Sample records for engineering problems including

  1. Introductory Level Problems Illustrating Concepts in Pharmaceutical Engineering

    ERIC Educational Resources Information Center

    McIver, Keith; Whitaker, Kathryn; De Delva, Vladimir; Farrell, Stephanie; Savelski, Mariano J.; Slater, C. Stewart

    2012-01-01

    Textbook style problems including detailed solutions introducing pharmaceutical topics at the level of an introductory chemical engineering course have been created. The problems illustrate and teach subjects which students would learn if they were to pursue a career in pharmaceutical engineering, including the unique terminology of the field,…

  2. Chemistry and the Internal Combustion Engine II: Pollution Problems.

    ERIC Educational Resources Information Center

    Hunt, C. B.

    1979-01-01

    Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)

  3. Rocket Engine Oscillation Diagnostics

    NASA Technical Reports Server (NTRS)

    Nesman, Tom; Turner, James E. (Technical Monitor)

    2002-01-01

    Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.

  4. Teaching problem solving: Don't forget the problem solver(s)

    NASA Astrophysics Data System (ADS)

    Ranade, Saidas M.; Corrales, Angela

    2013-05-01

    The importance of intrapersonal and interpersonal intelligences has long been known but educators have debated whether to and how to incorporate those topics in an already crowded engineering curriculum. In 2010, the authors used the classroom as a laboratory to observe the usefulness of including selected case studies and exercises from the fields of neurology, artificial intelligence, cognitive sciences and social psychology in a new problem-solving course. To further validate their initial findings, in 2012, the authors conducted an online survey of engineering students and engineers. The main conclusion is that engineering students will benefit from learning more about the impact of emotions, culture, diversity and cognitive biases when solving problems. Specifically, the work shows that an augmented problem-solving curriculum needs to include lessons on labelling emotions and cognitive biases, 'evidence-based' data on the importance of culture and diversity and additional practice on estimating conditional probability.

  5. Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review

    NASA Astrophysics Data System (ADS)

    Cheng, C. M.; Peng, Z. K.; Zhang, W. M.; Meng, G.

    2017-03-01

    Nonlinear problems have drawn great interest and extensive attention from engineers, physicists and mathematicians and many other scientists because most real systems are inherently nonlinear in nature. To model and analyze nonlinear systems, many mathematical theories and methods have been developed, including Volterra series. In this paper, the basic definition of the Volterra series is recapitulated, together with some frequency domain concepts which are derived from the Volterra series, including the general frequency response function (GFRF), the nonlinear output frequency response function (NOFRF), output frequency response function (OFRF) and associated frequency response function (AFRF). The relationship between the Volterra series and other nonlinear system models and nonlinear problem solving methods are discussed, including the Taylor series, Wiener series, NARMAX model, Hammerstein model, Wiener model, Wiener-Hammerstein model, harmonic balance method, perturbation method and Adomian decomposition. The challenging problems and their state of arts in the series convergence study and the kernel identification study are comprehensively introduced. In addition, a detailed review is then given on the applications of Volterra series in mechanical engineering, aeroelasticity problem, control engineering, electronic and electrical engineering.

  6. Perm State University HPC-hardware and software services: capabilities for aircraft engine aeroacoustics problems solving

    NASA Astrophysics Data System (ADS)

    Demenev, A. G.

    2018-02-01

    The present work is devoted to analyze high-performance computing (HPC) infrastructure capabilities for aircraft engine aeroacoustics problems solving at Perm State University. We explore here the ability to develop new computational aeroacoustics methods/solvers for computer-aided engineering (CAE) systems to handle complicated industrial problems of engine noise prediction. Leading aircraft engine engineering company, including “UEC-Aviadvigatel” JSC (our industrial partners in Perm, Russia), require that methods/solvers to optimize geometry of aircraft engine for fan noise reduction. We analysed Perm State University HPC-hardware resources and software services to use efficiently. The performed results demonstrate that Perm State University HPC-infrastructure are mature enough to face out industrial-like problems of development CAE-system with HPC-method and CFD-solvers.

  7. The Problem-Solving Process in Physics as Observed When Engineering Students at University Level Work in Groups

    ERIC Educational Resources Information Center

    Gustafsson, Peter; Jonsson, Gunnar; Enghag, Margareta

    2015-01-01

    The problem-solving process is investigated for five groups of students when solving context-rich problems in an introductory physics course included in an engineering programme. Through transcripts of their conversation, the paths in the problem-solving process have been traced and related to a general problem-solving model. All groups exhibit…

  8. Similitude design for the vibration problems of plates and shells: A review

    NASA Astrophysics Data System (ADS)

    Zhu, Yunpeng; Wang, You; Luo, Zhong; Han, Qingkai; Wang, Deyou

    2017-06-01

    Similitude design plays a vital role in the analysis of vibration and shock problems encountered in large engineering equipment. Similitude design, including dimensional analysis and governing equation method, is founded on the dynamic similitude theory. This study reviews the application of similitude design methods in engineering practice and summarizes the major achievements of the dynamic similitude theory in structural vibration and shock problems in different fields, including marine structures, civil engineering structures, and large power equipment. This study also reviews the dynamic similitude design methods for thin-walled and composite material plates and shells, including the most recent work published by the authors. Structure sensitivity analysis is used to evaluate the scaling factors to attain accurate distorted scaling laws. Finally, this study discusses the existing problems and the potential of the dynamic similitude theory for the analysis of vibration and shock problems of structures.

  9. Strategies for Limiting Engineers' Potential Liability for Indoor Air Quality Problems.

    PubMed

    von Oppenfeld, Rolf R; Freeze, Mark E; Sabo, Sean M

    1998-10-01

    Engineers face indoor air quality (IAQ) issues at the design phase of building construction as well as during the investigation and mitigation of potential indoor air pollution problems during building operation. IAQ issues that can be identified are "building-related illnesses" that may include problems of volatile organic compounds (VOCs). IAQ issues that cannot be identified are termed "sick building syndrome." Frequently, microorganism-caused illnesses are difficult to confirm. Engineers who provide professional services that directly or indirectly impact IAQ face significant potential liability to clients and third parties when performing these duties. Potential theories supporting liability claims for IAQ problems against engineers include breach of contract and various common law tort theories such as negligence and negligent misrepresentation. Furthermore, an increasing number of federal, state, and local regulations affect IAQ issues and can directly increase the potential liability of engineers. A duty to disclose potential or actual air quality concerns to third parties may apply for engineers in given circumstances. Such a duty may arise from judicial precedent, the Model Guide for Professional Conduct for Engineers, or the Code of Ethics for Engineers. Practical strategies engineers can use to protect themselves from liability include regular training and continuing education in relevant regulatory, scientific, and case law developments; detailed documentation and recordkeeping practices; adequate insurance coverage; contractual indemnity clauses; contractual provisions limiting liability to the scope of work performed; and contractual provisions limiting the extent of liability for engineers' negligence. Furthermore, through the proper use of building materials and construction techniques, an engineer or other design professional can effectively limit the potential for IAQ liability.

  10. Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm

    NASA Astrophysics Data System (ADS)

    Kania, Adhe; Sidarto, Kuntjoro Adji

    2016-02-01

    Many engineering and practical problem can be modeled by mixed integer nonlinear programming. This paper proposes to solve the problem with modified spiral dynamics inspired optimization method of Tamura and Yasuda. Four test cases have been examined, including problem in engineering and sport. This method succeeds in obtaining the optimal result in all test cases.

  11. Expert vs. novice: Problem decomposition/recomposition in engineering design

    NASA Astrophysics Data System (ADS)

    Song, Ting

    The purpose of this research was to investigate the differences of using problem decomposition and problem recomposition among dyads of engineering experts, dyads of engineering seniors, and dyads of engineering freshmen. Fifty participants took part in this study. Ten were engineering design experts, 20 were engineering seniors, and 20 were engineering freshmen. Participants worked in dyads to complete an engineering design challenge within an hour. The entire design process was video and audio recorded. After the design session, members participated in a group interview. This study used protocol analysis as the methodology. Video and audio data were transcribed, segmented, and coded. Two coding systems including the FBS ontology and "levels of the problem" were used in this study. A series of statistical techniques were used to analyze data. Interview data and participants' design sketches also worked as supplemental data to help answer the research questions. By analyzing the quantitative and qualitative data, it was found that students used less problem decomposition and problem recomposition than engineer experts in engineering design. This result implies that engineering education should place more importance on teaching problem decomposition and problem recomposition. Students were found to spend less cognitive effort when considering the problem as a whole and interactions between subsystems than engineer experts. In addition, students were also found to spend more cognitive effort when considering details of subsystems. These results showed that students tended to use dept-first decomposition and experts tended to use breadth-first decomposition in engineering design. The use of Function (F), Behavior (B), and Structure (S) among engineering experts, engineering seniors, and engineering freshmen was compared on three levels. Level 1 represents designers consider the problem as an integral whole, Level 2 represents designers consider interactions between subsystems, and Level 3 represents designers consider details of subsystems. The results showed that students used more S on Level 1 and 3 but they used less F on Level 1 than engineering experts. The results imply that engineering curriculum should improve the teaching of problem definition in engineering design because students need to understand the problem before solving it.

  12. Photolithography diagnostic expert systems: a systematic approach to problem solving in a wafer fabrication facility

    NASA Astrophysics Data System (ADS)

    Weatherwax Scott, Caroline; Tsareff, Christopher R.

    1990-06-01

    One of the main goals of process engineering in the semiconductor industry is to improve wafer fabrication productivity and throughput. Engineers must work continuously toward this goal in addition to performing sustaining and development tasks. To accomplish these objectives, managers must make efficient use of engineering resources. One of the tools being used to improve efficiency is the diagnostic expert system. Expert systems are knowledge based computer programs designed to lead the user through the analysis and solution of a problem. Several photolithography diagnostic expert systems have been implemented at the Hughes Technology Center to provide a systematic approach to process problem solving. This systematic approach was achieved by documenting cause and effect analyses for a wide variety of processing problems. This knowledge was organized in the form of IF-THEN rules, a common structure for knowledge representation in expert system technology. These rules form the knowledge base of the expert system which is stored in the computer. The systems also include the problem solving methodology used by the expert when addressing a problem in his area of expertise. Operators now use the expert systems to solve many process problems without engineering assistance. The systems also facilitate the collection of appropriate data to assist engineering in solving unanticipated problems. Currently, several expert systems have been implemented to cover all aspects of the photolithography process. The systems, which have been in use for over a year, include wafer surface preparation (HMDS), photoresist coat and softbake, align and expose on a wafer stepper, and develop inspection. These systems are part of a plan to implement an expert system diagnostic environment throughout the wafer fabrication facility. In this paper, the systems' construction is described, including knowledge acquisition, rule construction, knowledge refinement, testing, and evaluation. The roles played by the process engineering expert and the knowledge engineer are discussed. The features of the systems are shown, particularly the interactive quality of the consultations and the ease of system use.

  13. Chemical Engineers Go to the Movies (Stimulating Problems for the Contemporary Undergraduate Student)

    ERIC Educational Resources Information Center

    Smart, Jimmy L.

    2007-01-01

    In this article, the author presents five problems that are representative of some of the "movie problems" that he has used on tests in various courses, including reactor design, heat transfer, mass transfer, engineering economics, and fluid mechanics. These problems tend to be open-ended. They can be challenging and can often be worked a variety…

  14. Expert system prototype developments for NASA-KSC business and engineering applications

    NASA Technical Reports Server (NTRS)

    Ragusa, James M.; Gonzalez, Avelino J.

    1988-01-01

    Prototype expert systems developed for a variety of NASA projects in the business/management and engineering domains are discussed. Business-related problems addressed include an assistant for simulating launch vehicle processing, a plan advisor for the acquisition of automated data processing equipment, and an expert system for the identification of customer requirements. Engineering problems treated include an expert system for detecting potential ignition sources in LOX and gaseous-oxygen transportation systems and an expert system for hazardous-gas detection.

  15. Ways of thinking about and teaching ethical problem solving: microethics and macroethics in engineering.

    PubMed

    Herkert, Joseph R

    2005-07-01

    Engineering ethics entails three frames of reference: individual, professional, and social. "Microethics" considers individuals and internal relations of the engineering profession; "macroethics" applies to the collective social responsibility of the profession and to societal decisions about technology. Most research and teaching in engineering ethics, including online resources, has had a "micro" focus. Mechanisms for incorporating macroethical perspectives include: integrating engineering ethics and science, technology and society (STS); closer integration of engineering ethics and computer ethics; and consideration of the influence of professional engineering societies and corporate social responsibility programs on ethical engineering practice. Integrating macroethical issues and concerns in engineering ethics involves broadening the context of ethical problem solving. This in turn implies: developing courses emphasizing both micro and macro perspectives, providing faculty development that includes training in both STS and practical ethics; and revision of curriculum materials, including online resources. Multidisciplinary collaboration is recommended 1) to create online case studies emphasizing ethical decision making in individual, professional, and societal contexts; 2) to leverage existing online computer ethics resources with relevance to engineering education and practice; and 3) to create transparent linkages between public policy positions advocated by professional societies and codes of ethics.

  16. Software Past, Present, and Future: Views from Government, Industry and Academia

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Page, Jerry; Evangelist, Michael

    2000-01-01

    Views from the NASA CIO NASA Software Engineering Workshop on software development from the past, present, and future are presented. The topics include: 1) Software Past; 2) Software Present; 3) NASA's Largest Software Challenges; 4) 8330 Software Projects in Industry Standish Groups 1994 Report; 5) Software Future; 6) Capability Maturity Model (CMM): Software Engineering Institute (SEI) levels; 7) System Engineering Quality Also Part of the Problem; 8) University Environment Trends Will Increase the Problem in Software Engineering; and 9) NASA Software Engineering Goals.

  17. Developments in REDES: The rocket engine design expert system

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) is being developed at the NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP, a nozzle design program named RAO, a regenerative cooling channel performance evaluation code named RTE, and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES is built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  18. Developments in REDES: The Rocket Engine Design Expert System

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  19. The Transport of Mass, Energy, and Entropy in Cryogenic Support Struts for Engineering Design

    NASA Technical Reports Server (NTRS)

    Elchert, J. P.

    2012-01-01

    Engineers working to understand and reduce cryogenic boil-off must solve a variety of transport problems. An important class of nonlinear problems involves the thermal and mechanical design of cryogenic struts. These classic problems are scattered about the literature and typically require too many resources to obtain. So, to save time for practicing engineers, the author presents this essay. Herein, a variety of new, old, and revisited analytical and finite difference solutions of the thermal problem are covered in this essay, along with commentary on approach and assumptions. This includes a few thermal radiation and conduction combined mode solutions with a discussion on insulation, optimum emissivity, and geometrical phenomenon. Solutions to cooling and heat interception problems are also presented, including a discussion of the entropy generation. The literature on the combined mechanical and thermal design of cryogenic support struts is reviewed with an introduction to the associated numerical methods.

  20. The Transport of Mass, Energy, and Entropy in Cryogenic Support Struts for Engineering Design

    NASA Technical Reports Server (NTRS)

    Elchert, J. P.

    2012-01-01

    Engineers working to understand and reduce cryogenic boil-off must solve a. variety of transport problems. An important class of nonlinear problems involves the thermal and mechanical design of cryogenic struts. These classic problems are scattered about the literature and typically require too many resources to obtain. So, to save time for practicing engineers, the author presents this essay. Herein, a variety of new, old, and revisited analytical and finite difference solutions of the thermal problem are covered in this essay, along with commentary on approach and assumptions, This includes a few thermal radiation and conduction combined mode solution with a discussion on insulation, optimum emissivity, and geometrical phenomenon. Solutions to cooling and heat interception problems are also presented, including a discussion of the entropy generation. And the literature on the combined mechanical and thermal design of cryogenic support struts is reviewed with an introduction to the associated numerical methods.

  1. A General-Purpose Optimization Engine for Multi-Disciplinary Design Applications

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Berke, Laszlo

    1996-01-01

    A general purpose optimization tool for multidisciplinary applications, which in the literature is known as COMETBOARDS, is being developed at NASA Lewis Research Center. The modular organization of COMETBOARDS includes several analyzers and state-of-the-art optimization algorithms along with their cascading strategy. The code structure allows quick integration of new analyzers and optimizers. The COMETBOARDS code reads input information from a number of data files, formulates a design as a set of multidisciplinary nonlinear programming problems, and then solves the resulting problems. COMETBOARDS can be used to solve a large problem which can be defined through multiple disciplines, each of which can be further broken down into several subproblems. Alternatively, a small portion of a large problem can be optimized in an effort to improve an existing system. Some of the other unique features of COMETBOARDS include design variable formulation, constraint formulation, subproblem coupling strategy, global scaling technique, analysis approximation, use of either sequential or parallel computational modes, and so forth. The special features and unique strengths of COMETBOARDS assist convergence and reduce the amount of CPU time used to solve the difficult optimization problems of aerospace industries. COMETBOARDS has been successfully used to solve a number of problems, including structural design of space station components, design of nozzle components of an air-breathing engine, configuration design of subsonic and supersonic aircraft, mixed flow turbofan engines, wave rotor topped engines, and so forth. This paper introduces the COMETBOARDS design tool and its versatility, which is illustrated by citing examples from structures, aircraft design, and air-breathing propulsion engine design.

  2. Engineering education in the wake of hurricane Katrina

    PubMed Central

    Lima, Marybeth

    2007-01-01

    Living through hurricane Katrina and its aftermath and reflecting on these experiences from technical and non-technical standpoints has led me to reconsider my thoughts and philosophy on engineering education. I present three ideas regarding engineering education pedagogy that I believe will prepare future engineers for problem-solving in an increasingly complex world. They are (1) we must practice radical (to the root) engineering, (2) we must illustrate connections between engineering and public policy, and (3) we will join the charge to find sustainable solutions to problems. Ideas for bringing each of these concepts into engineering curricula through methods such as case study, practicing broad information gathering and data interpretation, and other methods inside and outside the classroom, are discussed. I believe that the consequences of not considering the root issues of problems to be solved, and of not including policy and sustainability considerations when problems to be solved are framed will lead our profession toward well meaning but insufficient utility. Hurricane Katrina convinced me that we must do better as educators to prepare our students for engineering for a sustainable world. PMID:18271988

  3. Engineering Education Problems. The Laboratory Equipment Factor.

    ERIC Educational Resources Information Center

    National Society of Professional Engineers, Washington, DC.

    Presented is a pilot study focusing attention on problems of deteriorating physical plants and inadequate/obsolete equipment contributing to the current crisis in engineering education. Data are reported from a survey instrument (included in an appendix) from 26 colleges/universities, representing 168 programs out of a national total of 1212…

  4. NASA Engineering and Technology Advancement Office: A proposal to the administrator

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    NASA has continually had problems with cost, schedule, performance, reliability, quality, and safety aspects in programs. Past solutions have not provided the answers needed, and a major change is needed in the way of doing business. A new approach is presented for consideration. These problems are all engineering matters, and therefore, require engineering solutions. Proper engineering tools are needed to fix engineering problems. Headquarters is responsible for providing the management structure to support programs with appropriate engineering tools. A guide to define those tools and an approach for putting them into place is provided. Recommendations include establishing a new Engineering and Technology Advancement Office, requesting a review of this proposal by the Administrator since this subject requires a top level decision. There has been a wide peer review conducted by technical staff at Headquarters, the Field Installations, and others in industry as discussed.

  5. Educating Civil Engineers for Developing Countries

    ERIC Educational Resources Information Center

    Stanley, D.

    1974-01-01

    Based on engineering teaching experience in Africa and Asia, ideas are presented on educating civil engineers for developing countries, especially those in Africa. Some of the problems facing educational planners, teachers, and students are addressed, including responsibilities of a newly graduated civil engineer, curriculum development, and…

  6. Building information modelling review with potential applications in tunnel engineering of China.

    PubMed

    Zhou, Weihong; Qin, Haiyang; Qiu, Junling; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin

    2017-08-01

    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance.

  7. Building information modelling review with potential applications in tunnel engineering of China

    PubMed Central

    Zhou, Weihong; Qin, Haiyang; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin

    2017-01-01

    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance. PMID:28878970

  8. Building information modelling review with potential applications in tunnel engineering of China

    NASA Astrophysics Data System (ADS)

    Zhou, Weihong; Qin, Haiyang; Qiu, Junling; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin

    2017-08-01

    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance.

  9. What is the problem in problem-based learning in higher education mathematics

    NASA Astrophysics Data System (ADS)

    Dahl, Bettina

    2018-01-01

    Problem and Project-Based Learning (PBL) emphasise collaborate work on problems relevant to society and emphases the relation between theory and practice. PBL fits engineering students as preparation for their future professions but what about mathematics? Mathematics is not just applied mathematics, but it is also a body of abstract knowledge where the application in society is not always obvious. Does mathematics, including pure mathematics, fit into a PBL curriculum? This paper argues that it does for two reasons: (1) PBL resembles the working methods of research mathematicians. (2) The concept of society includes the society of researchers to whom theoretical mathematics is relevant. The paper describes two cases of university PBL projects in mathematics; one in pure mathematics and the other in applied mathematics. The paper also discusses that future engineers need to understand the world of mathematics as well as how engineers fit into a process of fundamental-research-turned-into-applied-science.

  10. Consequences of Team Charter Quality: Teamwork Mental Model Similarity and Team Viability in Engineering Design Student Teams

    ERIC Educational Resources Information Center

    Conway Hughston, Veronica

    2014-01-01

    Since 1996 ABET has mandated that undergraduate engineering degree granting institutions focus on learning outcomes such as professional skills (i.e. solving unstructured problems and working in teams). As a result, engineering curricula were restructured to include team based learning--including team charters. Team charters were diffused into…

  11. High-performance parallel analysis of coupled problems for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Lanteri, S.; Gumaste, U.; Ronaghi, M.

    1994-01-01

    Applications are described of high-performance parallel, computation for the analysis of complete jet engines, considering its multi-discipline coupled problem. The coupled problem involves interaction of structures with gas dynamics, heat conduction and heat transfer in aircraft engines. The methodology issues addressed include: consistent discrete formulation of coupled problems with emphasis on coupling phenomena; effect of partitioning strategies, augmentation and temporal solution procedures; sensitivity of response to problem parameters; and methods for interfacing multiscale discretizations in different single fields. The computer implementation issues addressed include: parallel treatment of coupled systems; domain decomposition and mesh partitioning strategies; data representation in object-oriented form and mapping to hardware driven representation, and tradeoff studies between partitioning schemes and fully coupled treatment.

  12. Relative Importance of Professional Practice and Engineering Management Competencies

    ERIC Educational Resources Information Center

    Pons, Dirk

    2016-01-01

    Problem: The professional practice of engineering always involves engineering management, but it is difficult to know what specifically to include in the undergraduate curriculum. Approach: The population of New Zealand practising engineers was surveyed to determine the importance they placed on specific professional practice and engineering…

  13. Multiscale/Multifunctional Probabilistic Composite Fatigue

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A multilevel (multiscale/multifunctional) evaluation is demonstrated by applying it to three different sample problems. These problems include the probabilistic evaluation of a space shuttle main engine blade, an engine rotor and an aircraft wing. The results demonstrate that the blade will fail at the highest probability path, the engine two-stage rotor will fail by fracture at the rim and the aircraft wing will fail at 109 fatigue cycles with a probability of 0.9967.

  14. Genetic Engineering

    ERIC Educational Resources Information Center

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  15. Report of the Polymer Core Course Committee: Polymer Principles for the Chemical Engineering Curriculum.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1985

    1985-01-01

    Offers suggestions for introducing polymer topics into: (1) introductory chemical engineering; (2) transport phenomena and unit operations; (3) chemical engineering thermodynamics; and (4) reaction engineering. Also included for each area are examples of textbooks in current use and a few typical problems. (JN)

  16. Engineering Sustainable Solutions Program: Critical Literacies for Engineers Portfolio

    ERIC Educational Resources Information Center

    Paten, Cheryl J. K.; Palousis, Nicholas; Hargroves, Karlson; Smith, Michael

    2005-01-01

    Purpose: While a number of universities in Australia have embraced concepts such as project/problem-based learning and design of innovative learning environments for engineering education, there has been a lack of national guidance on including sustainability as a "critical literacy" into all engineering streams. This paper was presented…

  17. Selective Guide to Literature on Mining Engineering. Engineering Literature Guides, Number 6.

    ERIC Educational Resources Information Center

    Erdmann, Charlotte A., Comp.

    The multidisciplinary field of mining engineering offers many challenges. Often, many sources must be used to solve a problem. This document is a survey of information sources in mining engineering and is intended to identify those core resources which can help engineers and librarians to find information about the discipline. Sections include:…

  18. Multi-Scale/Multi-Functional Probabilistic Composite Fatigue

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2008-01-01

    A multi-level (multi-scale/multi-functional) evaluation is demonstrated by applying it to three different sample problems. These problems include the probabilistic evaluation of a space shuttle main engine blade, an engine rotor and an aircraft wing. The results demonstrate that the blade will fail at the highest probability path, the engine two-stage rotor will fail by fracture at the rim and the aircraft wing will fail at 109 fatigue cycles with a probability of 0.9967.

  19. 14 CFR Appendix K to Part 25 - Extended Operations (ETOPS)

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Appendix C of this part with a liquid water content factor of 1.0. (iii) Ice accumulated during approach... engine control or the desired thrust or power level was not achieved, including engine flameouts. Planned... involved. A relevant problem is a problem with an ETOPS group 1 significant system that has or could result...

  20. Overview of heat transfer and fluid flow problem areas encountered in Stirling engine modeling

    NASA Technical Reports Server (NTRS)

    Tew, Roy C., Jr.

    1988-01-01

    NASA Lewis Research Center has been managing Stirling engine development programs for over a decade. In addition to contractual programs, this work has included in-house engine testing and development of engine computer models. Attempts to validate Stirling engine computer models with test data have demonstrated that engine thermodynamic losses need better characterization. Various Stirling engine thermodynamic losses and efforts that are underway to characterize these losses are discussed.

  1. The current status of rehabilitation engineering

    NASA Technical Reports Server (NTRS)

    Reswick, J. B.

    1974-01-01

    Mechanical and electrical engineering devices for paralytic patient care are discussed as they are applied to medical problems. These include means of preventing bedsores, mobility aids, upper extremity orthoses, and electrical stimulation.

  2. Ethics and the UN Sustainable Development Goals: The Case for Comprehensive Engineering : Commentary on "Using Student Engagement to Relocate Ethics to the Core of the Engineering Curriculum".

    PubMed

    van den Hoven, Jeroen

    2016-12-27

    In the twenty-first century, the urgent problems the world is facing (the UN Sustainable Development Goals) are increasingly related to vast and intricate 'systems of systems', which comprise both socio-technical and eco-systems. In order for engineers to adequately and responsibly respond to these problems, they cannot focus on only one technical or any other aspect in isolation, but must adopt a wider and multidisciplinary perspective of these systems, including an ethical and social perspective. Engineering curricula should therefore focus on what we call 'comprehensive engineering'. Comprehensive engineering implies ethical coherence, consilience of scientific disciplines, and cooperation between parties.

  3. NASTRAN thermal analyzer: Theory and application including a guide to modeling engineering problems, volume 2. [sample problem library guide

    NASA Technical Reports Server (NTRS)

    Jackson, C. E., Jr.

    1977-01-01

    A sample problem library containing 20 problems covering most facets of Nastran Thermal Analyzer modeling is presented. Areas discussed include radiative interchange, arbitrary nonlinear loads, transient temperature and steady-state structural plots, temperature-dependent conductivities, simulated multi-layer insulation, and constraint techniques. The use of the major control options and important DMAP alters is demonstrated.

  4. Report of the DOD-University Forum Working Group on Engineering and Science Education.

    DTIC Science & Technology

    1983-07-01

    high priority to strengthening our national base of scientific and technical personnel. That included im- mediate emphasis on training people in the...4 - DOD Requirements for Civilian Engineering and Scientific Personnel .. 5 - DOD Requirements for Military Engineering and Scientific ...15 - The Problem is Quality ................ o................. ...... 15 - The Quality of Engineering and Scientific Personnel in

  5. Engineering Geodesy - Definition and Core Competencies

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Heiner; Schwieger, Volker; Wieser, Andreas; Niemeier, Wolfgang

    2014-11-01

    This article summarises discussions concerning the definition of "engineering geodesy" within the German Geodetic Commission. It is noted that engineering geodesy by means of its tasks, methods and characteristics is an application-oriented science whose research questions often arise from observed phenomena or from unsolved practical problems. In particular it is characterised by the professional handling of geometry-related problems in a cost-effective manner that includes comprehensive quality assessment at all phases of the problem solution - from planning through measurement to data processing and interpretation. The current methodical developments are primarily characterised by the increasing integration of the measurement and analysis into challenging construction, production and monitoring processes as well as by the transition to spatially continuous methods. A modern definition of engineering geodesy is proposed at the end of this article.

  6. DTS: Building custom, intelligent schedulers

    NASA Technical Reports Server (NTRS)

    Hansson, Othar; Mayer, Andrew

    1994-01-01

    DTS is a decision-theoretic scheduler, built on top of a flexible toolkit -- this paper focuses on how the toolkit might be reused in future NASA mission schedulers. The toolkit includes a user-customizable scheduling interface, and a 'Just-For-You' optimization engine. The customizable interface is built on two metaphors: objects and dynamic graphs. Objects help to structure problem specifications and related data, while dynamic graphs simplify the specification of graphical schedule editors (such as Gantt charts). The interface can be used with any 'back-end' scheduler, through dynamically-loaded code, interprocess communication, or a shared database. The 'Just-For-You' optimization engine includes user-specific utility functions, automatically compiled heuristic evaluations, and a postprocessing facility for enforcing scheduling policies. The optimization engine is based on BPS, the Bayesian Problem-Solver (1,2), which introduced a similar approach to solving single-agent and adversarial graph search problems.

  7. A Course in Medicine for Engineers

    ERIC Educational Resources Information Center

    Pimmel, Russell; Weed, H. R.

    1974-01-01

    Describes a course planned for bio-medical engineering students. Intended outcomes of the course include an understanding of medical problems, their courses, diagnosis and treatment, and an awareness of the physician's philosophy and approach. (GS)

  8. Happy software developers solve problems better: psychological measurements in empirical software engineering

    PubMed Central

    Wang, Xiaofeng; Abrahamsson, Pekka

    2014-01-01

    For more than thirty years, it has been claimed that a way to improve software developers’ productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states—emotions and moods—deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint. PMID:24688866

  9. Happy software developers solve problems better: psychological measurements in empirical software engineering.

    PubMed

    Graziotin, Daniel; Wang, Xiaofeng; Abrahamsson, Pekka

    2014-01-01

    For more than thirty years, it has been claimed that a way to improve software developers' productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states-emotions and moods-deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint.

  10. Benchmarking Gas Path Diagnostic Methods: A Public Approach

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Bird, Jeff; Davison, Craig; Volponi, Al; Iverson, R. Eugene

    2008-01-01

    Recent technology reviews have identified the need for objective assessments of engine health management (EHM) technology. The need is two-fold: technology developers require relevant data and problems to design and validate new algorithms and techniques while engine system integrators and operators need practical tools to direct development and then evaluate the effectiveness of proposed solutions. This paper presents a publicly available gas path diagnostic benchmark problem that has been developed by the Propulsion and Power Systems Panel of The Technical Cooperation Program (TTCP) to help address these needs. The problem is coded in MATLAB (The MathWorks, Inc.) and coupled with a non-linear turbofan engine simulation to produce "snap-shot" measurements, with relevant noise levels, as if collected from a fleet of engines over their lifetime of use. Each engine within the fleet will experience unique operating and deterioration profiles, and may encounter randomly occurring relevant gas path faults including sensor, actuator and component faults. The challenge to the EHM community is to develop gas path diagnostic algorithms to reliably perform fault detection and isolation. An example solution to the benchmark problem is provided along with associated evaluation metrics. A plan is presented to disseminate this benchmark problem to the engine health management technical community and invite technology solutions.

  11. A Segmented Ion-Propulsion Engine

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1992-01-01

    New design approach for high-power (100-kW class or greater) ion engines conceptually divides single engine into combination of smaller discharge chambers integrated to operate as single large engine. Analogous to multicylinder automobile engine, benefits include reduction in required accelerator system span-to-gap ratio for large-area engines, reduction in required hollow-cathode emission current, mitigation of plasma-uniformity problem, increased tolerance to accelerator system faults, and reduction in vacuum-system pumping speed.

  12. On the Role of Engineering in Mathematical Development

    ERIC Educational Resources Information Center

    Fernandez, Isabel; Pacheco, Jose

    2005-01-01

    It is customary for engineering syllabuses to include a substantial amount of mathematics, a fact traditionally justified through their usefulness in the analysis and resolution of many technological problems. In other words, usually the role of mathematics in engineering is emphasized. Nevertheless, the opposite viewpoint could be considered as…

  13. Technological Literacy Learning with Cumulative and Stepwise Integration of Equations into Electrical Circuit Diagrams

    ERIC Educational Resources Information Center

    Ozogul, G.; Johnson, A. M.; Moreno, R.; Reisslein, M.

    2012-01-01

    Technological literacy education involves the teaching of basic engineering principles and problem solving, including elementary electrical circuit analysis, to non-engineering students. Learning materials on circuit analysis typically rely on equations and schematic diagrams, which are often unfamiliar to non-engineering students. The goal of…

  14. In-house welding studies supporting the prelaunch assessment of the STS-6 main engines

    NASA Technical Reports Server (NTRS)

    Hawkins, L. L.

    1983-01-01

    Welding studies were undertaken as a result of problems with the Challenger engines. The process used to perform these welds on heat exchanger coils, and sample test data, are described. Recommendations for process improvement are included. Effort to simulate problem welds, as well as good welds, test data, and conclusions for the high pressure fuel turbopump are also are discussed.

  15. Automotive technology status and projections. Volume 2: Assessment report

    NASA Technical Reports Server (NTRS)

    Dowdy, M.; Burke, A.; Schneider, H.; Edmiston, W.; Klose, G. J.; Heft, R.

    1978-01-01

    Current and advanced conventional engines, advanced alternative engines, advanced power train components, and other energy conserving automobile modifications which could be implemented by the end of this century are examined. Topics covered include gas turbine engines, Stirling engines, advanced automatic transmissions, alternative fuels, and metal and ceramic technology. Critical problems are examined and areas for future research are indicated.

  16. Historical problem areas lessons learned

    NASA Technical Reports Server (NTRS)

    Sackheim, Bob; Fester, Dale A.

    1991-01-01

    Historical problem areas in space transportation propulsion technology are identified in viewgraph form. Problem areas discussed include materials compatibility, contamination, pneumatic/feed system flow instabilities, instabilities in rocket engine combustion and fuel sloshing, exhaust plume interference, composite rocket nozzle failure, and freeze/thaw damage.

  17. Practical Elements in Danish Engineering Programmes, Including the European Project Semester

    ERIC Educational Resources Information Center

    Hansen, Jorgen

    2012-01-01

    In Denmark, all engineering programmes in HE have practical elements; for instance, at Bachelor's level, an internship is an integrated part of the programme. Furthermore, Denmark has a long-established tradition of problem-based and project-organized learning, and a large part of students' projects, including their final projects, is done in…

  18. NASTRAN thermal analyzer: Theory and application including a guide to modeling engineering problems, volume 1. [thermal analyzer manual

    NASA Technical Reports Server (NTRS)

    Lee, H. P.

    1977-01-01

    The NASTRAN Thermal Analyzer Manual describes the fundamental and theoretical treatment of the finite element method, with emphasis on the derivations of the constituent matrices of different elements and solution algorithms. Necessary information and data relating to the practical applications of engineering modeling are included.

  19. Raising the Titanic.

    ERIC Educational Resources Information Center

    Baker, Romona

    1990-01-01

    Described is an activity in which groups of students investigate engineering principles by writing a feasibility study to raise the luxury liner, Titanic. The problem statement and directions, and suggestions for problem solutions are included. (CW)

  20. Case study of a problem-based learning course of physics in a telecommunications engineering degree

    NASA Astrophysics Data System (ADS)

    Macho-Stadler, Erica; Jesús Elejalde-García, Maria

    2013-08-01

    Active learning methods can be appropriate in engineering, as their methodology promotes meta-cognition, independent learning and problem-solving skills. Problem-based learning is the educational process by which problem-solving activities and instructor's guidance facilitate learning. Its key characteristic involves posing a 'concrete problem' to initiate the learning process, generally implemented by small groups of students. Many universities have developed and used active methodologies successfully in the teaching-learning process. During the past few years, the University of the Basque Country has promoted the use of active methodologies through several teacher training programmes. In this paper, we describe and analyse the results of the educational experience using the problem-based learning (PBL) method in a physics course for undergraduates enrolled in the technical telecommunications engineering degree programme. From an instructors' perspective, PBL strengths include better student attitude in class and increased instructor-student and student-student interactions. The students emphasised developing teamwork and communication skills in a good learning atmosphere as positive aspects.

  1. Who Is Doing the Engineering, the Student or the Teacher? The Development and Use of a Rubric to Categorize Level of Design for the Elementary Classroom

    ERIC Educational Resources Information Center

    Nadelson, Louis S.; Pfiester, Joshua; Callahan, Janet; Pyke, Patricia

    2015-01-01

    Science, technology, engineering, and mathematics (STEM) professional development for K-5 teachers often includes engineering design as a focus. Because engineering applications provide perspective to both teachers and their students in terms of how mathematic and scientific principles are employed to solve real-world problems (Baine, 2004; Roden,…

  2. Forensic engineering: applying materials and mechanics principles to the investigation of product failures.

    PubMed

    Hainsworth, S V; Fitzpatrick, M E

    2007-06-01

    Forensic engineering is the application of engineering principles or techniques to the investigation of materials, products, structures or components that fail or do not perform as intended. In particular, forensic engineering can involve providing solutions to forensic problems by the application of engineering science. A criminal aspect may be involved in the investigation but often the problems are related to negligence, breach of contract, or providing information needed in the redesign of a product to eliminate future failures. Forensic engineering may include the investigation of the physical causes of accidents or other sources of claims and litigation (for example, patent disputes). It involves the preparation of technical engineering reports, and may require giving testimony and providing advice to assist in the resolution of disputes affecting life or property.This paper reviews the principal methods available for the analysis of failed components and then gives examples of different component failure modes through selected case studies.

  3. Evaluation of coupling approaches for thermomechanical simulations

    DOE PAGES

    Novascone, S. R.; Spencer, B. W.; Hales, J. D.; ...

    2015-08-10

    Many problems of interest, particularly in the nuclear engineering field, involve coupling between the thermal and mechanical response of an engineered system. The strength of the two-way feedback between the thermal and mechanical solution fields can vary significantly depending on the problem. Contact problems exhibit a particularly high degree of two-way feedback between those fields. This paper describes and demonstrates the application of a flexible simulation environment that permits the solution of coupled physics problems using either a tightly coupled approach or a loosely coupled approach. In the tight coupling approach, Newton iterations include the coupling effects between all physics,more » while in the loosely coupled approach, the individual physics models are solved independently, and fixed-point iterations are performed until the coupled system is converged. These approaches are applied to simple demonstration problems and to realistic nuclear engineering applications. The demonstration problems consist of single and multi-domain thermomechanics with and without thermal and mechanical contact. Simulations of a reactor pressure vessel under pressurized thermal shock conditions and a simulation of light water reactor fuel are also presented. Here, problems that include thermal and mechanical contact, such as the contact between the fuel and cladding in the fuel simulation, exhibit much stronger two-way feedback between the thermal and mechanical solutions, and as a result, are better solved using a tight coupling strategy.« less

  4. On-line infrared process signature measurements through combustion atmospheres

    NASA Astrophysics Data System (ADS)

    Zweibaum, F. M.; Kozlowski, A. T.; Surette, W. E., Jr.

    1980-01-01

    A number of on-line infrared process signature measurements have been made through combustion atmospheres, including those in jet engines, piston engines, and coal gasification reactors. The difficulties involved include operation in the presence of pressure as high as 1800 psi, temperatures as high as 3200 F, and explosive, corrosive and dust-laden atmospheres. Calibration problems have resulted from the use of purge gases to clear the viewing tubes, and the obscuration of the view ports by combustion products. A review of the solutions employed to counteract the problems is presented, and areas in which better solutions are required are suggested.

  5. Research on inverse, hybrid and optimization problems in engineering sciences with emphasis on turbomachine aerodynamics: Review of Chinese advances

    NASA Technical Reports Server (NTRS)

    Liu, Gao-Lian

    1991-01-01

    Advances in inverse design and optimization theory in engineering fields in China are presented. Two original approaches, the image-space approach and the variational approach, are discussed in terms of turbomachine aerodynamic inverse design. Other areas of research in turbomachine aerodynamic inverse design include the improved mean-streamline (stream surface) method and optimization theory based on optimal control. Among the additional engineering fields discussed are the following: the inverse problem of heat conduction, free-surface flow, variational cogeneration of optimal grid and flow field, and optimal meshing theory of gears.

  6. Automotive and Construction Equipment for Arctic Use, Materials Problems

    DTIC Science & Technology

    1991-11-01

    followed. Nitrile rubber ( NBR ) is one of the most common materials used in seal manufacture. It is a copolymer of butadiene and acrylonitrile and is... rubber and other elastomers, and many plastics. This problem is exacerbated, especially in equipment with diesel engines, because the engines run...their original condition in a short time on removal of the stress. The group includes natural rubbers as well as synthetic polymers. Many of these

  7. The Impact of Federal Programs and Policies on Manpower Planning for Scientists and Engineers: Problems and Progress.

    ERIC Educational Resources Information Center

    Scientific Manpower Commission, Washington, DC.

    This document reports the results of a workshop held to assess the impact of federal programs and legislation on manpower planning for scientists and engineers. Included are presentations relating to manpower utilization and planning via federal government agencies and professional societies for scientists and engineers. It was concluded that the…

  8. www.teld.net: Online Courseware Engine for Teaching by Examples and Learning by Doing.

    ERIC Educational Resources Information Center

    Huang, G. Q.; Shen, B.; Mak, K. L.

    2001-01-01

    Describes TELD (Teaching by Examples and Learning by Doing), a Web-based online courseware engine for higher education. Topics include problem-based learning; project-based learning; case methods; TELD as a Web server; course materials; TELD as a search engine; and TELD as an online virtual classroom for electronic delivery of electronic…

  9. A Multivariate Model of Physics Problem Solving

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Farley, John

    2013-01-01

    A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

  10. Chemists, Engineers Probe Mutual Problems.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1980

    1980-01-01

    Summarizes recommendations made in a workshop sponsored by the American Chemical Society concerning issues involving the diverging viewpoints of chemistry and chemical engineering. Includes recommendations regarding curricula, salary differences, and the need to change attitudes of chemistry faculty toward industry and industrial chemistry. (CS)

  11. Educating the humanitarian engineer.

    PubMed

    Passino, Kevin M

    2009-12-01

    The creation of new technologies that serve humanity holds the potential to help end global poverty. Unfortunately, relatively little is done in engineering education to support engineers' humanitarian efforts. Here, various strategies are introduced to augment the teaching of engineering ethics with the goal of encouraging engineers to serve as effective volunteers for community service. First, codes of ethics, moral frameworks, and comparative analysis of professional service standards lay the foundation for expectations for voluntary service in the engineering profession. Second, standard coverage of global issues in engineering ethics educates humanitarian engineers about aspects of the community that influence technical design constraints encountered in practice. Sample assignments on volunteerism are provided, including a prototypical design problem that integrates community constraints into a technical design problem in a novel way. Third, it is shown how extracurricular engineering organizations can provide a theory-practice approach to education in volunteerism. Sample completed projects are described for both undergraduates and graduate students. The student organization approach is contrasted with the service-learning approach. Finally, long-term goals for establishing better infrastructure are identified for educating the humanitarian engineer in the university, and supporting life-long activities of humanitarian engineers.

  12. Problem-Based Learning in Biomechanics: Advantages, Challenges, and Implementation Strategies.

    PubMed

    Clyne, Alisa Morss; Billiar, Kristen L

    2016-07-01

    Problem-based learning (PBL) has been shown to be effective in biomedical engineering education, particularly in motivating student learning, increasing knowledge retention, and developing problem solving, communication, and teamwork skills. However, PBL adoption remains limited by real challenges in effective implementation. In this paper, we review the literature on advantages and challenges of PBL and present our own experiences. We also provide practical guidelines for implementing PBL, including two examples of PBL modules from biomechanics courses at two different institutions. Overall, we conclude that the benefits for both professors and students support the use of PBL in biomedical engineering education.

  13. Cumulative reports and publications through December 31, 1991

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A reports and publications list is given from the Institute for Computer Applications in Science and Engineering (ICASE) through December 31, 1991. The major categories of the current ICASE research program are; numerical methods, control and parameter identification problems, computational problems in engineering and the physical sciences, and computer systems and software. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when available.

  14. Engineering design: A cognitive process approach

    NASA Astrophysics Data System (ADS)

    Strimel, Greg Joseph

    The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the research objectives of this study. Two independent coders then coded the video/audio recordings and the additional design data using Halfin's (1973) 17 mental processes for technological problem-solving. The results of this study indicated that the participants employed a wide array of mental processes when solving engineering design challenges. However, the findings provide a general analysis of the number of times participants employed each mental process, as well as the amount of time consumed employing the various mental processes through the different stages of the engineering design process. The results indicated many similarities between the students solving the problem, which may highlight voids in current technology and engineering education curricula. Additionally, the findings showed differences between the processes employed by participants that created the most successful solutions and the participants who developed the least effective solutions. Upon comparing and contrasting these processes, recommendations for instructional strategies to enhance a student's capability for solving engineering design problems were developed. The results also indicated that students, when left without teacher intervention, use a simplified and more natural process to solve design challenges than the 12-step engineering design process reported in much of the literature. Lastly, these data indicated that students followed two different approaches to solving the design problem. Some students employed a sequential and logical approach, while others employed a nebulous, solution centered trial-and-error approach to solving the problem. In this study the participants who were more sequential had better performing solutions. Examining these two approaches and the student cognition data enabled the researcher to generate a conceptual engineering design model for the improved teaching and development of engineering design problem solving.

  15. Systems Engineering Awareness

    NASA Technical Reports Server (NTRS)

    Lucero, John

    2016-01-01

    The presentation will provide an overview of the fundamentals and principles of Systems Engineering (SE). This includes understanding the processes that are used to assist the engineer in a successful design, build and implementation of solutions. The context of this presentation will be to describe the involvement of SE throughout the life-cycle of a project from cradle to grave. Due to the ever growing number of complex technical problems facing our world, a Systems Engineering approach is desirable for many reasons. The interdisciplinary technical structure of current systems, technical processes representing System Design, Technical Management and Product Realization are instrumental in the development and integration of new technologies into mainstream applications. This tutorial will demonstrate the application of SE tools to these types of problems..

  16. Expert systems in civil engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostem, C.N.; Maher, M.L.

    1986-01-01

    This book presents the papers given at a symposium on expert systems in civil engineering. Topics considered at the symposium included problem solving using expert system techniques, construction schedule analysis, decision making and risk analysis, seismic risk analysis systems, an expert system for inactive hazardous waste site characterization, an expert system for site selection, knowledge engineering, and knowledge-based expert systems in seismic analysis.

  17. International Symposium on Numerical Methods in Engineering, 5th, Ecole Polytechnique Federale de Lausanne, Switzerland, Sept. 11-15, 1989, Proceedings. Volumes 1 & 2

    NASA Astrophysics Data System (ADS)

    Gruber, Ralph; Periaux, Jaques; Shaw, Richard Paul

    Recent advances in computational mechanics are discussed in reviews and reports. Topics addressed include spectral superpositions on finite elements for shear banding problems, strain-based finite plasticity, numerical simulation of hypersonic viscous continuum flow, constitutive laws in solid mechanics, dynamics problems, fracture mechanics and damage tolerance, composite plates and shells, contact and friction, metal forming and solidification, coupling problems, and adaptive FEMs. Consideration is given to chemical flows, convection problems, free boundaries and artificial boundary conditions, domain-decomposition and multigrid methods, combustion and thermal analysis, wave propagation, mixed and hybrid FEMs, integral-equation methods, optimization, software engineering, and vector and parallel computing.

  18. Liquid rocket engine turbines

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Criteria for the design and development of turbines for rocket engines to meet specific performance, and installation requirements are summarized. The total design problem, and design elements are identified, and the current technology pertaining to these elements is described. Recommended practices for achieving a successful design are included.

  19. Engineering and Computing Portal to Solve Environmental Problems

    NASA Astrophysics Data System (ADS)

    Gudov, A. M.; Zavozkin, S. Y.; Sotnikov, I. Y.

    2018-01-01

    This paper describes architecture and services of the Engineering and Computing Portal, which is considered to be a complex solution that provides access to high-performance computing resources, enables to carry out computational experiments, teach parallel technologies and solve computing tasks, including technogenic safety ones.

  20. Technology for a Purpose: Technology for Information Problem-Solving with the Big6[R].

    ERIC Educational Resources Information Center

    Eisenberg, Mike B

    2003-01-01

    Explains the Big6 model of information problem solving as a conceptual framework for learning and teaching information and technology skills. Highlights include information skills; examples of integrating technology in Big6 contexts; and the Big6 and the Internet, including email, listservs, chat, Web browsers, search engines, portals, Web…

  1. Engineering students' experiences and perceptions of workplace problem solving

    NASA Astrophysics Data System (ADS)

    Pan, Rui

    In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.

  2. Examining the Critical Thinking Dispositions and the Problem Solving Skills of Computer Engineering Students

    ERIC Educational Resources Information Center

    Özyurt, Özcan

    2015-01-01

    Problem solving is an indispensable part of engineering. Improving critical thinking dispositions for solving engineering problems is one of the objectives of engineering education. In this sense, knowing critical thinking and problem solving skills of engineering students is of importance for engineering education. This study aims to determine…

  3. Innovating Method of Existing Mechanical Product Based on TRIZ Theory

    NASA Astrophysics Data System (ADS)

    Zhao, Cunyou; Shi, Dongyan; Wu, Han

    Main way of product development is adaptive design and variant design based on existing product. In this paper, conceptual design frame and its flow model of innovating products is put forward through combining the methods of conceptual design and TRIZ theory. Process system model of innovating design that includes requirement analysis, total function analysis and decomposing, engineering problem analysis, finding solution of engineering problem and primarily design is constructed and this establishes the base for innovating design of existing product.

  4. NASA/USRA advanced design program activity, 1991-1992

    NASA Astrophysics Data System (ADS)

    Dorrity, J. Lewis; Patel, Suneer

    The School of Textile and Fiber Engineering continued to pursue design projects with the Mechanical Engineering School giving the students an outstanding opportunity to interact with students from another discipline. Four problems were defined which had aspects which would be reasonably assigned to an interdisciplinary team. The design problems are described. The projects included lunar preform manufacturing, dust control for Enabler, an industrial sewing machine variable speed controllor, Enabler operation station, and design for producing fiberglass fabric in a lunar environment.

  5. NASA/USRA advanced design program activity, 1991-1992

    NASA Technical Reports Server (NTRS)

    Dorrity, J. Lewis; Patel, Suneer

    1992-01-01

    The School of Textile and Fiber Engineering continued to pursue design projects with the Mechanical Engineering School giving the students an outstanding opportunity to interact with students from another discipline. Four problems were defined which had aspects which would be reasonably assigned to an interdisciplinary team. The design problems are described. The projects included lunar preform manufacturing, dust control for Enabler, an industrial sewing machine variable speed controllor, Enabler operation station, and design for producing fiberglass fabric in a lunar environment.

  6. Special Section dedicated to the 11th International Conference on Vibration Problems (ICOVP-2013)

    NASA Astrophysics Data System (ADS)

    Dimitrovová, Zuzana; Gonçalves, Rodrigo

    2015-01-01

    This section contains the first set of selected papers from the 11th edition of the biennial International Conference series on Vibration Problems (ICOVP-2013), which was held at the Instituto Superior Técnico in Lisbon, Portugal, on 9-12 September 2013, and was jointly organized by the Civil Engineering Department of the Universidade Nova de Lisboa and the Institute of Mechanical Engineering at the Instituto Superior Técnico. A second set of papers will be included in a forthcoming issue.

  7. Developmental problems and their solution for the Space Shuttle main engine alternate liquid oxygen high-pressure turbopump: Anomaly or failure investigation the key

    NASA Astrophysics Data System (ADS)

    Ryan, R.; Gross, L. A.

    1995-05-01

    The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.

  8. Developmental problems and their solution for the Space Shuttle main engine alternate liquid oxygen high-pressure turbopump: Anomaly or failure investigation the key

    NASA Technical Reports Server (NTRS)

    Ryan, R.; Gross, L. A.

    1995-01-01

    The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.

  9. Five Lectures on Nuclear Reactors Presented at Cal Tech

    DOE R&D Accomplishments Database

    Weinberg, Alvin M.

    1956-02-10

    The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)

  10. Weaving a Formal Methods Education with Problem-Based Learning

    NASA Astrophysics Data System (ADS)

    Gibson, J. Paul

    The idea of weaving formal methods through computing (or software engineering) degrees is not a new one. However, there has been little success in developing and implementing such a curriculum. Formal methods continue to be taught as stand-alone modules and students, in general, fail to see how fundamental these methods are to the engineering of software. A major problem is one of motivation — how can the students be expected to enthusiastically embrace a challenging subject when the learning benefits, beyond passing an exam and achieving curriculum credits, are not clear? Problem-based learning has gradually moved from being an innovative pedagogique technique, commonly used to better-motivate students, to being widely adopted in the teaching of many different disciplines, including computer science and software engineering. Our experience shows that a good problem can be re-used throughout a student's academic life. In fact, the best computing problems can be used with children (young and old), undergraduates and postgraduates. In this paper we present a process for weaving formal methods through a University curriculum that is founded on the application of problem-based learning and a library of good software engineering problems, where students learn about formal methods without sitting a traditional formal methods module. The process of constructing good problems and integrating them into the curriculum is shown to be analagous to the process of engineering software. This approach is not intended to replace more traditional formal methods modules: it will better prepare students for such specialised modules and ensure that all students have an understanding and appreciation for formal methods even if they do not go on to specialise in them.

  11. Rehabilitation engineering training for the future: influence of trends in academics, technology, and health reform.

    PubMed

    Winters, J M

    1995-01-01

    A perspective is offered on rehabilitation engineering educational strategies, with a focus on the bachelor's and master's levels. Ongoing changes in engineering education are summarized, especially as related to the integration of design and computers throughout the curriculum; most positively affect rehabilitation engineering training. The challenge of identifying long-term "niches" for rehabilitation engineers within a changing rehabilitation service delivery process is addressed. Five key training components are identified and developed: core science and engineering knowledge, synthesized open-ended problem-solving skill development, hands-on design experience, rehabilitation breadth exposure, and a clinical internship. Two unique abilities are identified that help demarcate the engineer from other providers: open-ended problem-solving skills that include quantitative analysis when appropriate, and objective quantitative evaluation of human performance. Educational strategies for developing these abilities are addressed. Finally, a case is made for training "hybrid" engineers/therapists, in particular bachelor-level engineers who go directly to graduate school to become certified orthotists/prosthetists or physical/occupational therapists, pass the RESNA-sponsored assistive technology service provision exam along the way, then later in life obtain a professional engineer's license and an engineering master's degree.

  12. Methodological Problems of Nanotechnoscience

    NASA Astrophysics Data System (ADS)

    Gorokhov, V. G.

    Recently, we have reported on the definitions of nanotechnology as a new type of NanoTechnoScience and on the nanotheory as a cluster of the different natural and engineering theories. Nanotechnology is not only a new type of scientific-engineering discipline, but it evolves also in a “nonclassical” way. Nanoontology or nano scientific world view has a function of the methodological orientation for the choice the theoretical means and methods toward a solution to the scientific and engineering problems. This allows to change from one explanation and scientific world view to another without any problems. Thus, nanotechnology is both a field of scientific knowledge and a sphere of engineering activity, in other words, NanoTechnoScience is similar to Systems Engineering as the analysis and design of large-scale, complex, man/machine systems but micro- and nanosystems. Nano systems engineering as well as Macro systems engineering includes not only systems design but also complex research. Design orientation has influence on the change of the priorities in the complex research and of the relation to the knowledge, not only to “the knowledge about something”, but also to the knowledge as the means of activity: from the beginning control and restructuring of matter at the nano-scale is a necessary element of nanoscience.

  13. Hierarchy curriculum for practical skills training in optics and photonics

    NASA Astrophysics Data System (ADS)

    Zheng, XiaoDong; Wang, XiaoPing; Liu, Xu; Liu, XiangDong; Lin, YuanFang

    2017-08-01

    The employers in optical engineering fields hope to recruit students who are capable of applying optical principles to solve engineering problems and have strong laboratory skills. In Zhejiang University, a hierarchy curriculum for practical skill training has been constructed to satisfy this demand. This curriculum includes "Introductive practicum" for freshmen, "Opto-mechanical systems design", "Engineering training", "Electronic system design", "Student research training program (SRTP)", "National University Students' Optical-Science-Technology Competition game", and "Offcampus externship". Without cutting optical theory credit hours, this hierarchy curriculum provides a step-by-step solution to enhance students' practical skills. By following such a hierarchy curriculum, students can smoothly advance from a novice to a qualified professional expert in optics. They will be able to utilize optical engineering tools to design, build, analyze, improve, and test systems, and will be able to work effectively in teams to solve problems in engineering and design.

  14. Multigrid Methods for Aerodynamic Problems in Complex Geometries

    NASA Technical Reports Server (NTRS)

    Caughey, David A.

    1995-01-01

    Work has been directed at the development of efficient multigrid methods for the solution of aerodynamic problems involving complex geometries, including the development of computational methods for the solution of both inviscid and viscous transonic flow problems. The emphasis is on problems of complex, three-dimensional geometry. The methods developed are based upon finite-volume approximations to both the Euler and the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on multi-block grids using diagonalized implicit multigrid methods to achieve computational efficiency. The work is focused upon aerodynamic problems involving complex geometries, including advanced engine inlets.

  15. You and Technology, A High School Case Study Text.

    ERIC Educational Resources Information Center

    Damaskos, Nickander J., Ed.; Smyth, Michael P., Ed.

    This second draft of a manuscript for a high school engineering and technology course uses case studies as its format. The principles associated with various engineering problems are presented along with their effects on daily life. Topics include the computer, the automotive power system, satellite communications, the petroleum industry, water…

  16. Using Role-Playing Games to Broaden Engineering Education

    ERIC Educational Resources Information Center

    McConville, Jennifer R.; Rauch, Sebastien; Helgegren, Ida; Kain, Jaan-Henrik

    2017-01-01

    Purpose: In today's complex society, there is an increasing demand to include a wider set of skills in engineering curricula, especially skills related to policy, society and sustainable development. Role-playing and gaming are active learning tools, which are useful for learning relationships between technology and society, problem solving in…

  17. Aircraft Safety and Operating Problems. [conference

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Results of NASA research in the field of aircraft safety and operating problems are discussed. Topics include: (1) terminal area operations, (2) flight dynamics and control; (3) ground operations; (4) atmospheric environment; (5) structures and materials; (6) powerplants; (7) noise; and (8) human factors engineering.

  18. Curricular Reform: Systems Modeling and Sustainability in Civil and Environmental Engineering at the University of Vermont

    NASA Astrophysics Data System (ADS)

    Rizzo, D. M.; Hayden, N. J.; Dewoolkar, M.; Neumann, M.; Lathem, S.

    2009-12-01

    Researchers at the University of Vermont were awarded a NSF-sponsored Department Level Reform (DLR) grant to incorporate a systems approach to engineering problem solving within the civil and environmental engineering programs. A systems approach challenges students to consider the environmental, social, and economic aspects within engineering solutions. Likewise, sustainability requires a holistic approach to problem solving that includes economic, social and environmental factors. Our reform has taken a multi-pronged approach in two main areas that include implementing: a) a sequence of three systems courses related to environmental and transportation systems that introduce systems thinking, sustainability, and systems analysis and modeling; and b) service-learning (SL) projects as a means of practicing the systems approach. Our SL projects are good examples of inquiry-based learning that allow students to emphasize research and learning in areas of most interest to them. The SL projects address real-world open-ended problems. Activities that enhance IT and soft skills for students are incorporated throughout the curricula. Likewise, sustainability has been a central piece of the reform. We present examples of sustainability in the SL and modeling projects within the systems courses (e.g., students have used STELLA™ systems modeling software to address the impact of different carbon sequestration strategies on global climate change). Sustainability in SL projects include mentoring home schooled children in biomimicry projects, developing ECHO exhibits and the design of green roofs, bioretention ponds and porous pavement solutions. Assessment includes formative and summative methods involving student surveys and focus groups, faculty interviews and observations, and evaluation of student work.

  19. Stirling Engine Heat Pump

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    Recent advances in the feasibility studies related to the Stirling engines and Stirling engine heat pumps which have been considered attractive due to their promising role in helping to solve the global environmental and energy problems,are reviewed. This article begins to describe the brief history of the Stirling engines and theoretical thermodynamic analysis of the Stirling cycle in order to understand several advantages on the Stirling engine. Furthermore,they could throw light on our question why the dream engines had not been promoted to practical applications during two hundred years. The present review shows that the Stirling engines with several unique advantages including 30 to 40% thermal efficiency and preferable exhaust characteristics,had been designed and constructed by recent tackling for the development of the advanced automobile and other applications using them. Based on the current state of art,it is being provided to push the Stirling engines combined with heat pumps based on the reversed Rankine cycle to the market. At present,however, many problems, especially for the durability, cost, and delicate engine parts must be enforced to solve. In addition,there are some possibilities which can increase the attractiveness of the Stirling engines and heat pumps. The review closes with suggestions for further research.

  20. Problem Decomposition and Recomposition in Engineering Design: A Comparison of Design Behavior between Professional Engineers, Engineering Seniors, and Engineering Freshmen

    ERIC Educational Resources Information Center

    Song, Ting; Becker, Kurt; Gero, John; DeBerard, Scott; DeBerard, Oenardi; Reeve, Edward

    2016-01-01

    The authors investigated the differences in using problem decomposition and problem recomposition between dyads of engineering experts, engineering seniors, and engineering freshmen. Participants worked in dyads to complete an engineering design challenge within 1 hour. The entire design process was video and audio recorded. After the design…

  1. Earthquake Response of Concrete Gravity Dams Including Hydrodynamic and Foundation Interaction Effects,

    DTIC Science & Technology

    1980-01-01

    standard procedure for Analysis of all types of civil engineering struc- tures. Early in its development, it became apparent that this method had...unique potentialities in the evaluation of stress in dams, and many of its earliest civil engineering applications concerned special problems associated...with such structures [3,4]. The earliest dynamic finite element analyses of civil engineering structures involved the earthquake response analysis of

  2. Engineering the System and Technical Integration

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.

    2011-01-01

    Approximately 80% of the problems encountered in aerospace systems have been due to a breakdown in technical integration and/or systems engineering. One of the major challenges we face in designing, building, and operating space systems is: how is adequate integration achieved for the systems various functions, parts, and infrastructure? This Contractor Report (CR) deals with part of the problem of how we engineer the total system in order to achieve the best balanced design. We will discuss a key aspect of this question - the principle of Technical Integration and its components, along with management and decision making. The CR will first provide an introduction with a discussion of the Challenges in Space System Design and meeting the challenges. Next is an overview of Engineering the System including Technical Integration. Engineering the System is expanded to include key aspects of the Design Process, Lifecycle Considerations, etc. The basic information and figures used in this CR were presented in a NASA training program for Program and Project Managers Development (PPMD) in classes at Georgia Tech and at Marshall Space Flight Center (MSFC). Many of the principles and illustrations are extracted from the courses we teach for MSFC.

  3. The role of failure/problems in engineering: A commentary of failures experienced - lessons learned

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.

    1992-01-01

    The written version of a series of seminars given to several aerospace companies and three NASA centers are presented. The results are lessons learned through a study of the problems experienced in 35 years of engineering. The basic conclusion is that the primary cause of problems has not been mission technologies, as important as technology is, but the neglect of basic principles. Undergirding this is the lack of a systems focus from determining requirements through design, verification, and operations phases. Many of the concepts discussed are fundamental to total quality management (TQM) and can be used to augment this product enhanced philosophy. Fourteen principles are addressed with problems experienced and are used as examples. Included is a discussion of the implication of constraints, poorly defined requirements, and schedules. Design guidelines, lessons learned, and future tasks are listed. Two additional sections are included that deal with personal lessons learned and thoughts on future thrusts (TQM).

  4. The Effects of Cylinder Head Gasket Opening on Engine Temperature Distribution for a Water-Cooled Engine

    NASA Astrophysics Data System (ADS)

    Jang, J. Y.; Chi, G. X.

    2017-02-01

    In a liquid-cooled engine, coolant is pumped throughout the water jacket of the engine, drawing heat from the cylinder head, pistons, combustion chambers, cylinder walls, and valves, etc. If the engine temperature is too high or too low, various problems will occur. These include overheating of the lubricating oil and engine parts, excessive stresses between engine parts, loss of power, incomplete burning of fuel, etc. Thus, the engine should be maintained at the proper operating temperature. This study investigated the effects of different cylinder head gasket opening on the engine temperature distributions in a water-cooled motorcycle engine. The numerical predictions for the temperature distribution are in good agreement with the experimental data within 20%.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third modemore » of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS&E Education; Meshing and Adaptivity; Multiscale and Multiphysics Problems; Numerical Algorithms for CS&E; Discrete and Combinatorial Algorithms for CS&E; Inverse Problems; Optimal Design, Optimal Control, and Inverse Problems; Parallel and Distributed Computing; Problem-Solving Environments; Software and Wddleware Systems; Uncertainty Estimation and Sensitivity Analysis; and Visualization and Computer Graphics.« less

  6. Aerodynamics of Engine-Airframe Interaction

    NASA Technical Reports Server (NTRS)

    Caughey, D. A.

    1986-01-01

    The report describes progress in research directed towards the efficient solution of the inviscid Euler and Reynolds-averaged Navier-Stokes equations for transonic flows through engine inlets, and past complete aircraft configurations, with emphasis on the flowfields in the vicinity of engine inlets. The research focusses upon the development of solution-adaptive grid procedures for these problems, and the development of multi-grid algorithms in conjunction with both, implicit and explicit time-stepping schemes for the solution of three-dimensional problems. The work includes further development of mesh systems suitable for inlet and wing-fuselage-inlet geometries using a variational approach. Work during this reporting period concentrated upon two-dimensional problems, and has been in two general areas: (1) the development of solution-adaptive procedures to cluster the grid cells in regions of high (truncation) error;and (2) the development of a multigrid scheme for solution of the two-dimensional Euler equations using a diagonalized alternating direction implicit (ADI) smoothing algorithm.

  7. Problem-based learning in optical engineering studies

    NASA Astrophysics Data System (ADS)

    Voznesenskaya, Anna

    2016-09-01

    Nowadays, the Problem-Based Learning (PBL) is one of the most prospective educational technologies. PBL is based on evaluation of learning outcomes of a student, both professional and personal, instead of traditional evaluation of theoretical knowledge and selective practical skills. Such an approach requires changes in the curricula development. There should be introduced projects (cases) imitating real tasks from the professional life. These cases should include a problem summary with necessary theoretic description, charts, graphs, information sources etc, task to implement and evaluation indicators and criteria. Often these cases are evaluated with the assessment-center method. To motivate students for the given task they could be divided into groups and have a contest. Whilst it looks easy to implement in social, economic or teaching fields PBL is pretty complicated in engineering studies. Examples of cases in the first-cycle optical engineering studies are shown in this paper. Procedures of the PBL implementation and evaluation are described.

  8. Global Topology Optimisation

    DTIC Science & Technology

    2016-10-31

    statistical physics. Sec. IV includes several examples of the application of the stochastic method, including matching of a shape to a fixed design, and...an important part of any future application of this method. Second, re-initialization of the level set can lead to small but significant movements of...of engineering design problems [6, 17]. However, many of the relevant applications involve non-convex optimisation problems with multiple locally

  9. NASA LeRC/Akron University Graduate Cooperative Fellowship Program and Graduate Student Researchers Program

    NASA Technical Reports Server (NTRS)

    Fertis, D. G.; Simon, A. L.

    1981-01-01

    The requisite methodology to solve linear and nonlinear problems associated with the static and dynamic analysis of rotating machinery, their static and dynamic behavior, and the interaction between the rotating and nonrotating parts of an engine is developed. Linear and nonlinear structural engine problems are investigated by developing solution strategies and interactive computational methods whereby the man and computer can communicate directly in making analysis decisions. Representative examples include modifying structural models, changing material, parameters, selecting analysis options and coupling with interactive graphical display for pre- and postprocessing capability.

  10. Strategies for Information Retrieval and Virtual Teaming to Mitigate Risk on NASA's Missions

    NASA Technical Reports Server (NTRS)

    Topousis, Daria; Williams, Gregory; Murphy, Keri

    2007-01-01

    Following the loss of NASA's Space Shuttle Columbia in 2003, it was determined that problems in the agency's organization created an environment that led to the accident. One component of the proposed solution resulted in the formation of the NASA Engineering Network (NEN), a suite of information retrieval and knowledge sharing tools. This paper describes the implementation of this set of search, portal, content management, and semantic technologies, including a unique meta search capability for data from distributed engineering resources. NEN's communities of practice are formed along engineering disciplines where users leverage their knowledge and best practices to collaborate and take informal learning back to their personal jobs and embed it into the procedures of the agency. These results offer insight into using traditional engineering disciplines for virtual teaming and problem solving.

  11. Robot-aided electrospinning toward intelligent biomedical engineering.

    PubMed

    Tan, Rong; Yang, Xiong; Shen, Yajing

    2017-01-01

    The rapid development of robotics offers new opportunities for the traditional biofabrication in higher accuracy and controllability, which provides great potentials for the intelligent biomedical engineering. This paper reviews the state of the art of robotics in a widely used biomaterial fabrication process, i.e., electrospinning, including its working principle, main applications, challenges, and prospects. First, the principle and technique of electrospinning are introduced by categorizing it to melt electrospinning, solution electrospinning, and near-field electrospinning. Then, the applications of electrospinning in biomedical engineering are introduced briefly from the aspects of drug delivery, tissue engineering, and wound dressing. After that, we conclude the existing problems in traditional electrospinning such as low production, rough nanofibers, and uncontrolled morphology, and then discuss how those problems are addressed by robotics via four case studies. Lastly, the challenges and outlooks of robotics in electrospinning are discussed and prospected.

  12. Innovative and Creative K-12 Engineering Strategies: Implications of Pre-Service Teacher Survey

    ERIC Educational Resources Information Center

    Mativo, John M.; Park, Jae H.

    2012-01-01

    This study sought to find student perceptions of how the engineering design process is learned and applied by pre-service teachers at the University of Georgia. The course description read "demonstration and hands-on learning, including problem solving, designing, construction and testing of prototypes, and activities that increase aesthetic,…

  13. Student Learning Outcomes from a Pilot Medical Innovations Course with Nursing, Engineering, and Biology Undergraduate Students

    ERIC Educational Resources Information Center

    Ludwig, Patrice M.; Nagel, Jacquelyn K.; Lewis, Erica J.

    2017-01-01

    Background: Preparing today's undergraduate students from science, technology, engineering, and math (STEM) and related health professions to solve wide-sweeping healthcare challenges is critical. Moreover, it is imperative that educators help students develop the capabilities needed to meet those challenges, including problem solving,…

  14. Icing-Protection Requirements for Reciprocating-Engine Induction System

    NASA Technical Reports Server (NTRS)

    Coles, Willard D; Rollin, Vern G; Mulholland, Donald R

    1950-01-01

    Despite the development of relatively ice-free fuel-metering systems, the widespread use of alternate and heated-air intakes, and the use of alcohol for emergency de-icing, icing of aircraft-engine induction systems is a serious problem. Investigations have been made to study and to combat all phases of this icing problem. From these investigations, criterions for safe operation and for design of new induction systems have been established. The results were obtained from laboratory investigations of carburetor-supercharger combinations, wind-tunnel investigations of air scoops, multicylinder-engine studies, and flight investigations. Characteristics of three forms of ice, impact, throttling, and fuel evaporation were studied. The effects of several factors on the icing characteristics were also studied and included: (1) atmospheric conditions, (2) engine and air-scoop configurations, including light-airplane system, (3) type fuel used, and (4) operating variables, such as power condition, use of a manifold pressure regulator, mixture setting, carburetor heat, and water-alcohol injection. In addition, ice-detection methods were investigated and methods of preventing and removing induction-system ice were studied. Recommendations are given for design and operation with regard to induction-system design.

  15. Students' perceptions of the relevance of mathematics in engineering

    NASA Astrophysics Data System (ADS)

    Flegg, Jennifer; Mallet, Dann; Lupton, Mandy

    2012-09-01

    In this article, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society [M. Kirschenman and B. Brenner, Education for Civil Engineering: A Profession of Practice, Leader. Manag. Eng. 10 (2010), p. 54]. Qualitative and quantitative data on students' views of the relevance of their mathematics study to their engineering studies and future careers in engineering was collected. The students described using a range of mathematics techniques (mathematics skills developed, mathematics concepts applied to engineering and skills developed relevant for engineering) for various usages (as a subject of study, a tool for other subjects or a tool for real world problems). We found a number of themes relating to the design of engineering mathematics curriculum emerged from the data. These included the relevance of mathematics within different engineering majors, the relevance of mathematics to future studies, the relevance of learning mathematical rigour and the effectiveness of problem-solving tasks in conveying the relevance of mathematics more effectively than other forms of assessment. We make recommendations for the design of engineering mathematics curriculum based on our findings.

  16. Protein engineering and the use of molecular modeling and simulation: the case of heterodimeric Fc engineering.

    PubMed

    Spreter Von Kreudenstein, Thomas; Lario, Paula I; Dixit, Surjit B

    2014-01-01

    Computational and structure guided methods can make significant contributions to the development of solutions for difficult protein engineering problems, including the optimization of next generation of engineered antibodies. In this paper, we describe a contemporary industrial antibody engineering program, based on hypothesis-driven in silico protein optimization method. The foundational concepts and methods of computational protein engineering are discussed, and an example of a computational modeling and structure-guided protein engineering workflow is provided for the design of best-in-class heterodimeric Fc with high purity and favorable biophysical properties. We present the engineering rationale as well as structural and functional characterization data on these engineered designs. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Liquid rocket engine centrifugal flow turbopumps. [design criteria

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Design criteria and recommended practices are discussed for the following configurations selected from the design sequence of a liquid rocket engine centrifugal flow turbopump: (1) pump performance including speed, efficiency, and flow range; (2) impeller; (3) housing; and (4) thrust balance system. Hydrodynamic, structural, and mechanical problems are addressed for the achievement of required pump performance within the constraints imposed by the engine/turbopump system. Materials and fabrication specifications are also discussed.

  18. Engineering ethics in Puerto Rico: issues and narratives.

    PubMed

    Frey, William J; O'Neill-Carrillo, Efraín

    2008-09-01

    This essay discusses engineering ethics in Puerto Rico by examining the impact of the Colegio de Ingenieros y Agrimensores de Puerto Rico (CIAPR) and by outlining the constellation of problems and issues identified in workshops and retreats held with Puerto Rican engineers. Three cases developed and discussed in these workshops will help outline movements in engineering ethics beyond the compliance perspective of the CIAPR. These include the Town Z case, Copper Mining in Puerto Rico, and a hypothetical case researched by UPRM students on laptop disposal. The last section outlines four future challenges in engineering ethics pertinent to the Puerto Rican situation.

  19. Future space transport

    NASA Technical Reports Server (NTRS)

    Grishin, S. D.; Chekalin, S. V.

    1984-01-01

    Prospects for the mastery of space and the basic problems which must be solved in developing systems for both manned and cargo spacecraft are examined. The achievements and flaws of rocket boosters are discussed as well as the use of reusable spacecraft. The need for orbiting satellite solar power plants and related astrionics for active control of large space structures for space stations and colonies in an age of space industrialization is demonstrated. Various forms of spacecraft propulsion are described including liquid propellant rocket engines, nuclear reactors, thermonuclear rocket engines, electrorocket engines, electromagnetic engines, magnetic gas dynamic generators, electromagnetic mass accelerators (rail guns), laser rocket engines, pulse nuclear rocket engines, ramjet thermonuclear rocket engines, and photon rockets. The possibilities of interstellar flight are assessed.

  20. Towards systems metabolic engineering of microorganisms for amino acid production.

    PubMed

    Park, Jin Hwan; Lee, Sang Yup

    2008-10-01

    Microorganisms capable of efficient production of amino acids have traditionally been developed by random mutation and selection method, which might cause unwanted physiological changes in cellular metabolism. Rational genome-wide metabolic engineering based on systems and synthetic biology tools, which is termed 'systems metabolic engineering', is rising as an alternative to overcome these problems. Recently, several amino acid producers have been successfully developed by systems metabolic engineering, where the metabolic engineering procedures were performed within a systems biology framework, and entire metabolic networks, including complex regulatory circuits, were engineered in an integrated manner. Here we review the current status of systems metabolic engineering successfully applied for developing amino acid producing strains and discuss future prospects.

  1. Espey, Huston & Associates Technical Library. A Proposal.

    ERIC Educational Resources Information Center

    Fortine, Suellen

    This proposal for the establishment of a library or information center for an environmental and engineering consulting firm in Texas is divided into two phases--current problems, and future expansion of library service. Major considerations include informational problems of the existing small library facility, i.e., locational and subject access,…

  2. Examining Young Students' Problem Scoping in Engineering Design

    ERIC Educational Resources Information Center

    Watkins, Jessica; Spencer, Kathleen; Hammer, David

    2014-01-01

    Problem scoping--determining the nature and boundaries of a problem--is an essential aspect of the engineering design process. Some studies from engineering education suggest that beginning students tend to skip problem scoping or oversimplify a problem. However, the ways these studies often characterize students' problem scoping often do not…

  3. Most common road safety engineering deficiencies in South Eastern Europe as a part of safe system approach

    NASA Astrophysics Data System (ADS)

    Jovanov, D.; Vollpracht, H. J.; Beles, H.; Popa, V.; Tolea, B. A.

    2017-10-01

    Most common road safety engineering deficiencies identified by the authors in South Eastern Europe, including Romania, have been collected together and presented in this paper as a part of road safety unbreakably connected to the safe system approach (driver-vehicle-road). In different South Eastern Europe countries Road Safety Audit (RSA), Road Safety Inspection (RSI), as well as Black Spot Management (BSM) was introduced and practical implementation experience enabled the authors to analyze the road safety problems. Typical road safety engineering deficiencies have been presented in 8 different subsections, based on PIARC (World Road Association) RSA approach. This paper presents collected common road safety problems with relevant illustrations (real pictures) with associated accident risks.

  4. Lessons Learned in Engineering

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.

    2011-01-01

    This Contractor Report (CR) is a compilation of Lessons Learned in approximately 55 years of engineering experience by each James C. Blair, Robert S. Ryan, and Luke A. Schutzenhofer. The lessons are the basis of a course on Lessons Learned that has been taught at Marshall Space Flight Center. The lessons are drawn from NASA space projects and are characterized in terms of generic lessons learned from the project experience, which are further distilled into overarching principles that can be applied to future projects. Included are discussions of the overarching principles followed by a listing of the lessons associated with that principle. The lesson with sub-lessons are stated along with a listing of the project problems the lesson is drawn from, then each problem is illustrated and discussed, with conclusions drawn in terms of Lessons Learned. The purpose of this CR is to provide principles learned from past aerospace experience to help achieve greater success in future programs, and identify application of these principles to space systems design. The problems experienced provide insight into the engineering process and are examples of the subtleties one experiences performing engineering design, manufacturing, and operations.

  5. Activist engineering: changing engineering practice by deploying praxis.

    PubMed

    Karwat, Darshan M A; Eagle, Walter E; Wooldridge, Margaret S; Princen, Thomas E

    2015-02-01

    In this paper, we reflect on current notions of engineering practice by examining some of the motives for engineered solutions to the problem of climate change. We draw on fields such as science and technology studies, the philosophy of technology, and environmental ethics to highlight how dominant notions of apoliticism and ahistoricity are ingrained in contemporary engineering practice. We argue that a solely technological response to climate change does not question the social, political, and cultural tenet of infinite material growth, one of the root causes of climate change. In response to the contemporary engineering practice, we define an activist engineer as someone who not only can provide specific engineered solutions, but who also steps back from their work and tackles the question, What is the real problem and does this problem "require" an engineering intervention? Solving complex problems like climate change requires radical cultural change, and a significant obstacle is educating engineers about how to conceive of and create "authentic alternatives," that is, solutions that differ from the paradigm of "technologically improving" our way out of problems. As a means to realize radically new solutions, we investigate how engineers might (re)deploy the concept of praxis, which raises awareness in engineers of the inherent politics of technological design. Praxis empowers engineers with a more comprehensive understanding of problems, and thus transforms technologies, when appropriate, into more socially just and ecologically sensitive interventions. Most importantly, praxis also raises a radical alternative rarely considered-not "engineering a solution." Activist engineering offers a contrasting method to contemporary engineering practice and leads toward social justice and ecological protection through problem solving by asking not, How will we technologize our way out of the problems we face? but instead, What really needs to be done?

  6. [Advances in research and application of beta-tricalcium phosphate, collagen and beta-tricalcium phosphate/collagen composite in bone tissue engineering].

    PubMed

    Han, Xiang-Yong; Fu, Yuan-Fei; Zhang, Fu-Qiang

    2007-02-01

    Bone defects in oral and maxillofacial region was a common problem. To repair the defect, bone grafts including autograft, allograft and artificial bone graft were used in clinic despite of their disadvantages. Nowadays, bone tissue engineering has become a commonly used method to repair bone defect. This paper reviewed the application of beta-TCP, collagen and beta-TCP/collagen composite in bone tissue engineering. It was concluded that beta-TCP/collagen composite was a promising materials in bone tissue engineering.

  7. An Industrial Engineering Approach to Cost Containment of Pharmacy Education.

    PubMed

    Duncan, Wendy; Bottenberg, Michelle; Chase, Marilea; Chesnut, Renae; Clarke, Cheryl; Schott, Kathryn; Torry, Ronald; Welty, Tim

    2015-11-25

    A 2-semester project explored employing teams of fourth-year industrial engineering students to optimize some of our academic management processes. Results included significant cost savings and increases in efficiency, effectiveness, and student and faculty satisfaction. While we did not adopt all of the students' recommendations, we did learn some important lessons. For example, an initial investment of time in developing a mutually clear understanding of the problems, constraints, and goals maximizes the value of industrial engineering analysis and recommendations. Overall, industrial engineering was a valuable tool for optimizing certain academic management processes.

  8. V-TECS Guide for Automobile Engine Performance Technician.

    ERIC Educational Resources Information Center

    Meyer, Calvin F.; Benson, Robert T.

    This guide is intended to assist teachers responsible for instructing future auto engine performance technicians. The following topics are covered: diagnosing engine performance problems, ignition system problems, fuel system problems, mechanically related performance problems, emission control system problems, and electronic control systems;…

  9. An airline study of advanced technology requirements for advanced high speed commercial transport engines. 1: Engine design study assessment

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial tranport engine are presented. The results of the phase 1 study effort cover the following areas: (1) statement of an airline's major objectives for future transport engines, (2) airline's method of evaluating engine proposals, (3) description of an optimum engine for a long range subsonic commercial transport including installation and critical design features, (4) discussion of engine performance problems and experience with performance degradation, (5) trends in engine and pod prices with increasing technology and objectives for the future, (6) discussion of the research objectives for composites, reversers, advanced components, engine control systems, and devices to reduce the impact of engine stall, and (7) discussion of the airline objectives for noise and pollution reduction.

  10. Analysis of small crack behavior for airframe applications

    NASA Technical Reports Server (NTRS)

    Mcclung, R. C.; Chan, K. S.; Hudak, S. J., Jr.; Davidson, D. L.

    1994-01-01

    The small fatigue crack problem is critically reviewed from the perspective of airframe applications. Different types of small cracks-microstructural, mechanical, and chemical-are carefully defined and relevant mechanisms identified. Appropriate analysis techniques, including both rigorous scientific and practical engineering treatments, are briefly described. Important materials data issues are addressed, including increased scatter in small crack data and recommended small crack test methods. Key problems requiring further study are highlighted.

  11. A TAPS Interactive Multimedia Package to Solve Engineering Dynamics Problem

    ERIC Educational Resources Information Center

    Sidhu, S. Manjit; Selvanathan, N.

    2005-01-01

    Purpose: To expose engineering students to using modern technologies, such as multimedia packages, to learn, visualize and solve engineering problems, such as in mechanics dynamics. Design/methodology/approach: A multimedia problem-solving prototype package is developed to help students solve an engineering problem in a step-by-step approach. A…

  12. Perceptions of Engineers Regarding Successful Engineering Team Design

    NASA Technical Reports Server (NTRS)

    Nowaczyk, Ronald H.

    1998-01-01

    The perceptions of engineers and scientists at NASA Langley Research Center toward engineering design teams were evaluated. A sample of 49 engineers and scientists rated 60 team behaviors in terms of their relative importance for team success. They also completed a profile of their own perceptions of their strengths and weaknesses as team members. Behaviors related to team success are discussed in terms of those involving the organizational culture and commitment to the team and those dealing with internal team dynamics. The latter behaviors focused on team issues occurring during the early stages of a team's existence. They included the level and extent of debate and discussion regarding methods for completing the team task and the efficient use of team time to explore and discuss methodologies critical to the problem. The discussion includes a comparison of engineering teams with the prototypical business team portrayed in the literature.

  13. How To Educate Future Engineers towards a Better Understanding of the Relationships between Technology, Society and the Environment?

    ERIC Educational Resources Information Center

    Installe, Michel

    1996-01-01

    Explains that European engineering students are not well prepared to integrate socio-economic and environmental issues efficiently into their future professional activities. Argues that necessary changes include a more interdisciplinary and systems-oriented approach to problems and better training in communication skills. Provides an example of an…

  14. Design Knowledge Management System (DKMS) Beta Test Report

    DTIC Science & Technology

    1992-11-01

    design process. These problems, which include knowledge representation, constraint propagation, model design, and information integration, are...effective delivery of life-cycle engineering knowledge assistance and information to the design/engineering activities. It does not matter whether these...platfomi. 4. Reuse - existing data, information , and knowledge can be reused. 5. Remote Execution -- automatically handles remote execution without

  15. Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  16. Microelectrical Mechanical Systems Flow Control Used to Manage Engine Face Distortion in Compact Inlet Systems

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.

    1999-01-01

    Turbofan engine-face flow distortion is one of the most troublesome and least understood problems for designers of modern engine inlet systems. One concern is that there are numerous sources of flow-field distortion that are ingested by the inlet or generated within the inlet duct itself. Among these are: (1) flow separation at the cowl lip during in-flight maneuvering, (2) flow separation on the compression surfaces due to shock-wave/boundary layer interactions, (3) spillage of the fuselage boundary layer into the inlet duct, (4) ingestion of aircraft vortices and wakes emanating from upstream disturbances, and (5) strong secondary flow gradients and flow separation induced by wall curvature within the inlet duct itself. Most developing aircraft (including the B70, F-111, F-14, Mig-25, Tornado, and Airbus A300) have experienced one or more of these types of problems, particularly at high Mach numbers and/or extreme maneuver conditions when flow distortion at the engine face exceeded the allowable limits of the engine.

  17. Kuwaiti engineers' perspectives of the engineering senior design (Capstone) course as related to their professional experiences

    NASA Astrophysics Data System (ADS)

    Alsagheer, Abdullah

    This study looks into transfer of learning and its application in the actual employment of engineering students after graduation. At Kuwait University, a capstone course is being offered that aims to ensure that students amalgamate all kinds of engineering skills to apply to their work. Within a basic interpretive, qualitative study-design methodology, I interviewed 12 engineers who have recently experienced the senior design course at Kuwait University and are presently working in industry. From the analysis, four basic themes emerged that further delineate the focus of the entire study. The themes are 1) need for the capstone course, 2) applicability of and problems with the capstone course, 3) industry problems with training, and 4) students' attitudes toward the capstone course. The study concludes that participants are not transferring engineering skills; rather, they are transferring all types of instructions they have been given during their course of study at the university. A frequent statement is that the capstone course should be improved and specifically that it is necessary to improve upon the timing, schedule, teachers' behavior, contents, and format. The study concludes that Kuwaiti engineers on the whole face problems with time management and management support. The study includes some implications for Kuwait University and recommendations that can provide significant support for the development of the Senior Design (Capstone) Course. For examples: the project must be divided into phases to ensure timely completion of deliverables. In order to motivate students for hard work and to achieve true transfer of learning, Kuwait University is required to communicate with certain organizations to place its students at their research centers for capstone projects. All universities, including Kuwait University, should hire faculty specifically to run the capstone course. In conclusion, the study includes some suggestions for further research studies focused on issues related to the Senior Design (Capstone) Course. Future researchers should focus on developing the project-based course in earlier stages of students' educational program by investigating more about the relationship between student achievement and the market demand.

  18. Making objective decisions in mechanical engineering problems

    NASA Astrophysics Data System (ADS)

    Raicu, A.; Oanta, E.; Sabau, A.

    2017-08-01

    Decision making process has a great influence in the development of a given project, the goal being to select an optimal choice in a given context. Because of its great importance, the decision making was studied using various science methods, finally being conceived the game theory that is considered the background for the science of logical decision making in various fields. The paper presents some basic ideas regarding the game theory in order to offer the necessary information to understand the multiple-criteria decision making (MCDM) problems in engineering. The solution is to transform the multiple-criteria problem in a one-criterion decision problem, using the notion of utility, together with the weighting sum model or the weighting product model. The weighted importance of the criteria is computed using the so-called Step method applied to a relation of preferences between the criteria. Two relevant examples from engineering are also presented. The future directions of research consist of the use of other types of criteria, the development of computer based instruments for decision making general problems and to conceive a software module based on expert system principles to be included in the Wiki software applications for polymeric materials that are already operational.

  19. Factors Related to Successful Engineering Team Design

    NASA Technical Reports Server (NTRS)

    Nowaczyk, Ronald H.; Zang, Thomas A.

    1998-01-01

    The perceptions of a sample of 49 engineers and scientists from NASA Langley Research Center toward engineering design teams were evaluated. The respondents rated 60 team behaviors in terms of their relative importance for team success. They also completed a profile of their own perceptions of their strengths and weaknesses as team members. Behaviors related to team success are discussed in terms of those involving the organizational culture and commitment to the team and those dealing with internal team dynamics. The latter behaviors included the level and extent of debate and discussion regarding methods for completing the team task and the efficient use of team time to explore and discuss methodologies critical to the problem. Successful engineering teams may find their greatest challenges occurring during the early stages of their existence. In contrast to the prototypical business team, members on an engineering design share expertise and knowledge which allows them to deal with task issues sooner. However, discipline differences among team members can lead to conflicts regarding the best method or approach to solving the engineering problem.

  20. Dealing with complex and ill-structured problems: results of a Plan-Do-Check-Act experiment in a business engineering semester

    NASA Astrophysics Data System (ADS)

    Riis, Jens Ove; Achenbach, Marlies; Israelsen, Poul; Kyvsgaard Hansen, Poul; Johansen, John; Deuse, Jochen

    2017-07-01

    Challenged by increased globalisation and fast technological development, we carried out an experiment in the third semester of a global business engineering programme aimed at identifying conditions for training student in dealing with complex and ill-structured problems of forming a new business. As this includes a fuzzy front end, learning cannot be measured in traditional, quantitative terms; therefore, we have explored the use of reflection to convert tacit knowledge to explicit knowledge. The experiment adopted a Plan-Do-Check-Act approach and concluded with developing a plan for new learning initiatives in the subsequent year's semester. The findings conclude that (1) problem-based learning develops more competencies than ordinarily measured at the examination, especially, the social/communication and personal competencies are developed; (2) students are capable of dealing with a complex and ambiguous problem, if properly guided. Four conditions were identified; (3) most students are not conscious of their learning, but are able to reflect if properly encouraged; and (4) improving engineering education should be considered as an organisational learning process.

  1. Interior noise prediction methodology: ATDAC theory and validation

    NASA Technical Reports Server (NTRS)

    Mathur, Gopal P.; Gardner, Bryce K.

    1992-01-01

    The Acoustical Theory for Design of Aircraft Cabins (ATDAC) is a computer program developed to predict interior noise levels inside aircraft and to evaluate the effects of different aircraft configurations on the aircraft acoustical environment. The primary motivation for development of this program is the special interior noise problems associated with advanced turboprop (ATP) aircraft where there is a tonal, low frequency noise problem. Prediction of interior noise levels requires knowledge of the energy sources, the transmission paths, and the relationship between the energy variable and the sound pressure level. The energy sources include engine noise, both airborne and structure-borne; turbulent boundary layer noise; and interior noise sources such as air conditioner noise and auxiliary power unit noise. Since propeller and engine noise prediction programs are widely available, they are not included in ATDAC. Airborne engine noise from any prediction or measurement may be input to this program. This report describes the theory and equations implemented in the ATDAC program.

  2. Market-implied spread for earthquake CAT bonds: financial implications of engineering decisions.

    PubMed

    Damnjanovic, Ivan; Aslan, Zafer; Mander, John

    2010-12-01

    In the event of natural and man-made disasters, owners of large-scale infrastructure facilities (assets) need contingency plans to effectively restore the operations within the acceptable timescales. Traditionally, the insurance sector provides the coverage against potential losses. However, there are many problems associated with this traditional approach to risk transfer including counterparty risk and litigation. Recently, a number of innovative risk mitigation methods, termed alternative risk transfer (ART) methods, have been introduced to address these problems. One of the most important ART methods is catastrophe (CAT) bonds. The objective of this article is to develop an integrative model that links engineering design parameters with financial indicators including spread and bond rating. The developed framework is based on a four-step structural loss model and transformed survival model to determine expected excess returns. We illustrate the framework for a seismically designed bridge using two unique CAT bond contracts. The results show a nonlinear relationship between engineering design parameters and market-implied spread. © 2010 Society for Risk Analysis.

  3. Interior noise prediction methodology: ATDAC theory and validation

    NASA Astrophysics Data System (ADS)

    Mathur, Gopal P.; Gardner, Bryce K.

    1992-04-01

    The Acoustical Theory for Design of Aircraft Cabins (ATDAC) is a computer program developed to predict interior noise levels inside aircraft and to evaluate the effects of different aircraft configurations on the aircraft acoustical environment. The primary motivation for development of this program is the special interior noise problems associated with advanced turboprop (ATP) aircraft where there is a tonal, low frequency noise problem. Prediction of interior noise levels requires knowledge of the energy sources, the transmission paths, and the relationship between the energy variable and the sound pressure level. The energy sources include engine noise, both airborne and structure-borne; turbulent boundary layer noise; and interior noise sources such as air conditioner noise and auxiliary power unit noise. Since propeller and engine noise prediction programs are widely available, they are not included in ATDAC. Airborne engine noise from any prediction or measurement may be input to this program. This report describes the theory and equations implemented in the ATDAC program.

  4. Senior Thesis Research at Princeton.

    ERIC Educational Resources Information Center

    Prud'homme, Robert K.

    1981-01-01

    Reviews a senior undergraduate research program in chemical engineering at Princeton University. Includes strengths and requirements for a successful program. Senior thesis research provides creative problem solving experiences for students and is congruent with departmental research objectives. Selected student comments are included. (SK)

  5. Teaching Problem-Solving Skills to Nuclear Engineering Students

    ERIC Educational Resources Information Center

    Waller, E.; Kaye, M. H.

    2012-01-01

    Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and…

  6. General aviation avionics equipment maintenance

    NASA Technical Reports Server (NTRS)

    Parker, C. D.; Tommerdahl, J. B.

    1978-01-01

    Maintenance of general aviation avionics equipment was investigated with emphasis on single engine and light twin engine general aviation aircraft. Factors considered include the regulatory agencies, avionics manufacturers, avionics repair stations, the statistical character of the general aviation community, and owners and operators. The maintenance, environment, and performance, repair costs, and reliability of avionics were defined. It is concluded that a significant economic stratification is reflected in the maintenance problems encountered, that careful attention to installations and use practices can have a very positive impact on maintenance problems, and that new technologies and a general growth in general aviation will impact maintenance.

  7. Internet Plagiarism: An Agenda for Staff Inservice and Student Awareness.

    ERIC Educational Resources Information Center

    Lincoln, Margaret

    2002-01-01

    Discusses Internet plagiarism and includes an outline for a presentation that library media specialists can use with teachers. Highlights include an overview of the problem; helping teachers recognize the signs; pinpointing the source, including the use of search engines and Web sites; and prevention, including more control over the research…

  8. Teaching Problem Solving: Don't Forget the Problem Solver(s)

    ERIC Educational Resources Information Center

    Ranade, Saidas M.; Corrales, Angela

    2013-01-01

    The importance of intrapersonal and interpersonal intelligences has long been known but educators have debated whether to and how to incorporate those topics in an already crowded engineering curriculum. In 2010, the authors used the classroom as a laboratory to observe the usefulness of including selected case studies and exercises from the…

  9. Engineering and public health at CDC.

    PubMed

    Earnest, G Scott; Reed, Laurence D; Conover, D; Estill, C; Gjessing, C; Gressel, M; Hall, R; Hudock, S; Hudson, H; Kardous, C; Sheehy, J; Topmiller, J; Trout, D; Woebkenberg, M; Amendola, A; Hsiao, H; Keane, P; Weissman, D; Finfinger, G; Tadolini, S; Thimons, E; Cullen, E; Jenkins, M; McKibbin, R; Conway, G; Husberg, B; Lincoln, J; Rodenbeck, S; Lantagne, D; Cardarelli, J

    2006-12-22

    Engineering is the application of scientific and technical knowledge to solve human problems. Using imagination, judgment, and reasoning to apply science, technology, mathematics, and practical experience, engineers develop the design, production, and operation of useful objects or processes. During the 1940s, engineers dominated the ranks of CDC scientists. In fact, the first CDC director, Assistant Surgeon General Mark Hollis, was an engineer. CDC engineers were involved in malaria control through the elimination of standing water. Eventually the CDC mission expanded to include prevention and control of dengue, typhus, and other communicable diseases. The development of chlorination, water filtration, and sewage treatment were crucial to preventing waterborne illness. Beginning in the 1950s, CDC engineers began their work to improve public health while developing the fields of environmental health, industrial hygiene, and control of air pollution. Engineering disciplines represented at CDC today include biomedical, civil, chemical, electrical, industrial, mechanical, mining, and safety engineering. Most CDC engineers are located in the National Institute for Occupational Safety and Health (NIOSH) and the Agency for Toxic Substances and Disease Registry (ATSDR). Engineering research at CDC has a broad stakeholder base. With the cooperation of industry, labor, trade associations, and other stakeholders and partners, current work includes studies of air contaminants, mining, safety, physical agents, ergonomics, and environmental hazards. Engineering solutions remain a cornerstone of the traditional "hierarchy of controls" approach to reducing public health hazards.

  10. Engine monitoring display study

    NASA Technical Reports Server (NTRS)

    Hornsby, Mary E.

    1992-01-01

    The current study is part of a larger NASA effort to develop displays for an engine-monitoring system to enable the crew to monitor engine parameter trends more effectively. The objective was to evaluate the operational utility of adding three types of information to the basic Boeing Engine Indicating and Crew Alerting System (EICAS) display formats: alphanumeric alerting messages for engine parameters whose values exceed caution or warning limits; alphanumeric messages to monitor engine parameters that deviate from expected values; and a graphic depiction of the range of expected values for current conditions. Ten training and line pilots each flew 15 simulated flight scenarios with five variants of the basic EICAS format; these variants included different combinations of the added information. The pilots detected engine problems more quickly when engine alerting messages were included in the display; adding a graphic depiction of the range of expected values did not affect detection speed. The pilots rated both types of alphanumeric messages (alert and monitor parameter) as more useful and easier to interpret than the graphic depiction. Integrating engine parameter messages into the EICAS alerting system appears to be both useful and preferred.

  11. On a New Approach to Education about Ethics for Engineers at Meijou University

    NASA Astrophysics Data System (ADS)

    Fukaya, Minoru; Morimoto, Tsukasa; Kimura, Noritsugu

    We propose a new approach to education of so called “engineering ethics”. This approach has two important elements in its teaching system. One is “problem-solving learning”, and the other is “discussion ability”. So far, engineering ethics started at the ethical standpoint. But we put the viewpoint of problem-solving learning at the educational base of engineering ethics. Because many problems have complicated structures, so if we want to solve them, we should discuss each other. Problem-solving ability and discussion ability, they help engineers to solve the complex problems in their social everyday life. Therefore, Meijo University names engineering ethics “ethics for engineers”. At Meijou University about 1300 students take classes in both ethics for engineers and environmental ethics for one year.

  12. Concepts for Developing and Utilizing Crowdsourcing for Neurotechnology Advancement

    DTIC Science & Technology

    2013-05-01

    understanding of brain function and related neuroimaging tools, which is mostly limited to highly trained neuroscientists and engineers who wish to...Included are some programmatic suggestions, as well as exemplar applications to fit this end goal. 15. SUBJECT TERMS modular, EEG, neuroscience ... neuroscience -related problems among professionals in other fields, such as engineering and computer science, utilizing this approach to inspire true

  13. Structural dynamics verification facility study

    NASA Technical Reports Server (NTRS)

    Kiraly, L. J.; Hirchbein, M. S.; Mcaleese, J. M.; Fleming, D. P.

    1981-01-01

    The need for a structural dynamics verification facility to support structures programs was studied. Most of the industry operated facilities are used for highly focused research, component development, and problem solving, and are not used for the generic understanding of the coupled dynamic response of major engine subsystems. Capabilities for the proposed facility include: the ability to both excite and measure coupled structural dynamic response of elastic blades on elastic shafting, the mechanical simulation of various dynamical loadings representative of those seen in operating engines, and the measurement of engine dynamic deflections and interface forces caused by alternative engine mounting configurations and compliances.

  14. An Industrial Engineering Approach to Cost Containment of Pharmacy Education

    PubMed Central

    Bottenberg, Michelle; Chase, Marilea; Chesnut, Renae; Clarke, Cheryl; Schott, Kathryn; Torry, Ronald; Welty, Tim

    2015-01-01

    A 2-semester project explored employing teams of fourth-year industrial engineering students to optimize some of our academic management processes. Results included significant cost savings and increases in efficiency, effectiveness, and student and faculty satisfaction. While we did not adopt all of the students’ recommendations, we did learn some important lessons. For example, an initial investment of time in developing a mutually clear understanding of the problems, constraints, and goals maximizes the value of industrial engineering analysis and recommendations. Overall, industrial engineering was a valuable tool for optimizing certain academic management processes. PMID:26839421

  15. How do the Polytechnic Students Cope with the Difficulties in Composing Abstracts for Their Final Projects?

    NASA Astrophysics Data System (ADS)

    Niswatin, C.; Latief, M. A.; Suharyadi, S.

    2018-02-01

    This research aims to uncover the fact about engineering students in dealing with composing abstracts for their final projects. The research applies a descriptive qualitative quantitative design. The data were collected through questioners involving 104 engineering students, including the alumni at Politeknik Kota Malang, Indonesia. Furthermore, interviews were carried out to explain the details where necessary to support the primary data. It is found that the common problems faced by engineering students include 1) combining words into sentences, 2) identifying the most appropriate technical terms in engineering, and 3) applying grammar in context. To cope with those difficulties they demanded translation application machines, supported by peer-proofreaders. In addition, they considerably engaged personal tutoring with the lectures more than three times.

  16. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    NASA Astrophysics Data System (ADS)

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key technologies.

  17. From ``wiggly structures'' to ``unshaky towers'': problem framing, solution finding, and negotiation of courses of actions during a civil engineering unit for elementary students

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael

    1995-12-01

    The present study was designed to investigate problem- and solution-related activity of elementary students in ill-defined and open-ended settings. One Grade 4/5 class of 28 students engaged in the activities of the “Engineering for Children: Structures” curriculum, designed as a vehicle for introducing science concepts, providing ill-defined problem solving contexts, and fostering positive attitudes towards science and technology. Data included video recordings, ethnographic field notes, student produced artefacts (projects and engineering logbooks), and interviews with teachers and observers. These data supported the notion of problems, solutions, and courses of actions as entities with flexible ontologies. In the course of their negotiations, students demonstrated an uncanny competence to frame and reframe problems and solutions and to decide courses of actions of different complexities in spite of the ambiguous nature of (arte)facts, plans, and language. A case study approach was chosen as the literary device to report these general findings. The discussion focuses on the inevitably ambiguous nature of (arte)facts, plans, and language and the associated notion of “interpretive flexibility.” Suggestions are provided for teachers on how to deal with interpretive flexibility without seeking recourse to the didactic approaches of direct teaching. But what happens when problems and solutions are negotiable, when there are no longer isolated problems which one tries to solve but problems which maintain complex linkages with ensembles of other problems and diverse constraints, or when problems and solutions are simultaneously invented? (Lestel, 1989, p. 692, my translation)

  18. Interfaces for End-User Information Seeking.

    ERIC Educational Resources Information Center

    Marchionini, Gary

    1992-01-01

    Discusses essential features of interfaces to support end-user information seeking. Highlights include cognitive engineering; task models and task analysis; the problem-solving nature of information seeking; examples of systems for end-users, including online public access catalogs (OPACs), hypertext, and help systems; and suggested research…

  19. Boussinesq Modeling for Inlets, Harbors, and Structures (Bouss-2D)

    DTIC Science & Technology

    2015-10-30

    a wide variety of coastal and ocean engineering and naval architecture problems, including: transformation of waves over small to medium spatial...and outputs, and GIS data used in modeling. Recent applications include: Pillar Point Harbor, Oyster Point Marina, CA; Mouth of Columbia River

  20. Lessons Learned in Engineering. Supplement

    NASA Technical Reports Server (NTRS)

    Blair, James C.; Ryan, Robert S.; Schultzenhofer, Luke A.

    2011-01-01

    This Contractor Report (CR) is a compilation of Lessons Learned in approximately 55 years of engineering experience by each James C. Blair, Robert S. Ryan, and Luke A. Schutzenhofer. The lessons are the basis of a course on Lessons Learned that has been taught at Marshall Space Flight Center. The lessons are drawn from NASA space projects and are characterized in terms of generic lessons learned from the project experience, which are further distilled into overarching principles that can be applied to future projects. Included are discussions of the overarching principles followed by a listing of the lessons associated with that principle. The lesson with sub-lessons are stated along with a listing of the project problems the lesson is drawn from, then each problem is illustrated and discussed, with conclusions drawn in terms of Lessons Learned. The purpose of this CR is to provide principles learned from past aerospace experience to help achieve greater success in future programs, and identify application of these principles to space systems design. The problems experienced provide insight into the engineering process and are examples of the subtleties one experiences performing engineering design, manufacturing, and operations. The supplemental CD contains accompanying PowerPoint presentations.

  1. Science and Engineering Students' Use of Diagrams during Note Taking versus Explanation

    ERIC Educational Resources Information Center

    Manalo, Emmanuel; Uesaka, Yuri; Perez-Kriz, Sarah; Kato, Masashi; Fukaya, Tatsushi

    2013-01-01

    The use of diagrams in learning and communication is generally considered efficacious and an important skill to cultivate, especially among science students. At the same time, previous research has revealed many problems in student diagram use, including a lack of spontaneity in such use, but the extent to which these problems persist into the…

  2. A method of measuring increase in soil depth and water-storage capacity due to forest management

    Treesearch

    George R., Jr. Trimble

    1952-01-01

    Conservationists, engineers, and others who deal with water problems have become more and more concerned in recent years with increasing the storage of water in the ground. Their concern has centered around problems of flood control and storage of water for later use by plants or animals, including man.

  3. The Problem of Ensuring Reliability of Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Nozhnitsky, Yu A.

    2018-01-01

    Requirements to advanced engines for civil aviation are discussing. Some significant problems of ensuring reliability of advanced gas turbine engines are mentioned. Special attention is paid to successful utilization of new materials and critical technologies. Also the problem of excluding failure of engine part due to low cycle or high cycle fatigue is discussing.

  4. Engineering Challenges for Closed Ecological System facilities

    NASA Astrophysics Data System (ADS)

    Dempster, William; Nelson, Mark; Allen, John P.

    2012-07-01

    Engineering challenges for closed ecological systems include methods of achieving closure for structures of different materials, and developing methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is developing means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differentials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogue to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils.

  5. How To Solve Problems. For Success in Freshman Physics, Engineering, and Beyond. Third Edition.

    ERIC Educational Resources Information Center

    Scarl, Donald

    To expertly solve engineering and science problems one needs to know science and engineering as well as have a tool kit of problem-solving methods. This book is about problem-solving methods: it presents the methods professional problem solvers use, explains why these methods have evolved, and shows how a student can make these methods his/her…

  6. An Example of Competence-Based Learning: Use of Maxima in Linear Algebra for Engineers

    ERIC Educational Resources Information Center

    Diaz, Ana; Garcia, Alfonsa; de la Villa, Agustin

    2011-01-01

    This paper analyses the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is…

  7. Optical sensors and multiplexing for aircraft engine control

    NASA Astrophysics Data System (ADS)

    Berkcan, Ertugrul

    1993-02-01

    Time division multiplexing of spectral modulation fiber optic sensors for aircraft engine control is presented. The paper addresses the architectural properties, the accuracy, the benefits and problems of different type of sources, the spectral stability and update times using these sources, the size, weight, and power issues, and finally the technology needs regarding FADEC mountability. The fiber optic sensors include temperature, pressure, and position spectral modulation sensors.

  8. A Solution to the Small Enrollment Problem in Aerospace Engineering--Self-Paced Materials Used in an Independent Studies Mode.

    ERIC Educational Resources Information Center

    Fowler, Wallace T.; Watkins, R. D.

    With the decline in enrollment in the early 1970's, many aerospace engineering departments had too few students to offer some required courses. At the University of Texas at Austin, a set of personalized system of instruction (PSI) materials for the aircraft performance, stability, and control course was developed. The paper includes a description…

  9. Concurrent engineering design and management knowledge capture

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The topics are presented in viewgraph form and include the following: real-time management, personnel management, project management, conceptual design and decision making; the SITRF design problem; and the electronic-design notebook.

  10. Cumulative reports and publications through December 31, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A complete list of reports from the Institute for Computer Applications in Science and Engineering (ICASE) is presented. The major categories of the current ICASE research program are: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effectual numerical methods; computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, structural analysis, and chemistry; computer systems and software, especially vector and parallel computers, microcomputers, and data management. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available.

  11. Software support environment design knowledge capture

    NASA Technical Reports Server (NTRS)

    Dollman, Tom

    1990-01-01

    The objective of this task is to assess the potential for using the software support environment (SSE) workstations and associated software for design knowledge capture (DKC) tasks. This assessment will include the identification of required capabilities for DKC and hardware/software modifications needed to support DKC. Several approaches to achieving this objective are discussed and interim results are provided: (1) research into the problem of knowledge engineering in a traditional computer-aided software engineering (CASE) environment, like the SSE; (2) research into the problem of applying SSE CASE tools to develop knowledge based systems; and (3) direct utilization of SSE workstations to support a DKC activity.

  12. Control technology for future aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Zeller, J. R.; Szuch, J. R.; Merrill, W. C.; Lehtinen, B.; Soeder, J. F.

    1984-01-01

    The need for a more sophisticated engine control system is discussed. The improvements in better thrust-to-weight ratios demand the manipulation of more control inputs. New technological solutions to the engine control problem are practiced. The digital electronic engine control (DEEC) system is a step in the evolution to digital electronic engine control. Technology issues are addressed to ensure a growth in confidence in sophisticated electronic controls for aircraft turbine engines. The need of a control system architecture which permits propulsion controls to be functionally integrated with other aircraft systems is established. Areas of technology studied include: (1) control design methodology; (2) improved modeling and simulation methods; and (3) implementation technologies. Objectives, results and future thrusts are summarized.

  13. Computing in Hydraulic Engineering Education

    NASA Astrophysics Data System (ADS)

    Duan, J. G.

    2011-12-01

    Civil engineers, pioneers of our civilization, are rarely perceived as leaders and innovators in modern society because of retardations in technology innovation. This crisis has resulted in the decline of the prestige of civil engineering profession, reduction of federal funding on deteriorating infrastructures, and problems with attracting the most talented high-school students. Infusion of cutting-edge computer technology and stimulating creativity and innovation therefore are the critical challenge to civil engineering education. To better prepare our graduates to innovate, this paper discussed the adaption of problem-based collaborative learning technique and integration of civil engineering computing into a traditional civil engineering curriculum. Three interconnected courses: Open Channel Flow, Computational Hydraulics, and Sedimentation Engineering, were developed with emphasis on computational simulations. In Open Channel flow, the focuses are principles of free surface flow and the application of computational models. This prepares students to the 2nd course, Computational Hydraulics, that introduce the fundamental principles of computational hydraulics, including finite difference and finite element methods. This course complements the Open Channel Flow class to provide students with in-depth understandings of computational methods. The 3rd course, Sedimentation Engineering, covers the fundamentals of sediment transport and river engineering, so students can apply the knowledge and programming skills gained from previous courses to develop computational models for simulating sediment transport. These courses effectively equipped students with important skills and knowledge to complete thesis and dissertation research.

  14. Definition of the Engineering Method.

    ERIC Educational Resources Information Center

    Koen, Billy Vaughn

    In an effort to more clearly define the engineering method, this document attempts to draw distinctions between engineering and science. Part I, "Some Thoughts on Engineering," discusses strategies that engineers employ to solve problems, and the characteristics of the types of engineering problems. Part II, "The Principal Rule of the Engineering…

  15. Mathematical computer programs: A compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Computer programs, routines, and subroutines for aiding engineers, scientists, and mathematicians in direct problem solving are presented. Also included is a group of items that affords the same users greater flexibility in the use of software.

  16. Engineering education at a new public university in Brazil: first students' contact with engineering methods

    NASA Astrophysics Data System (ADS)

    Romero, Jesus Franklin A.; Leite, Patrícia; Mantovani, Gerson L.; Lanfredi, Alexandre J. C.; Martins-Filho, Luiz S.

    2011-06-01

    This paper describes the experience of an introductory discipline to the engineering curricula at the Brazilian Federal University of ABC (UFABC). The university offers a common basic curriculum that must be accomplished by every student and can be followed by professionalising courses. The discipline 'Introduction to Engineering' presents the basis of the engineering career, methods and thinking together with professional commitments and regulations. The objective is to help students to consciously choose their careers, minimising the precocity problem in deciding a professional future. The discipline methodology includes activities proposed by the TryEngineering website and from Brazilian engineering councils. Lectures with invited professors introduce UFABC engineering specialities: Aerospace, Bioengineering, Energy, Environmental & Urban, Information, Instrumentation & Automation & Robotics, Management, Materials. This paper reports the proposed activities, results obtained by the students, a methodology critical analysis and the impacts on the following steps of students embracing an engineering career.

  17. Understanding Engineers' Responsibilities: A Prerequisite to Designing Engineering Education : Commentary on "Educating Engineers for the Public Good Through International Internships: Evidence from a Case Study at Universitat Politècnica de València".

    PubMed

    Murphy, Colleen; Gardoni, Paolo

    2017-07-18

    The development of the curriculum for engineering education (course requirements as well as extra-curricular activities like study abroad and internships) should be based on a comprehensive understanding of engineers' responsibilities. The responsibilities that are constitutive of being an engineer include striving to fulfill the standards of excellence set by technical codes; to improve the idealized models that engineers use to predict, for example, the behavior of alternative designs; and to achieve the internal goods such as safety and sustainability as they are reflected in the design codes. Globalization has implications for these responsibilities and, in turn, for engineering education, by, for example, modifying the collection of possible solutions recognized for existing problems. In addition, international internships can play an important role in fostering the requisite moral imagination of engineering students.

  18. Maintenance problems associated with the operation of the F402 /Pegasus/ engine in the AV-8A /Harrier/ aircraft

    NASA Technical Reports Server (NTRS)

    Stanley, C. W.; Hood, W. E.

    1981-01-01

    The U.S. Marine Corp (USMC) has been operating the only V/STOL attack aircraft in the western world since 1971. Some of the maintenance problems experienced are related to the unique V/STOL design criteria of the Pegasus engine. However, the major part of the required maintenance effort is found to involve the more conventional engine problems. A description of the aircraft engine is provided and the problems resulting from V/STOL design demands are examined. Attention is given to the fuel system control, the engine air bleed, foreign object damage to the hp compressor, and the engine exhaust system.

  19. Convolving engineering and medical pedagogies for training of tomorrow's health care professionals.

    PubMed

    Lee, Raphael C

    2013-03-01

    Several fundamental benefits justify why biomedical engineering and medicine should form a more convergent alliance, especially for the training of tomorrow's physicians and biomedical engineers. Herein, we review the rationale underlying the benefits. Biological discovery has advanced beyond the era of molecular biology well into today's era of molecular systems biology, which focuses on understanding the rules that govern the behavior of complex living systems. This has important medical implications. To realize cost-effective personalized medicine, it is necessary to translate the advances in molecular systems biology to higher levels of biological organization (organ, system, and organismal levels) and then to develop new medical therapeutics based on simulation and medical informatics analysis. Higher education in biological and medical sciences must adapt to a new set of training objectives. This will involve a shifting away from reductionist problem solving toward more integrative, continuum, and predictive modeling approaches which traditionally have been more associated with engineering science. Future biomedical engineers and MDs must be able to predict clinical response to therapeutic intervention. Medical education will involve engineering pedagogies, wherein basic governing rules of complex system behavior and skill sets in manipulating these systems to achieve a practical desired outcome are taught. Similarly, graduate biomedical engineering programs will include more practical exposure to clinical problem solving.

  20. Engineering Infrastructures: Problems of Safety and Security in the Russian Federation

    NASA Astrophysics Data System (ADS)

    Makhutov, Nikolay A.; Reznikov, Dmitry O.; Petrov, Vitaly P.

    Modern society cannot exist without stable and reliable engineering infrastructures (EI), whose operation is vital for any national economy. These infrastructures include energy, transportation, water and gas supply systems, telecommunication and cyber systems, etc. Their performance is commensurate with storing and processing huge amounts of information, energy and hazardous substances. Ageing infrastructures are deteriorating — with operating conditions declining from normal to emergency and catastrophic. The complexity of engineering infrastructures and their interdependence with other technical systems makes them vulnerable to emergency situations triggered by natural and manmade catastrophes or terrorist attacks.

  1. Aviation Safety Program Atmospheric Environment Safety Technologies (AEST) Project

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron

    2011-01-01

    Engine Icing: Characterization and Simulation Capability: Develop knowledge bases, analysis methods, and simulation tools needed to address the problem of engine icing; in particular, ice-crystal icing Airframe Icing Simulation and Engineering Tool Capability: Develop and demonstrate 3-D capability to simulate and model airframe ice accretion and related aerodynamic performance degradation for current and future aircraft configurations in an expanded icing environment that includes freezing drizzle/rain Atmospheric Hazard Sensing and Mitigation Technology Capability: Improve and expand remote sensing and mitigation of hazardous atmospheric environments and phenomena

  2. Instruction Using Experiments in a Computer. Final Report.

    ERIC Educational Resources Information Center

    Fulton, John P.; Hazeltine, Barrett

    Included are four computer programs which simulate experiments suitable for freshman engineering and physics courses. The subjects of the programs are ballistic trajectories, variable mass systems, trajectory of a particle under various forces, and design of an electronic emplifier. The report includes the problem statement, its objectives, the…

  3. Introduction to Forward-Error-Correcting Coding

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    1996-01-01

    This reference publication introduces forward error correcting (FEC) and stresses definitions and basic calculations for use by engineers. The seven chapters include 41 example problems, worked in detail to illustrate points. A glossary of terms is included, as well as an appendix on the Q function. Block and convolutional codes are covered.

  4. Teaching through Trade Books: Design Dilemmas

    ERIC Educational Resources Information Center

    Royce, Christine Anne

    2015-01-01

    This column includes activities inspired by children's literature. Through two different stories, students are introduced to the process--including the frustrations--of designing something to solve a problem. The experiences of the books' characters are brought into the classroom by having students engage in an engineering and design process. The…

  5. Summary of research in applied mathematics, numerical analysis, and computer sciences

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The major categories of current ICASE research programs addressed include: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effective numerical methods; computational problems in engineering and physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and computer systems and software, especially vector and parallel computers.

  6. Development Problems With Component Construction. Proceedings of Conference of the Building Research Institute, Division of Engineering and Industrial Research (Fall 1959).

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    Publication of conference papers includes--(1) an overview of the ceiling system complex by a lighting manufacturer, (2) review of problems influencing the development of roofing systems, (3) description of cooperative research within the cement industry, and (4) description of joint research development of structural ceramic panels. Included…

  7. Galvanic Liquid Applied Coating System For Protection of Embedded Steel Surfaces from Corrosion

    NASA Technical Reports Server (NTRS)

    Curran, Joseph; Curran, Jerome; Voska, N. (Technical Monitor)

    2002-01-01

    Corrosion of reinforcing steel in concrete is an insidious problem facing Kennedy Space Center (KSC), other Government Agencies, and the general public. These problems include KSC launch support structures, highway bridge infrastructure, and building structures such as condominium balconies. Due to these problems, the development of a Galvanic Liquid Applied Coating System would be a breakthrough technology having great commercial value for the following industries: Transportation, Infrastructure, Marine Infrastructure, Civil Engineering, and the Construction Industry. This sacrificial coating system consists of a paint matrix that may include metallic components, conducting agents, and moisture attractors. Similar systems have been used in the past with varying degrees of success. These systems have no proven history of effectiveness over the long term. In addition, these types of systems have had limited success overcoming the initial resistance between the concrete/coating interface. The coating developed at KSC incorporates methods proven to overcome the barriers that previous systems could not achieve. Successful development and continued optimization of this breakthrough system would produce great interest in NASA/KSC for corrosion engineering technology and problem solutions. Commercial patents on this technology would enhance KSC's ability to attract industry partners for similar corrosion control applications.

  8. Software engineering methodologies and tools

    NASA Technical Reports Server (NTRS)

    Wilcox, Lawrence M.

    1993-01-01

    Over the years many engineering disciplines have developed, including chemical, electronic, etc. Common to all engineering disciplines is the use of rigor, models, metrics, and predefined methodologies. Recently, a new engineering discipline has appeared on the scene, called software engineering. For over thirty years computer software has been developed and the track record has not been good. Software development projects often miss schedules, are over budget, do not give the user what is wanted, and produce defects. One estimate is there are one to three defects per 1000 lines of deployed code. More and more systems are requiring larger and more complex software for support. As this requirement grows, the software development problems grow exponentially. It is believed that software quality can be improved by applying engineering principles. Another compelling reason to bring the engineering disciplines to software development is productivity. It has been estimated that productivity of producing software has only increased one to two percent a year in the last thirty years. Ironically, the computer and its software have contributed significantly to the industry-wide productivity, but computer professionals have done a poor job of using the computer to do their job. Engineering disciplines and methodologies are now emerging supported by software tools that address the problems of software development. This paper addresses some of the current software engineering methodologies as a backdrop for the general evaluation of computer assisted software engineering (CASE) tools from actual installation of and experimentation with some specific tools.

  9. Cryogenic Technology, part 1. [conference proceedings; cryogenic wind tunnel design and instrumentation

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Different engineering problems associated with the design of mechanisms and systems to operate in a cryogenic environment are discussed. The focal point for the entire engineering effort was the design of the National Transonic Facility, which is a closed-circuit cryogenic wind tunnel. The papers covered a variety of mechanical, structural, and systems design subjects including thermal structures insulation systems, noise, seals, and materials.

  10. A Powerful New Engine

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Through Small Business Innovation Research (SBIR) funding from NASA's Glenn Research Center, Moller International created a new coating for rotary engines, which significantly improves the fuel consumption of a vehicle while reducing emissions. The new coatings are offered in the new Rotapower(R) engine, which is produced and distributed by Moller subsidiary, Freedom Motors, Inc. The coating allows the Rotapower engine to function smoother than other models, reducing wear and protecting the engine. The Rotapower engine has the ability to operate on a variety of fuels, including gasoline, natural gas, diesel, alcohol, and kerosene. A small and lightweight engine, it is projected to replace many of today's bulkier versions. The 10 horsepower model fits in the palm of one's hand, while the 160 horsepower model fits into a 5-gallon bucket. The clean running Rotapower engine is environmentally appealing, because it eliminates over 98 percent of the total emissions given off by traditional piston engines. Fewer pollutants are spewed into the air, making it especially attractive in areas where air pollution is a major problem. Due to the clean-burning nature of the engine, it meets the stringent standards set by the California Air Resources Board. The engine also has numerous commercial benefits in several types of recreational, industrial, and transportation applications, including personal watercraft, snowmobiles, portable generators. and pumps.

  11. Group Design Problems in Engineering Design Graphics.

    ERIC Educational Resources Information Center

    Kelley, David

    2001-01-01

    Describes group design techniques used within the engineering design graphics sequence at Western Washington University. Engineering and design philosophies such as concurrent engineering place an emphasis on group collaboration for the solving of design problems. (Author/DDR)

  12. Controls, health assessment, and conditional monitoring for large, reusable, liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Cikanek, H. A., III

    1986-01-01

    Past and future progress in the performance of control systems for large, liquid rocket engines typified such as current state-of-the-art, the Shuttle Main Engine (SSME), is discussed. Details of the first decade of efforts, which culminates in the F-1 and J-2 Saturn engines control systems, are traced, noting problem modes and improvements which were implemented to realize the SSME. Future control system designs, to accommodate the requirements of operation of engines for a heavy lift launch vehicle, an orbital transfer vehicle and the aerospace plane, are summarized. Generic design upgrades needed include an expanded range of fault detection, maintenance as-needed instead of as-scheduled, reduced human involvement in engine operations, and increased control of internal engine states. Current NASA technology development programs aimed at meeting the future control system requirements are described.

  13. Engineering Ethics Education : Its Necessity, Objectives, Methods, Current State, and Challenges

    NASA Astrophysics Data System (ADS)

    Fudano, Jun

    The importance of engineering ethics education has become widely recognized in the industrialized countries including Japan. This paper examines the background against which engineering ethics education is required, and reviews its objectives, methods, and challenges, as well as its current state. In pointing out important issues associated with the apparent acceptance and quantitative development of ethics education, especially after the establishment of the Japan Accreditation Board for Engineering Education in 1999, the author stresses that the most serious problem is the lack of common understanding on the objectives of engineering ethics education. As a strategy to improve the situation, the so-called “Ethics-across-the-Curriculum” approach is introduced. The author also claims that business/organization ethics which is consistent with engineering ethics should be promoted in Japan.

  14. Problem Solving and Engineering Design, Introducing Bachelor Students to Engineering Practice at K. U. Leuven

    ERIC Educational Resources Information Center

    Heylen, Christel; Smet, Marc; Buelens, Hermans; Sloten, Jos Vander

    2007-01-01

    A present-day engineer has a large scientific knowledge; he is a team-player, eloquent communicator and life-long learner. At the Katholieke Universiteit Leuven, the course "Problem Solving and Engineering Design" introduces engineering students from the first semester onwards into real engineering practice and teamwork. Working in small…

  15. 40 CFR 89.102 - Effective dates, optional inclusion, flexibility for equipment manufacturers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exemptions for technical or engineering hardship. You may request additional engine allowances under... technical or engineering problems that prevent you from meeting the requirements of this part. You must show... your engine supplier to design products. (iii) Describe the engineering or technical problems causing...

  16. 40 CFR 89.102 - Effective dates, optional inclusion, flexibility for equipment manufacturers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exemptions for technical or engineering hardship. You may request additional engine allowances under... technical or engineering problems that prevent you from meeting the requirements of this part. You must show... your engine supplier to design products. (iii) Describe the engineering or technical problems causing...

  17. 40 CFR 89.102 - Effective dates, optional inclusion, flexibility for equipment manufacturers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... exemptions for technical or engineering hardship. You may request additional engine allowances under... technical or engineering problems that prevent you from meeting the requirements of this part. You must show... your engine supplier to design products. (iii) Describe the engineering or technical problems causing...

  18. ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics (CAA)

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C. (Editor); Ristorcelli, J. Ray (Editor); Tam, Christopher K. W. (Editor)

    1995-01-01

    The proceedings of the Benchmark Problems in Computational Aeroacoustics Workshop held at NASA Langley Research Center are the subject of this report. The purpose of the Workshop was to assess the utility of a number of numerical schemes in the context of the unusual requirements of aeroacoustical calculations. The schemes were assessed from the viewpoint of dispersion and dissipation -- issues important to long time integration and long distance propagation in aeroacoustics. Also investigated were the effect of implementation of different boundary conditions. The Workshop included a forum in which practical engineering problems related to computational aeroacoustics were discussed. This discussion took the form of a dialogue between an industrial panel and the workshop participants and was an effort to suggest the direction of evolution of this field in the context of current engineering needs.

  19. Design considerations in clustering nuclear rocket engines

    NASA Technical Reports Server (NTRS)

    Sager, Paul H.

    1992-01-01

    An initial investigation of the design considerations in clustering nuclear rocket engines for space transfer vehicles has been made. The clustering of both propulsion modules (which include start tanks) and nuclear rocket engines installed directly to a vehicle core tank appears to be feasible. Special provisions to shield opposite run tanks and the opposite side of a core tank - in the case of the boost pump concept - are required; the installation of a circumferential reactor side shield sector appears to provide an effective solution to this problem. While the time response to an engine-out event does not appear to be critical, the gimbal displacement required appears to be important. Since an installation of three engines offers a substantial reduction in gimbal requirements for engine-out and it may be possible to further enhance mission reliability with the greater number of engines, it is recommended that a cluster of four engines be considered.

  20. Design considerations in clustering nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Sager, Paul H.

    1992-07-01

    An initial investigation of the design considerations in clustering nuclear rocket engines for space transfer vehicles has been made. The clustering of both propulsion modules (which include start tanks) and nuclear rocket engines installed directly to a vehicle core tank appears to be feasible. Special provisions to shield opposite run tanks and the opposite side of a core tank - in the case of the boost pump concept - are required; the installation of a circumferential reactor side shield sector appears to provide an effective solution to this problem. While the time response to an engine-out event does not appear to be critical, the gimbal displacement required appears to be important. Since an installation of three engines offers a substantial reduction in gimbal requirements for engine-out and it may be possible to further enhance mission reliability with the greater number of engines, it is recommended that a cluster of four engines be considered.

  1. Discussion on teaching reform of environmental planning and management

    NASA Astrophysics Data System (ADS)

    Zhang, Qiugen; Chen, Suhua; Xie, Yu; Wei, Li'an; Ding, Yuan

    2018-05-01

    The curriculum of environmental planning and management is an environmental engineering major curriculum established by the teaching steering committee of environmental science and engineering of Education Ministry, which is the core curriculum of Chinese engineering education professional certification. It plays an important role in cultivating environmental planning and environmental management ability of environmental engineering major. The selection and optimization of the course teaching content of environmental planning and management were discussed which including curriculum teaching content updating and optimizing and teaching resource system construction. The comprehensive application of teaching method was discussed which including teaching method synthesis and teaching method. The final combination of the assessment method was also discussed which including the formative assessment normal grades and the final result of the course examination. Through the curriculum comprehensive teaching reform, students' knowledge had been broadened, the subject status and autonomy of learning had been enhanced, students' learning interest had been motivated, the ability of students' finding, analyzing and solving problems had been improved. Students' innovative ability and positive spirit had been well cultivated.

  2. A Physics-Based Engineering Methodology for Calculating Soft Error Rates of Bulk CMOS and SiGe Heterojunction Bipolar Transistor Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Fulkerson, David E.

    2010-02-01

    This paper describes a new methodology for characterizing the electrical behavior and soft error rate (SER) of CMOS and SiGe HBT integrated circuits that are struck by ions. A typical engineering design problem is to calculate the SER of a critical path that commonly includes several circuits such as an input buffer, several logic gates, logic storage, clock tree circuitry, and an output buffer. Using multiple 3D TCAD simulations to solve this problem is too costly and time-consuming for general engineering use. The new and simple methodology handles the problem with ease by simple SPICE simulations. The methodology accurately predicts the measured threshold linear energy transfer (LET) of a bulk CMOS SRAM. It solves for circuit currents and voltage spikes that are close to those predicted by expensive 3D TCAD simulations. It accurately predicts the measured event cross-section vs. LET curve of an experimental SiGe HBT flip-flop. The experimental cross section vs. frequency behavior and other subtle effects are also accurately predicted.

  3. Multi-Zone Liquid Thrust Chamber Performance Code with Domain Decomposition for Parallel Processing

    NASA Technical Reports Server (NTRS)

    Navaz, Homayun K.

    2002-01-01

    Computational Fluid Dynamics (CFD) has considerably evolved in the last decade. There are many computer programs that can perform computations on viscous internal or external flows with chemical reactions. CFD has become a commonly used tool in the design and analysis of gas turbines, ramjet combustors, turbo-machinery, inlet ducts, rocket engines, jet interaction, missile, and ramjet nozzles. One of the problems of interest to NASA has always been the performance prediction for rocket and air-breathing engines. Due to the complexity of flow in these engines it is necessary to resolve the flowfield into a fine mesh to capture quantities like turbulence and heat transfer. However, calculation on a high-resolution grid is associated with a prohibitively increasing computational time that can downgrade the value of the CFD for practical engineering calculations. The Liquid Thrust Chamber Performance (LTCP) code was developed for NASA/MSFC (Marshall Space Flight Center) to perform liquid rocket engine performance calculations. This code is a 2D/axisymmetric full Navier-Stokes (NS) solver with fully coupled finite rate chemistry and Eulerian treatment of liquid fuel and/or oxidizer droplets. One of the advantages of this code has been the resemblance of its input file to the JANNAF (Joint Army Navy NASA Air Force Interagency Propulsion Committee) standard TDK code, and its automatic grid generation for JANNAF defined combustion chamber wall geometry. These options minimize the learning effort for TDK users, and make the code a good candidate for performing engineering calculations. Although the LTCP code was developed for liquid rocket engines, it is a general-purpose code and has been used for solving many engineering problems. However, the single zone formulation of the LTCP has limited the code to be applicable to problems with complex geometry. Furthermore, the computational time becomes prohibitively large for high-resolution problems with chemistry, two-equation turbulence model, and two-phase flow. To overcome these limitations, the LTCP code is rewritten to include the multi-zone capability with domain decomposition that makes it suitable for parallel processing, i.e., enabling the code to run every zone or sub-domain on a separate processor. This can reduce the run time by a factor of 6 to 8, depending on the problem.

  4. Evaluation of engineered foods for Closed Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Karel, M.

    1981-01-01

    A system of conversion of locally regenerated raw materials and of resupplied freeze-dried foods and ingredients into acceptable, safe and nutritious engineered foods is proposed. The first phase of the proposed research has the following objectives: (1) evaluation of feasibility of developing acceptable and reliable engineered foods from a limited selection of plants, supplemented by microbially produced nutrients and a minimum of dehydrated nutrient sources (especially those of animal origin); (2) evaluation of research tasks and specifications of research projects to adapt present technology and food science to expected space conditions (in particular, problems arising from unusual gravity conditions, problems of limited size and the isolation of the food production system, and the opportunities of space conditions are considered); (3) development of scenarios of agricultural production of plant and microbial systems, including the specifications of processing wastes to be recycled.

  5. Low-cost rural surface alternatives : literature review and recommendations.

    DOT National Transportation Integrated Search

    2013-12-01

    Freezing and thawing action induces damage to unbound gravel roads in Iowa resulting in maintenance costs for secondary road departments. Some approaches currently used by County Engineers to deal with this problem include temporarily spreading rock ...

  6. The Year in Science.

    ERIC Educational Resources Information Center

    Discover, 1982

    1982-01-01

    Highlights scientific accomplishments in 1981. Focuses on space sciences, medicine, geology, chemistry, physics, zoology, paleontology, environmental problems, and genetics including such topics as the Space Shuttle, Mount St. Helen's endangered species, genetic engineering, and the scientists associated with these accomplishments. (JN)

  7. Colour and Optical Properties of Materials: An Exploration of the Relationship Between Light, the Optical Properties of Materials and Colour

    NASA Astrophysics Data System (ADS)

    Tilley, Richard J. D.

    2003-05-01

    Colour is an important and integral part of everyday life, and an understanding and knowledge of the scientific principles behind colour, with its many applications and uses, is becoming increasingly important to a wide range of academic disciplines, from physical, medical and biological sciences through to the arts. Colour and the Optical Properties of Materials carefully introduces the science behind the subject, along with many modern and cutting-edge applications, chose to appeal to today's students. For science students, it provides a broad introduction to the subject and the many applications of colour. To more applied students, such as engineering and arts students, it provides the essential scientific background to colour and the many applications. Features: * Introduces the science behind the subject whilst closely connecting it to modern applications, such as colour displays, optical amplifiers and colour centre lasers * Richly illustrated with full-colour plates * Includes many worked examples, along with problems and exercises at the end of each chapter and selected answers at the back of the book * A Web site, including additional problems and full solutions to all the problems, which may be accessed at: www.cardiff.ac.uk/uwcc/engin/staff/rdjt/colour Written for students taking an introductory course in colour in a wide range of disciplines such as physics, chemistry, engineering, materials science, computer science, design, photography, architecture and textiles.

  8. Enhanced and Conventional Project-Based Learning in an Engineering Design Module

    ERIC Educational Resources Information Center

    Chua, K. J.; Yang, W. M.; Leo, H. L.

    2014-01-01

    Engineering education focuses chiefly on students' ability to solve problems. While most engineering students are proficient in solving paper questions, they may not be proficient at providing optimal solutions to pragmatic project-based problems that require systematic learning strategy, innovation, problem-solving, and execution. The…

  9. Aerospace applications of integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in solving combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on a large space structure and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  10. Bringing the Unidata IDV to the Cloud

    NASA Astrophysics Data System (ADS)

    Fisher, W. I.; Oxelson Ganter, J.

    2015-12-01

    Maintaining software compatibility across new computing environments and the associated underlying hardware is a common problem for software engineers and scientific programmers. While traditional software engineering provides a suite of tools and methodologies which may mitigate this issue, they are typically ignored by developers lacking a background in software engineering. Causing further problems, these methodologies are best applied at the start of project; trying to apply them to an existing, mature project can require an immense effort. Visualization software is particularly vulnerable to this problem, given the inherent dependency on particular graphics hardware and software API's. As a result of these issues, there exists a large body of software which is simultaneously critical to the scientists who are dependent upon it, and yet increasingly difficult to maintain.The solution to this problem was partially provided with the advent of Cloud Computing; Application Streaming. This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations, with little-to-no re-engineering required. When coupled with containerization technology such as Docker, we are able to easily bring the same visualization software to a desktop, a netbook, a smartphone, and the next generation of hardware, whatever it may be.Unidata has been able to harness Application Streaming to provide a tablet-compatible version of our visualization software, the Integrated Data Viewer (IDV). This work will examine the challenges associated with adapting the IDV to an application streaming platform, and include a brief discussion of the underlying technologies involved.

  11. Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds

    PubMed Central

    Gaihre, Bipin; Uswatta, Suren; Jayasuriya, Ambalangodage C.

    2017-01-01

    Engineering craniofacial bone tissues is challenging due to their complex structures. Current standard autografts and allografts have many drawbacks for craniofacial bone tissue reconstruction; including donor site morbidity and the ability to reinstate the aesthetic characteristics of the host tissue. To overcome these problems; tissue engineering and regenerative medicine strategies have been developed as a potential way to reconstruct damaged bone tissue. Different types of new biomaterials; including natural polymers; synthetic polymers and bioceramics; have emerged to treat these damaged craniofacial bone tissues in the form of injectable and non-injectable scaffolds; which are examined in this review. Injectable scaffolds can be considered a better approach to craniofacial tissue engineering as they can be inserted with minimally invasive surgery; thus protecting the aesthetic characteristics. In this review; we also focus on recent research innovations with different types of stem-cell sources harvested from oral tissue and growth factors used to develop craniofacial bone tissue-engineering strategies. PMID:29156629

  12. 33 CFR Appendix B to Part 273 - Information Requirements for Aquatic Plant Control Program Reports

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... identification by common and scientific name of the plant or plants concerned, origin of infestation and likely... control operations or engineering works, including control methods, materials, equipment and procedures... operation control, the report should include a brief statement of the special problems in control methods...

  13. 33 CFR Appendix B to Part 273 - Information Requirements for Aquatic Plant Control Program Reports

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... identification by common and scientific name of the plant or plants concerned, origin of infestation and likely... control operations or engineering works, including control methods, materials, equipment and procedures... operation control, the report should include a brief statement of the special problems in control methods...

  14. Cascade Optimization Strategy Maximizes Thrust for High-Speed Civil Transport Propulsion System Concept

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The design of a High-Speed Civil Transport (HSCT) air-breathing propulsion system for multimission, variable-cycle operations was successfully optimized through a soft coupling of the engine performance analyzer NASA Engine Performance Program (NEPP) to a multidisciplinary optimization tool COMETBOARDS that was developed at the NASA Lewis Research Center. The design optimization of this engine was cast as a nonlinear optimization problem, with engine thrust as the merit function and the bypass ratios, r-values of fans, fuel flow, and other factors as important active design variables. Constraints were specified on factors including the maximum speed of the compressors, the positive surge margins for the compressors with specified safety factors, the discharge temperature, the pressure ratios, and the mixer extreme Mach number. Solving the problem by using the most reliable optimization algorithm available in COMETBOARDS would provide feasible optimum results only for a portion of the aircraft flight regime because of the large number of mission points (defined by altitudes, Mach numbers, flow rates, and other factors), diverse constraint types, and overall poor conditioning of the design space. Only the cascade optimization strategy of COMETBOARDS, which was devised especially for difficult multidisciplinary applications, could successfully solve a number of engine design problems for their flight regimes. Furthermore, the cascade strategy converged to the same global optimum solution even when it was initiated from different design points. Multiple optimizers in a specified sequence, pseudorandom damping, and reduction of the design space distortion via a global scaling scheme are some of the key features of the cascade strategy. HSCT engine concept, optimized solution for HSCT engine concept. A COMETBOARDS solution for an HSCT engine (Mach-2.4 mixed-flow turbofan) along with its configuration is shown. The optimum thrust is normalized with respect to NEPP results. COMETBOARDS added value in the design optimization of the HSCT engine.

  15. Facility Reliability and Maintainability: An Investigation of the Air Force Civil Engineering Recurring Work Program

    DTIC Science & Technology

    1989-09-01

    18:2). A recent survey by the Strategic Air Command (SAC) Mechanical Fquipment Management Evaluation Team ( MEMET ) determined that equipment was...identified by MEMET included Maintenance Action Sheets (MAS) that reported work which was not completed, and other MAS which annotated recurring work...readily apparent. Problem Military. The Deputy Chief of Staff for Engineering and Services, HQ SAC, established the MEMET in 1984 in response to a

  16. Dynamic coordinated control during mode transition process for a compound power-split hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Su, Yanzhao; Hu, Minghui; Su, Ling; Qin, Datong; Zhang, Tong; Fu, Chunyun

    2018-07-01

    The fuel economy of the hybrid electric vehicles (HEVs) can be effectively improved by the mode transition (MT). However, for a power-split powertrain whose power-split transmission is directly connected to the engine, the engine ripple torque (ERT), inconsistent dynamic characteristics (IDC) of engine and motors, model estimation inaccuracies (MEI), system parameter uncertainties (SPU) can cause jerk and vibration of transmission system during the MT process, which will reduce the driving comfort and the life of the drive parts. To tackle these problems, a dynamic coordinated control strategy (DCCS), including a staged engine torque feedforward and feedback estimation (ETFBC) and an active damping feedback compensation (ADBC) based on drive shaft torque estimation (DSTE), is proposed. And the effectiveness of this strategy is verified using a plant model. Firstly, the powertrain plant model is established, and the MT process and problems are analyzed. Secondly, considering the characteristics of the engine torque estimation (ETE) model before and after engine ignition, a motor torque compensation control based on the staged ERT estimation is developed. Then, considering the MEI, SPU and the load change, an ADBC based on a real-time nonlinear reduced-order robust observer of the DSTE is designed. Finally, the simulation results show that the proposed DCCS can effectively improve the driving comfort.

  17. Effect of a "Look-Ahead" Problem on Undergraduate Engineering Students' Concept Comprehension

    ERIC Educational Resources Information Center

    Goodman, Kevin; Davis, Julian; McDonald, Thomas

    2016-01-01

    In an effort to motivate undergraduate engineering students to prepare for class by reviewing material before lectures, a "Look-Ahead" problem was utilized. Students from two undergraduate engineering courses; Statics and Electronic Circuits, were assigned problems from course material that had not yet been covered in class. These…

  18. The role of non-epistemic values in engineering models.

    PubMed

    Diekmann, Sven; Peterson, Martin

    2013-03-01

    We argue that non-epistemic values, including moral ones, play an important role in the construction and choice of models in science and engineering. Our main claim is that non-epistemic values are not only "secondary values" that become important just in case epistemic values leave some issues open. Our point is, on the contrary, that non-epistemic values are as important as epistemic ones when engineers seek to develop the best model of a process or problem. The upshot is that models are neither value-free, nor depend exclusively on epistemic values or use non-epistemic values as tie-breakers.

  19. A systems engineering management approach to resource management applications

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda Shaller

    1989-01-01

    The author presents a program management response to the following question: How can the traditional practice of systems engineering management, including requirements specification, be adapted, enhanced, or modified to build future planning and scheduling systems for effective operations? The systems engineering management process, as traditionally practiced, is examined. Extensible resource management systems are discussed. It is concluded that extensible systems are a partial solution to problems presented by requirements that are incomplete, partially immeasurable, and often dynamic. There are positive indications that resource management systems have been characterized and modeled sufficiently to allow their implementation as extensible systems.

  20. Using case studies to teach an engineering technology technical writing class

    NASA Technical Reports Server (NTRS)

    Green, M. M.

    1981-01-01

    The use of the case method in teaching various technical communication skills is described. Features of the method considered include: solving communication problems, identifying an audience, planning written communications, presenting written communications, and using visual aids.

  1. An experimental study of the atmospheric boundary layer modified by a change in surface roughness and surface temperature

    NASA Technical Reports Server (NTRS)

    Tieleman, H. W.; Derrington, D. B., Jr.

    1977-01-01

    Turbulent flow, resembling an on-shore flow from the ocean crossing the beach at an oblique angle, is investigated. Measurements of this flow have been taken at high sample rates and include measurements at various heights, high enough to describe the portion of the mean wind and temperature profiles and fluxes that are of interest for the solution of practical engineering problems. These problems could include air pollution (fumigation and plume trapping), operation of low flying aircraft, crop-spraying and crop-dusting operations.

  2. Engineering: Defining and differentiating its unique culture

    NASA Astrophysics Data System (ADS)

    Pilotte, Mary K.

    The world of work for engineering professionals is changing. At a rapid pace, experienced engineers are exiting the workforce due to retirement of the Baby Boomer generation, while at the same time the problems facing engineers are increasingly complex and frequently global in nature. For firms to protect their knowledge assets, they must ensure that acquired understandings are shared among their engineering work groups. Engineering teaching and learning in the workplace (i.e., knowledge sharing), is a social activity that resides in a social context governed by the professional engineering culture. This quantitative study uses Hofstede's Organizational Cultural Values Model (Hofstede, Neuijen, Ohayv, & Sanders, 1990) to examine dimensions of engineering culture in the workplace, producing a central tendency profile of engineering's cultural practices. Further, it explores through hypotheses if demographic differentiators, including birth generation, gender, race, industry sector of employment, and engineering discipline, play roles in forming engineering cultural practices. Results both corroborate aspects of Hofstede's model and assert new understandings relative to factors influencing dimensions of engineering practice. Outcomes are discussed in terms of their potential impact on industrial knowledge sharing and formation of beneficial engineering cultures.

  3. Modernizing engine displays

    NASA Technical Reports Server (NTRS)

    Schneider, E. T.; Enevoldson, E. K.

    1984-01-01

    The introduction of electronic fuel control to modern turbine engines has a number of advantages, which are related to an increase in engine performance and to a reduction or elimination of the problems associated with high angle of attack engine operation from the surface to 50,000 feet. If the appropriate engine display devices are available to the pilot, the fuel control system can provide a great amount of information. Some of the wealth of information available from modern fuel controls are discussed in this paper. The considered electronic engine control systems in their most recent forms are known as the Full Authority Digital Engine Control (FADEC) and the Digital Electronic Engine Control (DEEC). Attention is given to some details regarding the control systems, typical engine problems, the solution of problems with the aid of displays, engine displays in normal operation, an example display format, a multipage format, flight strategies, and hardware considerations.

  4. On Multifunctional Collaborative Methods in Engineering Science

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2001-01-01

    Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized.

  5. Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Borguet, Sebastien; Leonard, Olivier; Zhang, Xiaodong (Frank)

    2013-01-01

    Recent technology reviews have identified the need for objective assessments of aircraft engine health management (EHM) technologies. To help address this issue, a gas path diagnostic benchmark problem has been created and made publicly available. This software tool, referred to as the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES), has been constructed based on feedback provided by the aircraft EHM community. It provides a standard benchmark problem enabling users to develop, evaluate and compare diagnostic methods. This paper will present an overview of ProDiMES along with a description of four gas path diagnostic methods developed and applied to the problem. These methods, which include analytical and empirical diagnostic techniques, will be described and associated blind-test-case metric results will be presented and compared. Lessons learned along with recommendations for improving the public benchmarking processes will also be presented and discussed.

  6. Modeling and Hazard Analysis Using STPA

    NASA Astrophysics Data System (ADS)

    Ishimatsu, Takuto; Leveson, Nancy; Thomas, John; Katahira, Masa; Miyamoto, Yuko; Nakao, Haruka

    2010-09-01

    A joint research project between MIT and JAXA/JAMSS is investigating the application of a new hazard analysis to the system and software in the HTV. Traditional hazard analysis focuses on component failures but software does not fail in this way. Software most often contributes to accidents by commanding the spacecraft into an unsafe state(e.g., turning off the descent engines prematurely) or by not issuing required commands. That makes the standard hazard analysis techniques of limited usefulness on software-intensive systems, which describes most spacecraft built today. STPA is a new hazard analysis technique based on systems theory rather than reliability theory. It treats safety as a control problem rather than a failure problem. The goal of STPA, which is to create a set of scenarios that can lead to a hazard, is the same as FTA but STPA includes a broader set of potential scenarios including those in which no failures occur but the problems arise due to unsafe and unintended interactions among the system components. STPA also provides more guidance to the analysts that traditional fault tree analysis. Functional control diagrams are used to guide the analysis. In addition, JAXA uses a model-based system engineering development environment(created originally by Leveson and called SpecTRM) which also assists in the hazard analysis. One of the advantages of STPA is that it can be applied early in the system engineering and development process in a safety-driven design process where hazard analysis drives the design decisions rather than waiting until reviews identify problems that are then costly or difficult to fix. It can also be applied in an after-the-fact analysis and hazard assessment, which is what we did in this case study. This paper describes the experimental application of STPA to the JAXA HTV in order to determine the feasibility and usefulness of the new hazard analysis technique. Because the HTV was originally developed using fault tree analysis and following the NASA standards for safety-critical systems, the results of our experimental application of STPA can be compared with these more traditional safety engineering approaches in terms of the problems identified and the resources required to use it.

  7. Enhancing Knowledge Sharing Management Using BIM Technology in Construction

    PubMed Central

    Ho, Shih-Ping; Tserng, Hui-Ping

    2013-01-01

    Construction knowledge can be communicated and reused among project managers and jobsite engineers to alleviate problems on a construction jobsite and reduce the time and cost of solving problems related to constructability. This paper proposes a new methodology for the sharing of construction knowledge by using Building Information Modeling (BIM) technology. The main characteristics of BIM include illustrating 3D CAD-based presentations and keeping information in a digital format and facilitation of easy updating and transfer of information in the BIM environment. Using the BIM technology, project managers and engineers can gain knowledge related to BIM and obtain feedback provided by jobsite engineers for future reference. This study addresses the application of knowledge sharing management using BIM technology and proposes a BIM-based Knowledge Sharing Management (BIMKSM) system for project managers and engineers. The BIMKSM system is then applied in a selected case study of a construction project in Taiwan to demonstrate the effectiveness of sharing knowledge in the BIM environment. The results demonstrate that the BIMKSM system can be used as a visual BIM-based knowledge sharing management platform by utilizing the BIM technology. PMID:24723790

  8. Enhancing knowledge sharing management using BIM technology in construction.

    PubMed

    Ho, Shih-Ping; Tserng, Hui-Ping; Jan, Shu-Hui

    2013-01-01

    Construction knowledge can be communicated and reused among project managers and jobsite engineers to alleviate problems on a construction jobsite and reduce the time and cost of solving problems related to constructability. This paper proposes a new methodology for the sharing of construction knowledge by using Building Information Modeling (BIM) technology. The main characteristics of BIM include illustrating 3D CAD-based presentations and keeping information in a digital format and facilitation of easy updating and transfer of information in the BIM environment. Using the BIM technology, project managers and engineers can gain knowledge related to BIM and obtain feedback provided by jobsite engineers for future reference. This study addresses the application of knowledge sharing management using BIM technology and proposes a BIM-based Knowledge Sharing Management (BIMKSM) system for project managers and engineers. The BIMKSM system is then applied in a selected case study of a construction project in Taiwan to demonstrate the effectiveness of sharing knowledge in the BIM environment. The results demonstrate that the BIMKSM system can be used as a visual BIM-based knowledge sharing management platform by utilizing the BIM technology.

  9. Women Working in Engineering and Science

    NASA Technical Reports Server (NTRS)

    Luna, Bernadette; Kliss, Mark (Technical Monitor)

    1998-01-01

    The presentation will focus on topics of interest to young women pursuing an engineering or scientific career, such as intrinsic personality traits of most engineers, average salaries for the various types of engineers, appropriate preparation classes at the high school and undergraduate levels, gaining experience through internships, summer jobs and graduate school, skills necessary but not always included in engineering curricula (i.e., multimedia, computer skills, communication skills), the work environment, balancing family and career, and sexual harassment. Specific examples from the speaker's own experience in NASA's Space Life Sciences Program will be used to illustrate the above topics. In particular, projects from Extravehicular Activity and Protective Systems research and Regenerative Life Support research will be used as examples of real world problem-solving to enable human exploration of the solar system.

  10. Engineering management of large scale systems

    NASA Technical Reports Server (NTRS)

    Sanders, Serita; Gill, Tepper L.; Paul, Arthur S.

    1989-01-01

    The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered.

  11. The Problem of Engineering Creativity in Russia: A Critical Review

    ERIC Educational Resources Information Center

    Kukushkin, Sergey; Churlyaeva, Natalya

    2012-01-01

    The problem of technological creativity in Russia is briefly discussed. Special attention is paid to the development of indigenous engineering corpus in unfavourable conditions and some reasons for engineers' low creativity are revealed. The Soviet system of engineering higher education (HE) is criticised as not focused on fostering creative…

  12. Teaching Agile Software Engineering Using Problem-Based Learning

    ERIC Educational Resources Information Center

    El-Khalili, Nuha H.

    2013-01-01

    Many studies have reported the utilization of Problem-Based Learning (PBL) in teaching Software Engineering courses. However, these studies have different views of the effectiveness of PBL. This paper presents the design of an Advanced Software Engineering course for undergraduate Software Engineering students that uses PBL to teach them Agile…

  13. Pre-Engineering Program. Introduction to Engineering. Advanced Engineering.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum and Resource Center.

    This guide contains information and hands-on activities to guide students through the problem-solving process needed in engineering (problem solving, presentation, and impact analysis) and information to help the instructor manage the program or courses in Virginia. Following an introduction, the guide contains a program description that supplies…

  14. Providing Formative Assessment to Students Solving Multipath Engineering Problems with Complex Arrangements of Interacting Parts: An Intelligent Tutor Approach

    ERIC Educational Resources Information Center

    Steif, Paul S.; Fu, Luoting; Kara, Levent Burak

    2016-01-01

    Problems faced by engineering students involve multiple pathways to solution. Students rarely receive effective formative feedback on handwritten homework. This paper examines the potential for computer-based formative assessment of student solutions to multipath engineering problems. In particular, an intelligent tutor approach is adopted and…

  15. Promoting Collaborative Problem-Solving Skills in a Course on Engineering Grand Challenges

    ERIC Educational Resources Information Center

    Zou, Tracy X. P.; Mickleborough, Neil C.

    2015-01-01

    The ability to solve problems with people of diverse backgrounds is essential for engineering graduates. A course on engineering grand challenges was designed to promote collaborative problem-solving (CPS) skills. One unique component is that students need to work both within their own team and collaborate with the other team to tackle engineering…

  16. High-Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Park, K. C.; Gumaste, U.; Chen, P.-S.; Lesoinne, M.; Stern, P.

    1996-01-01

    This research program dealt with the application of high-performance computing methods to the numerical simulation of complete jet engines. The program was initiated in January 1993 by applying two-dimensional parallel aeroelastic codes to the interior gas flow problem of a bypass jet engine. The fluid mesh generation, domain decomposition and solution capabilities were successfully tested. Attention was then focused on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by these structural displacements. The latter is treated by a ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field fluid elements. New partitioned analysis procedures to treat this coupled three-component problem were developed during 1994 and 1995. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers, including the iPSC-860, Paragon XP/S and the IBM SP2. For the global steady-state axisymmetric analysis of a complete engine we have decided to use the NASA-sponsored ENG10 program, which uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor tor parallel versions of ENG10 was developed. During 1995 and 1996 we developed the capability tor the first full 3D aeroelastic simulation of a multirow engine stage. This capability was tested on the IBM SP2 parallel supercomputer at NASA Ames. Benchmark results were presented at the 1196 Computational Aeroscience meeting.

  17. Water Pollution and Leukemia: A Model for Interdisciplinary Research in the Classroom Experiences Incorporating Effective Pedagogical Approaches for Community College General Biology I Lab Students

    ERIC Educational Resources Information Center

    Xu, Na; Porter-Morgan, Holly; Doran, Nathan; Keller, Charles

    2016-01-01

    STEM (Science, Technology, Engineering, and Mathematics) education in the United States faces a host of problems including low recruitment and retention in STEM disciplines, under-representation of multiple segments of the US population, and a host of other issues. These problems are well recognized and a variety of solutions are being implemented…

  18. An inventory of aeronautical ground research facilities. Volume 4: Engineering flight simulation facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Capelluro, L. P.; Harrison, W. D.

    1971-01-01

    The general purpose capabilities of government and industry in the area of real time engineering flight simulation are discussed. The information covers computer equipment, visual systems, crew stations, and motion systems, along with brief statements of facility capabilities. Facility construction and typical operational costs are included where available. The facilities provide for economical and safe solutions to vehicle design, performance, control, and flying qualities problems of manned and unmanned flight systems.

  19. Kunduz ANA Garrison: Army Corps of Engineers Released DynCorp of All Contractual Obligations despite Poor Performance and Structural Failures

    DTIC Science & Technology

    2012-10-01

    20  FIGURES Figure 1 - Kunduz PRT March 2012 with Elevated Building Pad and Positive Drainage System ...Figure 1 - Kunduz PRT March 2012 with Elevated Building Pad and Positive Drainage System Source: SIGAR photo March 25, 2012. ACTIONS TAKEN BY...garrison compound and including a storm drainage system . USACE-TAN also commented that its engineers were unaware of the soil subsidence problem until the

  20. Nuclear Fuel Depletion Analysis Using Matlab Software

    NASA Astrophysics Data System (ADS)

    Faghihi, F.; Nematollahi, M. R.

    Coupled first order IVPs are frequently used in many parts of engineering and sciences. In this article, we presented a code including three computer programs which are joint with the Matlab software to solve and plot the solutions of the first order coupled stiff or non-stiff IVPs. Some engineering and scientific problems related to IVPs are given and fuel depletion (production of the 239Pu isotope) in a Pressurized Water Nuclear Reactor (PWR) are computed by the present code.

  1. A review of biotransport education in the 21st century: lessons learned from experts.

    PubMed

    Banerjee, Rupak K; D'Souza, Gavin A; Rylander, Christopher; Devireddy, Ram

    2014-11-01

    The field of bioengineering is relatively new and complex including multiple disciplines encompassing areas in science and engineering. Efforts including the National Science Foundation (NSF) sponsored Integrative Graduate Education and Research Traineeship (IGERT) and VaNTH Engineering Research Center in Bioengineering Educational Technologies have been made to establish and disseminate knowledge and proven methods for teaching bioengineering concepts. Further, the summer bioengineering conference (SBC), sponsored by the American Society of Mechanical Engineers' (ASME) Bioengineering Division, was established to provide a meeting place for engineering educators and students having common interests in biological systems. Of the many subdisciplines of bioengineering, biotransport is a key subject that has wide applicability to many issues in engineering, biology, medicine, pharmacology, and environmental science, among others. The absence of standard content, guidelines, and texts needed for teaching biotransport courses to students motivated the Biotransport committee of ASME's Bioengineering Division to establish a biotransport education initiative. Biotransport education workshop sessions were conducted during the SBC 2011, 2012, and 2013 as part of this initiative. The workshop sessions included presentations from experienced faculty covering a spectrum of information from general descriptions of undergraduate biotransport courses to very detailed outlines of graduate courses to successful teaching techniques. A list of texts and references available for teaching biotransport courses at undergraduate and graduate levels has been collated and documented based on the workshop presentations. Further, based on individual teaching experiences and methodologies shared by the presenters, it was noted that active learning techniques, including cooperative and collaborative learning, can be useful for teaching undergraduate courses while problem based learning (PBL) can be a beneficial method for graduate courses. The outcomes of the education initiative will help produce students who are knowledgeable in the subject of biotransport, facile in applying biotransport concepts for solving problems in various application areas, and comfortable with their own abilities as life-long learners.

  2. Kinetic: A system code for analyzing nuclear thermal propulsion rocket engine transients

    NASA Astrophysics Data System (ADS)

    Schmidt, Eldon; Lazareth, Otto; Ludewig, Hans

    The topics are presented in viewgraph form and include the following: outline of kinetic code; a kinetic information flow diagram; kinetic neutronic equations; turbopump/nozzle algorithm; kinetic heat transfer equations per node; and test problem diagram.

  3. Global Networking.

    ERIC Educational Resources Information Center

    Lynch, Clifford

    1997-01-01

    Discusses the state of the Internet. Highlights include the magnitude of the infrastructure, costs, its increasing pace, constraints in international links, provision of network capacity to homes and small businesses, cable television modems, political and cultural problems, the digital library concept, search engines, the failure of personal…

  4. Disarmament, Security and Development

    ERIC Educational Resources Information Center

    Bulletin of the Atomic Scientists, 1976

    1976-01-01

    Provided is a summary of the 26th Pugwash Conference on Science and World Affairs held August 26-31, 1976, in Muhlhausen, East Germany. World problems discussed included: arms limitations, military research and development, nuclear test ban, alternative energy sources, and genetic engineering. (SL)

  5. Research Prototype: Automated Analysis of Scientific and Engineering Semantics

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.; Follen, Greg (Technical Monitor)

    2001-01-01

    Physical and mathematical formulae and concepts are fundamental elements of scientific and engineering software. These classical equations and methods are time tested, universally accepted, and relatively unambiguous. The existence of this classical ontology suggests an ideal problem for automated comprehension. This problem is further motivated by the pervasive use of scientific code and high code development costs. To investigate code comprehension in this classical knowledge domain, a research prototype has been developed. The prototype incorporates scientific domain knowledge to recognize code properties (including units, physical, and mathematical quantity). Also, the procedure implements programming language semantics to propagate these properties through the code. This prototype's ability to elucidate code and detect errors will be demonstrated with state of the art scientific codes.

  6. Some Problems of Exploitation of Jet Turbine Aircraft Engines of Lot Polish Air Lines,

    DTIC Science & Technology

    1977-04-26

    CI ‘AD~AOII6 221 FOREIGN TECHNOLOGY DIV WR IGHT—PATTERSON AFB OHIO F/I 21/5SOME PROBLEMS OF EXPLOITATION OF JET TURBINE AIRCRAFT ENGINES O—CTC(U...EXPLOITATION OF JET TURBINE AIRCRAFT ENGINES OF LOT POLISH AIR LINE S By: Andrzej Slodownik English pages: 1~ Source: Technika Lotnicza I Astronautyczna...SOME PROBLEMS OF EXPLOITATION OF JET TURBINE AIRCRAFT ENGINES OF LOT POLISH AIR LINES Andrzej Slodownik , M. Eng . FTD— ID ( RS) I— 0 1475 — 77 I

  7. Recognition vs Reverse Engineering in Boolean Concepts Learning

    ERIC Educational Resources Information Center

    Shafat, Gabriel; Levin, Ilya

    2012-01-01

    This paper deals with two types of logical problems--recognition problems and reverse engineering problems, and with the interrelations between these types of problems. The recognition problems are modeled in the form of a visual representation of various objects in a common pattern, with a composition of represented objects in the pattern.…

  8. The Implementation and Evaluation of a Project-Oriented Problem-Based Learning Module in a First Year Engineering Programme

    ERIC Educational Resources Information Center

    McLoone, Seamus C.; Lawlor, Bob J.; Meehan, Andrew R.

    2016-01-01

    This paper describes how a circuits-based project-oriented problem-based learning educational model was integrated into the first year of a Bachelor of Engineering in Electronic Engineering programme at Maynooth University, Ireland. While many variations of problem based learning exist, the presented model is closely aligned with the model used in…

  9. New Developments of Computational Fluid Dynamics and Their Applications to Practical Engineering Problems

    NASA Astrophysics Data System (ADS)

    Chen, Hudong

    2001-06-01

    There have been considerable advances in Lattice Boltzmann (LB) based methods in the last decade. By now, the fundamental concept of using the approach as an alternative tool for computational fluid dynamics (CFD) has been substantially appreciated and validated in mainstream scientific research and in industrial engineering communities. Lattice Boltzmann based methods possess several major advantages: a) less numerical dissipation due to the linear Lagrange type advection operator in the Boltzmann equation; b) local dynamic interactions suitable for highly parallel processing; c) physical handling of boundary conditions for complicated geometries and accurate control of fluxes; d) microscopically consistent modeling of thermodynamics and of interface properties in complex multiphase flows. It provides a great opportunity to apply the method to practical engineering problems encountered in a wide range of industries from automotive, aerospace to chemical, biomedical, petroleum, nuclear, and others. One of the key challenges is to extend the applicability of this alternative approach to regimes of highly turbulent flows commonly encountered in practical engineering situations involving high Reynolds numbers. Over the past ten years, significant efforts have been made on this front at Exa Corporation in developing a lattice Boltzmann based commercial CFD software, PowerFLOW. It has become a useful computational tool for the simulation of turbulent aerodynamics in practical engineering problems involving extremely complex geometries and flow situations, such as in new automotive vehicle designs world wide. In this talk, we present an overall LB based algorithm concept along with certain key extensions in order to accurately handle turbulent flows involving extremely complex geometries. To demonstrate the accuracy of turbulent flow simulations, we provide a set of validation results for some well known academic benchmarks. These include straight channels, backward-facing steps, flows over a curved hill and typical NACA airfoils at various angles of attack including prediction of stall angle. We further provide numerous engineering cases, ranging from external aerodynamics around various car bodies to internal flows involved in various industrial devices. We conclude with a discussion of certain future extensions for complex fluids.

  10. The Technology of Forming of Innovative Content for Engineering Education

    ERIC Educational Resources Information Center

    Kayumova, Lilija A.; Savva, Lubov I.; Soldatchenko, Aleksandr L.; Sirazetdinov, Rustem M.; Akhmetov, Linar G.

    2016-01-01

    The relevance of the study is conditioned by the modernization of engineering education aimed at specialists' training to solve engineering and economic problems effectively. The goal of the paper is to develop the technology of the innovative content's formation for engineering education. The leading method to the study of this problem is a…

  11. A Study of Competence in Mathematics and Mechanics in an Engineering Curriculum

    ERIC Educational Resources Information Center

    Munns, Andrew

    2017-01-01

    Professional bodies expect engineers to show competence in both mathematics and engineering topics such as mechanics, using their abilities in both of these to solve problems. Yet within engineering programmes there is a phenomenon known as "The Mathematics Problem", with students not demonstrating understanding of the subject. This…

  12. [A strategy of constructing the technological system for quality control of Chinese medicine based on process control and management].

    PubMed

    Cheng, Yi-Yu; Qian, Zhong-Zhi; Zhang, Bo-Li

    2017-01-01

    The current situation, bottleneck problems and severe challenges in quality control technology of Chinese Medicine (CM) are briefly described. It is presented to change the phenomenon related to the post-test as the main means and contempt for process control in drug regulation, reverse the situation of neglecting the development of process control and management technology for pharmaceutical manufacture and reconstruct the technological system for quality control of CM products. The regulation and technology system based on process control and management for controlling CM quality should be established to solve weighty realistic problems of CM industry from the root causes, including backwardness of quality control technology, weakness of quality risk control measures, poor reputation of product quality and so on. By this way, the obstacles from poor controllability of CM product quality could be broken. Concentrating on those difficult problems and weak links in the technical field of CM quality control, it is proposed to build CMC (Chemistry, Manufacturing and Controls) regulation for CM products with Chinese characteristics and promote the regulation international recognition as soon as possible. The CMC technical framework, which is clinical efficacy-oriented, manufacturing manner-centered and process control-focused, was designed. To address the clinical characteristics of traditional Chinese medicine (TCM) and the production feature of CM manufacture, it is suggested to establish quality control engineering for CM manufacturing by integrating pharmaceutical analysis, TCM chemistry, TCM pharmacology, pharmaceutical engineering, control engineering, management engineering and other disciplines. Further, a theoretical model of quality control engineering for CM manufacturing and the methodology of digital pharmaceutical engineering are proposed. A technology pathway for promoting CM standard and realizing the strategic goal of CM internationalization is elaborated. Copyright© by the Chinese Pharmaceutical Association.

  13. Teaching ethics to engineers: ethical decision making parallels the engineering design process.

    PubMed

    Bero, Bridget; Kuhlman, Alana

    2011-09-01

    In order to fulfill ABET requirements, Northern Arizona University's Civil and Environmental engineering programs incorporate professional ethics in several of its engineering courses. This paper discusses an ethics module in a 3rd year engineering design course that focuses on the design process and technical writing. Engineering students early in their student careers generally possess good black/white critical thinking skills on technical issues. Engineering design is the first time students are exposed to "grey" or multiple possible solution technical problems. To identify and solve these problems, the engineering design process is used. Ethical problems are also "grey" problems and present similar challenges to students. Students need a practical tool for solving these ethical problems. The step-wise engineering design process was used as a model to demonstrate a similar process for ethical situations. The ethical decision making process of Martin and Schinzinger was adapted for parallelism to the design process and presented to students as a step-wise technique for identification of the pertinent ethical issues, relevant moral theories, possible outcomes and a final decision. Students had greatest difficulty identifying the broader, global issues presented in an ethical situation, but by the end of the module, were better able to not only identify the broader issues, but also to more comprehensively assess specific issues, generate solutions and a desired response to the issue.

  14. An exploration of students' perceptions and attitudes towards creativity in engineering education

    NASA Astrophysics Data System (ADS)

    Waller, David R.

    This study used a mixed methods approach to develop a broad and deep understanding of students’ perceptions towards creativity in engineering education. Studies have shown that students’ attitudes can have an impact on their motivation to engage in creative behavior. Using an ex-post facto independent factorial design, attitudes of value towards creativity, time for creativity, and creativity stereotypes were measured and compared across gender, year of study, engineering discipline, preference for open-ended problem solving, and confidence in creative abilities. Participants were undergraduate engineering students at Queen’s University from all years of study. A qualitative phenomenological methodology was adopted to study students’ understandings and experiences with engineering creativity. Eleven students participated in oneon- one interviews that provided depth and insight into how students experience and define engineering creativity, and the survey included open-ended items developed using the 10 Maxims of Creativity in Education as a guiding framework. The findings from the survey suggested that students had high value for creativity, however students in fourth year or higher had less value than those in other years. Those with preference for open-ended problem solving and high confidence valued creative more than their counterparts. Students who preferred open-ended problem solving and students with high confidence reported that time was less of a hindrance to their creativity. Males identified more with creativity stereotypes than females, however overall they were both low. Open-ended survey and interview results indicated that students felt they experienced creativity in engineering design activities. Engineering creativity definitions had two elements: creative action and creative characteristic. Creative actions were associated with designing, and creative characteristics were predominantly associated with novelty. Other barriers that emerged from the qualitative analysis were lack of opportunity, lack of assessment, and discomfort with creativity. It was concluded that a universal definition is required to establish clear and aligned understandings of engineering creativity. Instructors may want to consider demonstrating value by assessing creativity and establishing clear criteria in design projects. It is recommended that students be given more opportunities for practice through design activities and that they be introduced to design and creative thinking concepts early in their engineering education.

  15. The Cloud-Based Integrated Data Viewer (IDV)

    NASA Astrophysics Data System (ADS)

    Fisher, Ward

    2015-04-01

    Maintaining software compatibility across new computing environments and the associated underlying hardware is a common problem for software engineers and scientific programmers. While there are a suite of tools and methodologies used in traditional software engineering environments to mitigate this issue, they are typically ignored by developers lacking a background in software engineering. The result is a large body of software which is simultaneously critical and difficult to maintain. Visualization software is particularly vulnerable to this problem, given the inherent dependency on particular graphics hardware and software API's. The advent of cloud computing has provided a solution to this problem, which was not previously practical on a large scale; Application Streaming. This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations, with little-to-no re-engineering required. Through application streaming we are able to bring the same visualization to a desktop, a netbook, a smartphone, and the next generation of hardware, whatever it may be. Unidata has been able to harness Application Streaming to provide a tablet-compatible version of our visualization software, the Integrated Data Viewer (IDV). This work will examine the challenges associated with adapting the IDV to an application streaming platform, and include a brief discussion of the underlying technologies involved. We will also discuss the differences between local software and software-as-a-service.

  16. Recent advances in plasma modeling for space applications

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bhuvana; Scales, Wayne; Cagas, Petr; Glesner, Colin

    2017-02-01

    This paper presents a brief overview of the application of advanced plasma modeling techniques to several space science and engineering problems currently of significant interest. Recent advances in both kinetic and fluid modeling provide the ability to study a wide variety of problems that may be important to space plasmas including spacecraft-environment interactions, plasma-material interactions for propulsion systems such as Hall thrusters, ionospheric plasma instabilities, plasma separation from magnetic nozzles, active space experiments, and a host of additional problems. Some of the key findings are summarized here.

  17. Pervasive Sensing: Addressing the Heterogeneity Problem

    NASA Astrophysics Data System (ADS)

    O'Grady, Michael J.; Murdoch, Olga; Kroon, Barnard; Lillis, David; Carr, Dominic; Collier, Rem W.; O'Hare, Gregory M. P.

    2013-06-01

    Pervasive sensing is characterized by heterogeneity across a number of dimensions. This raises significant problems for those designing, implementing and deploying sensor networks, irrespective of application domain. Such problems include for example, issues of data provenance and integrity, security, and privacy amongst others. Thus engineering a network that is fit-for-purpose represents a significant challenge. In this paper, the issue of heterogeneity is explored from the perspective of those who seek to harness a pervasive sensing element in their applications. A initial solution is proposed based on the middleware construct.

  18. Aerospace Applications of Integer and Combinatorial Optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  19. Aerospace applications on integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem. for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.V.

    This book reports on remedial measures for gas wells and new methods for calculating the position of the stabilized performance curves for gas wells as well as the heating value for natural gases from compositional analyses. In addition, the author includes problem solutions in an appendix and a section showing the relation between the conventional empirical equation and the theoretical performance equation of A.S. Odeh. The author successfully bridges the gap between the results of empirical testing and the theory of unsteady-state flow in porous media. It strengthens the bond between conventional reservoir engineering practices and understanding gas well behavior.more » Problems listed at the end of each chapter are excellent exercises for practitioners. This book provides information on: Natural Gas Engineering; Properties of natural gas; Application of gas laws to reservoir engineering; Gas measurement; Flow of natural gas in circular pipe and annular conductors; Flow of gas in porous media (a review); Gas well testing; Unsteady-state flow behavior of gas wells; Production forecasting for gas wells; Production decline curves for gas wells; Sizing flow strings for gas wells; Remedial measures for gas wells; Gas sales contracts; and appendices on Compressibility for natural gas, Gas measurement factors, SI metric conversion factors, and Solutions to problems.« less

  1. Qualitative models for space system engineering

    NASA Technical Reports Server (NTRS)

    Forbus, Kenneth D.

    1990-01-01

    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  2. A parallel metaheuristic for large mixed-integer dynamic optimization problems, with applications in computational biology

    PubMed Central

    Henriques, David; González, Patricia; Doallo, Ramón; Saez-Rodriguez, Julio; Banga, Julio R.

    2017-01-01

    Background We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs). Methods We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems. Results We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the method is also good (tests were performed using up to 300 cores). Conclusions These results demonstrate that saCeSS2 can be used to successfully reverse engineer large dynamic models of complex biological pathways. Further, these results open up new possibilities for other MIDO-based large-scale applications in the life sciences such as metabolic engineering, synthetic biology, drug scheduling. PMID:28813442

  3. A parallel metaheuristic for large mixed-integer dynamic optimization problems, with applications in computational biology.

    PubMed

    Penas, David R; Henriques, David; González, Patricia; Doallo, Ramón; Saez-Rodriguez, Julio; Banga, Julio R

    2017-01-01

    We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs). We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems. We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the method is also good (tests were performed using up to 300 cores). These results demonstrate that saCeSS2 can be used to successfully reverse engineer large dynamic models of complex biological pathways. Further, these results open up new possibilities for other MIDO-based large-scale applications in the life sciences such as metabolic engineering, synthetic biology, drug scheduling.

  4. Mathematics and online learning experiences: a gateway site for engineering students

    NASA Astrophysics Data System (ADS)

    Masouros, Spyridon D.; Alpay, Esat

    2010-03-01

    This paper focuses on the preliminary design of a multifaceted computer-based mathematics resource for undergraduate and pre-entry engineering students. Online maths resources, while attractive in their flexibility of delivery, have seen variable interest from students and teachers alike. Through student surveys and wide consultations, guidelines have been developed for effectively collating and integrating learning, support, application and diagnostic tools to produce an Engineer's Mathematics Gateway. Specific recommendations include: the development of a shared database of engineering discipline-specific problems and examples; the identification of, and resource development for, troublesome mathematics topics which encompass ideas of threshold concepts and mastery components; the use of motivational and promotional material to raise student interest in learning mathematics in an engineering context; the use of general and lecture-specific concept maps and matrices to identify the needs and relevance of mathematics to engineering topics; and further exploration of the facilitation of peer-based learning through online resources.

  5. A Preliminary Study of Fuel Injection and Compression Ignition as Applied to an Aircraft Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W

    1927-01-01

    This report summarizes some results obtained with a single cylinder test engine at the Langley Field Laboratory during a preliminary investigation of the problem of applying fuel injection and compression ignition to aircraft engines. For this work a standard Liberty Engine cylinder was fitted with a high compression, 11.4 : 1 compression ratio, piston, and equipped with an airless injection system, including a primary fuel pump, an injection pump, and an automatic injection valve. The results obtained during this investigation have indicated the possibility of applying airless injection and compression ignition to a cylinder of this size, 8-inch bore by 7-inch stroke, when operating at engine speeds as high as 1,850 R. P. M. A minimum specific fuel consumption with diesel engine fuel oil of 0.30 pound per I. HP. Hour was obtained when developing about 16 B. HP. At 1,730 R. P. M.

  6. Environmental engineering education for developing countries: framework for the future.

    PubMed

    Ujang, Z; Henze, M; Curtis, T; Schertenleib, R; Beal, L L

    2004-01-01

    This paper presents the existing philosophy, approach, criteria and delivery of environmental engineering education (E3) for developing countries. In general, environmental engineering is being taught in almost all major universities in developing countries, mostly under civil engineering degree programmes. There is an urgent need to address specific inputs that are particularly important for developing countries with respect to the reality of urbanisation and industrialisation. The main component of E3 in the near future will remain on basic sanitation in most developing countries, with special emphasis on the consumer-demand approach. In order to substantially overcome environmental problems in developing countries, E3 should include integrated urban water management, sustainable sanitation, appropriate technology, cleaner production, wastewater minimisation and financial framework.

  7. Computational structural mechanics for engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1989-01-01

    The computational structural mechanics (CSM) program at Lewis encompasses: (1) fundamental aspects for formulating and solving structural mechanics problems, and (2) development of integrated software systems to computationally simulate the performance/durability/life of engine structures. It is structured to mainly supplement, complement, and whenever possible replace, costly experimental efforts which are unavoidable during engineering research and development programs. Specific objectives include: investigate unique advantages of parallel and multiprocesses for: reformulating/solving structural mechanics and formulating/solving multidisciplinary mechanics and develop integrated structural system computational simulators for: predicting structural performances, evaluating newly developed methods, and for identifying and prioritizing improved/missing methods needed. Herein the CSM program is summarized with emphasis on the Engine Structures Computational Simulator (ESCS). Typical results obtained using ESCS are described to illustrate its versatility.

  8. Engineering the path to higher-order thinking in elementary education: A problem-based learning approach for STEM integration

    NASA Astrophysics Data System (ADS)

    Rehmat, Abeera Parvaiz

    As we progress into the 21st century, higher-order thinking skills and achievement in science and math are essential to meet the educational requirement of STEM careers. Educators need to think of innovative ways to engage and prepare students for current and future challenges while cultivating an interest among students in STEM disciplines. An instructional pedagogy that can capture students' attention, support interdisciplinary STEM practices, and foster higher-order thinking skills is problem-based learning. Problem-based learning embedded in the social constructivist view of teaching and learning (Savery & Duffy, 1995) promotes self-regulated learning that is enhanced through exploration, cooperative social activity, and discourse (Fosnot, 1996). This quasi-experimental mixed methods study was conducted with 98 fourth grade students. The study utilized STEM content assessments, a standardized critical thinking test, STEM attitude survey, PBL questionnaire, and field notes from classroom observations to investigate the impact of problem-based learning on students' content knowledge, critical thinking, and their attitude towards STEM. Subsequently, it explored students' experiences of STEM integration in a PBL environment. The quantitative results revealed a significant difference between groups in regards to their content knowledge, critical thinking skills, and STEM attitude. From the qualitative results, three themes emerged: learning approaches, increased interaction, and design and engineering implementation. From the overall data set, students described the PBL environment to be highly interactive that prompted them to employ multiple approaches, including design and engineering to solve the problem.

  9. Using Computer Simulations to Integrate Learning.

    ERIC Educational Resources Information Center

    Liao, Thomas T.

    1983-01-01

    Describes the primary design criteria and the classroom activities involved in "The Yellow Light Problem," a minicourse on decision making in the secondary school Mathematics, Engineering and Science Achievement (MESA) program in California. Activities include lectures, discussions, science and math labs, computer labs, and development…

  10. LD in AD 2000.

    ERIC Educational Resources Information Center

    Smith, Bert Kruger

    The author discusses potential problems and benefits for learning disabled (LD) students in the year 2000. Considered are developments in three areas: human engineering (such as the role of amniocentesis in prevention of disabilities), education (including new audiovisual technology and a restructuring of secondary education), and human…

  11. LDRD Final Report: Global Optimization for Engineering Science Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HART,WILLIAM E.

    1999-12-01

    For a wide variety of scientific and engineering problems the desired solution corresponds to an optimal set of objective function parameters, where the objective function measures a solution's quality. The main goal of the LDRD ''Global Optimization for Engineering Science Problems'' was the development of new robust and efficient optimization algorithms that can be used to find globally optimal solutions to complex optimization problems. This SAND report summarizes the technical accomplishments of this LDRD, discusses lessons learned and describes open research issues.

  12. Engineering applications of metaheuristics: an introduction

    NASA Astrophysics Data System (ADS)

    Oliva, Diego; Hinojosa, Salvador; Demeshko, M. V.

    2017-01-01

    Metaheuristic algorithms are important tools that in recent years have been used extensively in several fields. In engineering, there is a big amount of problems that can be solved from an optimization point of view. This paper is an introduction of how metaheuristics can be used to solve complex problems of engineering. Their use produces accurate results in problems that are computationally expensive. Experimental results support the performance obtained by the selected algorithms in such specific problems as digital filter design, image processing and solar cells design.

  13. Dynamics of Rotating Multi-component Turbomachinery Systems

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    1993-01-01

    The ultimate objective of turbomachinery vibration analysis is to predict both the overall, as well as component dynamic response. To accomplish this objective requires complete engine structural models, including multistages of bladed disk assemblies, flexible rotor shafts and bearings, and engine support structures and casings. In the present approach each component is analyzed as a separate structure and boundary information is exchanged at the inter-component connections. The advantage of this tactic is that even though readily available detailed component models are utilized, accurate and comprehensive system response information may be obtained. Sample problems, which include a fixed base rotating blade and a blade on a flexible rotor, are presented.

  14. Framework for Multidisciplinary Analysis, Design, and Optimization with High-Fidelity Analysis Tools

    NASA Technical Reports Server (NTRS)

    Orr, Stanley A.; Narducci, Robert P.

    2009-01-01

    A plan is presented for the development of a high fidelity multidisciplinary optimization process for rotorcraft. The plan formulates individual disciplinary design problems, identifies practical high-fidelity tools and processes that can be incorporated in an automated optimization environment, and establishes statements of the multidisciplinary design problem including objectives, constraints, design variables, and cross-disciplinary dependencies. Five key disciplinary areas are selected in the development plan. These are rotor aerodynamics, rotor structures and dynamics, fuselage aerodynamics, fuselage structures, and propulsion / drive system. Flying qualities and noise are included as ancillary areas. Consistency across engineering disciplines is maintained with a central geometry engine that supports all multidisciplinary analysis. The multidisciplinary optimization process targets the preliminary design cycle where gross elements of the helicopter have been defined. These might include number of rotors and rotor configuration (tandem, coaxial, etc.). It is at this stage that sufficient configuration information is defined to perform high-fidelity analysis. At the same time there is enough design freedom to influence a design. The rotorcraft multidisciplinary optimization tool is built and substantiated throughout its development cycle in a staged approach by incorporating disciplines sequentially.

  15. Developing a Web-Based Advisory Expert System for Implementing Traffic Calming Strategies

    PubMed Central

    Falamarzi, Amir; Borhan, Muhamad Nazri; Rahmat, Riza Atiq O. K.

    2014-01-01

    Lack of traffic safety has become a serious issue in residential areas. In this paper, a web-based advisory expert system for the purpose of applying traffic calming strategies on residential streets is described because there currently lacks a structured framework for the implementation of such strategies. Developing an expert system can assist and advise engineers for dealing with traffic safety problems. This expert system is developed to fill the gap between the traffic safety experts and people who seek to employ traffic calming strategies including decision makers, engineers, and students. In order to build the expert system, examining sources related to traffic calming studies as well as interviewing with domain experts have been carried out. The system includes above 150 rules and 200 images for different types of measures. The system has three main functions including classifying traffic calming measures, prioritizing traffic calming strategies, and presenting solutions for different traffic safety problems. Verifying, validating processes, and comparing the system with similar works have shown that the system is consistent and acceptable for practical uses. Finally, some recommendations for improving the system are presented. PMID:25276861

  16. Developing a web-based advisory expert system for implementing traffic calming strategies.

    PubMed

    Falamarzi, Amir; Borhan, Muhamad Nazri; Rahmat, Riza Atiq O K

    2014-01-01

    Lack of traffic safety has become a serious issue in residential areas. In this paper, a web-based advisory expert system for the purpose of applying traffic calming strategies on residential streets is described because there currently lacks a structured framework for the implementation of such strategies. Developing an expert system can assist and advise engineers for dealing with traffic safety problems. This expert system is developed to fill the gap between the traffic safety experts and people who seek to employ traffic calming strategies including decision makers, engineers, and students. In order to build the expert system, examining sources related to traffic calming studies as well as interviewing with domain experts have been carried out. The system includes above 150 rules and 200 images for different types of measures. The system has three main functions including classifying traffic calming measures, prioritizing traffic calming strategies, and presenting solutions for different traffic safety problems. Verifying, validating processes, and comparing the system with similar works have shown that the system is consistent and acceptable for practical uses. Finally, some recommendations for improving the system are presented.

  17. Integrated orbital servicing study follow-on. Volume 3: Engineering test unit and controls

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A one-g servicing demonstration system which can be used to investigate and develop, in a real time hands-on situation, a wide variety of the mechanism and control system aspects of orbital servicing in the form of module exchange is described including the engineering test unit and the servicer servo drive console. A series of recommendations for future work is given concerning the control problem and more efficient module exchanges, mechanical elements, and electronics.

  18. ELECTRICAL TECHNIQUES FOR ENGINEERING APPLICATIONS.

    USGS Publications Warehouse

    Bisdorf, Robert J.

    1985-01-01

    Surface electrical geophysical methods have been used in such engineering applications as locating and delineating shallow gravel deposits, depth to bedrock, faults, clay zones, and other geological phenomena. Other engineering applications include determining water quality, tracing ground water contaminant plumes and locating dam seepages. Various methods and electrode arrays are employed to solve particular geological problems. The sensitivity of a particular method or electrode array depends upon the physics on which the method is based, the array geometry, the electrical contrast between the target and host materials, and the depth to the target. Each of the available electrical methods has its own particular advantages and applications which the paper discusses.

  19. Turbine Engine Hot Section Technology 1986

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Turbine Engine Hot Section Technology (HOST) Project of the NASA Lewis Research Center sponsored a workshop to discuss current research pertinent to turbine engine durability problems. Presentations were made concerning the hot section environment and the behavior of combustion liners, turbine blades, and turbine vanes. The presentations were divided into six sessions: Instrumentation, Combustion, Turbine Heat Transfer, Structural Analysis, Fatigue and Fracture, and Surface Protection. Topics discussed included modeling of thermal and fluid-flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior of materials, stress-strain response, and life-prediction methods. Researchers from industry, academia, and government presented results of their work sponsored by the HOST project.

  20. The impact of emerging technologies on an advanced supersonic transport

    NASA Technical Reports Server (NTRS)

    Driver, C.; Maglieri, D. J.

    1986-01-01

    The effects of advances in propulsion systems, structure and materials, aerodynamics, and systems on the design and development of supersonic transport aircraft are analyzed. Efficient propulsion systems with variable-cycle engines provide the basis for improved propulsion systems; the propulsion efficienies of supersonic and subsonic engines are compared. Material advances consist of long-life damage-tolerant structures, advanced material development, aeroelastic tailoring, and low-cost fabrication. Improvements in the areas of aerodynamics and systems are examined. The environmental problems caused by engine emissions, airport noise, and sonic boom are studied. The characteristics of the aircraft designed to include these technical advances are described.

  1. Developing Creativity and Problem-Solving Skills of Engineering Students: A Comparison of Web- and Pen-and-Paper-Based Approaches

    ERIC Educational Resources Information Center

    Valentine, Andrew; Belski, Iouri; Hamilton, Margaret

    2017-01-01

    Problem-solving is a key engineering skill, yet is an area in which engineering graduates underperform. This paper investigates the potential of using web-based tools to teach students problem-solving techniques without the need to make use of class time. An idea generation experiment involving 90 students was designed. Students were surveyed…

  2. Integrating Cost Engineering and Project Management in a Junior Engineering Economics Course and a Senior Capstone Project Design Course

    ERIC Educational Resources Information Center

    Tickles, Virginia C.; Li, Yadong; Walters, Wilbur L.

    2013-01-01

    Much criticism exists concerning a lack of focus on real-world problem-solving in the science, technology, engineering and mathematics (STEM) infrastructures. Many of these critics say that current educational infrastructures are incapable in preparing future scientists and engineers to solve the complex and multidisciplinary problems this society…

  3. A Case Study: Problem-Based Learning for Civil Engineering Students in Transportation Courses

    ERIC Educational Resources Information Center

    Ahern, A. A.

    2010-01-01

    This paper describes two case studies where problem-based learning (PBL) has been introduced to undergraduate civil engineering students in University College Dublin. PBL has recently been put in place in the penultimate and final year transport engineering classes in the civil engineering degree in University College Dublin. In this case study,…

  4. Using Ontological Engineering to Overcome AI-ED Problems: Contribution, Impact and Perspectives

    ERIC Educational Resources Information Center

    Mizoguchi, Riichiro; Bourdeau, Jacqueline

    2016-01-01

    This article reflects on the ontology engineering methodology discussed by the paper entitled "Using Ontological Engineering to Overcome AI-ED Problems" published in this journal in 2000. We discuss the achievements obtained in the last 10 years, the impact of our work as well as recent trends and perspectives in ontology engineering for…

  5. Sediment problems in urban areas

    USGS Publications Warehouse

    Guy, Harold P.

    1970-01-01

    One obstacle to a scientific recognition and an engineering solution to sediment-related environmental problems is that such problems are bound in conflicting and generally undefinable political and institutional restraints. Also, some of the difficulty may involve the fact that the scientist or engineer, because of his relatively narrow field of investigation, cannot always completely envision the less desirable effects of his work and communicate alternative solutions to the public. For example, the highway and motor-vehicle engineers have learned how to provide the means by which one can transport himself from one point to another with such great efficiency that a person's employment in this country is now commonly more than 5 miles from his residence. However, providing such efficient personal transport has created numerous serious environmental problems. Obstacles to recognition of and action to control sediment problems in and around urban areas are akin to other environmental problems with respect to the many scientific, engineering, economic, and social aspects.

  6. An Overview and History of Glyco-Engineering in Insect Expression Systems.

    PubMed

    Geisler, Christoph; Mabashi-Asazuma, Hideaki; Jarvis, Donald L

    2015-01-01

    Insect systems, including the baculovirus-insect cell and Drosophila S2 cell systems are widely used as recombinant protein production platforms. Historically, however, no insect-based system has been able to produce glycoproteins with human-type glycans, which often influence the clinical efficacy of therapeutic glycoproteins and the overall structures and functions of other recombinant glycoprotein products. In addition, some insect cell systems produce N-glycans with immunogenic epitopes. Over the past 20 years, these problems have been addressed by efforts to glyco-engineer insect-based expression systems. These efforts have focused on introducing the capacity to produce complex-type, terminally sialylated N-glycans and eliminating the capacity to produce immunogenic N-glycans. Various glyco-engineering approaches have included genetically engineering insect cells, baculoviral vectors, and/or insects with heterologous genes encoding the enzymes required to produce various glycosyltransferases, sugars, nucleotide sugars, and nucleotide sugar transporters, as well as an enzyme that can deplete GDP-fucose. In this chapter, we present an overview and history of glyco-engineering in insect expression systems as a prelude to subsequent chapters, which will highlight various methods used for this purpose.

  7. Software Assists in Responding to Anomalous Conditions

    NASA Technical Reports Server (NTRS)

    James, Mark; Kronbert, F.; Weiner, A.; Morgan, T.; Stroozas, B.; Girouard, F.; Hopkins, A.; Wong, L.; Kneubuhl, J.; Malina, R.

    2004-01-01

    Fault Induced Document Retrieval Officer (FIDO) is a computer program that reduces the need for a large and costly team of engineers and/or technicians to monitor the state of a spacecraft and associated ground systems and respond to anomalies. FIDO includes artificial-intelligence components that imitate the reasoning of human experts with reference to a knowledge base of rules that represent failure modes and to a database of engineering documentation. These components act together to give an unskilled operator instantaneous expert assistance and access to information that can enable resolution of most anomalies, without the need for highly paid experts. FIDO provides a system state summary (a configurable engineering summary) and documentation for diagnosis of a potentially failing component that might have caused a given error message or anomaly. FIDO also enables high-level browsing of documentation by use of an interface indexed to the particular error message. The collection of available documents includes information on operations and associated procedures, engineering problem reports, documentation of components, and engineering drawings. FIDO also affords a capability for combining information on the state of ground systems with detailed, hierarchically-organized, hypertext- enabled documentation.

  8. A software engineering approach to expert system design and verification

    NASA Technical Reports Server (NTRS)

    Bochsler, Daniel C.; Goodwin, Mary Ann

    1988-01-01

    Software engineering design and verification methods for developing expert systems are not yet well defined. Integration of expert system technology into software production environments will require effective software engineering methodologies to support the entire life cycle of expert systems. The software engineering methods used to design and verify an expert system, RENEX, is discussed. RENEX demonstrates autonomous rendezvous and proximity operations, including replanning trajectory events and subsystem fault detection, onboard a space vehicle during flight. The RENEX designers utilized a number of software engineering methodologies to deal with the complex problems inherent in this system. An overview is presented of the methods utilized. Details of the verification process receive special emphasis. The benefits and weaknesses of the methods for supporting the development life cycle of expert systems are evaluated, and recommendations are made based on the overall experiences with the methods.

  9. P3: a practice focused learning environment

    NASA Astrophysics Data System (ADS)

    Irving, Paul W.; Obsniuk, Michael J.; Caballero, Marcos D.

    2017-09-01

    There has been an increased focus on the integration of practices into physics curricula, with a particular emphasis on integrating computation into the undergraduate curriculum of scientists and engineers. In this paper, we present a university-level, introductory physics course for science and engineering majors at Michigan State University called P3 (projects and practices in physics) that is centred around providing introductory physics students with the opportunity to appropriate various science and engineering practices. The P3 design integrates computation with analytical problem solving and is built upon a curriculum foundation of problem-based learning, the principles of constructive alignment and the theoretical framework of community of practice. The design includes an innovative approach to computational physics instruction, instructional scaffolds, and a unique approach to assessment that enables instructors to guide students in the development of the practices of a physicist. We present the very positive student related outcomes of the design gathered via attitudinal and conceptual inventories and research interviews of students’ reflecting on their experiences in the P3 classroom.

  10. Ergonomic initiatives at Inmetro: measuring occupational health and safety.

    PubMed

    Drucker, L; Amaral, M; Carvalheira, C

    2012-01-01

    This work studies biomechanical hazards to which the workforce of Instituto Nacional de Metrologia, Qualidade e Tecnologia Industrial (Inmetro) is exposed. It suggests a model for ergonomic evaluation of work, based on the concepts of resilience engineering which take into consideration the institute's ability to manage risk and deal with its consequences. Methodology includes the stages of identification, inventory, analysis, and risk management. Diagnosis of the workplace uses as parameters the minimal criteria stated in Brazilian legislation. The approach has several prospectives and encompasses the points of view of public management, safety engineering, physical therapy and ergonomics-oriented design. The suggested solution integrates all aspects of the problem: biological, psychological, sociological and organizational. Results obtained from a pilot Project allow to build a significant sample of Inmetro's workforce, identifying problems and validating the methodology employed as a tool to be applied to the whole institution. Finally, this work intends to draw risk maps and support goals and methods based on resiliency engineering to assess environmental and ergonomic risk management.

  11. Phase change materials handbook

    NASA Technical Reports Server (NTRS)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1971-01-01

    This handbook is intended to provide theory and data needed by the thermal design engineer to bridge the gap between research achievements and actual flight systems, within the limits of the current state of the art of phase change materials (PCM) technology. The relationship between PCM and more conventional thermal control techniques is described and numerous space and terrestrial applications of PCM are discussed. Material properties of the most promising PCMs are provided; the purposes and use of metallic filler materials in PCM composites are presented; and material compatibility considerations relevant to PCM design are included. The engineering considerations of PCM design are described, especially those pertaining to the thermodynamic and heat transfer phenomena peculiar to PCM design. Methods of obtaining data not currently available are presented. The special problems encountered in the space environment are described. Computational tools useful to the designer are discussed. In summary, each aspect of the PCM problem important to the design engineer is covered to the extent allowed by the scope of this effort and the state of the art.

  12. Analysis of Student Service-Learning Reflections for the Assessment of Transferable-Skills Development

    NASA Astrophysics Data System (ADS)

    Rizzo, D. M.; Dewoolkar, M.; Hayden, N.; Oka, L.; Pearce, A. R.

    2010-12-01

    The civil and environmental engineering (CEE) programs at the University of Vermont (UVM) incorporate systems thinking and a systems approach to sustainable engineering problem solving. A systems approach considers long-term social, environmental and economic factors within the context of the engineering problem solution and encompasses sustainable engineering solutions. Our goal is to prepare students to become leaders in their chosen field who can anticipate co-products associated with forecasted solutions. As a way of practicing the systems approach, we include service-learning projects in many of our undergraduate engineering courses, culminating with the senior capstone design course. We use a variety of formative and summative assessment methods to gage student understanding and attitudes including student surveys, focus groups, assessment of student projects, and student reflections. Student reflections from two courses -Modeling Environmental and Transportation Systems (31 juniors) and Senior Design Project (30 seniors) are compared. Of these, 25 students were common to both courses. The focus of the systems modeling service-learning project involved mentoring home-schooled children (11-14 yrs old) to solve problems of mobility, using the fun and inspiration of biomimicry. Students were required to invent innovative methods to move people or goods that improve associated constraints (i.e., minimize congestion, reduce pollution, increase safety), or reduce the need for transportation altogether. The capstone design project required a comprehensive engineering design involving two or more CEE sub-disciplines. Both service-learning projects were intended to enhance students’ academic learning experience, attain civic engagement and reinforce transferable skills (written and oral communication, teamwork, leadership and mentoring skills). The student course reflections were not guided; yet they provided valuable data to assess commonalities and differences in student attitudes toward their service-learning projects, specifically, the development of transferable skills. In the spirit of service-learning pedagogy, we divide the contents of students’ written reflections into three categories - academic enhancement, civic engagement and personal growth skills. The commonalities focused mostly on civic engagement. Differences are observed primarily in academic enhancement and personal growth categories. Students working on the biomimicry design project reflected on personal growth (e.g. leadership skills, mentoring, creativity, organizational skills, communication to nontechnical audience), but did not credit it with academic enhancement. In contrast, the senior design reflections concentrated on academics, specifically, students appreciated the enhancement of technical skills as a part of their engineering experience.

  13. Development of an HL7 interface engine, based on tree structure and streaming algorithm, for large-size messages which include image data.

    PubMed

    Um, Ki Sung; Kwak, Yun Sik; Cho, Hune; Kim, Il Kon

    2005-11-01

    A basic assumption of Health Level Seven (HL7) protocol is 'No limitation of message length'. However, most existing commercial HL7 interface engines do limit message length because they use the string array method, which is run in the main memory for the HL7 message parsing process. Specifically, messages with image and multi-media data create a long string array and thus cause the computer system to raise critical and fatal problem. Consequently, HL7 messages cannot handle the image and multi-media data necessary in modern medical records. This study aims to solve this problem with the 'streaming algorithm' method. This new method for HL7 message parsing applies the character-stream object which process character by character between the main memory and hard disk device with the consequence that the processing load on main memory could be alleviated. The main functions of this new engine are generating, parsing, validating, browsing, sending, and receiving HL7 messages. Also, the engine can parse and generate XML-formatted HL7 messages. This new HL7 engine successfully exchanged HL7 messages with 10 megabyte size images and discharge summary information between two university hospitals.

  14. Architecture independent environment for developing engineering software on MIMD computers

    NASA Technical Reports Server (NTRS)

    Valimohamed, Karim A.; Lopez, L. A.

    1990-01-01

    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management.

  15. Increasing the reliability of labor of railroad engineers

    NASA Technical Reports Server (NTRS)

    Genes, V. S.; Madiyevskiy, Y. M.

    1975-01-01

    It has been shown that the group of problems related to temporary overloads still require serious development with respect to further automating the basic control operation - programmed selection of speed and braking. The problem of systems for warning the engineer about the condition of the unseen track segments remains a very serious one. Systems of hygenic support of the engineer also require constructive development. The problems of ensuring the reliability of work of engineers in periods of low information load, requiring motor acts, can basically be considered theoretically solved.

  16. Occupational ergonomics in space

    NASA Technical Reports Server (NTRS)

    Stramler, J.

    1992-01-01

    Ergonomics is often defined simply as the study of work. Related or synonymous terms include human factors, human engineering, engineering psychology, and others. Occupational ergonomics is a term that has been proposed to describe the study of the working environment, including the physical consequences resulting from having an improperly designed workplace. The routine space working environment presents some problems not found in the typical Earthbound workplace. These include radiation, intravehicular contamination/pollution, temperature extremes, impact with other objects, limited psychosocial relationships, sensory deprivation, and reduced gravity. These are important workplace considerations, and may affect astronauts either directly at work or at some point during their life as a result of their work under these conditions. Some of the major issues associated with each of these hazards are presented.

  17. Engineering with uncertainty: monitoring air bag performance.

    PubMed

    Wetmore, Jameson M

    2008-06-01

    Modern engineering is complicated by an enormous number of uncertainties. Engineers know a great deal about the material world and how it works. But due to the inherent limits of testing and the complexities of the world outside the lab, engineers will never be able to fully predict how their creations will behave. One way the uncertainties of engineering can be dealt with is by actively monitoring technologies once they have left the development and production stage. This article uses an episode in the history of automobile air bags as an example of engineers who had the foresight and initiative to carefully track the technology on the road to discover problems as early as possible. Not only can monitoring help engineers identify problems that surface in the field, it can also assist them in their efforts to mobilize resources to resolve problem.

  18. Achieving Closure for Bioregenerative Life Support Systems: Engineering and Ecological Challenges, Research Opportunities

    NASA Astrophysics Data System (ADS)

    Dempster, William; Allen, John P.

    Closed systems are desirable for a number of purposes: space life support systems where precious life-supporting resources need to be kept inside; biospheric systems; where global ecological pro-cesses can be studied in great detail and testbeds where research topics requiring isolation from the outside (e.g. genetically modified organisms; radioisotopes) can be studied in isolation from the outside environment and where their ecological interactions and fluxes can be studied. But to achieve and maintain closure raises both engineering and ecological challenges. Engineering challenges include methods of achieving closure for structures of different materials, and devel-oping methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is devel-oping means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differen-tials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro-and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogue to natural biomes and ecosys-tems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils.

  19. METHODS FOR INTEGRATING ENVIRONMENTAL CONSIDERATIONS INTO CHEMICAL PROCESS DESIGN DECISIONS

    EPA Science Inventory

    The objective of this cooperative agreement was to postulate a means by which an engineer could routinely include environmental considerations in day-to-day conceptual design problems; a means that could easily integrate with existing design processes, and thus avoid massive retr...

  20. Potential Energy Sources Pose Mining Problem

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1974

    1974-01-01

    Summarizes the discussions of a Division of Industrial and Engineering Chemistry symposium on solids handling for synthetic fuels production. Included is a description of technical difficulties with the use of coal seams and deposits of oil shale and oil sand as potential sources of fuel. (CC)

  1. New Ideas for School Construction.

    ERIC Educational Resources Information Center

    Producers' Council, Inc., Washington, DC.

    Present educators, architects, engineers, and building product manufacturers with a medium of common interest for discussion of mutual school construction problems, objectives, needs, ideas, capabilities and limitations. Contents include--(1) modern wood construction, (2) school room in a steel mill, (3) masonry in new school design, (4) the…

  2. The association between occupational exposures and cigarette smoking among operating engineers

    PubMed Central

    Hong, OiSaeng; Duffy, Sonia A.; Choi, Seung Hee; Chin, Dal Lae

    2013-01-01

    The purpose of this study was to determine the relationship between occupational exposures and cigarette smoking among operating engineers. A cross-sectional survey was conducted with operating engineers (N=412) from a mid-western state in the United States. The survey included validated questions on cigarette smoking, occupational exposures, demographics, comorbidities, and health behaviors. About 35% were current smokers. Those exposed to asphalt fumes, heat stress, concrete dust, and welding fumes were less likely to smoke (OR=.79; 95CI: .64–.98). Other factors associated with smoking included younger age (OR=.97; 95CI:.94–.99), problem drinking (OR=1.07; 95CI:1.03–1.12), lower Body Mass Index (OR=.95; 95CI:.90–.99), and being separated/ widowed/ divorced (OR=2.24; 95CI:1.19–4.20). Further investigation is needed for better understanding about job specific exposure patterns and their impact on cigarette smoking among operating engineers. PMID:24325748

  3. Introduction to cognition in science and technology.

    PubMed

    Gorman, Michael E

    2009-10-01

    Cognitive studies of science and technology have had a long history of largely independent research projects that have appeared in multiple outlets, but rarely together. The emergence of a new International Society for Psychology of Science and Technology suggests that this is a good time to put some of the latest work in this area into topiCS in a way that will both acquaint readers with the cutting edge in this domain and also give them a hint of its history. One core theme includes how scientists, inventors, and engineers represent and solve problems; another, related theme is the extent to which they distribute and share cognition. Methodologies include fine-grained studies of historical records, protocols of working scientists, observations and comparisons of engineering science laboratories, and computational simulations designed both to serve as research tools and also to improve scientific problem-solving. The series of articles will conclude with the Associate Editor's suggestions for future research. Copyright © 2009 Cognitive Science Society, Inc.

  4. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    PubMed

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016. © 2016 American Institute of Chemical Engineers.

  5. Analysis of the flow field generated near an aircraft engine operating in reverse thrust. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ledwith, W. A., Jr.

    1972-01-01

    A computer solution is developed to the exhaust gas reingestion problem for aircraft operating in the reverse thrust mode on a crosswind-free runway. The computer program determines the location of the inlet flow pattern, whether the exhaust efflux lies within the inlet flow pattern or not, and if so, the approximate time before the reversed flow reaches the engine inlet. The program is written so that the user is free to select discrete runway speeds or to study the entire aircraft deceleration process for both the far field and cross-ingestion problems. While developed with STOL applications in mind, the solution is equally applicable to conventional designs. The inlet and reversed jet flow fields involved in the problem are assumed to be noninteracting. The nacelle model used in determining the inlet flow field is generated using an iterative solution to the Neuman problem from potential flow theory while the reversed jet flow field is adapted using an empirical correlation from the literature. Sample results obtained using the program are included.

  6. Sediment Transport Model In Sayung District, Demak

    NASA Astrophysics Data System (ADS)

    Ismanto, Aris; Zainuri, Muhammad; Hutabarat, Sahala; Nugroho Sugianto, Denny; Widada, Sugeng; Wirasatriya, Anindya

    2017-02-01

    Demak has 34,1 km coastline and located in 6043‧26″ - 7009‧43″ South Latitude and 110027‧58″ - 110048‧47″ East Longitude. In the last few years rapid shoreline and erosion has threatened Demak coastal area. No less than 3000 villages on Java suffer similar problems. Hard structures such as dykes and breakwaters is one of the method that is commonly used to solve this problem. However, this method may fail to provide adequate protection to the environment and become counterproductive. One of the alternative to solve the problem is using hybrid engineering concept. This study aims is to assess the distribution model of the sediment on the application of technology as a hybrid structure for the mitigationand rehabilitation of coastal areas in Demak. This research using quantitative method, including field surveys and mathematical modeling methods. The model show that the sedimention is quite big in highest flood condition and must have the right structure for the hybrid engineering. This study is expected to answer the question of the erosion problem in the District Sayung, Demak.

  7. Un-Building Blocks: A Model of Reverse Engineering and Applicable Heuristics

    DTIC Science & Technology

    2015-12-01

    CONCLUSIONS The machine does not isolate man from the great problems of nature but plunges him more deeply into them. Antoine de Saint-Exupery— Wind ...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Reverse engineering is the problem -solving activity that ensues when one takes a...Douglas Moses, Vice Provost for Academic Affairs iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT Reverse engineering is the problem -solving

  8. Key Concepts for and Assessment of an Undergraduate Class that Engages Engineering Students in Climate Change Grand Challenge

    NASA Astrophysics Data System (ADS)

    Powers, S. E.; DeWaters, J.; Dhaniyala, S.

    2015-12-01

    Engineers must take a leading role in addressing the challenges of mitigating climate change and adapting to the inevitable changes that our world is facing. Yet climate change classes targeting engineering students are scarce. Technical education must focus on the problem formulation and solutions that consider multiple, complex interactions between engineered systems and the Earth's climate system and recognize that transformation raises societal challenges, including trade-offs among benefits, costs, and risks. Moreover, improving engineering students' climate science literacy will require strategies that also inspire students' motivation to work toward their solution. A climate science course for engineers has been taught 5 semesters as part of a NASA Innovations in Climate Education program grant (NNXlOAB57A). The basic premise of this project was that effective instruction must incorporate scientifically-based knowledge and observations and foster critical thinking, problem solving, and decision-making skills. Lecture, in-class cooperative and computer-based learning and a semester project provide the basis for engaging students in evaluating effective mitigation and adaptation solutions. Policy and social issues are integrated throughout many of the units. The objective of this presentation is to highlight the content and pedagogical approach used in this class that helped to contribute to significant gains in engineering students' climate literacy and critical thinking competencies. A total of 89 students fully participated in a pre/post climate literacy questionnaire. As a whole, students demonstrated significant gains in climate-related content knowledge (p<0.001), affect (p<0.001), and behavior (p=0.002). Mean post scores were above a 'passing' cutoff (70%) for all three subscales. Assessment of semester project reports with a critical thinking rubric showed that the students did an excellent job of formulating problem statements and solutions in a manner that incorporated a multidimensional systems perspective. These skills are sometimes foreign to technically focused, number crunching engineering students, but are critical for using their engineering skills and profession to address climate change mitigation and adaptation strategies.

  9. Adaptive critic learning techniques for engine torque and air-fuel ratio control.

    PubMed

    Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting

    2008-08-01

    A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved.

  10. Cascade Optimization Strategy for Aircraft and Air-Breathing Propulsion System Concepts

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Lavelle, Thomas M.; Hopkins, Dale A.; Coroneos, Rula M.

    1996-01-01

    Design optimization for subsonic and supersonic aircraft and for air-breathing propulsion engine concepts has been accomplished by soft-coupling the Flight Optimization System (FLOPS) and the NASA Engine Performance Program analyzer (NEPP), to the NASA Lewis multidisciplinary optimization tool COMETBOARDS. Aircraft and engine design problems, with their associated constraints and design variables, were cast as nonlinear optimization problems with aircraft weight and engine thrust as the respective merit functions. Because of the diversity of constraint types and the overall distortion of the design space, the most reliable single optimization algorithm available in COMETBOARDS could not produce a satisfactory feasible optimum solution. Some of COMETBOARDS' unique features, which include a cascade strategy, variable and constraint formulations, and scaling devised especially for difficult multidisciplinary applications, successfully optimized the performance of both aircraft and engines. The cascade method has two principal steps: In the first, the solution initiates from a user-specified design and optimizer, in the second, the optimum design obtained in the first step with some random perturbation is used to begin the next specified optimizer. The second step is repeated for a specified sequence of optimizers or until a successful solution of the problem is achieved. A successful solution should satisfy the specified convergence criteria and have several active constraints but no violated constraints. The cascade strategy available in the combined COMETBOARDS, FLOPS, and NEPP design tool converges to the same global optimum solution even when it starts from different design points. This reliable and robust design tool eliminates manual intervention in the design of aircraft and of air-breathing propulsion engines where it eases the cycle analysis procedures. The combined code is also much easier to use, which is an added benefit. This paper describes COMETBOARDS and its cascade strategy and illustrates the capability of the combined design tool through the optimization of a subsonic aircraft and a high-bypass-turbofan wave-rotor-topped engine.

  11. Multifunctional Collaborative Modeling and Analysis Methods in Engineering Science

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.; Broduer, Steve (Technical Monitor)

    2001-01-01

    Engineers are challenged to produce better designs in less time and for less cost. Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity results must be assimilated rapidly into the design, analysis, and simulation process. This assimilation should consider diverse mathematical modeling and multi-discipline interactions necessitated by concepts exploiting advanced materials and structures. Integrated high-fidelity methods with diverse engineering applications provide the enabling technologies to assimilate these high-fidelity, multi-disciplinary results rapidly at an early stage in the design. These integrated methods must be multifunctional, collaborative, and applicable to the general field of engineering science and mechanics. Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple-method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized. The multifunctional methodology presented provides an effective mechanism by which domains with diverse idealizations are interfaced. This capability rapidly provides the high-fidelity results needed in the early design phase. Moreover, the capability is applicable to the general field of engineering science and mechanics. Hence, it provides a collaborative capability that accounts for interactions among engineering analysis methods.

  12. Rehabilitation Engineering Sourcebook [and] Rehabilitation Engineering Sourcebook Supplement I.

    ERIC Educational Resources Information Center

    Institute for Information Studies, Falls Church, VA.

    Intended for use by rehabilitation counselors and work supervisors, the sourcebook contains 173 problems and solutions provided by rehabilitation engineering. A section titled "Guidelines for Formulating Problem Statements" is intended to summarize the most effective ways for either disabled individuals or rehabilitation practitioners to…

  13. Optical systolic solutions of linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Neuman, C. P.; Casasent, D.

    1984-01-01

    The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.

  14. A Coding Scheme for Analysing Problem-Solving Processes of First-Year Engineering Students

    ERIC Educational Resources Information Center

    Grigg, Sarah J.; Benson, Lisa C.

    2014-01-01

    This study describes the development and structure of a coding scheme for analysing solutions to well-structured problems in terms of cognitive processes and problem-solving deficiencies for first-year engineering students. A task analysis approach was used to assess students' problem solutions using the hierarchical structure from a…

  15. Effect of persistent trace compounds in landfill gas on engine performance during energy recovery: a case study.

    PubMed

    Sevimoğlu, Orhan; Tansel, Berrin

    2013-01-01

    Performances of gas engines operated with landfill gas (LFG) are affected by the impurities in the LFG, reducing the economic viability of energy recovery. The purpose of this study was to characterize the trace compounds in the LFG at the Odayeri Landfill, Istanbul, Turkey which is used for energy recovery. Composite gas samples were collected and analyzed for trace compounds (hydrocarbons, siloxanes, and volatile halogenated hydrocarbons) over a 3-year period. Trace compounds entering the gas engines, their impact on the engine performance were evaluated. The operational problems included deposit formation in the combustion chamber, turbocharger, and intercooler of engine before the scheduled maintenance times. High levels of hydrogen sulfide, as well as chlorinated and fluorinated compounds cause corrosion of the engine parts and decrease life of the engine oils. Persistence of siloxanes results in deposit formation, increasing engine maintenance costs. Pretreatment of LFG is necessary to protect the engines at the waste-to-energy facilities with persistence levels of siloxanes and volatile halogenated hydrocarbons. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Multidisciplinary approaches to climate change questions

    USGS Publications Warehouse

    Middleton, Beth A.; LePage, Ben A.

    2011-01-01

    Multidisciplinary approaches are required to address the complex environmental problems of our time. Solutions to climate change problems are good examples of situations requiring complex syntheses of ideas from a vast set of disciplines including science, engineering, social science, and the humanities. Unfortunately, most ecologists have narrow training, and are not equipped to bring their environmental skills to the table with interdisciplinary teams to help solve multidisciplinary problems. To address this problem, new graduate training programs and workshops sponsored by various organizations are providing opportunities for scientists and others to learn to work together in multidisciplinary teams. Two examples of training in multidisciplinary thinking include those organized by the Santa Fe Institute and Dahlem Workshops. In addition, many interdisciplinary programs have had successes in providing insight into climate change problems including the International Panel on Climate Change, the Joint North American Carbon Program, the National Academy of Science Research Grand Challenges Initiatives, and the National Academy of Science. These programs and initiatives have had some notable success in outlining some of the problems and solutions to climate change. Scientists who can offer their specialized expertise to interdisciplinary teams will be more successful in helping to solve the complex problems related to climate change.

  17. Designing Biomimetic Materials from Marine Organisms.

    PubMed

    Nichols, William T

    2015-01-01

    Two biomimetic design approaches that apply biological solutions to engineering problems are discussed. In the first case, motivation comes from an engineering problem and the key challenge is to find analogous biological functions and map them into engineering materials. We illustrate with an example of water pollution remediation through appropriate design of a biomimetic sponge. In the second case, a biological function is already known and the challenge is to identify the appropriate engineering problem. We demonstrate the biological approach with marine diatoms that control energy and materials at their surface providing inspiration for a number of engineering applications. In both cases, it is essential to select materials and structures at the nanoscale to control energy and materials flows at interfaces.

  18. Vibrational impacts of hush house operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witten, A.J.

    1988-01-01

    United States Air Force (USAF) facilities are required to test turboprop and turbojet engines before or after maintenance or repair and prior to installation on aircraft to ensure that no problems were introduced or remain uncorrected. This requirement prevents the installation of engines in aircraft which require further maintenance. There are a number of facilities in use by USAF for conducting engine diagnostic tests. The most modern of these facilities is the hush house which is a hangar-like structure designed to isolate the noise associated with extended engine operations from the surrounding environment. One type of hush house, the T-10,more » is of particular concern because of vibrational impacts to surrounding structures induced by subaudible sound (infrasound) emitted during operation. While these facilities fulfill the design requirement of reducing audible noise, serious siting problems have been reported at several installations because of infrasound-induced vibrations. The worst of these include the abandonment of an avionics laboratory because induced vibrations interfered with this facilities function and structural damage to a concrete block maintenance facility. This paper describes a predictive method for assessing vibration-driven structural impacts. 9 refs., 2 figs.« less

  19. A Second-Year Undergraduate Course in Applied Differential Equations.

    ERIC Educational Resources Information Center

    Fahidy, Thomas Z.

    1991-01-01

    Presents the framework for a chemical engineering course using ordinary differential equations to solve problems with the underlying strategy of concisely discussing the theory behind each solution technique without extensions to formal proofs. Includes typical class illustrations, student responses to this strategy, and reaction of the…

  20. Chemistry in "The Ascent of Man."

    ERIC Educational Resources Information Center

    Hostettler, John D.; Brooks, Kenneth

    1980-01-01

    Describes "The Ascent of Man," a course emphasizing science and human values. Detailed are some chemical topics covered in the course, and how these topics are used in other traditional chemistry courses. Topics discussed include alchemy, the chemical revolution, steam engines, the Manhattan project, and several bioethical problems. (CS)

  1. The Improvement of Higher Education in Indonesia: A Project Approach.

    ERIC Educational Resources Information Center

    Ruitjer, Kees; Utomo, Tjipto

    1983-01-01

    An international project for improvement of an Indonesian university's chemical engineering curriculum and later extended to other institutions and departments, included these changes: greater emphasis on discussion and problem-solving techniques, use of learning modules, introduction of criterion-referenced grading, and extended and improved…

  2. Automation U.S.A.: Overcoming Barriers to Automation.

    ERIC Educational Resources Information Center

    Brody, Herb

    1985-01-01

    Although labor unions and inadequate technology play minor roles, the principal barrier to factory automation is "fear of change." Related problems include long-term benefits, nontechnical executives, and uncertainty of factory cost accounting. Industry support for university programs is helping to educate engineers to design, implement, and…

  3. Structure and Management of an Engineering Senior Design Course.

    PubMed

    Tanaka, Martin L; Fischer, Kenneth J

    2016-07-01

    The design of products and processes is an important area in engineering. Students in engineering schools learn fundamental principles in their courses but often lack an opportunity to apply these methods to real-world problems until their senior year. This article describes important elements that should be incorporated into a senior capstone design course. It includes a description of the general principles used in engineering design and a discussion of why students often have difficulty with application and revert to trial and error methods. The structure of a properly designed capstone course is dissected and its individual components are evaluated. Major components include assessing resources, identifying projects, establishing teams, understanding requirements, developing conceptual designs, creating detailed designs, building prototypes, testing performance, and final presentations. In addition to the course design, team management and effective mentoring are critical to success. This article includes suggested guidelines and tips for effective design team leadership, attention to detail, investment of time, and managing project scope. Furthermore, the importance of understanding business culture, displaying professionalism, and considerations of different types of senior projects is discussed. Through a well-designed course and proper mentoring, students will learn to apply their engineering skills and gain basic business knowledge that will prepare them for entry-level positions in industry.

  4. Working for a not-for-Profit Research and Development Organization in the Earth Sciences

    NASA Astrophysics Data System (ADS)

    McKague, h L

    2001-12-01

    The Southwest Research Institute (SwRI) is an independent not-for-profit applied engineering and physical sciences research and development organization. This means that SwRI owes no allegiance to organizations other than its clients. As a not-for-profit organization, SwRI reinvests its net income into the organization to improve, strengthen, and expand facilities and to support internal research and development projects. Located in San Antonio, Texas, on 1200 acres, SwRI employs nearly 2800 staff and occupies nearly 2,000,000 square feet of office space. Its business is about equally divided between commercial and government clients, most of whom have specific scientific and technical problems that need to be solved in a timely, cost-effective manner. Governmental clients include local, state, and federal agencies and foreign governments. Commercial clients include local, national, and international businesses. Earth science disciplines at SwRI include geology, geophysics, hydrology, geochemistry, rock mechanics, mining engineering, and natural hazard assessment. Our overall approach is to systematically examine client problems and develop solutions that may include field work, laboratory work, numerical modeling, or some combination of these approaches. This method of problem solving places a strong emphasis on interdisciplinary teamwork. The work environment at SwRI strikes a balance among the freedom to attack technically important problems, consistent support to professional development, and a strong commitment to meeting client's deadlines and goals. Real problems with real consequences are routinely solved on a tight schedule. The diversity of clients gives exposure to an extraordinarily wide range of problems. Successful employees have sound technical backgrounds, are flexible in accommodating varying clients needs, bring creativity and energy to problem solving and applications of technologies, can work on multiple tasks in parallel, and can communicate clearly with clients and other team members. Professional development is supported through encouragement of continuing education, as well as publication and presentation of professional work. An overview of the earth science staff and work at SwRI can be found at http://www.swri.edu/4org/d20/d20home.htm

  5. High-Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Park, K. C.; Gumaste, U.; Chen, P.-S.; Lesoinne, M.; Stern, P.

    1997-01-01

    Applications are described of high-performance computing methods to the numerical simulation of complete jet engines. The methodology focuses on the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by structural displacements. The latter is treated by a ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field elements. New partitioned analysis procedures to treat this coupled three-component problem were developed. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers, including the iPSC-860, Paragon XP/S and the IBM SP2. The NASA-sponsored ENG10 program was used for the global steady state analysis of the whole engine. This program uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor for parallel versions of ENG10 was developed as well as the capability for the first full 3D aeroelastic simulation of a multirow engine stage. This capability was tested on the IBM SP2 parallel supercomputer at NASA Ames.

  6. Problem-based learning biotechnology courses in chemical engineering.

    PubMed

    Glatz, Charles E; Gonzalez, Ramon; Huba, Mary E; Mallapragada, Surya K; Narasimhan, Balaji; Reilly, Peter J; Saunders, Kevin P; Shanks, Jacqueline V

    2006-01-01

    We have developed a series of upper undergraduate/graduate lecture and laboratory courses on biotechnological topics to supplement existing biochemical engineering, bioseparations, and biomedical engineering lecture courses. The laboratory courses are based on problem-based learning techniques, featuring two- and three-person teams, journaling, and performance rubrics for guidance and assessment. Participants initially have found them to be difficult, since they had little experience with problem-based learning. To increase enrollment, we are combining the laboratory courses into 2-credit groupings and allowing students to substitute one of them for the second of our 2-credit chemical engineering unit operations laboratory courses.

  7. Research in the comprehension of engineering lectures by non-native speakers

    NASA Technical Reports Server (NTRS)

    Olsen, L. A.; Huckin, T. N.

    1981-01-01

    Failure by foreign students to perceive the rhetorical structure or overall organization of an engineering lecture, rendering them unable to understand it, is discussed. Equally serious failure by such students to perceive the organizing role of theory in structuring the activities in their field is reported. Failure to identify the role of theory in the problem-solving process that underlies engineering is emphasized. Engineering was not seen as a series of on-going problems where each stage of solution exposed new problems to be solved. Implications for course planners and material designers are discussed.

  8. Portable inference engine: An extended CLIPS for real-time production systems

    NASA Technical Reports Server (NTRS)

    Le, Thach; Homeier, Peter

    1988-01-01

    The present C-Language Integrated Production System (CLIPS) architecture has not been optimized to deal with the constraints of real-time production systems. Matching in CLIPS is based on the Rete Net algorithm, whose assumption of working memory stability might fail to be satisfied in a system subject to real-time dataflow. Further, the CLIPS forward-chaining control mechanism with a predefined conflict resultion strategy may not effectively focus the system's attention on situation-dependent current priorties, or appropriately address different kinds of knowledge which might appear in a given application. Portable Inference Engine (PIE) is a production system architecture based on CLIPS which attempts to create a more general tool while addressing the problems of real-time expert systems. Features of the PIE design include a modular knowledge base, a modified Rete Net algorithm, a bi-directional control strategy, and multiple user-defined conflict resolution strategies. Problems associated with real-time applications are analyzed and an explanation is given for how the PIE architecture addresses these problems.

  9. Methods for compressible multiphase flows and their applications

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choe, Y.; Kim, H.; Min, D.; Kim, C.

    2018-06-01

    This paper presents an efficient and robust numerical framework to deal with multiphase real-fluid flows and their broad spectrum of engineering applications. A homogeneous mixture model incorporated with a real-fluid equation of state and a phase change model is considered to calculate complex multiphase problems. As robust and accurate numerical methods to handle multiphase shocks and phase interfaces over a wide range of flow speeds, the AUSMPW+_N and RoeM_N schemes with a system preconditioning method are presented. These methods are assessed by extensive validation problems with various types of equation of state and phase change models. Representative realistic multiphase phenomena, including the flow inside a thermal vapor compressor, pressurization in a cryogenic tank, and unsteady cavitating flow around a wedge, are then investigated as application problems. With appropriate physical modeling followed by robust and accurate numerical treatments, compressible multiphase flow physics such as phase changes, shock discontinuities, and their interactions are well captured, confirming the suitability of the proposed numerical framework to wide engineering applications.

  10. Collaborative Systems Thinking: A Response to the Problems Faced by Systems Engineering's 'Middle Tier'

    NASA Technical Reports Server (NTRS)

    Phfarr, Barbara B.; So, Maria M.; Lamb, Caroline Twomey; Rhodes, Donna H.

    2009-01-01

    Experienced systems engineers are adept at more than implementing systems engineering processes: they utilize systems thinking to solve complex engineering problems. Within the space industry demographics and economic pressures are reducing the number of experienced systems engineers that will be available in the future. Collaborative systems thinking within systems engineering teams is proposed as a way to integrate systems engineers of various experience levels to handle complex systems engineering challenges. This paper uses the GOES-R Program Systems Engineering team to illustrate the enablers and barriers to team level systems thinking and to identify ways in which performance could be improved. Ways NASA could expand its engineering training to promote team-level systems thinking are proposed.

  11. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.; Meyer, J. D.

    1978-01-01

    Activities of the manufacturing applications team (MATeam) in effecting widespread transfer of NASA technology to aid in the solution of manufacturing problems in the industrial sector are described. During the program's first year of operation, 450 companies, industry associations, and government agencies were contacted, 150 manufacturing problems were documented, and 20 potential technology transfers were identified. Although none of the technology transfers has been commercialized and put in use, several are in the applications engineering phase, and others are in the early stages of implementation. The technology transfer process is described and guidelines used for the preparation of problems statements are included.

  12. Scenario-based, closed-loop model predictive control with application to emergency vehicle scheduling

    NASA Astrophysics Data System (ADS)

    Goodwin, Graham. C.; Medioli, Adrian. M.

    2013-08-01

    Model predictive control has been a major success story in process control. More recently, the methodology has been used in other contexts, including automotive engine control, power electronics and telecommunications. Most applications focus on set-point tracking and use single-sequence optimisation. Here we consider an alternative class of problems motivated by the scheduling of emergency vehicles. Here disturbances are the dominant feature. We develop a novel closed-loop model predictive control strategy aimed at this class of problems. We motivate, and illustrate, the ideas via the problem of fluid deployment of ambulance resources.

  13. Process Inquiry: Analysis of Oral Problem-Solving Skills in Mathematics of Engineering Students

    ERIC Educational Resources Information Center

    Trance, Naci John C.

    2013-01-01

    This paper presents another effort in determining the difficulty of engineering students in terms of solving word problems. Students were presented with word problems in algebra. Then, they were asked to solve the word problems orally; that is, before they presented their written solutions, they were required to explain how they understood the…

  14. Avoid, Control, Succumb, or Balance: Engineering Students' Approaches to a Wicked Sustainability Problem

    ERIC Educational Resources Information Center

    Lönngren, Johanna; Ingerman, Åke; Svanström, Magdalena

    2017-01-01

    Wicked sustainability problems (WSPs) are an important and particularly challenging type of problem. Science and engineering education can play an important role in preparing students to deal with such problems, but current educational practice may not adequately prepare students to do so. We address this gap by providing insights related to…

  15. Investigating and Developing Engineering Students' Mathematical Modelling and Problem-Solving Skills

    ERIC Educational Resources Information Center

    Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven

    2015-01-01

    How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced…

  16. An Air Force Guide to the System Specification.

    DTIC Science & Technology

    1981-01-01

    basis for sound management plans and decisions to initiate system full-scale development. Related topics include: current problems and questions...such current documents as AFR 800-2 and AFR 57-1. Key elements of coverage include the following: a. Levels of system engineering studies are...equipment and computer program elements of a system are acquired most directly acainst lower-level (configuration item) specifications. b. Current

  17. Ingenuity in Action: Connecting Tinkering to Engineering Design Processes

    ERIC Educational Resources Information Center

    Wang, Jennifer; Werner-Avidon, Maia; Newton, Lisa; Randol, Scott; Smith, Brooke; Walker, Gretchen

    2013-01-01

    The Lawrence Hall of Science, a science center, seeks to replicate real-world engineering at the "Ingenuity in Action" exhibit, which consists of three open-ended challenges. These problems encourage children to engage in engineering design processes and problem-solving techniques through tinkering. We observed and interviewed 112…

  18. Engineering Play: Exploring Associations with Executive Function, Mathematical Ability, and Spatial Ability in Preschool

    NASA Astrophysics Data System (ADS)

    Gold, Zachary Samuel

    Engineering play is a new perspective on preschool education that views constructive play as an engineering design process that parallels the way engineers think and work when they develop engineered solutions to human problems (Bairaktarova, Evangelou, Bagiati, & Brophy, 2011). Early research from this perspective supports its use in framing play as a key learning context. However, no research to date has examined associations between engineering play and other factors linked with early school success, such as executive function, mathematical ability, and spatial ability. Additionally, more research is needed to further validate a new engineering play observational measure. This study had two main goals: (1) to gather early validity data on the engineering play measure as a potentially useful instrument for documenting the occurrence of children's engineering play behaviors in educational contexts, such as block play. This was done by testing the factor structure of the engineering play behaviors in this sample and their association with preschoolers' planning, a key aspect of the engineering design process; (2) to explore associations between preschoolers' engineering play and executive function, mathematical ability, and spatial ability. Participants included 110 preschoolers (62 girls; 48 boys; M = 58.47 months) from 10 classrooms in the Midwest United States coded for their frequency of engagement in each of the nine engineering play behaviors. A confirmatory factor analysis resulted in one engineering play factor including six of the engineering play behaviors. A series of marginal regression models revealed that the engineering play factor was significantly and positively associated with the spatial horizontal rotation transformation. However, engineering play was not significantly related to planning ability, executive function, informal mathematical abilities, or other spatial transformation skills. Follow-up analyses revealed significant positive associations between engineering play and planning, executive function, and geometry for only a subgroup of children (n = 27) who had individualized education program (IEP) status. This was the first of a series of studies planned to evaluate the potential of the engineering play perspective as a tool for understanding young children's development and learning across multiple developmental domains. Although most hypotheses regarding engineering play and cognitive skills were not supported, the study provided partial evidence for the reliability and validity of the engineering play observation measure. Future research should include larger sample sizes with more statistical power, continued refinement of the engineering play observation measure, examination of potential associations with specific early learning domains, including spatial ability and language, and more comparisons of engineering play between typically developing children and children with disabilities.

  19. High density fuel qualification for a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macleod, J.D.; Orbanski, B.; Hastings, P.R.

    1992-01-01

    A program for the evaluation of gas turbine engine performance, carried out in the Engine Laboratory of the National Research Council of Canada, is described. Problems under consideration include performance alteration between JP-4 fuel and a high energy density fuel, called strategic military fuel (SMF); performance deterioration during the accelerated endurance test; and emission analysis. The T56 fuel control system is found to be capable of operation on the higher energy density fuel with no detrimental effects regarding control of the engine's normal operating regime. The deterioration of the engine performance during 150-hour endurance tests on SMF was very high,more » which was caused by an increase in turbine nozzle effective flow area and turbine blade untwist. The most significant performance losses during the endurance tests were on corrected output power, fuel flow, specific fuel consumption and compressor and turbine presure ratio. 9 refs.« less

  20. Service Modeling for Service Engineering

    NASA Astrophysics Data System (ADS)

    Shimomura, Yoshiki; Tomiyama, Tetsuo

    Intensification of service and knowledge contents within product life cycles is considered crucial for dematerialization, in particular, to design optimal product-service systems from the viewpoint of environmentally conscious design and manufacturing in advanced post industrial societies. In addition to the environmental limitations, we are facing social limitations which include limitations of markets to accept increasing numbers of mass-produced artifacts and such environmental and social limitations are restraining economic growth. To attack and remove these problems, we need to reconsider the current mass production paradigm and to make products have more added values largely from knowledge and service contents to compensate volume reduction under the concept of dematerialization. Namely, dematerialization of products needs to enrich service contents. However, service was mainly discussed within marketing and has been mostly neglected within traditional engineering. Therefore, we need new engineering methods to look at services, rather than just functions, called "Service Engineering." To establish service engineering, this paper proposes a modeling technique of service.

  1. The role of a creative "joint assignment" project in biomedical engineering bachelor degree education.

    PubMed

    Jiehui Jiang; Yuting Zhang; Mi Zhou; Xiaosong Zheng; Zhuangzhi Yan

    2017-07-01

    Biomedical Engineering (BME) bachelor education aims to train qualified engineers who devote themselves to addressing biological and medical problems by integrating the technological, medical and biological knowledge. Design thinking and teamwork with other disciplines are necessary for biomedical engineers. In the current biomedical engineering education system of Shanghai University (SHU), however, such design thinking and teamwork through a practical project is lacking. This paper describes a creative "joint assignment" project in Shanghai University, China, which has provided BME bachelor students a two-year practical experience to work with students from multidisciplinary departments including sociology, mechanics, computer sciences, business and art, etc. To test the feasibility of this project, a twenty-month pilot project has been carried out from May 2015 to December 2016. The results showed that this pilot project obviously enhanced competitive power of BME students in Shanghai University, both in the capabilities of design thinking and teamwork.

  2. High-performance parallel analysis of coupled problems for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Chen, P.-S.; Gumaste, U.; Leoinne, M.; Stern, P.

    1995-01-01

    This research program deals with the application of high-performance computing methods to the numerical simulation of complete jet engines. The program was initiated in 1993 by applying two-dimensional parallel aeroelastic codes to the interior gas flow problem of a by-pass jet engine. The fluid mesh generation, domain decomposition and solution capabilities were successfully tested. Attention was then focused on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by these structural displacements. The latter is treated by an ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field fluid elements. New partitioned analysis procedures to treat this coupled 3-component problem were developed in 1994. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers. For the global steady-state axisymmetric analysis of a complete engine we have decided to use the NASA-sponsored ENG10 program, which uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor for parallel versions of ENG10 has been developed. It is planned to use the steady-state global solution provided by ENG10 as input to a localized three-dimensional FSI analysis for engine regions where aeroelastic effects may be important.

  3. Challenges in the Japan Beyond-Brittle Project (JBBP) for EGS development beyond the brittle-ductile transition

    NASA Astrophysics Data System (ADS)

    Asanuma, H.; Muraoka, H.; Tsuchiya, N.; Ito, H.

    2013-12-01

    Development using Engineered Geothermal System (EGS) technologies is considered to be the best solution to the problems of the localized distribution of geothermal resources. However, it is considered that a number of problems, including low water recovery rate, difficulty in design of the reservoir, and induced earthquake, would appear in Japanese EGS. These problems in the development of EGS reservoirs cannot be readily solved in Japan because they are intrinsically related to the physical characteristics and tectonic setting of the brittle rock mass. Therefore, we have initiated the Japan Beyond-Brittle Project (JBBP), which will take a multidisciplinary scientific approach, including geology, geochemistry, geophysics, water-rock interactions, rock mechanics, seismology, drilling technology, well-logging technology, and reservoir engineering. The science and technology required for the creation and control of geothermal reservoirs in superheated rocks in the ductile zone is at the frontier of modern research in most of the related disciplines. Solutions to the associated problems will not easily be found without international collaboration among researchers and engineers. For this reason, in March, 2013 we held a five-day ICDP-supported workshop in Japan to review and discuss various scientific and technological issues related to the JBBP. Throughout the discussions at the workshop on characteristics of the beyond-brittle rock mass and creation and control of EGS reservoirs in the ductile zone, it has concluded that there are two end-member reservoir models that should be considered (Fig. 1). The JBBP reservoir type-1 would be created near the top of the brittle-ductile transition (BDT) and connected to pre-existing hydrothermal systems, which would increase productivity and provide sustainability. The JBBP reservoir type-2 would be hydraulically or thermally created beyond the BDT, where pre-existing fractures are less permeable, and would be hydraulically isolated from the hydrothermal system. Discussions on exploration/monitoring of the BDT rock mass and JBBP reservoirs, and engineering development have been also made in the workshop. We finally identified scientific/technological challenges for the JBBP and established roadmap and implementation plan. The workshop report is available at http://jbbp.kankyo.tohoku.ac.jp/jbbp Conceptual model of the JBBP

  4. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H., III; Gilinsky, Mikhail M.

    2004-01-01

    In this project on the first stage (2000-Ol), we continued to develop the previous joint research between the Fluid Mechanics and Acoustics Laboratory (FM&AL) at Hampton University (HU) and the Jet Noise Team (JNT) at the NASA Langley Research Center (NASA LaRC). At the second stage (2001-03), FM&AL team concentrated its efforts on solving of problems of interest to Glenn Research Center (NASA GRC), especially in the field of propulsion system enhancement. The NASA GRC R&D Directorate and LaRC Hyper-X Program specialists in a hypersonic technology jointly with the FM&AL staff conducted research on a wide region of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The last year the Hampton University School of Engineering & Technology was awarded the NASA grant, for creation of the Aeropropulsion Center, and the FM&AL is a key team of the project fulfillment responsible for research in Aeropropulsion and Acoustics (Pillar I). This work is supported by joint research between the NASA GRC/ FM&AL and the Institute of Mechanics at Moscow State University (IMMSU) in Russia under a CRDF grant. The main areas of current scientific interest of the FM&AL include an investigation of the proposed and patented advanced methods for aircraft engine thrust and noise benefits. This is the main subject of our other projects, of which one is presented. The last year we concentrated our efforts to analyze three main problems: (a) new effective methods fuel injection into the flow stream in air-breathing engines; (b) new re-circulation method for mixing, heat transfer and combustion enhancement in propulsion systems and domestic industry application; (c) covexity flow The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines (see, for example, Figures 4). The FM&AL Team uses analytical methods, numerical simulations and experimental tests at the Hampton University campus, NASA and IM/MSU.

  5. Virtual and flexible digital signal processing system based on software PnP and component works

    NASA Astrophysics Data System (ADS)

    He, Tao; Wu, Qinghua; Zhong, Fei; Li, Wei

    2005-05-01

    An idea about software PnP (Plug & Play) is put forward according to the hardware PnP. And base on this idea, a virtual flexible digital signal processing system (FVDSPS) is carried out. FVDSPS is composed of a main control center, many sub-function modules and other hardware I/O modules. Main control center sends out commands to sub-function modules, and manages running orders, parameters and results of sub-functions. The software kernel of FVDSPS is DSP (Digital Signal Processing) module, which communicates with the main control center through some protocols, accept commands or send requirements. The data sharing and exchanging between the main control center and the DSP modules are carried out and managed by the files system of the Windows Operation System through the effective communication. FVDSPS real orients objects, orients engineers and orients engineering problems. With FVDSPS, users can freely plug and play, and fast reconfigure a signal process system according to engineering problems without programming. What you see is what you get. Thus, an engineer can orient engineering problems directly, pay more attention to engineering problems, and promote the flexibility, reliability and veracity of testing system. Because FVDSPS orients TCP/IP protocol, through Internet, testing engineers, technology experts can be connected freely without space. Engineering problems can be resolved fast and effectively. FVDSPS can be used in many fields such as instruments and meter, fault diagnosis, device maintenance and quality control.

  6. The Engagement of Engineers in Education and Public Outreach: Beginning the Conversation

    NASA Astrophysics Data System (ADS)

    Grier, J.; Buxner, S.; Vezino, B.; Shipp, S. S.

    2014-12-01

    The Next Generation Science Standards (NGSS) are a new set of K-12 science standards that have been developed through a collaborative, state-led process. Based on the National Research Council (NRC) 'Framework for K-12 Education,' the NGSS are designed to provide all students with a coherent education possessing both robust content and rigorous practice. Within these standards is an enhanced emphasis on the intersection between science and engineering. The focus is not only on asking questions and finding answers (science) but also in identifying and designing solution to problems (engineering.) The NASA SMD (Science Mission Directorate) Education and Public Outreach (E/PO) Forums have been working with space scientists for many years to assist with their engagement in E/PO efforts, thus supporting the needs of previous science standards. In order to properly address the needs of NGSS, this conversation is being expanded to include engineers. Our initial efforts include a series of semi-structured interviews with a dozen engineers involved in different aspects of space science and mission development. We will present the responses from the survey and compare this information to our knowledge base about space scientists, their needs, attitudes, and understandings of E/PO. In addition to a new emphasis on engineering in the NGSS, we also consider engineering habits of mind such as systems thinking, creativity, optimism, collaboration, communication, and attention to ethical considerations as described by an NRC policy document for engineering education. Using the overall results, we will consider strategies, further ideas for investigation, and possible steps for going forward with this important aspect of including engineering in education and outreach programming.

  7. A survey on adaptive engine technology for serious games

    NASA Astrophysics Data System (ADS)

    Rasim, Langi, Armein Z. R.; Munir, Rosmansyah, Yusep

    2016-02-01

    Serious Games has become a priceless tool in learning because it can simulate abstract concept to appear more realistic. The problem faced is that the players have different ability in playing the games. This causes the players to become frustrated if the game is too difficult or to get bored if it is too easy. Serious games have non-player character (NPC) in it. The NPC should be able to adapt to the players in such a way so that the players can feel comfortable in playing the games. Because of that, serious games development must involve an adaptive engine, which is by applying a learning machine that can adapt to different players. The development of adaptive engine can be viewed in terms of the frameworks and the algorithms. Frameworks include rules based, plan based, organization description based, proficiency of player based, and learning style and cognitive state based. Algorithms include agents based and non-agent based

  8. Engine-propeller power plant aircraft community noise reduction key methods

    NASA Astrophysics Data System (ADS)

    Moshkov P., A.; Samokhin V., F.; Yakovlev A., A.

    2018-04-01

    Basic methods of aircraft-type flying vehicle engine-propeller power plant noise reduction were considered including single different-structure-and-arrangement propellers and piston engines. On the basis of a semiempirical model the expressions for blade diameter and number effect evaluation upon propeller noise tone components under thrust constancy condition were proposed. Acoustic tests performed at Moscow Aviation institute airfield on the whole qualitatively proved the obtained ratios. As an example of noise and detectability reduction provision a design-and-experimental estimation of propeller diameter effect upon unmanned aircraft audibility boundaries was performed. Future investigation ways were stated to solve a low-noise power plant design problem for light aircraft and unmanned aerial vehicles.

  9. Preliminary plan for a Shuttle Coherent Atmospheric Lidar Experiment (SCALE)

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, D.; Beranek, R.; Bilbro, J.; Mabry, J.

    1985-01-01

    A study has been completed to define a Shuttle experiment that solves the most crucial scientific and engineering problems involved in building a satellite Doppler wind profiler for making global wind measurements. The study includes: (1) a laser study to determine the feasibility of using the existing NOAA Windvan laser in the Space Shuttle spacecraft; (2) a preliminary optics and telescope design; (3) an accommodations study including power, weight, thermal, and control system requirements; and (4) a flight trajectory and operations plan designed to accomplish the required scientific and engineering goals. The experiment will provide much-needed data on the global distribution of atmospheric aerosols and demonstrate the technique of making wind measurements from space, including scanning the laser beam and interpreting the data. Engineering accomplishments will include space qualification of the laser, development of signal processing and lag angle compensation hardware and software, and telescope and optics design. All of the results of this limited Spacelab experiment will be directly applicable to a complete satellite wind profiler for the Earth Observation System/Space Station or other free-flying satellite.

  10. Heat engine development for solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Pham, H. Q.; Jaffe, L. D.

    1981-01-01

    The technical status of three heat engines (Stirling, high-temperature Brayton, and Combined cycle) for use in solar thermal power systems is presented. Performance goals necessary to develop a system competitive with conventional power requirements include an external heated engine output less than 40 kW, and efficiency power conversion subsystem at least 40% at rated output, and a half-power efficiency of at least 37%. Results show that the Stirling engine can offer a 39% efficiency with 100 hours of life, and a 20% efficiency with 10,000 hours of life, but problems with seals and heater heads exist. With a demonstrated efficiency near 31% at 1500 F and a minimum lifetime of 100,000 hours, the Brayton engine does not offer sufficient engine lifetime, efficiency, and maintenance for solar thermal power systems. Examination of the Rankine bottoming cycle of the Combined cycle engine reveals a 30 year lifetime, but a low efficiency. Additional development of engines for solar use is primarily in the areas of components to provide a long lifetime, high reliability, and low maintenance (no more than $0.001/kW-hr).

  11. Using Written-Answer Questions To Complement Numerical Problems. Case Study: A Separation Processes Course.

    ERIC Educational Resources Information Center

    Iveson, Simon M.

    2002-01-01

    Describes the process and outcome of including in assignments and examinations some questions requiring written answers along with traditional questions requiring only numerical calculations. Lists questions used in a chemical engineering course on separation processes along with sample responses from students. Student feedback indicates a…

  12. Some Applications of Piece-Wise Smooth Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Janovská, Drahoslava; Hanus, Tomáš; Biák, Martin

    2010-09-01

    The Filippov systems theory is applied to selected problems from biology and chemical engineering, namely we explore and simulate Bazykin's ecological model, an ideal closed gas-liquid system including its dimensionless formulation. The last investigated system is a CSTR with an outfall and the CSTR with a reactor volume control.

  13. Urban development applications project. Urban technology transfer study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology transfer is defined along with reasons for attempting to transfer technology. Topics discussed include theoretical models, stages of the innovation model, communication process model, behavior of industrial organizations, problem identification, technology search and match, establishment of a market mechanism, applications engineering, commercialization, and management of technology transfer.

  14. The Use of Design Practice to Teach Mathematics and Science

    ERIC Educational Resources Information Center

    Norton, Stephen John

    2008-01-01

    Relatively low participation in the hard sciences (mathematics, science, engineering and technology) has become a concern with respect to the capacity of Australia to meet critical infrastructure projects. This problem has its roots in poor student attitudes towards and perceptions about the study of prerequisite subjects including mathematics and…

  15. Examining, Documenting, and Modeling the Problem Space of a Variable Domain

    DTIC Science & Technology

    2002-06-14

    Feature-Oriented Domain Analysis ( FODA ) .............................................................................................. 9...development of this proposed process include: Feature-Oriented Domain Analysis ( FODA ) [3,4], Organization Domain Modeling (ODM) [2,5,6], Family-Oriented...configuration knowledge using generators [2]. 8 Existing Methods of Domain Engineering Feature-Oriented Domain Analysis ( FODA ) FODA is a domain

  16. Math 3310--Technical Mathematics I. Course Outline.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    This document contains the course syllabus and 12 independent practice modules for a college pre-calculus designed as the first course in a two-semester sequence for students in a Bachelor of Technology program. The course emphasizes engineering technology applications and verbal problems. Topics include a review of elementary algebra; factoring…

  17. Learning Microbiology through Cooperation: Designing Cooperative Learning Activities That Promote Interdependence, Interaction, and Accountability.

    ERIC Educational Resources Information Center

    Trempy, Janine E.; Skinner, Monica M.; Siebold, William A.

    2002-01-01

    Describes the course "The World According to Microbes" which puts science, mathematics, engineering, and technology majors into teams of students charged with problem solving activities that are microbial in origin. Describes the development of learning activities that utilize key components of cooperative learning including positive…

  18. What to Do Until the Money Runs Out: A Refinement Framework for Cognitive Engineering in the Real World

    NASA Technical Reports Server (NTRS)

    Shafto, Michael G.; Remington, Roger W.; Trimble, Jay W.

    1994-01-01

    A case study is presented to illustrate some of the problems of applying cognitive science to complex human-machine systems. Disregard for facts about human cognition often undermines the safety, reliability, and cost-effectiveness of complex systems. Yet single-point methods (for example, better user-interface design), whether rooted in computer science or in experimental psychology, fall far short of addressing systems-level problems in a timely way using realistic resources. A model-based methodology is proposed for organizing and prioritizing the cognitive engineering effort, focusing appropriate expertise on major problems first, then moving to more sophisticated refinements if time and resources permit. This case study is based on a collaborative effort between the Human Factors Division at NASA-Ames and the Spaceborne Imaging Radar SIR-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) Project at the Jet Propulsion Laboratory (JPL), California institute of Technology. The first SIR-C/X-SAR Shuttle mission flew successfully in April, 1994. A series of such missions is planned to provide radar data to study Earth's ecosystems, climatic and geological processes, hydrologic cycle, and ocean circulation. In addition to JPL and NASA personnel, the SIR-C/X-SAR operations team included Scientists and engineers from the German and Italian space agencies.

  19. Mechanical design problems associated with turbopump fluid film bearings

    NASA Technical Reports Server (NTRS)

    Evces, Charles R.

    1990-01-01

    Most high speed cryogenic turbopumps for liquid propulsion rocket engines currently use ball or roller contact bearings for rotor support. The operating speeds, loads, clearances, and environments of these pumps combine to make bearing wear a limiting factor on turbopump life. An example is the high pressure oxygen turbopump (HPOTP) used in the Space Shuttle Main Engine (SSME). Although the HPOTP design life is 27,000 seconds at 30,000 rpms, or approximately 50 missions, bearings must currently be replaced after 2 missions. One solution to the bearing wear problem in the HPOTP, as well as in future turbopump designs, is the utilization of fluid film bearings in lieu of continuous contact bearings. Hydrostatic, hydrodynamic, and damping seal bearings are all replacement candidates for contact bearings in rocket engine high speed turbomachinery. These three types of fluid film bearings have different operating characteristics, but they share a common set of mechanical design opportunities and difficulties. Results of research to define some of the mechanical design issues are given. Problems considered include transient strat/stop rub, non-operational rotor support, bearing wear inspection and measurement, and bearing fluid supply route. Emphasis is given to the HPOTP preburner pump (PBP) bearing, but the results are pertinent to high-speed cryogenic turbomachinery in general.

  20. Building better bone: The weaving of biologic and engineering strategies for managing bone loss.

    PubMed

    Schwartz, Andrew M; Schenker, Mara L; Ahn, Jaimo; Willett, Nick J

    2017-09-01

    Segmental bone loss remains a challenging clinical problem for orthopaedic trauma surgeons. In addition to the missing bone itself, the local tissues (soft tissue, vascular) are often highly traumatized as well, resulting in a less than ideal environment for bone regeneration. As a result, attempts at limb salvage become a highly expensive endeavor, often requiring multiple operations and necessitating the use of every available strategy (autograft, allograft, bone graft substitution, Masquelet, bone transport, etc.) to achieve bony union. A cost-sensitive, functionally appropriate, and volumetrically adequate engineered substitute would be practice-changing for orthopaedic trauma surgeons and these patients with difficult clinical problems. In tissue engineering and bone regeneration fields, numerous research efforts continue to make progress toward new therapeutic interventions for segmental bone loss, including novel biomaterial development as well as cell-based strategies. Despite an ever-evolving literature base of these new therapeutic and engineered options, there remains a disconnect with the clinical practice, with very few translating into clinical use. A symposium entitled "Building better bone: The weaving of biologic and engineering strategies for managing bone loss," was presented at the 2016 Orthopaedic Research Society Conference to further explore this engineering-clinical disconnect, by surveying basic, translational, and clinical researchers along with orthopaedic surgeons and proposing ideas for pushing the bar forward in the field of segmental bone loss. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1855-1864, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Laminated anisotropic reinforced plastic plates and shells

    NASA Technical Reports Server (NTRS)

    Korolev, V. I.

    1981-01-01

    Basic technical theories and engineering calculation equations for anisotropic plates and shells made of rigid reinforced plastics, mainly laminated fiberglass, are presented and discussed. Solutions are given for many problems of design of structural plates and shells, including curved sections and tanks, as well as two chapters on selection of the optimum materials, are given. Accounting for interlayer shearing and transverse separation, which are new engineering properties, are discussed. Application of the results obtained to thin three ply plates and shells wth a light elastic filler is presented and discussed.

  2. Research requirements to reduce civil helicopter life cycle cost

    NASA Technical Reports Server (NTRS)

    Blewitt, S. J.

    1978-01-01

    The problem of the high cost of helicopter development, production, operation, and maintenance is defined and the cost drivers are identified. Helicopter life cycle costs would decrease by about 17 percent if currently available technology were applied. With advanced technology, a reduction of about 30 percent in helicopter life cycle costs is projected. Technological and managerial deficiencies which contribute to high costs are examined, basic research and development projects which can reduce costs include methods for reduced fuel consumption; improved turbine engines; airframe and engine production methods; safety; rotor systems; and advanced transmission systems.

  3. Compendium of methods for applying measured data to vibration and acoustic problems

    NASA Astrophysics Data System (ADS)

    Dejong, R. G.

    1985-10-01

    The scope of this report includes the measurement, analysis and use of vibration and acoustic data. The purpose of this report is then two-fold. First, it provides introductory material in an easily understood manner to engineers, technicians, and their managers in areas other than their specialties relating to the measurement, analysis and use of vibration and acoustic data. Second, it provides a quick reference source for engineers, technicians and their managers in the areas of their specialties relating to the measurement, analysis and use of vibration and acoustic data.

  4. Hydrogen for the subsonic transport. [aircraft design and fuel requirements

    NASA Technical Reports Server (NTRS)

    Korycinski, P. F.; Snow, D. B.

    1975-01-01

    Relations between air travel and fuel requirements are examined. Alternate fuels considered in connection with problems related to a diminishing supply of petroleum include synthetic jet fuel, methane, and hydrogen. A cruise flight of a subsonic aircraft on a hydrogen-fueled jet engine was demonstrated in 1957. However, more development work is required to provide a sound engineering base for a complete air transportation system using hydrogen as fuel. Aircraft designs for alternate fuels are discussed, giving attention to hydrogen-related technology already available and new developments which are needed.

  5. Towards organ printing: engineering an intra-organ branched vascular tree.

    PubMed

    Visconti, Richard P; Kasyanov, Vladimir; Gentile, Carmine; Zhang, Jing; Markwald, Roger R; Mironov, Vladimir

    2010-03-01

    Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a 'built in' intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a 'built in' intra-organ branched vascular tree.

  6. Interdisciplinary optimum design. [of aerospace structures

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1986-01-01

    Problems related to interdisciplinary interactions in the design of a complex engineering systems are examined with reference to aerospace applications. The interdisciplinary optimization problems examined include those dealing with controls and structures, materials and structures, control and stability, structure and aerodynamics, and structure and thermodynamics. The discussion is illustrated by the following specific applications: integrated aerodynamic/structural optimization of glider wing; optimization of an antenna parabolic dish structure for minimum weight and prescribed emitted signal gain; and a multilevel optimization study of a transport aircraft.

  7. The European Project Semester at ISEP: the challenge of educating global engineers

    NASA Astrophysics Data System (ADS)

    Malheiro, Benedita; Silva, Manuel; Ribeiro, Maria Cristina; Guedes, Pedro; Ferreira, Paulo

    2015-05-01

    Current engineering education challenges require approaches that promote scientific, technical, design and complementary skills while fostering autonomy, innovation and responsibility. The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) (EPS@ISEP) is a one semester project-based learning programme (30 European Credit Transfer Units (ECTU)) for engineering students from diverse scientific backgrounds and nationalities that intends to address these goals. The students, organised in multidisciplinary and multicultural teams, are challenged to solve real multidisciplinary problems during one semester. The EPS package, although on project development (20 ECTU), includes a series of complementary seminars aimed at fostering soft, project-related and engineering transversal skills (10 ECTU). Hence, the students enrolled in this programme improve their transversal skills and learn, together and with the team of supervisors, subjects distinct from their core training. This paper presents the structure, implementation and results of the EPS@ISEP that was created in 2011 to apply the best engineering practices and promote internationalisation and engineering education innovation at ISEP.

  8. Formula student as part of a mechanical engineering curriculum

    NASA Astrophysics Data System (ADS)

    Davies, Huw Charles

    2013-10-01

    Formula Student (FS) is a multi-university student design competition managed by the UK Institution of Mechanical Engineers. Students are required to demonstrate and prove their creativity and engineering skills through the design, manufacture and financing of a small formula style race car. This paper seeks to explore the educational value that derives from the FS activity through a series of semi-structured interviews with key stakeholders. Through the analysis of the interview data, it was found that the FS activity supported development of student skills and competencies in the following areas: use of engineering knowledge to support the application of existing and emerging technology; application of theoretical and practical knowledge to the solution of engineering problems; development of technical and commercial management skills; development of effective interpersonal skills, including communication skills; and demonstration of personal commitment to professional development. In addition, a number of areas for implementing 'good practise' have been identified. The information herein supports educators in their responsibility to help meet the needs of the engineering industry for high quality graduates.

  9. Socio-Technical Perspective on Interdisciplinary Interactions During the Development of Complex Engineered Systems

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Daly, Shanna; Baker, Wayne; Papalambros, panos; Seifert, Colleen

    2013-01-01

    This study investigates interdisciplinary interactions that take place during the research, development, and early conceptual design phases in the design of large-scale complex engineered systems (LaCES) such as aerospace vehicles. These interactions, that take place throughout a large engineering development organization, become the initial conditions of the systems engineering process that ultimately leads to the development of a viable system. This paper summarizes some of the challenges and opportunities regarding social and organizational issues that emerged from a qualitative study using ethnographic and survey data. The analysis reveals several socio-technical couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their benefits to the engineered system as well as substantial challenges in interdisciplinary interactions. Noted benefits included enhanced knowledge and problem mitigation and noted obstacles centered on organizational and human dynamics. Findings suggest that addressing the social challenges may be a critical need in enabling interdisciplinary interactions

  10. Problem-Based Learning in Engineering Ethics Courses

    ERIC Educational Resources Information Center

    Kirkman, Robert

    2016-01-01

    I describe the first stages of a process of design research in which I employ problem-based learning in a course in engineering ethics, which fulfills a requirement for students in engineering degree programs. The aim of the course is to foster development of particular cognitive skills contributing to moral imagination, a capacity to notice,…

  11. Generating Alternative Engineering Designs by Integrating Desktop VR with Genetic Algorithms

    ERIC Educational Resources Information Center

    Chandramouli, Magesh; Bertoline, Gary; Connolly, Patrick

    2009-01-01

    This study proposes an innovative solution to the problem of multiobjective engineering design optimization by integrating desktop VR with genetic computing. Although, this study considers the case of construction design as an example to illustrate the framework, this method can very much be extended to other engineering design problems as well.…

  12. Efficacy of an Online Resource for Teaching Interpersonal Problem Solving Skills to Women Graduate Students in Engineering

    ERIC Educational Resources Information Center

    Bekki, Jennifer M.; Bernstein, Bianca; Fabert, Natalie; Gildar, Natalie; Way, Amy

    2014-01-01

    Interpersonal problem solving skills allow engineers to prevent interpersonal difficulties more effectively and to manage conflict, both of which are critical to successful participation on teams. This research provides evidence that the "Career"WISE online learning environment can improve those skills among women in engineering graduate…

  13. Introducing the "Decider" Design Process

    ERIC Educational Resources Information Center

    Prasa, Anthony R., Jr.; Del Guercio, Ryan

    2016-01-01

    Engineers are faced with solving important problems every day and must follow a step-by-step design process to arrive at solutions. Students who are taught an effective design process to apply to engineering projects begin to see problems as an engineer would, consider all ideas, and arrive at the best solution. Using an effective design process…

  14. Design, Test, Redesign: Simulation in Technology, Engineering, and Design Education Classrooms

    ERIC Educational Resources Information Center

    Swinson, Ronnie; Clark, Aaron C.; Ernst, Jeremy V.; Sutton, Kevin

    2016-01-01

    Today's engineers, designers, and technologists are often thrust into the role of problem solver, from the initial design phase of a product or process all the way to final development. Many engineers in manufacturing environments are tasked with solving problems and continuously improving processes to enhance company profitability, efficiency,…

  15. Experimental research on the Stirling engine

    NASA Technical Reports Server (NTRS)

    Ishizaki, Y.; Tani, Y.; Haramura, N.

    1982-01-01

    Experiments on Stirling engines of the 50 KW class were conducted to clarify the characteristics of the engine and its problems. The problems involve durability of the high temperature heat exchanger which is exposed to high flame temperatures above 1600 C, thermal distortion and high temperature corrosion of the devices near combustion, and of the preheater.

  16. Library Systems Engineering: An Introduction.

    ERIC Educational Resources Information Center

    Buckland, Michael K.; Tolliver, Don L.

    The application of systems engineering and operations research to the problems of libraries has developed quite strongly during the past five years. The purpose of this paper is to draw attention to this relatively new area. There are serious problems of applying systems engineering to libraries. This is to be expected in the case of a…

  17. Hydrostatic Pressure Project: Linked-Class Problem-Based Learning in Engineering

    ERIC Educational Resources Information Center

    Davis, Freddie J.; Lockwood-Cooke, Pamela; Hunt, Emily M.

    2011-01-01

    Over the last few years, WTAMU Mathematics, Engineering and Science faculty has used interdisciplinary projects as the basis for implementation of a linked-class approach to Problem-Based Learning (PBL). A project that has significant relevance to engineering statics, fluid mechanics, and calculus is the Hydrostatic Pressure Project. This project…

  18. Gender and Participation in an Engineering Problem-Based Learning Environment

    ERIC Educational Resources Information Center

    Hirshfield, Laura; Koretsky, Milo D.

    2018-01-01

    The use of problem-based learning (PBL) is gaining attention in the engineering classroom as a way to help students synthesize foundational knowledge and to better prepare students for practice. In this work, we study the discourse interactions between 27 student teams and two instructors in an engineering PBL environment to analyze how…

  19. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    NASA Technical Reports Server (NTRS)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  20. Middle School Engineering Problem Solving Using Traditional vs. E-PBL Module Instruction

    ERIC Educational Resources Information Center

    Baele, Loren C.

    2017-01-01

    This multiple methods (Denzin, 1978) study investigated two instructional approaches, traditional module and electronic Problem-Based Learning instruction (e-PBL), used within a middle school engineering classroom focused on the variables of engagement, content knowledge, student self-assessment and teacher assessment of problem solving solutions.…

  1. Career Opportunities for Physicists in the Micro Electronics Industry

    NASA Astrophysics Data System (ADS)

    Bourianoff, George

    1997-10-01

    The US micro electronics industry anticipates growth of 20 to 30 percent per year for the next five years. The need for engineers and scientists poses a critical problem for the industry but conversely presents great opportunities for those in closely related fields such as physics where career opportunities may be more limited. There is no shortage of important and challenging problems on the Semiconductor Institute of America (SIA) roadmap which will require solution in the next 10 years and which require expertise in the physical sciences. However, significant cultural differences exist between the physics community and the engineering oriented semiconductor community which must be understood and addressed in order for a physicist to successfully contribute in this environment. This talk will identify some of those cultural differences and describe some of the critical physics related problems which must be solved. Critical roadblocks include lithographic patterning below 0.18m. and design of Very Large Scale Integrated (VLSI) circuits in the deep submicron regime. The former will require developing radiation sources and optical elements for the EUV or XRAY part of the spectrum. The latter will require incorporating electromagnetic field equations with traditional lumped element circuit design methods. The cultural barriers alluded to earlier involve the manner in which engineering detail is approached. A physicist's basic instinct is to strip off the detail in order to make a problem mathematically tractable. This enables understanding of the underlying physical relationships but does not yield the quantitative detail necessary in semiconductor production.

  2. Applied Routh approximation

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1978-01-01

    The Routh approximation technique for reducing the complexity of system models was applied in the frequency domain to a 16th order, state variable model of the F100 engine and to a 43d order, transfer function model of a launch vehicle boost pump pressure regulator. The results motivate extending the frequency domain formulation of the Routh method to the time domain in order to handle the state variable formulation directly. The time domain formulation was derived and a characterization that specifies all possible Routh similarity transformations was given. The characterization was computed by solving two eigenvalue-eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given. Additional computational problems are discussed, including an optimization procedure that can improve the approximation accuracy by taking advantage of the transformation characterization.

  3. Acoustic measurements in a jet engine test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, V.R.

    1982-01-01

    The US Air Force has had problems with aircraft engine noise generated during ground run-up. These operations have resulted in many community complaints and serious restrictions being placed on ground run-up activity which affected training and fleet readiness. A program of noise abatement was undertaken to suppress ground run-up noise. The original designs included water-cooled noise suppressors which were peculiar to a single aircraft. This made each usable only with the aircraft for which it was designed. Noise surveys indicated that the close-coupled suppressor did not address the problem of noise radiated from unenclosed portions of the fuselage. To alleviatemore » this situation, the approach adopted was to use a complete aircraft enclosure, called a hush house, and a large augmenter tube which is totally air-cooled.« less

  4. A data management system for engineering and scientific computing

    NASA Technical Reports Server (NTRS)

    Elliot, L.; Kunii, H. S.; Browne, J. C.

    1978-01-01

    Data elements and relationship definition capabilities for this data management system are explicitly tailored to the needs of engineering and scientific computing. System design was based upon studies of data management problems currently being handled through explicit programming. The system-defined data element types include real scalar numbers, vectors, arrays and special classes of arrays such as sparse arrays and triangular arrays. The data model is hierarchical (tree structured). Multiple views of data are provided at two levels. Subschemas provide multiple structural views of the total data base and multiple mappings for individual record types are supported through the use of a REDEFINES capability. The data definition language and the data manipulation language are designed as extensions to FORTRAN. Examples of the coding of real problems taken from existing practice in the data definition language and the data manipulation language are given.

  5. Test results and description of a 1-kW free-piston Stirling engine with a dashpot load

    NASA Technical Reports Server (NTRS)

    Schreiber, J.

    1983-01-01

    A 1 kW (1.33 hp) single cylinder free piston Stirling engine was installed in the test facilities at the Lewis laboratory. The engine was designed specifically for research of the dynamics of its operation. A more complete description of the engine and its instrumentation is provided in a prior NASA paper TM-82999 by J. G. Schreiber. Initial tests at Lewis showed the power level and efficiency of the engine to be below design level. Tests were performed to help determine the specific problems in the engine causing the below design level performance. Modifications to engine hardware and to the facility where performed in an effort to bring the power output and efficiency to their design values. As finally configured the engine generated more than 1250 watts of output power at an engine efficiency greater than 32 percent. This report presents the tests performed to help determine the specific problems, the results if the problem was eliminated, the fix performed to the hardware, and the test results after the engine was tested. In cases where the fix did not cause the anticipated effects, a possible explanation is given.

  6. The application of CFD to rotary wing flow problems

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.

    1990-01-01

    Rotorcraft aerodynamics is especially rich in unsolved problems, and for this reason the need for independent computational and experimental studies is great. Three-dimensional unsteady, nonlinear potential methods are becoming fast enough to enable their use in parametric design studies. At present, combined CAMRAD/FPR analyses for a complete trimmed rotor soltution can be performed in about an hour on a CRAY Y-MP (or ten minutes, with multiple processors). These computational speeds indicate that in the near future many of the large CFD problems will no longer require a supercomputer. The ability to convect circulation is routine for integral methods, but only recently was it discovered how to do the same with differential methods. It is clear that the differential CFD rotor analyses are poised to enter the engineering workplace. Integral methods already constitute a mainstay. Ultimately, it is the users who will integrate CFD into the entire engineering process and provide a new measure of confidence in design and analysis. It should be recognized that the above classes of analyses do not include several major limiting phenomena which will continue to require empirical treatment because of computational time constraints and limited physical understanding. Such empirical treatment should be included, however, into the developing CFD, engineering level analyses. It is likely that properly constructed flow models containing corrections from physical testing will be able to fill in unavoidable gaps in the experimental data base, both for basic studies and for specific configuration testing. For these kinds of applications, computational cost is not an issue. Finally, it should be recognized that although rotorcraft are probably the most complex of aircraft, the rotorcraft engineering community is very small compared to the fixed-wing community. Likewise, rotorcraft CFD resources can never achieve fixed-wing proportions and must be used wisely. Therefore the fixed-wing work must be gleaned for many of the basic methods.

  7. A Model-Based Approach to Engineering Behavior of Complex Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Ingham, Michel; Day, John; Donahue, Kenneth; Kadesch, Alex; Kennedy, Andrew; Khan, Mohammed Omair; Post, Ethan; Standley, Shaun

    2012-01-01

    One of the most challenging yet poorly defined aspects of engineering a complex aerospace system is behavior engineering, including definition, specification, design, implementation, and verification and validation of the system's behaviors. This is especially true for behaviors of highly autonomous and intelligent systems. Behavior engineering is more of an art than a science. As a process it is generally ad-hoc, poorly specified, and inconsistently applied from one project to the next. It uses largely informal representations, and results in system behavior being documented in a wide variety of disparate documents. To address this problem, JPL has undertaken a pilot project to apply its institutional capabilities in Model-Based Systems Engineering to the challenge of specifying complex spacecraft system behavior. This paper describes the results of the work in progress on this project. In particular, we discuss our approach to modeling spacecraft behavior including 1) requirements and design flowdown from system-level to subsystem-level, 2) patterns for behavior decomposition, 3) allocation of behaviors to physical elements in the system, and 4) patterns for capturing V&V activities associated with behavioral requirements. We provide examples of interesting behavior specification patterns, and discuss findings from the pilot project.

  8. Engineering the future with America's high school students

    NASA Technical Reports Server (NTRS)

    Farrance, M. A.; Jenner, J. W.

    1993-01-01

    The number of students enrolled in engineering is declining while the need for engineers is increasing. One contributing factor is that most high school students have little or no knowledge about what engineering is, or what engineers do. To teach young students about engineering, engineers need good tools. This paper presents a course of study developed and used by the authors in a junior college course for high school students. Students learned about engineering through independent student projects, in-class problem solving, and use of career information resources. Selected activities from the course can be adapted to teach students about engineering in other settings. Among the most successful techniques were the student research paper assignments, working out a solution to an engineering problem as a class exercise, and the use of technical materials to illustrate engineering concepts and demonstrate 'tools of the trade'.

  9. Assessment, development, and testing of glass for blast environments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Sarah Jill

    2003-06-01

    Glass can have lethal effects including fatalities and injuries when it breaks and then flies through the air under blast loading (''the glass problem''). One goal of this program was to assess the glass problem and solutions being pursued to mitigate it. One solution to the problem is the development of new glass technology that allows the strength and fragmentation to be controlled or selected depending on the blast performance specifications. For example the glass could be weak and fail, or it could be strong and survive, but it must perform reliably. Also, once it fails it should produce fragmentsmore » of a controlled size. Under certain circumstances it may be beneficial to have very small fragments, in others it may be beneficial to have large fragments that stay together. The second goal of this program was to evaluate the performance (strength, reliability, and fragmentation) of Engineered Stress Profile (ESP) glass under different loading conditions. These included pseudo-static strength and pressure tests and free-field blast tests. The ultimate goal was to provide engineers and architects with a glass whose behavior under blast loading is less lethal. A near-term benefit is a new approach for improving the reliability of glass and modifying its fracture behavior.« less

  10. Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Chen, Wenjing; Zhang, Qican; Liu, Yuankun; Li, Dahai; Zhou, Xinzhi; Wei, Jun

    2017-08-01

    Common problems faced in optical comprehensive design experiment and going against the Washington Accord are pointed out. For resolving these problems, an instructional and innovative teaching scheme for Optics Comprehensive Design Experiment is proposed. We would like to understand the student that can improve the hands-on practical ability, theory knowledge understanding ability, complex problem solving ability, engineering application ability, cooperative ability after tracking and researching the student who have attended the class about Optical Comprehensive Design Experiment, We found that there are some problems on the course such as the experiment content vague, the student beginning less time, phase separation theory and engineering application, the experiment content lack of selectivity and so on. So we have made some improvements reference to the Washington Accord for the class teaching plan about Optical Comprehensive Design Experiment. This class must relevant to the engineering basic courses, professional foundation course and the major courses, so far as to the future study and work that which can play a role in inheriting and continuity to the students. The Optical Comprehensive Design Experiment teaching program requires students learning this course to have learnt basic courses like analog electronics technique, digital electronic technique, applied optics and computer and other related courses which students are required to comprehensively utilize. This teaching scheme contains six practical complex engineering problems which are respectively optical system design, light energy meter design, illuminometer design, material refractive index measuring system design, light intensity measuring system design and open design. Establishing the optional experiment and open experiment can provide students with a greater choice and enhance the students' creativity, vivid teaching experimental teachers and enriching contents of experiment can make the experiment more interesting, providing students with more opportunities to conduct experiment and improving students' practical ability with long learning time, putting emphasis on student's understanding of complex engineering problems and the cognitive of the process to solve complex engineering problems with actual engineering problems. Applying the scheme in other courses and improving accordingly will be able to ensure the quality of engineering education. Look forward to offering useful reference for the curriculum system construction in colleges and universities.

  11. Engineering data management: Experience and projections

    NASA Technical Reports Server (NTRS)

    Jefferson, D. K.; Thomson, B.

    1978-01-01

    Experiences in developing a large engineering data management system are described. Problems which were encountered are presented and projected to future systems. Business applications involving similar types of data bases are described. A data base management system architecture proposed by the business community is described and its applicability to engineering data management is discussed. It is concluded that the most difficult problems faced in engineering and business data management can best be solved by cooperative efforts.

  12. Pacer Comet 4: Automated Jet Engine Testing of a TF33-P100 Pratt & Whitney Engine

    NASA Astrophysics Data System (ADS)

    Mason, Rex Bolding

    Pacer Comet 4 found its life out of necessity to replace an obsolescent Pacer Comet 3 engine test system at Tinker AFB in Oklahoma City, OK. Pacer Comet 3 (PC3) was created and installed in the early 1980's to test jet engines from a wide range of planes. PC3 had several problems from a maintenance standpoint: contractors designed and installed the system but the contract did not include the OEM data package. Without drawings or design knowledge, fixing the smallest of problems could turn into a multi-day project. In addition to high cost, as the OEM companies of proprietary parts went out of business, it became impossible to find a replacement for a failed part. These issues set the framework for the Pacer Comet 4 (PC4) system. PC4 was created as an organic AF and Department of Defense collaboration to fix the issues with PC3. PC4 provides the customer with a complete data package including multiple drawing sets and data sheets for all parts used, as well as design files for all PCBs created in house. PC4 has a standard to use commercially available off the shelf parts (COTS). The reason for this is sustainability in maintenance. If a part is to fail, it should be able to be purchased from any manufacturer that meets the specs of the original product. No proprietary parts are used, except as directed by the engine's OEM. This thesis will focus on the design and installation of the on-frame data acquisition PC4 system for the Pratt & Whitney TF33-P100A-QEC engine that is currently in use on the E3 Sentry. This thesis will show efficiency improvements for maintenance sustainability (70% cabling reduction) as well as discuss performance improvements in both test and production environments.

  13. Potential and problems in ultrasound-responsive drug delivery systems

    PubMed Central

    Zhao, Ying-Zheng; Du, Li-Na; Lu, Cui-Tao; Jin, Yi-Guang; Ge, Shu-Ping

    2013-01-01

    Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS) have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future. PMID:23637531

  14. Using hybrid expert system approaches for engineering applications

    NASA Technical Reports Server (NTRS)

    Allen, R. H.; Boarnet, M. G.; Culbert, C. J.; Savely, R. T.

    1987-01-01

    In this paper, the use of hybrid expert system shells and hybrid (i.e., algorithmic and heuristic) approaches for solving engineering problems is reported. Aspects of various engineering problem domains are reviewed for a number of examples with specific applications made to recently developed prototype expert systems. Based on this prototyping experience, critical evaluations of and comparisons between commercially available tools, and some research tools, in the United States and Australia, and their underlying problem-solving paradigms are made. Characteristics of the implementation tool and the engineering domain are compared and practical software engineering issues are discussed with respect to hybrid tools and approaches. Finally, guidelines are offered with the hope that expert system development will be less time consuming, more effective, and more cost-effective than it has been in the past.

  15. Machining the Integral Impeller and Blisk of Aero-Engines: A Review of Surface Finishing and Strengthening Technologies

    NASA Astrophysics Data System (ADS)

    Fu, Youzhi; Gao, Hang; Wang, Xuanping; Guo, Dongming

    2017-05-01

    The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces for power transmission, and their surface integrity has significant effects on the aerodynamic efficiency and service life of an aero-engine. Thus, it is indispensable to finish and strengthen the blades before use. This paper presents a comprehensive literature review of studies on finishing and strengthening technologies for the impeller and blisk of aero-engines. The review includes independent and integrated finishing and strengthening technologies and discusses advanced rotational abrasive flow machining with back-pressure used for finishing the integral impeller and blisk. A brief assessment of future research problems and directions is also presented.

  16. Education of Sustainability Engineers

    NASA Astrophysics Data System (ADS)

    Oleschko, K.; Perrier, E.; Tarquis, A. M.

    2010-05-01

    It's not the same to educate the sustainable engineers as to prepare the engineers of Sustainability. In the latter case all existing methods of inventive creativity (Altshuller, 1988) should be introduced in the teaching and research processes in order to create a culture of innovation at a group. The Theory of Inventing Problem Solving (TRIZ) is based on the pioneer works of Genrich Altshuller (1988) and his associated. Altshuller reviewed over 2 million patents beginning in 1946 (Orlov, 2006) and developed the Laws of Evolution of Technological Systems; An Algorithm for Inventive Problem Solving (ARIZ); forty typical Techniques for Overcoming System Conflicts (TOSC); a system of 76 Standard Approaches to Inventive Problems (Standards) etc. (Fey and Rivin, 1997). Nowadays, "a theory and constructive instrument package for the controlled synthesis of ideas and the focused transformation of the object to be improved" (Orlov, 2006) are used with high efficacy as the teaching and thinking inventive problem-solving methods in some high schools (Barak and Mesika, 2006; Sokoi et al., 2008) as well as a framework for research (Moehrle, 2005) in construction industry (Zhang et al., 2009); chemical engineering (Cortes Robles et al., 2008) etc. In 2005 US Congress passed the innovation act with the intent of increasing research investment (Gupta, 2007), while China had included inventive principles of TRIZ in strategy and decision making structure design (Kai Yang, 2010). The integrating of TRIZ into eco-innovation diminishes the common conflicts between technology and environment (Chang and Chen, 2004). In our presentation we show discuss some examples of future patents elaborated by the master degree students of Queretaro University, Faculty of Engineering, Mexico using TRIZ methods. References 1. Altshuller, G., 1988. Creativity as an Exact Science. Gordon and Breach, New York. 2. Chang, Hsiang-Tang and Chen, Jahau Lewis, 2004. The conflict-problem-solving CAD software integrating TRIZ into eco-innovation. Advances in Engineering Software, 35: 553-566. 3. Cortes Robles, G., Negny, S. and Le Lann, J.M., 2008. Case-based reasoning and TRIZ: A coupling for innovative conception in Chemical Engineering. Chemical Engineering and Processing: Process Intensification, 48 (1): 239-249. 4. Gupta, P., 2007. Real Innovation Commentary. http://www. RealInnovation.com. 5. Kai Yang, 2010. Inventive principles of TRIZ with Chinás 36 strategies. TRIZ J., 1-20. 6. Moehrle, M. G., 2005. What is TRIZ? From conceptual basics to a framework for research. Social Science research Network, http://papers.ssrn.com/sol13/papers.cfm?abstract_id=674062. 7. Orlov, M., 2006. Inventive Thinking through TRIZ. A practical Guide, Springer, Berlin, 351. 8. Zhang, X., Mao, X. and AbouRizk, S.M, 2009. Developing a knowledge management system for improved value engineering practices in the construction industry. Automation in Construction, 18 (6): 777-789. 9. Sokol, A., Oget, D., Sonntag, M. and Khomenko, N., 2008. The development of inventive thinking skills in the upper secondary language classroom. Thinking Skills and Creativity, 3 (1): 34-46.

  17. Students' explanations in complex learning of disciplinary programming

    NASA Astrophysics Data System (ADS)

    Vieira, Camilo

    Computational Science and Engineering (CSE) has been denominated as the third pillar of science and as a set of important skills to solve the problems of a global society. Along with the theoretical and the experimental approaches, computation offers a third alternative to solve complex problems that require processing large amounts of data, or representing complex phenomena that are not easy to experiment with. Despite the relevance of CSE, current professionals and scientists are not well prepared to take advantage of this set of tools and methods. Computation is usually taught in an isolated way from engineering disciplines, and therefore, engineers do not know how to exploit CSE affordances. This dissertation intends to introduce computational tools and methods contextualized within the Materials Science and Engineering curriculum. Considering that learning how to program is a complex task, the dissertation explores effective pedagogical practices that can support student disciplinary and computational learning. Two case studies will be evaluated to identify the characteristics of effective worked examples in the context of CSE. Specifically, this dissertation explores students explanations of these worked examples in two engineering courses with different levels of transparency: a programming course in materials science and engineering glass box and a thermodynamics course involving computational representations black box. Results from this study suggest that students benefit in different ways from writing in-code comments. These benefits include but are not limited to: connecting xv individual lines of code to the overall problem, getting familiar with the syntax, learning effective algorithm design strategies, and connecting computation with their discipline. Students in the glass box context generate higher quality explanations than students in the black box context. These explanations are related to students prior experiences. Specifically, students with low ability to do programming engage in a more thorough explanation process than students with high ability. This dissertation concludes proposing an adaptation to the instructional principles of worked-examples for the context of CSE education.

  18. NASA Helps Keep the Light Burning for the Saturn Car Company

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Saturn Electronics & Engineering, Inc. (Saturn) facility in Marks, Miss., that produces lamp assemblies was experiencing itermittent problems with its automotive under the hood lamps. After numerous testing and engineering efforts, technicians could not pin down the root of the problem. So Saturn contacted the NASA Technology Assistance Program (TAP) at Stennis Space Center. The Marks production facility had been experiencing intermittent problems with under the hood lamp assemblies for some time. The failure rate, at 2 percent, was unacceptable. Every effort was made to identify the problem so that corrective action could be put in place. The problem was investigated and researched by Saturn's engineering department. In addition, Saturn brought in several independent testing laboratories. Other measures included examining the switch component suppliers and auditing them for compliance to the design specifications and for surface contaminants. All attempts to identify the factors responsible for the failures were inconclusive. In an effort to get to the root of the problem, and at the recommendation of the Mississippi Department of Economic Development, Saturn contacted the NASA TAP at Stennis. The NASA Materials and Contamination Laboratory, with assistance from the Stennis Prototype Laboratory, conducted a materials evaluation study on the switch components. The laboratory findings showed the failures were caused by a build-up of carbon-based contaminants on the switch components. Saturn Electronics & Engineering, Inc., is a minority-owned provider of contract manufacturing services to a diverse global marketplace. Saturn operates manufacturing facilities globally serving the North American, European, and Asian markets. Saturn's production facility in Marks, Mississippi, produces more than 1,000,000 lamps and switches monthly. "Since the NASA recommendations were implemented, our internal failure rate for intermittency has dropped to less than .02 percent. Most importantly, we restored our high-level of customer satisfaction. Stennis provided an invaluable service to our business," Patrick said. Both NASA and Saturn were pleased with the results form this technical assistance project. The Technology Assistance Program at Stennis makes available to the public NASA technical expertise and access to lab facilities. This project provided both services with a positive outcome.

  19. The Kadison–Singer Problem in mathematics and engineering

    PubMed Central

    Casazza, Peter G.; Tremain, Janet Crandell

    2006-01-01

    We will see that the famous intractible 1959 Kadison–Singer Problem in C*-algebras is equivalent to fundamental open problems in a dozen different areas of research in mathematics and engineering. This work gives all these areas common ground on which to interact as well as explaining why each area has volumes of literature on their respective problems without a satisfactory resolution. PMID:16461465

  20. Data based identification and prediction of nonlinear and complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-07-01

    The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The "inverse" problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear dynamical systems theories with tools from statistical physics, optimization, engineering control, applied mathematics, and scientific computing enables the development of a number of paradigms to address the problem of nonlinear and complex systems reconstruction. In this Review, we describe the recent advances in this forefront and rapidly evolving field, with a focus on compressive sensing based methods. In particular, compressive sensing is a paradigm developed in recent years in applied mathematics, electrical engineering, and nonlinear physics to reconstruct sparse signals using only limited data. It has broad applications ranging from image compression/reconstruction to the analysis of large-scale sensor networks, and it has become a powerful technique to obtain high-fidelity signals for applications where sufficient observations are not available. We will describe in detail how compressive sensing can be exploited to address a diverse array of problems in data based reconstruction of nonlinear and complex networked systems. The problems include identification of chaotic systems and prediction of catastrophic bifurcations, forecasting future attractors of time-varying nonlinear systems, reconstruction of complex networks with oscillatory and evolutionary game dynamics, detection of hidden nodes, identification of chaotic elements in neuronal networks, reconstruction of complex geospatial networks and nodal positioning, and reconstruction of complex spreading networks with binary data.. A number of alternative methods, such as those based on system response to external driving, synchronization, and noise-induced dynamical correlation, will also be discussed. Due to the high relevance of network reconstruction to biological sciences, a special section is devoted to a brief survey of the current methods to infer biological networks. Finally, a number of open problems including control and controllability of complex nonlinear dynamical networks are discussed. The methods outlined in this Review are principled on various concepts in complexity science and engineering such as phase transitions, bifurcations, stabilities, and robustness. The methodologies have the potential to significantly improve our ability to understand a variety of complex dynamical systems ranging from gene regulatory systems to social networks toward the ultimate goal of controlling such systems.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furey, M.J.; Kajdas, C.; Kaltenbach, K.W.

    Advanced lubrication technologies based on the concept of tribopolymerization as a mechanism of boundary lubrication are described. Advantages of this approach as well as potential applications which could have an impact on the design, manufacture, and performance of existing and future automotive engines are presented and discussed. Tribopolymerization, a novel concept of molecular design developed by Furey and Kajdas, involves the continuous formation of thin polymeric films on rubbing surfaces; the protective films formed are self-replenishing. The antiwear compounds developed from this technology are effective with metals as well as ceramics and in the liquid as well as vapor phases.more » Furthermore, they are ashless and contain no harmful phosphorus or sulfur; and many are biodegradable. Thus, potential applications of this technology are diverse and include a variety of cost/performance/energy/environmental advantages. Examples include the following: (a) machining and cutting applications using thin films to reduce friction and ceramic tool wear; (b) the lubrication of ceramic engines (e.g., low heat rejection diesel engines) or ceramic components; (c) the development of ashless lubricants for existing and future automotive engines to reduce exhaust catalyst poisoning and environmental emissions; (d) ashless antiwear or ``lubricity`` additives for fuels, including gasoline, diesel and jet fuel; (e) vapor phase applications of this technology to high temperature gaseous systems or to fuel injector wear problems associated with the use of natural gas engines; and (f) the use of the concept of tribopolymerization as an enabling technology in the development of new engines and new automotive propulsion systems.« less

  2. Reusable rocket engine turbopump health monitoring system, part 3

    NASA Technical Reports Server (NTRS)

    Perry, John G.

    1989-01-01

    Degradation mechanisms and sensor identification/selection resulted in a list of degradation modes and a list of sensors that are utilized in the diagnosis of these degradation modes. The sensor list is divided into primary and secondary indicators of the corresponding degradation modes. The signal conditioning requirements are discussed, describing the methods of producing the Space Shuttle Main Engine (SSME) post-hot-fire test data to be utilized by the Health Monitoring System. Development of the diagnostic logic and algorithms is also presented. The knowledge engineering approach, as utilized, includes the knowledge acquisition effort, characterization of the expert's problem solving strategy, conceptually defining the form of the applicable knowledge base, and rule base, and identifying an appropriate inferencing mechanism for the problem domain. The resulting logic flow graphs detail the diagnosis/prognosis procedure as followed by the experts. The nature and content of required support data and databases is also presented. The distinction between deep and shallow types of knowledge is identified. Computer coding of the Health Monitoring System is shown to follow the logical inferencing of the logic flow graphs/algorithms.

  3. Evolutionary decay and the prospects for long-term disease intervention using engineered insect vectors

    PubMed Central

    2015-01-01

    After a long history of applying the sterile insect technique to suppress populations of disease vectors and agricultural pests, there is growing interest in using genetic engineering both to improve old methods and to enable new methods. The two goals of interventions are to suppress populations, possibly eradicating a species altogether, or to abolish the vector’s competence to transmit a parasite. New methods enabled by genetic engineering include the use of selfish genes toward either goal as well as a variety of killer-rescue systems that could be used for vector competence reduction. This article reviews old and new methods with an emphasis on the potential for evolution of resistance to these strategies. Established methods of population suppression did not obviously face a problem from resistance evolution, but newer technologies might. Resistance to these newer interventions will often be mechanism-specific, and while it is too early to know where resistance evolution will become a problem, it is at least possible to propose properties of interventions that will be more or less effective in blocking resistance evolution. PMID:26160736

  4. Core skills assessment to improve mathematical competency

    NASA Astrophysics Data System (ADS)

    Carr, Michael; Bowe, Brian; Fhloinn, Eabhnat Ní

    2013-12-01

    Many engineering undergraduates begin third-level education with significant deficiencies in their core mathematical skills. Every year, in the Dublin Institute of Technology, a diagnostic test is given to incoming first-year students, consistently revealing problems in basic mathematics. It is difficult to motivate students to address these problems; instead, they struggle through their degree, carrying a serious handicap of poor core mathematical skills, as confirmed by exploratory testing of final year students. In order to improve these skills, a pilot project was set up in which a 'module' in core mathematics was developed. The course material was basic, but 90% or higher was required to pass. Students were allowed to repeat this module throughout the year by completing an automated examination on WebCT populated by a question bank. Subsequent to the success of this pilot with third-year mechanical engineering students, the project was extended to five different engineering programmes, across three different year-groups. Full results and analysis of this project are presented, including responses to interviews carried out with a selection of the students involved.

  5. Adaptation of MSC/NASTRAN to a supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gloudeman, J.F.; Hodge, J.C.

    1982-01-01

    MSC/NASTRAN is a large-scale general purpose digital computer program which solves a wider variety of engineering analysis problems by the finite element method. The program capabilities include static and dynamic structural analysis (linear and nonlinear), heat transfer, acoustics, electromagnetism and other types of field problems. It is used worldwide by large and small companies in such diverse fields as automotive, aerospace, civil engineering, shipbuilding, offshore oil, industrial equipment, chemical engineering, biomedical research, optics and government research. The paper presents the significant aspects of the adaptation of MSC/NASTRAN to the Cray-1. First, the general architecture and predominant functional use of MSC/NASTRANmore » are discussed to help explain the imperatives and the challenges of this undertaking. The key characteristics of the Cray-1 which influenced the decision to undertake this effort are then reviewed to help identify performance targets. An overview of the MSC/NASTRAN adaptation effort is then given to help define the scope of the project. Finally, some measures of MSC/NASTRAN's operational performance on the Cray-1 are given, along with a few guidelines to help avoid improper interpretation. 17 references.« less

  6. The morality of socioscientific issues: Construal and resolution of genetic engineering dilemmas

    NASA Astrophysics Data System (ADS)

    Sadler, Troy D.; Zeidler, Dana L.

    2004-01-01

    The ability to negotiate and resolve socioscientific issues has been posited as integral components of scientific literacy. Although philosophers and science educators have argued that socioscientific issues inherently involve moral and ethical considerations, the ultimate arbiters of morality are individual decision-makers. This study explored the extent to which college students construe genetic engineering issues as moral problems. Twenty college students participated in interviews designed to elicit their ideas, reactions, and feelings regarding a series of gene therapy and cloning scenarios. Qualitative analyses revealed that moral considerations were significant influences on decision-making, indicating a tendency for students to construe genetic engineering issues as moral problems. Students engaged in moral reasoning based on utilitarian analyses of consequences as well as the application of principles. Issue construal was also influenced by affective features such as emotion and intuition. In addition to moral considerations, a series of other factors emerged as important dimensions of socioscientific decision-making. These factors included personal experiences, family biases, background knowledge, and the impact of popular culture. The implications for classroom science instruction and future research are discussed.

  7. Grand challenges for biological engineering

    PubMed Central

    Yoon, Jeong-Yeol; Riley, Mark R

    2009-01-01

    Biological engineering will play a significant role in solving many of the world's problems in medicine, agriculture, and the environment. Recently the U.S. National Academy of Engineering (NAE) released a document "Grand Challenges in Engineering," covering broad realms of human concern from sustainability, health, vulnerability and the joy of living. Biological engineers, having tools and techniques at the interface between living and non-living entities, will play a prominent role in forging a better future. The 2010 Institute of Biological Engineering (IBE) conference in Cambridge, MA, USA will address, in part, the roles of biological engineering in solving the challenges presented by the NAE. This letter presents a brief outline of how biological engineers are working to solve these large scale and integrated problems of our society. PMID:19772647

  8. A Working Plan for Treating the Engineering Faculty Shortage Problem.

    ERIC Educational Resources Information Center

    Shoup, Terry E., Ed.

    In view of the consequences of the engineering faculty shortage problem on engineering capabilities in the future in the United States, a working plan which will serve as a national agenda for prompt action has been developed. This plan involves the three key groups (federal government, academic community, industry) who have the vision,…

  9. Gendered Practices of Constructing an Engineering Identity in a Problem-Based Learning Environment

    ERIC Educational Resources Information Center

    Du, Xiang-Yun

    2006-01-01

    This article examines the learning experiences of engineering students of both genders in a problem-based and project-organized learning environment (PBL) at a Danish university. This study relates an amalgam of theories on learning and gender to the context of engineering education. Based on data from a qualitative study of an electrical and…

  10. Evaluation of Creative Problem-Solving Abilities in Undergraduate Structural Engineers through Interdisciplinary Problem-Based Learning

    ERIC Educational Resources Information Center

    McCrum, Daniel Patrick

    2017-01-01

    For a structural engineer, effective communication and interaction with architects cannot be underestimated as a key skill to success throughout their professional career. Structural engineers and architects have to share a common language and understanding of each other in order to achieve the most desirable architectural and structural designs.…

  11. Engineering-Based Problem Solving in the Middle School: Design and Construction with Simple Machines

    ERIC Educational Resources Information Center

    English, Lyn D.; Hudson, Peter; Dawes, Les

    2013-01-01

    Incorporating engineering concepts into middle school curriculum is seen as an effective way to improve students' problem-solving skills. A selection of findings is reported from a science, technology, engineering and mathematics (STEM)-based unit in which students in the second year (grade 8) of a three-year longitudinal study explored…

  12. Perceptions and Problems of English Language and Communication Abilities: A Final Check on Thai Engineering Undergraduates

    ERIC Educational Resources Information Center

    Rajprasit, Krich; Pratoomrat, Panadda; Wang, Tuntiga

    2015-01-01

    English language and communication abilities are an essential part of the global engineering community. However, non-native English speaking engineers and students tend to be unable to master these skills. This study aims to gauge the perceived levels of their general English language proficiency, to explore their English communicative problems,…

  13. Barriers to the Implementation of Project Lead the Way as Perceived by Indiana High School Principals

    ERIC Educational Resources Information Center

    Shields, C. J.

    2007-01-01

    Technology education (TE) has come to encompass many facets of curriculum, ranging from industrial arts (IA) to integrating problem-solving and engineering concepts into the curriculum. For technology educators who have chosen the pre-engineering problem-solving route there is a pre-engineering curriculum called Project Lead The Way (PLTW), that…

  14. Conceptual Comparison of Population Based Metaheuristics for Engineering Problems

    PubMed Central

    Green, Paul

    2015-01-01

    Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems. Several extensions of differential evolution have been adopted in solving constrained and nonconstrained multiobjective optimization problems, but in this study, the third version of generalized differential evolution (GDE) is used for solving practical engineering problems. GDE3 metaheuristic modifies the selection process of the basic differential evolution and extends DE/rand/1/bin strategy in solving practical applications. The performance of the metaheuristic is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes. PMID:25874265

  15. Conceptual comparison of population based metaheuristics for engineering problems.

    PubMed

    Adekanmbi, Oluwole; Green, Paul

    2015-01-01

    Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems. Several extensions of differential evolution have been adopted in solving constrained and nonconstrained multiobjective optimization problems, but in this study, the third version of generalized differential evolution (GDE) is used for solving practical engineering problems. GDE3 metaheuristic modifies the selection process of the basic differential evolution and extends DE/rand/1/bin strategy in solving practical applications. The performance of the metaheuristic is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes.

  16. Investigating and developing engineering students' mathematical modelling and problem-solving skills

    NASA Astrophysics Data System (ADS)

    Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven

    2015-09-01

    How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced problem solvers, unaware of the importance of understanding the problem and exploring alternatives, and impeded by inappropriate beliefs, attitudes and expectations. Important impacts of the course belong to the metacognitive domain. The nature of the problems, the supervision and the follow-up lectures were emphasised as contributing to the impacts of the course, where students show major development. We discuss these empirical results in relation to a framework for mathematical thinking and the notion of cognitive apprenticeship. Based on the results, we argue that this kind of teaching should be considered in the education of all engineers.

  17. An investigation of the effect of instruction in physics on the formation of mental models for problem-solving in the context of simple electric circuits

    NASA Astrophysics Data System (ADS)

    Beh, Kian Lim

    2000-10-01

    This study was designed to explore the effect of a typical traditional method of instruction in physics on the formation of useful mental models among college students for problem-solving using simple electric circuits as a context. The study was also aimed at providing a comprehensive description of the understanding regarding electric circuits among novices and experts. In order to achieve these objectives, the following two research approaches were employed: (1) A students survey to collect data from 268 physics students; and (2) An interview protocol to collect data from 23 physics students and 24 experts (including 10 electrical engineering graduates, 4 practicing electrical engineers, 2 secondary school physics teachers, 8 physics lecturers, and 4 electrical engineers). Among the major findings are: (1) Most students do not possess accurate models of simple electric circuits as presented implicitly in physics textbooks; (2) Most students display good procedural understanding for solving simple problems concerning electric circuits but have no in-depth conceptual understanding in terms of practical knowledge of current, voltage, resistance, and circuit connections; (3) Most students encounter difficulty in discerning parallel connections that are drawn in a non-conventional format; (4) After a year of college physics, students show significant improvement in areas, including practical knowledge of current and voltage, ability to compute effective resistance and capacitance, ability to identify circuit connections, and ability to solve problems; however, no significance was found in practical knowledge of resistance and ability to connect circuits; and (5) The differences and similarities between the physics students and the experts include: (a) Novices perceive parallel circuits more in terms of 'branch', 'current', and 'resistors with the same resistance' while experts perceive parallel circuits more in terms of 'node', 'voltage', and 'less resistance'; and (b) Both novices and experts use phrases such as 'side-by side' and 'one on top of the other' in describing parallel circuits which emphasize the geometry of the standard circuit drawing when describing parallel resistors.

  18. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface, interfacing directly with the flight management system to determine its mode of operation, and providing personalized engine control to optimize its performance given the current condition and mission objectives.

  19. Relative importance of professional practice and engineering management competencies

    NASA Astrophysics Data System (ADS)

    Pons, Dirk

    2016-09-01

    Problem: The professional practice of engineering always involves engineering management, but it is difficult to know what specifically to include in the undergraduate curriculum. Approach: The population of New Zealand practising engineers was surveyed to determine the importance they placed on specific professional practice and engineering management competencies. Findings: Results show that communication and project planning were the two most important topics, followed by others as identified. The context in which practitioners use communication skills was found to be primarily with project management, with secondary contexts identified. The necessity for engineers to develop the ability to use multiple soft skills in an integrative manner is strongly supported by the data. Originality: This paper is one of only a few large-scale surveys of practising engineers to have explored the soft skill attributes. It makes a didactic contribution of providing a ranked list of topics which can be used for designing the curriculum and prioritising teaching effort, which has not previously been achieved. It yields the new insight that combinations of topics are sometimes more important than individual topics.

  20. Can I Trust This Software Package? An Exercise in Validation of Computational Results

    ERIC Educational Resources Information Center

    Shacham, Mordechai; Brauner, Neima; Ashurst, W. Robert; Cutlip, Michael B.

    2008-01-01

    Mathematical software packages such as Polymath, MATLAB, and Mathcad are currently widely used for engineering problem solving. Applications of several of these packages to typical chemical engineering problems have been demonstrated by Cutlip, et al. The main characteristic of these packages is that they provide a "problem-solving environment…

  1. The Problem Solving Studio: An Apprenticeship Environment for Aspiring Engineers

    ERIC Educational Resources Information Center

    Le Doux, Joseph M.; Waller, Alisha A.

    2016-01-01

    This paper describes the problem-solving studio (PSS) learning environment. PSS was designed to teach students how to solve difficult analytical engineering problems without resorting to rote memorization of algorithms, while at the same time developing their deep conceptual understanding of the course topics. There are several key features of…

  2. Introducing Future Engineers to Sustainable Ecology Problems: A Case Study

    ERIC Educational Resources Information Center

    Filipkowski, A.

    2011-01-01

    The problem of Earth environmental destruction by human activities is becoming dangerous. Engineers responsible for the production of any goods should be well aware of the negative influence of their activities on the state of the planet. This is why the understanding of ecological problems is essential for people responsible for production and…

  3. Data management for Computer-Aided Engineering (CAE)

    NASA Technical Reports Server (NTRS)

    Bryant, W. A.; Smith, M. R.

    1984-01-01

    Analysis of data flow through the design and manufacturing processes has established specific information management requirements and identified unique problems. The application of data management technology to the engineering/manufacturing environment addresses these problems. An overview of the IPAD prototype data base management system, representing a partial solution to these problems, is presented here.

  4. Mechanical Design of Spacecraft

    NASA Technical Reports Server (NTRS)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  5. MOORE: A prototype expert system for diagnosing spacecraft problems

    NASA Technical Reports Server (NTRS)

    Howlin, Katherine; Weissert, Jerry; Krantz, Kerry

    1988-01-01

    MOORE is a rule-based, prototype expert system that assists in diagnosing operational Tracking and Data Relay Satellite (TDRS) problems. It is intended to assist spacecraft engineers at the TDRS ground terminal in trouble shooting problems that are not readily solved with routine procedures, and without expert counsel. An additional goal of the prototype system is to develop in-house expert system and knowledge engineering skills. The prototype system diagnoses antenna pointing and earth pointing problems that may occur within the TDRS Attitude Control System (ACS). Plans include expansion to fault isolation of problems in the most critical subsystems of the TDRS spacecraft. Long term benefits are anticipated with use of an expert system during future TDRS programs with increased mission support time, reduced problem solving time, and retained expert knowledge and experience. Phase 2 of the project is intended to provide NASA the necessary expertise and capability to define requirements, evaluate proposals, and monitor the development progress of a highly competent expert system for NASA's Tracking Data Relay Satellite. Phase 2 also envisions addressing two unexplored applications for expert systems, spacecraft integration and tests (I and T) and support to launch activities. The concept, goals, domain, tools, knowledge acquisition, developmental approach, and design of the expert system. It will explain how NASA obtained the knowledge and capability to develop the system in-house without assistance from outside consultants. Future plans will also be presented.

  6. Cooperative Learning in Organic Chemistry Increases Student Assessment of Learning Gains in Key Transferable Skills

    ERIC Educational Resources Information Center

    Canelas, Dorian A.; Hill, Jennifer L.; Novicki, Andrea

    2017-01-01

    Science and engineering educators and employers agree that students should graduate from college with expertise in their major subject area as well as the skills and competencies necessary for productive participation in diverse work environments. These competencies include problem-solving, communication, leadership, and collaboration, among…

  7. Course Manual for X-Ray Applications (GS-463).

    ERIC Educational Resources Information Center

    Oregon State Univ., Corvallis. Dept. of General Science.

    This publication is the third of three sequential course manuals for instructors in X-Ray science and engineering developed at Oregon State University. It consists of outlines of thirteen lectures, and six laboratory exercises with problems and three examinations. Also included is a list of references, equipment, and material. The purposes,…

  8. Cognitive and Task Influences on Web Searching Behavior.

    ERIC Educational Resources Information Center

    Kim, Kyung-Sun; Allen, Bryce

    2002-01-01

    Describes results from two independent investigations of college students that were conducted to study the impact of differences in users' cognition and search tasks on Web search activities and outcomes. Topics include cognitive style; problem-solving; and implications for the design and use of the Web and Web search engines. (Author/LRW)

  9. Students' Perceptions of Dynamics Concept Pairs and Correlation with Their Problem-Solving Performance

    ERIC Educational Resources Information Center

    Fang, Ning

    2012-01-01

    A concept pair is a pair of concepts that are fundamentally different but closely related. To develop a solid conceptual understanding in dynamics (a foundational engineering science course) and physics, students must understand the fundamental difference and relationship between two concepts that are included in each concept pair. However, all…

  10. Course Manual for X-Ray Measurements (GS-462).

    ERIC Educational Resources Information Center

    Oregon State Univ., Corvallis. Dept. of General Science.

    This is the second of three sequential course manuals for instructors in X-Ray science and engineering developed at Oregon State University. It consists of outlines for fourteen lectures and eight laboratory exercises with problems and two examinations. Also included is a list of references, equipment, and materials. The purposes, teaching aids,…

  11. Acoustical consulting-Reflections on a challenging career

    NASA Astrophysics Data System (ADS)

    Braslau, David

    2004-05-01

    The acoustical consulting profession can be entered in a number of ways. The most direct approach is to obtain a degree in acoustics and join a large consulting firm immediately after graduation. Acoustical consulting can also be entered indirectly from various fields of engineering or physics which can provide a somewhat broader background. These disciplines might include, for example, structural engineering and structural dynamics, mechanics of materials, dynamic behavior of solids or geophysics. Acoustical consulting specialization can be very broad or very narrow as seen from the National Council of Acoustical Consultants capability listing. As an acoustical consultant, one must address a wide range of problems which provides both the challenges and joys of this profession. Technical capabilities and professional judgment are constantly developed from exposure to these problems and through interaction with other members of the profession. Selected case studies including sound isolation in buildings, noise and vibration from blasting, control of noise from environmental sources, acoustical design of classrooms and performing spaces, and product design demonstrate the variety of challenges faced by an acoustical consultant.

  12. Developing creativity and problem-solving skills of engineering students: a comparison of web- and pen-and-paper-based approaches

    NASA Astrophysics Data System (ADS)

    Valentine, Andrew; Belski, Iouri; Hamilton, Margaret

    2017-11-01

    Problem-solving is a key engineering skill, yet is an area in which engineering graduates underperform. This paper investigates the potential of using web-based tools to teach students problem-solving techniques without the need to make use of class time. An idea generation experiment involving 90 students was designed. Students were surveyed about their study habits and reported they use electronic-based materials more than paper-based materials while studying, suggesting students may engage with web-based tools. Students then generated solutions to a problem task using either a paper-based template or an equivalent web interface. Students who used the web-based approach performed as well as students who used the paper-based approach, suggesting the technique can be successfully adopted and taught online. Web-based tools may therefore be adopted as supplementary material in a range of engineering courses as a way to increase students' options for enhancing problem-solving skills.

  13. Biomedical engineering - A means to add new dimension to medicine and research

    NASA Technical Reports Server (NTRS)

    Doerr, D. F.

    1992-01-01

    Biomedical engineering is an evolving science that seeks to insert technically oriented and trained personnel to assist medical professionals in solving technological problems in the pursuit of innovations in the delivery of health care. Consequently, engineering solutions are brought to bear on problems that previously were outside the training of physicians and beyond the understanding or appreciation of the conventionally educated electrical or mechanical engineers. This physician/scientist/engineer team has a capability to extend medicine and research far beyond the capability of a single entity operating alone. How biomedical engineering has added a new dimension to medical science at the Kennedy Space Center is described.

  14. Group dynamics for the acquisition of competences in Project Management

    NASA Astrophysics Data System (ADS)

    Taguas, E. V.; Aguilar, M. C.; Castillo, C.; Polo, M. J.; Pérez, R.

    2012-04-01

    The Bologna Process promotes European citizens' employability from teaching fields in the University which implies the design of activities addressed to the development of skills for the labor market and engagement of employers. This work has been conceived for improving the formation of Engineering Project Management through group dynamics focused on: 1) the use of the creativity for solving problems; 2) promoting leadership capacities and social skills in multidisciplinary/multicultural work groups; 3) the ethical, social and environmental compromise; 4) the continuous learning. Different types of activities were designed: short activities of 15-30 minutes where fragments of books or songs are presented and discussed and long activities (2 h) where groups of students take different roles for solving common problems and situations within the Engineering Projects context. An electronic book with the content of the dynamics and the material for the students has been carried out. A sample of 20 students of Electronic Engineering degree which had participated at least in two dynamics, evaluated the utility for improving their formation in Engineering Project Management with a mark of 8.2 (scale 0-10, standard deviation equal to 0.9). On the other hand, the teachers observed how this type of work, promotes the interdisciplinary training and the acquisition of social skills, usually not-included in the objectives of the subjects.

  15. Business process re-engineering a cardiology department.

    PubMed

    Bakshi, Syed Murtuza Hussain

    2014-01-01

    The health care sector is the world's third largest industry and is facing several problems such as excessive waiting times for patients, lack of access to information, high costs of delivery and medical errors. Health care managers seek the help of process re-engineering methods to discover the best processes and to re-engineer existing processes to optimize productivity without compromising on quality. Business process re-engineering refers to the fundamental rethinking and radical redesign of business processes to achieve dramatic improvements in critical, contemporary measures of performance, such as cost, quality and speed. The present study is carried out at a tertiary care corporate hospital with 1000-plus-bed facility. A descriptive study and case study method is used with intensive, careful and complete observation of patient flow, delays, short comings in patient movement and workflow. Data is collected through observations, informal interviews and analyzed by matrix analysis. Flowcharts were drawn for the various work activities of the cardiology department including workflow of the admission process, workflow in the ward and ICCU, workflow of the patient for catheterization laboratory procedure, and in the billing and discharge process. The problems of the existing system were studied and necessary suggestions were recommended to cardiology department module with an illustrated flowchart.

  16. Inverse problems in quantum chemistry

    NASA Astrophysics Data System (ADS)

    Karwowski, Jacek

    Inverse problems constitute a branch of applied mathematics with well-developed methodology and formalism. A broad family of tasks met in theoretical physics, in civil and mechanical engineering, as well as in various branches of medical and biological sciences has been formulated as specific implementations of the general theory of inverse problems. In this article, it is pointed out that a number of approaches met in quantum chemistry can (and should) be classified as inverse problems. Consequently, the methodology used in these approaches may be enriched by applying ideas and theorems developed within the general field of inverse problems. Several examples, including the RKR method for the construction of potential energy curves, determining parameter values in semiempirical methods, and finding external potentials for which the pertinent Schrödinger equation is exactly solvable, are discussed in detail.

  17. TU-EF-304-07: Monte Carlo-Based Inverse Treatment Plan Optimization for Intensity Modulated Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; UT Southwestern Medical Center, Dallas, TX; Tian, Z

    2015-06-15

    Purpose: Intensity-modulated proton therapy (IMPT) is increasingly used in proton therapy. For IMPT optimization, Monte Carlo (MC) is desired for spots dose calculations because of its high accuracy, especially in cases with a high level of heterogeneity. It is also preferred in biological optimization problems due to the capability of computing quantities related to biological effects. However, MC simulation is typically too slow to be used for this purpose. Although GPU-based MC engines have become available, the achieved efficiency is still not ideal. The purpose of this work is to develop a new optimization scheme to include GPU-based MC intomore » IMPT. Methods: A conventional approach using MC in IMPT simply calls the MC dose engine repeatedly for each spot dose calculations. However, this is not the optimal approach, because of the unnecessary computations on some spots that turned out to have very small weights after solving the optimization problem. GPU-memory writing conflict occurring at a small beam size also reduces computational efficiency. To solve these problems, we developed a new framework that iteratively performs MC dose calculations and plan optimizations. At each dose calculation step, the particles were sampled from different spots altogether with Metropolis algorithm, such that the particle number is proportional to the latest optimized spot intensity. Simultaneously transporting particles from multiple spots also mitigated the memory writing conflict problem. Results: We have validated the proposed MC-based optimization schemes in one prostate case. The total computation time of our method was ∼5–6 min on one NVIDIA GPU card, including both spot dose calculation and plan optimization, whereas a conventional method naively using the same GPU-based MC engine were ∼3 times slower. Conclusion: A fast GPU-based MC dose calculation method along with a novel optimization workflow is developed. The high efficiency makes it attractive for clinical usages.« less

  18. Performance Analysis of Stirling Engine-Driven Vapor Compression Heat Pump System

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    Stirling engine-driven vapor compression systems have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration which can play an important role in alleviating environmental and energy problems. This paper introduces a design method for the systems based on reliable mathematical methods for Stirling and Rankin cycles using reliable thermophysical information for refrigerants. The model deals with a combination of a kinematic Stirling engine and a scroll compressor. Some experimental coefficients are used to formulate the model. The obtained results show the performance behavior in detail. The measured performance of the actual system coincides with the calculated results. Furthermore, the calculated results clarify the performance using alternative refrigerants for R-22.

  19. Propulsion Controls, 1979. [air breathing engine control

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The state of the art of multivariable engine control is examined in order to determine future needs and problem areas and to establish the appropriate roles of government, industries, and universities in addressing these problems.

  20. Student Engagement in a Structured Problem-Based Approach to Learning: A First-Year Electronic Engineering Study Module on Heat Transfer

    ERIC Educational Resources Information Center

    Montero, E.; Gonzalez, M. J.

    2009-01-01

    Problem-based learning has been at the core of significant developments in engineering education in recent years. This term refers to any learning environment in which the problem drives the learning, because it is posed in such a way that students realize they need to acquire new knowledge before the problem can be solved. This paper presents the…

  1. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues.

    PubMed

    Kant, Rajeev J; Coulombe, Kareen L K

    2018-03-15

    The field of tissue engineering has turned towards biomimicry to solve the problem of tissue oxygenation and nutrient/waste exchange through the development of vasculature. Induction of angiogenesis and subsequent development of a vascular bed in engineered tissues is actively being pursued through combinations of physical and chemical cues, notably through the presentation of topographies and growth factors. Presenting angiogenic signals in a spatiotemporal fashion is beginning to generate improved vascular networks, which will allow for the creation of large and dense engineered tissues. This review provides a brief background on the cells, mechanisms, and molecules driving vascular development (including angiogenesis), followed by how biomaterials and growth factors can be used to direct vessel formation and maturation. Techniques to accomplish spatiotemporal control of vascularization include incorporation or encapsulation of growth factors, topographical engineering, and 3D bioprinting. The vascularization of engineered tissues and their application in angiogenic therapy in vivo is reviewed herein with an emphasis on the most densely vascularized tissue of the human body - the heart. Vascularization is vital to wound healing and tissue regeneration, and development of hierarchical networks enables efficient nutrient transfer. In tissue engineering, vascularization is necessary to support physiologically dense engineered tissues, and thus the field seeks to induce vascular formation using biomaterials and chemical signals to provide appropriate, pro-angiogenic signals for cells. This review critically examines the materials and techniques used to generate scaffolds with spatiotemporal cues to direct vascularization in engineered and host tissues in vitro and in vivo. Assessment of the field's progress is intended to inspire vascular applications across all forms of tissue engineering with a specific focus on highlighting the nuances of cardiac tissue engineering for the greater regenerative medicine community. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Engineering Complex Tissues

    PubMed Central

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue regeneration, and discussed new biomaterials that can be used to develop new regenerative technologies. PMID:17518671

  3. Health technopole: innovation applied to clinical engineering & health technology management education.

    PubMed

    Vilcahuaman, L; Rivas, R

    2010-01-01

    In the Peruvian Health System, Clinical Engineering does not exist as a topic of intervention. 59% of biomedical equipment is officially classified as operational, however next to apply the correct classification methodology and include security issues, only 10% of the equipment are suitable for use in patients. The serious consequences for patients, is opposite to the increased public investment in the health sector. Reversing this context leads to structural changes at all levels of the organization and they will be achievable only through an appropriate educational program. A strategy focused on joint of capacities called Health Technopole has managed to implement an innovative Model of Education in Healthcare Technology Management HTM and Clinical Engineering CE aimed at solving this problem. The proposal focused on strategies to strengthen the educational goals such as creating HTM & CE Units in hospitals, the implementation of the methodology: Problem Based Learning and Project Management in HTM & CE in classroom and on line courses. The process includes an effective interaction with global organizations through teleconferences, Internships, Workshops and Seminars. A key component was the sustained multidisciplinary approach. Health Technopole CENGETS is an expert adviser for the Ministry of Health and is called for trainings, design training programs for regional governments and also supports global organizations such as PAHO / WHO and ORAS / CONHU. The proposal of innovation applied to HTM & CE Education is effective and is a benchmark for similar countries.

  4. A History of Aerospace Problems, Their Solutions, Their Lessons

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.

    1996-01-01

    The positive aspect of problem occurrences is the opportunity for learning and a challenge for innovation. The learning aspect is not restricted to the solution period of the problem occurrence, but can become the beacon for problem prevention on future programs. Problems/failures serve as a point of departure for scaling to new designs. To ensure that problems/failures and their solutions guide the future programs, a concerted effort has been expended to study these problems, their solutions, their derived lessons learned, and projections for future programs. This includes identification of technology thrusts, process changes, codes development, etc. However, they must not become an excuse for adding layers upon layers of standards, criteria, and requirements, but must serve as guidelines that assist instead of stifling engineers. This report is an extension of prior efforts to accomplish this task. Although these efforts only scratch the surface, it is a beginning that others must complete.

  5. Team Problem Solving Strategies with a Survey of These Methods Used by Faculty Members in Engineering Technology

    ERIC Educational Resources Information Center

    Marcus, Michael L.; Winters, Dixie L.

    2004-01-01

    Students from science, engineering, and technology programs should be able to work together as members of project teams to find solutions to technical problems. The exercise in this paper describes the methods actually used by a project team from a Biomedical Instrumentation Corporation in which scientists, technicians, and engineers from various…

  6. The Effect on Pupils' Science Performance and Problem-Solving Ability through Lego: An Engineering Design-Based Modeling Approach

    ERIC Educational Resources Information Center

    Li, Yanyan; Huang, Zhinan; Jiang, Menglu; Chang, Ting-Wen

    2016-01-01

    Incorporating scientific fundamentals via engineering through a design-based methodology has proven to be highly effective for STEM education. Engineering design can be instantiated for learning as they involve mental and physical stimulation and develop practical skills especially in solving problems. Lego bricks, as a set of toys based on design…

  7. Corps of Engineers Structural Engineering Conference Held in St. Johns County, Florida on 8-12 July 1991. Volume 2

    DTIC Science & Technology

    1992-12-01

    problems. Leadership forums were conducted for chiefs of structural design from each office for both military and civil works areas. (Continued) 14...Photographs ....................................... 7 Maintaining Design Quality in the Corps of Engineers .................... II Expedited Design and...25 Portugues Dam Monolith Layout and Survey Control ...................... 33 Cofferdam Design Problems, Point Marion Lock

  8. The Association between Tolerance for Ambiguity and Fear of Negative Evaluation: A Study of Engineering Technology Capstone Courses

    ERIC Educational Resources Information Center

    Dubikovsky, Sergey I.

    2016-01-01

    For many students in engineering and engineering technology programs in the US, senior capstone design courses require students to form a team, define a problem, and find a feasible technical solution to address this problem. Students must integrate the knowledge and skills acquired during their studies at the college or university level. These…

  9. Fuzzy simulation in concurrent engineering

    NASA Technical Reports Server (NTRS)

    Kraslawski, A.; Nystrom, L.

    1992-01-01

    Concurrent engineering is becoming a very important practice in manufacturing. A problem in concurrent engineering is the uncertainty associated with the values of the input variables and operating conditions. The problem discussed in this paper concerns the simulation of processes where the raw materials and the operational parameters possess fuzzy characteristics. The processing of fuzzy input information is performed by the vertex method and the commercial simulation packages POLYMATH and GEMS. The examples are presented to illustrate the usefulness of the method in the simulation of chemical engineering processes.

  10. Test results of the Chrysler upgraded automotive gas turbine engine: Initial design

    NASA Technical Reports Server (NTRS)

    Horvath, D.; Ribble, G. H., Jr.; Warren, E. L.; Wood, J. C.

    1981-01-01

    The upgraded engine as built to the original design was deficient in power and had excessive specific fuel consumption. A high instrumented version of the engine was tested to identify the sources of the engine problems. Analysis of the data shows the major problems to be low compressor and power turbine efficiency and excessive interstage duct losses. In addition, high HC and CO emission were measured at idle, and high NOx emissions at high energy speeds.

  11. Problem Solving Method Based on E-Learning System for Engineering Education

    ERIC Educational Resources Information Center

    Khazaal, Hasan F.

    2015-01-01

    Encouraging engineering students to handle advanced technology with multimedia, as well as motivate them to have the skills of solving the problem, are the missions of the teacher in preparing students for a modern professional career. This research proposes a scenario of problem solving in basic electrical circuits based on an e-learning system…

  12. Toward Teaching Methods that Develop Learning and Enhance Problem Solving Skills in Engineering Students

    ERIC Educational Resources Information Center

    Loji, K.

    2012-01-01

    Problem solving skills and abilities are critical in life and more specifically in the engineering field. Unfortunately, significant numbers of South African students who are accessing higher education lack problem solving skills and this results in poor academic performance jeopardizing their progress especially from first to second year. On the…

  13. Class and Home Problems: Humidification, a True "Home" Problem for p. Chemical Engineer

    ERIC Educational Resources Information Center

    Condoret, Jean-Stephane

    2012-01-01

    The problem of maintaining hygrothermal comfort in a house is addressed using the chemical engineer's toolbox. A simple dynamic modelling proved to give a good description of the humidification of the house in winter, using a domestic humidifier. Parameters of the model were identified from a simple experiment. Surprising results, especially…

  14. Clinical Immersion: An Approach for Fostering Cross-disciplinary Communication and Innovation in Nursing and Engineering Students.

    PubMed

    Geist, Melissa J; Sanders, Robby; Harris, Kevin; Arce-Trigatti, Andrea; Hitchcock-Cass, Cary

    2018-05-24

    A faculty team from nursing and chemical engineering developed a course that brought together students from each discipline for cross-disciplinary, team-based clinical immersion and collaboration. Health care processes and devices are rapidly changing, and nurses are uniquely positioned to be bedside innovators to improve patient care delivery. During each clinical immersion, the student teams rotated through various hospital units where they identified problems and worked together in the university's makerspace (iMaker Space) to design and build prototypes to improve health outcomes. Data from the Critical thinking Assessment Test provided evidence of gains in critical-thinking and problem-solving skills, while the problems identified in the clinical setting and prototypes developed demonstrated the impact of bringing nursing and engineering students together to design innovations. When challenged to identify authentic problems during their clinical immersion, the teams of nursing and engineering students proposed creative solutions and developed commercially viable prototypes.

  15. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included.

  16. System reliability of randomly vibrating structures: Computational modeling and laboratory testing

    NASA Astrophysics Data System (ADS)

    Sundar, V. S.; Ammanagi, S.; Manohar, C. S.

    2015-09-01

    The problem of determination of system reliability of randomly vibrating structures arises in many application areas of engineering. We discuss in this paper approaches based on Monte Carlo simulations and laboratory testing to tackle problems of time variant system reliability estimation. The strategy we adopt is based on the application of Girsanov's transformation to the governing stochastic differential equations which enables estimation of probability of failure with significantly reduced number of samples than what is needed in a direct simulation study. Notably, we show that the ideas from Girsanov's transformation based Monte Carlo simulations can be extended to conduct laboratory testing to assess system reliability of engineering structures with reduced number of samples and hence with reduced testing times. Illustrative examples include computational studies on a 10-degree of freedom nonlinear system model and laboratory/computational investigations on road load response of an automotive system tested on a four-post test rig.

  17. Chemical research projects office: An overview and bibliography, 1975-1980

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Heimbuch, A. H.; Parker, J. A.

    1980-01-01

    The activities of the Chemical Research Projects Office at Ames Research Center, Moffett Field, California are reported. The office conducts basic and applied research in the fields of polymer chemistry, computational chemistry, polymer physics, and physical and organic chemistry. It works to identify the chemical research and technology required for solutions to problems of national urgency, synchronous with the aeronautic and space effort. It conducts interdisciplinary research on chemical problems, mainly in areas of macromolecular science and fire research. The office also acts as liaison with the engineering community and assures that relevant technology is made available to other NASA centers, agencies, and industry. Recent accomplishments are listed in this report. Activities of the three research groups, Polymer Research, Aircraft Operating and Safety, and Engineering Testing, are summarized. A complete bibliography which lists all Chemical Research Projects Office publications, contracts, grants, patents, and presentations from 1975 to 1980 is included.

  18. Low-thrust trajectory optimization in a full ephemeris model

    NASA Astrophysics Data System (ADS)

    Cai, Xing-Shan; Chen, Yang; Li, Jun-Feng

    2014-10-01

    The low-thrust trajectory optimization with complicated constraints must be considered in practical engineering. In most literature, this problem is simplified into a two-body model in which the spacecraft is subject to the gravitational force at the center of mass and the spacecraft's own electric propulsion only, and the gravity assist (GA) is modeled as an instantaneous velocity increment. This paper presents a method to solve the fuel-optimal problem of low-thrust trajectory with complicated constraints in a full ephemeris model, which is closer to practical engineering conditions. First, it introduces various perturbations, including a third body's gravity, the nonspherical perturbation and the solar radiation pressure in a dynamic equation. Second, it builds two types of equivalent inner constraints to describe the GA. At the same time, the present paper applies a series of techniques, such as a homotopic approach, to enhance the possibility of convergence of the global optimal solution.

  19. The Negative Thrust and Torque of Several Full-scale Propellers and Their Application to Various Flight Problems

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P; Biermann, David

    1938-01-01

    Negative thrust and torque data for 2, 3, and 4-blade metal propellers having Clark y and R.A.F. 6 airfoil sections were obtained from tests in the NACA 20-foot tunnel. The propellers were mounted in front of a radial engine nacelle and the blade-angle settings covered in the tests ranged from l5 degrees to 90 degrees. One propeller was also tested at blade-angle settings of 0 degree, 5 degrees, and 10 degrees. A considerable portion of the report deals with the various applications of the negative thrust and torque to flight problems. A controllable propeller is shown to have a number of interesting, and perhaps valuable, uses within the negative thrust and torque range of operation. A small amount of engine-friction data is included to facilitate the application of the propeller data.

  20. Rocket Engine Nozzle Side Load Transient Analysis Methodology: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Shi, John J.

    2005-01-01

    At the sea level, a phenomenon common with all rocket engines, especially for a highly over-expanded nozzle, during ignition and shutdown is that of flow separation as the plume fills and empties the nozzle, Since the flow will be separated randomly. it will generate side loads, i.e. non-axial forces. Since rocket engines are designed to produce axial thrust to power the vehicles, it is not desirable to be excited by non-axial input forcing functions, In the past, several engine failures were attributed to side loads. During the development stage, in order to design/size the rocket engine components and to reduce the risks, the local dynamic environments as well as dynamic interface loads have to be defined. The methodology developed here is the way to determine the peak loads and shock environments for new engine components. In the past it is not feasible to predict the shock environments, e.g. shock response spectra, from one engine to the other, because it is not scaleable. Therefore, the problem has been resolved and the shock environments can be defined in the early stage of new engine development. Additional information is included in the original extended abstract.

  1. Some challenges in designing a lunar, Martian, or microgravity CELSS.

    PubMed

    Salisbury, F B

    1992-01-01

    The design of a bioregenerative life-support system (a Controlled Ecological Life-Support System or CELSS) for long-duration stays on the moon, Mars, or in a space craft poses formidable problems in engineering and in theory. Technological (hardware) problems include: (1) Creation and control of gas composition and pressure, temperature, light, humidity, and air circulation, especially in microgravity to 1/3 xg and in the vacuum of space. Light (energy demanding), CO2 levels, and the rooting media are special problems for plants. (2) Developing specialized equipment for food preparation. (3) Equipment development for waste recycling. (4) Development of computer systems for environmental monitoring and control as well as several other functions. Problems of theory (software) include: (1) Determining crop species and cultivars (some bred especially for CELSS). (2) Optimum environments and growing and harvesting techniques for each crop. (3) Best and most efficient food-preparation techniques and required equipment. (4) Best and most efficient waste-recycling techniques and equipment. This topic includes questions about the extent of closure, resupply, and waste storage. (5) How to achieve long-term stability. (6) How to avoid catastrophic failures--and how to recover from near-catastrophic failures (for example, plant diseases). Many problems must be solved.

  2. Some challenges in designing a lunar, Martian, or microgravity CELSS

    NASA Astrophysics Data System (ADS)

    Salisbury, Frank B.

    The design of a bioregenerative life-support system (a Controlled Ecological Life-Support System or CELSS) for long-duration stays on the moon, Mars, or in a space craft poses formidable problems in engineering and in theory. Technological (hardware) problems include: (1) Creation and control of gas composition and pressure, temperature, light, humidity, and air circulation, especially in microgravity to 1/3xg and in the vacuum of space. Light (energy demanding), CO 2 levels, and the rooting media are special problems for plants. (2) Developing specialized equipment for food preparation. (3) Equipment development for waste recycling. (4) Development of computer systems for environmental monitoring and control as well as several other functions. Problems of theory (software) include: (1) Determining crop species and cultivars (some bred especially for CELSS). (2) Optimum environments and growing and harvesting techniques for each crop. (3) Best and most efficient food-preparation techniques and required equipment. (4) Best and most efficient waste-recycling techniques and equipment. This topic includes questions about the extent of closure, resupply, and waste storage. (5) How to achieve long-term stability. (6) How to avoid catastrophic failures-and how to recover from near-catastrophic failures (for example, plant diseases). Many problems must be solved.

  3. Jet Engine Noise Generation, Prediction and Control. Chapter 86

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Envia, Edmane

    2004-01-01

    Aircraft noise has been a problem near airports for many years. It is a quality of life issue that impacts millions of people around the world. Solving this problem has been the principal goal of noise reduction research that began when commercial jet travel became a reality. While progress has been made in reducing both airframe and engine noise, historically, most of the aircraft noise reduction efforts have concentrated on the engines. This was most evident during the 1950 s and 1960 s when turbojet engines were in wide use. This type of engine produces high velocity hot exhaust jets during takeoff generating a great deal of noise. While there are fewer commercial aircraft flying today with turbojet engines, supersonic aircraft including high performance military aircraft use engines with similar exhaust flow characteristics. The Pratt & Whitney F100-PW-229, pictured in Figure la, is an example of an engine that powers the F-15 and F-16 fighter jets. The turbofan engine was developed for subsonic transports, which in addition to better fuel efficiency also helped mitigate engine noise by reducing the jet exhaust velocity. These engines were introduced in the late 1960 s and power most of the commercial fleet today. Over the years, the bypass ratio (that is the ratio of the mass flow through the fan bypass duct to the mass flow through the engine core) has increased to values approaching 9 for modern turbofans such as the General Electric s GE-90 engine (Figure lb). The benefits to noise reduction for high bypass ratio (HPBR) engines are derived from lowering the core jet velocity and temperature, and lowering the tip speed and pressure ratio of the fan, both of which are the consequences of the increase in bypass ratio. The HBPR engines are typically very large in diameter and can produce over 100,000 pounds of thrust for the largest engines. A third type of engine flying today is the turbo-shaft which is mainly used to power turboprop aircraft and helicopters. An example of this type of engine is shown in Figure IC, which is a schematic of the Honeywell T55 engine that powers the CH-47 Chinook helicopter. Since the noise from the propellers or helicopter rotors is usually dominant for turbo-shaft engines, less attention has been paid to these engines in so far as community noise considerations are concerned. This chapter will concentrate mostly on turbofan engine noise and will highlight common methods for their noise prediction and reduction.

  4. Towards organ printing: engineering an intra-organ branched vascular tree

    PubMed Central

    Visconti, Richard P; Kasyanov, Vladimir; Gentile, Carmine; Zhang, Jing; Markwald, Roger R; Mironov, Vladimir

    2013-01-01

    Importance of the field Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. Areas covered in this review We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. What the reader will gain The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. Take home message It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a ‘built in’ intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a ‘built in’ intra-organ branched vascular tree. PMID:20132061

  5. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    The effect of modifications in hydrocarbon jet fuels specifications on engine performance, component durability and maintenance, and aircraft fuel system performance is discussed. Specific topics covered include: specific fuel consumption; ignition at relight limits; exhaust emissions; combustor liner temperatures; carbon deposition; gum formation in fuel nozzles, erosion and corrosion of turbine blades and vanes; deposits in fuel system heat exchangers; and pumpability and flowability of the fuel. Data that evaluate the ability of current technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  6. Estimating the dilemma strength for game systems. Comment on "Universal scaling for the dilemma strength in evolutionary games", by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Chen, Xiaojie

    2015-09-01

    The puzzle of cooperation exists widely in the realistic world, including biological, social, and engineering systems. How to solve the cooperation puzzle has received considerable attention in recent years [1]. Evolutionary game theory provides a common mathematical framework to study the problem of cooperation. In principle, these practical biological, social, or engineering systems can be described by complex game models composed of multiple autonomous individuals with mutual interactions. And generally there exists a dilemma for the evolution of cooperation in the game systems.

  7. Deciding alternative left turn signal phases using expert systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, E.C.P.

    1988-01-01

    The Texas Transportation Institute (TTI) conducted a study to investigate the feasibility of applying artificial intelligence (AI) technology and expert systems (ES) design concepts to a traffic engineering problem. Prototype systems were developed to analyze user input, evaluate various reasoning, and suggest suitable left turn phase treatment. These systems were developed using AI programming tools on IBM PC/XT/AT-compatible microcomputers. Two slightly different systems were designed using AI languages; another was built with a knowledge engineering tool. These systems include the PD PROLOG and TURBO PROLOG AI programs, as well as the INSIGHT Production Rule Language.

  8. A shrinking hypersphere PSO for engineering optimisation problems

    NASA Astrophysics Data System (ADS)

    Yadav, Anupam; Deep, Kusum

    2016-03-01

    Many real-world and engineering design problems can be formulated as constrained optimisation problems (COPs). Swarm intelligence techniques are a good approach to solve COPs. In this paper an efficient shrinking hypersphere-based particle swarm optimisation (SHPSO) algorithm is proposed for constrained optimisation. The proposed SHPSO is designed in such a way that the movement of the particle is set to move under the influence of shrinking hyperspheres. A parameter-free approach is used to handle the constraints. The performance of the SHPSO is compared against the state-of-the-art algorithms for a set of 24 benchmark problems. An exhaustive comparison of the results is provided statistically as well as graphically. Moreover three engineering design problems namely welded beam design, compressed string design and pressure vessel design problems are solved using SHPSO and the results are compared with the state-of-the-art algorithms.

  9. Automatic programming for critical applications

    NASA Technical Reports Server (NTRS)

    Loganantharaj, Raj L.

    1988-01-01

    The important phases of a software life cycle include verification and maintenance. Usually, the execution performance is an expected requirement in a software development process. Unfortunately, the verification and the maintenance of programs are the time consuming and the frustrating aspects of software engineering. The verification cannot be waived for the programs used for critical applications such as, military, space, and nuclear plants. As a consequence, synthesis of programs from specifications, an alternative way of developing correct programs, is becoming popular. The definition, or what is understood by automatic programming, has been changed with our expectations. At present, the goal of automatic programming is the automation of programming process. Specifically, it means the application of artificial intelligence to software engineering in order to define techniques and create environments that help in the creation of high level programs. The automatic programming process may be divided into two phases: the problem acquisition phase and the program synthesis phase. In the problem acquisition phase, an informal specification of the problem is transformed into an unambiguous specification while in the program synthesis phase such a specification is further transformed into a concrete, executable program.

  10. Enhanced Verification Test Suite for Physics Simulation Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamm, J R; Brock, J S; Brandon, S T

    2008-10-10

    This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations. The key points of this document are: (1) Verification deals with mathematical correctness of the numerical algorithms in a code, while validation deals with physical correctness of a simulation in a regime of interest.more » This document is about verification. (2) The current seven-problem Tri-Laboratory Verification Test Suite, which has been used for approximately five years at the DOE WP laboratories, is limited. (3) Both the methodology for and technology used in verification analysis have evolved and been improved since the original test suite was proposed. (4) The proposed test problems are in three basic areas: (a) Hydrodynamics; (b) Transport processes; and (c) Dynamic strength-of-materials. (5) For several of the proposed problems we provide a 'strong sense verification benchmark', consisting of (i) a clear mathematical statement of the problem with sufficient information to run a computer simulation, (ii) an explanation of how the code result and benchmark solution are to be evaluated, and (iii) a description of the acceptance criterion for simulation code results. (6) It is proposed that the set of verification test problems with which any particular code be evaluated include some of the problems described in this document. Analysis of the proposed verification test problems constitutes part of a necessary--but not sufficient--step that builds confidence in physics and engineering simulation codes. More complicated test cases, including physics models of greater sophistication or other physics regimes (e.g., energetic material response, magneto-hydrodynamics), would represent a scientifically desirable complement to the fundamental test cases discussed in this report. The authors believe that this document can be used to enhance the verification analyses undertaken at the DOE WP Laboratories and, thus, to improve the quality, credibility, and usefulness of the simulation codes that are analyzed with these problems.« less

  11. Design study of RL10 derivatives. Volume 3, part 2: Operational and flight support plan. [analysis of transportation requirements for rocket engine in support of space tug program

    NASA Technical Reports Server (NTRS)

    Shubert, W. C.

    1973-01-01

    Transportation requirements are considered during the engine design layout reviews and maintenance engineering analyses. Where designs cannot be influenced to avoid transportation problems, the transportation representative is advised of the problems permitting remedies early in the program. The transportation representative will monitor and be involved in the shipment of development engine and GSE hardware between FRDC and vehicle manufacturing plant and thereby will be provided an early evaluation of the transportation plans, methods and procedures to be used in the space tug support program. Unanticipated problems discovered in the shipment of development hardware will be known early enough to permit changes in packaging designs and transportation plans before the start of production hardware and engine shipments. All conventional transport media can be used for the movement of space tug engines. However, truck transport is recommended for ready availability, variety of routes, short transit time, and low cost.

  12. Particle trajectory computation on a 3-dimensional engine inlet. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kim, J. J.

    1986-01-01

    A 3-dimensional particle trajectory computer code was developed to compute the distribution of water droplet impingement efficiency on a 3-dimensional engine inlet. The computed results provide the essential droplet impingement data required for the engine inlet anti-icing system design and analysis. The droplet trajectories are obtained by solving the trajectory equation using the fourth order Runge-Kutta and Adams predictor-corrector schemes. A compressible 3-D full potential flow code is employed to obtain a cylindrical grid definition of the flowfield on and about the engine inlet. The inlet surface is defined mathematically through a system of bi-cubic parametric patches in order to compute the droplet impingement points accurately. Analysis results of the 3-D trajectory code obtained for an axisymmetric droplet impingement problem are in good agreement with NACA experimental data. Experimental data are not yet available for the engine inlet impingement problem analyzed. Applicability of the method to solid particle impingement problems, such as engine sand ingestion, is also demonstrated.

  13. Piloted simulation study of the effects of an automated trim system on flight characteristics of a light twin-engine airplane with one engine inoperative

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Brown, P. W.; Yenni, K. R.

    1986-01-01

    A simulation study was conducted to investigate the piloting problems associated with failure of an engine on a generic light twin-engine airplane. A primary piloting problem for a light twin-engine airplane after an engine failure is maintaining precise control of the airplane in the presence of large steady control forces. To address this problem, a simulated automatic trim system which drives the trim tabs as an open-loop function of propeller slipstream measurements was developed. The simulated automatic trim system was found to greatly increase the controllability in asymmetric powered flight without having to resort to complex control laws or an irreversible control system. However, the trim-tab control rates needed to produce the dramatic increase in controllability may require special design consideration for automatic trim system failures. Limited measurements obtained in full-scale flight tests confirmed the fundamental validity of the proposed control law.

  14. A reverse engineering algorithm for neural networks, applied to the subthalamopallidal network of basal ganglia.

    PubMed

    Floares, Alexandru George

    2008-01-01

    Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.

  15. The time-frequency method of signal analysis in internal combustion engine diagnostics

    NASA Astrophysics Data System (ADS)

    Avramchuk, V. S.; Kazmin, V. P.; Faerman, V. A.; Le, V. T.

    2017-01-01

    The paper presents the results of the study of applicability of time-frequency correlation functions to solving the problems of internal combustion engine fault diagnostics. The proposed methods are theoretically justified and experimentally tested. In particular, the method’s applicability is illustrated by the example of specially generated signals that simulate the vibration of an engine both during the normal operation and in the case of a malfunction in the system supplying fuel to the cylinders. This method was confirmed during an experiment with an automobile internal combustion engine. The study offers the main findings of the simulation and the experiment and highlights certain characteristic features of time-frequency autocorrelation functions that allow one to identify malfunctions in an engine’s cylinder. The possibility in principle of using time-frequency correlation functions in function testing of the internal combustion engine is demonstrated. The paper’s conclusion proposes further research directions including the application of the method to diagnosing automobile gearboxes.

  16. Self-Organization and the Self-Assembling Process in Tissue Engineering

    PubMed Central

    Eswaramoorthy, Rajalakshmanan; Hadidi, Pasha; Hu, Jerry C.

    2015-01-01

    In recent years, the tissue engineering paradigm has shifted to include a new and growing subfield of scaffoldless techniques which generate self-organizing and self-assembling tissues. This review aims to provide a cogent description of this relatively new research area, with special emphasis on applications toward clinical use and research models. Particular emphasis is placed on providing clear definitions of self-organization and the self-assembling process, as delineated from other scaffoldless techniques in tissue engineering and regenerative medicine. Significantly, during formation, self-organizing and self-assembling tissues display biological processes similar to those that occur in vivo. These help lead to the recapitulation of native tissue morphological structure and organization. Notably, functional properties of these tissues also approach native tissue values; some of these engineered tissues are already in clinical trials. This review aims to provide a cohesive summary of work in this field, and to highlight the potential of self-organization and the self-assembling process to provide cogent solutions to current intractable problems in tissue engineering. PMID:23701238

  17. a Conceptual Framework for Virtual Geographic Environments Knowledge Engineering

    NASA Astrophysics Data System (ADS)

    You, Lan; Lin, Hui

    2016-06-01

    VGE geographic knowledge refers to the abstract and repeatable geo-information which is related to the geo-science problem, geographical phenomena and geographical laws supported by VGE. That includes expert experiences, evolution rule, simulation processes and prediction results in VGE. This paper proposes a conceptual framework for VGE knowledge engineering in order to effectively manage and use geographic knowledge in VGE. Our approach relies on previous well established theories on knowledge engineering and VGE. The main contribution of this report is following: (1) The concepts of VGE knowledge and VGE knowledge engineering which are defined clearly; (2) features about VGE knowledge different with common knowledge; (3) geographic knowledge evolution process that help users rapidly acquire knowledge in VGE; and (4) a conceptual framework for VGE knowledge engineering providing the supporting methodologies system for building an intelligent VGE. This conceptual framework systematically describes the related VGE knowledge theories and key technologies. That will promote the rapid transformation from geodata to geographic knowledge, and furtherly reduce the gap between the data explosion and knowledge absence.

  18. Analysis of airframe/engine interactions in integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schierman, John D.; Schmidt, David K.

    1991-01-01

    An analysis framework for the assessment of dynamic cross-coupling between airframe and engine systems from the perspective of integrated flight/propulsion control is presented. This analysis involves to determining the significance of the interactions with respect to deterioration in stability robustness and performance, as well as critical frequency ranges where problems may occur due to these interactions. The analysis illustrated here investigates both the airframe's effects on the engine control loops and the engine's effects on the airframe control loops in two case studies. The second case study involves a multi-input/multi-output analysis of the airframe. Sensitivity studies are performed on critical interactions to examine the degradations in the system's stability robustness and performance. Magnitudes of the interactions required to cause instabilities, as well as the frequencies at which the instabilities occur are recorded. Finally, the analysis framework is expanded to include control laws which contain cross-feeds between the airframe and engine systems.

  19. Shuttle avionics software trials, tribulations and success

    NASA Technical Reports Server (NTRS)

    Henderson, O. L.

    1985-01-01

    The early problems and the solutions developed to provide the required quality software needed to support the space shuttle engine development program are described. The decision to use a programmable digital control system on the space shuttle engine was primarily based upon the need for a flexible control system capable of supporting the total engine mission on a large complex pump fed engine. The mission definition included all control phases from ground checkout through post shutdown propellant dumping. The flexibility of the controller through reprogrammable software allowed the system to respond to the technical challenges and innovation required to develop both the engine and controller hardware. This same flexibility, however, placed a severe strain on the capability of the software development and verification organization. The overall development program required that the software facility accommodate significant growth in both the software requirements and the number of software packages delivered. This challenge was met by reorganization and evolution in the process of developing and verifying software.

  20. Description of the NACA Universal Test Engine and Some Test Results

    NASA Technical Reports Server (NTRS)

    Ware, Marsden

    1927-01-01

    This report describes the 5-inch bore by 7-inch stroke single cylinder test engine used at the Langley Field Laboratory of the National Advisory Committee for Aeronautics in laboratory research on internal-combustion engine problems and presents some results of tests made therewith. The engine is arranged for variation over wide ranges, of the compression ratio and lift and timing of both inlet and exhaust valves while the engine is in operation. Provision is also made for the connection of a number of auxiliaries. These features tend to make the engine universal in character, and especially suited for the study of certain problems involving change in compression ratio, valve timing, and lift.

  1. Application of CFD in aeronautics at NASA Ames Research Center

    NASA Astrophysics Data System (ADS)

    Maksymiuk, Catherine M.; Enomoto, Francis Y.; Vandalsem, William R.

    1995-03-01

    The role of Computational Fluid Dynamics (CFD) at Ames Research Center has expanded to address a broad range of aeronautical problems, including wind tunnel support, flight test support, design, and analysis. Balancing the requirements of each new problem against the available resources - software, hardware, time, and expertise - is critical to the effective use of CFD. Several case studies of recent applications highlight the depth of CFD capability at Ames, the tradeoffs involved in various approaches, and lessons learned in the use of CFD as an engineering tool.

  2. Facilitating Open-Ended Problem Solving: Training Engineering TAs To Facilitate Open-Ended Problem Solving.

    ERIC Educational Resources Information Center

    Streveler, Ruth A.; King, Robert H.

    2000-01-01

    Describes and evaluates a four-session training program for Multidisciplinary Engineering Laboratory (MEL) teaching assistants at the Colorado School of Mines. The sessions focus attention on student development approaches to learning. (EV)

  3. Welding As Science: Applying Basic Engineering Principles to the Discipline

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    2010-01-01

    This Technical Memorandum provides sample problems illustrating ways in which basic engineering science has been applied to the discipline of welding. Perhaps inferences may be drawn regarding optimal approaches to particular welding problems, as well as for the optimal education for welding engineers. Perhaps also some readers may be attracted to the science(s) of welding and may make worthwhile contributions to the discipline.

  4. Gender Bias and Caste Exclusion in Engineering Admission: Inferences from the Engineering Entrance Examination in Kerala

    ERIC Educational Resources Information Center

    Rajasenan, D.

    2014-01-01

    The major problem of the engineering entrance examination is the exclusion of certain sections of the society in social, economic, regional and gender dimensions. This has seldom been taken for analysis towards policy correction. To lessen this problem a minor policy shift was prepared in the year 2011 with a 50-50 proportion in academic marks and…

  5. Teaching Design in the First Years of a Traditional Mechanical Engineering Degree: Methods, Issues and Future Perspectives

    ERIC Educational Resources Information Center

    Silva, Arlindo; Fontul, Mihail; Henriques, Elsa

    2015-01-01

    Engineering design is known as an answer to an ill-defined problem. As any answer to an ill-defined problem, it can never be completely right or absolutely wrong. The methods that universities use to teach engineering design, as a consequence of this, suffer from the same fate. However, the accumulated experience with the "chalk and…

  6. Diesel fuel detergent additive performance and assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincent, M.W.; Papachristos, M.J.; Williams, D.

    Diesel fuel detergent additives are increasingly linked with high quality automotive diesel fuels. Both in Europe and in the USA, field problems associated with fuel injector coking or fouling have been experienced. In Europe indirect injection (IDI) light duty engines used in passenger cars were affected, while in the USA, a direct injection (DI) engine in heavy duty truck applications experienced field problems. In both cases, a fuel additive detergent performance test has evolved using an engine linked with the original field problem, although engine design modifications employed by the manufacturers have ensured improved operation in service. Increasing awareness ofmore » the potential for injector nozzle coking to cause deterioration in engine performance is coupled with a need to meet ever more stringent exhaust emissions legislation. These two requirements indicate that the use of detergency additives will continue to be associated with high quality diesel fuels. The paper examines detergency performance evaluated in a range of IDI and DI engines and correlates performance in the two most widely recognised test engines, namely the Peugeot 1.9 litre IDI, and Cummins L10 DI engines. 17 refs., 18 figs., 5 tabs.« less

  7. Engineering a lunar photolithoautotroph to thrive on the moon - life or simulacrum?

    NASA Astrophysics Data System (ADS)

    Ellery, A. A.

    2018-07-01

    Recent work in developing self-replicating machines has approached the problem as an engineering problem, using engineering materials and methods to implement an engineering analogue of a hitherto uniquely biological function. The question is - can anything be learned that might be relevant to an astrobiological context in which the problem is to determine the general form of biology independent of the Earth. Compared with other non-terrestrial biology disciplines, engineered life is more demanding. Engineering a self-replicating machine tackles real environments unlike artificial life which avoids the problem of physical instantiation altogether by examining software models. Engineering a self-replicating machine is also more demanding than synthetic biology as no library of functional components exists. Everything must be constructed de novo. Biological systems already have the capacity to self-replicate but no engineered machine has yet been constructed with the same ability - this is our primary goal. On the basis of the von Neumann analysis of self-replication, self-replication is a by-product of universal construction capability - a universal constructor is a machine that can construct anything (in a functional sense) given the appropriate instructions (DNA/RNA), energy (ATP) and materials (food). In the biological cell, the universal construction mechanism is the ribosome. The ribosome is a biological assembly line for constructing proteins while DNA constitutes a design specification. For a photoautotroph, the energy source is ambient and the food is inorganic. We submit that engineering a self-replicating machine opens up new areas of astrobiology to be explored in the limits of life.

  8. New Techniques for Deep Learning with Geospatial Data using TensorFlow, Earth Engine, and Google Cloud Platform

    NASA Astrophysics Data System (ADS)

    Hancher, M.

    2017-12-01

    Recent years have seen promising results from many research teams applying deep learning techniques to geospatial data processing. In that same timeframe, TensorFlow has emerged as the most popular framework for deep learning in general, and Google has assembled petabytes of Earth observation data from a wide variety of sources and made them available in analysis-ready form in the cloud through Google Earth Engine. Nevertheless, developing and applying deep learning to geospatial data at scale has been somewhat cumbersome to date. We present a new set of tools and techniques that simplify this process. Our approach combines the strengths of several underlying tools: TensorFlow for its expressive deep learning framework; Earth Engine for data management, preprocessing, postprocessing, and visualization; and other tools in Google Cloud Platform to train TensorFlow models at scale, perform additional custom parallel data processing, and drive the entire process from a single familiar Python development environment. These tools can be used to easily apply standard deep neural networks, convolutional neural networks, and other custom model architectures to a variety of geospatial data structures. We discuss our experiences applying these and related tools to a range of machine learning problems, including classic problems like cloud detection, building detection, land cover classification, as well as more novel problems like illegal fishing detection. Our improved tools will make it easier for geospatial data scientists to apply modern deep learning techniques to their own problems, and will also make it easier for machine learning researchers to advance the state of the art of those techniques.

  9. Problem Based Learning for engineering.

    PubMed

    Kumar, Dinesh; Radcliffe, Pj

    2017-07-01

    the role of Problem Based Learning (PBL) is relative clear in domains such as medicine but its efficacy in engineering is as yet less certain. To clarify the role of PBL in engineering, a 3 day workshop was conducted for senior Brazilian engineering academics where they were given the theory and then an immersive PBL experience. One major purpose for running this workshop was for them to identify suitable courses where PBL could be considered. During this workshop, they were split in teams and given a diverse range of problems. At the conclusion of the workshop, a quantifiable survey was conducted and the results show that PBL can deliver superior educational outcomes providing the student group is drawn from the top 5% of the year 12 students, and that significantly higher resources are made available. Thus, any proposed PBL program in engineering must be able to demonstrate that it can meet these requirements before it can move forward to implementation.

  10. An Ada inference engine for expert systems

    NASA Technical Reports Server (NTRS)

    Lavallee, David B.

    1986-01-01

    The purpose is to investigate the feasibility of using Ada for rule-based expert systems with real-time performance requirements. This includes exploring the Ada features which give improved performance to expert systems as well as optimizing the tradeoffs or workarounds that the use of Ada may require. A prototype inference engine was built using Ada, and rule firing rates in excess of 500 per second were demonstrated on a single MC68000 processor. The knowledge base uses a directed acyclic graph to represent production lines. The graph allows the use of AND, OR, and NOT logical operators. The inference engine uses a combination of both forward and backward chaining in order to reach goals as quickly as possible. Future efforts will include additional investigation of multiprocessing to improve performance and creating a user interface allowing rule input in an Ada-like syntax. Investigation of multitasking and alternate knowledge base representations will help to analyze some of the performance issues as they relate to larger problems.

  11. Real-time control for manufacturing space shuttle main engines: Work in progress

    NASA Technical Reports Server (NTRS)

    Ruokangas, Corinne C.

    1988-01-01

    During the manufacture of space-based assemblies such as Space Shuttle Main Engines, flexibility is required due to the high-cost and low-volume nature of the end products. Various systems have been developed pursuing the goal of adaptive, flexible manufacturing for several space applications, including an Advanced Robotic Welding System for the manufacture of complex components of the Space Shuttle Main Engines. The Advanced Robotic Welding System (AROWS) is an on-going joint effort, funded by NASA, between NASA/Marshall Space Flight Center, and two divisions of Rockwell International: Rocketdyne and the Science Center. AROWS includes two levels of flexible control of both motion and process parameters: Off-line programming using both geometric and weld-process data bases, and real-time control incorporating multiple sensors during weld execution. Both control systems were implemented using conventional hardware and software architectures. The feasibility of enhancing the real-time control system using the problem-solving architecture of Schemer is investigated and described.

  12. Active Problem Solving and Applied Research Methods in a Graduate Course on Numerical Methods

    ERIC Educational Resources Information Center

    Maase, Eric L.; High, Karen A.

    2008-01-01

    "Chemical Engineering Modeling" is a first-semester graduate course traditionally taught in a lecture format at Oklahoma State University. The course as taught by the author for the past seven years focuses on numerical and mathematical methods as necessary skills for incoming graduate students. Recent changes to the course have included Visual…

  13. Achieving Consistent Near-Optimal Pattern Recognition Accuracy Using Particle Swarm Optimization to Pre-Train Artificial Neural Networks

    ERIC Educational Resources Information Center

    Nikelshpur, Dmitry O.

    2014-01-01

    Similar to mammalian brains, Artificial Neural Networks (ANN) are universal approximators, capable of yielding near-optimal solutions to a wide assortment of problems. ANNs are used in many fields including medicine, internet security, engineering, retail, robotics, warfare, intelligence control, and finance. "ANNs have a tendency to get…

  14. Using LEGO Kits to Teach Higher Level Problem Solving Skills in System Dynamics: A Case Study

    ERIC Educational Resources Information Center

    Wu, Yi; de Vries, Charlotte; Dunsworth, Qi

    2018-01-01

    System Dynamics is a required course offered to junior Mechanical Engineering students at Penn State Erie, the Behrend College. It addresses the intercoupling dynamics of a wide range of dynamic systems: including mechanical, electrical, fluid, hydraulic, electromechanical, and biomedical systems. This course is challenging for students due to the…

  15. NASA's educational programs

    NASA Technical Reports Server (NTRS)

    Brown, Robert W.

    1990-01-01

    The educational programs of NASA's Educational Affairs Division are examined. The problem of declining numbers of science and engineering students is reviewed. The various NASA educational programs are described, including programs at the elementary and secondary school levels, teacher education programs, and undergraduate, graduate, and university faculty programs. The coordination of aerospace education activities and future plans for increasing NASA educational programs are considered.

  16. Needs Assessment in STEM Disciplines: Reliability, Validity and Factor Structure of the Student Support Needs Scale (SSNS)

    ERIC Educational Resources Information Center

    Hardy, Precious; Aruguete, Mara

    2014-01-01

    Retention is a major problem in most colleges and universities. High dropout rates, especially in the STEM disciplines (science, technology, engineering and mathematics), have proved intractable despite the offering of supplemental instruction. A broad model of support systems that includes psychological factors is needed to address retention in…

  17. The design and fabrication of a Stirling engine heat exchanger module with an integral heat pipe

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    1988-01-01

    The conceptual design of a free-piston Stirling Space Engine (SSE) intended for space power applications has been generated. The engine was designed to produce 25 kW of electric power with heat supplied by a nuclear reactor. A novel heat exchanger module was designed to reduce the number of critical joints in the heat exchanger assembly while also incorporating a heat pipe as the link between the engine and the heat source. Two inexpensive verification tests are proposed. The SSE heat exchanger module is described and the operating conditions for the module are outlined. The design process of the heat exchanger modules, including the sodium heat pipe, is briefly described. Similarities between the proposed SSE heat exchanger modules and the LeRC test modules for two test engines are presented. The benefits and weaknesses of using a sodium heat pipe to transport heat to a Stirling engine are discussed. Similarly, the problems encountered when using a true heat pipe, as opposed to a more simple reflux boiler, are described. The instruments incorporated into the modules and the test program are also outlined.

  18. SOFIA Program SE and I Lessons Learned

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Fobel, Laura J.; Brignola, Michael P.

    2011-01-01

    Once a "Troubled Project" threatened with cancellation, the Stratospheric Observatory for Infrared Astronomy (SOFIA) Program has overcome many difficult challenges and recently achieved its first light images. To achieve success, SOFIA had to overcome significant deficiencies in fundamental Systems Engineering identified during a major Program restructuring. This presentation will summarize the lessons learn in Systems Engineering on the SOFIA Program. After the Program was reformulated, an initial assessment of Systems Engineering established the scope of the problem and helped to set a list of priorities that needed to be work. A revised Systems Engineering Management Plan (SEMP) was written to address the new Program structure and requirements established in the approved NPR7123.1A. An important result of the "Technical Planning" effort was the decision by the Program and Technical Leadership team to re-phasing the lifecycle into increments. The reformed SOFIA Program Office had to quickly develop and establish several new System Engineering core processes including; Requirements Management, Risk Management, Configuration Management and Data Management. Implementing these processes had to consider the physical and cultural diversity of the SOFIA Program team which includes two Projects spanning two NASA Centers, a major German partnership, and sub-contractors located across the United States and Europe. The SOFIA Program experience represents a creative approach to doing "System Engineering in the middle" while a Program is well established. Many challenges were identified and overcome. The SOFIA example demonstrates it is never too late to benefit from fixing deficiencies in the System Engineering processes.

  19. Wildland fire management. Volume 1: Prevention methods and analysis. [systems engineering approach to California fire problems

    NASA Technical Reports Server (NTRS)

    Weissenberger, S. (Editor)

    1973-01-01

    A systems engineering approach is reported for the problem of reducing the number and severity of California's wildlife fires. Prevention methodologies are reviewed and cost benefit models are developed for making preignition decisions.

  20. Undergraduate Research in Physics as a course for Engineering and Computer Science Majors

    NASA Astrophysics Data System (ADS)

    O'Brien, James; Rueckert, Franz; Sirokman, Greg

    2017-01-01

    Undergraduate research has become more and more integral to the functioning of higher educational institutions. At many institutions undergraduate research is conducted as capstone projects in the pure sciences, however, science faculty at some schools (including that of the authors) face the challenge of not having science majors. Even at these institutions, a select population of high achieving engineering students will often express a keen interest in conducting pure science research. Since a foray into science research provides the student the full exposure to the scientific method and scientific collaboration, the experience can be quite rewarding and beneficial to the development of the student as a professional. To this end, the authors have been working to find new contexts in which to offer research experiences to non- science majors, including a new undergraduate research class conducted by physics and chemistry faculty. An added benefit is that these courses are inherently interdisciplinary. Students in the engineering and computer science fields step into physics and chemistry labs to solve science problems, often invoking their own relevant expertise. In this paper we start by discussing the common themes and outcomes of the course. We then discuss three particular projects that were conducted with engineering students and focus on how the undergraduate research experience enhanced their already rigorous engineering curriculum.

Top