers with degrees in disciplines other than nuclear science or engineering, as well as for technicians, nuclear reactor operators,…

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rick Demmer; John Drake; Ryan James, PhD

    Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel,more » spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.« less

  8. Impact of workstations on criticality analyses at ABB combustion engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarko, L.B.; Freeman, R.S.; O'Donnell, P.F.

    1993-01-01

    During 1991, ABB Combustion Engineering (ABB C-E) made the transition from a CDC Cyber 990 mainframe for nuclear criticality safety analyses to Hewlett Packard (HP)/Apollo workstations. The primary motivation for this change was improved economics of the workstation and maintaining state-of-the-art technology. The Cyber 990 utilized the NOS operating system with a 60-bit word size. The CPU memory size was limited to 131 100 words of directly addressable memory with an extended 250000 words available. The Apollo workstation environment at ABB consists of HP/Apollo-9000/400 series desktop units used by most application engineers, networked with HP/Apollo DN10000 platforms that use 32-bitmore » word size and function as the computer servers and network administrative CPUS, providing a virtual memory system.« less

  9. Advanced engineering environment collaboration project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weaponsmore » project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.« less

  10. Complications Associated with Long-Term Disposition of Newly-Generated Transuranic Waste: A National Laboratory Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.J. Orchard; L.A. Harvego; T.L. Carlson

    The Idaho National Laboratory (INL) is a multipurpose national laboratory delivering specialized science and engineering solutions for the U.S. Department of Energy (DOE). Sponsorship of INL was formally transferred to the DOE Office of Nuclear Energy, Science and Technology (NE) by Secretary Spencer Abraham in July 2002. The move to NE, and designation as the DOE lead nuclear energy laboratory for reactor technology, supports the nation’s expanding nuclear energy initiatives, placing INL at the center of work to develop advanced Generation IV nuclear energy systems; nuclear energy/hydrogen coproduction technology; advanced nuclear energy fuel cycle technologies; and providing national security answersmore » to national infrastructure needs. As a result of the Laboratory’s NE mission, INL generates both contact-handled and remote-handled transuranic (TRU) waste from ongoing operations. Generation rates are relatively small and fluctuate based on specific programs and project activities being conducted; however, the Laboratory will continue to generate TRU waste well into the future in association with the NE mission. Currently, plans and capabilities are being established to transfer INL’s contact-handled TRU waste to the Advanced Mixed Waste Treatment Plant (AMWTP) for certification and disposal to the Waste Isolation Pilot Plant (WIPP). Remote-handled TRU waste is currently placed in storage at the Materials and Fuels Complex (MFC). In an effort to minimize future liabilities associated with the INL NE mission, INL is evaluating and assessing options for the management and disposition of all its TRU waste on a real-time basis at time of generation. This paper summarizes near-term activities to minimize future re handling of INL’s TRU waste, as well as, potential complications associated with the long-term disposition of newly-generated TRU waste. Potential complications impacting the disposition of INL newly-generated TRU waste include, but are not limited to: 1) required remote-handled TRU packaging configuration(s) vs. current facility capabilities, 2) long-term NE mission activities, 3) WIPP certification requirements, and 4) budget considerations.« less

  11. Collaborative Russian-US work in nuclear material protection, control and accounting at the Institute of Physics and Power Engineering. 2: Extension to additional facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzin, V.V.; Pshakin, G.M.; Belov, A.P.

    1996-12-31

    During 1995, collaborative Russian-US nuclear material protection, control, and accounting (MPC and A) tasks at the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russia focused on improving the protection of nuclear materials at the BFS Fast Critical Facility. BFS has tens of thousands of fuel disks containing highly enriched uranium and weapons-grade plutonium that are used to simulate the core configurations of experimental reactors in two critical assemblies. Completed tasks culminated in demonstrations of newly implemented equipment (Russian and US) and methods that enhanced the MPC and A at BFS through computerized accounting, nondestructive inventory verification measurements, personnelmore » identification and access control, physical inventory taking, physical protection, and video surveillance. The collaborative work with US Department of Energy national laboratories is now being extended. In 1996 additional tasks to improve MPC and A have been implemented at BFS, the Technological Laboratory for Fuel Fabrication (TLFF) the Central Storage Facility (CSF), and for the entire site. The TLFF reclads BFS uranium metal fuel disks (process operations and transfers of fissile material). The CSF contains many different types of nuclear material. MPC and A at these additional facilities will be integrated with that at BFS as a prototype site-wide approach. Additional site-wide tasks encompass communications and tamper-indicating devices. Finally, new storage alternatives are being implemented that will consolidate the more attractive nuclear materials in a better-protected nuclear island. The work this year represents not just the addition of new facilities and the site-wide approach, but the systematization of the MPC and A elements that are being implemented as a first step and the more comprehensive ones planned.« less

  12. Supplying the nuclear arsenal: Production reactor technology, management, and policy, 1942--1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlisle, R.P.; Zenzen, J.M.

    1994-01-01

    This book focuses on the lineage of America`s production reactors, those three at Hanford and their descendants, the reactors behind America`s nuclear weapons. The work will take only occasional sideways glances at the collateral lines of descent, the reactor cousins designed for experimental purposes, ship propulsion, and electric power generation. Over the decades from 1942 through 1992, fourteen American production reactors made enough plutonium to fuel a formidable arsenal of more than twenty thousand weapons. In the last years of that period, planners, nuclear engineers, and managers struggled over designs for the next generation of production reactors. The story ofmore » fourteen individual machines and of the planning effort to replace them might appear relatively narrow. Yet these machines lay at the heart of the nation`s nuclear weapons complex. The story of these machines is the story of arming the winning weapon, supplying the nuclear arms race. This book is intended to capture the history of the first fourteen production reactors, and associated design work, in the face of the end of the Cold War.« less

  13. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhen F.; Gai, Hui; Huang, You Z.

    2006-11-01

    Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ESmore » cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines.« less

  14. Using coal inside California for electric power

    NASA Technical Reports Server (NTRS)

    Moore, J. B.

    1978-01-01

    In a detailed analysis performed at Southern California Edison on a wide variety of technologies, the direct combustion of coal and medium BTU gas from coal were ranked just below nuclear power for future nonpetroleum based electric power generation. As a result, engineering studies were performed for demonstration projects for the direct combustion of coal and medium BTU gas from coal. Graphs are presented for power demand, and power cost. Direct coal combustion and coal gasification processes are presented.

  15. A personal computer-based nuclear magnetic resonance spectrometer

    NASA Astrophysics Data System (ADS)

    Job, Constantin; Pearson, Robert M.; Brown, Michael F.

    1994-11-01

    Nuclear magnetic resonance (NMR) spectroscopy using personal computer-based hardware has the potential of enabling the application of NMR methods to fields where conventional state of the art equipment is either impractical or too costly. With such a strategy for data acquisition and processing, disciplines including civil engineering, agriculture, geology, archaeology, and others have the possibility of utilizing magnetic resonance techniques within the laboratory or conducting applications directly in the field. Another aspect is the possibility of utilizing existing NMR magnets which may be in good condition but unused because of outdated or nonrepairable electronics. Moreover, NMR applications based on personal computer technology may open up teaching possibilities at the college or even secondary school level. The goal of developing such a personal computer (PC)-based NMR standard is facilitated by existing technologies including logic cell arrays, direct digital frequency synthesis, use of PC-based electrical engineering software tools to fabricate electronic circuits, and the use of permanent magnets based on neodymium-iron-boron alloy. Utilizing such an approach, we have been able to place essentially an entire NMR spectrometer console on two printed circuit boards, with the exception of the receiver and radio frequency power amplifier. Future upgrades to include the deuterium lock and the decoupler unit are readily envisioned. The continued development of such PC-based NMR spectrometers is expected to benefit from the fast growing, practical, and low cost personal computer market.

  16. A Comparison of Safety Culture Associated with Three Engineered Systems in Japan and the United States

    NASA Astrophysics Data System (ADS)

    Tokuhiro, Akira

    The internationally reported nuclear criticality accident at JCO in Tokaimura, Japan has further eroded public confidence in nuclear energy, its related facilities and the (Japanese) government’s ability to handle such a crisis. The JCO accident marked the sixth nuclear-related incident since 1995. The existing state of “safety culture” is being questioned and re-evaluated at a national level. In this work the safety culture associated with engineered systems (ES) such as the automobile, commercial airplane and nuclear power plants (NPP) are evaluated based on a scale-analysis (SA), via proposition of two fundamental parameters called eigenmetrics. The identified eigenmetrics are time- (τ) and number-scales (N) describing both ES and human factors, at the individual and/or societal levels. The SA approach is appropriate because human perception of risk (POR), perception of benefit (POB) and level of (technology) acceptance (LOA) are inherently subjective, therefore “fuzzy” and rarely quantifiable in exact magnitude. POR expressed in terms of the psychometric factors “dread risk” and “unknown risk”, contain both time- and number-scale elements. The JCO accident, as well as auto-fatalities, commercial airline accidents and hypothetical NPP accidents are characterized in terms of τ, N and two additional derived parameters of relevance, Nτ and N/τ. We contend that LOA infers a POB at least two orders of magnitude larger than POR. The “amplification” influence of mass-media is also deduced as being 100 to 1000 fold the actual number of fatalities/serious injuries in a nuclear-related accident.

  17. Science in Flux: NASA's Nuclear Program at Plum Brook Station 1955-2005

    NASA Technical Reports Server (NTRS)

    Bowles, Mark D.

    2006-01-01

    Science in Flux traces the history of one of the most powerful nuclear test reactors in the United States and the only nuclear facility ever built by NASA. In the late 1950's NASA constructed Plum Brook Station on a vast tract of undeveloped land near Sandusky, Ohio. Once fully operational in 1963, it supported basic research for NASA's nuclear rocket program (NERVA). Plum Brook represents a significant, if largely forgotten, story of nuclear research, political change, and the professional culture of the scientists and engineers who devoted their lives to construct and operate the facility. In 1973, after only a decade of research, the government shut Plum Brook down before many of its experiments could be completed. Even the valiant attempt to redefine the reactor as an environmental analysis tool failed, and the facility went silent. The reactors lay in costly, but quiet standby for nearly a quarter-century before the Nuclear Regulatory Commission decided to decommission the reactors and clean up the site. The history of Plum Brook reveals the perils and potentials of that nuclear technology. As NASA, Congress, and space enthusiasts all begin looking once again at the nuclear option for sending humans to Mars, the echoes of Plum Brook's past will resonate with current policy and space initiatives.

  18. Teaching And Training Tools For The Undergraduate: Experience With A Rebuilt AN-400 Accelerator

    NASA Astrophysics Data System (ADS)

    Roberts, Andrew D.

    2011-06-01

    There is an increasingly recognized need for people trained in a broad range of applied nuclear science techniques, indicated by reports from the American Physical Society and elsewhere. Anecdotal evidence suggests that opportunities for hands-on training with small particle accelerators have diminished in the US, as development programs established in the 1960's and 1970's have been decommissioned over recent decades. Despite the reduced interest in the use of low energy accelerators in fundamental research, these machines can offer a powerful platform for bringing unique training opportunities to the undergraduate curriculum in nuclear physics, engineering and technology. We report here on the new MSU Applied Nuclear Science Lab, centered around the rebuild of an AN400 electrostatic accelerator. This machine is run entirely by undergraduate students under faculty supervision, allowing a great deal of freedom in its use without restrictions from graduate or external project demands.

  19. Teaching And Training Tools For The Undergraduate: Experience With A Rebuilt AN-400 Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Andrew D.

    2011-06-01

    There is an increasingly recognized need for people trained in a broad range of applied nuclear science techniques, indicated by reports from the American Physical Society and elsewhere. Anecdotal evidence suggests that opportunities for hands-on training with small particle accelerators have diminished in the US, as development programs established in the 1960's and 1970's have been decommissioned over recent decades. Despite the reduced interest in the use of low energy accelerators in fundamental research, these machines can offer a powerful platform for bringing unique training opportunities to the undergraduate curriculum in nuclear physics, engineering and technology. We report here onmore » the new MSU Applied Nuclear Science Lab, centered around the rebuild of an AN400 electrostatic accelerator. This machine is run entirely by undergraduate students under faculty supervision, allowing a great deal of freedom in its use without restrictions from graduate or external project demands.« less

  20. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    NASA Technical Reports Server (NTRS)

    Burke, Laura M.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a significant challenge in dealing with the physiological issues that arise with the crew being exposed to a near zero-gravity environment as well as significant solar and galactic radiation for such a long duration. While long surface stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological effects on the crew. However, for a 1-year round trip mission, the outbound and inbound hyperbolic velocity at Earth and Mars can be very large resulting in a significant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power levels (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower specific mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for efficient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo-Newtons of thrust at reasonably high specific impulse (Isp) of 900 seconds for impulsive transplanetary injection and orbital insertion maneuvers. When in power generation/EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each reactor to generate 100's of kWe of electrical power to a very high Isp (3000 s) EP thruster system for sustained vehicle acceleration and deceleration in heliocentric space.

  1. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    NASA Technical Reports Server (NTRS)

    Burke, Laura A.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a signi cant challenge in dealing with the physiolog- ical issues that arise with the crew being exposed to a near zero-gravity environment as well as signi cant solar and galactic radiation for such a long duration. While long sur- face stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological e ects on the crew. However, for a 1-year round trip mission, the outbound and inbound hy- perbolic velocity at Earth and Mars can be very large resulting in a signi cant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power lev- els (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower speci c mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for ecient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo- Newtons of thrust at reasonably high speci c impulse (Isp) of 900 seconds for impulsive trans-planetary injection and orbital insertion maneuvers. When in power generation / EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each reactor to generate 100's of kWe of electrical power to a very high Isp (3000 s) EP thruster system for sustained vehicle acceleration and deceleration in heliocentric space.

  2. Final report to DOE: Matching Grant Program for the Penn State University Nuclear Engineering Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jack S. Brenizer, Jr.

    2003-01-17

    The DOE/Industry Matching Grant Program is designed to encourage collaborative support for nuclear engineering education as well as research between the nation's nuclear industry and the U.S. Department of Energy (DOE). Despite a serious decline in student enrollments in the 1980s and 1990s, the discipline of nuclear engineering remained important to the advancement of the mission goals of DOE. The program is designed to ensure that academic programs in nuclear engineering are maintained and enhanced in universities throughout the U.S. At Penn State, the Matching Grant Program played a critical role in the survival of the Nuclear Engineering degree programs.more » Funds were used in a variety of ways to support both undergraduate and graduate students directly. Some of these included providing seed funding for new graduate research initiatives, funding the development of new course materials, supporting new teaching facilities, maintenance and purchase of teaching laboratory equipment, and providing undergraduate scholarships, graduate fellowships, and wage payroll positions for students.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirk Gombert; Jay Roach

    The U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) was announced in 2006. As currently envisioned, GNEP will be the basis for growth of nuclear energy worldwide, using a closed proliferation-resistant fuel cycle. The Integrated Waste Management Strategy (IWMS) is designed to ensure that all wastes generated by fuel fabrication and recycling will have a routine disposition path making the most of feedback to fuel and recycling operations to eliminate or minimize byproducts and wastes. If waste must be generated, processes will be designed with waste treatment in mind to reduce use of reagents that complicate stabilizationmore » and minimize volume. The IWMS will address three distinct levels of technology investigation and systems analyses and will provide a cogent path from (1) research and development (R&D) and engineering scale demonstration, (Level I); to (2) full scale domestic deployment (Level II); and finally to (3) establishing an integrated global nuclear energy infrastructure (Level III). The near-term focus of GNEP is on achieving a basis for large-scale commercial deployment (Level II), including the R&D and engineering scale activities in Level I that are necessary to support such an accomplishment. Throughout these levels is the need for innovative thinking to simplify, including regulations, separations and waste forms to minimize the burden of safe disposition of wastes on the fuel cycle.« less

  4. Updating Human Factors Engineering Guidelines for Conducting Safety Reviews of Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O, J.M.; Higgins, J.; Stephen Fleger - NRC

    The U.S. Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) programs of applicants for nuclear power plant construction permits, operating licenses, standard design certifications, and combined operating licenses. The purpose of these safety reviews is to help ensure that personnel performance and reliability are appropriately supported. Detailed design review procedures and guidance for the evaluations is provided in three key documents: the Standard Review Plan (NUREG-0800), the HFE Program Review Model (NUREG-0711), and the Human-System Interface Design Review Guidelines (NUREG-0700). These documents were last revised in 2007, 2004 and 2002, respectively. The NRC is committed to the periodicmore » update and improvement of the guidance to ensure that it remains a state-of-the-art design evaluation tool. To this end, the NRC is updating its guidance to stay current with recent research on human performance, advances in HFE methods and tools, and new technology being employed in plant and control room design. This paper describes the role of HFE guidelines in the safety review process and the content of the key HFE guidelines used. Then we will present the methodology used to develop HFE guidance and update these documents, and describe the current status of the update program.« less

  5. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less

  6. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less

  7. Preoperational Subsurface Conditions at the Idaho Nuclear Technology and Engineering Center Service Waste Disposal Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansley, Shannon Leigh

    2002-02-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) Service Wastewater Discharge Facility replaces the existing percolation ponds as a disposal facility for the INTEC Service Waste Stream. A preferred alternative for helping decrease water content in the subsurface near INTEC, closure of the existing ponds is required by the INTEC Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for Waste Area Group 3 Operable Unit 3-13 (DOE-ID 1999a). By August 2002, the replacement facility was constructed approximately 2 miles southwest of INTEC, near the Big Lost River channel. Because groundwater beneath the Idaho National Engineering andmore » Environmental Laboratory (INEEL) is protected under Federal and State of Idaho regulations from degradation due to INEEL activities, preoperational data required by U.S. Department of Energy (DOE) Order 5400.1 were collected. These data include preexisting physical, chemical, and biological conditions that could be affected by the discharge; background levels of radioactive and chemical components; pertinent environmental and ecological parameters; and potential pathways for human exposure or environmental impact. This document presents specific data collected in support of DOE Order 5400.1, including: four quarters of groundwater sampling and analysis of chemical and radiological parameters; general facility description; site specific geology, stratigraphy, soils, and hydrology; perched water discussions; and general regulatory requirements. However, in order to avoid duplication of previous information, the reader is directed to other referenced publications for more detailed information. Documents that are not readily available are compiled in this publication as appendices. These documents include well and borehole completion reports, a perched water evaluation letter report, the draft INEEL Wellhead Protection Program Plan, and the Environmental Checklist.« less

  8. Oversight hearings on P. L. 93-577, ERDA Plan and Program. Hearings before the Subcommittee on Energy Research, Development and Demonstration of the Committee on Science and Technology, U. S. House of Representatives, Ninety-Fourth Congress, Second Session

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-01-01

    The purpose of the hearings was to examine the comprehensive plan and program for dealing with energy that ERDA submitted to Congress on June 30, 1975. Included as an appendix to these hearings is the October 1975 report of the Office of Technology Assessment (OTA) entitled, ''An Analysis of the ERDA Plan and Program'' (for abstract of this report, see EAPA 2:79). Testifying on Jan. 22 was the director of OTA, Emilio Q. Daddario, and chairmen of various task groups that assisted in the ERDA analysis, namely: Dr. John Gibbons, Conservation; Dr. Paul Craig, Overview Panel; Dr. Alvin Weinberg, Nuclear;more » Dr. Stanford S. Penner, Environmental and Health; and Dr. Jerry Grey, Solar; also present, and participating in the question and answer portion was Lionel Johns, head of the energy projects and programs in OTA. Testifying at the Jan. 23 hearings were experts presenting environmental, scientific, and engineering viewpoints, namely: Dr. Donald McDonald, director of the environmental studies program at Dartmouth College; Dr. Reginald Vachon, Auburn University, representing the American Society of Mechanical Engineers; and Dr. Thomas Lee, General Electric Co., representing the Inst. of Electrical and Electronics Engineers. The final hearings on Jan. 29 included the testimony of Dr. Robert W. Fri, Deputy Administrator, ERDA, and that of each of five assistant administrators: Dr. John Teem, Solar, Geothermal, and Advanced Energy Systems; Dr. Austin Heller, Conservation; Dr. Richard W. Roberts, Nuclear Energy; Dr. Roger W. A. LeGassie, Planning and Analysis; and Dr. James Liverman, Environment and Safety. (LMT)« less

  9. Status and improvement of CLAM for nuclear application

    NASA Astrophysics Data System (ADS)

    Huang, Qunying

    2017-08-01

    A program for China low activation martensitic steel (CLAM) development has been underway since 2001 to satisfy the material requirements of the test blanket module (TBM) for ITER, China fusion engineering test reactor and China fusion demonstration reactor. It has been undertaken by the Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences under wide domestic and international collaborations. Extensive work and efforts are being devoted to the R&D of CLAM, such as mechanical property evaluation before and after neutron irradiation, fabrication of scaled TBM by welding and additive manufacturing, improvement of its irradiation resistance as well as high temperature properties by precipitate strengthening to achieve its final successful application in fusion systems. The status and improvement of CLAM are introduced in this paper.

  10. Systems Engineering Provides Successful High Temperature Steam Electrolysis Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles V. Park; Emmanuel Ohene Opare, Jr.

    2011-06-01

    This paper describes two Systems Engineering Studies completed at the Idaho National Laboratory (INL) to support development of the High Temperature Stream Electrolysis (HTSE) process. HTSE produces hydrogen from water using nuclear power and was selected by the Department of Energy (DOE) for integration with the Next Generation Nuclear Plant (NGNP). The first study was a reliability, availability and maintainability (RAM) analysis to identify critical areas for technology development based on available information regarding expected component performance. An HTSE process baseline flowsheet at commercial scale was used as a basis. The NGNP project also established a process and capability tomore » perform future RAM analyses. The analysis identified which components had the greatest impact on HTSE process availability and indicated that the HTSE process could achieve over 90% availability. The second study developed a series of life-cycle cost estimates for the various scale-ups required to demonstrate the HTSE process. Both studies were useful in identifying near- and long-term efforts necessary for successful HTSE process deployment. The size of demonstrations to support scale-up was refined, which is essential to estimate near- and long-term cost and schedule. The life-cycle funding profile, with high-level allocations, was identified as the program transitions from experiment scale R&D to engineering scale demonstration.« less

  11. Screening study for evaluation of the potential for system 80+ to consume excess plutonium - Volume 1. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-30

    As part of the U.S. effort to evaluate technologies offering solutions for the safe disposal or utilization of surplus nuclear materials, the fiscal year 1993 Energy and Water Appropriations legislation provided the Department of Energy (DOE) the necessary funds to conduct multi-phased studies to determine the technical feasibility of using reactor technologies for the triple mission of burning weapons grade plutonium, producing tritium for the existing smaller weapons stockpile, and generating commercial electricity. DOE limited the studies to five advanced reactor designs. Among the technologies selected is the ABB-Combustion Engineering (ABB-CE) System 80+. The DOE study, currently in Phase ID,more » is proceeding with a more detailed evaluation of the design`s capability for plutonium disposition.« less

  12. Chemical Technology Division annual technical report, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, andmore » treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.« less

  13. Space power demonstrator engine, phase 1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design, analysis, and preliminary test results for a 25 kWe Free-Piston Stirling engine with integral linear alternators are described. The project is conducted by Mechanical Technology under the direction of LeRC as part of the SP-100 Nuclear Space Power Systems Program. The engine/alternator system is designed to demonstrate the following performance: (1) 25 kWe output at a specific weight less than 8 kg/kW; (2) 25 percent efficiency at a temperature ratio of 2.0; (3) low vibration (amplitude less than .003 in); (4) internal gas bearings (no wear, no external pump); and (5) heater temperature/cooler temperature from 630 to 315 K. The design approach to minimize vibration is a two-module engine (12.5 kWe per module) in a linearly-opposed configuration with a common expansion space. The low specific weight is obtained at high helium pressure (150 bar) and high frequency (105 Hz) and by using high magnetic strength (samarium cobalt) alternator magnets. Engine tests began in June 1985; 16 months following initiation of engine and test cell design. Hydrotest and consequent engine testing to date has been intentionally limited to half pressure, and electrical power output is within 15 to 20 percent of design predictions.

  14. Overview of free-piston Stirling engine technology for space power application

    NASA Technical Reports Server (NTRS)

    Slaby, Jack G.

    1987-01-01

    An overview is presented of free-piston Stirling engine activities, directed toward space power applications. One of the major elements of the program is the development of advanced power conversion. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators are discussed. Technology work was conducted on heat-exchanger concepts to minimize the number of joints as well as to enhance the heat transfer in the heater. Design parameters and conceptual design features are also presented for a 25 kWe, single-cylinder free-piston Stirling space power converter. Projections are made for future space power requirements over the next few decades along with a recommendation to consider the use of dynamic power conversion systems, either solar or nuclear. A cursory comparison is presented showing the mass benefits of a Stirling system over a Brayton system for the same peak temperature and output power. A description of a study to investigate the feasibility of scaling a single-cylinder free-piston Stirling space power module to the 150 kWe power range is presented.

  15. Spectral unmixing of agents on surfaces for the Joint Contaminated Surface Detector (JCSD)

    NASA Astrophysics Data System (ADS)

    Slamani, Mohamed-Adel; Chyba, Thomas H.; LaValley, Howard; Emge, Darren

    2007-09-01

    ITT Corporation, Advanced Engineering and Sciences Division, is currently developing the Joint Contaminated Surface Detector (JCSD) technology under an Advanced Concept Technology Demonstration (ACTD) managed jointly by the U.S. Army Research, Development, and Engineering Command (RDECOM) and the Joint Project Manager for Nuclear, Biological, and Chemical Contamination Avoidance for incorporation on the Army's future reconnaissance vehicles. This paper describes the design of the chemical agent identification (ID) algorithm associated with JCSD. The algorithm detects target chemicals mixed with surface and interferent signatures. Simulated data sets were generated from real instrument measurements to support a matrix of parameters based on a Design Of Experiments approach (DOE). Decisions based on receiver operating characteristics (ROC) curves and area-under-the-curve (AUC) measures were used to down-select between several ID algorithms. Results from top performing algorithms were then combined via a fusion approach to converge towards optimum rates of detections and false alarms. This paper describes the process associated with the algorithm design and provides an illustrating example.

  16. 2014 SRNL LDRD Annual Report, Rev. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcwhorter, S.

    2015-03-15

    Laboratory Directed Research and Development is a congressionally authorized program that provides the ‘innovation inspiration’ from which many of the Laboratory’s multi-discipline advancements are made in both science and engineering technology. The program is the backbone for insuring that scientific, technical and engineering capabilities can meet current and future needs. It is an important tool in reducing the probability of technological surprise by allowing laboratory technical staff room to innovate and keep abreast of scientific breakthroughs. Drawing from the synergism among the EM and NNSA missions, and work from other federal agencies ensures that LDRD is the key element inmore » maintaining the vitality of SRNL’s technical programs. The LDRD program aims to position the Laboratory for new business in clean energy, national security, nuclear materials management and environmental stewardship by leveraging the unique capabilities of the Laboratory to yield foundational scientific research in core business areas, while aligning with SRS strategic initiatives and maintaining a vision for ultimate DOE applications.« less

  17. Applications of Ecological Engineering Remedies for Uranium Processing Sites, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waugh, William

    The U.S. Department of Energy (USDOE) is responsible for remediation of environmental contamination and long-term stewardship of sites associated with the legacy of nuclear weapons production during the Cold War in the United States. Protection of human health and the environment will be required for hundreds or even thousands of years at many legacy sites. USDOE continually evaluates and applies advances in science and technology to improve the effectiveness and sustainability of surface and groundwater remedies (USDOE 2011). This paper is a synopsis of ecological engineering applications that USDOE is evaluating to assess the effectiveness of remedies at former uraniummore » processing sites in the southwestern United States. Ecological engineering remedies are predicated on the concept that natural ecological processes at legacy sites, once understood, can be beneficially enhanced or manipulated. Advances in tools for characterizing key processes and for monitoring remedy performance are demonstrating potential. We present test cases for four ecological engineering remedies that may be candidates for international applications.« less

  18. UMCP-BG and E collaboration in nuclear power engineering in the framework of DOE-Utility Nuclear Power Engineering Education Matching Grant Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Lothar PhD

    2000-03-01

    The DOE-Utility Nuclear Power Engineering Education Matching Grant Program has been established to support the education of students in Nuclear Engineering Programs to maintain a knowledgeable workforce in the United States in order to keep nuclear power as a viable component in a mix of energy sources for the country. The involvement of the utility industry ensures that this grant program satisfies the needs and requirements of local nuclear energy producers and at the same time establishes a strong linkage between education and day-to-day nuclear power generation. As of 1997, seventeen pairs of university-utility partners existed. UMCP was never amore » member of that group of universities, but applied for the first time with a proposal to Baltimore Gas and Electric Company in January 1999 [1]. This proposal was generously granted by BG&E [2,3] in the form of a gift in the amount of $25,000 from BG&E's Corporate Contribution Program. Upon the arrival of a newly appointed Director of Administration in the Department of Materials and Nuclear Engineering, the BG&E check was deposited into the University's Maryland Foundation Fund. The receipt of the letter and the check enabled UMCP to apply for DOE's matching funds in the same amount by a proposal.« less

  19. Summary of Calcine Disposal Development Using Hot Isostatic Pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, Ken; Wahlquist, Dennis; Hart, Edward

    2015-03-01

    Battelle Energy Alliance, LLC, has demonstrated the effectiveness of the hot isostatic press (HIP) process for treatment of hazardous high-level waste known as calcine that is stored at the Idaho Nuclear Technology and Engineering Center (INTEC) at Idaho National Laboratory. HIP trials performed with simulated calcines at Idaho National Laboratory’s Materials and Fuels Complex and an Australian Nuclear Science and Technology Organization facility from 2007 to 2010 produced a dense, monolithic waste form with increased chemical durability and effective (storage) volume reductions of ~10 to ~70% compared to granular calcine forms. In December 2009, the U.S. Department of Energy signedmore » an amended Record of Decision selecting HIP technology as the treatment method for the 4,400 m3 of granular zirconia and alumina calcine stored at INTEC. Testing showed that HIP treatment reduces the risks associated with radioactive and hazardous constituent release, post-production handling, and long-term (repository) storage of calcines and would result in estimated storage cost savings in the billions of dollars. Battelle Energy Alliance has the ability to complete pilot-scale HIP processing of INTEC calcine, which is the next necessary step in implementing HIP processing as a calcine treatment method.« less

  20. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along withmore » summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.« less

  1. Small Reactor Designs Suitable for Direct Nuclear Thermal Propulsion: Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce G. Schnitzler

    Advancement of U.S. scientific, security, and economic interests requires high performance propulsion systems to support missions beyond low Earth orbit. A robust space exploration program will include robotic outer planet and crewed missions to a variety of destinations including the moon, near Earth objects, and eventually Mars. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, nuclear thermal propulsion (NTP) was again selectedmore » over chemical propulsion as the preferred in-space transportation system option for the human exploration of Mars because of its high thrust and high specific impulse ({approx}900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. The recently announced national space policy2 supports the development and use of space nuclear power systems where such systems safely enable or significantly enhance space exploration or operational capabilities. An extensive nuclear thermal rocket technology development effort was conducted under the Rover/NERVA, GE-710 and ANL nuclear rocket programs (1955-1973). Both graphite and refractory metal alloy fuel types were pursued. The primary and significantly larger Rover/NERVA program focused on graphite type fuels. Research, development, and testing of high temperature graphite fuels was conducted. Reactors and engines employing these fuels were designed, built, and ground tested. The GE-710 and ANL programs focused on an alternative ceramic-metallic 'cermet' fuel type consisting of UO2 (or UN) fuel embedded in a refractory metal matrix such as tungsten. The General Electric program examined closed loop concepts for space or terrestrial applications as well as open loop systems for direct nuclear thermal propulsion. Although a number of fast spectrum reactor and engine designs suitable for direct nuclear thermal propulsion were proposed and designed, none were built. This report summarizes status results of evaluations of small nuclear reactor designs suitable for direct nuclear thermal propulsion.« less

  2. 10. Photocopy of drawing, February 1958, NUCLEAR REACTOR FACILITY, STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of drawing, February 1958, NUCLEAR REACTOR FACILITY, STRUCTURAL CROSS SECTION. Giffals & Vallet, Inc., L. Rosetti, Associated Architects and Engineers, Detroit, Michigan; and U.S. Army Engineer Division, New England Corps of Engineers, Boston, Massachusetts. Drawing Number 35-84-04. (Original: AMTL Engineering Division, Watertown). - Watertown Arsenal, Building No. 100, Wooley Avenue, Watertown, Middlesex County, MA

  3. Environmental Impact Statement. Space Nuclear Thermal Propulsion Program. Particle Bed reactor Propulsion Technology Development and Validation

    DTIC Science & Technology

    1993-05-01

    further examination or disposal. 2.2.2.3 Non -Nucleer Engine Integration Tests. EITs would be designed to demonstrate proper function of the propellant...located 42 miles southwest of the CTF, is designated as a Class I air quality region. The nearest non -attainment area is Pocatello, Idaho, 75 miles south of...accelerate. combustiomn. Nintrogen and helnee are Staple CEnergy suggestsa design eail ofAt a em-le 500 aenIIirons 1 aoph,,,,ants ad non -reastive. ?annual

  4. Monte Carlo Determination of Gamma Ray Exposure from a Homogeneous Ground Plane

    DTIC Science & Technology

    1990-03-01

    A HOMOGENEOUS GROUND PLANE SOURCE THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University...come from a standard ANISN format library called FEWG1-85. This state-of-the- art cross section library which contains 37 neutron energy groups and 21...purpose. The FEWGl library, a state-of-the- art cross section library developed for the Defense Nuclear Agency con- sisting of 21 gamma-ray enerQj

  5. Symposium on Engineering With Nuclear Explosives January 14-16, 1970, Las Vegas, Nevada. Volume 1

    DTIC Science & Technology

    1970-05-01

    from the earth and moon mining systems near exhaustion and says: The recent discovery of coal (black, fossilized plant remains ) in a number of places...fuel for our central power stations can further reduce the amount of pollutants that are put into the atmosphere by fossil fuels. Technology can help...degree, what still remains to be accomplished, so I will not attempt to go into detail here. However, I would like to take a few minutes to summarize

  6. Russian University Education in Nuclear Safeguards and Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Cristen L.; Kryuchkov, Eduard F.; Geraskin, Nikolay I.

    2009-03-15

    As safeguards and security (S&S) systems are installed and upgraded in nuclear facilities throughout Russia, it becomes increasingly important to develop mechanisms for educating future Russian nuclear scientists and engineers in the technologies and methodologies of physical protection (PP) and nuclear material control and accounting (MC&A). As part of the U.S. Department of Energy’s (DOE) program to secure nuclear materials in Russia, the Education Project supports technical S&S degree programs at key Russian universities and nonproliferation education initiatives throughout the Russian Federation that are necessary to achieve the overall objective of fostering qualified and vigilant Russian S&S personnel. The Educationmore » Project supports major educational degree programs at the Moscow Engineering Physics Institute (MEPhI) and Tomsk Polytechnic University (TPU). The S&S Graduate Program is available only at MEPhI and is the world’s first S&S degree program. Ten classes of students have graduated with a total of 79 Masters Degrees as of early 2009. At least 84% of the graduates over the ten years are still working in the S&S field. Most work at government agencies or research organizations, and some are pursuing their PhD. A 5½ year Engineering Degree Program (EDP) in S&S is currently under development at MEPhI and TPU. The EDP is more tailored to the needs of nuclear facilities. The program’s first students (14) graduated from MEPhI in February 2007. Similar-sized classes are graduating from MEPhI each February. All of the EDP graduates are working in the S&S field, many at nuclear facilities. TPU also established an EDP and graduated its first class of approximately 18 students in February 2009. For each of these degree programs, the American project team works with MEPhI and TPU to develop appropriate curriculum, identify and acquire various training aids, develop and publish textbooks, and strengthen instructor skills. The project has also supported the instruction of policy-oriented nonproliferation courses at various Russian universities. These courses are targeted towards future workers in the nuclear field to help build an effective nonproliferation awareness within the nuclear complex. A long-range goal of this project is to assist the educational programs at MEPhI and TPU in becoming self-sustainable and therefore able to maintain the three degree programs without DOE support. This paper describes current development of these education programs and new initiatives. The paper also describes general nonproliferation education activities supported by DOE that complement the more technical S&S degree programs.« less

  7. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  8. Opportunities and challenges for structural health monitoring of radioactive waste systems and structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giurgiutiu, Victor; Mendez Torres, Adrian E.

    2013-07-01

    Radioactive waste systems and structures (RWSS) are safety-critical facilities in need of monitoring over prolonged periods of time. Structural health monitoring (SHM) is an emerging technology that aims at monitoring the state of a structure through the use of networks of permanently mounted sensors. SHM technologies have been developed primarily within the aerospace and civil engineering communities. This paper addresses the issue of transitioning the SHM concept to the monitoring of RWSS and evaluates the opportunities and challenges associated with this process. Guided wave SHM technologies utilizing structurally-mounted piezoelectric wafer active sensors (PWAS) have a wide range of applications basedmore » on both propagating-wave and standing-wave methodologies. Hence, opportunities exist for transitioning these SHM technologies into RWSS monitoring. However, there exist certain special operational conditions specific to RWSS such as: radiation field, caustic environments, marine environments, and chemical, mechanical and thermal stressors. In order to address the high discharge of used nuclear fuel (UNF) and the limited space in the storage pools the U.S. the Department of Energy (DOE) has adopted a 'Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste' (January 2013). This strategy endorses the key principles that underpin the Blue Ribbon Commission's on America's Nuclear Future recommendations to develop a sustainable program for deploying an integrated system capable of transporting, storing, and disposing of UNF and high-level radioactive waste from civilian nuclear power generation, defense, national security, and other activities. This will require research to develop monitoring, diagnosis, and prognosis tools that can aid to establish a strong technical basis for extended storage and transportation of UNF. Monitoring of such structures is critical for assuring the safety and security of the nation's spent nuclear fuel until a national policy for closure of the nuclear fuel cycle is defined and implemented. In addition, such tools can provide invaluable and timely information for verification of the predicted mechanical performance of RWSS (e.g. concrete or steel barriers) during off-normal occurrence and accident events such as the tsunami and earthquake event that affected Fukushima Daiichi nuclear power plant. The ability to verify the conditions, health, and degradation behavior of RWSS over time by applying nondestructive testing (NDT) as well as development of nondestructive evaluation (NDE) tools for new degradation processes will become challenging. The paper discusses some of the challenges associated to verification and diagnosis for RWSS and identifies SHM technologies which are more readily available for transitioning into RWSS applications. Fundamental research objectives that should be considered for the transition of SHM technologies (e.g., radiation hardened piezoelectric materials) for RWSS applications are discussed. The paper ends with summary, conclusions, and suggestions for further work. (authors)« less

  9. 2004 research briefs :Materials and Process Sciences Center.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-sciencemore » base has on the ultimate success of the NW program and the overall DOE technology portfolio.« less

  10. Design considerations in clustering nuclear rocket engines

    NASA Technical Reports Server (NTRS)

    Sager, Paul H.

    1992-01-01

    An initial investigation of the design considerations in clustering nuclear rocket engines for space transfer vehicles has been made. The clustering of both propulsion modules (which include start tanks) and nuclear rocket engines installed directly to a vehicle core tank appears to be feasible. Special provisions to shield opposite run tanks and the opposite side of a core tank - in the case of the boost pump concept - are required; the installation of a circumferential reactor side shield sector appears to provide an effective solution to this problem. While the time response to an engine-out event does not appear to be critical, the gimbal displacement required appears to be important. Since an installation of three engines offers a substantial reduction in gimbal requirements for engine-out and it may be possible to further enhance mission reliability with the greater number of engines, it is recommended that a cluster of four engines be considered.

  11. Design considerations in clustering nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Sager, Paul H.

    1992-07-01

    An initial investigation of the design considerations in clustering nuclear rocket engines for space transfer vehicles has been made. The clustering of both propulsion modules (which include start tanks) and nuclear rocket engines installed directly to a vehicle core tank appears to be feasible. Special provisions to shield opposite run tanks and the opposite side of a core tank - in the case of the boost pump concept - are required; the installation of a circumferential reactor side shield sector appears to provide an effective solution to this problem. While the time response to an engine-out event does not appear to be critical, the gimbal displacement required appears to be important. Since an installation of three engines offers a substantial reduction in gimbal requirements for engine-out and it may be possible to further enhance mission reliability with the greater number of engines, it is recommended that a cluster of four engines be considered.

  12. Performance potential of gas-core and fusion rockets - A mission applications survey.

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.; Willis, E. A., Jr.

    1971-01-01

    This paper reports an evaluation of the performance potential of five nuclear rocket engines for four mission classes. These engines are: the regeneratively cooled gas-core nuclear rocket; the light bulb gas-core nuclear rocket; the space-radiator cooled gas-core nuclear rocket; the fusion rocket; and an advanced solid-core nuclear rocket which is included for comparison. The missions considered are: earth-to-orbit launch; near-earth space missions; close interplanetary missions; and distant interplanetary missions. For each of these missions, the capabilities of each rocket engine type are compared in terms of payload ratio for the earth launch mission or by the initial vehicle mass in earth orbit for space missions (a measure of initial cost). Other factors which might determine the engine choice are discussed. It is shown that a 60 day manned round trip to Mars is conceivable.-

  13. Robust Exploration and Commercial Missions to the Moon Using LANTR Propulsion and Lunar Liquid Oxygen Derived from FeO-Rich Pyroclastic Deposits

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.

    2017-01-01

    The nuclear thermal rocket (NTR) has frequently been identified as a key space asset required for the human exploration of Mars. This proven technology can also provide the affordable access through cislunar space necessary for commercial development and sustained human presence on the Moon. It is a demonstrated technology capable of generating both high thrust and high specific impulse (Isp approx.900 s) twice that of todays best chemical rockets. Nuclear lunar transfer vehicles consisting of a propulsion stage using three approx.16.5 klbf Small Nuclear Rocket Engines (SNREs), an in-line propellant tank, plus the payload can enable a variety of reusable lunar missions. These include cargo delivery and crewed lunar landing missions. Even weeklong tourism missions carrying passengers into lunar orbit for a day of sightseeing and picture taking are possible. The NTR can play an important role in the next phase of lunar exploration and development by providing a robust in-space lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supported by a variety of commercial activities such as in-situ propellant production used to supply strategically located propellant depots and transportation nodes. The use of lunar liquid oxygen (LLO2) derived from iron oxide (FeO)-rich volcanic glass beads, found in numerous pyroclastic deposits on the Moon, can significantly reduce the launch mass requirements from Earth by enabling reusable, surface-based lunar landing vehicles (LLVs) using liquid oxygen/hydrogen (LO2/H2) chemical rocket engines. Afterwards, a LO2/H2 propellant depot can be established in lunar equatorial orbit to supply the LTS. At this point a modified version of the conventional NTR called the LOX-augmented NTR, or LANTR is introduced into the LTS allowing bipropellant operation and leveraging the mission benefits of refueling with lunar-derived propellants for Earth return. The bipropellant LANTR engine utilizes the large divergent section of its nozzle as an afterburner into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engines choked sonic throat - essentially scramjet propulsion in reverse. By varying the oxygen-to-hydrogen mixture ratio, LANTR engines can operate over a range of thrust and Isp values while the reactor core power level remains relatively constant. A LANTR-based LTS offers unique mission capabilities including short transit time crewed cargo transports. Even a commuter shuttle service may be possible allowing one-way trip times to and from the Moon on the order of 36 hours or less. If only 1 of the extracted LLO2 propellant from identified resource sites were available for use in lunar orbit, such a supply could support daily commuter flights to the Moon for many thousands of years! The proposed paper outlines an evolutionary architecture and examines a variety of mission types and transfer vehicle designs, along with the increasing demands on LLO2 production as mission complexity and (Delta)V requirements increase. A comparison of vehicle features and engine operating characteristics, for both NTR and LANTR engines, is also provided along with a discussion of the propellant production and mining requirements associated with using FeO-rich volcanic glass as source material.

  14. Review of Nuclear Thermal Propulsion Ground Test Options

    NASA Technical Reports Server (NTRS)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  15. Massively Clustered CubeSats NCPS Demo Mission

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.; Young, David; Kim, Tony; Houts, Mike

    2013-01-01

    Technologies under development for the proposed Nuclear Cryogenic Propulsion Stage (NCPS) will require an un-crewed demonstration mission before they can be flight qualified over distances and time frames representative of a crewed Mars mission. In this paper, we describe a Massively Clustered CubeSats platform, possibly comprising hundreds of CubeSats, as the main payload of the NCPS demo mission. This platform would enable a mechanism for cost savings for the demo mission through shared support between NASA and other government agencies as well as leveraged commercial aerospace and academic community involvement. We believe a Massively Clustered CubeSats platform should be an obvious first choice for the NCPS demo mission when one considers that cost and risk of the payload can be spread across many CubeSat customers and that the NCPS demo mission can capitalize on using CubeSats developed by others for its own instrumentation needs. Moreover, a demo mission of the NCPS offers an unprecedented opportunity to invigorate the public on a global scale through direct individual participation coordinated through a web-based collaboration engine. The platform we describe would be capable of delivering CubeSats at various locations along a trajectory toward the primary mission destination, in this case Mars, permitting a variety of potential CubeSat-specific missions. Cameras on various CubeSats can also be used to provide multiple views of the space environment and the NCPS vehicle for video monitoring as well as allow the public to "ride along" as virtual passengers on the mission. This collaborative approach could even initiate a brand new Science, Technology, Engineering and Math (STEM) program for launching student developed CubeSat payloads beyond Low Earth Orbit (LEO) on future deep space technology qualification missions. Keywords: Nuclear Propulsion, NCPS, SLS, Mars, CubeSat.

  16. 75 FR 45171 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC 20555...-3040. This guide describes some engineering practices and methods generally considered by the NRC to be... they reflect the latest general engineering approaches that are acceptable to the NRC staff. If future...

  17. 76 FR 50275 - Guidance for the Assessment of Beyond-Design-Basis Aircraft Impacts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ...: Mekonen M. Bayssie, Regulatory Guide Development Branch, Division of Engineering, Office of Nuclear... e-mail to [email protected] . SUPPLEMENTARY INFORMATION: I. Introduction The Nuclear..., Division of Engineering, Office of Nuclear Regulatory Research. [FR Doc. 2011-20513 Filed 8-11-11; 8:45 am...

  18. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Helms, Ira; Stanley, Marland

    1993-01-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies.

  19. DOE`s annealing prototype demonstration projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, J.; Nakos, J.; Rochau, G.

    1997-02-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable throughmore » a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy`s Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana`s Marble Hill nuclear power plant. The MPR team`s annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company`s nuclear power plant at Midland, Michigan. This paper describes the Department`s annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges.« less

  20. Application of Microprocessor-Based Equipment in Nuclear Power Plants - Technical Basis for a Qualification Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsah, K.

    This document (1) summarizes the most significant findings of the ''Qualification of Advanced Instrumentation and Control (I&C) Systems'' program initiated by the Nuclear Regulatory Commission (NRC); (2) documents a comparative analysis of U.S. and European qualification standards; and (3) provides recommendations for enhancing regulatory guidance for environmental qualification of microprocessor-based safety-related systems. Safety-related I&C system upgrades of present-day nuclear power plants, as well as I&C systems of Advanced Light-Water Reactors (ALWRs), are expected to make increasing use of microprocessor-based technology. The Nuclear Regulatory Commission (NRC) recognized that the use of such technology may pose environmental qualification challenges different from current,more » analog-based I&C systems. Hence, it initiated the ''Qualification of Advanced Instrumentation and Control Systems'' program. The objectives of this confirmatory research project are to (1) identify any unique environmental-stress-related failure modes posed by digital technologies and their potential impact on the safety systems and (2) develop the technical basis for regulatory guidance using these findings. Previous findings from this study have been documented in several technical reports. This final report in the series documents a comparative analysis of two environmental qualification standards--Institute of Electrical and Electronics Engineers (IEEE) Std 323-1983 and International Electrotechnical Commission (IEC) 60780 (1998)--and provides recommendations for environmental qualification of microprocessor-based systems based on this analysis as well as on the findings documented in the previous reports. The two standards were chosen for this analysis because IEEE 323 is the standard used in the U.S. for the qualification of safety-related equipment in nuclear power plants, and IEC 60780 is its European counterpart. In addition, the IEC document was published in 1998, and should reflect any new qualification concerns, from the European perspective, with regard to the use of microprocessor-based safety systems in power plants.« less

  1. Final Environmental Impact Statement (EIS) for the Space Nuclear Thermal Propulsion (SNTP) program

    NASA Astrophysics Data System (ADS)

    1991-09-01

    A program has been proposed to develop the technology and demonstrate the feasibility of a high-temperature particle bed reactor (PBR) propulsion system to be used to power an advanced second stage nuclear rocket engine. The purpose of this Final Environmental Impact Statement (FEIS) is to assess the potential environmental impacts of component development and testing, construction of ground test facilities, and ground testing. Major issues and goals of the program include the achievement and control of predicted nuclear power levels; the development of materials that can withstand the extremely high operating temperatures and hydrogen flow environments; and the reliable control of cryogenic hydrogen and hot gaseous hydrogen propellant. The testing process is designed to minimize radiation exposure to the environment. Environmental impact and mitigation planning are included for the following areas of concern: (1) Population and economy; (2) Land use and infrastructure; (3) Noise; (4) Cultural resources; (5) Safety (non-nuclear); (6) Waste; (7) Topography; (8) Geology; (9) Seismic activity; (10) Water resources; (11) Meteorology/Air quality; (12) Biological resources; (13) Radiological normal operations; (14) Radiological accidents; (15) Soils; and (16) Wildlife habitats.

  2. Potential advantages associated with implementing a risk-based inspection program by a nuclear facility

    NASA Astrophysics Data System (ADS)

    McNeill, Alexander, III; Balkey, Kenneth R.

    1995-05-01

    The current inservice inspection activities at a U.S. nuclear facility are based upon the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI. The Code selects examination locations based upon a sampling criteria which includes component geometry, stress, and usage among other criteria. This can result in a significant number of required examinations. As a result of regulatory action each nuclear facility has conducted probabilistic risk assessments (PRA) or individual plant examinations (IPE), producing plant specific risk-based information. Several initiatives have been introduced to apply this new plant risk information. Among these initiatives is risk-based inservice inspection. A code case has been introduced for piping inspections based upon this new risk- based technology. This effort brought forward to the ASME Section XI Code committee, has been initiated and championed by the ASME Research Task Force on Risk-Based Inspection Guidelines -- LWR Nuclear Power Plant Application. Preliminary assessments associated with the code case have revealed that potential advantages exist in a risk-based inservice inspection program with regard to a number of exams, risk, personnel exposure, and cost.

  3. Nuclear Energy and Synthetic Liquid Transportation Fuels

    NASA Astrophysics Data System (ADS)

    McDonald, Richard

    2012-10-01

    This talk will propose a plan to combine nuclear reactors with the Fischer-Tropsch (F-T) process to produce synthetic carbon-neutral liquid transportation fuels from sea water. These fuels can be formed from the hydrogen and carbon dioxide in sea water and will burn to water and carbon dioxide in a cycle powered by nuclear reactors. The F-T process was developed nearly 100 years ago as a method of synthesizing liquid fuels from coal. This process presently provides commercial liquid fuels in South Africa, Malaysia, and Qatar, mainly using natural gas as a feedstock. Nuclear energy can be used to separate water into hydrogen and oxygen as well as to extract carbon dioxide from sea water using ion exchange technology. The carbon dioxide and hydrogen react to form synthesis gas, the mixture needed at the beginning of the F-T process. Following further refining, the products, typically diesel and Jet-A, can use existing infrastructure and can power conventional engines with little or no modification. We can then use these carbon-neutral liquid fuels conveniently long into the future with few adverse environmental impacts.

  4. NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Wickenheiser, Timothy J.; Doherty, Michael P.; Marshall, Albert; Bhattacharryya, Samit K.; Warren, John

    1992-01-01

    Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

  5. Metals and Ceramics Division progress report for period ending December 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Bradley, R.A.; Weir, J.R. Jr.

    1994-07-01

    This report provides an overview of activities and accomplishsments of the division from October 1992 through December 1993; the division is organized to provide technical support, mainly in the area of high-temperature materials, for technologies being developed by DOE. Activities span the range from basic research to industrial interactions (cooperative research and technology transfer). Sections 1-5 describe the different functional groups (engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials). Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines. Sect. 7 summarizes external interactions including cooperative Rmore » and D programs and technology transfer functions. Finally, Sect. 8 briefly describes the division`s involvement in educational activities. Several organizational changes were effected during this period.« less

  6. Nuclear engineering enrollments and degrees, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, J R; Shirley, D L

    1982-05-01

    This report presents data on the number of students enrolled and the degrees awarded in academic year 1980-81 from 73 US institutions offering degree programs in nuclear engineering or nuclear options within other engineering fields. Presented here are historical data for the last decade, which provide information such as trends by degree level, foreign national student participation, female and minority student participation, and placement of graduates. Also included is a listing of the universities by type of program and number of students.

  7. Copper Doping of Zinc Oxide by Nuclear Transmutation

    DTIC Science & Technology

    2014-03-27

    Copper Doping of Zinc Oxide by Nuclear Transmutation THESIS Matthew C. Recker, Captain, USAF AFIT-ENP-14-M-30 DEPARTMENT OF THE AIR FORCE AIR...NUCLEAR TRANSMUTATION THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force...COPPER DOPING OF ZINC OXIDE BY NUCLEAR TRANSMUTATION Matthew C. Recker, BS Captain, USAF Approved: //signed// 27 February 2014 John W. McClory, PhD

  8. Robust Joining and Assembly Technologies for Ceramic Matrix Composites: Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Mrityunjay, Singh; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Fiber reinforced ceramic matrix composites are under active consideration for use in a wide variety of high temperature applications within the aeronautics, energy, process, and nuclear industries. The engineering designs require fabrication and manufacturing of complex shaped parts. In many instances, it is more economical to build up complex shapes by Joining simple geometrical shapes. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in ceramic matrix composites will be presented. Various joint design philosophies and design issues in joining of composites will be discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of ceramic composites, in different shapes and sizes, have been joined using this technology. Microstructure and mechanical properties of joints will be reported. Current status of various ceramic joining technologies and future prospects for their applications will also be discussed.

  9. Multi-Objective data analysis using Bayesian Inference for MagLIF experiments

    NASA Astrophysics Data System (ADS)

    Knapp, Patrick; Glinksy, Michael; Evans, Matthew; Gom, Matth; Han, Stephanie; Harding, Eric; Slutz, Steve; Hahn, Kelly; Harvey-Thompson, Adam; Geissel, Matthias; Ampleford, David; Jennings, Christopher; Schmit, Paul; Smith, Ian; Schwarz, Jens; Peterson, Kyle; Jones, Brent; Rochau, Gregory; Sinars, Daniel

    2017-10-01

    The MagLIF concept has recently demonstrated Gbar pressures and confinement of charged fusion products at stagnation. We present a new analysis methodology that allows for integration of multiple diagnostics including nuclear, x-ray imaging, and x-ray power to determine the temperature, pressure, liner areal density, and mix fraction. A simplified hot-spot model is used with a Bayesian inference network to determine the most probable model parameters that describe the observations while simultaneously revealing the principal uncertainties in the analysis. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  10. Marketing Strategy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report documents the research that has been undertaken as background for preparation of a marketing campaign for middle and high school students to increase interest in national security careers at the National Nuclear Security Administration. This work is a part of the National Security Preparedness Project (NSPP), being performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. Previous research on the development of a properly trained and skilled national security workforce has identified a lack of interest by k-12 students in the STEM (Science, Technology, Engineering, and Mathematics) fields. Further, participation in these careers by womenmore » and minority populations is limited and is not increasing. Added to this are low educational achievement levels in New Mexico, where the marketing campaign will be deployed.« less

  11. Nuclear Thermal Propulsion (NTP) Development Activities at the NASA Marshall Space Flight Center - 2006 Accomplishments

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2007-01-01

    In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments

  12. HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan Stacy; Hollie K. Gilbert

    2005-02-01

    Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to housemore » the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.« less

  13. Robust Exploration and Commercial Missions to the Moon Using NTR LANTR Propulsion and Lunar-Derived Propellants

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.

    2017-01-01

    The nuclear thermal rocket (NTR) has frequently been identified as a key space asset required for the human exploration of Mars. This proven technology can also provide the affordable access through cislunar space necessary for commercial development and sustained human presence on the Moon. In his post-Apollo Integrated Space Program Plan (1970-1990), Wernher von Braun, proposed a reusable nuclear thermal propulsion stage (NTPS) to deliver cargo and crew to the Moon to establish a lunar base before undertaking human missions to Mars. The NTR option was selected by von Braun because it was a demonstrated technology capable of generating both high thrust and high specific impulse (Isp 900 s) twice that of todays best chemical rockets. In NASAs Mars Design Reference Architecture (DRA) 5.0 study, the crewed Mars transfer vehicle used three 25 klbf Pewee engines the smallest and highest performing engine tested in the Rover program along with graphite composite fuel. Smaller, lunar transfer vehicles consisting of a NTPS using three approximately 16.5 klbf Small Nuclear Rocket Engines (SNREs), an in-line propellant tank, plus the payload can enable a variety of reusable lunar missions. These include cargo delivery and crewed lunar landing missions. Even weeklong tourism missions carrying passengers into lunar orbit for a day of sightseeing and picture taking are possible. The NTR can play an important role in the next phase of lunar exploration and development by providing an affordable in-space lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supported by a variety of commercial activities such as in-situ propellant production used to supply strategically located propellant depots and transportation nodes. The utilization of iron-rich volcanic glass or lunar polar ice (LPI) deposits (each estimated at billions of metric tons) for propellant production can significantly reduce the launch mass requirements from Earth and can enable reusable, surface-based lunar landing vehicles (LLVs) using liquid oxygen/hydrogen (LOX/LH2) chemical rocket engines. Afterwards, LOX/LH2 propellant depots can be established in lunar equatorial and polar orbits to supply the LTS. At this point a modified version of the conventional NTR called the LOX-augmented NTR, or LANTR would be introduced into the LTS allowing bipropellant operation and leveraging the mission benefits of refueling with lunar-derived propellants for Earth return. The bipropellant LANTR engine utilizes the large divergent section of its nozzle as an afterburner into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engines choked sonic throat essentially scramjet propulsion in reverse. By varying the oxygen-to-hydrogen mixture ratio, LANTR engines can operate over a range of thrust and Isp values while the reactor core power level remains relatively constant. Eventually, a LANTR-based LTS can enable a rapid commuter shuttle with one-way trip times to and from the Moon ranging from 36 to 24 hours. Even if only 1 of the extracted propellant from identified volcanic glass and polar ice deposits were available for use in lunar orbit, such a supply could support daily commuter flights to the Moon for many thousands of years! An evolutionary mission architecture is outlined and a variety of lunar missions and transfer vehicle designs are examined, along with the increasing demands on propellant production as mission complexity increases. A comparison of vehicle features and engine operating characteristics, for both NTR and LANTR engines, is also provided along with a brief discussion on the propellant production issues associated with using volcanic glass and LPI as source material.

  14. International Approaches for Nuclear Waste Disposal in Geological Formations: Geological Challenges in Radioactive Waste Isolation—Fifth Worldwide Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris; Birkholzer, Jens; Sassani, David

    The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included inmore » the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.« less

  15. NACA Researcher Examines the Cyclotron

    NASA Image and Video Library

    1951-02-21

    Researcher James Blue examines the new cyclotron at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. Researchers at NACA Lewis began postulating about the use of atomic power for propulsion immediately after World War II. The NACA concentrated its efforts on the study of high temperature materials and heat transfer since it did not have access to the top secret fission information. The military studied the plausibility of nuclear propulsion for aircraft in the late 1940s. The military program was cancelled after four years without any breakthroughs, but the Atomic Energy Commission took on the effort in 1951. The NACA Lewis laboratory was expanding its nuclear-related research during this period. In 1948, Lewis engineers were assigned to the Oak Ridge National Laboratory to obtain expertise in high temperature heat transfer and advanced materials technology. The following year a new 80-person Nuclear Reactor Division was created, and an in-house nuclear school was established to train these researchers. The cyclotron was built behind the Materials and Structures Laboratory to support thermodynamic and materials research for both nuclear aircraft and nuclear rockets. The original NACA Lewis cyclotron was used to accelerate two kinds of particles. To better match the space radiation environment, the cyclotron was later modified to accelerate particles of the newly-discovered Van Allen radiation belts.

  16. Programmatic status of NASA's CSTI high capacity power Stirling space power converter program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.

    1990-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.

  17. The mitochondrial genome in embryo technologies.

    PubMed

    Hiendleder, S; Wolf, E

    2003-08-01

    The mammalian mitochondrial genome encodes for 37 genes which are involved in a broad range of cellular functions. The mitochondrial DNA (mtDNA) molecule is commonly assumed to be inherited through oocyte cytoplasm in a clonal manner, and apparently species-specific mechanisms have evolved to eliminate the contribution of sperm mitochondria after natural fertilization. However, recent evidence for paternal mtDNA inheritance in embryos and offspring questions the general validity of this model, particularly in the context of assisted reproduction and embryo biotechnology. In addition to normal mt DNA haplotype variation, oocytes and spermatozoa show remarkable differences in mtDNA content and may be affected by inherited or acquired mtDNA aberrations. All these parameters have been correlated with gamete quality and reproductive success rates. Nuclear transfer (NT) technology provides experimental models for studying interactions between nuclear and mitochondrial genomes. Recent studies demonstrated (i) a significant effect of mtDNA haplotype or other maternal cytoplasmic factors on the efficiency of NT; (ii) phenotypic differences between transmitochondrial clones pointing to functionally relevant nuclear-cytoplasmic interactions; and (iii) neutral or non-neutral selection of mtDNA haplotypes in heteroplasmic conditions. Mitochondria form a dynamic reticulum, enabling complementation of mitochondrial components and possibly mixing of different mtDNA populations in heteroplasmic individuals. Future directions of research on mtDNA in the context of reproductive biotechnology range from the elimination of adverse effects of artificial heteroplasmy, e.g. created by ooplasm transfer, to engineering of optimized constellations of nuclear and cytoplasmic genes for the production of superior livestock.

  18. Free-piston Stirling engine conceptual design and technologies for space power, phase 1

    NASA Technical Reports Server (NTRS)

    Penswick, L. Barry; Beale, William T.; Wood, J. Gary

    1990-01-01

    As part of the SP-100 program, a phase 1 effort to design a free-piston Stirling engine (FPSE) for a space dynamic power conversion system was completed. SP-100 is a combined DOD/DOE/NASA program to develop nuclear power for space. This work was completed in the initial phases of the SP-100 program prior to the power conversion concept selection for the Ground Engineering System (GES). Stirling engine technology development as a growth option for SP-100 is continuing after this phase 1 effort. Following a review of various engine concepts, a single-cylinder engine with a linear alternator was selected for the remainder of the study. The relationships of specific mass and efficiency versus temperature ratio were determined for a power output of 25 kWe. This parametric study was done for a temperature ratio range of 1.5 to 2.0 and for hot-end temperatures of 875 K and 1075 K. A conceptual design of a 1080 K FPSE with a linear alternator producing 25 kWe output was completed. This was a single-cylinder engine designed for a 62,000 hour life and a temperature ratio of 2.0. The heat transport systems were pumped liquid-metal loops on both the hot and cold ends. These specifications were selected to match the SP-100 power system designs that were being evaluated at that time. The hot end of the engine used both refractory and superalloy materials; the hot-end pressure vessel featured an insulated design that allowed use of the superalloy material. The design was supported by the hardware demonstration of two of the component concepts - the hydrodynamic gas bearing for the displacer and the dynamic balance system. The hydrodynamic gas bearing was demonstrated on a test rig. The dynamic balance system was tested on the 1 kW RE-1000 engine at NASA Lewis.

  19. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take the...-referenced examination in radiography, nuclear medicine technology, or radiation therapy technology shall be...

  20. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take the...-referenced examination in radiography, nuclear medicine technology, or radiation therapy technology shall be...

  1. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take the...-referenced examination in radiography, nuclear medicine technology, or radiation therapy technology shall be...

  2. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take the...-referenced examination in radiography, nuclear medicine technology, or radiation therapy technology shall be...

  3. Development of Methodologies for Technology Deployment for Advanced Outage Control Centers that Improve Outage Coordination, Problem Resolution and Outage Risk Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shawn St. Germain; Ronald Farris; Heather Medeman

    2013-09-01

    This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The long term viability of existing nuclear power plants in the U.S.more » will depend upon maintaining high capacity factors, avoiding nuclear safety issues and reducing operating costs. The slow progress in the construction on new nuclear power plants has placed in increased importance on maintaining the output of the current fleet of nuclear power plants. Recently expanded natural gas production has placed increased economic pressure on nuclear power plants due to lower cost competition. Until recently, power uprate projects had steadily increased the total output of the U.S. nuclear fleet. Errors made during power plant upgrade projects have now removed three nuclear power plants from the U.S. fleet and economic considerations have caused the permanent shutdown of a fourth plant. Additionally, several utilities have cancelled power uprate projects citing economic concerns. For the past several years net electrical generation from U.S. nuclear power plants has been declining. One of few remaining areas where significant improvements in plant capacity factors can be made is in minimizing the duration of refueling outages. Managing nuclear power plant outages is a complex and difficult task. Due to the large number of complex tasks and the uncertainty that accompanies them, outage durations routinely exceed the planned duration. The ability to complete an outage on or near schedule depends upon the performance of the outage management organization. During an outage, the outage control center (OCC) is the temporary command center for outage managers and provides several critical functions for the successful execution of the outage schedule. Essentially, the OCC functions to facilitate information inflow, assist outage management in processing information and to facilitate the dissemination of information to stakeholders. Currently, outage management activities primarily rely on telephone communication, face to face reports of status and periodic briefings in the OCC. Much of the information displayed in OCCs is static and out of date requiring an evaluation to determine if it is still valid. Several advanced communication and collaboration technologies have shown promise for facilitating the information flow into, across and out of the OCC. Additionally, advances in the areas of mobile worker technologies, computer based procedures and electronic work packages can be leveraged to improve the availability of real time status to outage managers.« less

  4. Innovations in Nuclear Infrastructure and Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Bernard

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus andmore » direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.« less

  5. Nuclear micro-probe analysis of Arabidopsis thaliana leaves

    NASA Astrophysics Data System (ADS)

    Ager, F. J.; Ynsa, M. D.; Domínguez-Solís, J. R.; López-Martín, M. C.; Gotor, C.; Romero, L. C.

    2003-09-01

    Phytoremediation is a cost-effective plant-based approach for remediation of soils and waters which takes advantage of the remarkable ability of some plants to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues, such as toxic heavy metals and organic pollutants. Nowadays, phytoremediation technology is becoming of paramount importance when environmental decontamination is concerned, due to the emerging knowledge of its physiological and molecular mechanisms and the new biological and engineering strategies designed to optimize and improve it. In addition, the feasibility of using plants for environmental cleanup has been confirmed by many different trials around the world. Arabidopsis thaliana plants can be used for basic studies to improve the technology on phytoremediation. Making use of nuclear microscopy techniques, in this paper we study leaves of wild type and transgenic A. thaliana plants grown in a cadmium-rich environment under different conditions. Micro-PIXE, RBS and SEM analyses, performed on the scanning proton micro-probe at the CNA in Seville (Spain), prove that cadmium is preferentially sequestered in the central region of epidermal trichome and allow comparing the effects of genetic modifications.

  6. Terrorists and Nuclear Technology

    ERIC Educational Resources Information Center

    Krieger, David

    1975-01-01

    This essay explores the ways terrorist groups may gain possession of nuclear materials; the way in which they may use nuclear weapons and other nuclear technologies to their benefit; and various courses of action designed to minimize the possibilities of terrorists utilizing nuclear technology to their benefit and society's detriment. (BT)

  7. Results of the engineering run of the Coherent Neutrino Nucleus Interaction Experiment (CONNIE)

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A.; Bertou, X.; Bonifazi, C.; Butner, M.; Cancelo, G.; Castañeda Vázquez, A.; Cervantes Vergara, B.; Chavez, C. R.; Da Motta, H.; D'Olivo, J. C.; Dos Anjos, J.; Estrada, J.; Fernandez Moroni, G.; Ford, R.; Foguel, A.; Hernández Torres, K. P.; Izraelevitch, F.; Kavner, A.; Kilminster, B.; Kuk, K.; Lima, H. P., Jr.; Makler, M.; Molina, J.; Moreno-Granados, G.; Moro, J. M.; Paolini, E. E.; Sofo Haro, M.; Tiffenberg, J.; Trillaud, F.; Wagner, S.

    2016-07-01

    The CONNIE detector prototype is operating at a distance of 30 m from the core of a 3.8 GWth nuclear reactor with the goal of establishing Charge-Coupled Devices (CCD) as a new technology for the detection of coherent elastic neutrino-nucleus scattering. We report on the results of the engineering run with an active mass of 4 g of silicon. The CCD array is described, and the performance observed during the first year is discussed. A compact passive shield was deployed around the detector, producing an order of magnitude reduction in the background rate. The remaining background observed during the run was stable, and dominated by internal contamination in the detector packaging materials. The in-situ calibration of the detector using X-ray lines from fluorescence demonstrates good stability of the readout system. The event rates with the reactor ON and OFF are compared, and no excess is observed coming from nuclear fission at the power plant. The upper limit for the neutrino event rate is set two orders of magnitude above the expectations for the standard model. The results demonstrate the cryogenic CCD-based detector can be remotely operated at the reactor site with stable noise below 2 e- RMS and stable background rates. The success of the engineering test provides a clear path for the upgraded 100 g detector to be deployed during 2016.

  8. Interdisciplinary Team-Teaching Experience for a Computer and Nuclear Energy Course for Electrical and Computer Engineering Students

    ERIC Educational Resources Information Center

    Kim, Charles; Jackson, Deborah; Keiller, Peter

    2016-01-01

    A new, interdisciplinary, team-taught course has been designed to educate students in Electrical and Computer Engineering (ECE) so that they can respond to global and urgent issues concerning computer control systems in nuclear power plants. This paper discusses our experience and assessment of the interdisciplinary computer and nuclear energy…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, Yury N.

    The co-generation nuclear power plant (CNPP) producing electricity and district heating heat is planned to be constructed in Archangelsk Region of Russia. Following the 'Letter of Intent' signed by Governor of Archangelsk region and by Minister of the Russian Federation for atomic energy the feasibility study of the Project has been done. The NPP will be based on the four co-generation nuclear power units with the Russian VK-300 SBWR. The innovative passive VK-300 reactor facility has been designed on the basis of well-established nuclear technologies, proven major components, the operating experience of the prototype VK-50 reactor in RIAR, Dimitrovgrad, andmore » the experience in designing such reactors as SBWR (GE) and SWR-1000 (Siemens). The CNPP's total power is planned to be 1000 MW(e) and district-heating heat production capacity 1600 Gcal/h. A detailed description of the results of the feasibility study is presented in the report. The results of the feasibility study have shown that the Archangelsk CGNP is feasible in terms of engineering, economics and production. (authors)« less

  10. Thermal hydraulic feasibility assessment of the hot conditioning system and process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heard, F.J.

    1996-10-10

    The Spent Nuclear Fuel Project was established to develop engineered solutions for the expedited removal, stabilization, and storage of spent nuclear fuel from the K Basins at the U.S. Department of Energy`s Hanford Site in Richland, Washington. A series of analyses have been completed investigating the thermal-hydraulic performance and feasibility of the proposed Hot Conditioning System and process for the Spent Nuclear Fuel Project. The analyses were performed using a series of thermal-hydraulic models that could respond to all process and safety-related issues that may arise pertaining to the Hot Conditioning System. The subject efforts focus on independently investigating, quantifying,more » and establishing the governing heat production and removal mechanisms, flow distributions within the multi-canister overpack, and performing process simulations for various purge gases under consideration for the Hot Conditioning System, as well as obtaining preliminary results for comparison with and verification of other analyses, and providing technology- based recommendations for consideration and incorporation into the Hot Conditioning System design bases.« less

  11. SRTC criticality safety technical review: Nuclear Criticality Safety Evaluation 93-04 enriched uranium receipt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathbun, R.

    Review of NMP-NCS-930087, {open_quotes}Nuclear Criticality Safety Evaluation 93-04 Enriched Uranium Receipt (U), July 30, 1993, {close_quotes} was requested of SRTC (Savannah River Technology Center) Applied Physics Group. The NCSE is a criticality assessment to determine the mass limit for Engineered Low Level Trench (ELLT) waste uranium burial. The intent is to bury uranium in pits that would be separated by a specified amount of undisturbed soil. The scope of the technical review, documented in this report, consisted of (1) an independent check of the methods and models employed, (2) independent HRXN/KENO-V.a calculations of alternate configurations, (3) application of ANSI/ANS 8.1,more » and (4) verification of WSRC Nuclear Criticality Safety Manual procedures. The NCSE under review concludes that a 500 gram limit per burial position is acceptable to ensure the burial site remains in a critically safe configuration for all normal and single credible abnormal conditions. This reviewer agrees with that conclusion.« less

  12. Report on the Progress of Weld Development of Irradiated Materials at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Miller, Roger G.; Chen, Jian

    This report summarizes recent welding activities on irradiated alloys in the advanced welding facility at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory and the development of post-weld characterization capabilities and procedures that will be critical for assessing the ability of the advanced welding processes housed within the facility to make successful repairs on irradiated alloys. This facility and its capabilities were developed jointly by the U.S. Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program and the Electric Power Research Institute, Long Term Operations Program (and the Welding and Repair Technology Center), with additionalmore » support from Oak Ridge National Laboratory. The significant, on-going effort to weld irradiated alloys with high Helium concentrations and comprehensively analyze the results will eventually yield validated repair techniques and guidelines for use by the nuclear industry in extending the operational lifetimes of nuclear power plants.« less

  13. Composite materials. Volume 3 - Engineering applications of composites. Volume 4 - Metallic matrix composites. Volume 8 - Structural design and analysis, Part 2

    NASA Technical Reports Server (NTRS)

    Noton, B. R. (Editor); Kreider, K. G.; Chamis, C. C.

    1974-01-01

    This volume discusses a vaety of applications of both low- and high-cost composite materials in a number of selected engineering fields. The text stresses the use of fiber-reinforced composites, along with interesting material systems used in the electrical and nuclear industries. As to technology transfer, a similarity is noted between many of the reasons responsible for the utilization of composites and those problems requiring urgent solution, such as mechanized fabrication processes and design for production. Features topics include road transportation, rail transportation, civil aircraft, space vehicles, builing industry, chemical plants, and appliances and equipment. The laminate orientation code devised by Air Force materials laboratory is included. Individual items are announced in this issue.

  14. IECEC '84: Advanced energy systems - Their role in our future; Proceedings of the Nineteenth Intersociety Energy Conversion Engineering Conference, San Francisco, CA, August 19-24, 1984. Volumes 1, 2, 3, & 4

    NASA Astrophysics Data System (ADS)

    Among the topics discussed are: advanced energy conversion concepts, power sources for aircraft and spacecraft, alternate fuels for industrial and vehicular applications, biomass-derived fuels, electric vehicle design and development status, electrochemical energy conversion systems, electric power generation cycles, energy-efficient industrial processes, and energy policy and system analysis. Also discussed are advanced methods for energy storage and transport, fossil fuel conversion systems, geothermal energy system development and performance, novel and advanced heat engines, hydrogen fuel-based energy systems, MHD technology development status, nuclear energy systems, solar energy conversion methods, advanced heating and cooling systems, Stirling cycle device development, terrestrial photovoltaic systems, and thermoelectric and thermionic systems.

  15. Unirradiated testing of the demonstration-scale ceramic waste form at ANL-West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, K.M.; Simpson, M.F.; Bateman, K.J.

    1997-12-01

    The ceramic waste form is being developed by Argonne National Laboratory (ANL) as part of the demonstration of the electrometallurgical treatment of spent nuclear fuel for disposal. The alkali, alkaline earth, halide, and rare earth fission products are stabilized in zeolite, which is combined with glass and processed in a hot isostatic press (HIP) to form a ceramic composite. The transuranics, including plutonium, are also stabilized in this high-level waste. Most of the laboratory-scale development work is performed in the Chemical Technology Division of ANL in Illinois. At ANL-West in Idaho, this technology is being demonstrated on an engineering scalemore » before implementation with irradiated materials in a remote environment.« less

  16. Fbis report. Science and technology: Economic review, September 19, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-19

    ;Partial Contents: Germany: Braunschweig University Tests Organic Semiconductors; France: Ariane-5 Tests Suspended; First Tests in Euro-Russian RECORD Rocket Engine Program; France: Renault`s Multi-Model Assembly Line Presented; Germany: New High Speed Trains Under Development; France: Matra Test Drone, Missile Systems; France: Experimental Project for Automobile Recycling; Germany: Survey of Flexible Manufacturing Developments; Germany: Heinrich Hertz Institute Produces Polymer-Based Circuit; French Firms Introduce Computerized Control Room for Nuclear Plants; German Machine Tool Industry Calls for Information Technology Projects; Germany: R&D Achievements in Digital HDTV Reported; Hungary: Secondary Telecommunications Networks Described; EU: Mergers in Pharmaceutical Industry Reported; SGS-Thomson Business Performance Analyzed; Germany`s Siemensmore » Invest Heavily in UK Semiconductor Plant.« less

  17. 4th International Conference on Energy and Environment 2013 (ICEE 2013)

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Chandan Kumar; Shamsuddin, Abd Halim Bin; Ahmad, Ibrahim Bin; Desa, Mohamed Nor Bin Mohamed; Din, Norashidah Bte Md; Bte Mohd, Lariyah; Hamid, Nasri A.; See, Ong Hang; Hafiz Nagi, Farrukh; Yong, Lee Choon; Pasupuleti, Jagadeesh; Mei, Goh Su; Abdullah, Fairuz Bin; Satgunam, Meenaloshini

    2013-06-01

    The 4th International Conference on Energy & Environment 2013 (ICEE2013) was organized by the Universiti Tenaga Nasional (UNITEN) to provide a platform for creating and sharing ideas among engineers, researchers, scientists, industrialists and students in sustainable green energy and technologies. The theme 'Shaping a Sustainable Future through Advancement in Green Energy Technology' is in line with the University's vision to be a leading global energy university that shapes a sustainable future. The general scopes of the conference are renewable energy, smart grid, green technology, energy policies and economics, sustainable green energy and environment, sustainable education, international cooperation and innovation and technology transfer. Five international keynote speakers delivered their speeches in specialized areas of green energy technology and sustainability. In addition, the conference highlights several special parallel sessions by notable invited presenters in their niche areas, which are: Hybrid Energy Power Quality & Distributed Energy Smart Grid Nuclear Power & Technologies Geohazard Management Greener Environment for Sustainability Advances in Computational Fluid Dynamics The research papers presented in ICEE2013 are included in this volume of IOP Conference Series: Earth and Environmental Science (EES). EES is abstracted and indexed in SCOPUS, GeoBase, GeoRef, Compendex, Inspec, Chemical Abstracts Service, NASA Astrophysics Data System, and International Nuclear Information System (INIS). With the comprehensive programme outline, the organizing committee hopes that the ICEE2013 was a notable intellectual sharing session for the research and academic community in Malaysia and regionally. The organizing committee expresses gratitude to the ICEE2013 delegates for their great support and contributions to the event.

  18. Training and Mentoring the Next Generation of Scientists and Engineers to Secure Continuity and Successes of the US DOE's Environmental Remediation Efforts - 13387

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, L.

    The DOE Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology, engineering, and mathmore » (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only five years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 85 DOE Fellows have participated in the Waste Management Symposia since 2008 with a total of 68 student posters and 7 oral presentations given at WM. The DOE Fellows participation at WM has resulted in three Best Student Poster Awards (WM09, WM10, and WM11) and one Best Professional Poster Award (WM09). DOE Fellows have also presented their research at ANS DD and R and ANS Robotics Topical meetings. Moreover, several of our DOE Fellows have already obtained employment with DOE-EM, other federal agencies, DOE contractors. This paper will discuss how DOE Fellows program is training and mentoring FIU STEM students in Department of Energy's Office of Environmental Management technical challenges and research. This training and mentoring has resulted in the development of well trained and polished young scientists and engineers that will become the future workforce in charge of carrying on DOE-EM's environmental cleanup mission. The paper will showcase FIU's DOE Fellows model and highlight some of the applied research the DOE Fellows have conducted at FIU's Applied Research Center and across the Complex by participating in summer internship assignments. This paper will also present and highlight other Fellowships and internships programs sponsored by National Nuclear Security Agency (NNSA), DOE-EM, NRC, Energy (NE), and other federal agencies targeting workforce development. (authors)« less

  19. 77 FR 3073 - American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... NUCLEAR REGULATORY COMMISSION 10 CFR Part 50 [NRC-2008-0554] RIN 3150-AI35 American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases; Corrections AGENCY: Nuclear Regulatory... the American Society of Mechanical Engineers, Three Park Avenue, New York, NY 10016, phone (800) 843...

  20. A field release of genetically engineered gypsy moth (Lymantria dispar L.) Nuclear Polyhedrosis Virus (LdNPV)

    Treesearch

    Vincent D' Amico; Joseph S. Elkinton; John D. Podgwaite; James M. Slavicek; Michael L. McManus; John P. Burand

    1999-01-01

    The gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus was genetically engineered for nonpersistence by removal of the gene coding for polyhedrin production and stabilized using a coocclusion process. A β-galactosidase marker gene was inserted into the genetically engineered virus (LdGEV) so that infected larvae could be tested for...

  1. Grooved Fuel Rings for Nuclear Thermal Rocket Engines

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2009-01-01

    An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.

  2. Fast track lunar NTR systems assessment for the First Lunar Outpost and its evolvability to Mars

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Alexander, Stephen W.

    1992-01-01

    The objectives of the 'fast track' lunar Nuclear Thermal Rocket (NTR) analysis are to quantify necessary engine/stage characteristics to perform NASA's 'First Lunar Outpost' scenario and to assess the potential for evolution to Mars mission applications. By developing NTR/stage technologies for use in NASA's 'First Lunar Outpost' scenario, NASA will make a major down payment on the key components needed for the follow-on Mars Space Transportation System. A faster, cheaper approach to overall lunar/Mars exploration is expected.

  3. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.

    2011-01-01

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.

  4. Implications of Outside-the-Box Technologies on Future Space Exploration and Colonization

    NASA Astrophysics Data System (ADS)

    Loder, Theodore C.

    2003-01-01

    In general, planning for future manned space exploration either to the moon, Mars, or an asteroid has depended on a somewhat linear extrapolation of our present technologies. Two major prohibitive cost issues regarding such planning are payload lift and in-flight energy generation. The costs of these in both engineering and actual flight costs, coupled with the planning necessary to carry out such exploration have prevented us from actively moving forward. Although, it will be worthwhile to continue to plan for such exploration using ``present'' technologies, I recommend that planning be concerned mainly with mission strategies and goals utilizing both present technology and totally new energy breakthroughs. There are presently in research and development an entire suite of relevant outside-the-box technologies which will include both zero point energy generation and antigravity technologies that will replace our present solar/nuclear/fuel cell energy technologies and liquid/solid fuel rockets. This paper describes some of these technologies, the physics behind them and their potential use for manned space exploration. The companies and countries that first incorporate these technologies into their space programs will lead the way in exploring and colonizing space.

  5. Quantum Mechanics - Fundamentals and Applications to Technology

    NASA Astrophysics Data System (ADS)

    Singh, Jasprit

    1996-10-01

    Explore the relationship between quantum mechanics and information-age applications This volume takes an altogether unique approach to quantum mechanics. Providing an in-depth exposition of quantum mechanics fundamentals, it shows how these concepts are applied to most of today's information technologies, whether they are electronic devices or materials. No other text makes this critical, essential leap from theory to real-world applications. The book's lively discussion of the mathematics involved fits right in with contemporary multidisciplinary trends in education: Once the basic formulation has been derived in a given chapter, the connection to important technological problems is summarily described. The many helpful features include * Twenty-eight application-oriented sections that focus on lasers, transistors, magnetic memories, superconductors, nuclear magnetic resonance (NMR), and other important technology-driving materials and devices * One hundred solved examples, with an emphasis on numerical results and the connection between the physics and its applications * End-of-chapter problems that ground the student in both fundamental and applied concepts * Numerous figures and tables to clarify the various topics and provide a global view of the problems under discussion * Over two hundred illustrations to highlight problems and text A book for the information age, Quantum Mechanics: Fundamentals and Applications to Technology promises to become a standard in departments of electrical engineering, applied physics, and materials science, as well as physics. It is an excellent text for senior undergraduate and graduate students, and a helpful reference for practicing scientists, engineers, and chemists in the semiconductor and electronic industries.

  6. Robust Exploration and Commercial Missions to the Moon Using LANTR Propulsion and In-Situ Propellants Derived from Lunar Polar Ice (LPI) Deposits

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.

    2017-01-01

    The nuclear thermal rocket (NTR) has frequently been identified as a key space asset required for the human exploration of Mars. This proven technology can also provide the affordable access through cislunar space necessary for commercial development and sustained human presence on the Moon. It is a demonstrated technology capable of generating both high thrust and high specific impulse (Isp 900 s) twice that of todays best chemical rockets. Nuclear lunar transfer vehicles consisting of a propulsion stage using three approx.16.5 klbf "Small Nuclear Rocket Engines (SNREs)", an in-line propellant tank, plus the payload can enable a variety of reusable lunar missions. These include cargo delivery and crewed lunar landing missions. Even weeklong "tourism" missions carrying passengers into lunar orbit for a day of sightseeing and picture taking are possible. The NTR can play an important role in the next phase of lunar exploration and development by providing a robust in-space lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supported by a variety of commercial activities such as in-situ propellant production used to supply strategically located propellant depots and transportation nodes. The processing of LPI deposits (estimated to be approx. 2 billion metric tons) for propellant production - specifically liquid oxygen (LO2) and hydrogen (LH2) can significantly reduce the launch mass requirements from Earth and can enable reusable, surface-based lunar landing vehicles (LLVs) using LO2/LH2 chemical rocket engines. Afterwards, LO2/LH2 propellant depots can be established in lunar polar and equatorial orbits to supply the LTS. At this point a modified version of the conventional NTR called the LO2-augmented NTR, or LANTR would be introduced into the LTS allowing bipropellant operation and leveraging the mission benefits of refueling with lunar-derived propellants (LDPs) for Earth return. The bipropellant LANTR engine utilizes the large divergent section of its nozzle as an afterburner into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engines choked sonic throat essentially scramjet propulsion in reverse. By varying the oxygen-to-hydrogen mixture ratio, LANTR engines can operate over a range of thrust and Isp values while the reactor core power level remains relatively constant. A LANTR-based LTS offers unique mission capabilities including short transit time crewed cargo transports. Even a commuter shuttle service may be possible allowing one-way trip times to and from the Moon on the order of 36 hours or less. If only 1 of the postulated water ice trapped in deep shadowed craters at the lunar poles were available for use in lunar orbit, such a supply could support daily commuter flights to the Moon for many thousands of years! The proposed paper outlines an evolutionary mission architecture and examines a variety of mission types and transfer vehicle designs, along with the increasing demands on LDP production as mission complexity and delta V requirements increase. A comparison of vehicle features and engine operating characteristics are also provided together with a discussion of the propellant production and mining requirements, and issues, associated with using LPI as the source material.

  7. Your Career and Nuclear Weapons: A Guide for Young Scientists and Engineers.

    ERIC Educational Resources Information Center

    Albrecht, Andreas; And Others

    This four-part booklet examines various issues related to nuclear weapons and how they will affect an individual working as a scientist or engineer. It provides information about the history of nuclear weapons, about the weapons industry which produces them, and about new weapons programs. Issues are raised so that new or future graduates may make…

  8. SP-100 power system conceptual design for lunar base applications

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Bloomfield, Harvey S.; Hainley, Donald C.

    1989-01-01

    A conceptual design is presented for a nuclear power system utilizing an SP-100 reactor and multiple Stirling cycle engines for operation on the lunar surface. Based on the results of this study, it was concluded that this power plant could be a viable option for an evolutionary lunar base. The design concept consists of a 2500 kWt (kilowatt thermal) SP-100 reactor coupled to eight free-piston Stirling engines. Two of the engines are held in reserve to provide conversion system redundancy. The remaining engines operate at 91.7 percent of their rated capacity of 150 kWe. The design power level for this system is 825 kWe. Each engine has a pumped heat-rejection loop connected to a heat pipe radiator. Power system performance, sizing, layout configurations, shielding options, and transmission line characteristics are described. System components and integration options are compared for safety, high performance, low mass, and ease of assembly. The power plant was integrated with a proposed human lunar base concept to ensure mission compatibility. This study should be considered a preliminary investigation; further studies are planned to investigate the effect of different technologies on this baseline design.

  9. American power conference: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    The first volume of this conference contains papers on the following topics: (1) Controls, monitoring, and expert systems (Harnessing microprocessor revolution for a more competitive power industry; Plant control--Upgrades; Neural network applications); (2) Diversification and globalization (Electric utility diversification/globalization--Panel; Private power in developing countries); (3) Environment and clean air (Clean Air compliance costs; Site selection for power stations and related facilities; Electric utility trace substance emissions; Solid waste disposal and commercial use; Precipitators/fabric filters; and Effect of flow modifications on fisheries and water quality); (4) Generation--Fuel options equipment (Alternate fuels; Advances in fuel cells for electric power applications; Secondary containmentmore » and seismic requirements for petrochemical facilities; Clean coal technology demonstration; Advanced energy systems; Hydropower); (5) Nuclear operations options (Radioactive waste management and disposal; Off normal conditions; Advanced light water reactors--15 years after TMI; Structural dynamic analyses for nuclear power plants); (6) Retrofit, betterment, repowering maintenance (Project management; Improving competitiveness through process re-engineering; Central stations; Water and wastewater treatment); (7) System planning, operation demand maintenance (Transmission system access; Stability; Systems planning); (8) Transmission and distribution (Transformers; Relaying for system protection; Managing EMF effects); and (9) Education (Power engineering). 155 papers have been processed separately for inclusion on the data base.« less

  10. LANL Contributions to the B61 LIfe Extension Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corpion, Juan Carlos

    2016-02-10

    The Los Alamos National Laboratory (LANL) has a long, proud heritage in science and innovation that extends 70 years. Although the Laboratory’s primary responsibility is assuring the safety and reliability of the nation’s nuclear deterrent, Laboratory staff work on a broad range of advanced technologies to provide the best, most effective scientific and engineering solutions to the nation’s critical security challenges. The world is rapidly changing, but this essential responsibility remains the LANL’s core mission. LANL is the Design Laboratory for the nuclear explosive package of the B61 Air Force bomb. The B61-12 Life Extension Program (LEP) activities at LANLmore » will increase the lifetime of the bomb and provide safety and security options to meet security environments both today and in the future. The B61’s multiple-platform functionality, unique safety features, and large number of components make the B61-12 LEP one of the most complex LEPs ever attempted. Over 230 LANL scientists, engineers, technicians, and support personnel from across the Laboratory are bringing decades of interdisciplinary knowledge, technical expertise, and leading-edge capabilities to LANL’s work on the LEP.« less

  11. Ambient Pressure Test Rig Developed for Testing Oil-Free Bearings in Alternate Gases and Variable Pressures

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.

    1990-01-01

    The Oil-Free Turbomachinery research team at the NASA Glenn Research Center is conducting research to develop turbomachinery systems that utilize high-speed, high temperature foil (air) bearings that do not require an oil lubrication system. Such systems combine the most advanced foil bearings from industry with NASA-developed hightemperature solid-lubricant technology. New applications are being pursued, such as Oil- Free turbochargers, auxiliary power units, and turbine propulsion systems for aircraft. An Oil-Free business jet engine, for example, would be simpler, lighter, more reliable, and less costly to purchase and maintain than current engines. Another application is NASA's Prometheus mission, where gas bearings will be required for the closed-cycle turbine based power-conversion system of a nuclear power generator for deep space. To support these applications, Glenn's Oil-Free Turbomachinery research team developed the Ambient Pressure Test Rig. Using this facility, researchers can load and heat a bearing and evaluate its performance with reduced air pressure to simulate high altitude conditions. For the nuclear application, the test chamber can be purged with gases such as helium to study foil gas bearing operation in working fluids other than air.

  12. Persistence Factors Associated with First-Year Engineering Technology Learners

    ERIC Educational Resources Information Center

    Christe, Barbara

    2015-01-01

    Engineering technology learners are understudied group that comprise the "T" of the science, technology, engineering, and mathematics disciplines. Attrition from engineering technology majors is a profound and complex challenge, as substantially less than half of students who begin an engineering technology major persist through the…

  13. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R.T.

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnologymore » Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.« less

  14. Variable Cycle Engine Technology Program Planning and Definition Study

    NASA Technical Reports Server (NTRS)

    Westmoreland, J. S.; Stern, A. M.

    1978-01-01

    The variable stream control engine, VSCE-502B, was selected as the base engine, with the inverted flow engine concept selected as a backup. Critical component technologies were identified, and technology programs were formulated. Several engine configurations were defined on a preliminary basis to serve as demonstration vehicles for the various technologies. The different configurations present compromises in cost, technical risk, and technology return. Plans for possible variably cycle engine technology programs were formulated by synthesizing the technology requirements with the different demonstrator configurations.

  15. Transmutation of Isotopes --- Ecological and Energy Production Aspects

    NASA Astrophysics Data System (ADS)

    Gudowski, Waclaw

    2000-01-01

    This paper describes principles of Accelerator-Driven Transmutation of Nuclear Wastes (ATW) and gives some flavour of the most important topics which are today under investigations in many countries. An assessment of the potential impact of ATW on a future of nuclear energy is also given. Nuclear reactors based on self-sustained fission reactions --- after spectacular development in fifties and sixties, that resulted in deployment of over 400 power reactors --- are wrestling today more with public acceptance than with irresolvable technological problems. In a whole spectrum of reasons which resulted in today's opposition against nuclear power few of them are very relevant for the nuclear physics community and they arose from the fact that development of nuclear power had been handed over to the nuclear engineers and technicians with some generically unresolved problems, which should have been solved properly by nuclear scientists. In a certain degree of simplification one can say, that most of the problems originate from very specific features of a fission phenomenon: self-sustained chain reaction in fissile materials and very strong radioactivity of fission products and very long half-life of some of the fission and activation products. And just this enormous concentration of radioactive fission products in the reactor core is the main problem of managing nuclear reactors: it requires unconditional guarantee for the reactor core integrity in order to avoid radioactive contamination of the environment; it creates problems to handle decay heat in the reactor core and finally it makes handling and/or disposal of spent fuel almost a philosophical issue, due to unimaginable long time scales of radioactive decay of some isotopes. A lot can be done to improve the design of conventional nuclear reactors (like Light Water Reactors); new, better reactors can be designed but it seems today very improbable to expect any radical change in the public perception of conventional nuclear power. In this context a lot of hopes and expectations have been expressed for novel systems called Accelerator-Driven Systems, Accelerator-Driven Transmutation of Waste or just Hybrid Reactors. All these names are used for description of the same nuclear system combining a powerful particle accelerator with a subcritical reactor. A careful analysis of possible environmental impact of ATW together with limitation of this technology is presented also in this paper.

  16. Reactor engineering support of operations at the Davis-Besse nuclear power station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, D.B.

    1995-12-31

    Reactor engineering functions differ greatly from unit to unit; however, direct support of the reactor operators during reactor startups and operational transients is common to all units. This paper summarizes the support the reactor engineers provide the reactor operators during reactor startups and power changes through the use of automated computer programs at the Davis-Besse nuclear power station.

  17. Seismic risk management solution for nuclear power plants

    DOE PAGES

    Coleman, Justin; Sabharwall, Piyush

    2014-12-01

    Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefitmore » of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.« less

  18. A Report of the Nuclear Engineering Division Sessions at the 1971 ASEE Annual Conference

    ERIC Educational Resources Information Center

    Eckley, Wayne; Nelson, George W.

    1972-01-01

    Summarizes the discussions at the conference under the topics, Objective Criteria for the Future" and Teaching Concepts Basic to Nuclear Engineering." Includes comments from personnel representing universities, industries, and government laboratories. (TS)

  19. MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENT NO. 1. INL NEGATIVE NO. 6510. Unknown Photographer, 9/29/1959 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  20. History of nuclear technology development in Japan

    NASA Astrophysics Data System (ADS)

    Yamashita, Kiyonobu

    2015-04-01

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  1. History of nuclear technology development in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, Kiyonobu, E-mail: yamashita.kiyonobu@jaea.go.jp; General Advisor Nuclear HRD Centre, Japan Atomic Energy Agency, TOKAI-mura, NAKA-gun, IBARAKI-ken, 319-1195

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  2. A Review on the Potential Use of Austenitic Stainless Steels in Nuclear Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Şahin, Sümer; Übeyli, Mustafa

    2008-12-01

    Various engineering materials; austenitic stainless steels, ferritic/martensitic steels, vanadium alloys, refractory metals and composites have been suggested as candidate structural materials for nuclear fusion reactors. Among these structural materials, austenitic steels have an advantage of extensive technological database and lower cost compared to other non-ferrous candidates. Furthermore, they have also advantages of very good mechanical properties and fission operation experience. Moreover, modified austenitic stainless (Ni and Mo free) have relatively low residual radioactivity. Nevertheless, they can't withstand high neutron wall load which is required to get high power density in fusion reactors. On the other hand, a protective flowing liquid wall between plasma and solid first wall in these reactors can eliminate this restriction. This study presents an overview of austenitic stainless steels considered to be used in fusion reactors.

  3. Application of Robotics in Decommissioning and Decontamination - 12536

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banford, Anthony; Kuo, Jeffrey A.; Bowen, R.A.

    Decommissioning and dismantling of nuclear facilities is a significant challenge worldwide and one which is growing in size as more plants reach the end of their operational lives. The strategy chosen for individual projects varies from the hands-on approach with significant manual intervention using traditional demolition equipment at one extreme to bespoke highly engineered robotic solutions at the other. The degree of manual intervention is limited by the hazards and risks involved, and in some plants are unacceptable. Robotic remote engineering is often viewed as more expensive and less reliable than manual approaches, with significant lead times and capital expenditure.more » However, advances in robotics and automation in other industries offer potential benefits for future decommissioning activities, with the high probability of reducing worker exposure and other safety risks as well as reducing the schedule and costs required to complete these activities. Some nuclear decommissioning tasks and facility environments are so hazardous that they can only be accomplished by exclusive use of robotic and remote intervention. Less hazardous tasks can be accomplished by manual intervention and the use of PPE. However, PPE greatly decreases worker productivity and still exposes the worker to both risk and dose making remote operation preferable to achieve ALARP. Before remote operations can be widely accepted and deployed, there are some economic and technological challenges that must be addressed. These challenges will require long term investment commitments in order for technology to be: - Specifically developed for nuclear applications; - At a sufficient TRL for practical deployment; - Readily available as a COTS. Tremendous opportunities exist to reduce cost and schedule and improve safety in D and D activities through the use of robotic and/or tele-operated systems. - Increasing the level of remote intervention reduces the risk and dose to an operator. Better environmental information identifies hazards, which can be assessed, managed and mitigated. - Tele-autonomous control in a congested unstructured environment is more reliable compared to a human operator. Advances in Human Machine Interfaces contribute to reliability and task optimization. Use of standardized dexterous manipulators and COTS, including standardized communication protocols reduces project time scales. - The technologies identified, if developed to a sufficient TRL would all contribute to cost reductions. Additionally, optimizing a project's position on a Remote Intervention Scale, a Bespoke Equipment Scale and a Tele-autonomy Scale would provide cost reductions from the start of a project. Of the technologies identified, tele-autonomy is arguably the most significant, because this would provide a fundamental positive change for robotic control in the nuclear industry. The challenge for technology developers is to develop versatile robotic technology that can be economically deployed to a wide range of future D and D projects and industrial sectors. The challenge for facility owners and project managers is to partner with the developers to provide accurate systems requirements and an open and receptive environment for testing and deployment. To facilitate this development and deployment effort, the NNL and DOE have initiated discussions to explore a collaborative R and D program that would accelerate development and support the optimum utilization of resources. (authors)« less

  4. TOPICAL REVIEW: Stem cells engineering for cell-based therapy

    NASA Astrophysics Data System (ADS)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  5. Wind/Tornado Guidelines Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, D.S.; Holman, G.S.

    1991-10-01

    This report documents the strategy employed to develop recommended wind/tornado hazard design guidelines for a New Production Reactor (NRP) currently planned for either the Idaho National Engineering Laboratory (INEL) or the Savannah River (SR) site. The Wind/Tornado Working Group (WTWG), comprising six nationally recognized experts in structural engineering, wind engineering, and meteorology, formulated an independent set of guidelines based on site-specific wind/tornado hazard curves and state-of-the-art tornado missile technology. The basic philosophy was to select realistic wind and missile load specifications, and to meet performance goals by applying conservative structural response evaluation and acceptance criteria. Simplified probabilistic risk analyses (PRAs)more » for wind speeds and missile impact were performed to estimate annual damage risk frequencies for both the INEL and SR sites. These PRAs indicate that the guidelines will lead to facilities that meet the US Department of Energy (DOE) design requirements and that the Nuclear Regulatory Commission guidelines adopted by the DOE for design are adequate to meet the NPR safety goals.« less

  6. High level waste tank closure project: ALARA applications at the Idaho National Engineering and Environmental Laboratory.

    PubMed

    Aitken, Steven B; Butler, Richard; Butterworth, Steven W; Quigley, Keith D

    2005-05-01

    Bechtel BWXT Idaho, Maintenance and Operating Contractor for the Department of Energy at the Idaho National Engineering and Environmental Laboratory, has emptied, cleaned, and sampled six of the eleven 1.135 x 10(6) L high level waste underground storage tanks at the Idaho Nuclear Technology and Engineering Center, well ahead of the State of Idaho Consent Order cleaning schedule. Cleaning of a seventh tank is expected to be complete by the end of calendar year 2004. The tanks, with associated vaults, valve boxes, and distribution systems, are being closed to meet Resource Conservation and Recovery Act regulations and Department of Energy orders. The use of remotely operated equipment placed in the tanks through existing tank riser access points, sampling methods and application of as-low-as-reasonably-achievable (ALARA) principles have proven effective in keeping personnel dose low during equipment removal, tank, vault, and valve box cleaning, and sampling activities, currently at 0.03 Sv.

  7. How to Overcome Numerical Challenges to Modeling Stirling Engines

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.

    2004-01-01

    Nuclear thermal to electric power conversion carries the promise of longer duration missions and higher scientific data transmission rates back to Earth for a range of missions, including both Mars rovers and deep space missions. A free-piston Stirling convertor is a candidate technology that is considered an efficient and reliable power conversion device for such purposes. While already very efficient, it is believed that better Stirling engines can be developed if the losses inherent in current designs could be better understood. However, they are difficult to instrument and so efforts are underway to simulate a complete Stirling engine numerically. This has only recently been attempted and a review of the methods leading up to and including such computational analysis is presented. And finally it is proposed that the quality and depth of Stirling loss understanding may be improved by utilizing the higher fidelity and efficiency of recently developed numerical methods. One such method, the Ultra HI-FI technique is presented in detail.

  8. Midwest Nuclear Science and Engineering Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker

    2010-12-08

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state,more » federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.« less

  9. Nuclear Targeting Terms for Engineers and Scientists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St Ledger, John W.

    The Department of Defense has a methodology for targeting nuclear weapons, and a jargon that is used to communicate between the analysts, planners, aircrews, and missile crews. The typical engineer or scientist in the Department of Energy may not have been exposed to the nuclear weapons targeting terms and methods. This report provides an introduction to the terms and methodologies used for nuclear targeting. Its purpose is to prepare engineers and scientists to participate in wargames, exercises, and discussions with the Department of Defense. Terms such as Circular Error Probable, probability of hit and damage, damage expectancy, and the physicalmore » vulnerability system are discussed. Methods for compounding damage from multiple weapons applied to one target are presented.« less

  10. The Congressional Science Fellow Program and Other Efforts to Help Congress and the Public Make Wiser Decisions on Technology

    NASA Astrophysics Data System (ADS)

    Primack, Joel

    2004-05-01

    For thirty years the AAAS Congressional Science and Technology Fellow Program, with which the APS program is affiliated, has been bringing scientists and engineers to work on the staffs of Congress. During the same period, many independent technology policy groups at universities, professional societies including the APS, and non-profit organizations have prepared excellent reports. But despite these efforts, U.S. science and technology policy is often terrible! For example, the current Administration contends that there is not enough scientific evidence of global warming to actually begin to do something to slow the growth in fossil fuel use, but there is plenty of evidence to support deploying a missile defense system now, and we need to be ready to test new generations of nuclear weapons. We scientists must develop a bigger public constituency for good decisions. We need to present, not only sound recommendations backed up by convincing studies, but also wise moral leadership.

  11. Fundamentals of materials, techniques and instrumentation for OSL and FNTD dosimetry

    NASA Astrophysics Data System (ADS)

    Akselrod, M. S.

    2013-02-01

    The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al2O3:C as a material of choice for many dosimetric applications including fiberoptic OSL/RL sensors with diameters as small as 300 μm. A new RL/OSL fiberoptic system has a high potential for in vivo and in vitro dosimetry in both radiation therapy and diagnostic mammography. Different aspects of instrumentation, data processing algorithms, post-irradiation and real-time measurements are described. The next technological breakthrough was done with Fluorescent Nuclear Track detectors (FNTD) that has some important advantages in measuring fast neutron and high energy heavy charge particles that became the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology were engineered and successfully demonstrated for occupational and accident dosimetry, for medical dosimetry and radiobiological research.

  12. Data Documentation for Navy Civilian Manpower Study,

    DTIC Science & Technology

    1986-09-01

    Engineering 0830 Mechanical Engineer 0840 Nuclear Engineering 0850 Electrical Engineering 0855 Electronics Engineering 0856 Electronics ...OCCUPATIONAL LEVEL (DONOL) CODES DONOL code Title 1060 Engineering Drafting 1061 Electronics Technician w 1062 Engineering Technician 1063 Industrial...Architect 2314 Electrical Engineer 2315 Electronic Engineer 2316 Industrial Engineer 2317 Mechanical Engineer 2318

  13. Energetic Combustion Devices for Aerospace Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2000-01-01

    Chemical reactions have long been the mainstay thermal energy source for aerospace propulsion and power. Although it is widely recognized that the intrinsic energy density limitations of chemical bonds place severe constraints on maximum realizable performance, it will likely be several years before systems based on high energy density nuclear fuels can be placed into routine service. In the mean time, efforts to develop high energy density chemicals and advanced combustion devices which can utilize such energetic fuels may yield worthwhile returns in overall system performance and cost. Current efforts in this vein are being carried out at NASA MSFC under the direction of the author in the areas of pulse detonation engine technology development and light metals combustion devices. Pulse detonation engines are touted as a low cost alternative to gas turbine engines and to conventional rocket engines, but actual performance and cost benefits have yet to be convincingly demonstrated. Light metal fueled engines also offer potential benefits in certain niche applications such as aluminum/CO2 fueled engines for endo-atmospheric Martian propulsion. Light metal fueled MHD generators also present promising opportunities with respect to electric power generation for electromagnetic launch assist. This presentation will discuss the applications potential of these concepts with respect to aero ace propulsion and power and will review the current status of the development efforts.

  14. AIRCRAFT REACTOR CONTROL SYSTEM APPLICABLE TO TURBOJET AND TURBOPROP POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorker, G.E.

    1955-07-19

    Control systems proposed for direct cycle nuclear powered aircraft commonly involve control of engine speed, nuclear energy input, and chcmical energy input. A system in which these parameters are controlled by controlling the total energy input, the ratio of nuclear and chemical energy input, and the engine speed is proposed. The system is equally applicable to turbojet or turboprop applications. (auth)

  15. Engine Seal Technology Requirements to Meet NASA's Advanced Subsonic Technology Program Goals

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Hendricks, Robert C.

    1994-01-01

    Cycle studies have shown the benefits of increasing engine pressure ratios and cycle temperatures to decrease engine weight and improve performance of commercial turbine engines. NASA is working with industry to define technology requirements of advanced engines and engine technology to meet the goals of NASA's Advanced Subsonic Technology Initiative. As engine operating conditions become more severe and customers demand lower operating costs, NASA and engine manufacturers are investigating methods of improving engine efficiency and reducing operating costs. A number of new technologies are being examined that will allow next generation engines to operate at higher pressures and temperatures. Improving seal performance - reducing leakage and increasing service life while operating under more demanding conditions - will play an important role in meeting overall program goals of reducing specific fuel consumption and ultimately reducing direct operating costs. This paper provides an overview of the Advanced Subsonic Technology program goals, discusses the motivation for advanced seal development, and highlights seal technology requirements to meet future engine performance goals.

  16. Report of the Nuclear Propulsion Mission Analysis, Figures of Merit Subpanel: Quantifiable figures of merit for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Haynes, Davy A.

    1991-01-01

    The results of an inquiry by the Nuclear Propulsion Mission Analysis, Figures of Merit subpanel are given. The subpanel was tasked to consider the question of what are the appropriate and quantifiable parameters to be used in the definition of an overall figure of merit (FoM) for Mars transportation system (MTS) nuclear thermal rocket engines (NTR). Such a characterization is needed to resolve the NTR engine design trades by a logical and orderly means, and to provide a meaningful method for comparison of the various NTR engine concepts. The subpanel was specifically tasked to identify the quantifiable engine parameters which would be the most significant engine factors affecting an overall FoM for a MTS and was not tasked with determining 'acceptable' or 'recommended' values for the identified parameters. In addition, the subpanel was asked not to define an overall FoM for a MTS. Thus, the selection of a specific approach, applicable weighting factors, to any interrelationships, for establishing an overall numerical FoM were considered beyond the scope of the subpanel inquiry.

  17. Nuclear Technology for the Sustainable Development Goals

    NASA Astrophysics Data System (ADS)

    Darby, Iain

    2017-01-01

    Science, technology and innovation will play a crucial role in helping countries achieve the ambitious Sustainable Development Goals (SDGs). Since the discovery of nuclear fission in the 1930s, the peaceful applications of nuclear technology have helped many countries improve crops, fight pests, advance health, protect the environment and guarantee a stable supply of energy. Highlighting the goals related to health, hunger, energy and the environment, in this presentation I will discuss how nuclear technology contributes to the SDGs and how nuclear technology can further contribute to the well-being of people, help protect the planet and boost prosperity.

  18. Small Engine Component Technology (SECT) study

    NASA Technical Reports Server (NTRS)

    Singh, B.

    1986-01-01

    Small advanced (450 to 850 pounds thrust, 2002 to 3781 N) gas turbine engines were studied for a subsonic strategic cruise missile application, using projected year 2000 technology. An aircraft, mission characteristics, and baseline (state-of-the-art) engine were defined to evaluate technology benefits. Engine performance and configuration analyses were performed for two and three spool turbofan and propfan engine concepts. Mission and Life Cycle Cost (LCC) analyses were performed in which the candidate engines were compared to the baseline engines over a prescribed mission. The advanced technology engines reduced system LCC up to 41 percent relative to the baseline engine. Critical aerodynamic, materials, and mechanical systems turbine engine technologies were identified and program plans were defined for each identified critical technology.

  19. Discussing spent nuclear fuel in high school classrooms: addressing public fears through early education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkel, S.; Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0; Sullivan, J.

    The Inreach program combines the Deep River Science Academy (DRSA) 'learning through research' approach with state of the art communication technology to bring scientific research to high school classrooms. The Inreach program follows the DRSA teaching model where a university student tutor works on a research project with scientific staff at AECL's Chalk River Laboratories. Participating high school classes are located across Canada. The high school students learn about the ongoing research activities via weekly web conferences. In order to engage the students and encourage participation in the conferences, themed exercises linked to the research project are provided to themore » students. The DRSA's Inreach program uses a cost-effective internet technology to reach a wide audience, in an interactive setting, without anyone leaving their desks or offices. An example Inreach research project is presented here: an investigation of the potential of the Canadian supercritical water cooled reactor (SCWR) concept to burn transuranic elements (Np, Pu, Am, Cm) to reduce the impact of used nuclear fuel. During this project a university student worked with AECL (Atomic Energy of Canada Limited) researchers on technical aspects of the project, and high school students followed their progress and learned about the composition, hazards, and disposition options for used nuclear fuel. Previous projects included the effects of tritium on cellular viability and neutron diffraction measurement of residual stresses in automobile engines.« less

  20. Future space transport

    NASA Technical Reports Server (NTRS)

    Grishin, S. D.; Chekalin, S. V.

    1984-01-01

    Prospects for the mastery of space and the basic problems which must be solved in developing systems for both manned and cargo spacecraft are examined. The achievements and flaws of rocket boosters are discussed as well as the use of reusable spacecraft. The need for orbiting satellite solar power plants and related astrionics for active control of large space structures for space stations and colonies in an age of space industrialization is demonstrated. Various forms of spacecraft propulsion are described including liquid propellant rocket engines, nuclear reactors, thermonuclear rocket engines, electrorocket engines, electromagnetic engines, magnetic gas dynamic generators, electromagnetic mass accelerators (rail guns), laser rocket engines, pulse nuclear rocket engines, ramjet thermonuclear rocket engines, and photon rockets. The possibilities of interstellar flight are assessed.

  1. Engineering and "Standards for Technological Literacy."

    ERIC Educational Resources Information Center

    Gorham, Douglas

    2002-01-01

    Describes the relationship between engineering and technological literacy, criteria used by the Accrediting Board for Engineering and Technology, and the role of professional engineering societies in promoting technological literacy. (SK)

  2. Localization of a bacterial group II intron-encoded protein in eukaryotic nuclear splicing-related cell compartments.

    PubMed

    Nisa-Martínez, Rafael; Laporte, Philippe; Jiménez-Zurdo, José Ignacio; Frugier, Florian; Crespi, Martin; Toro, Nicolás

    2013-01-01

    Some bacterial group II introns are widely used for genetic engineering in bacteria, because they can be reprogrammed to insert into the desired DNA target sites. There is considerable interest in developing this group II intron gene targeting technology for use in eukaryotes, but nuclear genomes present several obstacles to the use of this approach. The nuclear genomes of eukaryotes do not contain group II introns, but these introns are thought to have been the progenitors of nuclear spliceosomal introns. We investigated the expression and subcellular localization of the bacterial RmInt1 group II intron-encoded protein (IEP) in Arabidopsis thaliana protoplasts. Following the expression of translational fusions of the wild-type protein and several mutant variants with EGFP, the full-length IEP was found exclusively in the nucleolus, whereas the maturase domain alone targeted EGFP to nuclear speckles. The distribution of the bacterial RmInt1 IEP in plant cell protoplasts suggests that the compartmentalization of eukaryotic cells into nucleus and cytoplasm does not prevent group II introns from invading the host genome. Furthermore, the trafficking of the IEP between the nucleolus and the speckles upon maturase inactivation is consistent with the hypothesis that the spliceosomal machinery evolved from group II introns.

  3. Localization of a Bacterial Group II Intron-Encoded Protein in Eukaryotic Nuclear Splicing-Related Cell Compartments

    PubMed Central

    Nisa-Martínez, Rafael; Laporte, Philippe; Jiménez-Zurdo, José Ignacio; Frugier, Florian; Crespi, Martin; Toro, Nicolás

    2013-01-01

    Some bacterial group II introns are widely used for genetic engineering in bacteria, because they can be reprogrammed to insert into the desired DNA target sites. There is considerable interest in developing this group II intron gene targeting technology for use in eukaryotes, but nuclear genomes present several obstacles to the use of this approach. The nuclear genomes of eukaryotes do not contain group II introns, but these introns are thought to have been the progenitors of nuclear spliceosomal introns. We investigated the expression and subcellular localization of the bacterial RmInt1 group II intron-encoded protein (IEP) in Arabidopsis thaliana protoplasts. Following the expression of translational fusions of the wild-type protein and several mutant variants with EGFP, the full-length IEP was found exclusively in the nucleolus, whereas the maturase domain alone targeted EGFP to nuclear speckles. The distribution of the bacterial RmInt1 IEP in plant cell protoplasts suggests that the compartmentalization of eukaryotic cells into nucleus and cytoplasm does not prevent group II introns from invading the host genome. Furthermore, the trafficking of the IEP between the nucleolus and the speckles upon maturase inactivation is consistent with the hypothesis that the spliceosomal machinery evolved from group II introns. PMID:24391881

  4. The virtual digital nuclear power plant: A modern tool for supporting the lifecycle of VVER-based nuclear power units

    NASA Astrophysics Data System (ADS)

    Arkadov, G. V.; Zhukavin, A. P.; Kroshilin, A. E.; Parshikov, I. A.; Solov'ev, S. L.; Shishov, A. V.

    2014-10-01

    The article describes the "Virtual Digital VVER-Based Nuclear Power Plant" computerized system comprising a totality of verified initial data (sets of input data for a model intended for describing the behavior of nuclear power plant (NPP) systems in design and emergency modes of their operation) and a unified system of new-generation computation codes intended for carrying out coordinated computation of the variety of physical processes in the reactor core and NPP equipment. Experiments with the demonstration version of the "Virtual Digital VVER-Based NPP" computerized system has shown that it is in principle possible to set up a unified system of computation codes in a common software environment for carrying out interconnected calculations of various physical phenomena at NPPs constructed according to the standard AES-2006 project. With the full-scale version of the "Virtual Digital VVER-Based NPP" computerized system put in operation, the concerned engineering, design, construction, and operating organizations will have access to all necessary information relating to the NPP power unit project throughout its entire lifecycle. The domestically developed commercial-grade software product set to operate as an independently operating application to the project will bring about additional competitive advantages in the modern market of nuclear power technologies.

  5. The past as prologue - A look at historical flight qualifications for space nuclear systems

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1992-01-01

    Currently the U.S. is sponsoring production of radioisotope thermoelectric generators (RTGs) for the Cassini mission to Saturn; the SP-100 space nuclear reactor power system for NASA applications; a thermionic space reactor program for DoD applications as well as early work on nuclear propulsion. In an era of heightened public concern about having successful space ventures it is important that a full understanding be developed of what it means to 'flight qualify' a space nuclear system. As a contribution to the ongoing work this paper reviews several qualification programs, including the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions, the SNAP-10A space reactor, the Nuclear Engine for Rocket Vehicle Applications (NERVA), the F-1 chemical engine used on the Saturn-V, and the Space Shuttle Main Engines (SSMEs). Similarities and contrasts are noted.

  6. The past as prologue - A look at historical flight qualifications for space nuclear systems

    NASA Astrophysics Data System (ADS)

    Bennett, Gary L.

    Currently the U.S. is sponsoring production of radioisotope thermoelectric generators (RTGs) for the Cassini mission to Saturn; the SP-100 space nuclear reactor power system for NASA applications; a thermionic space reactor program for DoD applications as well as early work on nuclear propulsion. In an era of heightened public concern about having successful space ventures it is important that a full understanding be developed of what it means to 'flight qualify' a space nuclear system. As a contribution to the ongoing work this paper reviews several qualification programs, including the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions, the SNAP-10A space reactor, the Nuclear Engine for Rocket Vehicle Applications (NERVA), the F-1 chemical engine used on the Saturn-V, and the Space Shuttle Main Engines (SSMEs). Similarities and contrasts are noted.

  7. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald D Dudenhoeffer; Burce P Hallbert

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functionalmore » obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.« less

  8. Nuclear thermal propulsion engine system design analysis code development

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.

    1992-01-01

    A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.

  9. Martin Marietta, Y-12 Plant Laboratory Partnership Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koger, J.

    1995-02-10

    The Y-12 Plant currently embraces three mission areas; stockpile surveillance, maintaining production capability, and storage of special nuclear materials. The Y-12 Plant also contributes to the nations` economic strength by partnering with industry in deploying technology. This partnering has been supported to a great extent through the Technology Transfer Initiative (TTI) directed by DOE/Defense Programs (DP-14). The Oak Ridge Centers for Manufacturing Technology (ORCMT) was established to draw upon the manufacturing and fabrication capabilities at the Y-12 Plant to coordinate and support collaborative efforts, between DP and the domestic industrial sector, toward the development of technologies which offer mutual benefitmore » to both DOE/DP programs and the private sector. Most of the needed technologies for the ``Factory of the Future`` (FOF) are being pursued as core areas at the Y-12 Plant. As a result, 85% of DP-14 projects already support the FOF. The unique capabilities of ORCMT can be applied to a wide range of manufacturing problems to enhance the capabilities of the US industrial base and its economic outcome. The ORCMT has an important role to play in DOE`s Technology Transfer initiative because its capabilities are focused on applied manufacturing and technology deployment which has a more near-term impact on private sector competitiveness. The Y-12 Plant uses the ORCMT to help maintain its own core competencies for the FOF by challenging its engineers and capabilities with technical problems from industry. Areas of strength at the Y-12 Plant that could impact the FOF include modeling of processes and advanced materials; intelligent inspection systems with standardized operator interfaces, analysis software, and part programming language; electronic transfer of designs and features; existing computer-based concurrent engineering; and knowledge-based forming process.« less

  10. Waste and Recycling

    ScienceCinema

    McCarthy, Kathy

    2018-01-01

    Nuclear engineer Dr. Kathy McCarthy talks about nuclear energy, the challenge of nuclear waste and the research aimed at solutions. For more information about nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  11. Romania: Brand-New Engineering Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ken Allen; Lucian Biro; Nicolae Zamfir

    The HEU spent nuclear fuel transport from Romania was a pilot project in the framework of the Russian Research Reactor Fuel Return Program (RRRFR), being the first fully certified spent nuclear fuel shipment by air. The successful implementation of the Romanian shipment also brought various new technology in the program, further used by other participating countries. Until 2009, the RRRFR program repatriated to the Russian Federation HEU spent nuclear fuel of Russian origin from many countries, like Uzbekistan, Czech Republic, Latvia, Hungary, Kazakhstan and Bulgaria. The means of transport used were various; from specialized TK-5 train for the carriage ofmore » Russian TUK-19 transport casks, to platform trains for 20 ft freight ISO containers carrying Czech Skoda VPVR/M casks; from river barge on the Danube, to vessel on the Mediterranean Sea and Atlantic Ocean. Initially, in 2005, the transport plan of the HEU spent nuclear fuel from the National Institute for R&D in Nuclear Physics and Nuclear Engineering 'Horia Hulubei' in Magurele, Romania considered a similar scheme, using the specialized TK-5 train transiting Ukraine to the destination point in the Russian Federation, or, as an alternative, using the means and route of the spent nuclear fuel periodically shipped from the Bulgarian nuclear power plant Kosloduy (by barge on the Danube, and by train through Ukraine to the Russian Federation). Due to impossibility to reach an agreement in due time with the transit country, in February 2007 the US, Russian and Romanian project partners decided to adopt the air shipment of the spent nuclear fuel as prime option, eliminating the need for agreements with any transit countries. By this time the spent nuclear fuel inspections were completed, proving the compliance of the burn-up parameters with the international requirements for air shipments of radioactive materials. The short air route avoiding overflying of any other countries except the country of origin and the country of destination also contributed to the decision making in this issue. The efficient project management and cooperation between the three countries (Russia, Romania and USA) made possible, after two and a half years of preparation work, for the first fully certified spent nuclear fuel air shipment to take place on 29th of June 2009, from Romanian airport 'Henri Coanda' to the Russian airport 'Koltsovo' near Yekaterinburg. One day before that, after a record period of 3 weeks of preparation, another HEU cargo was shipped by air from Romanian Institute for Nuclear Research in Pitesti to Russia, containing fresh pellets and therefore making Romania the third HEU-free country in the RRRFR program.« less

  12. Defense Threat Reduction Agency > Research > DTRIAC > Our Services

    Science.gov Websites

    DTRIAC reference collection of more than 300,000 documents dating from 1946; experimental test data Analysis of nuclear and non-nuclear-related technology information as applied to defense policy, force technology transfer (application of nuclear related technologies to non-nuclear weapon phenomenologies and

  13. Examining the Relationship between Technology & Engineering Instruction and Technology & Engineering Literacy in K-8 Education

    ERIC Educational Resources Information Center

    Mitchell, Tamarra L.

    2017-01-01

    The purpose of this study was to examine the relationship between technology and engineering instruction and technology and engineering literacy in grades K-8. The factors identified and used for the purpose of this study were gender, socioeconomic status, race/ethnicity, and important modes of technology and engineering instruction. These factors…

  14. Safety engineering: KTA code of practice. Lifting mechanisms in nuclear plant

    NASA Astrophysics Data System (ADS)

    Lifting mechanisms safety requirements are discussed in accordance with the present state of development of science and engineering for the protection of life, health, and assets against the dangers of nuclear energy and the ill effects of ionizing radiation.

  15. Space Nuclear Reactor Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, David Irvin

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  16. Site Environmental Report for Calendar Year 2004. DOE Operations at The Boeing Company Santa Susana Field Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Lee, Majelle

    2005-09-01

    This Annual Site Environmental Report (ASER) for 2004 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated inmore » 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2004 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  17. Site Environmental Report for Calendar Year 2006. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil

    2007-09-01

    This Annual Site Environmental Report (ASER) for 2006 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated inmore » 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2006 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  18. Silicon carbide, an emerging high temperature semiconductor

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  19. Nuclear Electric Propulsion Technology Panel findings and recommendations

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1992-01-01

    Summarized are the findings and recommendations of a triagency (NASA/DOE/DOD) panel on Nuclear Electric Propulsion (NEP) Technology. NEP has been identified as a candidate nuclear propulsion technology for exploration of the Moon and Mars as part of the Space Exploration Initiative (SEI). The findings are stated in areas of system and subsystem considerations, technology readiness, and ground test facilities. Recommendations made by the panel are summarized concerning: (1) existing space nuclear power and propulsion programs, and (2) the proposed multiagency NEP technology development program.

  20. Careers and people

    NASA Astrophysics Data System (ADS)

    2009-02-01

    Early-career scientists honoured Nine physicists were among 67 US-based researchers to be awarded a Presidential Early Career Award for Scientists and Engineers at a White House ceremony in late December 2008. The award comes with up to five years' funding for research deemed critical to government missions. This year's winners include nuclear physicist Mickey Chiu and particle physicist Hooman Davoudiasl, both of the Brookhaven National Laboratory; biophysicist Michael Elowitz of the California Institute of Technology; Chad Fertig, an atomic physicist at the University of Georgia; astronomer Charles Kankelborg of Montana State University; astrophysicist Merav Opher of George Mason University; theorist Robin Santra of the Argonne National Laboratory; quantum-computing researcher Raymond Simmons of the National Institute of Standards and Technologies in Boulder, Colorado; and string theorist Anastasia Volovich of Brown University.

Top