An overview of the NASA rotary engine research program
NASA Technical Reports Server (NTRS)
Meng, P. R.; Hady, W. F.
1984-01-01
A brief overview and technical highlights of the research efforts and studies on rotary engines over the last several years at the NASA Lewis Research Center are presented. The test results obtained from turbocharged rotary engines and preliminary results from a high performance single rotor engine were discussed. Combustion modeling studies of the rotary engine and the use of a Laser Doppler Velocimeter to confirm the studies were examined. An in-house program in which a turbocharged rotary engine was installed in a Cessna Skymaster for ground test studies was reviewed. Details are presented on single rotor stratified charge rotary engine research efforts, both in-house and on contract.
NASA Astrophysics Data System (ADS)
White, Susan M.
Women engineers remain underrepresented in employment in engineering fields in the United States. Feminist theory views this gender disparity beyond equity in numbers for women engineers and looks at structural issues of women's access, opportunities, and quality of experience in the workplace. Research on women's success and persistence in engineering education is diverse; however, there are few studies that focus on the early years of women's careers in engineering and less using a phenomenological research design. Experiences of women engineers who have completed one to five years of professional engineering employment are presented using a phenomenological research design. Research questions explored the individual and composite experiences for the co-researchers of the study as well as challenges and advantages of the phenomenon of having completed one to five years of professional engineering employment. Themes that emanated from the data were a feeling that engineering is a positive profession, liking math and science from an early age, having experiences of attending math and science camps or learning and practicing engineering interests with their fathers for some co-researchers. Other themes included a feeling of being different as a woman in the engineering workplace, taking advantage of opportunities for training, education, and advancement to further their careers, and the role of informal and formal mentoring in developing workplace networks and engineering expertise. Co-researchers negotiated issues of management quality and support, experiences of gender discrimination in the workplace, and having to make decisions balancing their careers and family responsibilities. Finally, the women engineers for this research study expressed intentions to persist in their careers while pursuing expertise and experience in their individual engineering fields.
Women Studies in Engineering Education: Content Analysis in Three Referred Journals
ERIC Educational Resources Information Center
Chou, Pao-Nan
2013-01-01
Little is known about the research characteristics of past women studies in engineering education. In order to add knowledge base about the advanced development of women studies in current engineering education research, the purpose of the study is to investigate research characteristics of past women studies published in three referred…
ERIC Educational Resources Information Center
Eng Educ, 1969
1969-01-01
Proposes preparation of urban engineers through interdisciplinary systems engineering research in order that technology may be applied to urban problems such as transportation, environment, and housing. Summary of report by the Urban Engineering Study Committee. Complete report available at
Engineering Student Outcomes for Grades 9-12. Research in Engineering and Technology Education
ERIC Educational Resources Information Center
Childress, Vincent; Rhodes, Craig
2006-01-01
This research study was conducted during the 2005-2006 academic year. Its purpose is to help the National Center for Engineering and Technology Education determine those engineering outcomes that should be studied in high school when the high school student intends to pursue engineering in college. The results of the study will also be used to…
NASA Systems Engineering Research Consortium: Defining the Path to Elegance in Systems
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Farrington, Phillip A.
2016-01-01
The NASA Systems Engineering Research Consortium was formed at the end of 2010 to study the approaches to producing elegant systems on a consistent basis. This has been a transformative study looking at the engineering and organizational basis of systems engineering. The consortium has engaged in a variety of research topics to determine the path to elegant systems. In the second year of the consortium, a systems engineering framework emerged which structured the approach to systems engineering and guided our research. This led in the third year to set of systems engineering postulates that the consortium is continuing to refine. The consortium has conducted several research projects that have contributed significantly to the understanding of systems engineering. The consortium has surveyed the application of the NASA 17 systems engineering processes, explored the physics and statistics of systems integration, and considered organizational aspects of systems engineering discipline integration. The systems integration methods have included system exergy analysis, Akaike Information Criteria (AIC), State Variable Analysis, Multidisciplinary Coupling Analysis (MCA), Multidisciplinary Design Optimization (MDO), System Cost Modelling, System Robustness, and Value Modelling. Organizational studies have included the variability of processes in change evaluations, margin management within the organization, information theory of board structures, social categorization of unintended consequences, and initial looks at applying cognitive science to systems engineering. Consortium members have also studied the bidirectional influence of policy and law with systems engineering.
NASA Systems Engineering Research Consortium: Defining the Path to Elegance in Systems
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Farrington, Phillip A.
2016-01-01
The NASA Systems Engineering Research Consortium was formed at the end of 2010 to study the approaches to producing elegant systems on a consistent basis. This has been a transformative study looking at the engineering and organizational basis of systems engineering. The consortium has engaged in a variety of research topics to determine the path to elegant systems. In the second year of the consortium, a systems engineering framework emerged which structured the approach to systems engineering and guided our research. This led in the third year to set of systems engineering postulates that the consortium is continuing to refine. The consortium has conducted several research projects that have contributed significantly to the understanding of systems engineering. The consortium has surveyed the application of the NASA 17 systems engineering processes, explored the physics and statistics of systems integration, and considered organizational aspects of systems engineering discipline integration. The systems integration methods have included system energy analysis, Akaike Information Criteria (AIC), State Variable Analysis, Multidisciplinary Coupling Analysis (MCA), Multidisciplinary Design Optimization (MDO), System Cost Modeling, System Robustness, and Value Modeling. Organizational studies have included the variability of processes in change evaluations, margin management within the organization, information theory of board structures, social categorization of unintended consequences, and initial looks at applying cognitive science to systems engineering. Consortium members have also studied the bidirectional influence of policy and law with systems engineering.
Examining elementary students' perceptions of engineers
NASA Astrophysics Data System (ADS)
Oware, Euridice A.
There has been a national focus on improving K-12 Science, Technology, Engineering, and Mathematics (STEM) education. The integration of engineering education from kindergarten through high school (K-12) has been identified as key to sustaining the U.S. economy and standard of living. Misconceptions about the nature of engineering may deter children from even considering this profession. Currently, there are few research studies on young children's perceptions of engineers, and such research can be used to support children along STEM pathways. The purpose of this research was to investigate elementary students' perceptions of engineers for children enrolled in a gifted and talented outreach program. Participants included students enrolled in two structural engineering classes: one for 3rd and 4th graders and another for 5th and 6th grade students. Participants represented an age group that is not typically exposed to engineering. This research was framed within a constructivist theoretical framework, and qualitative research methods were utilized to develop a rich understanding of the perspectives of students enrolled in the engineering classes. Data collection included student pre- and post-questionnaires, Draw-an-Engineer tasks, and semi-structured interviews. Data analysis entailed the use of open and axial coding. Trustworthiness of data was determined through triangulation of multiple data sources. Results demonstrated how children describe the work of engineers, objects associated with engineering, tools used or created by engineers, and professional characteristics of engineers. In addition, images of engineers were discussed and influences on students' perceptions of engineers were identified. The findings of this study have implications for the development of formal and informal K-12 curricula and programs that focus on improving students' understanding and engagement in engineering. Implications for researchers interested in studying children's perceptions were also discussed.
Ethical Considerations in Tissue Engineering Research: Case Studies in Translation
Baker, Hannah B.; McQuilling, John P.
2016-01-01
Tissue engineering research is a complex process that requires investigators to focus on the relationship between their research and anticipated gains in both knowledge and treatment improvements. The ethical considerations arising from tissue engineering research are similarly complex when addressing the translational progression from bench to bedside, and investigators in the field of tissue engineering act as moral agents at each step of their research along the translational pathway, from early benchwork and preclinical studies to clinical research. This review highlights the ethical considerations and challenges at each stage of research, by comparing issues surrounding two translational tissue engineering technologies: the bioartificial pancreas and a tissue engineered skeletal muscle construct. We present relevant ethical issues and questions to consider at each step along the translational pathway, from the basic science bench to preclinical research to first-in-human clinical trials. Topics at the bench level include maintaining data integrity, appropriate reporting and dissemination of results, and ensuring that studies are designed to yield results suitable for advancing research. Topics in preclinical research include the principle of “modest translational distance” and appropriate animal models. Topics in clinical research include key issues that arise in early-stage clinical trials, including selection of patient-subjects, disclosure of uncertainty, and defining success. The comparison of these two technologies and their ethical issues brings to light many challenges for translational tissue engineering research and provides guidance for investigators engaged in development of any tissue engineering technology. PMID:26282436
Ethical considerations in tissue engineering research: Case studies in translation.
Baker, Hannah B; McQuilling, John P; King, Nancy M P
2016-04-15
Tissue engineering research is a complex process that requires investigators to focus on the relationship between their research and anticipated gains in both knowledge and treatment improvements. The ethical considerations arising from tissue engineering research are similarly complex when addressing the translational progression from bench to bedside, and investigators in the field of tissue engineering act as moral agents at each step of their research along the translational pathway, from early benchwork and preclinical studies to clinical research. This review highlights the ethical considerations and challenges at each stage of research, by comparing issues surrounding two translational tissue engineering technologies: the bioartificial pancreas and a tissue engineered skeletal muscle construct. We present relevant ethical issues and questions to consider at each step along the translational pathway, from the basic science bench to preclinical research to first-in-human clinical trials. Topics at the bench level include maintaining data integrity, appropriate reporting and dissemination of results, and ensuring that studies are designed to yield results suitable for advancing research. Topics in preclinical research include the principle of "modest translational distance" and appropriate animal models. Topics in clinical research include key issues that arise in early-stage clinical trials, including selection of patient-subjects, disclosure of uncertainty, and defining success. The comparison of these two technologies and their ethical issues brings to light many challenges for translational tissue engineering research and provides guidance for investigators engaged in development of any tissue engineering technology. Copyright © 2015 Elsevier Inc. All rights reserved.
Engine Propeller Research Building at the Lewis Flight Propulsion Laboratory
1955-02-21
The Engine Propeller Research Building, referred to as the Prop House, emits steam from its acoustic silencers at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. In 1942 the Prop House became the first completed test facility at the new NACA laboratory in Cleveland, Ohio. It contained four test cells designed to study large reciprocating engines. After World War II, the facility was modified to study turbojet engines. Two of the test cells were divided into smaller test chambers, resulting in a total of six engine stands. During this period the NACA Lewis Materials and Thermodynamics Division used four of the test cells to investigate jet engines constructed with alloys and other high temperature materials. The researchers operated the engines at higher temperatures to study stress, fatigue, rupture, and thermal shock. The Compressor and Turbine Division utilized another test cell to study a NACA-designed compressor installed on a full-scale engine. This design sought to increase engine thrust by increasing its airflow capacity. The higher stage pressure ratio resulted in a reduction of the number of required compressor stages. The last test cell was used at the time by the Engine Research Division to study the effect of high inlet densities on a jet engine. Within a couple years of this photograph the Prop House was significantly altered again. By 1960 the facility was renamed the Electric Propulsion Research Building to better describe its new role in electric propulsion.
Fuels and Lubrication Researcher at the Aircraft Engine Research Laboratory
1943-08-21
A researcher at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory studies the fuel ignition process. Improved fuels and lubrication was an area of particular emphasis at the laboratory during World War II. The military sought to use existing types of piston engines in order to get large numbers of aircraft into the air as quickly as possible. To accomplish its goals, however, the military needed to increase the performance of these engines without having to wait for new models or extensive redesigns. The Aircraft Engine Research Laboratory was called on to lead this effort. The use of superchargers successfully enhanced engine performance, but the resulting heat increased engine knock [fuel detonation] and structural wear. These effects could be offset with improved cooling, lubrication, and fuel mixtures. The NACA researchers in the Fuels and Lubrication Division concentrated on new synthetic fuels, higher octane fuels, and fuel-injection systems. The laboratory studied 16 different types of fuel blends during the war, including extensive investigations of triptane and xylidine.
First-year engineering students' views of the nature of engineering
NASA Astrophysics Data System (ADS)
Karatas, Faik O.
The changing nature of engineering problems and new challenges that result from globalization and new ways of doing business have triggered calls for a revolutionary shift in engineering education. To respond to these challenges, the engineering education paradigm has been revised by adding more design and humanities/social sciences components to it. Philosophy, sociology, and history of engineering are more often cited as a major part of engineering education in this movement. Research on the nature of engineering (NOE), which is derived from philosophy, sociology, and the history of engineering, could have as much potential impact on engineering education as research on the nature of science (NOS) has had on science education. Thus, it is surprising that there has been no noteworthy research on this topic. The purpose of this study is to describe and determine first-year engineering students' views of the NOE and how these students differentiate engineering from science. In this research, an open-ended Views of the Nature of Engineering questionnaire (VNOE) was employed to collect baseline data. Semi-structured interviews based on the VNOE questionnaire were conducted with the second cohort of the participants. Data analysis was guided by a traditional phenomenographic approach, which is a branch of the hermeneutic tradition, coupled to constant comparison technique. The results of this study indicated that the participants' overall views of the nature of engineering were not ill-developed, but rather unarticulated. Moreover, the relationship between engineering and science was considered unidirectional rather than bidirectional. The results of this study could be used to inform engineering educators, first-year engineering coordinators, and policy makers as well as serving as the base for further research and potential implications for future first-year and K-12 engineering education.
1998 NASA-HU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Marable, William P. (Compiler); Murray, Deborah B. (Compiler)
1998-01-01
Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. The program objectives include: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; (4) To contribute to the research objectives of the NASA center. College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lecture and seminar leaders will be distinguished scientists and engineers from NASA, education, and industry.
2001 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Tiwari, Surendra N. (Compiler); Murray, Deborah B. (Compiler); Hathaway, Roger A. (Technical Monitor)
2002-01-01
Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises these programs. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; (4 To contribute to the research objectives of the NASA center. Program Description: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellow's research topics. The lecture and seminar leaders wil be distinguished scientists and engineers from NASA, education and industry.
NASA Technical Reports Server (NTRS)
Spencer, John H. (Compiler); Young, Deborah B. (Compiler)
1996-01-01
NASA has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. The objectives were: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants institutions; (4) To contribute to the research objectives of the NASA Center. Program Description: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lectures and seminar leaders will be distinguished scientists and engineers from NASA, education, or industry.
1999 NASA - ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Tiwari, Surendra N. (Compiler); Murray, Deborah B. (Compiler)
2000-01-01
Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program or summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; (4) To contribute to the research objectives of the NASA center. Program Description: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lecture and seminar leaders will be distinguished scientists and engineers from NASA, education, and industry.
An overview of general aviation propulsion research programs at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Willis, E. A.; Strack, W. C.
1981-01-01
The review covers near-term improvements for current-type piston engines, as well as studies and limited corroborative research on several advanced g/a engine concepts, including diesels, small turboprops and both piston and rotary stratified-charge engines. Also described is basic combustion research, cycle modeling and diagnostic instrumentation work that is required to make new engines a reality.
NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1987
NASA Technical Reports Server (NTRS)
Tiwari, Surendra N. (Compiler)
1987-01-01
Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 or 11 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; (4) to contribute to the research objectives of the NASA center. Program Description: College or university faculty members were appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow devoted approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program consisted of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topic.
NASA Researcher Adjusts a Travelling Magnetic Wave Plasma Engine
1964-02-21
Raymond Palmer, of the Electromagnetic Propulsion Division’s Plasma Flow Section, adjusts the traveling magnetic wave plasma engine being operated in the Electric Power Conversion at the National Aeronautics and Space Administration (NASA) Lewis Research Center. During the 1960s Lewis researchers were exploring several different methods of creating electric propulsion systems, including the traveling magnetic wave plasma engine. The device operated similarly to alternating-current motors, except that a gas, not a solid, was used to conduct the electricity. A magnetic wave induced a current as it passed through the plasma. The current and magnetic field pushed the plasma in one direction. Palmer and colleague Robert Jones explored a variety of engine configurations in the Electric Propulsion Research Building. The engine is seen here mounted externally on the facility’s 5-foot diameter and 16-foot long vacuum tank. The four magnetic coils are seen on the left end of the engine. The researchers conducted two-minute test runs with varying configurations and used of both argon and xenon as the propellant. The Electric Propulsion Research Building was built in 1942 as the Engine Propeller Research Building, often called the Prop House. It contained four test cells to study large reciprocating engines with their propellers. After World War II, the facility was modified to study turbojet engines. By the 1960s, the facility was modified again for electric propulsion research and given its current name.
ERIC Educational Resources Information Center
National Academy of Sciences, Washington, DC.
The joint study group was established to identify the most urgent research and training needs in agricultural engineering in Brazil and to recommend how best to meet those needs. Specific recommendations are given for a long-term program to establish quality programs in education and research in agricultural engineering in Brazil and means to gain…
Stirling Laboratory Research Engine: Preprototype configuration report
NASA Technical Reports Server (NTRS)
Hoehn, F. W.
1982-01-01
The concept of a simple Stirling research engine that could be used by industrial, university, and government laboratories was studied. The conceptual and final designs, hardware fabrication and the experimental validation of a preprototype stirling laboratory research engine (SLRE) were completed. Also completed was a task to identify the potential markets for research engines of this type. An analytical effort was conducted to provide a stirling cycle computer model. The versatile engine is a horizontally opposed, two piston, single acting stirling engine with a split crankshaft drive mechanism; special instrumentation is installed at all component interfaces. Results of a thermodynamic energy balance for the system are reported. Also included are the engine performance results obtained over a range of speeds, working pressures, phase angles and gas temperatures. The potential for a stirling research engine to support the laboratory requirements of educators and researchers was demonstrated.
Motivation of Students Who Switch from Engineering to Engineering Technology
ERIC Educational Resources Information Center
Ramirez, Nichole
2017-01-01
A set of studies is reported describing the demographics, outcomes, and motivations of students who start in engineering and switch their major to engineering technology. There has been extensive research in engineering persistence, but little focus has been given to the "T" in STEM. Most research combines technology with other science…
NASA Technical Reports Server (NTRS)
Spencer, J. H. (Compiler)
1986-01-01
Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 or 11 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society of Engineering Education supervises the programs. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; (4) to contribute to the research objectives of the NASA center. Program Description: College or university will be faculty members appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA-Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of general interest or that are directly relevant to the Fellows' research project. The lecturers and seminar leaders will be distinguished scientists and engineers from NASA, education or industry.
1997 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Tiwari, Surendra N. (Compiler); Young, Deborah B. (Compiler)
1998-01-01
Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives of the program are as follows: (1) To further the professional knowledge of qualified engineering and science faculty members, (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; and (4) To contribute to the research objectives of the NASA center. Program description is as follows: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lectures and seminar leaders will be distinguished scientists and engineers from NASA, education, and industry.
2000 NASA-HU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Marable, William P. (Compiler); Murray, Deborah B. (Compiler); Hathaway, Roger A. (Technical Monitor)
2000-01-01
Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend ten weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. The objectives are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA center. College or university faculty members will be appointed as Research Fellows to spend ten weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lecture and seminar leaders will be distinguished scientists and engineers from NASA, education, and industry. A list of the abstracts of the presentations is provided.
NASA Technical Reports Server (NTRS)
Tiwari, Surendra N. (Compiler); Young, Deborah B. (Compiler)
1995-01-01
Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. The objectives of this program are: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; and (4) To contribute to the research objectives of the NASA center. College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of interest or that are directly relevant to the Fellows' research topics. The lectures and seminar leaders will be distinguished scientists and engineers from NASA, education, or industry.
NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1985
NASA Technical Reports Server (NTRS)
Goglia, G. (Compiler)
1985-01-01
Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. The objectives of this program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to simulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants institutions; and (4) to contribute to the research objectives of the NASA center. College or university faculty members will be appointed as research fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The fellows will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of general interest or that are directly relevant to the fellows' research project. The lecturers and seminar leaders will be distinguished scientists and engineers from NASA, the educational community, or industry.
Are we studying what matters? Health priorities and NIH-funded biomedical engineering research.
Rubin, Jessica B; Paltiel, A David; Saltzman, W Mark
2010-07-01
With the founding of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) in 1999, the National Institutes of Health (NIH) made explicit its dedication to expanding research in biomedical engineering. Ten years later, we sought to examine how closely federal funding for biomedical engineering aligns with U.S. health priorities. Using a publicly accessible database of research projects funded by the NIH in 2008, we identified 641 grants focused on biomedical engineering, 48% of which targeted specific diseases. Overall, we found that these disease-specific NIH-funded biomedical engineering research projects align with national health priorities, as quantified by three commonly utilized measures of disease burden: cause of death, disability-adjusted survival losses, and expenditures. However, we also found some illnesses (e.g., cancer and heart disease) for which the number of research projects funded deviated from our expectations, given their disease burden. Our findings suggest several possibilities for future studies that would serve to further inform the allocation of limited research dollars within the field of biomedical engineering.
Rotorcraft convertible engine study
NASA Technical Reports Server (NTRS)
Gill, J. C.; Earle, R. V.; Mar, H. M.
1982-01-01
The objective of the Rotorcraft Convertible Engine Study was to define future research and technology effort required for commercial development by 1988 of convertible fan/shaft gas turbine engines for unconventional rotorcraft transports. Two rotorcraft and their respective missions were defined: a Fold Tilt Rotor aircraft and an Advancing Blade Concept (ABC) rotorcraft. Sensitivity studies were conducted with these rotorcraft to determine parametrically the influence of propulsion characteristics on aircraft size, mission fuel requirements, and direct operating costs (DOC). The two rotorcraft were flown with conventional propulsion systems (separate lift/cruise engines) and with convertible propulsion systems to determine the benefits to be derived from convertible engines. Trade-off studies were conducted to determine the optimum engine cycle and staging arrangement for a convertible engine. Advanced technology options applicable to convertible engines were studied. Research and technology programs were identified which would ensure technology readiness for commercial development of convertible engines by 1988.
Wisneski, Andrew D; Huang, Lixia; Hong, Bo; Wang, Xiaoqin
2011-01-01
A model for an international undergraduate biomedical engineering research exchange program is outlined. In 2008, the Johns Hopkins University in collaboration with Tsinghua University in Beijing, China established the Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research. Undergraduate biomedical engineering students from both universities are offered the opportunity to participate in research at the overseas institution. Programs such as these will not only provide research experiences for undergraduates but valuable cultural exchange and enrichment as well. Currently, strict course scheduling and rigorous curricula in most biomedical engineering programs may present obstacles for students to partake in study abroad opportunities. Universities are encouraged to harbor abroad opportunities for undergraduate engineering students, for which this particular program can serve as a model.
Selected engagement factors and academic learning outcomes of undergraduate engineering students
NASA Astrophysics Data System (ADS)
Justice, Patricia J.
The concept of student engagement and its relationship to successful student performance and learning outcomes has a long history in higher education (Kuh, 2007). Attention to faculty and student engagement has only recently become of interest to the engineering education community. This interest can be attributed to long-standing research by George Kuh's, National Survey of Student Engagement (NSSE) at the Indiana University Center for Postsecondary Research. In addition, research projects sponsored by the National Science Foundation, the Academic Pathway Study (APS) at the Center for the Advancement of Engineering Education (CAEE) and the Center for the Advancement of Scholarship on Engineering Education (CASEE), Measuring Student and Faculty Engagement in Engineering Education, at the National Academy of Engineering. These research studies utilized the framework and data from the Engineering Change study by the Center for the Study of Higher Education, Pennsylvania State, that evaluated the impact of the new Accreditation Board of Engineering and Technology (ABET) EC2000 "3a through k" criteria identify 11 learning outcomes expected of engineering graduates. The purpose of this study was to explore the extent selected engagement factors of 1. institution, 2. social, 3. cognitive, 4. finance, and 5. technology influence undergraduate engineering students and quality student learning outcomes. Through the descriptive statistical analysis indicates that there maybe problems in the engineering program. This researcher would have expected at least 50% of the students to fall in the Strongly Agree and Agree categories. The data indicated that the there maybe problems in the engineering program problems in the data. The problems found ranked in this order: 1). Dissatisfaction with faculty instruction methods and quality of instruction and not a clear understanding of engineering majors , 2). inadequate Engineering faculty and advisors availability especially applicable to career paths, 4) engineering program objectives not aligned with student learning outcomes, 5. lack of encouragement to join engineering association for professional development. This study determined statistically that the factors having the most significant influence on undergraduate engineering student and learning outcome is the role that faculty plays inside and outside the classroom. The satisfaction of students regarding faculty on availability and feedback was negative. Engineering programs appear to have issues with alignment of ABET learning outcomes from a student perspective on knowledge, ability of engineering skills and ability acquired at the time of this study. The researcher believes that the findings are valid viewing the maturity of the majority of responses were from upper-class juniors and seniors. In addition, gender and racial/ethnicity disparity were found with low number of females compared to males. The racial/ ethnicity disparity was especially noted for Hispanic and Native American students.
Tactical Unmanned Ground Vehicle Related Research References (BTA Study)
1993-03-01
draw bar pull - 4,297 lbs; Engine - 65 hp air cooled diesel engine ; dual electrical motors, hydrostatic drive; Observation - three closed-circuit...8217 Munitions and Chemical Command. Commander, U. S. Army Chemical Research, Development, and Engineering Center. 40..... "Unmanned Air Vehicles Payloads...8217 Larry Brantley Advanced Systems Concepts Office Research, Development, and Engineering Center MARCH 1993 edetone qArs nal, Alabama 35898-5000
ERIC Educational Resources Information Center
Williamson, Jeanine M.; Han, Lee D.; Colon-Aguirre, Monica
2009-01-01
The study examined the extent of cross-disciplinarity in nanotechnology and transportation engineering research. Researchers in these two fields were determined from the web sites of the U.S. News and World Report top 100 schools in civil engineering and materials science. Web of Science searches for 2006 and 2007 articles were obtained and the…
NASA Astrophysics Data System (ADS)
Bennett, Sean T.
This study examines African American student perceptions of persistence in engineering. The research design is methodologically qualitative using a purposefully selected population of engineering students. Semi-structured interviews were designed to develop an in-depth understanding of what completion of the engineering degree means to African American engineering students. This research seeks insight into the linkages between African American student perceptions of persistence as it relates to both the academic and social culture of the engineering department. Vincent Tinto's model of Institutional Departure (1975, 1987) is one of the most commonly cited models of persistence in higher education (Braxton, Milem, Sullivan, 2000). Tinto's model was leveraged in this study to understand perceptions obtained through student interviews. Tinto suggests that exploration of student goal commitment and perceptions of institutional commitment are key to understanding student persistence. Results of this study suggest that African American students have perceptions about the university that may influence the decision to persist in engineering. Ultimately, this study may prove useful to researchers and administrators interested in improving access and success for African American engineering students.
US nuclear engineering education: Status and prospects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
This study, conducted under the auspices of the Energy Engineering Board of the National Research Council, examines the status of and outlook for nuclear engineering education in the United States. The study resulted from a widely felt concern about the downward trends in student enrollments in nuclear engineering, in both graduate and undergraduate programs. Concerns have also been expressed about the declining number of US university nuclear engineering departments and programs, the aging of their faculties, the appropriateness of their curricula and research funding for industry and government needs, the availability of scholarships and research funding, and the increasing ratiomore » of foreign to US graduate students. A fundamental issue is whether the supply of nuclear engineering graduates will be adequate for the future. Although such issues are more general, pertaining to all areas of US science and engineering education, they are especially acute for nuclear engineering education. 30 refs., 12 figs., 20 tabs.« less
NASA Astrophysics Data System (ADS)
Killen, Catherine P.
2015-09-01
This paper outlines a novel approach to engineering education research that provides three dimensions of learning through an experiential class activity. A simulated decision activity brought current research into the classroom, explored the effect of experiential activity on learning outcomes and contributed to the research on innovation decision making. The 'decision task' was undertaken by more than 480 engineering students. It increased their reported measures of learning and retention by an average of 0.66 on a five-point Likert scale, and revealed positive correlations between attention, enjoyment, ongoing interest and learning and retention. The study also contributed to innovation management research by revealing the influence of different data visualisation methods on decision quality, providing an example of research-integrated education that forms part of the research process. Such a dovetailing of different research studies demonstrates how engineering educators can enhance educational impact while multiplying the outcomes from their research efforts.
Students' Changing Images of Engineering and Engineers. Research Brief
ERIC Educational Resources Information Center
Jocuns, Andrew; Stevens, Reed; Garrison, Lari; Amos, Daniel
2008-01-01
This study analyzes the images of engineers and engineering that students construct over the course of their undergraduate engineering educations. Students in their first year of study to become engineers knew very little about the work they would be doing as an engineer and their expectations were more specific, hopeful, and high status than…
ERIC Educational Resources Information Center
Lichtenstein, Gary; Loshbaugh, Heidi G.; Claar, Brittany; Chen, Helen L.; Jackson, Kristyn; Sheppard, Sheri
2009-01-01
This paper explores the career-related decision making of seniors enrolled in undergraduate engineering programs at two nationally recognized institutions. This strand of the Academic Pathways Study (APS) research revealed that many engineering students were undecided about their career plans, even late into their senior years and that many were…
Operational Characteristics of a Rotating Detonation Engine Using Hydrogen and Air
2011-06-01
Naval Research Laboratory PDE Pulsed detonation engine RDE Rotating detonation engine TDW Transverse detonation wave Symbols [SI units...primarily been on pulsed detonation engines ( PDEs ). Recently, however, detonation research has begun to also focus on rotating , or continuous... rotating detonation engines have been studied, however, more progress was initially made regarding PDEs . Recently, though, there has been a renewed
Coggan, Nicole V; Hayward, Matthew W; Gibb, Heloise
2018-02-28
Ecosystem engineers have been widely studied for terrestrial systems, but global trends in research encompassing the range of taxa and functions have not previously been synthesised. We reviewed contemporary understanding of engineer fauna in terrestrial habitats and assessed the methods used to document patterns and processes, asking: (a) which species act as ecosystem engineers and with whom do they interact? (b) What are the impacts of ecosystem engineers in terrestrial habitats and how are they distributed? (c) What are the primary methods used to examine engineer effects and how have these developed over time? We considered the strengths, weaknesses and gaps in knowledge related to each of these questions and suggested a conceptual framework to delineate "significant impacts" of engineering interactions for all terrestrial animals. We collected peer-reviewed publications examining ecosystem engineer impacts and created a database of engineer species to assess experimental approaches and any additional covariates that influenced the magnitude of engineer impacts. One hundred and twenty-two species from 28 orders were identified as ecosystem engineers, performing five ecological functions. Burrowing mammals were the most researched group (27%). Half of all studies occurred in dry/arid habitats. Mensurative studies comparing sites with and without engineers (80%) were more common than manipulative studies (20%). These provided a broad framework for predicting engineer impacts upon abundance and species diversity. However, the roles of confounding factors, processes driving these patterns and the consequences of experimentally adjusting variables, such as engineer density, have been neglected. True spatial and temporal replication has also been limited, particularly for emerging studies of engineer reintroductions. Climate change and habitat modification will challenge the roles that engineers play in regulating ecosystems, and these will become important avenues for future research. We recommend future studies include simulation of engineer effects and experimental manipulation of engineer densities to determine the potential for ecological cascades through trophic and engineering pathways due to functional decline. We also recommend improving knowledge of long-term engineering effects and replication of engineer reintroductions across landscapes to better understand how large-scale ecological gradients alter the magnitude of engineering impacts. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
ERIC Educational Resources Information Center
Duggan, Louise Maria
2015-01-01
This article explores the use of qualitative research methods towards our understanding of the issues affecting female undergraduate engineers. As outlined in this article female engineering students face many challenges during their undergraduate studies. Qualitative research methods provide an opportunity to gain a deeper understanding of the…
An Alternative Perspective for Malaysian Engineering Education: A Review from Year 2000-2012
ERIC Educational Resources Information Center
Jayarajah, Kamaleswaran; Saat, Rohaida Mohd; Rauf, Rose Amnah Abdul
2013-01-01
The purpose of this study is to explore the research base of engineering education in the "Journal of Engineering Education" ("JEE") through an analysis review of articles for a 12-year period, from 2000 to 2012. The research base review focuses on identifying five characteristics of engineering education: (a) temporal…
The Information-Seeking Habits of Engineering Faculty
ERIC Educational Resources Information Center
Engel, Debra; Robbins, Sarah; Kulp, Christina
2011-01-01
Many studies of information-seeking habits of engineers focus on understanding the similarities and differences between scientists and engineers. This study explores the information-seeking behavior of academic engineering faculty from twenty public research universities. This investigation includes an examination of how frequently engineer- ing…
Women Engineers: Factors and Obstacles Related to the Pursuit of a Degree in Engineering
NASA Astrophysics Data System (ADS)
Wentling, Rose Mary; Camacho, Cristina
Research on women in engineering confirms the presence of gender barriers that affect the recruitment and retention of women in engineering. These barriers stop some women from choosing engineering as a field of study, and impede some women from completing a degree in engineering. However, there are some young female students who complete their engineering education despite the presence of obstacles throughout their college years. This study addressed the factors that have hindered, motivated, and assisted women who graduated with a degree in engineering. By studying and understanding the barriers that hinder women in deciding to pursue and in completing a degree in engineering, as well as the factors that assist and encourage them, we can learn how to break down the barriers and how to facilitate the educational journey of female engineering students. This study provides valuable insights and created a framework from which high schools, universities, researchers, and female students can directly benefit.
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei; Litt, Jonathan S.
2007-01-01
Gas turbine engines are designed to provide sufficient safety margins to guarantee robust operation with an exceptionally long life. However, engine performance requirements may be drastically altered during abnormal flight conditions or emergency maneuvers. In some situations, the conservative design of the engine control system may not be in the best interest of overall aircraft safety; it may be advantageous to "sacrifice" the engine to "save" the aircraft. Motivated by this opportunity, the NASA Aviation Safety Program is conducting resilient propulsion research aimed at developing adaptive engine control methodologies to operate the engine beyond the normal domain for emergency operations to maximize the possibility of safely landing the damaged aircraft. Previous research studies and field incident reports show that the propulsion system can be an effective tool to help control and eventually land a damaged aircraft. Building upon the flight-proven Propulsion Controlled Aircraft (PCA) experience, this area of research will focus on how engine control systems can improve aircraft safe-landing probabilities under adverse conditions. This paper describes the proposed research topics in Engine System Requirements, Engine Modeling and Simulation, Engine Enhancement Research, Operational Risk Analysis and Modeling, and Integrated Flight and Propulsion Controller Designs that support the overall goal.
ERIC Educational Resources Information Center
Carter, Deborah Faye; Ro, Hyun Kyoung; Alcott, Benjamin; Lattuca, Lisa R.
2016-01-01
This study examined the impact of undergraduate research (UR) in engineering, focusing on three particular learning outcomes: communication, teamwork, and leadership. The study included 5126 students across 31 colleges of engineering. The authors employed propensity score matching method to address the selection bias for selection into (and…
NASA Astrophysics Data System (ADS)
Alves, Manuela; Rodrigues, Cristina S.; Rocha, Ana Maria A. C.; Coutinho, Clara
2016-01-01
The accomplishment in mathematics has gained attention from educators and arises as an emerging field of study, including in engineering education. However, in Portugal, there is still incipient research in the area; so it is high time to explore factors that might enlighten the gap in the study of the relationship between Portuguese engineering students and the learning of mathematics. The main purpose of this study is to explore three factors identified in the literature as influencing the learning of mathematical concepts - self-efficacy, anxiety towards mathematics and perceived importance of mathematics - and search for differences by gender and by type of engineering course, a dimension not much reported in the literature but which was revealed as important in the team's previous research. Based on a sample of 140 undergraduate students of different engineering courses from University of Minho, results only identify differences in the type of course and not in gender. These results constitute a contribution and open new paths for future research in the engineering education.
Methodology discourses as boundary work in the construction of engineering education.
Beddoes, Kacey
2014-04-01
Engineering education research is a new field that emerged in the social sciences over the past 10 years. This analysis of engineering education research demonstrates that methodology discourses have played a central role in the construction and development of the field of engineering education, and that they have done so primarily through boundary work. This article thus contributes to science and technology studies literature by examining the role of methodology discourses in an emerging social science field. I begin with an overview of engineering education research before situating the case within relevant bodies of literature on methodology discourses and boundary work. I then identify two methodology discourses--rigor and methodological diversity--and discuss how they contribute to the construction and development of engineering education research. The article concludes with a discussion of how the findings relate to prior research on methodology discourses and boundary work and implications for future research.
Summer faculty fellowship program, 1984
NASA Technical Reports Server (NTRS)
Spencer, J. H. (Compiler)
1984-01-01
Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 or 11 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society of Engineering Education supervises the programs. Objectives: (1) to further the professional knowledge of a qualified between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants institutions; and (4) to contribute to the research objectives of the NASA center. Program Description: College or university faculty members will be appointed as research fellows to spend 10 weeks in cooperative research and study at the NASA-Langley Research Center. The fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lectures and seminars on topics of general interest or that are directly relevant to the fellow's research project. The lecturers and seminar leaders will be distinguished scientists and engineers from NASA, education, or industry.
Graduate engineering research participation in aeronautics
NASA Technical Reports Server (NTRS)
Roberts, A. S., Jr.
1986-01-01
The Aeronautics Graduate Research Program commenced in 1971, with the primary goal of engaging students who qualified for regular admission to the Graduate School of Engineering at Old Dominion University in a graduate engineering research and study program in collaboration with NASA Langley Research Center, Hampton, Virginia. The format and purposes of this program are discussed. Student selection and program statistics are summarized. Abstracts are presented in the folowing areas: aircraft design, aerodynamics, lift/drag characteristics; avionics; fluid mechanics; solid mechanics; instrumentation and measurement techniques; thermophysical properties experiments; large space structures; earth orbital dynamics; and environmental engineering.
ERIC Educational Resources Information Center
Kelley, Todd; Brenner, Daniel C.; Pieper, Jon T.
2010-01-01
A comparative study was conducted to compare two approaches to engineering design curriculum between different schools (inter-school) and between two curricular approaches, "Project Lead the Way" (PLTW) and "Engineering Projects in Community Service" (EPIC High) (inter-curricular). The researchers collected curriculum…
ERIC Educational Resources Information Center
Morozov, Andrew; Kilgore, Deborah; Yasuhara, Ken; Atman, Cindy
2008-01-01
There is evidence in the literature that women have lower confidence in their skills and knowledge than men, particularly in areas considered crucial for engineering, like math and science. This difference has been linked to gender gaps in engineering enrollment and persistence. This study of engineering students extends research on gender…
2002 NASA-HU Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
DePriest, Douglas J. (Compiler); Murray, Deborah B. (Compiler); Berg, Jennifer J. (Compiler)
2004-01-01
Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering and science faculty members spend 10 weeks working with professional peers on research. NASA HQs and the American Society for Engineering Education supervise the program. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate an exchange of ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of the participants' institutions; (4) To contribute to the research objectives of the NASA Center. Program Description: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program consisting of lectures and seminars relevant to the Fellows' research.
Math, Science, and Engineering Integration in a High School Engineering Course: A Qualitative Study
ERIC Educational Resources Information Center
Valtorta, Clara G.; Berland, Leema K.
2015-01-01
Engineering in K-12 classrooms has been receiving expanding emphasis in the United States. The integration of science, mathematics, and engineering is a benefit and goal of K-12 engineering; however, current empirical research on the efficacy of K-12 science, mathematics, and engineering integration is limited. This study adds to this growing…
M.U.S.T. 2007 Summer Research Project at NASA's KSC MILA Facility
NASA Technical Reports Server (NTRS)
PintoRey, Christian R.
2007-01-01
The summer research activity at Kennedy Space Center (KSC) aims to introduce the student to the basic principles in their field of study. While at KSC, a specific research project awaits the student to complete. As an Aeronautical Engineering student, my assigned project is to assist the cognizant engineer, Mr. Troy Hamilton, in the six engineering phases for replacing the Ponce De Leon (PDL)4.3M Antenna Control Unit (ACU). Although the project mainly requires the attention of two engineers and two students, it also involves the participation of many colleagues at various points during the course of the engineering change (EC). Since the PDL 4.3M ACU engineering change makes both hardware and software changes, it calls upon the expertise of a Hardware Engineer as well as a Software Engineer. As students, Mr. Jeremy Bresette and I have worked side by side with the engineers, gaining invaluable experience. We work in two teams, the hardware team and the software team, On certain tasks, we assist the engineers, while on others we assume their roles. By diligently working in this fashion, we are learning how to communicate effectively as professionals, despite the fact that we are studying different engineering fields. This project has been a great fit for my field of study, as it has highly improved my awareness of the many critical tasks involved in carrying out an engineering project.
An overview of NASA research on positive displacement general-aviation engines
NASA Technical Reports Server (NTRS)
Kempke, E. E., Jr.
1980-01-01
The research and technology program related to improved and advanced general aviation engines is described. Current research is directed at the near-term improvement of conventional air-cooled spark-ignition piston engines and at future alternative engine systems based on all-new spark-ignition piston engines, lightweight diesels, and rotary combustion engines that show potential for meeting program goals in the midterm and long-term future. The conventional piston engine activities involve efforts on applying existing technology to improve fuel economy, investigation of key processes to permit leaner operation and reduce drag, and the development of cost effective technology to permit flight at high-altitudes where fuel economy and safety are improved. The advanced engine concepts activities include engine conceptual design studies and enabling technology efforts on the critical or key technology items.
Enhancing Systems Engineering Education Through Case Study Writing
NASA Technical Reports Server (NTRS)
Stevens, Jennifer Stenger
2016-01-01
Developing and refining methods for teaching systems engineering is part of Systems Engineering grand challenges and agenda for research in the SE research community. Retention of systems engineering knowledge is a growing concern in the United States as the baby boom generation continues to retire and the faster pace of technology development does not allow for younger generations to gain experiential knowledge through years of practice. Government agencies, including the National Aeronautics and Space Administration (NASA), develop their own curricula and SE leadership development programs to "grow their own" systems engineers. Marshall Space Flight Center (MSFC) conducts its own Center-focused Marshall Systems Engineering Leadership Development Program (MSELDP), a competitive program consisting of coursework, a guest lecture series, and a rotational assignment into an unfamiliar organization engaged in systems engineering. Independently, MSFC developed two courses to address knowledge retention and sharing concerns: Real World Marshall Mission Success course and its Case Study Writers Workshop and Writers Experience. Teaching case study writing and leading students through a hands-on experience at writing a case study on an SE topic can enhance SE training and has the potential to accelerate the transfer of experiential knowledge. This paper is an overview of the pilot experiences with teaching case study writing, its application in case study-based learning, and identifies potential areas of research and application for case study writing in systems engineering education.
A study of female students enrollment in engineering technology stem programs
NASA Astrophysics Data System (ADS)
Habib, Ihab S.
The problem studied in this research project was the enrollment of female STEM Engineering Technology students and the impact of professional mentoring and financial incentives on their enrollment, retention, and completion of engineering curriculum. Several tasks were presented in researchers' professional position; to recruit more students to the program, especially female as a minority in the Engineering Technology Department, make appropriate changes to the curriculum, and make improvements in mentoring students to improve rates of enrollment, retention, and completion of the program. A survey was created to study the effects of Science Engineering Technology and Mathematics for Engineering Technology (STEM ENGT) students' perceptions, mentorship, and scholarships availability, enrollment, retention, and program completion by enrolled student gender. Other studies have discovered that more scholarship and faculty mentorship support provided for female students resulted in improved diversity within engineering curricula student bodies (Sorcinelli, 2007).
Electron Bombardment Ion Thruster
1970-08-21
Researchers at the Lewis Research Center had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. Over the ensuing decades Lewis researchers continued to advance the original ion thruster concept. A Space Electric Rocket Test (SERT) spacecraft was launched in June 1964 to test Kaufman’s engine in space. SERT I had one cesium engine and one mercury engine. The suborbital flight was only 50 minutes in duration but proved that the ion engine could operate in space. This was followed in 1966 by the even more successful SERT II, which operated on and off for over ten years. Lewis continued studying increasingly more powerful ion thrusters. These electric engines created and accelerated small particles of propellant material to high exhaust velocities. Electric engines have a very small amount of thrust and are therefore not capable of lifting a spaceship from the surface of the Earth. Once lofted into orbit, however, electric engines are can produce small, continuous streams of thrust for several years.
Initiation of Research at the Aircraft Engine Research Laboratory
1942-05-21
A group of National Advisory Committee for Aeronautics (NACA) officials and local dignitaries were on hand on May 8, 1942, to witness the Initiation of Research at the NACA's new Aircraft Engine Research Laboratory in Cleveland, Ohio. The group in this photograph was in the control room of the laboratory's first test facility, the Engine Propeller Research Building. The NACA press release that day noted, "First actual research activities in what is to be the largest aircraft engine research laboratory in the world was begun today at the National Advisory Committee for Aeronautics laboratory at the Cleveland Municipal Airport.” The ceremony, however, was largely symbolic since most of the laboratory was still under construction. Dr. George W. Lewis, the NACA's Director of Aeronautical Research, and John F. Victory, NACA Secretary, are at the controls in this photograph. Airport Manager John Berry, former City Manager William Hopkins, NACA Assistant Secretary Ed Chamberlain, Langley Engineer-in-Charge Henry Reid, Executive Engineer Carlton Kemper, and Construction Manager Raymond Sharp are also present. The propeller building contained two torque stands to test complete engines at ambient conditions. The facility was primarily used at the time to study engine lubrication and cooling systems for World War II aircraft, which were required to perform at higher altitudes and longer ranges than previous generations.
NASA Astrophysics Data System (ADS)
Antink-Meyer, Allison; Meyer, Daniel Z.
2016-10-01
The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This knowledge ultimately provides information about supporting professional development (PD) for science teachers' knowledge of engineering. Six science teachers (two elementary and four high school teachers) participated in the study as part of an online PD experience. Cunningham and Carlsen's (Journal of Science Teacher Education 25:197-210, 2014) relative emphases of science and engineering practices were used to frame the design of PD activities and the analyses of teachers' views. Analyses suggest misconceptions within the eight practices of science and engineering from the US Next Generation Science Standards in four areas. These are that: (1) the nature of the practices in both science and engineering research is determined by the long-term implications of the research regardless of the nature of the immediate work, (2) engineering and science are hierarchical, (3) creativity is inappropriate, and (4) research outcomes cannot be processes. We discuss the nature of these understandings among participants and the implications for engineering education PD for science teachers.
Screening studies of advanced control concepts for airbreathing engines
NASA Technical Reports Server (NTRS)
Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.
1993-01-01
The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.
Cognitive diversity in undergraduate engineering: Dyslexia
NASA Astrophysics Data System (ADS)
Fitzpatrick, Velvet R.
In the United States, institutions have established multiple programs and initiatives aimed at increasing the diversity of both faculty and students in engineering as means to produce a workforce that will better serve society. However, there are two major problems in addressing engineering student diversity. First, the engineering education research community has paid little attention to date as to how engineering education research characterizes diversity in its broadest sense. Second, research on persons with disabilities in undergraduates engineering, a population of interests within diversity, is minimal. Available disability studies tend to be skewed toward physical disabilities, leading to a neglect of cognitive differences such as learning disabilities (LD). In addition, disability research questions and study designs are inherently steeped in ability bias. The purpose of this dissertation is to explore the meaning of ability for students with dyslexia while in undergraduate engineering and establish the significance of cognitive diversity, focusing on LD and more specifically dyslexia, in undergraduate engineering education and answer the following research question: How do undergraduate engineering students with dyslexia experience ability while pursuing and persisting in engineering? The motivation was to lay the groundwork for future engineering education studies on undergraduate students with LD in general but dyslexia in specific. The first goal was to conduct a critical literature review pertaining to the academic strengths of undergraduate students with LD, specifically, dyslexia and the second goal was to describe how undergraduate engineering students with dyslexia experience ability. The intent was not to redefine dyslexia or disability. The intent is to provide an inclusive account of dyslexia, weakness and strengths, within the field of engineering education. This study was conducted from a qualitative inquiry approach, within the social constructivism paradigm, and utilized purposive sampling to identify appropriate participants. The thematic analysis methodological framework was used to portray a rich, complex description of experiences in which undergraduate engineering students with dyslexia constructed meaning around ability while pursuing and persisting in engineering. Eight students participated and semi-structured interviews were the data source. The findings are presented in three parts. First, significant findings that were also salient amongst the general undergraduate engineering student populations are presented. This is done to make a clear demarcation from those significant findings found to be unique to undergraduate engineering students with dyslexia presented in the themes: relationships, early exposure to engineering, and securing an internship or co-op position. Second, the four themes that developed from the analysis will were discussed: alignment, dissociation, ideal education environments, and time. Third, additional findings for further investigation were proposed: the role of remediation practices, the representation of dyslexia in media, gender differences in extracurricular activities that constructed different meanings of ability, the prevalence of co-occurring LD amongst the participants, and the visualization of science, engineering, mathematics concepts. The study is closed with a discussion; findings are discussed with respect to relevant research in the conclusion.
ERIC Educational Resources Information Center
Li, Yulong; Wang, Lixun
2018-01-01
This case study, noting the increasing interest in iPad-based mobile learning research and aware of the current dearth of engineering talent in the UK, aims to contribute to a still sparse area of research that links iPad use to engineering education. To achieve this, the study investigates the integration of iPad-based mobile learning…
NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1989
NASA Technical Reports Server (NTRS)
Tiwari, Surendra N. (Compiler)
1989-01-01
Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. The objectives are: to further the professional knowledge of qualified engineering and science faculty; to stimulate and exchange ideas between participants and NASA; to enrich and refresh the research and teachning activities of participants' institutions; and to contribute to the research objectives of the NASA center. College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lecture and seminars on topics of interest or that are directly relevant to the Fellows' research topic.
Authentic scientific research in an international setting as a path toward higher education
NASA Astrophysics Data System (ADS)
Mladenov, N.; Palomo, M.; Casad, B.; Pietruschka, B.; Buckley, C.
2016-12-01
Studies have shown that undergraduate research opportunities foster student interest in research, encourage minority students to seek advanced degrees, and put students on a path toward higher education. It has been further suggested that engineering projects in international settings address issues of sustainability and promote a connection between engineering and social welfare that may compel students to seek future research opportunities. In this study, we explored the role that authentic research experiences in an international setting play in promoting higher education for students from groups typically under-represented in engineering and sciences. We hypothesized that the international context of the research experiences will provide undergraduate and graduate students with a global perspective of water reuse challenges and promote increased interest in pursuing a higher degree in engineering. Through the Sustainable Sanitation International Research Experiences for Students (IRES) Program, US students conducting research in Durban, South Africa in 2015 and 2016, were tasked with leading 6-week long research projects, collaborating with partners at the University of KwaZulu Natal, and producing papers and presentations for regional and international scientific conferences. All undergraduate participants were from groups under-represented in the sciences. Pre- and post-program survey results revealed that, after completing the program, participants of Cohort 1 had 1) greater research skills, 2) greater identification as an engineer, and 3) stronger intentions to pursue a PhD in engineering. Survey data were also used to evaluate comfort with cultural diversity before and after the international program and the effect of pairing US with South African student researchers. Our results indicate that students' awareness of societal needs and engineering challenges faced in Durban resulted in a positive impact on each student. The benefits gained from the international research experience have important implications for environmental engineering and other scientific fields in terms of inducing greater self-efficacy and fostering an interest in higher education for students from groups traditionally under-represented in the sciences.
Developing Teaching of Mathematics to First Year Engineering Students
ERIC Educational Resources Information Center
Jaworski, Barbara; Matthews, Janette
2011-01-01
Engineering Students Understanding Mathematics (ESUM) is a developmental research project at a UK university. The motivating aim is that engineering students should develop a more conceptual understanding of mathematics through their participation in an innovation in teaching. A small research team has both studied and contributed to innovation,…
Career Pathways of Science, Engineering and Technology Research Postgraduates
ERIC Educational Resources Information Center
Giles, Marnie; Ski, Chantal; Vrdoljak, Davorin
2009-01-01
Suitably qualified scientists and engineers are essential for research and development, innovation and, in turn, the growth of the economy. Science, engineering and technology skills are therefore necessary for Australia to remain competitive in a global market. This article reports findings from a nationwide study investigating the career…
NASA Astrophysics Data System (ADS)
Morelock, John R.
2017-11-01
Studies exploring what it means to be an engineer professionally have been conducted for decades, but have boomed in recent years. This systematic literature review aims to organise extant studies on engineering identity by coding around four key variables: (a) definitions of engineering identity, (b) factors affecting engineering identity development, (c) interventions affecting engineering identity development, and (d) means of measuring identity. In doing so, this review provides strategies for future research and educational interventions to advance work related to engineering identity. Publications were selected for inclusion by screening and appraising results obtained from databases and keywords refined through a scoping study. Derived from key findings, suggestions for future research include bridging disparate strands of engineering identity literature and incorporating more varied methodological approaches. Also from key findings, suggestions for future practice involve better connecting existing definitions of engineering identity and factors known to affect identity development with identity-related interventions.
Proposal and Research Direction of Soil Mass Organic Reorganization
NASA Astrophysics Data System (ADS)
Zhang, Lu; Han, Jichang
2018-01-01
Land engineering as a new discipline has been temporarily outrageous. The proposition of soil body organic reorganization undoubtedly enriches the research content for the construction of land engineering disciplines. Soil body organic reconstruction is designed to study how to realize the ecological ecology of the land by studying the external force of nature, to study the influence of sunlight, wind and water on soil body, how to improve the soil physical structure, to further strengthen the research of biological enzymes and microbes, and promote the release and utilization of beneficial inert elements in soil body. The emerging of frontier scientific research issues with soil body organic reorganization to indicate directions for the future development of soil engineering.
ERIC Educational Resources Information Center
Atman, Cindy; Kilgore, Deborah; McKenna, Ann
2009-01-01
This analysis, that utilizes data from part of the Academic Pathways Study (APS) of the Center for the Advancement of Engineering Education (CAEE), found that as a result of taking a course in engineering design and/or studying engineering for four years, students acquire engineering design language that is common to a larger community of practice…
ERIC Educational Resources Information Center
Concannon, James P.; Barrow, Lloyd H.
2009-01-01
This is a cross-sectional study of 519 undergraduate engineering majors' self-efficacy beliefs at a large, research extensive, Midwestern university. Engineering self-efficacy is an individual's belief in his or her ability to successfully negotiate the academic hurdles of the engineering program. Engineering self-efficacy was obtained from four…
A Bibliometric Analysis of Climate Engineering Research
NASA Astrophysics Data System (ADS)
Belter, C. W.; Seidel, D. J.
2013-12-01
The past five years have seen a dramatic increase in the number of media and scientific publications on the topic of climate engineering, or geoengineering, and some scientists are increasingly calling for more research on climate engineering as a possible supplement to climate change mitigation and adaptation strategies. In this context, understanding the current state of climate engineering research can help inform policy discussions and guide future research directions. Bibliometric analysis - the quantitative analysis of publications - is particularly applicable to fields with large bodies of literature that are difficult to summarize by traditional review methods. The multidisciplinary nature of the published literature on climate engineering makes it an ideal candidate for bibliometric analysis. Publications on climate engineering are found to be relatively recent (more than half of all articles during 1988-2011 were published since 2008), include a higher than average percentage of non-research articles (30% compared with 8-15% in related scientific disciplines), and be predominately produced by countries located in the Northern Hemisphere and speaking English. The majority of this literature focuses on land-based methods of carbon sequestration, ocean iron fertilization, and solar radiation management and is produced with little collaboration among research groups. This study provides a summary of existing publications on climate engineering, a perspective on the scientific underpinnings of the global dialogue on climate engineering, and a baseline for quantitatively monitoring the development of climate engineering research in the future.
The Gender and Race-Ethnicity of Faculty in Top Science and Engineering Research Departments
NASA Astrophysics Data System (ADS)
Beutel, Ann M.; Nelson, Donna J.
This study examines the gender and racial-ethnic composition of faculty in top research departments for science and engineering "S-E - disciplines. There are critical masses of at least 15% women in top research departments in biological sciences, psychology, and social sciences but not in physical sciences and engineering. Blacks and Hispanics together make up only 4.1% of the faculty in our study. Black and Hispanic females are the most poorly represented groups; together, they make up only 1% of the faculty in top S-E research departments. For most S-E disciplines, less than 15% of full professors in top research departments are women or non-Whites.
NASA Technical Reports Server (NTRS)
Schock, H. J.
1984-01-01
The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed.
Forecasting Climate-Induced Ecosystem Changes on Army Installations
2011-10-01
W. Hargrove Construction Engineering Research Laboratory (CERL) US Army Engineer Research and Development Center 2902 Newmark Dr. Champaign, IL...unless so designated by other authorized documents. DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. ERDC/CERL TR-11-36...35 ERDC/CERL TR-11-36 v Preface This study was conducted for Dr. Jeffrey Holland, Director of the Engineer Research and Development
A Reanalysis of Engineering Majors' Self-Efficacy Beliefs
ERIC Educational Resources Information Center
Concannon, James P.; Barrow, Lloyd H.
2012-01-01
This study examines differences in women's engineering self-efficacy beliefs across grade levels in comparison to men's engineering self-efficacy (ESE) beliefs across grade levels. Data for this study was collected from 746 (635 men, 111 women) engineering students enrolled in a large research extensive university. Four major conclusions resulted…
ERIC Educational Resources Information Center
Goldman, Daphne; Assaraf, Orit Ben-Zvi; Shemesh, Julia
2014-01-01
While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was…
78 FR 22527 - Army Science Board Request for Information on Technology and Core Competencies
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-16
...); Edgewood Chemical Biological Command (ECBC); Natick Soldier Research, Development & Engineering Center...; C4ISR; Night Vision; Chemical/Biological Warfare; and Soldier Systems. The study will focus on...); Armament Research, Development & Engineering Center (ARDEC); Aviation & Missile Research, Development...
Engineering Professional Development Design for Secondary School Teachers: A Multiple Case Study
ERIC Educational Resources Information Center
Daugherty, Jenny Lynn
2009-01-01
The complexity of engineering and its integration into K-12 education have resulted in a variety of issues requiring sustained empirical research (Johnson, Burghardt, & Daugherty, 2008). One particular area of need, given the emphasis on teacher effects on student learning, is to research engineering-oriented teacher professional development. A…
The NASA hypersonic research engine program
NASA Technical Reports Server (NTRS)
Rubert, Kennedy F.; Lopez, Henry J.
1992-01-01
An overview is provided of the NASA Hypersonic Research Engine Program. The engine concept is described which was evolved, and the accomplishments of the program are summarized. The program was undertaken as an in-depth program of hypersonic airbreathing propulsion research to provide essential inputs to future prototype engine development and decision making. An airbreathing liquid hydrogen fueled research oriented scramjet was to be developed to certain performance goals. The work was many faceted, required aerodynamic design evaluation, structures development, and development of flight systems such as the fuel and control system, but the main objective was the study of the internal aerothermodynamics of the propulsion system.
Project Lead the Ways' Long-Term Effects on Post-Secondary Engineering Academic Success
NASA Astrophysics Data System (ADS)
Zion, George H.
The purpose of this study was to investigate the relationship between students' high school Project Lead They Way participation and their subsequent academic success in post-secondary engineering studies and to assess to what degree, if any, their level of Project Lead The Way (PLTW) participation, gender, and AALANA status (African American, Latino/a American and Native American) effected this success. PLTW is the nation's single largest provider of pre-engineering curriculums, the subject of this research study, currently being offered in over 3,200 secondary schools nationwide. Despite this level of integration, the amount of research on PLTW's effectiveness has been very limited. To date, the majority of the literature on PLTW has examined its impact on students' high school academic performance or their desire to further their engineering studies. The findings from these studies have been overwhelmingly positive, indicating that PLTW students often had greater achievements in math and science and either plan to, or have actually enrolled, in post-secondary studies at higher rates. Nevertheless, the amount of literature on PLTW's effects on students' academic success in post-secondary engineering studies is very limited. Furthermore, no research has yet to examine for the moderating effects of gender, ethnicity, or level of PLTW participation on students' post-secondary academics success. The population of interest for this research study was 1,478 students who entered an undergraduate engineering program from 2007 to 2009 at a privately endowed, co-educational university located in the northeastern United States. The findings of this research study were that virtually all the effects of PLTW participation, gender, and AALANA status had on academic success were observed during students' freshmen and sophomore years. These effects were positive for PLTW participation, and adverse for female and AALANA students. Additionally, PLTW participation, gender, and AALANA status only explained a small amount of the variance for each of the academic success metrics. These conclusions suggest that future research on PLTW should focus on the first and second year of study and expand the factors examined, both quantitative and qualitative, to gain a greater understanding of the complex factors that influence students' initial academic success in post-secondary engineering studies.
"Genetic Engineering" Gains Momentum (Science/Society Case Study).
ERIC Educational Resources Information Center
Moore, John W.; Moore, Elizabeth A., Eds.
1980-01-01
Reviews the benefits and hazards of genetic engineering, or "recombinant-DNA" research. Recent federal safety rules issued by NIH which ease the strict prohibitions on recombinant-DNA research are explained. (CS)
ERIC Educational Resources Information Center
Dika, Sandra L.; Alvarez, Jaquelina; Santos, Jeannette; Suárez, Oscar Marcelo
2016-01-01
Interest in engineering at early stages of the educational career is one important precursor to choosing to study engineering in college, and engineering-related clubs are designed to foster such interest and diversify the engineering pipeline. In this study, the researchers employed a social cognitive career theory framework to examine level of…
ERIC Educational Resources Information Center
Lawanto, Oenardi; Stewardson, Gary
2009-01-01
The objective of this study was to evaluate grade 9-12 students' motivation while engaged in two different engineering design projects: marble-sorter and bridge designs. The motivation components measured in this study were focused on students' intrinsic (IGO) and extrinsic (EGO) goal orientations, task value (TV), self-efficacy for learning and…
ERIC Educational Resources Information Center
Godfroy-Genin, Anne-Sophie; Pinault, Cloe
2006-01-01
The main objective of the WomEng European research project was to assess when, how and why women decide to or not to study engineering. This question was addressed through an international cross-comparison by an interdisciplinary research team in seven European countries. This article presents, in the first part, the methodological toolbox…
NASA Astrophysics Data System (ADS)
Kelly, Jacquelyn
Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions from the area of science education were used instead. Various researchers outlined strategies for helping students acquire scientific language. However, few examined and quantified the relationship it had on student learning. A systemic functional linguistics framework was adopted for this dissertation which is a framework that has not previously been used in engineering education research. This study investigated how engineering language proficiency influenced conceptual understanding of introductory materials science and engineering concepts. To answer the research questions about engineering language proficiency, a convenience sample of forty-one undergraduate students in an introductory materials science and engineering course was used. All data collected was integrated with the course. Measures included the Materials Concept Inventory, a written engineering design task, and group observations. Both systemic functional linguistics and mental models frameworks were utilized to interpret data and guide analysis. A series of regression analyses were conducted to determine if engineering language proficiency predicts group engineering term use, if conceptual understanding predicts group engineering term use, and if conceptual understanding predicts engineering language proficiency. Engineering academic language proficiency was found to be strongly linked to conceptual understanding in the context of introductory materials engineering courses. As the semester progressed, this relationship became even stronger. The more engineering concepts students are expected to learn, the more important it is that they are proficient in engineering language. However, exposure to engineering terms did not influence engineering language proficiency. These results stress the importance of engineering language proficiency for learning, but warn that simply exposing students to engineering terms does not promote engineering language proficiency.
A Feasibility Study for Advanced Technology Integration for General Aviation.
1980-05-01
154 4.5.9.4 Stratified Charge Reciprocating Engine ..... .. 155 4.5.9.5 Advanced Diesel Engine . ... 158 4.5.9.6 Liquid Cooling ... ........ 159... diesel , rotary combustion engine, advanced reciprocating engine concepts. (7) Powerplant control - integrated controls, microprocessor- based controls...Research Center Topics. (1) GATE (2) Positive displacement engines (a) Advanced reciprocating engines. (b) Alternative engine systems Diesel engines
Periosteum tissue engineering-a review.
Li, Nanying; Song, Juqing; Zhu, Guanglin; Li, Xiaoyu; Liu, Lei; Shi, Xuetao; Wang, Yingjun
2016-10-18
As always, the clinical therapy of critical size bone defects caused by trauma, tumor removal surgery or congenital malformation is facing great challenges. Currently, various approaches including autograft, allograft and cell-biomaterial composite based tissue-engineering strategies have been implemented to reconstruct injured bone. However, due to damage during the transplantation processes or design negligence of the bionic scaffolds, these methods expose vulnerabilities without the assistance of periosteum, a bilayer membrane on the outer surface of the bone. Periosteum plays a significant role in bone formation and regeneration as a store for progenitor cells, a source of local growth factors and a scaffold to recruit cells and growth factors, and more and more researchers have recognized its great value in tissue engineering application. Besides direct transplantation, periosteum-derived cells can be cultured on various scaffolds for osteogenesis or chondrogenesis application due to their availability. Research studies also provide a biomimetic methodology to synthesize artificial periosteum which mimic native periosteum in structure or function. According to the studies, these tissue-engineered periostea did obviously enhance the therapeutic effects of bone graft and scaffold engineering while they could be directly used as substitutes of native periosteum. Periosteum tissue engineering, whose related research studies have provided new opportunities for the development of bone tissue engineering and therapy, has gradually become a hot spot and there are still lots to consummate. In this review, tissue-engineered periostea were classified into four kinds and discussed, which might help subsequent researchers get a more systematic view of pseudo-periosteum.
Researchers View the Small Low Cost Engine and the Large Quiet Engine
1972-02-21
Researchers Robert Cummings, left, and Harold Gold with the small Low Cost Engine in the shadow of the much larger Quiet Engine at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The two engines were being studied in different test cells at the Propulsion Systems Laboratory. Jet engines had proven themselves on military and large transport aircraft, but their use on small general aviation aircraft was precluded by cost. Lewis undertook a multiyear effort to develop a less expensive engine to fill this niche using existing technologies. Lewis researchers designed a four-stage, axial-flow engine constructed from sheet metal. It was only 11.5 inches in diameter and weighed 100 pounds. The final design specifications were turned over to a manufacturer in 1972. Four engines were created, and, as expected, the fabrication and assembly of the engine were comparatively inexpensive. In 1973 the Low Cost Engine had its first realistic analysis in the Propulsion Systems Laboratory altitude tank. The engine successfully operated at speeds up to Mach 1.24 and simulated altitudes of 30,000 feet. NASA released the engine to private industry in the hope that design elements would be incorporated into future projects and reduce the overall cost of small jet aircraft. Small jet and turboprop engines became relatively common in general aviation aircraft by the late 1970s.
Use of Research-Based Instructional Strategies in Core Chemical Engineering Courses
ERIC Educational Resources Information Center
Prince, Michael; Borrego, Maura; Henderson, Charles; Cutler, Stephanie; Froyd, Jeff
2013-01-01
Traditional lecturing remains the most prevalent mode of instruction despite overwhelming research showing the increased effectiveness of many alternate instructional strategies. This study examines chemical engineering instructors' awareness and use of 12 such instructional strategies. The study also examines how chemical engineering…
NASA's new university engineering space research programs
NASA Technical Reports Server (NTRS)
Sadin, Stanley R.
1988-01-01
The objective of a newly emerging element of NASA's university engineering programs is to provide a more autonomous element that will enhance and broaden the capabilities in academia, enabling them to participate more effectively in the U.S. civil space program. The programs utilize technical monitors at NASA centers to foster collaborative arrangements, exchange of personnel, and the sharing of facilities between NASA and the universities. The elements include: the university advanced space design program, which funds advanced systems study courses at the senior and graduate levels; the university space engineering research program that supports cross-disciplinary research centers; the outreach flight experiments program that offers engineering research opportunities to universities; and the planned university investigator's research program to provide grants to individuals with outstanding credentials.
Mohanty, Anee; Wu, Yichao; Cao, Bin
2014-10-01
In natural and engineered environments, microorganisms often exist as complex communities, which are key to the health of ecosystems and the success of bioprocesses in various engineering applications. With the rapid development of nanotechnology in recent years, engineered nanomaterials (ENMs) have been considered one type of emerging contaminants that pose great potential risks to the proper function of microbial communities in natural and engineered ecosystems. The impacts of ENMs on microorganisms have attracted increasing research attentions; however, most studies focused on the antimicrobial activities of ENMs at single cell and population level. Elucidating the influence of ENMs on microbial communities represents a critical step toward a comprehensive understanding of the ecotoxicity of ENMs. In this mini-review, we summarize and discuss recent research work on the impacts of ENMs on microbial communities in natural and engineered ecosystems, with an emphasis on their influences on the community structure and function. We also highlight several important research topics which may be of great interest to the research community.
Small gas turbine engine technology
NASA Technical Reports Server (NTRS)
Niedzwiecki, Richard W.; Meitner, Peter L.
1988-01-01
Performance of small gas turbine engines in the 250 to 1,000 horsepower size range is significantly lower than that of large engines. Engines of this size are typically used in rotorcraft, commutercraft, general aviation, and cruise missile applications. Principal reasons for the lower efficiencies of a smaller engine are well known: component efficients are lower by as much as 8 to 10 percentage points because of size effects. Small engines are designed for lower cycle pressures and temperatures because of smaller blading and cooling limitations. The highly developed analytical and manufacturing techniques evolved for large engines are not directly transferrable to small engines. Thus, it was recognized that a focused effort addressing technologies for small engies was needed and could significantly impact their performance. Recently, in-house and contract studies were undertaken at the NASA Lewis Research Center to identify advanced engine cycle and component requirements for substantial performance improvement of small gas turbines for projected year 2000 applications. The results of both in-house research and contract studies are presented. In summary, projected fuel savings of 22 to 42 percent could be obtained. Accompanying direct operating cost reductions of 11 to 17 percent, depending on fuel cost, were also estimated. High payoff technologies are identified for all engine applications, and recent results of experimental research to evolve the high payoff technologies are described.
ERIC Educational Resources Information Center
Lee, Chen Kang; Sidhu, Manjit Singh
2015-01-01
Engineering educators have been increasingly taking the learning style theories into serious consideration as part of their efforts to enhance the teaching and learning in engineering. This paper presents a research study to investigate the learning style preference of the mechanical engineering students in Universiti Tenaga Nasional (UNITEN),…
NASA Astrophysics Data System (ADS)
Fincher, Bridgette Ann
The purpose of this study was to describe the perceptions and approaches of 14 third-through-fifth grade Arkansan elementary teachers towards integrative engineering and engineering practices during 80 hours of integrated STEM professional development training in the summer and fall of 2014. This training was known as Project Flight. The purpose of the professional development was to learn integrated STEM content related to aviation and to write grade level curriculum units using Wiggins and McTighe's Understanding by Design curriculum framework. The current study builds upon on the original research. Using a mixed method exploratory, embedded QUAL[quan] case study design and a non-experimental convenience sample derived from original 20 participants of Project Flight, this research sought to answer the following question: Does professional development influence elementary teachers' perceptions of the curriculum and instruction of integrated STEM engineering and engineering practices in a 3-to-5 grade level setting? A series of six qualitative and one quantitative sub-questions informed the research of the mixed method question. Hermeneutic content analysis was applied to archival and current qualitative data sets while descriptive statistics, independent t-tests, and repeated measures ANOVA tests were performed on the quantitative data. Broad themes in the teachers' perceptions and understanding of the nature of integrated engineering and engineering practices emerged through triangulation. After the professional development and the teaching of the integrated STEM units, all 14 teachers sustained higher perceptions of personal self-efficacy in their understanding of Next Generation Science Standards (NGSS). The teachers gained understanding of engineering and engineering practices, excluding engineering habits of mind, throughout the professional development training and unit teaching. The research resulted in four major findings specific to elementary engineering, which included engineering as student social agency and empowerment and the emergence of the engineering design loop as a new heuristic, and three more general non-engineering specific findings. All seven, however, have implications for future elementary engineering professional development as teachers in adopting states start to transition into using the NGSS standards.
Ethics in published brain-computer interface research
NASA Astrophysics Data System (ADS)
Specker Sullivan, L.; Illes, J.
2018-02-01
Objective. Sophisticated signal processing has opened the doors to more research with human subjects than ever before. The increase in the use of human subjects in research comes with a need for increased human subjects protections. Approach. We quantified the presence or absence of ethics language in published reports of brain-computer interface (BCI) studies that involved human subjects and qualitatively characterized ethics statements. Main results. Reports of BCI studies with human subjects that are published in neural engineering and engineering journals are anchored in the rationale of technological improvement. Ethics language is markedly absent, omitted from 31% of studies published in neural engineering journals and 59% of studies in biomedical engineering journals. Significance. As the integration of technological tools with the capacities of the mind deepens, explicit attention to ethical issues will ensure that broad human benefit is embraced and not eclipsed by technological exclusiveness.
ERIC Educational Resources Information Center
Ciston, Shannon; Sehgal, Sanya; Mikel, Tressa; Carnasciali, Maria-Isabel
2018-01-01
Adult undergraduate students aged 25+ in engineering disciplines are an important demographic bringing a wealth of life experience to the classroom. This study uses qualitative data drawn from semi-structured interviews with two groups of undergraduate chemical engineering students at a large, public research university: adult students with…
The Use of Motivation Theory in Engineering Education Research: A Systematic Review of Literature
ERIC Educational Resources Information Center
Brown, Philip R.; McCord, Rachel E.; Matusovich, Holly M.; Kajfez, Rachel L.
2015-01-01
Motivation is frequently studied in the context of engineering education. However, the use of the term motivation can be inconsistent, both in how clearly it is defined and in how it is implemented in research designs and practice. This systematic literature review investigates the use of motivation across recent engineering education…
ERIC Educational Resources Information Center
Mena, Irene B.; Diefes-Dux, Heidi A.
2012-01-01
Students' perceptions of engineering have been documented through studies involving interviews, surveys, and word associations that take a direct approach to asking students about various aspects of their understanding of engineering. Research on perceptions of engineering rarely focuses on how students would portray engineering to others.…
ERIC Educational Resources Information Center
Aleta, Beda T.
2016-01-01
This research study aims to determine the factors of engineering skills self- efficacy sources contributing on the academic performance of AMAIUB engineering students. Thus, a better measure of engineering self-efficacy is needed to adequately assess engineering students' beliefs in their capabilities to perform tasks in their engineering…
NACA Lewis Researcher and Technicians Discuss a Test Setup
1956-12-21
Researcher Bill Reiwaldt discusses the preparations for a test in the Altitude Wind Tunnel with technicians Jack Wagner and Dick Golladay at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. Research engineers developed ideas for tests that were often in response to requests from the military or aircraft industry. Arrangements were made to obtain an engine for the study and to transport it to the Cleveland laboratory. The engine was brought into the facility’s shop area, where it was readied for investigation. It was common for several different engines to be worked on simultaneously in the shop. The researcher would discuss the engine and the test objectives with the Test Installation Division and the facility’s technicians. The operations team would handle the installation of the instrumentation and fitting the test into the facility’s schedule. Upon completion of the previous test, the engine was removed. The next engine was lifted by an overhead crane and transported from the shop to the test section. The engine was connected to the measurement devices and fuel and oil supply lines. Engines were tested over numerous runs under varying conditions and with variations on the configuration. The findings and test procedure were then described in research or technical memorandums and distributed to industry.
Women Engineers and the Influence of Childhood Technologic Environment
ERIC Educational Resources Information Center
Mazdeh, Shahla
2011-01-01
This phenomenological multi-case study investigated the influence of women engineers' childhood exposure to engineering concepts on their preparation for an engineering profession. An ecologic model (Bronfenbrenner, 1979) was used as the conceptual framework of this research. Twelve professional women engineers from various age and…
Trends in tissue engineering research.
Hacker, Michael C; Mikos, Antonios G
2006-08-01
For more than a decade, Tissue Engineering has been devoted to the reporting and discussion of scientific advances in the interdisciplinary field of tissue engineering. In this study, 779 original articles published in the journal since its inception were analyzed and classified according to different attributes, such as focus of research and tissue of interest, to reveal trends in tissue engineering research. In addition, the use of different biomaterials, scaffold architectures, surface and bulk modification agents, cells, differentiation factors, gene delivery vectors, and animal models was examined. The results of this survey show interesting trends over time and by continental origin.
Samadzadeh, Gholam Reza; Rigi, Tahereh; Ganjali, Ali Reza
2013-01-01
Surveying valuable and most recent information from internet, has become vital for researchers and scholars, because every day, thousands and perhaps millions of scientific works are brought out as digital resources which represented by internet and researchers can't ignore this great resource to find related documents for their literature search, which may not be found in any library. With regard to variety of documents presented on the internet, search engines are one of the most effective search tools for finding information. The aim of this study is to evaluate the three criteria, recall, preciseness and importance of the four search engines which are PubMed, Science Direct, Google Scholar and federated search of Iranian National Medical Digital Library in addiction (prevention and treatment) to select the most effective search engine for offering the best literature research. This research was a cross-sectional study by which four popular search engines in medical sciences were evaluated. To select keywords, medical subject heading (Mesh) was used. We entered given keywords in the search engines and after searching, 10 first entries were evaluated. Direct observation was used as a mean for data collection and they were analyzed by descriptive statistics (number, percent number and mean) and inferential statistics, One way analysis of variance (ANOVA) and post hoc Tukey in Spss. 15 statistical software. P Value < 0.05 was considered statistically significant. Results have shown that the search engines had different operations with regard to the evaluated criteria. Since P Value was 0.004 < 0.05 for preciseness and was 0.002 < 0.05 for importance, it shows significant difference among search engines. PubMed, Science Direct and Google Scholar were the best in recall, preciseness and importance respectively. As literature research is one of the most important stages of research, it's better for researchers, especially Substance-Related Disorders scholars to use different search engines with the best recall, preciseness and importance in that subject field to reach desirable results while searching and they don't depend on just one search engine.
Samadzadeh, Gholam Reza; Rigi, Tahereh; Ganjali, Ali Reza
2013-01-01
Background Surveying valuable and most recent information from internet, has become vital for researchers and scholars, because every day, thousands and perhaps millions of scientific works are brought out as digital resources which represented by internet and researchers can’t ignore this great resource to find related documents for their literature search, which may not be found in any library. With regard to variety of documents presented on the internet, search engines are one of the most effective search tools for finding information. Objectives The aim of this study is to evaluate the three criteria, recall, preciseness and importance of the four search engines which are PubMed, Science Direct, Google Scholar and federated search of Iranian National Medical Digital Library in addiction (prevention and treatment) to select the most effective search engine for offering the best literature research. Materials and Methods This research was a cross-sectional study by which four popular search engines in medical sciences were evaluated. To select keywords, medical subject heading (Mesh) was used. We entered given keywords in the search engines and after searching, 10 first entries were evaluated. Direct observation was used as a mean for data collection and they were analyzed by descriptive statistics (number, percent number and mean) and inferential statistics, One way analysis of variance (ANOVA) and post hoc Tukey in Spss. 15 statistical software. P Value < 0.05 was considered statistically significant. Results Results have shown that the search engines had different operations with regard to the evaluated criteria. Since P Value was 0.004 < 0.05 for preciseness and was 0.002 < 0.05 for importance, it shows significant difference among search engines. PubMed, Science Direct and Google Scholar were the best in recall, preciseness and importance respectively. Conclusions As literature research is one of the most important stages of research, it's better for researchers, especially Substance-Related Disorders scholars to use different search engines with the best recall, preciseness and importance in that subject field to reach desirable results while searching and they don’t depend on just one search engine. PMID:24971257
Freshman-year experiences for African-American students in engineering
NASA Astrophysics Data System (ADS)
Chapple, Bernadette Maria
1998-12-01
The purpose of this study was to discover (a) why African American students choose to persist as an engineering major and (b) why students choose to leave engineering as a major. A total of 17 students from a large land-grant university participated in this study that was both quantitative and qualitative in design. This research will assist both the College of Engineering and the University in understanding the educational experiences of the matriculating African American pre-engineering student. In an effort to provide reasons and rationale for why African American engineering students choose to stay in this major and why other African American engineering student majors choose to leave, the researcher examined an undergraduate engineering program at a large land-grant institution in the South. The College of Engineering at this institution was able to institute several programs designed to increase the number of African American students choosing engineering as a major. Although initiatives for pre-collegiate students are important in the retention of African American students, it is the retention of those students once accepted into a program of study that the institution focuses on most. It is the intent of this study to offer a better understanding of such a retention initiative. Due to the decline of African American students pursuing majors in science and mathematics in general and in engineering in particular, an important research concern is to offer more insight into the experiences of the freshman engineering student in an attempt to develop fundamental reasons for why students remain in engineering and why some students leave. To assist the College of Engineering and the University in understanding the educational experiences of the matriculating African American pre-engineering student the data were collected from both a quantitative and qualitative approach. Results indicated that (a) students who chose to persist in the engineering program where highly committed and motivated to achieve their educational goals and (b) students who decided to switch out of the engineering curriculum simply felt unprepared for the demands of the engineering curriculum and, upon further exploration of the curriculum, discovered that engineering was not the career they initially desired.
Quigley, Dianne
2015-02-01
A collaborative team of environmental sociologists, community psychologists, religious studies scholars, environmental studies/science researchers and engineers has been working together to design and implement new training in research ethics, culture and community-based approaches for place-based communities and cultural groups. The training is designed for short and semester-long graduate courses at several universities in the northeastern US. The team received a 3 year grant from the US National Science Foundation's Ethics Education in Science and Engineering in 2010. This manuscript details the curriculum topics developed that incorporate ethical principles, particularly for group protections/benefits within the field practices of environmental/engineering researchers.
Cognitive Mapping Techniques: Implications for Research in Engineering and Technology Education
ERIC Educational Resources Information Center
Dixon, Raymond A.; Lammi, Matthew
2014-01-01
The primary goal of this paper is to present the theoretical basis and application of two types of cognitive maps, concept map and mind map, and explain how they can be used by educational researchers in engineering design research. Cognitive mapping techniques can be useful to researchers as they study students' problem solving strategies…
ERIC Educational Resources Information Center
Williams, Sarah C.
2010-01-01
The purpose of this study was to investigate how federated search engines are incorporated into the Web sites of libraries in the Association of Research Libraries. In 2009, information was gathered for each library in the Association of Research Libraries with a federated search engine. This included the name of the federated search service and…
ERIC Educational Resources Information Center
Johnson, Andrew; Kuglitsch, Rebecca; Bresnahan, Megan
2015-01-01
This study used participatory and service design methods to identify emerging research needs and existing perceptions of library services among science and engineering faculty, post-graduate, and graduate student researchers based at a satellite campus at the University of Colorado Boulder. These methods, and the results of the study, allowed us…
Review of alternate automotive engine fuel economy. Final report January-October 78
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, D.; Bolt, J.A.; Huber, P.
This study assessed the potential of alternate automotive engines to meet the fuel economy goals and emission levels of the 1980-1990 period. As part of NHTSA's continuing research in support of the Department of Transportation fuel economy activities, this study reviewed those developments offering viable substitutes for the current spark ignition engine systems. Categories assessed included stratified charge, diesels, turbo charging, rotary/Wankel engines, and the developmental gas turbine and Stirling cycle engines. Results of past and on-going research through 1978 were reviewed along with the development and production status of various alternate engine technologies proposed for automobiles and light trucksmore » through the 1980s. Assessment was then made of the potential fuel economy improvement as a percentage of 1978 baseline data.« less
Failure is an option: Reactions to failure in elementary engineering design projects
NASA Astrophysics Data System (ADS)
Johnson, Matthew M.
Recent reform documents in science education have called for teachers to use epistemic practices of science and engineering researchers to teach disciplinary content (NRC, 2007; NRC, 2012; NGSS Lead States, 2013). Although this creates challenges for classroom teachers unfamiliar with engineering, it has created a need for high quality research about how students and teachers engage in engineering activities to improve curriculum development and teaching pedagogy. While framers of the Next Generation Science Standards (NRC, 2012; NGSS Lead States 2013) focused on the similarities of the practices of science researchers and engineering designers, some have proposed that engineering has a unique set of epistemic practices, including improving from failure (Cunningham & Carlsen, 2014; Cunningham & Kelly, in review). While no one will deny failures occur in science, failure in engineering is thought of in fundamentally different ways. In the study presented here, video data from eight classes of elementary students engaged in one of two civil engineering units were analyzed using methods borrowed from psychology, anthropology, and sociolinguistics to investigate: 1) the nature of failure in elementary engineering design; 2) the ways in which teachers react to failure; and 3) how the collective actions of students and teachers support or constrain improvement in engineering design. I propose new ways of considering the types and causes of failure, and note three teacher reactions to failure: the manager, the cheerleader, and the strategic partner. Because the goal of iteration in engineering is improvement, I also studied improvement. Students only systematically improve when they have the opportunity, productive strategies, and fair comparisons between prototypes. I then investigate the use of student engineering journals to assess learning from the process of improvement after failure. After discussion, I consider implications from this work as well as future research to advance our understanding in this area.
A Study of Trial and Error Learning in Technology, Engineering, and Design Education
ERIC Educational Resources Information Center
Franzen, Marissa Marie Sloan
2016-01-01
The purpose of this research study was to determine if trial and error learning was an effective, practical, and efficient learning method for Technology, Engineering, and Design Education students at the post-secondary level. A mixed methods explanatory research design was used to measure the viability of the learning source. The study sample was…
ERIC Educational Resources Information Center
Chikuvadze, Pinias; Matswetu, Vimbai Sharon; Mugijima, Samuel
2015-01-01
This study sought to explore female lecturers' participation in civil engineering research and development activities at one polytechnic in Zimbabwe. Case study design was chosen for this study to make predictions, narration of events, comparisons and drawing of conclusions. The female lecturers were purposively sampled to participate in the…
Examining Elementary Teachers' Engineering Self-Efficacy and Engineering Teacher Efficacy
ERIC Educational Resources Information Center
Hammack, Rebekah; Ivey, Toni
2017-01-01
Research indicates that teacher efficacy influences student achievement and is situation specific. With the Next Generation Science Standards calling for the incorporation of engineering practices into K-12 classrooms, it is important to identify teachers' engineering teaching efficacy. A study of K-5 teachers' engineering self-efficacy and…
Engineering students' experiences and perceptions of workplace problem solving
NASA Astrophysics Data System (ADS)
Pan, Rui
In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.
NASA Astrophysics Data System (ADS)
van den Bogaard, M.
2012-03-01
Student success is among the most widely researched areas in tertiary education. Generalisability of research in this field is problematic due to cultural and structural differences between countries, institutions and programmes where the research is done. Engineering education in the Netherlands has not been studied in depth. In this paper, outcomes of studies done outside and inside engineering and outside and inside the Netherlands are discussed to help understand the complexity of student retention issues. Although generalisation is an issue, there are a number of concepts and variables that surface in many of these studies, including students' background and disposition variables, education attributes, variables concerning educational climate and student behaviour. How these variables are related and how a university can apply the outcomes of research in this field of study are discussed in this paper.
ERIC Educational Resources Information Center
Young, Monica J.
2012-01-01
The purpose of this mixed-methods study was to better understand how female mechanical engineering faculty members' career experiences in academia affect their satisfaction. Specifically, the research considered differences in satisfaction reported by female and male mechanical engineering faculty members in terms of: (a) departmental…
Think first job! Preferences and expectations of engineering students in a French `Grande Ecole'
NASA Astrophysics Data System (ADS)
Gerwel Proches, Cecile N.; Chelin, Nathalie; Rouvrais, Siegfried
2018-03-01
A career in engineering may be appealing owing to the prospect of a good salary and a dynamic work environment. There may, however, be challenges for students wishing to enter their first job. In engineering education, career preparation courses may be included so as to prepare students adequately for their first job, future careers, and to reinforce career decision-making skills. This study explored the first-job preferences and expectations of engineering students at a generalist French 'Grande Ecole' before their compulsory internship. The study ultimately provided insight into ways in which future engineers may best be equipped for their first jobs. A qualitative research study was employed, using four focus groups to collect data, which was analysed thematically. Key findings indicate the resolute importance that engineering students place on having a challenging job, teamwork, independence, opportunities for development, and a participative style of being managed. The research findings may be of value in order to renew an engineering curriculum with better alignment between students' expectations and industry needs.
NASA Astrophysics Data System (ADS)
Gold, Zachary Samuel
Engineering play is a new perspective on preschool education that views constructive play as an engineering design process that parallels the way engineers think and work when they develop engineered solutions to human problems (Bairaktarova, Evangelou, Bagiati, & Brophy, 2011). Early research from this perspective supports its use in framing play as a key learning context. However, no research to date has examined associations between engineering play and other factors linked with early school success, such as executive function, mathematical ability, and spatial ability. Additionally, more research is needed to further validate a new engineering play observational measure. This study had two main goals: (1) to gather early validity data on the engineering play measure as a potentially useful instrument for documenting the occurrence of children's engineering play behaviors in educational contexts, such as block play. This was done by testing the factor structure of the engineering play behaviors in this sample and their association with preschoolers' planning, a key aspect of the engineering design process; (2) to explore associations between preschoolers' engineering play and executive function, mathematical ability, and spatial ability. Participants included 110 preschoolers (62 girls; 48 boys; M = 58.47 months) from 10 classrooms in the Midwest United States coded for their frequency of engagement in each of the nine engineering play behaviors. A confirmatory factor analysis resulted in one engineering play factor including six of the engineering play behaviors. A series of marginal regression models revealed that the engineering play factor was significantly and positively associated with the spatial horizontal rotation transformation. However, engineering play was not significantly related to planning ability, executive function, informal mathematical abilities, or other spatial transformation skills. Follow-up analyses revealed significant positive associations between engineering play and planning, executive function, and geometry for only a subgroup of children (n = 27) who had individualized education program (IEP) status. This was the first of a series of studies planned to evaluate the potential of the engineering play perspective as a tool for understanding young children's development and learning across multiple developmental domains. Although most hypotheses regarding engineering play and cognitive skills were not supported, the study provided partial evidence for the reliability and validity of the engineering play observation measure. Future research should include larger sample sizes with more statistical power, continued refinement of the engineering play observation measure, examination of potential associations with specific early learning domains, including spatial ability and language, and more comparisons of engineering play between typically developing children and children with disabilities.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.
1993-01-01
As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.
Performance of a Turboprop Engine with Heat Recovery in Off-Design Conditions
NASA Astrophysics Data System (ADS)
Andriani, Roberto; Ghezzi, Umberto; Gamma, Fausto; Ingenito, Antonella; Agresta, Antonio
2013-09-01
The research for fuel consumption and pollution reduction in new generation aero engines has indicated intercooling and regeneration as very effective methods for this purpose. Hence, different countries have joined their efforts in common research programs, to develop new gas turbine engines able to reduce considerably the fuel consumption and the ambient impact by means of these two techniques. To study their effects on the engine performance and characteristics, a thermodynamic numerical program that simulates the behavior of a turboprop engine with intercooling and regeneration in different operating conditions has been developed. After the parametric study, and the definition of the design conditions, the off-design analysis is carried on, comparing the main characteristics of the intercooled-regenerated turboprop with those of a conventional engine. Then, once a particular mission profile was fixed, the engine performance, in particular the equivalent power, the fuel consumption and the heat exchanger weight were discussed.
Creating meaningful learning experiences: Understanding students' perspectives of engineering design
NASA Astrophysics Data System (ADS)
Aleong, Richard James Chung Mun
There is a societal need for design education to prepare holistic engineers with the knowledge, skills, and attitudes to innovate and compete globally. Design skills are paramount to the espoused values of higher education, as institutions of higher learning strive to develop in students the cognitive abilities of critical thinking, problem solving, and creativity. To meet these interests from industry and academia, it is important to advance the teaching and learning of engineering design. This research aims to understand how engineering students learn and think about design, as a way for engineering educators to optimize instructional practice and curriculum development. Qualitative research methodology was used to investigate the meaning that engineering students' ascribe to engineering design. The recruitment of participants and corresponding collection of data occurred in two phases using two different data collection techniques. The first phase involved the distribution of a one-time online questionnaire to all first year, third year, and fourth year undergraduate engineering students at three Canadian Universities. After the questionnaire, students were asked if they would be willing to participate in the second phase of data collection consisting of a personal interview. A total of ten students participated in interviews. Qualitative data analysis procedures were conducted on students' responses from the questionnaire and interviews. The data analysis process consisted of two phases: a descriptive phase to code and categorize the data, followed by an interpretative phase to generate further meaning and relationships. The research findings present a conceptual understanding of students' descriptions about engineering design, structured within two educational orientations: a learning studies orientation and a curriculum studies orientation. The learning studies orientation captured three themes of students' understanding of engineering design: awareness, relevance, and transfer. With this framework of student learning, engineering educators can enhance learning experiences by engaging all three levels of students' understanding. The curriculum studies orientation applied the three holistic elements of curriculum---subject matter, society, and the individual---to conceptualize design considerations for engineering curriculum and teaching practice. This research supports the characterization of students' learning experiences to help educators and students optimize their teaching and learning of design education.
Boeing B–29 Superfortress at the Aircraft Engine Research Laboratory
1944-07-21
A Boeing B–29 Superfortress at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory in Cleveland, Ohio. The B–29 was the Army Air Forces’ deadliest weapon during the latter portion of World War II. The aircraft was significantly larger than previous bombers but could fly faster and higher. The B–29 was intended to soar above anti-aircraft fire and make pinpoint drops onto strategic targets. The bomber was forced to carry 20,000 pounds more armament than it was designed for. The extra weight pushed the B–29’s four powerful Wright R–3350 engines to their operating limits. The over-heating of the engines proved to be a dangerous problem. The military asked the NACA to tackle the issue. Full-scale engine tests on a R–3350 engine in the Prop House demonstrated that a NACA-designed impeller increased the flow rate of the fuel injection system. Altitude Wind Tunnel studies of the engine led to the reshaping of cowling inlet and outlet to improve airflow and reduce drag. Single-cylinder studies on valve failures were resolved by a slight extension of the cylinder head, and the Engine Research Building researchers combated uneven heating with a new fuel injection system. The modifications were then tried out on an actual B–29. The bomber arrived in Cleveland on June 22, 1944. The new injection impeller, ducted head baffles and instrumentation were installed on the bomber’s two left wing engines. Eleven test flights were flown over the next month with military pilots at the helm. Overall the flight tests corroborated the wind tunnel and test stand studies.
CMC Technology Advancements for Gas Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2013-01-01
CMC research at NASA Glenn is focused on aircraft propulsion applications. The objective is to enable reduced engine emissions and fuel consumption for more environmentally friendly aircraft. Engine system studies show that incorporation of ceramic composites into turbine engines will enable significant reductions in emissions and fuel burn due to increased engine efficiency resulting from reduced cooling requirements for hot section components. This presentation will describe recent progress and challenges in developing fiber and matrix constituents for 2700 F CMC turbine applications. In addition, ongoing research in the development of durable environmental barrier coatings, ceramic joining integration technologies and life prediction methods for CMC engine components will be reviewed.
40 CFR 1068.210 - What are the provisions for exempting test engines/equipment?
Code of Federal Regulations, 2010 CFR
2010-07-01
... exempt engines/equipment that you will use for research, investigations, studies, demonstrations, or... test engines/equipment? 1068.210 Section 1068.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR ENGINE PROGRAMS Exemptions...
40 CFR 1068.210 - What are the provisions for exempting test engines/equipment?
Code of Federal Regulations, 2011 CFR
2011-07-01
... exempt engines/equipment that you will use for research, investigations, studies, demonstrations, or... test engines/equipment? 1068.210 Section 1068.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR ENGINE PROGRAMS Exemptions...
NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1990
NASA Technical Reports Server (NTRS)
Spencer, John H. (Compiler)
1990-01-01
Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. The objectives are to further the professional knowledge of qualified engineering and science members; to stimulate and exchange ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objectives of the NASA center. The study program consists of lectures and seminars on topics of interest or that are directly relevant to the research topics.
NASA Astrophysics Data System (ADS)
Kersten, Jennifer Anna
In recent years there has been increasing interest in engineering education at the K-12 level, which has resulted in states adopting engineering standards as a part of their academic science standards. From a national perspective, the basis for research into engineering education at the K-12 level is the belief that it is of benefit to student learning, including to "improve student learning and achievement in science and mathematics; increase awareness of engineering and the work of engineers; boost youth interest in pursuing engineering as a career; and increase the technological literacy of all students" (National Research Council, 2009a, p. 1). The above has led to a need to understand how teachers are currently implementing engineering education in their classrooms. High school physics teachers have a history of implementing engineering design projects in their classrooms, thus providing an appropriate setting to look for evidence of quality engineering education at the high school level. Understanding the characteristics of quality engineering integration can inform curricular and professional development efforts for teachers asked to implement engineering in their classrooms. Thus, the question that guided this study is: How, and to what extent, do physics teachers represent quality engineering in a physics unit focused on engineering? A case study research design was implemented for this project. Three high school physics teachers were participants in this study focused on the integration of engineering education into the physics classroom. The data collected included observations, interviews, and classroom documents that were analyzed using the Framework for Quality K-12 Engineering Education (Moore, Glancy et al., 2013). The results provided information about the areas of the K-12 engineering framework addressed during these engineering design projects, and detailed the quality of these lesson components. The results indicate that all of the design projects contained components of the indicators central to engineering education, although with varied degrees of success. In addition, each design project contained aspects important to the development of students' understanding of engineering and that promote important professional skills used by engineers. The implications of this work are discussed at the teacher, school, professional development, and policy levels.
Case study research: training interdisciplinary engineers with context-dependent knowledge
NASA Astrophysics Data System (ADS)
Chanan, Amit; Vigneswaran, Saravanamuth; Kandasamy, Jaya
2012-03-01
It is now widely acknowledged that water management discipline is transforming, from being a public health and flood prevention challenge of the nineteenth century to a multi-dimensional challenge of water security for the twenty-first century. In order to train water engineers to be capable of working with this holistic multi-dimensional approach, a new paradigm in engineering education is required. Adjustments already made to undergraduate coursework are not enough; this new paradigm requires modifications to the PhD in engineering, with greater emphasis on interdisciplinary case study research. Such a change can deliver PhD graduates with both sufficient social and technical knowledge, who can then go on to become the hybrid lecturers crucially needed for training future water engineers.
Research approach to teaching groundwater biodegradation in karst aquifers
King, L.; Byl, T.; Painter, R.
2006-01-01
TSU in partnership with the USGS has conducted extensive research regarding biode??gradation of contaminants in karst aquifers. This research resulted in the development of a numerical approach to modeling biodegradation of contaminants in karst aquifers that is taught to environmental engineering students in several steps. First, environmental engineering students are taught chemical-reaction engineering principles relating to a wide variety of environmental fate and transport issues. Second, as part of TSU's engineering course curriculum, students use a non-ideal flow laboratory reactor system and run a tracer study to establish residence time distribution (RTD). Next, the students couple that formula to a first-order biodegradation rate and predict the removal of a biodegradable contaminant as a function of residence time. Following this, students are shown data collected from karst bedrock wells that suggest that karst aquifers are analogous to non-ideal flow reactors. The students are challenged to develop rates of biodegradation through lab studies and use their results to predict biodegradaton at an actual contaminated karst site. Field studies are also conducted to determine the accuracy of the students' predictions. This academic approach teaches biodegradation processes, rate-kinetic processes, hydraulic processes and numerical principles. The students are able to experience how chemical engineering principles can be applied to other situations, such as, modeling biodegradation of contaminants in karst aquifers. This paper provides background on the chemical engineering principles and karst issues used in the research-enhanced curriculum. ?? American Society for Engineering Education, 2006.
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria R.; Seifert, Colleen M.; Papalambros, Panos Y.
2012-01-01
The design of large-scale complex engineered systems (LaCES) such as an aircraft is inherently interdisciplinary. Multiple engineering disciplines, drawing from a team of hundreds to thousands of engineers and scientists, are woven together throughout the research, development, and systems engineering processes to realize one system. Though research and development (R&D) is typically focused in single disciplines, the interdependencies involved in LaCES require interdisciplinary R&D efforts. This study investigates the interdisciplinary interactions that take place during the R&D and early conceptual design phases in the design of LaCES. Our theoretical framework is informed by both engineering practices and social science research on complex organizations. This paper provides preliminary perspective on some of the organizational influences on interdisciplinary interactions based on organization theory (specifically sensemaking), data from a survey of LaCES experts, and the authors experience in the research and design. The analysis reveals couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their significant benefit to the engineered system, such as innovation and problem mitigation. Substantial obstacles to interdisciplinarity are uncovered beyond engineering that include communication and organizational challenges. Addressing these challenges may ultimately foster greater efficiencies in the design and development of LaCES and improved system performance by assisting with the collective integration of interdependent knowledge bases early in the R&D effort. This research suggests that organizational and human dynamics heavily influence and even constrain the engineering effort for large-scale complex systems.
ERIC Educational Resources Information Center
Ndem, Joseph; Ogba, Ernest; Egbe, Benjamin
2015-01-01
This study was designed to assess the agricultural engineering knowledge and competencies acquired by the senior secondary students for farm mechanization in technical colleges in Ebonyi state of Nigeria. A survey research design was adopted for the study. Three research questions and two null hypotheses guided the study. The population of the…
Research Talent in the Natural Sciences and Engineering: Supply and Demand Projections to 1990.
ERIC Educational Resources Information Center
Natural Sciences and Engineering Research Council, Ottawa (Ontario).
This report presents conditional forecasts of the research talent required for the Canadian government's economic growth and research and development (R&D) targets. A number of alternative scenarios are also assessed. The study limits itself to postgraduate manpower in the natural sciences and engineering. Following an executive summary and…
Fifth Grade Students' Understanding of Ratio and Proportion in an Engineering Robotics Program
ERIC Educational Resources Information Center
Ortiz, Araceli Martinez
2010-01-01
The research described in this dissertation explores the impact of utilizing a LEGO-robotics integrated engineering and mathematics program to support fifth grade students' learning of ratios and proportion in an extracurricular program. The research questions guiding this research study were (1) how do students' test results compare for students…
Engineers' Perceptions of Diversity and the Learning Environment at Work: A Mixed Methods Study
ERIC Educational Resources Information Center
Firestone, Brenda L.
2012-01-01
The purpose of this dissertation research study was to investigate engineers' perceptions of diversity and the workplace learning environment surrounding diversity education efforts in engineering occupations. The study made use of a mixed methods methodology and was theoretically framed using a critical feminist adult education lens and…
NASA Astrophysics Data System (ADS)
Santiago, Marisol Mercado
Culturally responsive teaching has been argued to be effective in the education of Indigenous youth. This approach emphasizes the legitimacy of a group's cultural heritage, helps to associate abstract academic knowledge with the group's sociocultural context, seeks to incorporate a variety of strategies to engage students who have different learning styles, and strives to integrate multicultural information in the educational contents, among other considerations. In this work, I explore the outcomes of a culturally responsive introductory engineering short course that I developed and taught to Tibetan students at Tibetan Children's Village of Selakui (in Uttarakhand, India). Based on my ethnographic research in Tibetan communities in northern India, I examine two research questions: (a) What are the processes to develop and implement a pre-college culturally responsive introductory engineering course? and (b) How do Tibetan culture and Buddhism influence the engineering design and teamwork of the pre-college Tibetan students who took the course? I designed then taught the course that featured elementary lectures on sustainability, introductory engineering design, energy alternatives, and manufacturing engineering. The course also included a pre-college engineering design project through which Tibetan high school students investigated a problem at the school and designed a possible solution to it. Drawing from postcolonial studies, engineering studies, engineering and social justice, Buddhist studies, and Tibetan studies, I provide an analysis of my findings. Based on my findings, I conclude that my culturally responsive approach of teaching was an effective method to help students feel that their cultural background was respected and included in a pre-college engineering course; however, some students felt resistance toward the teaching approach. In addition, the culturally relevant content that connected with their ways of living in their school, Tibetan communities, and surroundings helped the students to relate to abstract concepts in familiar settings. Lastly, they appreciated that I brought to the course relevant information about technology and society in India (their host country), engineers' work in industry, technologies used in other contexts as well, and projects that show how engineers can help to alleviate poverty. The findings of my research can inform (a) educators who are interested in integrating culturally responsive activities in their teaching methods, (b) researchers or teachers in ethnic minority schools abroad, (c) educators interested in developing engineering activities or courses for underrepresented ethnic minorities, ethnic diasporas or refugee youth in the United States, and (d) facilitators at multicultural engineering summer camps in the United States.
Martin B-57B Canberra with a Noise Suppressor on its Right Engine
1966-09-21
A Martin B-57B Canberra outfitted with a noise suppressor on its right engine at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The aircraft was being prepared for the October 1966 Inspection of the center. The Inspection also marked Lewis’ twentieth anniversary. Lewis researchers had been studying engine noise for almost a decade, but the problem seemed to be increasing in the mid-1960s with heavier airline traffic and larger engines. Researchers discovered early on that the majority of the noise did not emanate from the engine itself, but from the mixing of the hot exhaust gasses with the atmosphere. Attempts to reduce the turbulence using new exhaust nozzles were successful but often resulted in decreased engine performance. The researchers decided to try to lower the jet nozzle exit velocity without decreasing its thrust. The inlet mass air flow had to be increased to accomplish this. The Lewis B-57B was powered by two Wright Aeronautical J65 turbojets. Lewis engineers modified the stators on the two engines to simulate the noise levels from more-modern turbofan engines. A noise suppressor was added to only one of the two engines, seen here on the left. The engines were run one at a time at power levels similar to landing while the aircraft sat on the Lewis hangar apron. A microphone and recording equipment was setup to capture the noise levels. The engine with the suppressor produced 13 fewer decibels than the standard engine.
Cleaner, More Efficient Diesel Engines
Musculus, Mark
2018-01-16
Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.
US Nuclear Engineering Education: Status and prospects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
This study, conducted under the auspices of the Energy Engineering Board of the National Research Council, examines the status of and outlook for nuclear engineering education in the United States. The study, as described in this report resulted from a widely felt concern about the downward trends in student enrollments in nuclear engineering, in both graduate and undergraduate programs. Concerns have also been expressed about the declining number of US university nuclear engineering departments and programs, the ageing of their faculties, the appropriateness of their curricula and research funding for industry and government needs, the availability of scholarships and researchmore » funding, and the increasing ratio of foreign to US graduate students. A fundamental issue is whether the supply of nuclear engineering graduates will be adequate for the future. Although such issues are more general, pertaining to all areas of US science and engineering education, they are especially acute for nuclear engineering education. 30 refs., 24 figs., 49 tabs.« less
Intelligent Life-Extending Controls for Aircraft Engines Studied
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei
2005-01-01
Current aircraft engine controllers are designed and operated to provide desired performance and stability margins. Except for the hard limits for extreme conditions, engine controllers do not usually take engine component life into consideration during the controller design and operation. The end result is that aircraft pilots regularly operate engines under unnecessarily harsh conditions to strive for optimum performance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward an intelligent control concept that will include engine life as part of the controller design criteria. This research includes the study of the relationship between control action and engine component life as well as the design of an intelligent control algorithm to provide proper tradeoffs between performance and engine life. This approach is expected to maintain operating safety while minimizing overall operating costs. In this study, the thermomechanical fatigue (TMF) of a critical component was selected to demonstrate how an intelligent engine control algorithm can significantly extend engine life with only a very small sacrifice in performance. An intelligent engine control scheme based on modifying the high-pressure spool speed (NH) was proposed to reduce TMF damage from ground idle to takeoff. The NH acceleration schedule was optimized to minimize the TMF damage for a given rise-time constraint, which represents the performance requirement. The intelligent engine control scheme was used to simulate a commercial short-haul aircraft engine.
de Vries, Rob B M; Buma, Pieter; Leenaars, Marlies; Ritskes-Hoitinga, Merel; Gordijn, Bert
2012-12-01
The use of laboratory animals in tissue engineering research is an important underexposed ethical issue. Several ethical questions may be raised about this use of animals. This article focuses on the possibilities of reducing the number of animals used. Given that there is considerable debate about the adequacy of the current animal models in tissue engineering research, we investigate whether it is possible to reduce the number of laboratory animals by selecting and using only those models that have greatest predictive value for future clinical application of the tissue engineered product. The field of articular cartilage tissue engineering is used as a case study. Based on a study of the scientific literature and interviews with leading experts in the field, an overview is provided of the animal models used and the advantages and disadvantages of each model, particularly in terms of extrapolation to the human situation. Starting from this overview, it is shown that, by skipping the small models and using only one large preclinical model, it is indeed possible to restrict the number of animal models, thereby reducing the number of laboratory animals used. Moreover, it is argued that the selection of animal models should become more evidence based and that researchers should seize more opportunities to choose or create characteristics in the animal models that increase their predictive value.
A study of the historical role of African Americans in science, engineering and technology
NASA Astrophysics Data System (ADS)
Jones, Keith Wayne
2000-11-01
The purpose of this study was to determine if there is adequate documentation of an historical role of African and African American involvement in science, engineering, and technology. Through the use of history of science and technology research methodology, along with an examination of the sociological and economic impacts of adequately accredited innovations and inventions contributed by Africans and African Americans, the researcher investigated their contributions to the following areas of science and technology: life science, physical sciences and chemistry, engineering, and science education. In regard to the timeframe for this study, the researcher specifically investigated African and African American involvement in science and technology that includes periods prior to black enslavement, scientific racism and colonialism, as well as during and after those periods. This research study reveals that there are adequate historical data regarding African and African American contributions to science, engineering, and technology. The data reveals that for many millennia African peoples have been continually involved in science and world science histories. The data further show that the numbers of African Americans acquiring BS, MS, Ph.D., Doctor of Science and Doctor of Engineering degrees in science and engineering disciplines are increasing. That these increases are not happening at a rate representative of the present or future African American percentages of the population. Consequently, because of future changes in our nation's demographics, increasing the numbers of people from under-represented groups who pursue scientific and engineering professions has become a matter of national security at the highest levels of government. Moreover, African Americans, Hispanics, and Native Americans are not pursuing careers or taking courses in science and engineering at a rate high enough to fulfill the prospective needs for the United States' industries, government, and military. Projections are that, in the 21st century, there will be even greater needs for more scientists, engineers, information technologists, and other types of scientific workers. The data from this study indicate that more inclusive history of science and technology can be used as a means for encouraging more people from under-represented groups to become scientifically literate and to pursue science and engineering careers.
Wang, Xiaofeng; Abrahamsson, Pekka
2014-01-01
For more than thirty years, it has been claimed that a way to improve software developers’ productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states—emotions and moods—deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint. PMID:24688866
Graziotin, Daniel; Wang, Xiaofeng; Abrahamsson, Pekka
2014-01-01
For more than thirty years, it has been claimed that a way to improve software developers' productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states-emotions and moods-deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint.
Multi-fuel rotary engine for general aviation aircraft
NASA Technical Reports Server (NTRS)
Jones, C.; Ellis, D. R.; Meng, P. R.
1983-01-01
Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.
Global tissue engineering trends. A scientometric and evolutive study.
Santisteban-Espejo, Antonio; Campos, Fernando; Martin-Piedra, Laura; Durand-Herrera, Daniel; Moral-Munoz, Jose A; Campos, Antonio; Martin-Piedra, Miguel Angel
2018-04-24
Tissue engineering is defined as a multidisciplinary scientific discipline with the main objective to develop artificial bioengineered living tissues in order to regenerate damaged or lost tissues. Since its appearance in 1988, tissue engineering has globally spreaded in order to improve current therapeutical approaches, entailing a revolution in clinical practice. The aim of this study is to analyze global research trends on tissue engineering publications in order to realize the scenario of tissue engineering research from 1991 to 2016 by using document retrieval from Web of Science database and bibliometric analysis. Document type, language, source title, authorship, countries and filiation centers and citation count were evaluated in 31,859 documents. Obtained results suggest a great multidisciplinary role of tissue engineering due to a wide spectrum -up to 51- of scientific research areas identified in the corpus of literature, being predominant technological disciplines as Material Sciences or Engineering, followed by biological and biomedical areas, as Cell Biology, Biotechnology or Biochemistry. Distribution of authorship, journals and countries revealed a clear imbalance in which a minority is responsible of a majority of documents. Such imbalance is notorious in authorship, where a 0.3% of authors are involved in the half of the whole production.
Clase, Kari L; Hein, Patrick W; Pelaez, Nancy J
2008-12-01
Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary boundaries, students need to practice interdisciplinary communication in academic programs that connect students in diverse disciplines. This report surveys policy documents relevant to this emphasis on interdisciplinary training and suggests a changing role for physiology courses in bioscience and engineering programs. A role for a physiology course is increasingly recommended for engineering programs, but the study of physiology from an engineering perspective might differ from the study of physiology as a basic science. Indeed, physiology laboratory courses provide an arena where biomedical engineering and bioscience students can apply knowledge from both fields while cooperating in multidisciplinary teams under specified technical constraints. Because different problem-solving approaches are used by students of engineering and bioscience, instructional innovations are needed to break down stereotypes between the disciplines and create an educational environment where interdisciplinary teamwork is used to bridge differences.
Motivational and adaptational factors of successful women engineers
NASA Astrophysics Data System (ADS)
Bornsen, Susan Edith
It is no surprise that there is a shortage of women engineers. The reasons for the shortage have been researched and discussed in myriad papers, and suggestions for improvement continue to evolve. However, there are few studies that have specifically identified the positive aspects that attract women to engineering and keep them actively engaged in the field. This paper examines how women engineers view their education, their work, and their motivation to remain in the field. A qualitative research design was used to understand the motivation and adaptability factors women use to support their decision to major in engineering and stay in the engineering profession. Women engineers were interviewed using broad questions about motivation and adaptability. Interviews were transcribed and coded, looking for common threads of factors that suggest not only why women engineers persist in the field, but also how they thrive. Findings focus on the experiences, insights, and meaning of women interviewed. A grounded theory approach was used to describe the success factors found in practicing women engineers. The study found categories of attraction to the field, learning environment, motivation and adaptability. Sub-categories of motivation are intrinsic motivational factors such as the desire to make a difference, as well as extrinsic factors such as having an income that allows the kind of lifestyle that supports the family. Women engineers are comfortable with and enjoy working with male peers and when barriers arise, women learn to adapt in the male dominated field. Adaptability was indicated in areas of gender, culture, and communication. Women found strength in the ability to 'read' their clients, and provide insight to their teams. Sufficient knowledge from the field advances theory and offers strategies to programs for administrators and faculty of schools of engineering as well as engineering firms, who have interest in recruitment, and retention of female students. Future research includes expanding the research to other areas of the United States, and improving engineering education pedagogy with more active and experiential learning.
Persistence, Engagement, and Migration in Engineering Programs. Research Brief
ERIC Educational Resources Information Center
Ohland, Matthew W.; Sheppard, Sheri D.; Lichtenstein, Gary; Eris, Ozgur; Chachra, Debbie; Layton, Richard A.
2008-01-01
Those responsible for designing, maintaining, and delivering engineering education are asking questions to understand the outcomes of undergraduate engineering programs. These questions have been motivated by concerns about the declining interest in studying engineering, the continued lack of gender and ethnic diversity in the engineering…
Collected Software Engineering Papers, Volume 10
NASA Technical Reports Server (NTRS)
1992-01-01
This document is a collection of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) from Oct. 1991 - Nov. 1992. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. Although these papers cover several topics related to software engineering, they do not encompass the entire scope of SEL activities and interests. Additional information about the SEL and its research efforts may be obtained from the sources listed in the bibliography at the end of this document. For the convenience of this presentation, the 11 papers contained here are grouped into 5 major sections: (1) the Software Engineering Laboratory; (2) software tools studies; (3) software models studies; (4) software measurement studies; and (5) Ada technology studies.
Graduate Research in Technology and Engineering Education: 2000-2009
ERIC Educational Resources Information Center
Foster, W. Tad
2010-01-01
The purpose of this study was to amass as comprehensive a collection of dissertations and theses in technology and engineering education as possible, and to conduct a modified meta-analysis of this body of research. The current study was limited to dissertations and theses completed between 2000 and 2009 that were identified using the ProQuest…
Anxiety among Engineering Students in a Graduate EFL Classroom
ERIC Educational Resources Information Center
Samoilova, Valeriia; Thanh, Vo Duy; Wilang, Jeffrey Dawala
2017-01-01
This article reports the descriptive results of foreign language anxiety experiences of engineering students in a top-ranked research university in Thailand. Although numerous studies have been conducted in the past years about English language anxiety, few studies have reported anxiety situations specific to Thai engineering graduate students in…
34 CFR 350.34 - Which Rehabilitation Engineering Research Centers must have an advisory committee?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 34 Education 2 2013-07-01 2013-07-01 false Which Rehabilitation Engineering Research Centers must... Engineering Research Centers Does the Secretary Assist? § 350.34 Which Rehabilitation Engineering Research Centers must have an advisory committee? A Rehabilitation Engineering Research Center conducting research...
34 CFR 350.34 - Which Rehabilitation Engineering Research Centers must have an advisory committee?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 2 2010-07-01 2010-07-01 false Which Rehabilitation Engineering Research Centers must... Engineering Research Centers Does the Secretary Assist? § 350.34 Which Rehabilitation Engineering Research Centers must have an advisory committee? A Rehabilitation Engineering Research Center conducting research...
34 CFR 350.34 - Which Rehabilitation Engineering Research Centers must have an advisory committee?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 2 2014-07-01 2013-07-01 true Which Rehabilitation Engineering Research Centers must... Engineering Research Centers Does the Secretary Assist? § 350.34 Which Rehabilitation Engineering Research Centers must have an advisory committee? A Rehabilitation Engineering Research Center conducting research...
34 CFR 350.34 - Which Rehabilitation Engineering Research Centers must have an advisory committee?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 34 Education 2 2011-07-01 2010-07-01 true Which Rehabilitation Engineering Research Centers must... Engineering Research Centers Does the Secretary Assist? § 350.34 Which Rehabilitation Engineering Research Centers must have an advisory committee? A Rehabilitation Engineering Research Center conducting research...
34 CFR 350.34 - Which Rehabilitation Engineering Research Centers must have an advisory committee?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 34 Education 2 2012-07-01 2012-07-01 false Which Rehabilitation Engineering Research Centers must... Engineering Research Centers Does the Secretary Assist? § 350.34 Which Rehabilitation Engineering Research Centers must have an advisory committee? A Rehabilitation Engineering Research Center conducting research...
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.
1993-01-01
An exploratory study was conducted that investigated the influence of technical uncertainty and project complexity on information use by U.S. industry-affiliated aerospace engineers and scientists. The study utilized survey research in the form of a self-administered mail questionnaire. U.S. aerospace engineers and scientists on the Society of Automotive Engineers (SAE) mailing list served as the study population. The adjusted response rate was 67 percent. The survey instrument is appendix C to this report. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and information use. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and the use of federally funded aerospace R&D. The results of this investigation are relevant to researchers investigating information-seeking behavior of aerospace engineers. They are also relevant to R&D managers and policy planners concerned with transferring the results of federally funded aerospace R&D to the U.S. aerospace industry.
NASA Astrophysics Data System (ADS)
Goncher, Andrea M.
thResearch on engineering design is a core area of concern within engineering education, and a fundamental understanding of how engineering students approach and undertake design is necessary in order to develop effective design models and pedagogies. This dissertation contributes to scholarship on engineering design by addressing a critical, but as yet underexplored, problem: how does the context in which students design shape their design practices? Using a qualitative study comprising of video data of design sessions, focus group interviews with students, and archives of their design work, this research explored how design decisions and actions are shaped by context, specifically the context of higher education. To develop a theoretical explanation for observed behavior, this study used the nested structuration. framework proposed by Perlow, Gittell, & Katz (2004). This framework explicated how teamwork is shaped by mutually reinforcing relationships at the individual, organizational, and institutional levels. I appropriated this framework to look specifically at how engineering students working on a course-related design project identify constraints that guide their design and how these constraints emerge as students interact while working on the project. I first identified and characterized the parameters associated with the design project from the student perspective and then, through multi-case studies of four design teams, I looked at the role these parameters play in student design practices. This qualitative investigation of first-year engineering student design teams revealed mutual and interconnected relationships between students and the organizations and institutions that they are a part of. In addition to contributing to research on engineering design, this work provides guidelines and practices to help design educators develop more effective design projects by incorporating constraints that enable effective design and learning. Moreover, I found that when appropriated in the context of higher education, multiple sublevels existed within nested structuration's organizational context and included course-level and project-level factors. The implications of this research can be used to improve the design of engineering course projects as well as the design of research efforts related to design in engineering education.
Effect of an Engineering Camp on Students' Perceptions of Engineering and Technology
ERIC Educational Resources Information Center
Hammack, Rebekah; Ivey, Toni A.; Utley, Juliana; High, Karen A.
2015-01-01
Students' knowledge about a profession influences their future decisions about careers. Research indicates that students tend to hold stereotypical views of engineers, which would hinder engineering as a career choice. The purpose of this study was to measure how participating in a week long engineering summer camp affected middle school students'…
Engineering Employment Characteristics. Engineering Education and Practice in the United States.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Commission on Engineering and Technical Systems.
This panel report was prepared as part of the study of engineering education and practice conducted under the guidance of the National Research Council's Committee on the Education and Utilization of the Engineer. The panel's goal was to provide a data base that describes the engineering work force, its main activities, capabilities, and principal…
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Commission on Engineering and Technical Systems.
This report forms an integral part of a study conducted by the Committee on the Education and Utilization of the Engineer, under the auspices of the National Research Council. Five major tasks undertaken by the panel were: (1) defining engineering; (2) determining influences on the engineering community, including external influences and internal…
Seeing through the lens of social justice: A threshold for engineering
NASA Astrophysics Data System (ADS)
Kabo, Jens David
In recent times the need for educational research dedicated to engineering education has been recognised. This PhD project is a contribution to the development of engineering education scholarship and the growing body of engineering education research. In this project it was recognised that problem solving is a central activity to engineering. However, it was also recognised that the conditions for doing engineering are changing, especially in light of pressing issues of poverty and environmental sustainability that humanity currently faces, and as a consequence, engineering education needs to emphasise problem definition to a greater extent. One mechanism for achieving this, which has been adopted by some engineering educators in recent years, is through courses that explicitly relate engineering to social justice. However, creating this relationship requires critical interdisciplinary thinking that is alien to most engineering students. In this dissertation it is suggested that for engineering students, and more generally, engineers, looking at their practice and profession through a social justice lens might be seen as a threshold that needs to be crossed. By studying the variation present among students in three different courses at three different North American universities, the intention was to understand how students approach and internalise social justice as a perspective on engineering and/or develop their abilities to think critically. A conceptual model to frame the study was developed by combining elements of threshold concept theory and the educational research methodology, phenomenographic variation theory. All three of the courses studied operated on a similar basic pedagogical model, however, the courses were framed differently, with social justice in the foreground or in the background with the focus on, in one case, ethics and in the other, sustainability. All courses studied appeared to be successful in encouraging engineering students to engage in critical thinking and a similar general trend in the development of students' conceptions of social justice was observed in each of the three courses. However, it does appear that if one is interested in developing an articulated understanding of social justice, with respect to engineering, that an explicit focus on social justice is preferable.
Engineering Ethics Education: A Comparative Study of Japan and Malaysia.
Balakrishnan, Balamuralithara; Tochinai, Fumihiko; Kanemitsu, Hidekazu
2018-03-22
This paper reports the findings of a comparative study in which students' perceived attainment of the objectives of an engineering ethics education and their attitude towards engineering ethics were investigated and compared. The investigation was carried out in Japan and Malaysia, involving 163 and 108 engineering undergraduates respectively. The research method used was based on a survey in which respondents were sent a questionnaire to elicit relevant data. Both descriptive and inferential statistical analyses were performed on the data. The results of the analyses showed that the attainment of the objectives of engineering ethics education and students' attitude towards socio-ethical issues in engineering were significantly higher and positive among Japanese engineering students compared to Malaysian engineering students. Such findings suggest that a well-structured, integrated, and innovative pedagogy for teaching ethics will have an impact on the students' attainment of ethics education objectives and their attitude towards engineering ethics. As such, the research findings serve as a cornerstone to which the current practice of teaching and learning of engineering ethics education can be examined more critically, such that further improvements can be made to the existing curriculum that can help produce engineers that have strong moral and ethical characters.
ERIC Educational Resources Information Center
Jesiek, Brent K.; Haller, Yating; Thompson, Julia
2014-01-01
Responding to globalization trends, many engineering schools are internationalizing their courses and curricula to prepare graduates for careers that involve working across countries and cultures. As a result, both students and staff are looking beyond study abroad to international work, research, and service learning opportunities as alternate…
Review on factors affecting the performance of pulse detonation engine
NASA Astrophysics Data System (ADS)
Tripathi, Saurabh; Pandey, Krishna Murari
2018-04-01
Now a day's rocket engines (air-breathing type) are being used for aerospace purposes but the studies have shown that these are less efficient, so alternatives are being searched for these. Pulse Detonation Engine (PDE) is one such efficient engine which can replace the rocket engines. In this review paper, different researches have been cited. As can be observed from various researches, insertion of obstacles is better. Deflagration to Detonation(DDT) transition process is found to be most important factor. So a lot of researches are being done considering this DDT chamber. Also, the ignition chamber and ejector were found to improve the effectiveness of PDE. The PDE works with a range of Mach 0-4. Flame acceleration is also found to increase the DDT process. Use of valve and valveless engine has also been compared. Various other factors have been focused in this review paper which is found to boost PDE performance.
ERIC Educational Resources Information Center
Huett, Kim C.; Kawulich, Barbara
2015-01-01
Collaborating at two universities to improve teaching and learning in undergraduate engineering, an interdisciplinary team of researchers, instructors, and evaluators planned and implemented the use of multimedia case studies with students enrolled in an introductory engineering course. This qualitative action evaluation study focuses on results…
ERIC Educational Resources Information Center
Tendhar, Chosang; Paretti, Marie C.; Jones, Brett D.
2017-01-01
This study had three purposes and four hypotheses were tested. Three purposes: (1) To use hierarchical linear modeling (HLM) to investigate whether students' perceptions of their engineering career intentions changed over time; (2) To use HLM to test the effects of gender, engineering identification (the degree to which an individual values a…
NASA Astrophysics Data System (ADS)
McMahon, Ann P.
Educating K-12 students in the processes of design engineering is gaining popularity in public schools. Several states have adopted standards for engineering design despite the fact that no common agreement exists on what should be included in the K-12 engineering design process. Furthermore, little pre-service and in-service professional development exists that will prepare teachers to teach a design process that is fundamentally different from the science teaching process found in typical public schools. This study provides a glimpse into what teachers think happens in engineering design compared to articulated best practices in engineering design. Wenger's communities of practice work and van Dijk's multidisciplinary theory of mental models provide the theoretical bases for comparing the mental models of two groups of elementary teachers (one group that teaches engineering and one that does not) to the mental models of design engineers (including this engineer/researcher/educator and professionals described elsewhere). The elementary school teachers and this engineer/researcher/educator observed the design engineering process enacted by professionals, then answered questions designed to elicit their mental models of the process they saw in terms of how they would teach it to elementary students. The key finding is this: Both groups of teachers embedded the cognitive steps of the design process into the matrix of the social and emotional roles and skills of students. Conversely, the engineers embedded the social and emotional aspects of the design process into the matrix of the cognitive steps of the design process. In other words, teachers' mental models show that they perceive that students' social and emotional communicative roles and skills in the classroom drive their cognitive understandings of the engineering process, while the mental models of this engineer/researcher/educator and the engineers in the video show that we perceive that cognitive understandings of the engineering process drive the social and emotional roles and skills used in that process. This comparison of mental models with the process that professional designers use defines a problem space for future studies that investigate how to incorporate engineering practices into elementary classrooms. Recommendations for engineering curriculum development and teacher professional development based on this study are presented.
The 1991 research and technology report, Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Soffen, Gerald (Editor); Ottenstein, Howard (Editor); Montgomery, Harry (Editor); Truszkowski, Walter (Editor); Frost, Kenneth (Editor); Sullivan, Walter (Editor); Boyle, Charles (Editor)
1991-01-01
The 1991 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) earth sciences including upper atmosphere, lower atmosphere, oceans, hydrology, and global studies; (2) space sciences including solar studies, planetary studies, Astro-1, gamma ray investigations, and astrophysics; (3) flight projects; (4) engineering including robotics, mechanical engineering, electronics, imaging and optics, thermal and cryogenic studies, and balloons; and (5) ground systems, networks, and communications including data and networks, TDRSS, mission planning and scheduling, and software development and test.
NASA Researchers Examine a Pratt and Whitney RL-10 Rocket Engine
1962-04-21
Lead Test Engineer John Kobak (right) and a technician use an oscilloscope to test the installation of a Pratt and Whitney RL-10 engine in the Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. In 1955 the military asked Pratt and Whitney to develop hydrogen engines specifically for aircraft. The program was canceled in 1958, but Pratt and Whitney decided to use the experience to develop a liquid-hydrogen rocket engine, the RL-10. Two of the 15,000-pound-thrust RL-10 engines were used to power the new Centaur second-stage rocket. Centaur was designed to carry the Surveyor spacecraft on its mission to soft-land on the Moon. Pratt and Whitney ran into problems while testing the RL-10 at their facilities. NASA Headquarters assigned Lewis the responsibility for investigating the RL-10 problems because of the center’s long history of liquid-hydrogen development. Lewis’ Chemical Rocket Division began a series of tests to study the RL-10 at its Propulsion Systems Laboratory in March 1960. The facility contained two test chambers that could study powerful engines in simulated altitude conditions. The first series of RL-10 tests in early 1961 involved gimballing the engine as it fired. Lewis researchers were able to yaw and pitch the engine to simulate its behavior during a real flight.
NASA Astrophysics Data System (ADS)
Robinson, Carrie
Females and underrepresented ethnic minorities earn a small percentage of engineering and computer science bachelor's degrees awarded in the United States, earn an even smaller proportion of master's and doctoral degrees, and are underrepresented in the engineering workforce (Engineering Workforce Commission, [2006], as cited in National Science Foundation, 2012; United States Department of Education, [2006], as cited in National Science Foundation, 2009a; United States Department of Education, [2006], as cited in National Science Foundation, 2009b). Considerable research has examined the perceptions, culture, curriculum, and pedagogy in engineering that inhibits the achievement of women and underrepresented ethnic minorities. This action research study used a qualitative approach to examine the characteristics and experiences of Latina students who pursued a bachelor's degree in the Ira A. Fulton Schools of Engineering at Arizona State University (ASU) as part of the 2008 first-time full-time freshman cohort. The researcher conducted two semi-structured individual interviews with seven undergraduate Latina students who successfully persisted to their fourth (senior) year in engineering. The researcher aimed to understand what characteristics made these students successful and how their experiences affected their persistence in an engineering major. The data collected showed that the Latina participants were motivated to persist in their engineering degree program due to their parents' expectations for success and high academic achievement; their desire to overcome the discrimination, stereotyping, and naysayers that they encountered; and their aspiration to become a role model for their family and other students interested in pursuing engineering. From the data collected, the researcher provided suggestions to implement and adapt educational activities and support systems within the Ira A. Fulton Schools of Engineering to improve the retention and graduation rates of Latinas in engineering at ASU.
NASA Astrophysics Data System (ADS)
Tang, Xiaofeng
Educators have recommended the integration of engineering and the liberal arts as a promising educational model to prepare young engineers for global economic, environmental, sociotechnical, and ethical challenges. Drawing upon philosophy of technology, engineering studies, and educational psychology, this dissertation examines diverse visions and strategies for integrating engineering and liberal education and explores their impacts on students' intellectual and moral development. Based on archival research, interviews, and participant observation, the dissertation presents in-depth case studies of three educational initiatives that seek to blend engineering with the humanities, social sciences, and arts: Harvey Mudd College, the Picker Engineering Program at Smith College, and the Programs in Design and Innovation at Rensselaer Polytechnic Institute. The research finds that learning engineering in a liberal arts context increases students' sense of "owning" their education and contributes to their communication, teamwork, and other non-technical professional skills. In addition, opportunities for extensive liberal arts learning in the three cases encourage some students to pursue alternative, less technocentric approaches to engineering. Nevertheless, the case studies suggest that the epistemological differences between the engineering and liberal arts instructors help maintain a technical/social dualism among most students. Furthermore, the dissertation argues a "hidden curriculum," which reinforces the dominant ideology in the engineering profession, persists in the integrated programs and prevents the students from reflecting on the broad social context of engineering and critically examining the assumptions upheld in the engineering profession.
45. Historic photo of Building 202 test cell interior, with ...
45. Historic photo of Building 202 test cell interior, with engine mounted on test stand A. Close-up view of a twenty-thousand-pound-thrust engine being tested in relation with combustion oscillation studies, October 12, 1960. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-54595. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
ERIC Educational Resources Information Center
Spence, Michelle; Mawhinney, Tara; Barsky, Eugene
2012-01-01
Science and engineering libraries have an important role to play in preserving the intellectual content in research areas of the departments they serve. This study employs bibliographic data from the Web of Science database to examine how much research material is required to cover 90% of faculty citations in civil engineering and computer…
NASA Technical Reports Server (NTRS)
Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.
1993-01-01
As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (NLR), and NASA Ames Research Center, and the NASA Langley Research Center. The completion rates for the Dutch and U.S. surveys were 55 and 61 percent, respectively. Responses of the Dutch and U.S. participants to selected questions are presented.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1994-01-01
As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Japanese and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third; to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists in Japan and at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Japanese and U.S. surveys were 85 and 61 percent, respectively. Responses of the Japanese and U.S. participants to selected questions are presented in this report.
40 CFR 1068.210 - What are the provisions for exempting test engines/equipment?
Code of Federal Regulations, 2013 CFR
2013-07-01
... NONROAD PROGRAMS Exemptions and Exclusions § 1068.210 What are the provisions for exempting test engines/equipment? (a) We may exempt engines/equipment that you will use for research, investigations, studies... test engines/equipment? 1068.210 Section 1068.210 Protection of Environment ENVIRONMENTAL PROTECTION...
40 CFR 1068.210 - What are the provisions for exempting test engines/equipment?
Code of Federal Regulations, 2014 CFR
2014-07-01
... NONROAD PROGRAMS Exemptions and Exclusions § 1068.210 What are the provisions for exempting test engines/equipment? (a) We may exempt engines/equipment that you will use for research, investigations, studies... test engines/equipment? 1068.210 Section 1068.210 Protection of Environment ENVIRONMENTAL PROTECTION...
40 CFR 1068.210 - What are the provisions for exempting test engines/equipment?
Code of Federal Regulations, 2012 CFR
2012-07-01
... NONROAD PROGRAMS Exemptions and Exclusions § 1068.210 What are the provisions for exempting test engines/equipment? (a) We may exempt engines/equipment that you will use for research, investigations, studies... test engines/equipment? 1068.210 Section 1068.210 Protection of Environment ENVIRONMENTAL PROTECTION...
Software Engineering Frameworks: Textbooks vs. Student Perceptions
ERIC Educational Resources Information Center
McMaster, Kirby; Hadfield, Steven; Wolthuis, Stuart; Sambasivam, Samuel
2012-01-01
This research examines the frameworks used by Computer Science and Information Systems students at the conclusion of their first semester of study of Software Engineering. A questionnaire listing 64 Software Engineering concepts was given to students upon completion of their first Software Engineering course. This survey was given to samples of…
NASA Technical Reports Server (NTRS)
Sallee, G. P.
1973-01-01
The advanced technology requirements for an advanced high speed commercial tranport engine are presented. The results of the phase 1 study effort cover the following areas: (1) statement of an airline's major objectives for future transport engines, (2) airline's method of evaluating engine proposals, (3) description of an optimum engine for a long range subsonic commercial transport including installation and critical design features, (4) discussion of engine performance problems and experience with performance degradation, (5) trends in engine and pod prices with increasing technology and objectives for the future, (6) discussion of the research objectives for composites, reversers, advanced components, engine control systems, and devices to reduce the impact of engine stall, and (7) discussion of the airline objectives for noise and pollution reduction.
Pedagogical Training and Research in Engineering Education
ERIC Educational Resources Information Center
Wankat, Phillip C.
2008-01-01
Ferment in engineering has focused increased attention on undergraduate engineering education, and has clarified the need for rigorous research in engineering education. This need has spawned the new research field of Engineering Education and greatly increased interest in earning Ph.D. degrees based on rigorous engineering education research.…
Assessing and Controlling Blast Noise Emission: SARNAM Noise Impact Software
2007-12-29
Engineers, Engineer Research and Development Center Jeffery Mifflin U.S. Army Corps of Engineers, Engineer Research and Development Center Kristy A...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Engineer Research and Development Center (ERDC) Construction Engineering Research Laboratory...6 Figure 5. OneShot control page
NASA Astrophysics Data System (ADS)
Wood, Shaunda L.
Women face many obstacles in their academic careers but there is a gap in the research with regards to their perceptions of science and engineering education and how non/participation in the culture of engineering affects their identities. Moreover, little research has been conducted with female Ph.D. students especially with regard to the reasons they have continued their studies, and their level of satisfaction with their career and lives. This study was guided by the sociocultural approach and theories of learning and identity. Methodologically, the design adopted is a naturalistic qualitative inquiry using two open-ended interviews with participant verification after the first interview. The life history narratives (Mishler, 1999) obtained from the seven doctoral electrical and mechanical women engineers, at various stages in their programs, were the primary source of data. By examining the path of becoming a doctoral woman engineer, this study makes the educational experiences of women intelligible to the general public as well as policy makers. It gives voice to the women engineers whose perspectives are rarely heard in academic settings or mainstream society. The findings of the study lend insight to the importance and necessity of more inclusive engineering education, incorporating not only women's studies courses into the curriculum but anti-racism education as well as including the perspective of 'Other' people of difference. Moreover, multi-perspective approaches to increasing enrolment and retention of women in engineering were more effective and in keeping with addressing notions of 'difference' in engineering populations.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.
1993-01-01
Engineers are an extraordinarily diverse group of professionals, but an attribute common to all engineers is their use of information. Engineering can be conceptualized as an information processing system that must deal with work-related uncertainty through patterns of technical communications. Throughout the process, data, information, and tacit knowledge are being acquired, produced, transferred, and utilized. While acknowledging that other models exist, we have chosen to view the information-seeking behavior of engineers within a conceptual framework of the engineer as an information processor. This article uses the chosen framework to discuss information-seeking behavior of engineers, reviewing selected literature and empirical studies from library and information science, management, communications, and sociology. The article concludes by proposing a research agenda designed to extend our current, limited knowledge of the way engineers process information.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Engineering Research Center meet? 350.33 Section 350.33 Education Regulations of the Offices of the Department... Engineering Research Centers Does the Secretary Assist? § 350.33 What cooperation requirements must a Rehabilitation Engineering Research Center meet? A Rehabilitation Engineering Research Center— (a) Shall...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Engineering Research Center meet? 350.33 Section 350.33 Education Regulations of the Offices of the Department... Engineering Research Centers Does the Secretary Assist? § 350.33 What cooperation requirements must a Rehabilitation Engineering Research Center meet? A Rehabilitation Engineering Research Center— (a) Shall...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Engineering Research Center meet? 350.33 Section 350.33 Education Regulations of the Offices of the Department... Engineering Research Centers Does the Secretary Assist? § 350.33 What cooperation requirements must a Rehabilitation Engineering Research Center meet? A Rehabilitation Engineering Research Center— (a) Shall...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Engineering Research Center meet? 350.33 Section 350.33 Education Regulations of the Offices of the Department... Engineering Research Centers Does the Secretary Assist? § 350.33 What cooperation requirements must a Rehabilitation Engineering Research Center meet? A Rehabilitation Engineering Research Center— (a) Shall...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Engineering Research Center meet? 350.33 Section 350.33 Education Regulations of the Offices of the Department... Engineering Research Centers Does the Secretary Assist? § 350.33 What cooperation requirements must a Rehabilitation Engineering Research Center meet? A Rehabilitation Engineering Research Center— (a) Shall...
Tennessee State University (TSU) Research Project For Increasing The Pool of Minority Engineers
NASA Technical Reports Server (NTRS)
Rogers, Decatur B.; Merritt, Sylvia (Technical Monitor)
2000-01-01
The NASA Glenn Research Center funded the 1998-1999 Tennessee State University (TSU) Research Project for Increasing the Pool of Minority Engineers. The NASA/GRC-TSU Research Project developed a cadre of engineers who have academic and research expertise in technical areas of interest to NASA, in addition to having some familiarity with the mission of the NASA/Glenn Research Center. Increased minority participation in engineering was accomplished by: (1) introducing and exposing minority youth to engineering careers and to the required high school preparation necessary to access engineering through two campus based precollege programs: Minority Introduction to Engineering (MITE), and Engineering and Technology Previews; (2) providing financial support through the Research Scholars Program for minority youth majoring in engineering disciplines of interest to NASA; (3) familiarization with the engineering profession and with NASA through field trips and summer internships at the Space and Rocket Center, and (4) with practical research exposure and experiences through research internships at NASA/GRC and at TSU.
ERIC Educational Resources Information Center
Korte, Russel
2009-01-01
Current scholarship views organizational socialization as a learning process that is primarily the responsibility of the newcomer. Yet recent learning research recognizes the importance of the social interactions in the learning process. This study investigated how newly hired engineers at a large manufacturing company learned job-related tasks…
Two-stroke engine diagnostics and design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
This paper focuses on research and development efforts on two-stroke cycle engines for automotive applications. Partial contents include: Velocity Field Characteristics in Motored Two-Stroke Ported Engines; Flow Vector Measurements at the Scavenging Ports in a Fired Two-Stroke Engine; A Study on Exhaust Dynamic Effect of Two-Stroke Motorcycle Petrol Engine; Characterization of Ignition and Parametric Study of a Two-Stroke-Cycle Direct-Injected Gasoline Engine; LDV Measurements of Intake Port Flow in a Two-Stroke Engine with and without Combustion; Appraisal of Regenerative Blowers for Scavenging of Small 2T S.I. Powerplants; and Development Experience of a Poppet-Valved Two-Stroke Flagship Engine.
A Flexible Pilot-Scale Setup for Real-Time Studies in Process Systems Engineering
ERIC Educational Resources Information Center
Panjapornpon, Chanin; Fletcher, Nathan; Soroush, Masoud
2006-01-01
This manuscript describes a flexible, pilot-scale setup that can be used for training students and carrying out research in process systems engineering. The setup allows one to study a variety of process systems engineering concepts such as design feasibility, design flexibility, control configuration selection, parameter estimation, process and…
ERIC Educational Resources Information Center
Klein, Stacy S.; Sherwood, Robert D.
2005-01-01
This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…
THE EMERGENCE OF ECOLOGICAL ENGINEERING AS A DISCIPLINE
Pioneering efforts in the field of ecological engineering research and practice have proven to be tremendous strides toward establishing a new engineering discipline with a science base in ecology. Case studies, demonstrations and applications pertaining to restoration, rehabili...
ERIC Educational Resources Information Center
Donaldson, Krista M.; Chen, Helen L.; Toye, George; Sheppard, Sheri D.
2007-01-01
The Academic Pathways of People Learning Engineering Survey (APPLES or APPLE survey) is a component of the Academic Pathways Study (APS) of the Center for the Advancement of Engineering Education (CAEE). The APS aims to provide a comprehensive account of how people become engineers by exploring key questions around the engineering learning…
Re-Educating Jet-Engine-Researchers to Stay Relevant
NASA Astrophysics Data System (ADS)
Gal-Or, Benjamin
2016-06-01
To stay relevantly supported, jet-engine researchers, designers and operators should follow changing uses of small and large jet engines, especially those anticipated to be used by/in the next generation, JET-ENGINE-STEERED ("JES") fleets of jet drones but fewer, JES-Stealth-Fighter/Strike Aircraft. In addition, some diminishing returns from isolated, non-integrating, jet-engine component studies, vs. relevant, supersonic, shock waves control in fluidic-JES-side-effects on compressor stall dynamics within Integrated Propulsion Flight Control ("IPFC"), and/or mechanical JES, constitute key relevant methods that currently move to China, India, South Korea and Japan. The central roles of the jet engine as primary or backup flight controller also constitute key relevant issues, especially under post stall conditions involving induced engine-stress while participating in crash prevention or minimal path-time maneuvers to target. And when proper instructors are absent, self-study of the JES-STVS REVOLUTION is an updating must, where STVS stands for wing-engine-airframe-integrated, embedded stealthy-jet-engine-inlets, restructured engines inside Stealth, Tailless, canard-less, Thrust Vectoring IFPC Systems. Anti-terror and Airliners Super-Flight-Safety are anticipated to overcome US legislation red-tape that obstructs JES-add-on-emergency-kits-use.
Engineer Measures Ice Formation on an Instrument Antenna Model
1945-05-21
A National Advisory Committee for Aeronautics (NACA) researcher measures the ice thickness on a landing antenna model in the Icing Research Tunnel at the Aircraft Engine Research Laboratory. NACA design engineers added the Icing Research Tunnel to the original layout of the new Aircraft Engine Research Laboratory to take advantage of the massive refrigeration system being built for the Altitude Wind Tunnel. The Icing Research Tunnel was built to study the formation of ice on aircraft surfaces and methods of preventing or eradicating that ice. Ice buildup adds extra weight, effects aerodynamics, and sometimes blocks air flow through engines. The Icing Research Tunnel is a closed-loop atmospheric wind tunnel with a 6- by 9-foot test section. Carrier Corporation refrigeration equipment reduced the internal air temperature to -45 degrees F and a spray bar system injected water droplets into the air stream. The 24-foot diameter drive fan, seen in this photograph, created air flows velocities up to 400 miles per hour. The Icing Research Tunnel began testing in June of 1944. Early testing, seen in this photograph, studied ice accumulation on propellers and antenna of a military aircraft. The Icing Research Tunnel’s designers, however, struggled to develop a realistic spray system since they did not have access to data on the size of naturally occurring water droplets. The system would have to generate small droplets, distribute them uniformly throughout the airstream, and resist freezing and blockage. For five years a variety of different designs were painstakingly developed and tested before the system was perfected.
ERIC Educational Resources Information Center
Fransen, Janet
2012-01-01
Any engineering librarian will tell you that their researchers' literature needs differ from researchers in other disciplines: Books are used less, and conference papers more, than in humanities disciplines. This study analyzes literature cited in theses and dissertations submitted over a three-year period by students in three departments of the…
ERIC Educational Resources Information Center
Li, Yulong; Liu, Xiaojing
2017-01-01
Mobile learning (M-learning) has become a popular topic in educational research, in previous research there have been many studies on attitude to M-learning directed towards staff, parents and students; however, limited research has focused on the comparison between teachers and students in the context of creative engineering and their respective…
ERIC Educational Resources Information Center
Illuminating Engineering Research Inst., New York, NY.
Several of the more familiar Illuminating Engineering Research Institute projects which have been chronicled progressively during the past several years are discussed in this report. Those elaborated on are--(1) visual performance and illumination, (2) roadway visual tasks, (3) color preference studies, (4) glare from large sources, (5) discomfort…
Wisconsin | Solar Research | NREL
of Interconnection â¤20 kW Category 1 (10 days engineering review; 10 days distribution system study study; $250 application fee) >200 kW and â¤1 MW Category 3 (20 days engineering review; 20 days distribution system study; $500 application fee) >1 MW and â¤15 MW Category 4 (40 days engineering review
The Effect of Case Teaching on Meaningful and Retentive Learning When Studying Genetic Engineering
ERIC Educational Resources Information Center
Güccük, Ahmet; Köksal, Mustafa Serdar
2017-01-01
The purpose of this study is to investigate the effects of case teaching on how students learn about genetic engineering, in terms of meaningful learning and retention of learning. The study was designed as quasi-experimental research including 63 8th graders (28 boys and 35 girls). To collect data, genetic engineering achievement tests were…
Early Testing in the Icing Research Tunnel
1944-09-21
National Advisory Committee for Aeronautics (NACA) design engineers added the Icing Research Tunnel to the new Aircraft Engine Research Laboratory’s original layout to take advantage of the massive refrigeration system being constructed for the Altitude Wind Tunnel. The Icing Research Tunnel was built to study the formation of ice on aircraft surfaces and methods of preventing or eradicating that ice. Ice buildup adds extra weight, effects aerodynamics, and sometimes blocks airflow through engines. The Icing Research Tunnel is a closed-loop atmospheric wind tunnel with a 6- by 9-foot test section. The tunnel can produce speeds up to 300 miles per hour and temperatures from about 30 to –45⁰ F. Initially the tunnel used a spray bar system to introduce moisture into the airstream. NACA engineers struggled for nearly 10 years to perfect the spray system. The Icing Research Tunnel began testing in June of 1944. Initial testing, seen in this photograph, studied ice accumulation on propellers of a military aircraft. NACA reserach also produced a protected air scoop for the C–46 transport aircraft. A large number of C–46 aircraft were lost due to icing while flying supply runs over the Himalayas during World War II.
Advanced Combustor in the Four Burner Area
1966-03-21
Engineer Frank Kutina and a National Aeronautics and Space Administration (NASA) mechanic examine the setup of an advanced combustor rig inside one of the test cells at the Lewis Research Center’s Four Burner Area in the Engine Research Building. Kutina, of the Research Operations Branch, served as go-between for the researchers and the mechanics. He helped develop the test configurations and get the hardware installed. At the time of this photograph, Lewis Center Director Abe Silverstein had just established the Airbreathing Engine Division to address the new propulsion of the 1960s. After nearly a decade of focusing almost exclusively on space, NASA Lewis began tackling issues relating to the new turbofan engine, noise reduction, energy efficiency, supersonic transport, and the never-ending quest for higher performance levels with smaller and more lightweight engines. The Airbreathing Engine Division’s Combustion Branch was dedicated to the study and mitigation of the high temperatures and pressures found in advanced combustor designs. These high temperatures and pressures could destroy engine components. The Lewis investigation included film cooling, diffuser flow, and jet mixing. Components were tested in smaller test cells, but a full-scale augmenting burner rig, seen here, was tested extensively in the Four Burner Area test cell.
NASA Technical Reports Server (NTRS)
Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.
1994-01-01
As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. The studies had the following objectives: (1) to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions, (2) to determine the use and production of technical communication by aerospace engineers and scientists, (3) to investigate their use of libraries and technical information centers, (4) to investigate their use of and the importance to them of computer and information technology, (5) to examine their use of electronic networks, and (6) to determine their use of foreign and domestically produced technical reports. Self-administered (mail) questionnaires were distributed to Dutch aerospace engineers and scientists at the National Aerospace Laboratory (NLR) in the Netherlands, the NASA Ames Research Center in the U.S., and the NASA Langley Research Center in the U.S. Responses of the Dutch and U.S. participants to selected questions are presented in this paper.
Multi-fuel rotary engine for general aviation aircraft
NASA Technical Reports Server (NTRS)
Jones, C.; Ellis, D. R.; Meng, P. R.
1983-01-01
Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, an advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25,000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed. Previously announced in STAR as N83-18910
Studying Science and Engineering Learning in Practice
ERIC Educational Resources Information Center
Penuel, William R.
2016-01-01
A key goal of science and engineering education is to provide opportunities for people to access, interpret, and make use of science and engineering to address practical human needs. Most education research, however, focuses on how best to prepare students in schools to participate in forms of science and engineering practices that resemble those…
ERIC Educational Resources Information Center
Baukal, Charles E.; Ausburn, Lynna J.
2017-01-01
Continuing engineering education (CEE) is important to ensure engineers maintain proficiency over the life of their careers. However, relatively few studies have examined designing effective training for working engineers. Research has indicated that both learner instructional preferences and prior knowledge can impact the learning process, but it…
ERIC Educational Resources Information Center
Ricks, Kenneth G.; Richardson, James A.; Stern, Harold P.; Taylor, Robert P.; Taylor, Ryan A.
2014-01-01
Retention and graduation rates for engineering disciplines are significantly lower than desired, and research literature offers many possible causes. Engineering learning communities provide the opportunity to study relationships among specific causes and to develop and evaluate activities designed to lessen their impact. This paper details an…
ERIC Educational Resources Information Center
Engelbrecht, Johann; Bergsten, Christer; Kågesten, Owe
2017-01-01
The research interest underpinning this paper concerns the type of mathematical knowledge engineering students may acquire during their specialised education in terms of the conceptual and procedural dimensions of doing and using mathematics. This study draws on interviews with 25 qualified engineers from South Africa and Sweden regarding their…
NASA Astrophysics Data System (ADS)
Bramlette, Richard B.
In the 1950s, Eugene Gluhareff built the first working "pressure jet" engine, a variation on the classical ramjet engine with a pressurized inlet system relying on sonic tuning which allowed operation at subsonic speeds. The engine was an unqualified success. Unfortunately, after decades of sales and research, Gluhareff passed away leaving behind no significant published studies of the engine or detailed analysis of its operation. The design was at serious risk of being lost to history. This dissertation is intended to address that risk by studying a novel subscale modification of Gluhareff's original design operating on the same principles. Included is a background of related engine and how the pressure jet is distinct. The preliminary sizing of a pressure jet using closed-form expressions is then discussed followed by a review of propane oxidation modeling, how it integrates into the Computational Fluid Dynamics (CFD) solver, and the modeling of the pressure jet engine cycle with CFD. The simulation was matched to experimental data recorded on a purpose-built test stand recording chamber pressure, exhaust speed (via a Pitot/static system), temperatures, and thrust force. The engine CFD simulation produced a wide range of qualitative results that matched the experimental data well and suggested strong recirculation flows through the engine confirming suspicions about how the engine operates. Engine operating frequency between CFD and experiment also showed good agreement and appeared to be driven by the "Kadenacy Effect." The research effort lastly opens the door for further study of the engine cycle, the use of pressurized intakes to produce static thrust in a ramjet engine, the Gluhareff pressure jet's original geometry, and a wide array of potential applications. A roadmap of further study and applications is detailed including a modeling and testing of larger engines.
Investigation to increase productivity and retention of young engineers : final report.
DOT National Transportation Integrated Search
1988-08-31
This study was undertaken to address the problem of rapid turnover of young engineers in Louisiana DOTD. Research has indicated that a program to professionalize engineering positions has been successful in other states. : Based on successful experie...
Mapping the landscape of climate engineering
Oldham, P.; Szerszynski, B.; Stilgoe, J.; Brown, C.; Eacott, B.; Yuille, A.
2014-01-01
In the absence of a governance framework for climate engineering technologies such as solar radiation management (SRM), the practices of scientific research and intellectual property acquisition can de facto shape the development of the field. It is therefore important to make visible emerging patterns of research and patenting, which we suggest can effectively be done using bibliometric methods. We explore the challenges in defining the boundary of climate engineering, and set out the research strategy taken in this study. A dataset of 825 scientific publications on climate engineering between 1971 and 2013 was identified, including 193 on SRM; these are analysed in terms of trends, institutions, authors and funders. For our patent dataset, we identified 143 first filings directly or indirectly related to climate engineering technologies—of which 28 were related to SRM technologies—linked to 910 family members. We analyse the main patterns discerned in patent trends, applicants and inventors. We compare our own findings with those of an earlier bibliometric study of climate engineering, and show how our method is consistent with the need for transparency and repeatability, and the need to adjust the method as the field develops. We conclude that bibliometric monitoring techniques can play an important role in the anticipatory governance of climate engineering. PMID:25404683
DragonflyTV: "Investigating the Nanoworld". Summative Evaluation Report
ERIC Educational Resources Information Center
Robles, Dawn; Helms, Jenifer; Phillips, Michelle
2009-01-01
In recent years academic, engineering, business, and other fields, have launched major research and development efforts into the study and application of nanoscale science, engineering, and technology. In spite of all these efforts and the investment of millions of dollars, the general public has had little access to research findings and…
NASA Technical Reports Server (NTRS)
Barclay, Rebecca O.; Pinelli, Thomas E.; Tan, Axel S. T.; Kennedy, John M.
1993-01-01
As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (The Netherlands), and NASA Ames Research Center (U.S.), and the NASA Langley Research Center (U.S.). This paper presents responses of the Dutch and U.S. participants to selected questions about four of the seven project objectives: determining the importance of technical communications to aerospace engineering professionals, investigating the production of technical communications, examining the use and importance of computer and information technology, and exploring the use of electronic networks.
NASA Astrophysics Data System (ADS)
Osman, Sharifah; Mohammad, Shahrin; Abu, Mohd Salleh
2015-05-01
Mathematics and engineering are inexorably and significantly linked and essentially required in analyzing and accessing thought to make good judgment when dealing in complex and varied engineering problems. A study in the current engineering education curriculum to explore how the critical thinking and mathematical thinking relates to one another, is therefore timely crucial. Unfortunately, there is not much information available explicating about the link. This paper aims to report findings of a critical review as well as to provide brief description of an on-going research aimed to investigate the dispositions of critical thinking and the relationship and integration between critical thinking and mathematical thinking during the execution of civil engineering tasks. The first part of the paper reports an in-depth review on these matters based on rather limited resources. The review showed a considerable form of congruency between these two perspectives of thinking, with some prevalent trends of engineering workplace tasks, problems and challenges. The second part describes an on-going research to be conducted by the researcher to investigate rigorously the relationship and integration between these two types of thinking within the perspective of civil engineering tasks. A reasonably close non-participant observations and semi-structured interviews will be executed for the pilot and main stages of the study. The data will be analyzed using constant comparative analysis in which the grounded theory methodology will be adopted. The findings will serve as a useful grounding for constructing a substantive theory revealing the integral relationship between critical thinking and mathematical thinking in the real civil engineering practice context. The substantive theory, from an angle of view, is expected to contribute some additional useful information to the engineering program outcomes and engineering education instructions, aligns with the expectations of engineering program outcomes set by the Engineering Accreditation Council.
The technical communication practices of Russian and U.S. aerospace engineers and scientists
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.
1993-01-01
As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.
ERIC Educational Resources Information Center
Dinin, Alessandra Jayne
2017-01-01
This dissertation study explores the experiences of 11 undergraduate women in a variety of engineering majors graduating from a Southern, research, predominately White institution and the use of theory to understand those experiences. While narrative inquiry is used throughout, this dissertation study is organized into three separate papers. The…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
...; Rehabilitation Engineering Research Centers AGENCY: Office of Special Education and Rehabilitative Services... Rehabilitation Research Projects and Centers Program--Rehabilitation Engineering Research Centers (RERC). SUMMARY... amended (Rehabilitation Act). Rehabilitation Engineering Research Centers Program (RERCs) The purpose of...
76 FR 37085 - Applications for New Awards; Rehabilitation Engineering Research Centers (RERCs)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-24
... DEPARTMENT OF EDUCATION Applications for New Awards; Rehabilitation Engineering Research Centers...)--Disability and Rehabilitation Research Projects and Centers Program--Rehabilitation Engineering Research... (Rehabilitation Act). Rehabilitation Engineering Research Centers Program (RERCs) The purpose of the RERC program...
ERIC Educational Resources Information Center
Taylor, Summer Smith; Patton, Martha D.
2006-01-01
Previous research has indicated that engineering faculty do not follow best practices when commenting on students' technical writing. However, it is unclear whether the faculty prefer to comment in these ineffective ways, or whether they prefer more effective practices but simply do not enact them. This study adapts a well known study of response…
The Supply and Demand of Technology and Engineering Teachers in the United States: Who Knows?
ERIC Educational Resources Information Center
Moye, Johnny J.
2017-01-01
The purpose of this study was to determine the supply and demand of technology and engineering teachers in the United States. Once gathered, the resulting data (that was available) was compared to previous studies to determine trends. The researcher reviewed the 2010-11 through 2015-16 Technology & Engineering Teacher Education Directories. To…
Knowledge Construction in Computer Science and Engineering When Learning through Making
ERIC Educational Resources Information Center
Charlton, Patricia; Avramides, Katerina
2016-01-01
This paper focuses on a design based research study about STEM (Science, Technology, Engineering and Maths) learning by making through collaboration and production. This study examines learning by making by students to explore STEM using a constructionist approach with a particular focus on computer science and engineering. The use of IoT as a…
ERIC Educational Resources Information Center
Stricker, David R.
2010-01-01
This study was conducted to describe a teacher developed high school engineering course, to identify teaching strategies used in the process of delivering math and science literacy through this course, to identify challenges and constraints that occurred during its development and delivery, and to describe the strategies that were used to overcome…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-07-01
This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.
NASA Astrophysics Data System (ADS)
Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.
2018-05-01
This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.
Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade Cascade
2016-11-01
turbine blades to have fluid run through them during use1—a feature which many newer engines include. A cutaway view of a typical rotorcraft engine...ARL-TR-7871 ● NOV 2016 US Army Research Laboratory Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade ...ARL-TR-7871 ● NOV 2016 US Army Research Laboratory Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade Cascade by Luis
1992-12-01
concentrations of DNT, its degradation intermediate 4-methyl 5- nitrocatechol, and TNT were determined by high pressure liquid chromatography (HPLC...to more cost-effective site characterization and cleanup. Many such studies have been performed using chromatography and/or liquid scintillation...volume set that summarizes the research accomplishments of faculty, graduate student, and high school participants in the 1992 AFOSR Summer Research
NASA Astrophysics Data System (ADS)
Flores, Ramon
This study used a web-based survey collected data from 28 first-generation Latino engineers who participated in the Mathematics, Engineering, Science, Achievement (MESA) program during their high school years. From the set of 28 respondents, 5 volunteered to participate in an optional telephone interview. The purpose of this study was to describe the critical attributes and characteristics of the MESA program that lead to success at both the high school and college levels for first-generation Latino students. Success at the high school level was operationally defined as successfully graduating with a high school diploma. Success at the college level was operationally defined here as college graduation with an engineering degree. Using a mixed-methods technique, the researcher attempted to secure consensus of opinion from a sample population of 28 first-generation Latino engineers. The mixed-methods technique was chosen since it allowed the researcher to draw on the strengths of quantitative and qualitative approaches. According to the findings, the typical respondent felt that mentoring was the attribute of the MESA program that most prepared him to graduate from high school. The respondents felt that the following MESA attributes most helped them transition into an undergraduate engineering program: Academic and University Advising; Enrichment Activities; Career Advising; Field Trips; Mentoring; Scholarship Incentive Awards; and Speakers. The respondents viewed study groups as the MESA attribute that best prepared them to graduate college with an engineering degree. This study was purposefully designed as a descriptive study. Future research is required to extend this work into an evaluative study. This would allow for the generalization of the critical attributes to the general student population serviced by the MESA program.
Design of a micro-Wankel rotary engine for MEMS fabrication
NASA Astrophysics Data System (ADS)
Jiang, Kyle C.; Prewett, Philip D.; Ward, M. C. L.; Tian, Y.; Yang, H.
2001-04-01
This paper presents the design of a micro Wankel engine for deep etching micro fabrication. The micro engine design is part of a research program in progress to develop a micro actuator to supply torque for driving micro machines. To begin with, the research work concentrates on the micro Wankel engine powered by liquid CO2. Then, a Wankel internal combustion engines will be investigated. The Wankel engine is a planetary rotation engine. It is selected because of its largely 2D structure which is suitable for lithographic processes. The engine has been simplified and redesigned to suit the fabrication processes. In particular, the fuel inlet has been moved to the top cover of the housing from the side, and the outlet is made as a groove on the housing, so that the both parts can be etched. A synchronization valve is mounted on the engine to control the supply of CO2. One of advantages of the micro engines is their high energy density compared with batteries. A research study has been conducted in comparing energy densities of commonly used fuels. It shows that the energy densities of fuels for combustion engines are 10 - 30 times higher than that of batteries. The deigns of the micro Wankel engines have been tested for verification by finite element analysis, CAD assembly, and construction of a prototype, which proves the design is valid.
NASA Astrophysics Data System (ADS)
Matusovich, Holly Marie
Recently published reports call for an increase in the number of engineering graduates and suggest appropriate characteristics that these graduates should embody. Accomplishing either objective requires first understanding why students choose to pursue engineering degrees. This research started addressing this knowledge gap using Eccles' expectancy-value model to qualitatively and longitudinally examine undergraduate student's choices to enroll and persist in engineering majors. Specifically, this study focused on identity within Eccles' model to answer the question: How do students' beliefs about being engineers in the future shape their choices to pursue engineering? Framed in Eccles' model, students' choices to pursue engineering majors are based on beliefs about their engineering-related competence and how much they value succeeding in an engineering major. Eccles posits that identity shapes both competence and value beliefs. This study defined identity as students' self-perceptions as future engineers then examined the roles these self-perceptions in shaping their choices to pursue engineering degrees. Gee's conception of four-interrelated aspects of identity (nature identity, institutional identity, affinity identity, and discourse identity) provided a lens to examine students' self-perceptions as future engineers. Multiple case study methods guided this research with each of ten students (five men and five women) representing a case. Results derive from the inductive analysis of longitudinal interviews triangulated with survey results---all data spanned the students' first through fourth undergraduate years. This study is part of a larger body of work, the Academic Pathways Study (APS), conducted by the Center for Advancement of Engineering Education (CAEE). Results demonstrated that students' self-perceptions as future engineers are connected to both competence and value beliefs and to the choice to persist in engineering. Specifically, the results showed: (1) even in their fourth undergraduate year, three out of ten participants were uncertain about themselves as future engineers; (2) students choosing to pursue an engineering degree because they identify with the types of activities in which engineers engage experience the persistence choice process differently than students who choose engineering for other reasons; and (3) all students ultimately had positive competence beliefs, although two women participants continually renegotiated definitions of competence in engineering.
Geopotential research mission, science, engineering and program summary
NASA Technical Reports Server (NTRS)
Keating, T. (Editor); Taylor, P. (Editor); Kahn, W. (Editor); Lerch, F. (Editor)
1986-01-01
This report is based upon the accumulated scientific and engineering studies pertaining to the Geopotential Research Mission (GRM). The scientific need and justification for the measurement of the Earth's gravity and magnetic fields are discussed. Emphasis is placed upon the studies and conclusions of scientific organizations and NASA advisory groups. The engineering design and investigations performed over the last 4 years are described, and a spacecraft design capable of fulfilling all scientific objectives is presented. In addition, critical features of the scientific requirements and state-of-the-art limitations of spacecraft design, mission flight performance, and data processing are discussed.
Efficiency Assessment of a Blended-Learning Educational Methodology in Engineering
NASA Astrophysics Data System (ADS)
Rogado, Ana Belén González; Conde, Ma José Rodríguez; Migueláñez, Susana Olmos; Riaza, Blanca García; Peñalvo, Francisco José García
The content of this presentation highlights the importance of an active learning methodology in engineering university degrees in Spain. We present of some of the outcomes from an experimental study carried out during the academic years 2007/08 and 2008/09 with engineering students (Technical Industrial Engineering: Mechanics, Civical Design Engineering: Civical building, Technical Architecture and Technical Engineering on Computer Management.) at the University of Salamanca. In this research we select a subject which is common for the four degrees: Computer Science. This study has the aim of contributing to the improvement of education and teaching methods for a better performance of students in Engineering.
Pulse Detonation Rocket Engine Research at NASA Marshall
NASA Technical Reports Server (NTRS)
Morris, Christopher I.
2003-01-01
This viewgraph representation provides an overview of research being conducted on Pulse Detonation Rocket Engines (PDRE) by the Propulsion Research Center (PRC) at the Marshall Space Flight Center. PDREs have a theoretical thermodynamic advantage over Steady-State Rocket Engines (SSREs) although unsteady blowdown processes complicate effective use of this advantage in practice; PRE is engaged in a fundamental study of PDRE gas dynamics to improve understanding of performance issues. Topics covered include: simplified PDRE cycle, comparison of PDRE and SSRE performance, numerical modeling of quasi 1-D rocket flows, time-accurate thrust calculations, finite-rate chemistry effects in nozzles, effect of F-R chemistry on specific impulse, effect of F-R chemistry on exit species mole fractions and PDRE performance optimization studies.
ERIC Educational Resources Information Center
Tsagala, Evrikleia; Kordaki, Maria
2008-01-01
This study focuses on how Computer Science and Engineering Students (CSESs) of both genders address certain critical issues for gender differences in the field of Computer Science and Engineering (CSE). This case study is based on research conducted on a sample of 99 Greek CSESs, 43 of which were women. More specifically, these students were asked…
Case Study of a Small Scale Polytechnic Entrepreneurship Capstone Course Sequence
ERIC Educational Resources Information Center
Webster, Rustin D.; Kopp, Richard
2017-01-01
A multidisciplinary entrepreneurial senior capstone has been created for engineering technology students at a research I land-grant university statewide extension. The two semester course sequence welcomes students from Mechanical Engineering Technology, Electrical Engineering Technology, Computer Graphics Technology, and Organizational…
Job Analysis Results for Malicious-Code Reverse Engineers: A Case Study
2014-05-01
Testing in Personnel Selection: Contemporary Issues in Cognitive Ability and Personality Testing .” Journal of Business Inquiry: Research , Edu- cation, and...federally funded research and development center. Any opinions, findings and conclusions or recommendations expressed in this material are those of...predict the develop- ment of expertise is important. Currently, job analysis research on teams of malicious-code re- verse engineers is lacking. Therefore
On the Compliance of Women Engineers with a Gendered Scientific System.
Ghiasi, Gita; Larivière, Vincent; Sugimoto, Cassidy R
2015-01-01
There has been considerable effort in the last decade to increase the participation of women in engineering through various policies. However, there has been little empirical research on gender disparities in engineering which help underpin the effective preparation, co-ordination, and implementation of the science and technology (S&T) policies. This article aims to present a comprehensive gendered analysis of engineering publications across different specialties and provide a cross-gender analysis of research output and scientific impact of engineering researchers in academic, governmental, and industrial sectors. For this purpose, 679,338 engineering articles published from 2008 to 2013 are extracted from the Web of Science database and 974,837 authorships are analyzed. The structures of co-authorship collaboration networks in different engineering disciplines are examined, highlighting the role of female scientists in the diffusion of knowledge. The findings reveal that men dominate 80% of all the scientific production in engineering. Women engineers publish their papers in journals with higher Impact Factors than their male peers, but their work receives lower recognition (fewer citations) from the scientific community. Engineers-regardless of their gender-contribute to the reproduction of the male-dominated scientific structures through forming and repeating their collaborations predominantly with men. The results of this study call for integration of data driven gender-related policies in existing S&T discourse.
Advanced general aviation comparative engine/airframe integration study
NASA Technical Reports Server (NTRS)
Huggins, G. L.; Ellis, D. R.
1981-01-01
The NASA Advanced Aviation Comparative Engine/Airframe Integration Study was initiated to help determine which of four promising concepts for new general aviation engines for the 1990's should be considered for further research funding. The engine concepts included rotary, diesel, spark ignition, and turboprop powerplants; a conventional state-of-the-art piston engine was used as a baseline for the comparison. Computer simulations of the performance of single and twin engine pressurized aircraft designs were used to determine how the various characteristics of each engine interacted in the design process. Comparisons were made of how each engine performed relative to the others when integrated into an airframe and required to fly a transportation mission.
Linear- and Repetitive-Feature Detection Within Remotely Sensed Imagery
2017-04-01
public release; distribution is unlimited. The U.S. Army Engineer Research and Development Center (ERDC) solves the nation’s toughest...Imagery Brendan West U.S. Army Engineer Research and Development Center (ERDC) Cold Regions Research and Engineering Laboratory (CRREL) 72 Lyme Road...and Intelligence System (ARTEMIS) U.S. Army Engineer Research and Development Center (ERDC) Cold Regions Research and Engineering Laboratory (CRREL
Engineering design: A cognitive process approach
NASA Astrophysics Data System (ADS)
Strimel, Greg Joseph
The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the research objectives of this study. Two independent coders then coded the video/audio recordings and the additional design data using Halfin's (1973) 17 mental processes for technological problem-solving. The results of this study indicated that the participants employed a wide array of mental processes when solving engineering design challenges. However, the findings provide a general analysis of the number of times participants employed each mental process, as well as the amount of time consumed employing the various mental processes through the different stages of the engineering design process. The results indicated many similarities between the students solving the problem, which may highlight voids in current technology and engineering education curricula. Additionally, the findings showed differences between the processes employed by participants that created the most successful solutions and the participants who developed the least effective solutions. Upon comparing and contrasting these processes, recommendations for instructional strategies to enhance a student's capability for solving engineering design problems were developed. The results also indicated that students, when left without teacher intervention, use a simplified and more natural process to solve design challenges than the 12-step engineering design process reported in much of the literature. Lastly, these data indicated that students followed two different approaches to solving the design problem. Some students employed a sequential and logical approach, while others employed a nebulous, solution centered trial-and-error approach to solving the problem. In this study the participants who were more sequential had better performing solutions. Examining these two approaches and the student cognition data enabled the researcher to generate a conceptual engineering design model for the improved teaching and development of engineering design problem solving.
Personal Study Planning in Doctoral Education in Industrial Engineering
ERIC Educational Resources Information Center
Lahenius, K.; Martinsuo, M.
2010-01-01
The duration of doctoral studies has increased in Europe. Personal study planning has been considered as one possible solution to help students in achieving shorter study times. This study investigates how doctoral students experience and use personal study plans in one university department of industrial engineering. The research material…
NASA Astrophysics Data System (ADS)
Rimer, Sara; Reddivari, Sahithya; Cotel, Aline
2015-11-01
As international efforts to educate and empower women continue to rise, engineering educators are in a unique position to be a part of these efforts by encouraging and supporting women across the world at the university level through STEM education and outreach. For the past two years, the University of Michigan has been a part of a grassroots effort to encourage and support the persistence of engineering female students at University of Liberia. This effort has led to the implementation of a leadership camp this past August for Liberian engineering undergraduate women, meant to: (i) to empower engineering students with the skills, support, and inspiration necessary to become successful and well-rounded engineering professionals in a global engineering market; and (ii) to strengthen the community of Liberian female engineers by building cross-cultural partnerships among students resulting in a international network of women engineers. This session will present qualitative research findings on the impact of this grassroots effort on Liberian female students? persistence in engineering, and the future directions of this work.
NASA Astrophysics Data System (ADS)
Alva, Desiree D.
This study explores the ways in which institutional agents (i.e., faculty, staff, and advisors) influence Latino engineering students' sense of belonging at a predominantly White institution (PWI). Research (e.g., Museus, Palmer, Davis, & Maramba, 2011) has shown the struggles that Latino students face in pursuing higher education (e.g., culture shock, marginalization, financial barriers), as well as the obstacles that some of them face related to their undocumented status (e.g., out-of-state tuition, ineligibility for federal student aid) (Gildersleeve & Ranero, 2010; Gildersleeve, Rumann, & Mondragon, 2010). However, there is little to no empirical research that describes how successful Latino engineering students connect socially in order to feel a sense of belonging in competitive majors, such as engineering, at a PWI. To explore this phenomenon, this study addressed the following research questions: (a) How do Latino students describe their social connections with institutional agents? (b) According to Latino students, how have those social connections influenced their sense of belonging in engineering at a PWI? (c) How are the social connections and their influence on sense of belonging in engineering alike or different for Latinos who identify as undocumented? Using a qualitative case study design (i.e., on-site observations, interviews, and a constant comparative method), the social connections that seven Latino students made at one Midwestern university were explored in an effort to understand the influence that institutional agents had on their sense of belonging in engineering at a PWI. The findings revealed that while Latinos felt marginalized, they eventually felt a sense of belonging in engineering through developing their engineering identity with the support of institutional agents and peers. Further implications for theory, methodology, policy, and practice were also explored.
NASA Astrophysics Data System (ADS)
Cała, Marek; Borowski, Marek
2018-03-01
The AGH University of Science and Technology collaborates closely with other universities, economic units, governmental and local administrative bodies. International cooperation plays a very important role in the academic research. The AGH University of Science and Technology has signed many collaboration agreements. They aim at multidimensional cooperation in the fields of education and academic research. AGH UST has always focused on collaboration with business and industry. In recent years, the global economy is undergoing massive transformations, what creates new challenges to companies and educational institutions that cater to the needs of industry. The expansion of business enterprises is largely dependent on their employees' expertise, skills and levels of competence. Certified engineers are provided by universities. Therefore, the qualifications of the graduates are determined by the curriculum and teaching methods, as well as the available educational and research facilities. Of equal importance is the qualified academic staff. Human activities in the field of engineering require finding solutions to problems of various nature and magnitude. An engineer's work consists in the design, construction, modification and maintenance of useful devices, processes and systems, using scientific and technical knowledge. In order to design complex engineering solutions, an engineer uses his imagination, experience, analytical skills, logical reasoning and makes conscious use of his knowledge. At the Faculty of Mining and Geoengineering of the AGH University of Science and Technology in Cracow, 15 engineers from Vietnam are studying Mining and Geology at the second-cycle studies (specialization: mine ventilation). The solutions proposed in the field of the engineers' education guarantee that foreign students gain both engineering knowledge and problem-solving skills. Therefore, the study programme was complemented by a series of practical aspects.
High School Engineering and Technology Education Integration through Design Challenges
ERIC Educational Resources Information Center
Mentzer, Nathan
2011-01-01
This study contextualized the use of the engineering design process by providing descriptions of how each element in a design process was integrated in an eleventh grade industry and engineering systems course. The guiding research question for this inquiry was: How do students engage in the engineering design process in a course where technology…
Department of Defense Instrumentation Award.
1985-07-01
Office of Scientific Research Prepared by The Electrical Engineering Department and The Laboratory for Plasma and Fusion Energy Studies University of...Electrical Engineering Department Laboratory for Plasma and Fusion Energy Studies University of Maryland College Park, Maryland 20742 Principal Investigator
Hunter, Gail; Burns, Laurie; Bone, Brian; Mintel, Thomas; Jimenez, Eduardo
2012-01-01
This paper summarizes the results of a longitudinal usability research study of a specially engineered sonic powered toothbrush with unique sensing and control technologies. The usability test was conducted with fourteen (14) consumers from the St. Louis, MO, USA area who use manual toothbrushes. The study consisted of consumers using the specially engineered sonic powered toothbrush with unique sensing and control technologies for three weeks. During the study, users participated in four toothbrush trials during weekly visits to the research facility. These trials were videotaped and were analyzed regarding brushing time, behavior, and technique. In addition, the users were required to use the toothbrush twice a day for their at-home brushing. The toothbrush had a positive impact on consumers' tooth brushing behavior. Users spent more time brushing their teeth with this toothbrush as compared to their manual toothbrush. In addition, users spent more time keeping the sonic toothbrush in the recommended angle during use. Finally, users perceived their teeth to be cleaner when using the specially engineered sonic powered toothbrush with unique sensing and control technologies. The specially engineered sonic powered toothbrush with unique sensing and control technologies left a positive impression on the users. The users perceived the toothbrush to clean their teeth better than a manual toothbrush.
Bell P-39 in the Icing Research Tunnel
1944-11-21
A Bell P-39 Airacobra in the NACA Aircraft Engine Research Laboratory’s Icing Research Tunnel for a propeller deicing study. The tunnel, which began operation in June 1944, was built to study the formation of ice on aircraft surfaces and methods of preventing or eradicating that ice. Ice buildup adds extra weight to aircraft, effects aerodynamics, and sometimes blocks airflow through engines. NACA design engineers added the Icing Research Tunnel to the new AERL’s original layout to take advantage of the massive refrigeration system being constructed for the Altitude Wind Tunnel. The Icing Research Tunnel is a closed-loop atmospheric wind tunnel with a 6- by 9-foot test section. The tunnel can produce speeds up to 300 miles per hour and temperatures from about 30 to –45⁰ F. During World War II AERL researchers analyzed different ice protection systems for propeller, engine inlets, antennae, and wings in the icing tunnel. The P-39 was a vital low-altitude pursuit aircraft of the US during the war. NACA investigators investigated several methods of preventing ice buildup on the P-39’s propeller, including the use of internal and external electrical heaters, alcohol, and hot gases. They found that continual heating of the blades expended more energy than the aircraft could supply, so studies focused on intermittent heating. The results of the wind tunnel investigations were then compared to actual flight tests on aircraft.
MD-11 PCA - First Landing at Edwards
NASA Technical Reports Server (NTRS)
1995-01-01
This McDonnell Douglas MD-11 transport aircraft approaches its first landing under engine power only on Aug. 29, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The milestone flight, flown by NASA research pilot and former astronaut Gordon Fullerton, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple--for pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.
MD-11 PCA - First Landing at Edwards
NASA Technical Reports Server (NTRS)
1995-01-01
This McDonnell Douglas MD-11 approaches the first landing ever of a transport aircraft under engine power only on Aug. 29, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The milestone flight, flown by NASA research pilot and former astronaut Gordon Fullerton, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when it normal control surfaces are disabled. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple--for pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.
1991-08-09
processes Prof T E Fischer, Stevens Institute of Technology, Hoboken, USA. Friction of granular materials Dr M J Adams, Unilever Research, Wirral, England...Army Research Office, ERO US National Science Foundation US Office of Naval Research, ERO Unilever Research and Engineering Division Mobil Research and...Development Corporation Exxon Research and Engineering Company . We are especially grateful to the ASI Administrator, Mr M G de St V Atkins, who was
American Society for Engineering Education/NASA Summer Faculty Fellowship Program 1982
NASA Technical Reports Server (NTRS)
Spencer, J. H. (Compiler)
1983-01-01
A program of summer faculty fellowships for engineering and science educators is described. The program involves participation in cooperative research and study. Results of the program evaluation are summarized. The research fellows indicated satisfaction with the program. Benefits of the program cited include: (1) enhancement of professional abilities; (2) contact with professionals in a chosen area of research; (3) familiarity with research facilities; and (4) development of new research techniques and their adaptation to an academic setting. Abstracts of each of the research projects undertaken are presented.
Popoola, Segun I; Atayero, Aderemi A; Badejo, Joke A; John, Temitope M; Odukoya, Jonathan A; Omole, David O
2018-04-01
Empirical measurement, monitoring, analysis, and reporting of learning outcomes in higher institutions of developing countries may lead to sustainable education in the region. In this data article, data about the academic performances of undergraduates that studied engineering programs at Covenant University, Nigeria are presented and analyzed. A total population sample of 1841 undergraduates that studied Chemical Engineering (CHE), Civil Engineering (CVE), Computer Engineering (CEN), Electrical and Electronics Engineering (EEE), Information and Communication Engineering (ICE), Mechanical Engineering (MEE), and Petroleum Engineering (PET) within the year range of 2002-2014 are randomly selected. For the five-year study period of engineering program, Grade Point Average (GPA) and its cumulative value of each of the sample were obtained from the Department of Student Records and Academic Affairs. In order to encourage evidence-based research in learning analytics, detailed datasets are made publicly available in a Microsoft Excel spreadsheet file attached to this article. Descriptive statistics and frequency distributions of the academic performance data are presented in tables and graphs for easy data interpretations. In addition, one-way Analysis of Variance (ANOVA) and multiple comparison post-hoc tests are performed to determine whether the variations in the academic performances are significant across the seven engineering programs. The data provided in this article will assist the global educational research community and regional policy makers to understand and optimize the learning environment towards the realization of smart campuses and sustainable education.
A Comparative Propulsion System Analysis for the High-Speed Civil Transport
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.; Haller, William J.; Senick, Paul F.; Jones, Scott M.; Seidel, Jonathan A.
2005-01-01
Six of the candidate propulsion systems for the High-Speed Civil Transport are the turbojet, turbine bypass engine, mixed flow turbofan, variable cycle engine, Flade engine, and the inverting flow valve engine. A comparison of these propulsion systems by NASA's Glenn Research Center, paralleling studies within the aircraft industry, is presented. This report describes the Glenn Aeropropulsion Analysis Office's contribution to the High-Speed Research Program's 1993 and 1994 propulsion system selections. A parametric investigation of each propulsion cycle's primary design variables is analytically performed. Performance, weight, and geometric data are calculated for each engine. The resulting engines are then evaluated on two airframer-derived supersonic commercial aircraft for a 5000 nautical mile, Mach 2.4 cruise design mission. The effects of takeoff noise, cruise emissions, and cycle design rules are examined.
40 CFR 91.1005 - Testing exemption.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91... proposed test program, an appropriate purpose would be research, investigations, studies, demonstrations... must exhibit a duration of reasonable length and affect a reasonable number of engines. In this regard...
40 CFR 91.1005 - Testing exemption.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91... proposed test program, an appropriate purpose would be research, investigations, studies, demonstrations... must exhibit a duration of reasonable length and affect a reasonable number of engines. In this regard...
40 CFR 91.1005 - Testing exemption.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91... proposed test program, an appropriate purpose would be research, investigations, studies, demonstrations... must exhibit a duration of reasonable length and affect a reasonable number of engines. In this regard...
40 CFR 91.1005 - Testing exemption.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91... proposed test program, an appropriate purpose would be research, investigations, studies, demonstrations... must exhibit a duration of reasonable length and affect a reasonable number of engines. In this regard...
40 CFR 91.1005 - Testing exemption.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91... proposed test program, an appropriate purpose would be research, investigations, studies, demonstrations... must exhibit a duration of reasonable length and affect a reasonable number of engines. In this regard...
The Art of Artificial Intelligence. 1. Themes and Case Studies of Knowledge Engineering
1977-08-01
in scientific and medical inference illuminate the art of knowledge engineering and its parent science , Artificial Intelligence....The knowledge engineer practices the art of bringing the principles and tools of AI research to bear on difficult applications problems requiring
Rotorcraft convertible engines for the 1980s
NASA Technical Reports Server (NTRS)
Eisenberg, J. D.
1982-01-01
Two rotorcraft studies were executed. The goal was to identify attractive techniques for implementing convertible powerplants for the ABC, Folded Tilt Rotor, and X-wing type high speed, high-L/D rotorcraft; to determine the DOC and fuel savings benefits achieved thereby; and to define research required to bring these powerplants into existence by the 1990's. These studies are reviewed herein and the different methods of approach are pointed out as well as the key findings. Fan shaft engines using variable inlet guide vanes or torque converters, and turboprop powerplants appear attractive. Savings in DOC and fuel consumption of over 15 percent are predicted in some cases as a result of convertible engine use rather than using separate engines for the thrust and the shaft functions. Areas of required research are fan performance (including noise), integrated engine/rotorcraft control, torque converters, turbine design, airflow for rotorcraft torque control, bleed for lift flow, and transmissions and clutches.
GLobal Integrated Design Environment (GLIDE): A Concurrent Engineering Application
NASA Technical Reports Server (NTRS)
McGuire, Melissa L.; Kunkel, Matthew R.; Smith, David A.
2010-01-01
The GLobal Integrated Design Environment (GLIDE) is a client-server software application purpose-built to mitigate issues associated with real time data sharing in concurrent engineering environments and to facilitate discipline-to-discipline interaction between multiple engineers and researchers. GLIDE is implemented in multiple programming languages utilizing standardized web protocols to enable secure parameter data sharing between engineers and researchers across the Internet in closed and/or widely distributed working environments. A well defined, HyperText Transfer Protocol (HTTP) based Application Programming Interface (API) to the GLIDE client/server environment enables users to interact with GLIDE, and each other, within common and familiar tools. One such common tool, Microsoft Excel (Microsoft Corporation), paired with its add-in API for GLIDE, is discussed in this paper. The top-level examples given demonstrate how this interface improves the efficiency of the design process of a concurrent engineering study while reducing potential errors associated with manually sharing information between study participants.
Secondary Students' Conceptual Understanding of Engineering as a Field
ERIC Educational Resources Information Center
Montfort, Devlin B.; Brown, Shane; Whritenour, Victoria
2013-01-01
Researchers have long been interested in how to recruit and retain more and more diverse students into engineering programs. One consistent challenge in this research is understanding the impacts of interventions from the point of view of the student, and how their preconceptions may influence that effectiveness. This study investigated how…
Career Choices in Engineering: The Influence of Peers and Parents Implication for Counselling
ERIC Educational Resources Information Center
Alika, Henrietta Ijeoma
2012-01-01
This study was designed to investigate the relationship between parental and peer group influence on career choice in engineering profession among adolescents. The research design adopted was correlational because it sought to establish the relationship between the independent variable and the dependent variable. One research question and one…
Development of Chemical Engineering Course Methods Using Action Research: Case Study
ERIC Educational Resources Information Center
Virkki-Hatakka, Terhi; Tuunila, Ritva; Nurkka, Niina
2013-01-01
This paper reports on the systematic development of a teaching methodology for two chemical engineering courses. The aim was to improve the quality of teaching to achieve expected learning outcomes more effectively. The development was carried out over a period of several years based on an action research methodology with data systematically…
ERIC Educational Resources Information Center
Shekhar, Prateek; Maura Borrego
2017-01-01
Engineering education research has empirically validated the effectiveness of active learning over traditional instructional methods. However, the dissemination of education research into instructional practice has been slow. Faculty workshops for current and future instructors offer a solution to promote the widespread adoption of active learning…
ERIC Educational Resources Information Center
Streveler, Ruth; Geist, Monica; Ammerman, Ravel; Sulzbach, Candace; Miller, Ronald; Olds, Barbara; Nelson, Mary
2007-01-01
This study extends ongoing work to identify difficult concepts in thermal and transport science and measure students' understanding of those concepts via a concept inventory. Two research questions provided the focal point: "What important concepts in electric circuits and engineering mechanics do students find difficult to learn?" and…
Advanced control for airbreathing engines, volume 2: General Electric aircraft engines
NASA Technical Reports Server (NTRS)
Bansal, Indar
1993-01-01
The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.
NASA Technical Reports Server (NTRS)
Neal, Bradford; Sengupta, Upal
1989-01-01
During some flight programs, researchers have encountered problems in the throttle response characteristics of high-performance aircraft. To study and to help solve these problems, the National Aeronautics and Space Administration Ames Research Center's Dryden Flight Research Facility (Ames-Dryden) conducted a study using a TF-104G airplane modified with a variable-response electronic throttle control system. Ames-Dryden investigated the effects of different variables on engine response and handling qualities. The system provided transport delay, lead and lag filters, second-order lags, command rate and position limits, and variable gain between the pilot's throttle command and the engine fuel controller. These variables could be tested individually or in combination. Ten research flights were flown to gather data on engine response and to obtain pilot ratings of the various system configurations. The results should provide design criteria for engine-response characteristics. The variable-response throttle components and how they were installed in the TF-104G aircraft are described. How the variable-response throttle was used in flight and some of the results of using this system are discussed.
Engineering education and a lifetime of learning
NASA Technical Reports Server (NTRS)
Eisley, J. (Editor)
1974-01-01
The result of an eleven-week study by the National Aeronautics and Space Administration (NASA) and the American Society of Engineering Education is presented. The study was the ninth of a series of programs. The purposes of the programs were: (1) to introduce engineering school faculty members to system design and to a particular approach to teaching system design, (2) to introduce engineering faculty to NASA and to a specific NASA center, and (3) to produce a study of use to NASA and to the participants. The story was concerned with engineering education in the U.S., and concentrated upon undergraduate education and teaching, although this bias was not meant to imply that research and graduate study are less important to engineering education.
Draftsmen at Work during Construction of the Aircraft Engine Research Laboratory
1942-09-21
The National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory was designed by a group of engineers at the Langley Memorial Aeronautical Laboratory in late 1940 and 1941. Under the guidance of Ernest Whitney, the men worked on drawings and calculations in a room above Langley’s Structural Research Laboratory. The main Aircraft Engine Research Laboratory design group originally consisted of approximately 30 engineers and draftsmen, but there were smaller groups working separately on specific facilities. The new engine lab would have six principal buildings: the Engine Research Building, hangar, Fuels and Lubricants Building, Administration Building, Propeller Test Stand, and Altitude Wind Tunnel. In December 1941 most of those working on the project transferred to Cleveland from Langley. Harrison Underwood and Charles Egan led 18 architectural, 26 machine equipment, 3 structural and 10 mechanical draftsmen. Initially these staff members were housed in temporary offices in the hangar. As sections of the four-acre Engine Research Building were completed in the summer of 1942, the design team began relocating there. The Engine Research Building contained a variety of test cells and laboratories to address virtually every aspect of piston engine research. It also contained a two-story office wing, seen in this photograph that would later house many of the powerplant research engineers.
ERIC Educational Resources Information Center
Kelly, Madeline
2015-01-01
This study takes a multidimensional approach to citation analysis, examining citations in multiple subfields of engineering, from both scholarly journals and doctoral dissertations. The three major goals of the study are to determine whether there are differences between citations drawn from dissertations and those drawn from journal articles; to…
ERIC Educational Resources Information Center
Kilgore, Deborah; Jocuns, Andrew; Yasuhara, Ken; Atman, Cynthia J.
2009-01-01
The Academic Pathways Study (APS) is a multi-institution, mixed-methods, longitudinal study which examines engineering students' learning and development as they move into, through, and beyond their undergraduate institutions (Atman et al., 2008; Sheppard et al., 2004). It is part of the Center for the Advancement of Engineering Education…
ERIC Educational Resources Information Center
Le, Qiang
2012-01-01
This paper discusses the year 2008 and the 2009 results of implementing the Laboratory for Innovative Technology and Engineering Education (LITEE) case studies in an engineering class at Hampton University (HU), a HBCU. Questionnaires were administered at the conclusion of the experiment. The goal of this research is to investigate the relevance…
Important Earthquake Engineering Resources
PEER logo Pacific Earthquake Engineering Research Center home about peer news events research Engineering Resources Site Map Search Important Earthquake Engineering Resources - American Concrete Institute Motion Observation Systems (COSMOS) - Consortium of Universities for Research in Earthquake Engineering
Communications Middleware for Tactical Environments: Observations, Experiences, and Lessons Learned
2009-12-12
posi- tion at the Engineering Department of the University of Ferrara , Italy . His research interests include distributed and mobile computing, QoS...science engineering from the Uni- versity of Padova, Italy , in 2005. She continued her studies at the University of Ferrara , where she gained a Master’s...Stefanelli, University of Ferrara Jesse Kovach, U.S. Army Research Laboratory James Hanna, U.S. Air Force Research Laboratory Communications Middleware
An Analysis of the Cost Estimating Process in Air Force Research and Development Laboratories.
1981-09-01
inexperienced military or civilian engineer/scientist new to the laboratory environ - ment the cost eatimating dilemma may be especially acute. Problem...several components are subjected to repeated environmental testing. Thus, the data from Question 6 was used to address the first two research questions: 1...Research Scientific study and experimentation directed toward increasing knowledge and understanding in the physical, engineering, environmental , and
Multi-Organization Multi-Discipline Effort Developing a Mitigation Concept for Planetary Defense
NASA Technical Reports Server (NTRS)
Leung, Ronald Y.; Barbee, Brent W.; Seery, Bernard D.; Bambacus, Myra; Finewood, Lee; Greenaugh, Kevin C.; Lewis, Anthony; Dearborn, David; Miller, Paul L.; Weaver, Robert P.;
2017-01-01
There have been significant recent efforts in addressing mitigation approaches to neutralize Potentially Hazardous Asteroids (PHA). One such research effort was performed in 2015 by an integrated, inter-disciplinary team of asteroid scientists, energy deposition modeling scientists, payload engineers, orbital dynamist engineers, spacecraft discipline engineers, and systems architecture engineer from NASAs Goddard Space Flight Center (GSFC) and the Department of Energy (DoE) National Nuclear Security Administration (NNSA) laboratories (Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratories (LLNL) and Sandia National Laboratories). The study team collaborated with GSFCs Integrated Design Centers Mission Design Lab (MDL) which engaged a team of GSFC flight hardware discipline engineers to work with GSFC, LANL, and LLNL NEA-related subject matter experts during a one-week intensive concept formulation study in an integrated concurrent engineering environment. This team has analyzed the first of several distinct study cases for a multi-year NASA research grant. This Case 1 study references the Near-Earth Asteroid (NEA) named Bennu as the notional target due to the availability of a very detailed Design Reference Asteroid (DRA) model for its orbit and physical characteristics (courtesy of the Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) mission team). The research involved the formulation and optimization of spacecraft trajectories to intercept Bennu, overall mission and architecture concepts, and high-fidelity modeling of both kinetic impact (spacecraft collision to change a NEAs momentum and orbit) and nuclear detonation effects on Bennu, for purposes of deflecting Bennu.
Multi-Fuel Rotary Engine for General Aviation Aircraft
NASA Technical Reports Server (NTRS)
Jones, C.; Ellis, D. R.; Meng, P. R.
1983-01-01
Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.
NASA Astrophysics Data System (ADS)
Corvo, Arthur Francis
Given the reality that active and competitive participation in the 21 st century requires American students to deepen their scientific and mathematical knowledge base, the National Research Council (NRC) proposed a new conceptual framework for K--12 science education. The framework consists of an integration of what the NRC report refers to as the three dimensions: scientific and engineering practices, crosscutting concepts, and core ideas in four disciplinary areas (physical, life and earth/spaces sciences, and engineering/technology). The Next Generation Science Standards (NGSS ), which are derived from this new framework, were released in April 2013 and have implications on teacher learning and development in Science, Technology, Engineering, and Mathematics (STEM). Given the NGSS's recent introduction, there is little research on how teachers can prepare for its release. To meet this research need, I implemented a self-study aimed at examining my teaching practices and classroom outcomes through the lens of the NRC's conceptual framework and the NGSS. The self-study employed design-based research (DBR) methods to investigate what happened in my secondary classroom when I designed, enacted, and reflected on units of study for my science, engineering, and mathematics classes. I utilized various best practices including Learning for Use (LfU) and Understanding by Design (UbD) models for instructional design, talk moves as a tool for promoting discourse, and modeling instruction for these designed units of study. The DBR strategy was chosen to promote reflective cycles, which are consistent with and in support of the self-study framework. A multiple case, mixed-methods approach was used for data collection and analysis. The findings in the study are reported by study phase in terms of unit planning, unit enactment, and unit reflection. The findings have implications for science teaching, teacher professional development, and teacher education.
Integrating Engineering Design into Technology Education: Georgia's Perspective
ERIC Educational Resources Information Center
Denson, Cameron D.; Kelley, Todd R.; Wicklein, Robert C.
2009-01-01
This descriptive research study reported on Georgia's secondary level (grades 6-12) technology education programs capability to incorporate engineering concepts and/or engineering design into their curriculum. Participants were middle school and high school teachers in the state of Georgia who currently teach technology education. Participants…
Two Approaches to Engineering Design:Observations in sTEm Education
ERIC Educational Resources Information Center
Kelley, Todd R.; Brenner, Daniel C.; Pieper, Jon T.
2010-01-01
A comparative study was conducted to compare two approaches to engineering design curriculum across different schools (inter-school) and across two curricula "Project Lead the Way and Engineering Projects in Community Service" (inter-curricula). The researchers collected curricula material including handouts, lesson plans, guides,…
A Phenomenographic Investigation of the Ways Engineering Students Experience Innovation
NASA Astrophysics Data System (ADS)
Fila, Nicholas David
Innovation has become an important phenomenon in engineering and engineering education. By developing novel, feasible, viable, and valued solutions to complex technical and human problems, engineers support the economic competitiveness of organizations, make a difference in the lives of users and other stakeholders, drive societal and scientific progress, and obtain key personal benefits. Innovation is also a complex phenomenon. It occurs across a variety of contexts and domains, encompasses numerous phases and activities, and requires unique competency profiles. Despite this complexity, many studies in engineering education focus on specific aspects (e.g., engineering students' abilities to generate original concepts during idea generation), and we still know little about the variety of ways engineering students approach and understand innovation. This study addresses that gap by asking: 1. What are the qualitatively different ways engineering students experience innovation during their engineering projects? 2. What are the structural relationships between the ways engineering students experience innovation? This study utilized phenomenography, a qualitative research method, to explore the above research questions. Thirty-three engineering students were recruited to ensure thorough coverage along four factors suggested by the literature to support differences related to innovation: engineering project experience, academic major, year in school, and gender. Each participant completed a 1-2 hour, semi-structured interview that focused on experiences with and conceptions of innovation. Whole transcripts were analyzed using an eight-stage, iterative, and comparative approach meant to identify a limited number of categories of description (composite ways of experiencing innovation comprised of the experiences of several participants), and the structural relationships between these categories. Phenomenographic analysis revealed eight categories of description that were structured in a semi-hierarchical, two-dimensional outcome space. The first four categories demonstrated a progression toward greater comprehensiveness in both process and focus dimensions. In the process dimension, subsequent categories added increasingly preliminary innovation phases: idea realization, idea generation, problem scoping, and problem finding. In the focus dimension, subsequent categories added key areas engineers considered during innovation: technical, human, and enterprise. The final four categories each incorporated all previous process phases and focus areas, but prioritized different focus areas in sophisticated ways and acknowledged a macro-iterative cycle, i.e., an understanding of how the processes within a single innovation project built upon and contributed to past and future innovation projects. These results demonstrate important differences between engineering students and suggest how they may come to experience innovation in increasingly comprehensive ways. A framework based on the results can be used by educators and researchers to support more robust educational offerings and nuanced research designs that reflect these differences.
B-29 Superfortress Engine in the Altitude Wind Tunnel
1944-07-21
The resolution of the Boeing B-29 Superfortress’ engine cooling problems was one of the Aircraft Engine Research Laboratory’s (AERL) key contributions to the World War II effort. The B-29 leapfrogged previous bombers in size, speed, and altitude capabilities. The B–29 was intended to soar above anti-aircraft fire and make pinpoint bomb drops onto strategic targets. Four Wright Aeronautical R-3350 engines powered the massive aircraft. The engines, however, frequently strained and overheated due to payload overloading. This resulted in a growing number of engine fires that often resulted in crashes. The military asked the NACA to tackle the overheating issue. Full-scale engine tests on a R–3350 engine in the Prop House demonstrated that a NACA-designed impeller increased the fuel injection system’s flow rate. Single-cylinder studies resolved a valve failure problem by a slight extension of the cylinder head, and researchers in the Engine Research Building combated uneven heating with a new fuel injection system. Investigations during the summer of 1944 in the Altitude Wind Tunnel, which could simulate flight conditions at high altitudes, led to reduction of drag and improved air flow by reshaping the cowling inlet and outlet. The NACA modifications were then flight tested on a B-29 bomber that was brought to the AERL.
Engineering derivatives from biological systems for advanced aerospace applications
NASA Technical Reports Server (NTRS)
Winfield, Daniel L.; Hering, Dean H.; Cole, David
1991-01-01
The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs.
NASA Technical Reports Server (NTRS)
Barclay, Rebecca O.; Pinelli, Thomas E.; Elazar, David; Kennedy, John M.
1991-01-01
As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two pilot studies were conducted that investigated the technical communications practices of Israeli and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their view about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected U.S. aerospace engineers and scientists who are working in cryogenics, adaptive walls, and magnetic suspension. A slightly modified version was sent to Israeli aerospace engineers and scientists working at Israel Aircraft Industries, LTD. Responses of the Israeli and U.S. aerospace engineers and scientists to selected questions are presented in this paper.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Experiment Station (WES), the U.S. Army Construction Engineering Research Laboratory (CERL), the U.S. Army Engineer Topographic Laboratories (ETL), the U.S. Army Coastal Engineering Research Center (CERC), the U.S... CEMETERIES CORPS OF ENGINEERS, RESEARCH AND DEVELOPMENT, LABORATORY RESEARCH AND DEVELOPMENT AND TESTS, WORK...
NASA Technical Reports Server (NTRS)
Kendall, J. S.; Stoeffler, R. C.
1972-01-01
Investigations of various phases of gaseous nuclear rocket technology have been conducted. The principal research efforts have recently been directed toward the closed-cycle, vortex-stabilized nuclear light bulb engine and toward a small-scale fissioning uranium plasma experiment that could be conducted in the Los Alamos Scientific Laboratory's Nuclear Furnace. The engine concept is based on the transfer of energy by thermal radiation from gaseous fissioning uranium, through a transparent wall, to hydrogen propellant. The reference engine configuration is comprised of seven unit cavities, each having its own fuel transparent wall and propellant duct. The basic design of the engine is described. Subsequent studies performed to supplement and investigate the basic design are reported. Summaries of other nuclear light bulb research programs are included.
Collected software engineering papers, volume 8
NASA Technical Reports Server (NTRS)
1990-01-01
A collection of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) during the period November 1989 through October 1990 is presented. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. Although these papers cover several topics related to software engineering, they do not encompass the entire scope of SEL activities and interests. Additional information about the SEL and its research efforts may be obtained from the sources listed in the bibliography. The seven presented papers are grouped into four major categories: (1) experimental research and evaluation of software measurement; (2) studies on models for software reuse; (3) a software tool evaluation; and (4) Ada technology and studies in the areas of reuse and specification.
Buse, Kathleen; Hill, Catherine; Benson, Kathleen
2017-01-01
While there is an extensive body of research on gender equity in engineering and computing, there have been few efforts to glean insight from a dialog among experts. To encourage collaboration and to develop a shared vision of the future research agenda, a 2 day workshop of 50 scholars who work on the topic of gender in engineering and computing was held at a rural conference center. The structure of the conference and the location allowed for time to reflect, dialog, and to craft an innovative research agenda aimed at increasing the representation of women in engineering and computing. This paper has been written by the conference organizers and details the ideas and recommendations from the scholars. The result is an innovative, collaborative approach to future research that focuses on identifying effective interventions. The new approach includes the creation of partnerships with stakeholders including businesses, government agencies, non-profits and academic institutions to allow a broader voice in setting research priorities. Researchers recommend incorporating multiple disciplines and methodologies, while expanding the use of data analytics, merging and mining existing databases and creating new datasets. The future research agenda is detailed and includes studies focused on socio-cultural interventions particularly on career choice, within undergraduate and graduate programs, and for women in professional careers. The outcome is a vision for future research that can be shared with researchers, practitioners and other stakeholders that will lead to gender equity in the engineering and computing professions. PMID:28469591
Buse, Kathleen; Hill, Catherine; Benson, Kathleen
2017-01-01
While there is an extensive body of research on gender equity in engineering and computing, there have been few efforts to glean insight from a dialog among experts. To encourage collaboration and to develop a shared vision of the future research agenda, a 2 day workshop of 50 scholars who work on the topic of gender in engineering and computing was held at a rural conference center. The structure of the conference and the location allowed for time to reflect, dialog, and to craft an innovative research agenda aimed at increasing the representation of women in engineering and computing. This paper has been written by the conference organizers and details the ideas and recommendations from the scholars. The result is an innovative, collaborative approach to future research that focuses on identifying effective interventions. The new approach includes the creation of partnerships with stakeholders including businesses, government agencies, non-profits and academic institutions to allow a broader voice in setting research priorities. Researchers recommend incorporating multiple disciplines and methodologies, while expanding the use of data analytics, merging and mining existing databases and creating new datasets. The future research agenda is detailed and includes studies focused on socio-cultural interventions particularly on career choice, within undergraduate and graduate programs, and for women in professional careers. The outcome is a vision for future research that can be shared with researchers, practitioners and other stakeholders that will lead to gender equity in the engineering and computing professions.
Development of Supersonic Vehicle for Demonstration of a Precooled Turbojet Engine
NASA Astrophysics Data System (ADS)
Sawai, Shujiro; Fujita, Kazuhisa; Kobayashi, Hiroaki; Sakai, Shin'ichiro; Bando, Nobutaka; Kadooka, Shouhei; Tsuboi, Nobuyuki; Miyaji, Koji; Uchiyama, Taku; Hashimoto, Tatsuaki
JAXA is developing Mach 5 hypersonic turbojet engine technology that can be applied in a future hypersonic transport. Now, Jet Engine Technology Research Center of JAXA conducts the experimental study using a 1 / 10 scale-model engine. In parallel to engine development activities, a new supersonic flight-testing vehicle for the hypersonic turbojet engine is under development since 2004. In this paper, the system configuration of the flight-testing vehicle is outlined and development status is reported.
Gas-Dynamic Methods to Reduce Gas Flow Nonuniformity from the Annular Frames of Gas Turbine Engines
NASA Astrophysics Data System (ADS)
Kolmakova, D.; Popov, G.
2018-01-01
Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and consequently to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. Based on existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.
Preliminary Study on Acoustic Detection of Faults Experienced by a High-Bypass Turbofan Engine
NASA Technical Reports Server (NTRS)
Boyle, Devin K.
2014-01-01
The vehicle integrated propulsion research (VIPR) effort conducted by NASA and several partners provided an unparalleled opportunity to test a relatively low TRL concept regarding the use of far field acoustics to identify faults occurring in a high bypass turbofan engine. Though VIPR Phase II ground based aircraft installed engine testing wherein a multitude of research sensors and methods were evaluated, an array of acoustic microphones was used to determine the viability of such an array to detect failures occurring in a commercially representative high bypass turbofan engine. The failures introduced during VIPR testing included commanding the engine's low pressure compressor (LPC) exit and high pressure compressor (HPC) 14th stage bleed values abruptly to their failsafe positions during steady state
Generalized simulation technique for turbojet engine system analysis
NASA Technical Reports Server (NTRS)
Seldner, K.; Mihaloew, J. R.; Blaha, R. J.
1972-01-01
A nonlinear analog simulation of a turbojet engine was developed. The purpose of the study was to establish simulation techniques applicable to propulsion system dynamics and controls research. A schematic model was derived from a physical description of a J85-13 turbojet engine. Basic conservation equations were applied to each component along with their individual performance characteristics to derive a mathematical representation. The simulation was mechanized on an analog computer. The simulation was verified in both steady-state and dynamic modes by comparing analytical results with experimental data obtained from tests performed at the Lewis Research Center with a J85-13 engine. In addition, comparison was also made with performance data obtained from the engine manufacturer. The comparisons established the validity of the simulation technique.
The NASA-JPL advanced propulsion program
NASA Technical Reports Server (NTRS)
Frisbee, Robert H.
1994-01-01
The NASA Advanced Propulsion Concepts (APC) program at the Jet Propulsion Laboratory (JPL) consists of two main areas: The first involves cooperative modeling and research activities between JPL and various universities and industry; the second involves research at universities and industry that is directly supported by JPL. The cooperative research program consists of mission studies, research and development of ion engine technology using C-60 (Buckminsterfullerene) propellant, and research and development of lithium-propellant Lorentz-force accelerator (LFA) engine technology. The university/industry- supported research includes research (modeling and proof-of-concept experiments) in advanced, long-life electric propulsion, and in fusion propulsion. These propulsion concepts were selected primarily to cover a range of applications from near-term to far-term missions. For example, the long-lived pulsed-xenon thruster research that JPL is supporting at Princeton University addresses the near-term need for efficient, long-life attitude control and station-keeping propulsion for Earth-orbiting spacecraft. The C-60-propellant ion engine has the potential for good efficiency in a relatively low specific impulse (Isp) range (10,000 - 30,000 m/s) that is optimum for relatively fast (less than 100 day) cis-lunar (LEO/GEO/Lunar) missions employing near-term, high-specific mass electric propulsion vehicles. Research and modeling on the C-60-ion engine are currently being performed by JPL (engine demonstration), Caltech (C-60 properties), MIT (plume modeling), and USC (diagnostics). The Li-propellant LFA engine also has good efficiency in the modest Isp range (40,000 - 50,000 m/s) that is optimum for near-to-mid-term megawatt-class solar- and nuclear-electric propulsion vehicles used for Mars missions transporting cargo (in support of a piloted mission). Research and modeling on the Li-LFA engine are currently being performed by JPL (cathode development), Moscow Aviation Institute (engine testing), Thermacore (electrode development), as well as at MIT (plume modeling), and USC (diagnostics). Also, the mission performance of a nuclear-electric propulsion (NEP) Li-LFA Mars cargo vehicle is being modeled by JPL (mission analysis; thruster and power processor modeling) and the Rocketdyne Energy Technology and Engineering Center (ETEC) (power system modeling). Finally, the fusion propulsion research activities that JPL is supporting at Pennsylvania State University (PSU) and at Lawrenceville Plasma Physics (LPP) are aimed at far-term fast (less than 100 day round trip) piloted Mars missions and, in the very far term, interstellar missions.
Richard D. Bergman; Scott A. Bowe
2011-01-01
This study summarizes the environmental performance of prefinished engineered wood flooring using life-cycle inventory (LCI) analysis. Using primary mill data gathered from manufacturers in the eastern United States and applying the methods found in Consortium for Research on Renewable Industrial Materials (CORRIM) Research Guidelines and International Organization of...
Systems Engineering | Photovoltaic Research | NREL
Research Other Reliability & Engineering pages: Real-Time PV & Solar Resource Testing Accelerated community toward developing comprehensive PV standards. Each year, NREL researchers, along with solar Engineering Systems Engineering We provide engineering testing and evaluation of photovoltaic (PV
77 FR 3240 - Board on Coastal Engineering Research
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
... DEPARTMENT OF DEFENSE Department of the Army; Corps of Engineers Board on Coastal Engineering... following committee meeting: Name of Committee: Board on Coastal Engineering Research. DATES: Date of... development of research projects in consonance with the needs of the coastal engineering field and the...
75 FR 62113 - Board on Coastal Engineering Research
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... DEPARTMENT OF DEFENSE Department of the Army; Corps of Engineers Board on Coastal Engineering... following committee meeting: Name of Committee: Board on Coastal Engineering Research. Date of Meeting... development of research projects in consonance with the needs of the coastal engineering field and the...
Challenges for Engineering Design, Construction, and Maintenance of Infrastructure in Afghanistan
2010-11-01
applied engineering expertise that collectively can solve challenging infra- structure problems. USACE-ERDC’s researchers and engineers are field...Development Center (ERDC) possesses a unique combination of basic research and applied engineering expertise that collectively can solve challenging...restoration, and other projects. The USACE Engineer Research and Development Center (ERDC) possesses a unique combination of basic research and applied
Researching primary engineering education: UK perspectives, an exploratory study
NASA Astrophysics Data System (ADS)
Clark, Robin; Andrews, Jane
2010-10-01
This paper draws attention to the findings of an exploratory study that critically identified and analysed relevant perceptions of elementary level engineering education within the UK. Utilising an approach based upon grounded theory methodology, 30 participants including teachers, representatives of government bodies and non-profit providers of primary level engineering initiatives were interviewed. Three main concepts were identified during the analysis of findings, each relevant to primary engineering education. These were pedagogic issues, exposure to engineering within the curriculum and children's interest. The paper concludes that the opportunity to make a real difference to children's education by stimulating their engineering imagination suggests this subject area is of particular value.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1993-01-01
As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of India and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Indian Institute of Science and the NASA Langley Research Center. The completion rates for the India and U.S. surveys were 48 and 53 percent, respectively. Responses of the India and U.S. participants to selected questions are presented in this report.
77 FR 14462 - Research, Engineering and Development Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development....S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development.... Name: Research, Engineering & Development Advisory Committee. Time and Date: April 18, 2012--9:30 a.m...
75 FR 48411 - Research, Engineering and Development Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-10
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development.... 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development (R, E&D) Advisory Committee. Name: Research, Engineering & Development Advisory Committee. Time and Date: September...
76 FR 44648 - Research, Engineering and Development Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-26
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development....S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development.... Name: Research, Engineering & Development Advisory Committee. Time and Date: September 21, 2011--9 a.m...
78 FR 16357 - Research, Engineering and Development Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-14
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development... hereby given of a meeting of the FAA Research, Engineering and Development (R,E&D) Advisory Committee. Name: Research, Engineering & Development Advisory Committee. Time and Date: April 24--8:30 a.m. to 4...
DeLonay, Aaron J.; Jacobson, Robert B.; Papoulias, Diana M.; Wildhaber, Mark L.; Chojnacki, Kimberly A.; Pherigo, Emily K.; Haas, Justin D.; Mestl, Gerald E.
2012-01-01
The Comprehensive Sturgeon Research Project is a multiyear, multiagency collaborative research framework developed to provide information to support pallid sturgeon recovery and Missouri River management decisions. The project strategy integrates field and laboratory studies of sturgeon reproductive ecology, early life history, habitat requirements, and physiology. The project scope of work is developed annually with cooperating research partners and in collaboration with the U.S. Army Corps of Engineers, Missouri River Recovery—Integrated Science Program. The research consists of several interdependent and complementary tasks that engage multiple disciplines. The research tasks in the 2010 scope of work primarily address spawning as a probable factor limiting pallid sturgeon survival and recovery, although limited pilot studies also have been initiated to examine the requirements of early life stages. The research is designed to inform management decisions affecting channel re-engineering, flow modification, and pallid sturgeon population augmentation on the Missouri River, and throughout the range of the species. Research and progress made through this project are reported to the U.S. Army Corps of Engineers annually. This annual report details the research effort and progress made by the Comprehensive Sturgeon Research Project during 2010.
Ultra-efficient Engine Diameter Study
NASA Technical Reports Server (NTRS)
Daggett, David L.; Brown, Stephen T.; Kawai, Ron T.
2003-01-01
Engine fan diameter and Bypass Ratio (BPR) optimization studies have been conducted since the beginning of the turbofan age with the recognition that reducing the engine core jet velocity and increasing fan mass flow rate generally increases propulsive efficiency. However, performance tradeoffs limit the amount of fan flow achievable without reducing airplane efficiency. This study identifies the optimum engine fan diameter and BPR, given the advanced Ultra-Efficient Engine Technology (UEET) powerplant efficiencies, for use on an advanced subsonic airframe. Engine diameter studies have historically focused on specific engine size options, and were limited by existing technology and transportation infrastructure (e.g., ability to fit bare engines through aircraft doors and into cargo holds). This study is unique in defining the optimum fan diameter and drivers for future 2015 (UEET) powerplants while not limiting engine fan diameter by external constraints. This report follows on to a study identifying the system integration issues of UEET engines. This Engine Diameter study was managed by Boeing Phantom Works, Seattle, Washington through the NASA Glenn Revolutionary Aero Space Engine Research (RASER) contract under task order 10. Boeing Phantom Works, Huntington Beach, completed the engine/airplane sizing optimization, while the Boeing Commercial Airplane group (BCA) provided design oversight. A separate subcontract to support the overall project was issued to Tuskegee University.
NASA Astrophysics Data System (ADS)
Urbina, J. V.
2011-12-01
The author has recently been awarded the NSF Career award to develop a radar with cognitive sensing capabilities to study Equatorial plasma instabilities in the Peruvian Andes. Educational research has shown that a rich learning environment contributes tremendously toward improvement in learning achievements and also attitudes toward studies. One of the benefits of this project is that it provides such an environment and a global platform to involve several students at both graduate and undergraduate levels from the US, Puerto Rico, and Peru, and who will benefit from designing, installing, and deploying a radar in multi-instrument science campaigns. In addition to working in the laboratories, students will gain invaluable real world experience building this complex instrument and making it work under challenging conditions at remote sites. The PI will describe how these components are being developed in a Freshman Seminar course and Graduate courses in the Department of Electrical Engineering at Penn State University, and how they are aligned well with the department's and university's strategy for greater global engagement through a network of Global Engagement Nodes in South America (GENSA). The issues of mentoring, recruitment, and retention become particularly important in consideration of the educational objective of this career project to involve underrepresented students with diverse backgrounds and interest them in research projects. The author is working very closely with the Office of Engineering Diversity to leverage existing programs at Penn State designed to increase the participation of women and minority students in science and engineering research: (a) WISER (Women In Science and Engineering Research), and (b) MURE (Minority Undergraduate Research Experience). The Electrical Engineering Department at Penn State is also currently an NSF REU (Research Experience for Undergraduates) site. The PI will also present his efforts in connecting his career project in providing research experiences during summer to underrepresented groups as well as students from schools without extensive research environments.
Why They Stay: Women Persisting in US Engineering Careers
ERIC Educational Resources Information Center
Buse, Kathleen; Bilimoria, Diana; Perelli, Sheri
2013-01-01
Purpose: Women remain dramatically underrepresented in the engineering profession and far fewer women than men persist in the field. This study aims to identify individual and contextual factors that distinguish women who persist in engineering careers in the US. Design/methodology/approach: Qualitative research was conducted based on…
Status of Social Engineering Awareness in Business Organizations and Colleges/Universities
ERIC Educational Resources Information Center
Hauser, Deanna Mae
2017-01-01
Social engineers manipulate individuals into divulging confidential information or compromising personal or organizational security. The purpose of this qualitative case study was to examine the potential lack of social engineering awareness that affects employees at companies in southeastern Michigan. The research method consisted of interviews…
The Formation of Indicators on Engineering Laboratory Management
ERIC Educational Resources Information Center
Yasin, Ruhizan M.; Mohamad, Zunuwanas; Rahman, Mohd Nizam Ab.; Hashim, Mohamad Hisyam Mohd
2012-01-01
This research is a developmental study of Engineering Laboratory Management indicators. It is formed to assess the level of quality management of the polytechnic level laboratory. The purpose of indicators is to help provide input into the management process of an engineering laboratory. Effectiveness of teaching and learning at technical…
The transformation and environmental fate of engineered nanomaterials (ENMs) is the focus of intense research due to concerns about their potential impacts in the environment as a result of their uniquely engineered properties. Many approaches are being applied to investigate th...
Uncovering Black Womanhood in Engineering
ERIC Educational Resources Information Center
Gibson, Sheree L.; Espino, Michelle M.
2016-01-01
Despite the growing research that outlines the experiences of Blacks and women undergraduates in engineering, little is known about Black women in this field. The purpose of this qualitative study was to uncover how eight Black undergraduate women in engineering understood their race and gender identities in a culture that can be oppressive to…
Labor Market Experience for Engineers During Periods of Changing Demand.
ERIC Educational Resources Information Center
Bain, Trevor
This report was prepared to present reviews, synthesis, and evaluation of research studies and demonstration projects concerned with the labor market experience of unemployed engineers, particularly in aerospace-defense. It also includes a review and evaluation of national manpower efforts to aid the reemployment of unemployed engineers,…
1979-09-01
The Corps of Engineers Management Information System (COEMIS) is used by the Corps of Engineers in their role as Construction Agents on Air Force...California. The research concluded that the Corps of Engineers Management Information System can be an effective, efficient management tool which has the
Work-Based Higher Degrees: Responding to the Knowledge Needs of Chemical Engineers
ERIC Educational Resources Information Center
Winberg, Christine
2007-01-01
University-workplace partnerships are strategies increasingly called for in higher education. This article reports on collaborative knowledge production between employed professional chemical engineers (registered for higher degrees) and their university-based supervisors (researchers in the field of chemical engineering). The study draws on a…
Biotechnology Conference: Protein Engineering Held in Oxford, United Kingdom on 5-8 April 1987.
1987-07-27
engineered by protein engineering was reported by J. new variants which are now being checked. Brange (Novo Research Institute, Bags- Studies of a cassette...to Brange . Therefore, multidomain protein consisting of five Brange and his group applied protein en- putative domains: the fribonectin finger
Pathways to Careers in Federal Highway Research
DOT National Transportation Integrated Search
2017-02-16
Our researchers at the Turner-Fairbank Highway Research Center are dedicated scientists and engineers. They are experts in more than 100 trans-portation-related fields including: CIVIL ENGINEERING STRUCTURAL ENGINEERING PAVEMENT ENGINEERING CHEMISTRY...
78 FR 48659 - Board on Coastal Engineering Research
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-09
... DEPARTMENT OF DEFENSE Department of the Army; Corps of Engineers Board on Coastal Engineering... Coastal Engineering Research. Date of Meeting: September 4-6, 2013. Place: Atlantic Ballroom, Ocean Place... Coastal Engineering Research meeting is open to the public. Participation by the public is scheduled for 4...
R and D of energy saving and new energy utilization in Japanese marine engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isshiki, N.; Murayama, Y.; Tamaki, H.
1982-08-01
As well known, Japanese shipbuilding and marine engineering industry has been one of the biggest in the world, and a lot of efforts have been made on energy saving and new energy development for the last several years, resulting in production of quite economical and energy saving ships and marine engines using all kinds of possible engineering methods. Also much promising research utilizing oceanic energy is under way for the ships of post-oil future. In this paper, first, the remarkable developments of energy saving in conventional marine engines and ship hulls, especially in diesel ships, in Japan are shown. Then,more » some studies on future marine engine systems and utilization of oceanic energy represented by ''Shin Aitoku Maru'' and other research on future windmill ships are described.« less
Rolls Royce Avon RA-14 Engine in the Altitude Wind Tunnel
1956-03-21
A Rolls Royce Avon RA-14 engine was tested in the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics’ (NACA) Lewis Flight Propulsion Laboratory. The Avon RA-14 engine was a 16-stage axial-flow compressor turbojet capable of producing 9,500 pounds of thrust. The Avon replaced Rolls Royce’s successful Nene engine in 1950 and remained in service until 1974. It was one of several British engines studied in the tunnel during the 1950s. The Altitude Wind Tunnel went through a series of modifications in 1951 to increase its capabilities. An annex was attached to the Exhauster Building to house three new Ingersoll-Rand compressors. The wooden blades on the tunnel’s 31-foot diameter fan were replaced, a pump house and exhaust cooler were constructed underneath the tunnel, and two new cells were added to the cooling tower. The modified wind tunnel continued to analyze jet engines in the 1950s, although the engines, like the RA-14 seen here, were much more powerful than those studied several years before. Lewis researchers studied the RA-14 turbojet engine in the Altitude Wind Tunnel for 11 months in 1956. The engine was mounted on a stand capable of gauging engine thrust, and the tunnel’s air was ducted to the engine through a venturi and bellmouth inlet, seen in this photograph. The initial studies established the engine’s performance characteristics with a fixed-area nozzle and its acceleration characteristics. The researchers also used the tunnel to investigate windmilling of the compressor blades, restarting at high altitudes, and the engine’s performance limits at altitude.
ERIC Educational Resources Information Center
Sampson, Kaylene; Comer, Keith
2011-01-01
This study explores learner experiences regarding skills acquisition of a cohort of engineering doctoral students enrolled in a New Zealand university. Employing a qualitative methodology, we interviewed 28 PhD students about the range of experiences and exchanges that comprised their pathways to skill acquisition. Students reported that research…
Engineering a Dynamic Science Learning Environment for K-12 Teachers
ERIC Educational Resources Information Center
Hardre, Patricia L.; Nanny, Mark; Refai, Hazen; Ling, Chen; Slater, Janis
2010-01-01
The present study follows a cohort of 17 K-12 teachers through a six-week resident learning experience in science and engineering, and on into the planning and implementation of applications for their classrooms. This Research Experiences for Teachers (RET) program was examined using the strategic approach of design-based research, with its fluid,…
ERIC Educational Resources Information Center
Huang, Gary; Taddese, Nebiyu; Walter, Elizabeth
2000-01-01
This study examines the gaps related to gender and race/ethnicity in entrance, persistence, and attainment of postsecondary science and engineering (S&E) education. After reviewing selected prior research and examining potentially relevant variables in two National Center for Education Statistics (NCES) surveys, several variables were selected…
ERIC Educational Resources Information Center
Mathis, Corey A.; Siverling, Emilie A.; Glancy, Aran W.; Moore, Tamara J.
2017-01-01
One of the fundamental practices identified in Next Generation Science Standards (NGSS) is argumentation, which has been researched in P-12 science education for the previous two decades but has yet to be studied within the context of P-12 engineering education. This research explores how elementary and middle school science teachers incorporated…
Understanding and Enhancing Learning Communities in Tertiary Education in Science and Engineering
ERIC Educational Resources Information Center
Forret, Michael; Eames, Chris; Coll, Richard
2007-01-01
This research aims to build upon current research in the area of teaching and learning at tertiary level and explore the nature of learning communities in tertiary science and engineering. This study uses a sociocultural approach to address the following question: "What are teachers' and learners' perceptions of the nature of the learning…
ERIC Educational Resources Information Center
Greenseid, Lija O.; Lawrenz, Frances
2011-01-01
This study explores the use of citation analysis methods to assess the influence of program evaluations conducted within the area of science, technology, engineering, and mathematics (STEM) education. Citation analysis is widely used within scientific research communities to measure the relative influence of scientific research enterprises and/or…
ERIC Educational Resources Information Center
Miller, Ronald L.; Streveler, Ruth A.; Yang, Dazhi; Roman, Aidsa I. Santiago
2011-01-01
This paper summarizes progress on two related lines of chemical engineering education research: 1) identifying persistent student misconceptions in thermal and transport science (fluid mechanics, heat transfer, and thermodynamics); and, 2) developing a method to help students repair these misconceptions. Progress on developing the Thermal and…
ERIC Educational Resources Information Center
James, Jamie Smith
2014-01-01
The purpose of this quantitative research study was to evaluate to what degree Science, Technology, Engineering and Mathematics (STEM) education influenced mathematics and science achievement of seventh grade students in one Middle Tennessee school district. This research used an independent samples t test at the a = 0.05 level to evaluate…
NACA Researcher Measures Ice on a Turbojet Engine Inlet
1948-11-21
The National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory conducted an extensive icing research program in the late 1940s that included studies in the Icing Research Tunnel and using specially modified aircraft. One facet of this program was the investigation of the effects of icing on turbojets. Although jet engines allowed aircraft to pass through inclement weather at high rates of speed, ice accumulation was still a concern. The NACA’s B-24M Liberator was initially reconfigured with a General Electric I-16 engine installed in the aircraft’s waist compartment with an air scoop and spray nozzles to produce the artificial icing conditions. The centrifugal engine appeared nearly impervious to the effects of icing. Axial-flow jet engines, however, were much more susceptible to icing damage. The inlet guide vanes were particularly vulnerable, but the cowling’s leading edge, the main bearing supports, and accessory housing could also ice up. If pieces of ice reached the engine’s internal components, the compressor blades could be damaged. To study this phenomenon, a Westinghouse 24C turbojet, seen in this photograph, was installed under the B-24M’s right wing. In January 1948 flight tests of the 24C in icing conditions began. Despite ice buildup into the second stage of the compressor, the engine was able to operate at takeoff speeds. Researchers found the ice on the inlet vanes resulted in half of the engine’s decreased performance.
ERIC Educational Resources Information Center
Sheppard, Sheri; Atman, Cindy; Fleming, Lorraine; Miller, Ron; Smith, Karl; Stevens, Reed; Streveler, Ruth; Clark, Mia; Loucks-Jaret, Tina; Lund, Dennis
2010-01-01
The Center for the Advancement of Engineering Education (CAEE) began in January 2003 with a grant from the National Science Foundation (ESI-0227558). Two NSF Directorates, Engineering and Education and Human Resources, oversee the Center's work. The Academic Pathways Study (APS) is part of the Scholarship on Learning Engineering element of the…
ERIC Educational Resources Information Center
Clarke, James B.; Coyle, James R.
2011-01-01
This article reports the results of a case study in which an experimental wiki knowledge base was designed, developed, and tested by the Brill Science Library at Miami University for an undergraduate engineering senior capstone project. The wiki knowledge base was created to determine if the science library could enhance the engineering literature…
Transonic Fan/Compressor Rotor Design Study. Volume 4
1982-02-01
amd Identify by block number) Fan Aircraft Engines Compressor Blade Thickness Rotor Camber Distribution Aerodesign Throat Margin Aerodynamics 20...COMPRESSOR ROTOR DESIGN STUDY Volume IV D.E. Parker and M.R. Simonson General Electric Company Aircraft Engine Business Group Advanced Technology...Compressor Research Group Chief, Technology Branch FOR THE COMMANDER H. IVAN BUS Director, Turbine Engine Division If your address has changed, if you
Transonic Fan/Compressor Rotor Design Study. Volume 2
1982-02-01
Identity by block number) Fan Aircraft Engines Compressor Blade Thickness Rotor Camber Distribution Aerodesign Throat Margin Aerodynamics 20. 1ABSRACT...COMPRESSOR ROTOR DESIGN STUDY Volume II D.E. Parker and M.R. Simonson General Electric Company / Aircraft Engine Business Group Advanced Technology...Research Group Chief, Technology Branch FOR THE COMMANDER H. IVAN BUSH Director, Turbine Engine Division . If your address has changed, if you wish to be
NASA Technical Reports Server (NTRS)
Beltran, Luis R.; Griffin, Thomas A.
2004-01-01
The U.S. Army Vehicle Technology Directorate at the NASA Glenn Research Center has been directed by their parent command, the U.S. Army Research Laboratory (ARL), to demonstrate active stall technology in a turboshaft engine as the next step in transitioning this technology to the Army and aerospace industry. Therefore, the Vehicle Technology Directorate requested the reactivation of Glenn's Engine Components Research Lab, Cell 2B, (ECRL 2B). They wanted to test a T700 engine that had been used previously for turboshaft engine research as a partnership between the Army and NASA on small turbine engine research. ECRL 2B had been placed in standby mode in 1997. Glenn's Testing Division initiated reactivation in May 2002 to support the new research effort, and they completed reactivation and improvements in September 2003.
75 FR 14243 - Research, Engineering And Development Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-24
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering And Development....S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development...: Research, Engineering & Development Advisory Committee. Time and Date: April 21, 2010--9 a.m. to 5 p.m...
78 FR 47049 - Research, Engineering and Development Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development...; 5 U.S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and.... Name: Research, Engineering & Development Advisory Committee. Time and Date: September 18--8:30 a.m. to...
77 FR 54648 - Research, Engineering and Development Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development....S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development...: Research, Engineering & Development Advisory Committee. TIME AND DATE: September 26, 2012--9 a.m. to 4 p.m...
NASA Astrophysics Data System (ADS)
Dickinson Skaggs, Jennifer Anne
The number of women being enrolled and retained in engineering programs has steadily decreased since 1999, even with increased efforts and funding of initiatives to counteract this trend. Why are women not persisting or even choosing to pursue engineering? This qualitative research examines how undergraduate female engineering students perceive and negotiate their gender identities to successfully persist in engineering education. Narrative inquiry including semi-structured interviews, participant observation, and data analysis was conducted at a Research I institution. Participants were recruited through purposeful network sampling. Criteria for inclusion include students who have been in the American K-12 educational pipeline at least eight years and are junior or senior level academic standing and academic eligibility. By including male students in the collection of data, perceptions of the issues for women could be seen in context when compared to the perceptions of men in the same engineering discipline. The study focuses on the individual, institutional, and cultural perceptions of gender performativity within a network and the strategies and negotiations employed by undergraduate female engineering students to achieve their educational goals regarding each of these perspectives. Findings reveal female students utilize strategies of camouflage and costume, as well as internal and external support to persist in engineering education. Also, female engineering students are being prepared to only become engineering-students-in-the-making and kept from the larger engineering network, while male students are becoming engineers-in-the-making automatically connected to the larger engineering network based on gender. This lack of association with the network influences female engineering students in their decisions to pursue a career in professional engineering, or to pursue more traditionally gendered careers after graduation. This research is significant in its use of feminist theory and methodology to study engineering education. It is also significant in its use of qualitative methods allowing students to articulate their experiences in their own words and voices thus allowing for nuanced of meaning and understanding to emerge. Butler's theory of gender performativity in conjunction with Nespor's actor-network theory provides the conceptual framework with inductive analysis used as the primary tool for data analysis.
Allison V–1710 Engine on a Dynamotor Stand in the Engine Research Building
1943-03-21
The first research assignment specifically created for the National Advisory Committee for Aeronautics’ (NACA) new Aircraft Engine Research Laboratory was the integration of a supercharger into the Allison V–1710 engine. The military was relying on the liquid-cooled V–1710 to power several types of World War II fighter aircraft and wanted to improve the engine's speed and altitude performance. Superchargers forced additional airflow into the combustion chamber, which increased the engine’s performance resulting in greater altitudes and speeds. They also generated excess heat that affected the engine cylinders, oil, and fuel. In 1943 the military tasked the new Aircraft Engine Research Laboratory to integrate the supercharger, improve the cooling system, and remedy associated engine knock. Three Allison engines were provided to the laboratory’s research divisions. One group was tasked with improving the supercharger performance, another analyzed the effect of the increased heat on knock in the fuel, one was responsible for improving the cooling system, and another would install the new components on the engine with minimal drag penalties. The modified engines were installed on this 2000-horsepower dynamotor stand in a test cell within the Engine Research Building. The researchers could run the engine at different temperatures, fuel-air ratios, and speeds. When the modifications were complete, the improved V–1710 was flight tested on a P–63A Kingcobra loaned to the NACA for this project.
Collected software engineering papers, volume 7
NASA Technical Reports Server (NTRS)
1989-01-01
A collection is presented of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) during the period Dec. 1988 to Oct. 1989. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. For the convenience of this presentation, the seven papers contained here are grouped into three major categories: (1) Software Measurement and Technology Studies; (2) Measurement Environment Studies; and (3) Ada Technology Studies. The first category presents experimental research and evaluation of software measurement and technology; the second presents studies on software environments pertaining to measurement. The last category represents Ada technology and includes research, development, and measurement studies.
Collected software engineering papers, volume 6
NASA Technical Reports Server (NTRS)
1988-01-01
A collection is presented of technical papers produced by participants in the Software Engineering Laboratory (SEL) during the period 1 Jun. 1987 to 1 Jan. 1989. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. For the convenience of this presentation, the twelve papers contained here are grouped into three major categories: (1) Software Measurement and Technology Studies; (2) Measurement Environment Studies; and (3) Ada Technology Studies. The first category presents experimental research and evaluation of software measurement and technology; the second presents studies on software environments pertaining to measurement. The last category represents Ada technology and includes research, development, and measurement studies.
Vultee YA–31C Vengeance at the NACA
1945-03-21
A Bell P-39 Airacobra in the NACA Aircraft Engine Research Laboratory’s Icing Research Tunnel for a propeller deicing study. The tunnel, which began operation in June 1944, was built to study the formation of ice on aircraft surfaces and methods of preventing or eradicating that ice. Ice buildup adds extra weight to aircraft, effects aerodynamics, and sometimes blocks airflow through engines. NACA design engineers added the Icing Research Tunnel to the new AERL’s original layout to take advantage of the massive refrigeration system being constructed for the Altitude Wind Tunnel. The Icing Research Tunnel is a closed-loop atmospheric wind tunnel with a 6- by 9-foot test section. The tunnel can produce speeds up to 300 miles per hour and temperatures from about 30 to -45⁰ F. During World War II AERL researchers analyzed different ice protection systems for propeller, engine inlets, antennae, and wings in the icing tunnel. The P-39 was a vital low-altitude pursuit aircraft of the US during the war. NACA investigators investigated several methods of preventing ice buildup on the P-39’s propeller, including the use of internal and external electrical heaters, alcohol, and hot gases. They found that continual heating of the blades expended more energy than the aircraft could supply, so studies focused on intermittent heating. The results of the wind tunnel investigations were then compared to actual flight tests on aircraft.
Ayuga, F; Briassoulis, D; Aguado, P; Farkas, I; Griepentrog, H; Lorencowicz, E
2010-01-01
The main objectives of European Thematic Network entitled 'Education and Research in Agricultural for Biosystems Engineering in Europe (ERABEE-TN)' is to initiate and contribute to the structural development and the assurance of the quality assessment of the emerging discipline of Biosystems Engineering in Europe. ERABEE is co-financed by the European Community in the framework of the LLP Programme. The partnership consists of 35 participants from 27 Erasmus countries, out of which 33 are Higher Education Area Institutions (EDU) and 2 are Student Associations (ASS). 13 Erasmus participants (e.g. Thematic Networks, Professional Associations, and Institutions from Brazil, Croatia, Russia and Serbia) are also involved in the Thematic Network through synergies. To date, very few Biosystems Engineering programs exist in Europe and those that are initiated are at a very primitive stage of development. The innovative and novel goal of the Thematic Network is to promote this critical transition, which requires major restructuring in Europe, exploiting along this direction the outcomes accomplished by its predecessor; the USAEE-TN (University Studies in Agricultural Engineering in Europe). It also aims at enhancing the compatibility among the new programmes of Biosystems Engineering, aiding their recognition and accreditation at European and International level and facilitating greater mobility of skilled personnel, researchers and students. One of the technical objectives of ERABEE is dealing with mapping and promoting the third cycle studies (including European PhDs) and supporting the integration of research at the 1st and 2nd cycle regarding European Biosystems Engineering university studies. During the winter 2008 - spring 2009 period, members of ERABEE conducted a survey on the contemporary status of doctoral studies in Europe, and on a possible scheme for promotion of cooperation and synergies in the framework of the third cycle of studies and the European Doctorate in Biosystems Engineering in Europe. This paper presents the results of the survey. The legal regulations and their extent on the different countries concerning the third cycle are presented, along with the current structure of third cycle studies. The evolution and adaptation to the new EHEA in each country is also considered. Information was also gathered on the emerging topics of the Biosystems Engineering field and how these topics could be addressed by the new doctoral programmes at the European level.
Advanced controls for airbreathing engines, volume 3: Allison gas turbine
NASA Technical Reports Server (NTRS)
Bough, R. M.
1993-01-01
The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for airbreathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two-phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 3 of these reports describes the studies performed by the Allison Gas Turbine Division.
Advanced control for airbreathing engines, volume 1: Pratt and Whitney
NASA Technical Reports Server (NTRS)
Ralph, J. A.
1993-01-01
The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 1 of these reports describes the studies performed by Pratt & Whitney.
34 CFR 350.30 - What requirements must a Rehabilitation Engineering Research Center meet?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 34 Education 2 2012-07-01 2012-07-01 false What requirements must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.30 What requirements must a Rehabilitation Engineering Research...
34 CFR 350.31 - What collaboration must a Rehabilitation Engineering Research Center engage in?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 34 Education 2 2012-07-01 2012-07-01 false What collaboration must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.31 What collaboration must a Rehabilitation Engineering Research...
34 CFR 350.31 - What collaboration must a Rehabilitation Engineering Research Center engage in?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 34 Education 2 2013-07-01 2013-07-01 false What collaboration must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.31 What collaboration must a Rehabilitation Engineering Research...
34 CFR 350.32 - What activities must a Rehabilitation Engineering Research Center conduct?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 2 2010-07-01 2010-07-01 false What activities must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.32 What activities must a Rehabilitation Engineering Research...
34 CFR 350.31 - What collaboration must a Rehabilitation Engineering Research Center engage in?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 2 2010-07-01 2010-07-01 false What collaboration must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.31 What collaboration must a Rehabilitation Engineering Research...
34 CFR 350.30 - What requirements must a Rehabilitation Engineering Research Center meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 2 2010-07-01 2010-07-01 false What requirements must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.30 What requirements must a Rehabilitation Engineering Research...
34 CFR 350.30 - What requirements must a Rehabilitation Engineering Research Center meet?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 2 2014-07-01 2013-07-01 true What requirements must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.30 What requirements must a Rehabilitation Engineering Research...
34 CFR 350.31 - What collaboration must a Rehabilitation Engineering Research Center engage in?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 2 2014-07-01 2013-07-01 true What collaboration must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.31 What collaboration must a Rehabilitation Engineering Research...
34 CFR 350.30 - What requirements must a Rehabilitation Engineering Research Center meet?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 34 Education 2 2013-07-01 2013-07-01 false What requirements must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.30 What requirements must a Rehabilitation Engineering Research...
34 CFR 350.30 - What requirements must a Rehabilitation Engineering Research Center meet?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 34 Education 2 2011-07-01 2010-07-01 true What requirements must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.30 What requirements must a Rehabilitation Engineering Research...
34 CFR 350.32 - What activities must a Rehabilitation Engineering Research Center conduct?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 34 Education 2 2012-07-01 2012-07-01 false What activities must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.32 What activities must a Rehabilitation Engineering Research...
34 CFR 350.32 - What activities must a Rehabilitation Engineering Research Center conduct?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 34 Education 2 2013-07-01 2013-07-01 false What activities must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.32 What activities must a Rehabilitation Engineering Research...
34 CFR 350.31 - What collaboration must a Rehabilitation Engineering Research Center engage in?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 34 Education 2 2011-07-01 2010-07-01 true What collaboration must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.31 What collaboration must a Rehabilitation Engineering Research...
34 CFR 350.32 - What activities must a Rehabilitation Engineering Research Center conduct?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 34 Education 2 2011-07-01 2010-07-01 true What activities must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.32 What activities must a Rehabilitation Engineering Research...
76 FR 12404 - Research, Engineering and Development Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-07
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Research, Engineering and Development....S.C. App. 2), notice is hereby given of a meeting of the FAA Research, Engineering and Development...: Research, Engineering & Development Advisory Committee. Time and Date: April 20, 2011--9:30 a.m. to 4 p.m...
34 CFR 350.32 - What activities must a Rehabilitation Engineering Research Center conduct?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 2 2014-07-01 2013-07-01 true What activities must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.32 What activities must a Rehabilitation Engineering Research...
ERIC Educational Resources Information Center
Alkandari, Nabila Y.
2014-01-01
The main goal of this research is to gain an understanding of the challenges which have to be confronted by the engineering students at the College of Engineering and Petroleum at Kuwait University. The college has a large number of students, of which three hundred and eighty five were selected on a random basis for study purposes. The results…
ERIC Educational Resources Information Center
Dahbi, M.
2015-01-01
In computer engineering education, specific English language practices are needed to enable computer engineering students to succeed in professional settings. This study was conducted for two purposes. First, it aimed at investigating to what extent the English courses offered to computer engineering students at the National School of Applied…
ERIC Educational Resources Information Center
Farland-Smith, Donna; Tiarani, Vinta
2016-01-01
Over the last fifteen years, engineering has made its way into science curriculum at all levels, elementary, middle, and high school. A need to analyze students' perception the field of engineering is warranted. Previous techniques for studying representations of scientists and build on what researchers in the science field have learned from…
NASA Astrophysics Data System (ADS)
Gardner, Grant E.; Jones, M. Gail; Albe, Virginie; Blonder, Ron; Laherto, Antti; Macher, Daniel; Paechter, Manuela
2017-10-01
Recent efforts in the science education community have highlighted the need to integrate research and theory from science communication research into more general science education scholarship. These synthesized research perspectives are relatively novel but serve an important need to better understand the impacts that the advent of rapidly emerging technologies will have on a new generation of scientists and engineers including their formal communication with engaged citizenry. This cross-national study examined postsecondary science and engineering students' ( n = 254 from five countries: Austria, Finland, France, Israel, and USA) perspectives on the role of science communication in their own formal science and engineering education. More broadly, we examined participants' understanding of their perceived responsibilities of communicating science and engineering to the general public when an issue contains complex social and ethical implications (SEI). The study is contextualized in the emergent technology of nanotechnology for which SEI are of particular concern and for which the general public often perceives conflicting risks and benefits. Findings indicate that student participants' hold similar views on the need for their own training in communication as future scientists and engineers. When asked about the role that ethics and risk perception plays in research, development, and public communication of nanotechnology, participants demonstrate similar trajectories of perspectives that are, however, often anchored in very different levels of beginning concern. Results are discussed in the context of considerations for science communication training within formal science education curricula globally.
Bringing Engineering Research Coupled With Art Into The K-12 Classroom
NASA Astrophysics Data System (ADS)
Cola, J.
2016-12-01
The Partnerships for Research, Innovation and Multi-Scale Engineering Program, a Research Experiences for K-12 Teachers at Georgia Institute of Technology demonstrates a successful program that blends the fine arts with engineering research. Teachers selected for the program improve their science and engineering content knowledge, as well as their understanding of how to use STEAM to increase student comprehension and engagement. Participants in the program designed Science, Technology, Engineering, Art, and Mathematics (STEAM)- based lessons based on faculty engineering research. Examples of some STEAM lessons created will be discussed along with lessons learned.
Iteration in Early-Elementary Engineering Design
NASA Astrophysics Data System (ADS)
McFarland Kendall, Amber Leigh
K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect of engineering design, and because research at the college and professional level suggests iteration improves the designer's understanding of problems and the quality of design solutions. My research presents qualitative case studies of students in kindergarten and third-grade as they engage in classroom engineering design challenges which integrate with traditional curricula standards in mathematics, science, and literature. I discuss my results through the lens of activity theory, emphasizing practices, goals, and mediating resources. Through three chapters, I provide insight into how early-elementary students iterate upon their designs by characterizing the ways in which lesson design impacts testing and revision, by analyzing the plan-driven and experimentation-driven approaches that student groups use when solving engineering design challenges, and by investigating how students attend to constraints within the challenge. I connect these findings to teacher practices and curriculum design in order to suggest methods of promoting iteration within open-ended, classroom-based engineering design challenges. This dissertation contributes to the field of engineering education by providing evidence of productive engineering practices in young students and support for the value of engineering design challenges in developing students' participation and agency in these practices.
Review of NASA's Hypersonic Research Engine Project
NASA Technical Reports Server (NTRS)
Andrews, Earl H.; Mackley, Ernest A.
1993-01-01
The goals of the NASA Hypersonic Research Engine (HRE) Project, which began in 1964, were to design, develop, and construct a hypersonic research ramjet/scramjet engine for high performance and to flight-test the developed concept over the speed range from Mach 3 to 8. The project was planned to be accomplished in three phases: project definition, research engine development, and flight test using the X-15A-2 research aircraft, which was modified to carry hydrogen fuel for the research engine. The project goal of an engine flight test was eliminated when the X-15 program was canceled in 1968. Ground tests of engine models then became the focus of the project. Two axisymmetric full-scale engine models having 18-inch-diameter cowls were fabricated and tested: a structural model and a combustion/propulsion model. A brief historical review of the project with salient features, typical data results, and lessons learned is presented.
Wright R–2600–8 Engine in the Engine Propeller Research Building
1943-03-21
A Wright Aeronautical R–2600 Cyclone piston engine installed in the Engine Propeller Research Building, or Prop House, at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The R–2600 was among the most powerful engines that emerged during World War II. The engine, which was developed for commercial applications in 1939, was used to power the North American B–25 bomber and several other midsize military aircraft. The higher altitudes required by the military caused problems with the engine's cooling and fuel systems. The military requested that the Aircraft Engine Research Laboratory analyze the performance of the R–2600, improve its cooling system, and reduce engine knock. The NACA researchers subjected the engine to numerous tests in its Prop House. The R–2600 was the subject of the laboratory's first technical report, which was written by members of the Fuels and Lubricants Division. The Prop House contained soundproof test cells in which piston engines and propellers were mounted and operated at high powers. Electrically driven fans drew air through ducts to create a stream of cooling air over the engines. Researchers tested the performance of fuels, turbochargers, water-injection and cooling systems here during World War II. The facility was also investigated a captured German V–I buzz bomb during the war.
Life prediction of turbine components: On-going studies at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Spera, D. A.; Grisaffe, S. J.
1973-01-01
An overview is presented of the many studies at NASA-Lewis that form the turbine component life prediction program. This program has three phases: (1) development of life prediction methods for major failure modes through materials studies, (2) evaluation and improvement of these methods through a variety of burner rig studies on simulated components in research engines and advanced rigs. These three phases form a cooperative, interdisciplinary program. A bibliography of Lewis publications on fatigue, oxidation and coatings, and turbine engine alloys is included.
Continence technologies whitepaper: Informing new engineering science research.
Culmer, Pete; Alazmani, Ali; Bryant, Mike; Mancuso, Elena; King, Sarah; Mapunde, Vee; Jeays-Ward, Katherine; Heron, Nicola; Pearson, Russell; Vollebregt, Paul F; Corner, Lynne; Day, Richard
2018-06-01
Advances in healthcare technology for continence have historically been limited compared to other areas of medicine, reflecting the complexities of the condition and social stigma which act as a barrier to participation. This whitepaper has been developed to inspire and direct the engineering science community towards research opportunities that exist for continence technologies that address unmet needs in diagnosis, treatment and long-term management. Our aim is to pinpoint key challenges and highlight related research opportunities for novel technological advances. To do so, we draw on experience and expertise from academics, clinicians, patients and patient groups linked to continence healthcare. This is presented in four areas of consideration: the clinical pathway, patient perspective, research challenges and effective innovation. In each we introduce seminal research, background information and demonstrative case-studies, before discussing their relevance to engineering science researchers who are interested in approaching this overlooked but vital area of healthcare.
NASA Astrophysics Data System (ADS)
-Aurel Cherecheş, Ioan; -Ioana Borzan, Adela; -Laurean Băldean, Doru
2017-10-01
Study of construction and wearing process in the case of piston-rings and other significant components from internal combustion engines leads at any time to creative and useful optimizing ideas, both in designing and manufacturing phases. Main objective of the present paper is to realize an interdisciplinary research using advanced methods in piston-rings evaluation of a common vehicle on the streets which is Ford Focus FYDD. Specific objectives are a theoretical study of the idea for advanced analysis method in piston-rings evaluation and an applied research developed in at Technical University from Cluj-Napoca with the motor vehicle caught in the repairing process.
Bell P–63A King Cobra at the Aircraft Engine Research Laboratory
1944-01-21
The Army Air Forces lent the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory a Bell P–63A King Cobra in October 1943 to complement the lab's extensive efforts to improve the Allison V–1710 engine. The V–1710-powered P–63A was a single-seat fighter that could reach speeds of 410 miles per hour and an altitude of 43,000 feet. The fighter, first produced in 1942, was an improvement on Bell’s P–39, but persistent performance problems at high altitudes prevented its acceptance by the Air Corps. Instead many of the P–63s were transferred to the Soviet Union. Almost every test facility at the NACA’s engine lab was used to study the Allison V–1710 engine and its supercharger during World War II. Researchers were able to improve the efficiency, capacity and pressure ratio of the supercharger. They found that improved cooling significantly reduced engine knock in the fuel. Once the researchers were satisfied with their improvements, the new supercharger and cooling components were installed on the P–63A. The Flight Research Division first established the aircraft’s normal flight performance parameters such as speed at various altitudes, rate of climb, and peak altitude. Ensuing flights established the performance parameters of the new configuration in order to determine the improved performance. The program increased V–1710’s horsepower from 1650 to 2250.
Space Electric Research Test in the Electric Propulsion Laboratory
1964-06-21
Technicians prepare the Space Electric Research Test (SERT-I) payload for a test in Tank Number 5 of the Electric Propulsion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. These electric engines created and accelerated small particles of propellant material to high exhaust velocities. Electric engines have a very small amount of thrust, but once lofted into orbit by workhorse chemical rockets, they are capable of small, continuous thrust for periods up to several years. The electron bombardment thruster operated at a 90-percent efficiency during testing in the Electric Propulsion Laboratory. The package was rapidly rotated in a vacuum to simulate its behavior in space. The SERT-I mission, launched from Wallops Island, Virginia, was the first flight test of Kaufman’s ion engine. SERT-I had one cesium engine and one mercury engine. The suborbital flight was only 50 minutes in duration but proved that the ion engine could operate in space. The Electric Propulsion Laboratory included two large space simulation chambers, one of which is seen here. Each uses twenty 2.6-foot diameter diffusion pumps, blowers, and roughing pumps to remove the air inside the tank to create the thin atmosphere. A helium refrigeration system simulates the cold temperatures of space.
Angiogenesis in tissue engineering: from concept to the vascularization of scaffold construct
NASA Astrophysics Data System (ADS)
Amirah Ishak, Siti; Pangestu Djuansjah, J. R.; Kadir, M. R. Abdul; Sukmana, Irza
2014-06-01
Angiogenesis, the formation of micro-vascular network from the preexisting vascular vessels, has been studied in the connection to the normal developmental process as well as numerous diseases. In tissue engineering research, angiogenesis is also essential to promote micro-vascular network inside engineered tissue constructs, mimicking a functional blood vessel in vivo. Micro-vascular network can be used to maintain adequate tissue oxygenation, nutrient transfer and waste removal. One of the problems faced by angiogenesis researchers is to find suitable in vitro assays and methods for assessing the effect of regulators on angiogenesis and micro-vessel formation. The assay would be reliable and repeatable with easily quantifiable with physiologically relevant. This review aims to highlights recent advanced and future challenges in developing and using an in vitro angiogenesis assay for the application on biomedical and tissue engineering research.
Draftsmen Create a Blade Template in the Materials and Stresses Building
1953-04-21
Draftsmen in the Materials and Stresses Building at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory create a template for a compressor using actual compressor blades. The Compressor and Turbine Division contained four sections of researchers dedicated to creating better engine components. The Materials and Thermodynamics Division studied the strength, durability, heat transfer characteristics, and physical composition of various materials. The two divisions were important to the research and development of new aircraft engines. The constant battle to increase the engine’s thrust while decreasing its overall weight resulted in additional stress on jet engine components, particularly compressors. As speed and maneuverability were enhanced, the strain on the engines and inlets grew. For decades NACA Lewis researchers continually sought to improve compressor blade design, develop stronger composite materials, and minimize flutter and inlet distortions.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Glassman, Myron; Oliu, Walter E.
1990-01-01
This paper is based on the premise that scientific and technical information (STI), its use by aerospace engineers and scientists, and the aerospace research and development (R&D) process are related. We intend to support this premise with data gathered from numerous studies concerned with STI, the relationship of STI to the performance and management of R&D activities, and the information use and seeking behavior of engineers in general and aerospace engineers and scientists in particular. We intend to develop and present a synthesized appreciation of how aerospace R&D managers can improve the efficacy of the R&D process by understanding the role and value of STI in this process.
Small Engine Component Technology (SECT) study. Program report
NASA Technical Reports Server (NTRS)
Almodovar, E.; Exley, T.; Kaehler, H.; Schneider, W.
1986-01-01
The study was conducted to identify high payoff technologies for year 2000 small gas turbine applications and to provide a technology plan for guiding future research and technology efforts. A regenerative cycle turboprop engine was selected for a 19 passenger commuter aircraft application. A series of engines incorporating eight levels of advanced technologies were studied and their impact on aircraft performance was evaluated. The study indicated a potential reduction in fuel burn of 38.3 percent. At $1.00 per gallon fuel price, a potential DOC benefit of 12.5 percent would be achieved. At $2.00 per gallon, the potential DOC benefit would increase to 17.0 percent. Four advanced technologies are recommended and appropriate research and technology programs were established to reach the year 2000 goals.
Propulsion Study for Small Transport Aircraft Technology (STAT)
NASA Technical Reports Server (NTRS)
Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.
1980-01-01
Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.
Small Engine Component Technology (SECT) study
NASA Technical Reports Server (NTRS)
Larkin, T. R.
1986-01-01
The objective of this study is to identify high payoff technologies for year 2000 small gas turbine engines, and to provide a technology plan to guide research and technology efforts toward revolutionizing the small gas turbine technology base. The goal is to define the required technology to provide a 30 percent reduction in mission fuel burned, to reduce direct operating costs by at least 10 percent, and to provide increased reliability and durability of the gas turbine propulsion system. The baseline established to evaluate the year 2000 technology base was an 8-passenger commercial tilt-rotor aircraft powered by a current technology gas turbine engine. Three basic engine cycles were studied: the simple cycle engine, a waste heat recovery cycle, and a wave rotor engine cycle. For the simple cycle engine, two general arrangements were considered: the traditional concentric spool arrangement and a nonconcentric spool arrangement. Both a regenerative and a recuperative cycle were studied for the waste heat recovery cycle.
An Engineering Research Program for High School Science Teachers: Year Two Changes and Results
ERIC Educational Resources Information Center
DeJong, Brian P.; Yelamarthi, Kumar; Kaya, Tolga
2016-01-01
The research experiences for teachers program at Central Michigan University was initiated to team in-service and pre-service teachers with undergraduate engineering students and engineering faculty, in an engineering research setting. During the six-week program, teachers learn engineering concepts and develop high-school instructional material…
NASA Astrophysics Data System (ADS)
Rousche, Patrick; Schneeweis, David M.; Perreault, Eric J.; Jensen, Winnie
2008-03-01
A half-day forum to address a wide range of issues related to translational neural engineering was conducted at the annual meeting of the Biomedical Engineering Society. Successful practitioners of translational neural engineering from academics, clinical medicine and industry were invited to share a diversity of perspectives and experiences on the translational process. The forum was targeted towards traditional academic researchers who may be interested in the expanded funding opportunities available for translational research that emphasizes product commercialization and clinical implementation. The seminar was funded by the NIH with support from the Rehabilitation Institute of Chicago. We report here a summary of the speaker viewpoints with particular focus on extracting successful strategies for engaging in or conducting translational neural engineering research. Daryl Kipke, PhD, (Department of Biomedical Engineering at the University of Michigan) and Molly Shoichet, PhD, (Department of Chemical Engineering at the University of Toronto) gave details of their extensive experience with product commercialization while holding primary appointments in academic departments. They both encouraged strong clinical input at very early stages of research. Neurosurgeon Fady Charbel, MD, (Department of Neurosurgery at the University of Illinois at Chicago) discussed his role in product commercialization as a clinician. Todd Kuiken, MD, PhD, (Director of the Neural Engineering for Artificial Limbs at the Rehabilitation Institute of Chicago, affiliated with Northwestern University) also a clinician, described a model of translational engineering that emphasized the development of clinically relevant technology, without a strong commercialization imperative. The clinicians emphasized the importance of communicating effectively with engineers. Representing commercial neural engineering was Doug Sheffield, PhD, (Director of New Technology at Vertis Neuroscience, Inc.) who strongly encouraged open industrial academic partnerships as an efficient path forward in the translational process. Joe Pancrazio, PhD, a Program Director at NIH's National Institute of Neurological Disorders and Stroke, emphasized that NIH funding for translational research was aimed at breaking down scientific barriers to clinic entrance. Vivian Weil, PhD, (Director of Center for the Study of Ethics in the Professions at the Illinois Institute of Technology) a specialist on ethics in science and engineering, spoke of the usefulness of developing a code of ethics for addressing ethical aspects of translation from the bench to clinical implementation and of translation across disciplines in multi-disciplinary projects. Finally, the patient perspective was represented by Mr Jesse Sullivan. A double-arm amputee and patient of Dr Kuiken's, Mr Sullivan demonstrated the critically important role of the patient in successful translational neural engineering research.
Rousche, Patrick; Schneeweis, David M; Perreault, Eric J; Jensen, Winnie
2009-01-01
A half-day forum to address a wide range of issues related to translational neural engineering was conducted at the annual meeting of the Biomedical Engineering Society. Successful practitioners of translational neural engineering from academics, clinical medicine and industry were invited to share a diversity of perspectives and experiences on the translational process. The forum was targeted towards traditional academic researchers who may be interested in the expanded funding opportunities available for translational research that emphasizes product commercialization and clinical implementation. The seminar was funded by the NIH with support from the Rehabilitation Institute of Chicago. We report here a summary of the speaker viewpoints with particular focus on extracting successful strategies for engaging in or conducting translational neural engineering research. Daryl Kipke, PhD, (Department of Biomedical Engineering at the University of Michigan) and Molly Shoichet, PhD, (Department of Chemical Engineering at the University of Toronto) gave details of their extensive experience with product commercialization while holding primary appointments in academic departments. They both encouraged strong clinical input at very early stages of research. Neurosurgeon Fady Charbel, MD, (Department of Neurosurgery at the University of Illinois at Chicago) discussed his role in product commercialization as a clinician. Todd Kuiken, MD, PhD, (Director of the Neural Engineering for Artificial Limbs at the Rehabilitation Institute of Chicago, affiliated with Northwestern University) also a clinician, described a model of translational engineering that emphasized the development of clinically relevant technology, without a strong commercialization imperative. The clinicians emphasized the importance of communicating effectively with engineers. Representing commercial neural engineering was Doug Sheffield, PhD, (Director of New Technology at Vertis Neuroscience, Inc.) who strongly encouraged open industrial–academic partnerships as an efficient path forward in the translational process. Joe Pancrazio, PhD, a Program Director at NIH’s National Institute of Neurological Disorders and Stroke, emphasized that NIH funding for translational research was aimed at breaking down scientific barriers to clinic entrance. Vivian Weil, PhD, (Director of Center for the Study of Ethics in the Professions at the Illinois Institute of Technology) a specialist on ethics in science and engineering, spoke of the usefulness of developing a code of ethics for addressing ethical aspects of translation from the bench to clinical implementation and of translation across disciplines in multi-disciplinary projects. Finally, the patient perspective was represented by Mr Jesse Sullivan. A double-arm amputee and patient of Dr Kuiken’s, Mr Sullivan demonstrated the critically important role of the patient in successful translational neural engineering research. PMID:18310805
Rousche, Patrick; Schneeweis, David M; Perreault, Eric J; Jensen, Winnie
2008-03-01
A half-day forum to address a wide range of issues related to translational neural engineering was conducted at the annual meeting of the Biomedical Engineering Society. Successful practitioners of translational neural engineering from academics, clinical medicine and industry were invited to share a diversity of perspectives and experiences on the translational process. The forum was targeted towards traditional academic researchers who may be interested in the expanded funding opportunities available for translational research that emphasizes product commercialization and clinical implementation. The seminar was funded by the NIH with support from the Rehabilitation Institute of Chicago. We report here a summary of the speaker viewpoints with particular focus on extracting successful strategies for engaging in or conducting translational neural engineering research. Daryl Kipke, PhD, (Department of Biomedical Engineering at the University of Michigan) and Molly Shoichet, PhD, (Department of Chemical Engineering at the University of Toronto) gave details of their extensive experience with product commercialization while holding primary appointments in academic departments. They both encouraged strong clinical input at very early stages of research. Neurosurgeon Fady Charbel, MD, (Department of Neurosurgery at the University of Illinois at Chicago) discussed his role in product commercialization as a clinician. Todd Kuiken, MD, PhD, (Director of the Neural Engineering for Artificial Limbs at the Rehabilitation Institute of Chicago, affiliated with Northwestern University) also a clinician, described a model of translational engineering that emphasized the development of clinically relevant technology, without a strong commercialization imperative. The clinicians emphasized the importance of communicating effectively with engineers. Representing commercial neural engineering was Doug Sheffield, PhD, (Director of New Technology at Vertis Neuroscience, Inc.) who strongly encouraged open industrial-academic partnerships as an efficient path forward in the translational process. Joe Pancrazio, PhD, a Program Director at NIH's National Institute of Neurological Disorders and Stroke, emphasized that NIH funding for translational research was aimed at breaking down scientific barriers to clinic entrance. Vivian Weil, PhD, (Director of Center for the Study of Ethics in the Professions at the Illinois Institute of Technology) a specialist on ethics in science and engineering, spoke of the usefulness of developing a code of ethics for addressing ethical aspects of translation from the bench to clinical implementation and of translation across disciplines in multi-disciplinary projects. Finally, the patient perspective was represented by Mr Jesse Sullivan. A double-arm amputee and patient of Dr Kuiken's, Mr Sullivan demonstrated the critically important role of the patient in successful translational neural engineering research.
A Global Assessment of Stem Cell Engineering
Loring, Jeanne F.; McDevitt, Todd C.; Palecek, Sean P.; Schaffer, David V.; Zandstra, Peter W.
2014-01-01
Over the last 2 years a global assessment of stem cell engineering (SCE) was conducted with the sponsorship of the National Science Foundation, the National Cancer Institute at the National Institutes of Health, and the National Institute of Standards and Technology. The purpose was to gather information on the worldwide status and trends in SCE, that is, the involvement of engineers and engineering approaches in the stem cell field, both in basic research and in the translation of research into clinical applications and commercial products. The study was facilitated and managed by the World Technology Evaluation Center. The process involved site visits in both Asia and Europe, and it also included several different workshops. From this assessment, the panel concluded that there needs to be an increased role for engineers and the engineering approach. This will provide a foundation for the generation of new markets and future economic growth. To do this will require an increased investment in engineering, applied research, and commercialization as it relates to stem cell research and technology. It also will require programs that support interdisciplinary teams, new innovative mechanisms for academic–industry partnerships, and unique translational models. In addition, the global community would benefit from forming strategic partnerships between countries that can leverage existing and emerging strengths in different institutions. To implement such partnerships will require multinational grant programs with appropriate review mechanisms. PMID:24428577
A global assessment of stem cell engineering.
Loring, Jeanne F; McDevitt, Todd C; Palecek, Sean P; Schaffer, David V; Zandstra, Peter W; Nerem, Robert M
2014-10-01
Over the last 2 years a global assessment of stem cell engineering (SCE) was conducted with the sponsorship of the National Science Foundation, the National Cancer Institute at the National Institutes of Health, and the National Institute of Standards and Technology. The purpose was to gather information on the worldwide status and trends in SCE, that is, the involvement of engineers and engineering approaches in the stem cell field, both in basic research and in the translation of research into clinical applications and commercial products. The study was facilitated and managed by the World Technology Evaluation Center. The process involved site visits in both Asia and Europe, and it also included several different workshops. From this assessment, the panel concluded that there needs to be an increased role for engineers and the engineering approach. This will provide a foundation for the generation of new markets and future economic growth. To do this will require an increased investment in engineering, applied research, and commercialization as it relates to stem cell research and technology. It also will require programs that support interdisciplinary teams, new innovative mechanisms for academic-industry partnerships, and unique translational models. In addition, the global community would benefit from forming strategic partnerships between countries that can leverage existing and emerging strengths in different institutions. To implement such partnerships will require multinational grant programs with appropriate review mechanisms.
Applications of CRISPR Genome Engineering in Cell Biology
Wang, Fangyuan; Qi, Lei S.
2016-01-01
Recent advances in genome engineering are starting a revolution in biological research and translational applications. The CRISPR-associated RNA-guided endonuclease Cas9 and its variants enable diverse manipulations of genome function. In this review, we describe the development of Cas9 tools for a variety of applications in cell biology research, including the study of functional genomics, the creation of transgenic animal models, and genomic imaging. Novel genome engineering methods offer a new avenue to understand the causality between genome and phenotype, thus promising a fuller understanding of cell biology. PMID:27599850
Activities of the Institute for Mechanical Engineering
NASA Astrophysics Data System (ADS)
The Institute of Mechanical Engineering (IME) is part of Canada's National Research Council. Its mission is to undertake, support, promote, and disseminate research and development in the mechanical engineering aspects of three vital sectors of the Canadian economy: transportation, resource industries, and manufacturing. The IME achieves its mission by performing research and development in its own facilities; by developing, providing, and transferring expertise and knowledge; by making its research facilities available to collaborators and clients; and by participating in international liaison and collaborative research activities. Six research programs are conducted in the IME: Advanced Manufacturing Technology; Coastal Zone Engineering; Cold Regions Engineering; Combustion and Fluids Engineering; Ground Transportation Technology; and Machinery and Engine Technology. The rationale and major research thrusts of each program are described, and specific achievements in 1991-92 are reviewed. Lists of technical reports and papers presented by IME personnel are also included.
Bio-engineering for land stabilization : final report.
DOT National Transportation Integrated Search
2010-06-01
As part of the Ohio Department of Transportations (ODOTs) ongoing effort to solve engineering problems for the Ohio : transportation system through research, The Ohio State University has undertaken a study entitled Bioengineering for : Land...
Federal Funding of Engineering Research and Development, 1980-1984.
ERIC Educational Resources Information Center
American Society of Mechanical Engineers, Washington, DC.
Data on the sources, amounts, and trends of federal funding for engineering research and development (R&D) are presented for 1980-1984. Narrative highlights are provided for: the total federal funding obligations for engineering R&D, mechanical engineering, astronautical engineering, aeronautical engineering, chemical engineering, civil…
Determination of Shed Ice Particle Size Using High Speed Digital Imaging
NASA Technical Reports Server (NTRS)
Broughton, Howard; Owens, Jay; Sims, James J.; Bond, Thomas H.
1996-01-01
A full scale model of an aircraft engine inlet was tested at NASA Lewis Research Center's Icing Research Tunnel. Simulated natural ice sheds from the engine inlet lip were studied using high speed digital image acquisition and image analysis. Strategic camera placement integrated at the model design phase allowed the study of ice accretion on the inlet lip and the resulting shed ice particles at the aerodynamic interface plane at the rear of the inlet prior to engine ingestion. The resulting digital images were analyzed using commercial and proprietary software to determine the size of the ice particles that could potentially be ingested by the engine during a natural shedding event. A methodology was developed to calibrate the imaging system and insure consistent and accurate measurements of the ice particles for a wide range of icing conditions.
NASA Astrophysics Data System (ADS)
Malmi, Lauri; Adawi, Tom; Curmi, Ronald; de Graaff, Erik; Duffy, Gavin; Kautz, Christian; Kinnunen, Päivi; Williams, Bill
2018-03-01
We investigated research processes applied in recent publications in the European Journal of Engineering Education (EJEE), exploring how papers link to theoretical work and how research processes have been designed and reported. We analysed all 155 papers published in EJEE in 2009, 2010 and 2013, classifying the papers using a taxonomy of research processes in engineering education research (EER) (Malmi et al. 2012). The majority of the papers presented either empirical work (59%) or were case reports (27%). Our main findings are as follows: (1) EJEE papers build moderately on a wide selection of theoretical work; (2) a great majority of papers have a clear research strategy, but data analysis methods are mostly simple descriptive statistics or simple/undocumented qualitative research methods; and (3) there are significant shortcomings in reporting research questions, methodology and limitations of studies. Our findings are consistent with and extend analyses of EER papers in other publishing venues; they help to build a clearer picture of the research currently published in EJEE and allow us to make recommendations for consideration by the editorial team of the journal. Our employed procedure also provides a framework that can be applied to monitor future global evolution of this and other EER journals.
Schlieren Imaging of a Single-Ejector, Multi-Tube Pulsed Detonation Engine (Postprint)
2009-01-01
studies have shown the potential of an ejector to almost double the thrust of a pulsed detonation engine ( PDE ) tube [1-3]. Axial misalignment of the... Detonation Research Facility in the Air Force Research Laboratory were used for this study. The PDE utilizes automotive valving to feed up to four... detonation tubes. The damped thrust stand was setup to measure PDE thrust alone for baseline tests or total thrust from ejector and PDE . This
NASA Astrophysics Data System (ADS)
Kayumov, A. T.; Mustafina, D. N.
2014-12-01
In this research work an attempt is made to reveal the factors and level of engineering and working professions prestige in the minds of studying youth on the basis of empiric data. The results of research allow revealing the mechanism of social-professional selfidentification of school-aged youth, on the basis of which an opportunity to study in a new way traditional system of profession-oriented work appears.
MD-11 PCA - View of aircraft on ramp
NASA Technical Reports Server (NTRS)
1995-01-01
This McDonnell Douglas MD-11 is taxiing to a position on the flightline at NASA's Dryden Flight Research Center, Edwards, California, following its completion of the first and second landings ever performed by a transport aircraft under engine power only (on Aug. 29, 1995). The milestone flight, with NASA research pilot and former astronaut Gordon Fullerton at the controls, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple. For pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.
MD-11 PCA - First Landing at Edwards
NASA Technical Reports Server (NTRS)
1995-01-01
A transport aircraft lands for the first time under engine power only, as this McDonnell Douglas MD-11 touches down at 11:38 a.m., Aug. 29, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The milestone flight, flown by NASA research pilot and former astronaut Gordon Fullerton, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. The propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple--for pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.
MD-11 PCA - Closeup view of aircraft on ramp
NASA Technical Reports Server (NTRS)
1995-01-01
This McDonnell Douglas MD-11 has taxied to a position on the flightline at NASA's Dryden Flight Research Center, Edwards, California, following its completion of the first and second landings ever performed by a transport aircraft under engine power only (on Aug. 29, 1995). The milestone flight, with NASA research pilot and former astronaut Gordon Fullerton at the controls, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple. For pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.
MD-11 PCA - First Landing at Edwards
NASA Technical Reports Server (NTRS)
1995-01-01
A transport aircraft lands for the first time under engine power only, as this McDonnell Douglas MD-11 touches down at 11:38 a.m., Aug. 29, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The milestone flight, flown by NASA research pilot and former astronaut Gordon Fullerton, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple--for pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.
The women in science and engineering scholars program
NASA Technical Reports Server (NTRS)
Falconer, Etta Z.; Guy, Lori Ann
1989-01-01
The Women in Science and Engineering Scholars Program provides scientifically talented women students, including those from groups underrepresented in the scientific and technical work force, with the opportunity to pursue undergraduate studies in science and engineering in the highly motivating and supportive environment of Spelman College. It also exposes students to research training at NASA Centers during the summer. The program provides an opportunity for students to increase their knowledge of career opportunities at NASA and to strengthen their motivation through exposure to NASA women scientists and engineers as role models. An extensive counseling and academic support component to maximize academic performance supplements the instructional and research components. The program is designed to increase the number of women scientists and engineers with graduate degrees, particularly those with an interest in a career with NASA.
Stratified charge rotary aircraft engine technology enablement program
NASA Technical Reports Server (NTRS)
Badgley, P. R.; Irion, C. E.; Myers, D. M.
1985-01-01
The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.
ERIC Educational Resources Information Center
Martinez, Guadalupe; Perez, Angel Luis; Suero, Maria Isabel; Pardo, Pedro J.
2013-01-01
A study was conducted to quantify the effectiveness of concept maps in learning physics in engineering degrees. The following research question was posed: What was the difference in learning results from the use of concept maps to study a particular topic in an engineering course? The study design was quasi-experimental and used a post-test as a…
ERIC Educational Resources Information Center
Shin, Inyoung
2015-01-01
This study aimed to analyze the perceived needs of L2 postgraduate engineering students in relation to sociocultural behaviours in an EFL context. Semi-structured interviews were administered in order to examine the perceptions of Korean postgraduate engineering students themselves and subject lecturers in Korea. The research indicated that…
NASA Technical Reports Server (NTRS)
1984-01-01
In a number of feasibility studies of turbine rotor designs, engineers of Cummins Engine Company, Inc.'s turbocharger group have utilized a computer program from COSMIC. Part of Cummins research effort is aimed toward introduction of advanced turbocharged engines that deliver extra power with greater fuel efficiency. Company claims use of COSMIC program substantially reduced software development costs.
About Cooperative Engineering: Theory and Emblematic Examples
ERIC Educational Resources Information Center
Morales, Grace; Sensevy, Gérard; Forest, Dominique
2017-01-01
In this article we focus on "cooperative engineering", in which teachers and researchers co-design didactic sequences. In the first part of the article, we present cooperative engineering by describing some of the main principles on which it is grounded. The second part is dedicated to a case study, which enables us to illustrate some…
Motivational and Adaptational Factors of Successful Women Engineers
ERIC Educational Resources Information Center
Bornsen, Susan Edith
2012-01-01
It is no surprise that there is a shortage of women engineers. The reasons for the shortage have been researched and discussed in myriad papers, and suggestions for improvement continue to evolve. However, there are few studies that have specifically identified the positive aspects that attract women to engineering and keep them actively engaged…
ERIC Educational Resources Information Center
Eskandari, Hamidreza; Sala-Diakanda, Serge; Furterer, Sandra; Rabelo, Luis; Crumpton-Young, Lesia; Williams, Kent
2007-01-01
Purpose: This paper aims to present the results of an initial research study conducted to identify the desired professional characteristics of an industrial engineer with an undergraduate degree and the emerging topic areas that should be incorporated into the curriculum to prepare industrial engineering (IE) graduates for the future workforce.…
Academic Preparedness as a Predictor of Achievement in an Engineering Design Challenge
ERIC Educational Resources Information Center
Mentzer, Nathan; Becker, Kurt
2010-01-01
The purpose of this study was to determine if a student's academic success, measured by grade point average (GPA) in mathematics, science, and communication courses, is correlated with student change in achievement during an engineering design challenge. Engineering design challenges have been implemented and researched in K-16 environments where…
An Examination of Computer Engineering Students' Perceptions about Asynchronous Discussion Forums
ERIC Educational Resources Information Center
Ozyurt, Ozcan; Ozyurt, Hacer
2013-01-01
This study was conducted in order to reveal the usage profiles and perceptions of Asynchronous Discussion Forums (ADFs) of 126 computer engineering students from the Computer Engineering Department in a university in Turkey. By using a mixed methods research design both quantitative and qualitative data were collected and analyzed. Research…
Chinese Engineering Students' Cross-Cultural Adaptation in Graduate School
ERIC Educational Resources Information Center
Jiang, Xinquan
2010-01-01
This study explores cross-cultural adaptation experience of Chinese engineering students in the U.S. I interact with 10 Chinese doctoral students in engineering from a public research university through in-depth interviews to describe (1) their perceptions of and responses to key challenges they encountered in graduate school, (2) their…
ERIC Educational Resources Information Center
Borman, Kathryn M., Ed.; Tyson, Will, Ed.; Halperin, Rhoda H., Ed.
2010-01-01
Based on research conducted in a three-year, mixed-method, multi-site National Science Foundation, Science, Technology, Engineering and Mathematics Talent Expansion Program (STEP) Project, this book offers a comprehensive look into how engineering department culture and climate impacts the successful retention of female and under-represented…
Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review
NASA Astrophysics Data System (ADS)
Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar
2017-05-01
The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.
Transonic Fan/Compressor Rotor Design Study. Volume 3
1982-02-01
KEY WORDS (Continue on revere. old. $1 nocoeoary and identify by block nuvb.,) Fan Aircraft Engines Compressor Blade Thickne)s Rotor Camber...COMPRESSOR ’Q ROTOR DESIGN STUDY Volume III D.E. Parker and M.R. Simonson CZ) General Electric Company Aircraft Engine Business Group Advanced...Compressor Research Group Chief, Technology Branch FOR THE COMMANDER H. WAN BI Director, Turbine Engine Division ŕ *If your address has changed, if you wish
NASA Astrophysics Data System (ADS)
Mejia, Joel Alejandro
Previous studies have suggested that, when funds of knowledge are incorporated into science and mathematics curricula, students are more engaged and often develop richer understandings of scientific concepts. While there has been a growing body of research addressing how teachers may integrate students' linguistic, social, and cultural practices with science and mathematics instruction, very little research has been conducted on how the same can be accomplished with Latino and Latina students in engineering. The purpose of this study was to address this gap in the literature by investigating how fourteen Latino and Latina high school adolescents used their funds of knowledge to address engineering design challenges. This project was intended to enhance the educational experience of underrepresented minorities whose social and cultural practices have been traditionally undervalued in schools. This ethnographic study investigated the funds of knowledge of fourteen Latino and Latina high school adolescents and how they used these funds of knowledge in engineering design. Participant observation, bi-monthly group discussion, retrospective and concurrent protocols, and monthly one-on-one interviews were conducted during the study. A constant comparative analysis suggested that Latino and Latina adolescents, although profoundly underrepresented in engineering, bring a wealth of knowledge and experiences that are relevant to engineering design thinking and practice.
Multilayer scaffolds in orthopaedic tissue engineering.
Atesok, Kivanc; Doral, M Nedim; Karlsson, Jon; Egol, Kenneth A; Jazrawi, Laith M; Coelho, Paulo G; Martinez, Amaury; Matsumoto, Tomoyuki; Owens, Brett D; Ochi, Mitsuo; Hurwitz, Shepard R; Atala, Anthony; Fu, Freddie H; Lu, Helen H; Rodeo, Scott A
2016-07-01
The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.
ERIC Educational Resources Information Center
Burgin, Stephen R.; McConnell, William J.; Flowers, Alonzo M., III
2015-01-01
This study describes an investigation of a research apprenticeship program that we developed for diverse high-school students often underrepresented in similar programs and in science, technology, engineering, and math (STEM) professions. Through the apprenticeship program, students spent 2 weeks in the summer engaged in biofuels-related research…
ERIC Educational Resources Information Center
Tritrakan, Kasame; Kidrakarn, Pachoen; Asanok, Manit
2016-01-01
The aim of this research is to develop a learning model which blends factors from learning environment and engineering design concept for learning in computer programming course. The usage of the model was also analyzed. This study presents the design, implementation, and evaluation of the model. The research methodology is divided into three…
Proceedings of the Ninth Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1984-01-01
Experiences in measurement, utilization, and evaluation of software methodologies, models, and tools are discussed. NASA's involvement in ever larger and more complex systems, like the space station project, provides a motive for the support of software engineering research and the exchange of ideas in such forums. The topics of current SEL research are software error studies, experiments with software development, and software tools.
ERIC Educational Resources Information Center
Valdés Cuervo, Angel Alberto; Estévez Nenninger, Etty Haydeé; Wendlandt Amezaga, Teodoro Rafael; Vera Noriega, José Ángel
2015-01-01
From the researchers' perspective, the study aimed to identify factors affecting the functionality of postgraduate programs in natural sciences and engineering in a north-western Mexican state. Through the typical cases method, 25 researchers who worked in six doctorate programs in the region were selected. From the perception of these…
ERIC Educational Resources Information Center
Katsioloudis, Petros; Fantz, Todd D.
2012-01-01
In the spring semester of 2010, a materials process course was selected as a means to perform a preferred learning style research study. This course was selected because it contained three groups of students: technology education, engineering technology, and industrial technology. The researchers believed that the differences in the students'…
ERIC Educational Resources Information Center
Torrence, Matt
2015-01-01
The literature, activities, and resource needs of engineering students and faculty provide insight into a demographic that is often among the early-adopters of new technologies, tools, and methods of sharing information. Despite the often non-bibliographic nature of their research efforts, there are numerous elements of the traditional service…
ERIC Educational Resources Information Center
Dotson, Daniel S.; Franks, Tina P.
2015-01-01
More than 53,000 citations from 609 dissertations published at The Ohio State University between 1998-2012 representing four science disciplines--civil engineering, computer science, mathematics and physics--were examined to determine what, if any, preferences or trends exist. This case study seeks to identify whether or not researcher preferences…
Advanced supersonic propulsion study, phases 3 and 4. [variable cycle engines
NASA Technical Reports Server (NTRS)
Allan, R. D.; Joy, W.
1977-01-01
An evaluation of various advanced propulsion concepts for supersonic cruise aircraft resulted in the identification of the double-bypass variable cycle engine as the most promising concept. This engine design utilizes special variable geometry components and an annular exhaust nozzle to provide high take-off thrust and low jet noise. The engine also provides good performance at both supersonic cruise and subsonic cruise. Emission characteristics are excellent. The advanced technology double-bypass variable cycle engine offers an improvement in aircraft range performance relative to earlier supersonic jet engine designs and yet at a lower level of engine noise. Research and technology programs required in certain design areas for this engine concept to realize its potential benefits include refined parametric analysis of selected variable cycle engines, screening of additional unconventional concepts, and engine preliminary design studies. Required critical technology programs are summarized.
On the Compliance of Women Engineers with a Gendered Scientific System
Ghiasi, Gita; Larivière, Vincent; Sugimoto, Cassidy R.
2015-01-01
There has been considerable effort in the last decade to increase the participation of women in engineering through various policies. However, there has been little empirical research on gender disparities in engineering which help underpin the effective preparation, co-ordination, and implementation of the science and technology (S&T) policies. This article aims to present a comprehensive gendered analysis of engineering publications across different specialties and provide a cross-gender analysis of research output and scientific impact of engineering researchers in academic, governmental, and industrial sectors. For this purpose, 679,338 engineering articles published from 2008 to 2013 are extracted from the Web of Science database and 974,837 authorships are analyzed. The structures of co-authorship collaboration networks in different engineering disciplines are examined, highlighting the role of female scientists in the diffusion of knowledge. The findings reveal that men dominate 80% of all the scientific production in engineering. Women engineers publish their papers in journals with higher Impact Factors than their male peers, but their work receives lower recognition (fewer citations) from the scientific community. Engineers—regardless of their gender—contribute to the reproduction of the male-dominated scientific structures through forming and repeating their collaborations predominantly with men. The results of this study call for integration of data driven gender-related policies in existing S&T discourse. PMID:26716831
Wave Rotor Research and Technology Development
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1998-01-01
Wave rotor technology offers the potential to increase the performance of gas turbine engines significantly, within the constraints imposed by current material temperature limits. The wave rotor research at the NASA Lewis Research Center is a three-element effort: 1) Development of design and analysis tools to accurately predict the performance of wave rotor components; 2) Experiments to characterize component performance; 3) System integration studies to evaluate the effect of wave rotor topping on the gas turbine engine system.
NASA Astrophysics Data System (ADS)
Shu, Gequn; Pan, Jiaying; Wei, Haiqiao; Shi, Ning
2013-03-01
Knock in spark-ignition(SI) engines severely limits engine performance and thermal efficiency. The researches on knock of downsized SI engine have mainly focused on structural design, performance optimization and advanced combustion modes, however there is little for simulation study on the effect of cooled exhaust gas recirculation(EGR) combined with downsizing technologies on SI engine performance. On the basis of mean pressure and oscillating pressure during combustion process, the effect of different levels of cooled EGR ratio, supercharging and compression ratio on engine dynamic and knock characteristic is researched with three-dimensional KIVA-3V program coupled with pressure wave equation. The cylinder pressure, combustion temperature, ignition delay timing, combustion duration, maximum mean pressure, and maximum oscillating pressure at different initial conditions are discussed and analyzed to investigate potential approaches to inhibiting engine knock while improving power output. The calculation results of the effect of just cooled EGR on knock characteristic show that appropriate levels of cooled EGR ratio can effectively suppress cylinder high-frequency pressure oscillations without obvious decrease in mean pressure. Analysis of the synergistic effect of cooled EGR, supercharging and compression ratio on knock characteristic indicates that under the condition of high supercharging and compression ratio, several times more cooled EGR ratio than that under the original condition is necessarily utilized to suppress knock occurrence effectively. The proposed method of synergistic effect of cooled EGR and downsizing technologies on knock characteristic, analyzed from the aspects of mean pressure and oscillating pressure, is an effective way to study downsized SI engine knock and provides knock inhibition approaches in practical engineering.
NASA Astrophysics Data System (ADS)
Wankat, Phillip C.; Williams, Bill; Neto, Pedro
2014-01-01
The authors, citations and content of European Journal of Engineering Education (EJEE) and Journal of Engineering Education (JEE) in 1973 (JEE, 1975 EJEE), 1983, 1993, 2003, and available 2013 issues were analysed. Both journals transitioned from house organs to become engineering education research (EER) journals, although JEE transitioned first. In this process the number of citations rose, particularly of education and psychology sources; the percentage of research articles increased markedly as did the number of reference disciplines. The number of papers per issue, the number of single author papers, and the citations of science and engineering sources decreased. EJEE has a very broad geographic spread of authors while JEE authors are mainly US based. A 'silo' mentality where general engineering education researchers do not communicate with EER researchers in different engineering disciplines is evident. There is some danger that EER may develop into a silo that does not communicate with technically oriented engineering professors.
Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, K.; Graf, P.; Scott, G.
2015-01-01
The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems tomore » achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.« less
NASA Technical Reports Server (NTRS)
Johnston, Richard P.
1992-01-01
Satellite surveillance in such areas as the Antarctic indicates that from time to time concentration of ozone grows and shrinks. An effort to obtain useful atmospheric data for determining the causes of ozone depletion would require a flight capable of reaching altitudes of at least 100,000 ft and flying subsonically during the sampling portion of the mission. A study of a heat rejection system for an advanced variable cycle diesel (AVCD) engine was conducted. The engine was installed in an extreme altitude, high altitude advanced research platform. Results indicate that the waste heat from an AVCD engine propulsion system can be rejected at the maximum cruise altitude of 120,000 ft. Fifteen performance points, reflecting the behavior of the engine as the vehicle proceeded through the mission, were used to characterize the heat exchanger operation. That portion of the study is described in a appendix titled, 'A Detailed Study of the Heat Rejection System for an Extreme Altitude Atmospheric Sampling Aircraft,' by a consultant, Mr. James Bourne, Lytron, Incorporated.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1995-01-01
Studies indicate that communications and information-related activities take up a substantial portion of an engineer's work week; therefore, effective communications and information use skills are one of the key engineering competencies that recent graduates of engineering programs are expected to possess. Feedback from industry rates communications and information use skills of entry-level engineers low. Missing from current discussions of communications and information use skills and competencies for engineering students is a clear explanation from the professional engineering community about what constitutes 'acceptable and desirable communications and information norms' within that community. To gather adequate and generalizable data about communications and information skills instruction and to provide a student perspective on the communications skills of engineers, we undertook a national study of aerospace engineering students in March 1993. The study included questions about the importance of certain communications and information skills to professional success, the instruction students had received in these skills, and perceived helpfulness of the instruction. Selected results from the study study are reported in this paper.
2010-08-19
UNCLASSIFIED Systems Engineering Processes Applied To Ground Vehicle Integration at US Army Tank Automotive Research, Development, and Engineering...DATES COVERED - 4. TITLE AND SUBTITLE Systems Engineering Processes Applied To Ground Vehicle Integration at US Army Tank Automotive Research...release, distribution unlimited 13. SUPPLEMENTARY NOTES Presented at NDIAs Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), 17 22
NASA Astrophysics Data System (ADS)
Lappalainen, Pia
2015-03-01
Despite the changing global and industrial conditions requiring new approaches to leadership, management training as part of higher engineering education still remains understudied. The subsequent gap in engineering education calls for research on today's leader requirements and pedagogy supporting the inclusion of management competence in higher engineering education. Previous organisation and management studies have, on a general level, established the importance of managerial qualities for industrial performance, but the nature and make-up of these qualifications has not been adequately analysed. To fill the related research gap, the present work embarked on a quantitative empirical effort to identify predictors of successful leadership in engineering. In particular, this study investigated relationships between perceived leader performance and three dimensions of managerial capability: (1) mathematical-logical intelligence, (2) personality, and (3) socio-emotional intelligence. This work complemented previous research by resorting to both self-reports and other-reports: the results acquired from the managerial sample were compared to subordinate perceptions as measured through an emotive intelligence other-report and a general managerial competence multi-source appraisal. The sample comprised 80 superiors and 354 subordinates operating in seven organisations in engineering industries. The results from the quantitative measurements signalled the strongest correlation for socio-emotional intelligence and certain personality dimensions with successful leadership. Mathematical-logical intelligence demonstrated no correlation with subordinate perceptions of good leadership. These findings lay the foundation for the incorporation of socio-emotive skills into higher engineering education.
Formalization of the engineering science discipline - knowledge engineering
NASA Astrophysics Data System (ADS)
Peng, Xiao
Knowledge is the most precious ingredient facilitating aerospace engineering research and product development activities. Currently, the most common knowledge retention methods are paper-based documents, such as reports, books and journals. However, those media have innate weaknesses. For example, four generations of flying wing aircraft (Horten, Northrop XB-35/YB-49, Boeing BWB and many others) were mostly developed in isolation. The subsequent engineers were not aware of the previous developments, because these projects were documented such which prevented the next generation of engineers to benefit from the previous lessons learned. In this manner, inefficient knowledge retention methods have become a primary obstacle for knowledge transfer from the experienced to the next generation of engineers. In addition, the quality of knowledge itself is a vital criterion; thus, an accurate measure of the quality of 'knowledge' is required. Although qualitative knowledge evaluation criteria have been researched in other disciplines, such as the AAA criterion by Ernest Sosa stemming from the field of philosophy, a quantitative knowledge evaluation criterion needs to be developed which is capable to numerically determine the qualities of knowledge for aerospace engineering research and product development activities. To provide engineers with a high-quality knowledge management tool, the engineering science discipline Knowledge Engineering has been formalized to systematically address knowledge retention issues. This research undertaking formalizes Knowledge Engineering as follows: 1. Categorize knowledge according to its formats and representations for the first time, which serves as the foundation for the subsequent knowledge management function development. 2. Develop an efficiency evaluation criterion for knowledge management by analyzing the characteristics of both knowledge and the parties involved in the knowledge management processes. 3. Propose and develop an innovative Knowledge-Based System (KBS), AVD KBS, forming a systematic approach facilitating knowledge management. 4. Demonstrate the efficiency advantages of AVDKBS over traditional knowledge management methods via selected design case studies. This research formalizes, for the first time, Knowledge Engineering as a distinct discipline by delivering a robust and high-quality knowledge management and process tool, AVDKBS. Formalizing knowledge proves to significantly impact the effectiveness of aerospace knowledge retention and utilization.
Penn State Multi-Discipline Tribology Group and Energy Institute Studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, Joseph
This presentation is a summary of the current research activities on fuels and lubricants in the Multi-discipline Tribology group and the engine test group in the Combustion Laboratory of the Pennsylvania State University. The progress areas discussed in this summary include those found in Table 1. Table 1. RESEARCH AREAS: Diesel Engine Emission Reduction; Oxygenated Fuels; Improved Friction Fuels; Vegetable Oil Lubricants; Extended Drain Lubricants; Effect of Chemical Structure on Friction and Wear. The research is of interest either directly or indirectly to the goal of this workshop, diesel engine emissions reduction. The current projects at Penn State in themore » areas listed above will be discussed.« less
Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M
2017-06-01
Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.
Storey, John Morse; Curran, Scott; Dempsey, Adam B.; ...
2014-12-25
Reactivity controlled compression ignition (RCCI) has been shown in single- and multi-cylinder engine research to achieve high thermal efficiencies with ultra-low NO X and soot emissions. The nature of the particulate matter (PM) produced by RCCI operation has been shown in recent research to be different than that of conventional diesel combustion and even diesel low-temperature combustion. Previous research has shown that the PM from RCCI operation contains a large amount of organic material that is volatile and semi-volatile. However, it is unclear if the organic compounds are stemming from fuel or lubricant oil. The PM emissions from dual-fuel RCCImore » were investigated in this study using two engine platforms, with an emphasis on the potential contribution of lubricant. Both engine platforms used the same base General Motors (GM) 1.9-L diesel engine geometry. The first study was conducted on a single-cylinder research engine with primary reference fuels (PRFs), n-heptane, and iso-octane. The second study was conducted on a four-cylinder GM 1.9-L ZDTH engine which was modified with a port fuel injection (PFI) system while maintaining the stock direct injection fuel system. Multi-cylinder RCCI experiments were run with PFI gasoline and direct injection of 2-ethylhexyl nitrate (EHN) mixed with gasoline at 5 % EHN by volume. In addition, comparison cases of conventional diesel combustion (CDC) were performed. Particulate size distributions were measured, and PM filter samples were collected for analysis of lube oil components. Triplicate PM filter samples (i.e., three individual filter samples) for both gas chromatography-mass spectroscopy (GC-MS; organic) analysis and X-ray fluorescence (XRF; metals) were obtained at each operating point and queued for analysis of both organic species and lubricant metals. Here, the results give a clear indication that lubricants do not contribute significantly to the formation of RCCI PM.« less
Passive Gamma-Ray Emission for Underwater Sediment-Disturbance Detection
2017-07-18
Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops innovative...solutions in civil and military engineering , geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense...Sediment-Disturbance Detection Jay L. Clausen U.S. Army Engineer Research and Development Center (ERDC) Cold Regions Research and Engineering
Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research.
Kim, Moon-Soo; Kini, Anu Ganesh
2017-08-01
Engineered DNA-binding domains provide a powerful technology for numerous biomedical studies due to their ability to recognize specific DNA sequences. Zinc fingers (ZF) are one of the most common DNA-binding domains and have been extensively studied for a variety of applications, such as gene regulation, genome engineering and diagnostics. Another novel DNA-binding domain known as a transcriptional activator-like effector (TALE) has been more recently discovered, which has a previously undescribed DNA-binding mode. Due to their modular architecture and flexibility, TALEs have been rapidly developed into artificial gene targeting reagents. Here, we describe the methods used to design these DNA-binding proteins and their key applications in biomedical research.
A case study of the influences of audience and purpose on the composing processes of an engineer
NASA Technical Reports Server (NTRS)
Stalnaker, B. J.
1981-01-01
The design and preliminary findings of a study of composing processes (on the job) of engineers, managers, and scientists is presented. The influences of audience and purpose on the composing process of engineers was of concern; specifically, the cognitive processes, physical behaviors, and factors that influence the evoluton of a piece of writing. An overview of the study, related literature, outlines of research design, and preliminary findings from a case study of engineers are given. It is suggested that teaching be adapted to help students learn to represent rhetorical problems to guide composing for effective writing.
ERIC Educational Resources Information Center
Berland, Leema; Steingut, Rebecca; Ko, Pat
2014-01-01
Research and policy documents increasingly advocate for incorporating engineering design into K-12 classrooms in order to accomplish two goals: (1) provide an opportunity to engage with science content in a motivating real-world context; and (2) introduce students to the field of engineering. The present study uses multiple qualitative data…
Program of Research in Aeronautics
NASA Technical Reports Server (NTRS)
1981-01-01
A prospectus of the educational and research opportunities available at the Joint Institute for Advancement of Flight Sciences, operated at NASA Langley Research Center in conjunction with George Washington University's School of Engineering and Applied Sciences is presented. Requirements of admission to various degree programs are given as well as the course offerings in the areas of acoustics, aeronautics, environmental modelling, materials science, and structures and dynamics. Research facilities for each field of study are described. Presentations and publications (including dissertations and theses) generated by each program are listed as well as faculty members visting scientists and engineers.
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.
2001-01-01
A comprehensive aeroacoustic research program called the Source Diagnostic Test was recently concluded in NASA Glenn Research Center's 9- by 15-Foot Low Speed Wind Tunnel. The testing involved representatives from Glenn, NASA Langley Research Center, GE Aircraft Engines, and the Boeing Company. The technical objectives of this research were to identify the different source mechanisms of noise in a modern, high-bypass turbofan aircraft engine through scale-model testing and to make detailed acoustic and aerodynamic measurements to more fully understand the physics of how turbofan noise is generated.
Space shuttle hypergolic bipropellant RCS engine design study, Bell model 8701
NASA Technical Reports Server (NTRS)
1974-01-01
A research program was conducted to define the level of the current technology base for reaction control system rocket engines suitable for space shuttle applications. The project consisted of engine analyses, design, fabrication, and tests. The specific objectives are: (1) extrapolating current engine design experience to design of an RCS engine with required safety, reliability, performance, and operational capability, (2) demonstration of multiple reuse capability, and (3) identification of current design and technology deficiencies and critical areas for future effort.
Towards a mature measurement environment: Creating a software engineering research environment
NASA Technical Reports Server (NTRS)
Basili, Victor R.
1990-01-01
Software engineering researchers are building tools, defining methods, and models; however, there are problems with the nature and style of the research. The research is typically bottom-up, done in isolation so the pieces cannot be easily logically or physically integrated. A great deal of the research is essentially the packaging of a particular piece of technology with little indication of how the work would be integrated with other prices of research. The research is not aimed at solving the real problems of software engineering, i.e., the development and maintenance of quality systems in a productive manner. The research results are not evaluated or analyzed via experimentation or refined and tailored to the application environment. Thus, it cannot be easily transferred into practice. Because of these limitations we have not been able to understand the components of the discipline as a coherent whole and the relationships between various models of the process and product. What is needed is a top down experimental, evolutionary framework in which research can be focused, logically and physically integrated to produce quality software productively, and evaluated and tailored to the application environment. This implies the need for experimentation, which in turn implies the need for a laboratory that is associated with the artifact we are studying. This laboratory can only exist in an environment where software is being built, i.e., as part of a real software development and maintenance organization. Thus, we propose that Software Engineering Laboratory (SEL) type activities exist in all organizations to support software engineering research. We describe the SEL from a researcher's point of view, and discuss the corporate and government benefits of the SEL. The discussion focuses on the benefits to the research community.
ERIC Educational Resources Information Center
Ugwu, Dorothy N.; Adamuti-Trache, Maria
2017-01-01
This study examines the post-graduation plans of international science and engineering doctoral students at a public research-intensive university, and the extent to which graduate school experiences influence post-graduation plans. The study is grounded in Tinto's Integration Model as well as Berry's Acculturation Model. Study findings highlight…
ERIC Educational Resources Information Center
Llego, Jordan Hso
2017-01-01
This study investigated the Emotional Intelligence (EI) of Science, Technology and Engineering (STE) science teachers based on their demographic profile. Total enumeration was used and 113 STE science teachers in Region 1 Philippines participated in this study. The study adopted descriptive- quantitative research design, frequency count and…
A surety engineering framework to reduce cognitive systems risks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caudell, Thomas P.; Peercy, David Eugene; Caldera, Eva O.
Cognitive science research investigates the advancement of human cognition and neuroscience capabilities. Addressing risks associated with these advancements can counter potential program failures, legal and ethical issues, constraints to scientific research, and product vulnerabilities. Survey results, focus group discussions, cognitive science experts, and surety researchers concur technical risks exist that could impact cognitive science research in areas such as medicine, privacy, human enhancement, law and policy, military applications, and national security (SAND2006-6895). This SAND report documents a surety engineering framework and a process for identifying cognitive system technical, ethical, legal and societal risks and applying appropriate surety methods to reducemore » such risks. The framework consists of several models: Specification, Design, Evaluation, Risk, and Maturity. Two detailed case studies are included to illustrate the use of the process and framework. Several Appendices provide detailed information on existing cognitive system architectures; ethical, legal, and societal risk research; surety methods and technologies; and educing information research with a case study vignette. The process and framework provide a model for how cognitive systems research and full-scale product development can apply surety engineering to reduce perceived and actual risks.« less
NASA Astrophysics Data System (ADS)
Ismail, W. N. W.; Adnan, H.; Yusuwan, N.; Maisham, M.; Hassan, A. A.
2018-02-01
The significant role of civil engineering project is not only to make the lives of people easier and secure but also to trigger the economic growth by providing infrastructure facilities as well as job opportunities. As it is dominantly initiated by government sectors, performance of the civil engineering projects is always observed. This study aims to investigate the characteristics of civil engineering project and the contractual behavior of the key participants and how do these two factors affect civil engineering projects performance. Literature reviews, content analysis and questionnaires survey were conducted to undertake the research. A total of 50 questionnaires were distributed and 10 questionnaires were returned, resulting in a 20% response rate. The research unveiled that performance of civil engineering projects are influenced greatly by the ability to handle the unpredictable character of the civil engineering projects and adequate behavioral management. Apart from that, balancing the factors with high quality of workmanship, avoidance or well managed conflicts and high satisfaction level will ensure performance in projects.
A Retrospective Study of the Impact Faculty Dispositions Have on Undergraduate Engineering Students
ERIC Educational Resources Information Center
Hong, Barbara S. S.; Shull, Peter J.
2010-01-01
Despite the progress made in studying the dynamics of attracting and retaining STEM students, limited research have focused on understanding the values and impact faculty could have on the learning outcomes of students. This exploratory study presents the voices of six successful engineering students through a case study interview approach. Common…
Expert vs. novice: Problem decomposition/recomposition in engineering design
NASA Astrophysics Data System (ADS)
Song, Ting
The purpose of this research was to investigate the differences of using problem decomposition and problem recomposition among dyads of engineering experts, dyads of engineering seniors, and dyads of engineering freshmen. Fifty participants took part in this study. Ten were engineering design experts, 20 were engineering seniors, and 20 were engineering freshmen. Participants worked in dyads to complete an engineering design challenge within an hour. The entire design process was video and audio recorded. After the design session, members participated in a group interview. This study used protocol analysis as the methodology. Video and audio data were transcribed, segmented, and coded. Two coding systems including the FBS ontology and "levels of the problem" were used in this study. A series of statistical techniques were used to analyze data. Interview data and participants' design sketches also worked as supplemental data to help answer the research questions. By analyzing the quantitative and qualitative data, it was found that students used less problem decomposition and problem recomposition than engineer experts in engineering design. This result implies that engineering education should place more importance on teaching problem decomposition and problem recomposition. Students were found to spend less cognitive effort when considering the problem as a whole and interactions between subsystems than engineer experts. In addition, students were also found to spend more cognitive effort when considering details of subsystems. These results showed that students tended to use dept-first decomposition and experts tended to use breadth-first decomposition in engineering design. The use of Function (F), Behavior (B), and Structure (S) among engineering experts, engineering seniors, and engineering freshmen was compared on three levels. Level 1 represents designers consider the problem as an integral whole, Level 2 represents designers consider interactions between subsystems, and Level 3 represents designers consider details of subsystems. The results showed that students used more S on Level 1 and 3 but they used less F on Level 1 than engineering experts. The results imply that engineering curriculum should improve the teaching of problem definition in engineering design because students need to understand the problem before solving it.
78 FR 13030 - Board on Coastal Engineering Research
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-26
... DEPARTMENT OF DEFENSE Department of the Army; Corps of Engineers Board on Coastal Engineering... following committee meeting: Name of Committee: Board on Coastal Engineering Research. Date of Meeting... coastal engineering field and the objectives of the Chief of Engineers. Proposed Agenda: On Monday, March...
77 FR 52701 - Board on Coastal Engineering Research
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... DEPARTMENT OF DEFENSE Department of the Army; Corps of Engineers Board on Coastal Engineering... following committee meeting: Name of Committee: Board on Coastal Engineering Research. Date of Meeting... consonance with the needs of the coastal engineering field and the objectives of the Chief of Engineers...
Integration of Research Into Grade Nine-Graduate Level Curricula
NASA Astrophysics Data System (ADS)
Bonner, J.; Callicott, K.; Page, C.
2004-05-01
Research on the Kolb Learning Cycle, engineering education, and recent cognitive learning research indicates that learning occurs through knowledge application. Moreover, experts in a given discipline will differ from novices with regard to their ability to transfer their knowledge by application to new contexts. We have developed a suite of educational opportunities to bridge the gap between research and the classroom, with activities spanning the educational spectrum from high school through graduate school. One mechanism for transferring of research into undergraduate/graduate curricula is through our National Science Foundation (NSF) funded Combined Research-Curriculum Development (CRCD) project ("Environmental Informatics in Coastal Margins"). This project modifies engineering curricula to provide the nation with the next generation of engineers who can utilize the latest environmental modeling tools. The project revises/creates three undergraduate courses forming the environmental informatics (EI) track of the civil engineering curriculum and two graduate courses integrating GIS and environmental measurements. Curriculum development efforts are guided by an expert team drawn from nearby campuses and both regional and national industry, and includes an expert in assessing the pedagogical value of the curriculum and developing suitable metrics to evaluate student learning experiences. Another NSF-funded project integrating research into an undergraduate educational setting is our Research Experience for Undergraduates (REU) project ("Undergraduate Research in Biodiversity and Ecological Processes in Fluctuating Environments"). Research includes overlapping topics in environmental engineering and life sciences. The summer research experience provides students an opportunity to integrate engineering and life science technologies and to the study of ecological processes associated with biodiversity and environmental quality. Students orally present their project and submit in-depth papers. Over twenty publications/proceedings papers have been generated thus far. A third project involves our collaborations with the ITS Center ("Information Technology in Science Center for Teaching and Learning") on the A&M campus. As an investment in "project team growing", the Center is collaborating with us to collect data on implementation of an engineering science and math enhancement module in Hearne Independent School District. The specific activity involves a CRCD engineering class and an educational psychology undergraduate class. The engineering students give group presentations, where each presentation addresses a scenario that focuses on an environmental topic presented in the class. The students present the technical material to the education students who serve as a non-technical lay audience, emulating a city council, for example. The education students adapt the material for presentation to high school students, working with mentor teachers to enhance content, relevance and hands on experience while learning to apply teaching pedagogy.
2017-01-01
This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals’ pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers. PMID:28178270
Roach, Michael
2017-01-01
This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals' pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers.
NASA Technical Reports Server (NTRS)
Howlett, R. A.
1975-01-01
A continuation of the NASA/P and WA study to evaluate various types of propulsion systems for advanced commercial supersonic transports has resulted in the identification of two very promising engine concepts. They are the Variable Stream Control Engine which provides independent temperature and velocity control for two coannular exhaust streams, and a derivative of this engine, a Variable Cycle Engine that employs a rear flow-inverter valve to vary the bypass ratio of the cycle. Both concepts are based on advanced engine technology and have the potential for significant improvements in jet noise, exhaust emissions and economic characteristics relative to current technology supersonic engines. Extensive research and technology programs are required in several critical areas that are unique to these supersonic Variable Cycle Engines to realize these potential improvements. Parametric cycle and integration studies of conventional and Variable Cycle Engines are reviewed, features of the two most promising engine concepts are described, and critical technology requirements and required programs are summarized.
Engineering success: Undergraduate Latina women's persistence in an undergradute engineering program
NASA Astrophysics Data System (ADS)
Rosbottom, Steven R.
The purpose and focus of this narrative inquiry case study were to explore the personal stories of four undergraduate Latina students who persist in their engineering programs. This study was guided by two overarching research questions: a) What are the lived experiences of undergraduate Latina engineering students? b) What are the contributing factors that influence undergraduate Latina students to persist in an undergraduate engineering program? Yosso's (2005) community cultural wealth was used to the analyze data. Findings suggest through Yosso's (2005) aspirational capital, familial capital, social capital, navigational capital, and resistant capital the Latina student persisted in their engineering programs. These contributing factors brought to light five themes that emerged, the discovery of academic passions, guidance and support of family and teachers, preparation for and commitment to persistence, the power of community and collective engagement, and commitment to helping others. The themes supported their persistence in their engineering programs. Thus, this study informs policies, practices, and programs that support undergraduate Latina engineering student's persistence in engineering programs.
NASA Technical Reports Server (NTRS)
Sallee, G. P.
1973-01-01
The advanced technology requirements for an advanced high speed commercial transport engine are presented. The results of the phase 2 study effort cover the following areas: (1) general review of preliminary engine designs suggested for a future aircraft, (2) presentation of a long range view of airline propulsion system objectives and the research programs in noise, pollution, and design which must be undertaken to achieve the goals presented, (3) review of the impact of propulsion system unreliability and unscheduled maintenance on cost of operation, (4) discussion of the reliability and maintainability requirements and guarantees for future engines.
Engineering genders: A spatial analysis of engineering, gender, and learning
NASA Astrophysics Data System (ADS)
Weidler-Lewis, Joanna R.
This three article dissertation is an investigation into the ontology of learning insofar as learning is a process of becoming. In each article I explore the general questions of who is learning, in what ways, and with what consequences. The context for this research is undergraduate engineering education with particular attention to the construction of gender in this context. The first article is an examination of the organization of freshman engineering design. The second article draws on Lefebvre's spatial triad as both a theory and method for studying learning. The third article is an interview study of LGBTQA students creating their futures as engineers.
Feminist Methodologies and Engineering Education Research
ERIC Educational Resources Information Center
Beddoes, Kacey
2013-01-01
This paper introduces feminist methodologies in the context of engineering education research. It builds upon other recent methodology articles in engineering education journals and presents feminist research methodologies as a concrete engineering education setting in which to explore the connections between epistemology, methodology and theory.…
76 FR 77854 - Notice of Intent To Seek Approval To Establish an Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-14
... Reporting Requirements for the Engineering Research Centers (ERCs). OMB Number: 3145-NEW. Expiration Date of.... Abstract Proposed Project The Engineering Research Centers (ERC) program supports an integrated, interdisciplinary research environment to advance fundamental engineering knowledge and engineered systems; educate...
NASA's Hypersonic Research Engine Project: A review
NASA Technical Reports Server (NTRS)
Andrews, Earl H.; Mackley, Ernest A.
1994-01-01
The goals of the NASA Hypersonic Research Engine (HRE) Project, which began in 1964, were to design, develop, and construct a high-performance hypersonic research ramjet/scramjet engine for flight tests of the developed concept over the speed range of Mach 4 to 8. The project was planned to be accomplished in three phases: project definition, research engine development, and flight test using the X-15A-2 research airplane, which was modified to carry hydrogen fuel for the research engine. The project goal of an engine flight test was eliminated when the X-15 program was canceled in 1968. Ground tests of full-scale engine models then became the focus of the project. Two axisymmetric full-scale engine models, having 18-inch-diameter cowls, were fabricated and tested: a structural model and combustion/propulsion model. A brief historical review of the project, with salient features, typical data results, and lessons learned, is presented. An extensive number of documents were generated during the HRE Project and are listed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, G.
1992-12-28
The following Topics were among those completed at the Air Force Faculty Research Summer Program: Experiences using Model-Based Techniques for the Development of a Large Parallel Instrumentation System; Data Reduction of Laser Induced Fluorescence in Rocket Motor Exhausts; Feasibility of Wavelet Analysis for Plume Data Study; Characterization of Seagrass Meadows in St. Andrew (Crooked Island) Sound, Northern Gulf of Mexico; A Preliminary Study of the Weathering of Jet Fuels in Soil Monitored by SFE with GC Analysis; Preliminary Numerical model of Groundwater Flow at the MADE2 Site.
PREFACE: 3rd International Conference of Mechanical Engineering Research (ICMER 2015)
NASA Astrophysics Data System (ADS)
Mamat, Riazalman; Rahman, Mustafizur; Mohd. Zuki Nik Mohamed, Nik; Che Ghani, Saiful Anwar; Harun, Wan Sharuzi Wan
2015-12-01
The 3rd ICMER2015 is the continuity of the NCMER2010. The year 2010 represents a significant milestone in the history for Faculty of Mechanical Engineering, Universiti Malaysia Pahang (UMP) Malaysia with the organization of the first and second national level conferences (1st and 2nd NCMER) at UMP on May 26-27 and Dec 3-4 2010. The Faculty then changed the name from National Conference on Mechanical Engineering Research (NCMER) to International Conference on Mechanical Engineering Research (ICMER) in 2011 and this year, 2015 is our 3rd ICMER. These proceedings contain the selected scientific manuscripts submitted to the conference. It is with great pleasure to welcome you to the "International Conference on Mechanical Engineering Research (ICMER2015)" that is held at Zenith Hotel, Kuantan, Malaysia. The call for papers attracted submissions of over two hundred abstracts from twelve different countries including Japan, Iran, China, Kuwait, Indonesia, Norway, Philippines, Morocco, Germany, UAE and more. The scientific papers published in these proceedings have been revised and approved by the technical committee of the 3rd ICMER2015. All of the papers exhibit clear, concise, and precise expositions that appeal to a broad international readership interested in mechanical engineering, combustion, metallurgy, materials science as well as in manufacturing and biomechanics. The reports present original ideas or results of general significance supported by clear reasoning and compelling evidence, and employ methods, theories and practices relevant to the research. The authors clearly state the questions and the significance of their research to theory and practice, describe how the research contributes to new knowledge, and provide tables and figures that meaningfully add to the narrative. In this edition of ICMER representatives attending are from academia, industry, governmental and private sectors. The plenary and invited speakers will present, discuss, promote and disseminate research in all fields of mechanical engineering. Topics cover synthesis, applications, and fundamental studies of the topics related to mechanical engineering. In addition, booths for industries to showcase their state-of-the-art products are also provided. The organizing committee of the conference thanks all the participants for their fruitful work and personal contribution to the development of these conference proceedings.
1992-10-01
and superficial. The results of engineering information studies have not accumulated to form a significant body of knowledge that can be used to...Aerospace Kmowledge Diffits1ion. Studies indicate that timely access to STI can increase productivity and innovation and help aerospace engineers and...scientists maintain and improve their professional skills. These same studies demonstrate, however, how little is known about aerospace knowledge diffusion or
PEER logo Pacific Earthquake Engineering Research Center home about peer news events research Site Map Search Frequently Asked Questions What is the Pacific Earthquake Engineering Research Center ? The Pacific Earthquake Engineering Research Center (PEER) is a multidisciplinary research and
NASA Astrophysics Data System (ADS)
Salzman, Noah
Recent national dialogues on the importance of preparing more students for careers in Science, Technology, Engineering, and Mathematics has driven the development of formal and informal learning opportunities for children and adolescents to explore engineering. Despite the growth of these programs, relatively little research exists on how participation in these programs affects students who choose to pursue further study in engineering. The present study addressed this gap through an exploration of the different ways that First-Year Engineering students experience the transition from pre-college engineering to undergraduate engineering studies. Given the focus of this research on students' experiences, phenomenography was chosen to explore the phenomenon of transition from pre-college to first-year engineering at a large, public Midwestern university. This facilitated understanding the range of variation in the ways that students experienced this transition. Twenty-two students with different amounts of participation in a variety of different engineering programs were selected to be interviewed using a purposeful maximum variation sampling strategy. The interviews were guided by a semi-structured interview protocol that encouraged the participants to reflect on their pre-college engineering experiences, their experiences in First-Year Engineering, and the transition between the two domains. The interviews were analyzed using phenomenographic methods to develop an outcome space consisting of five qualitatively different but related ways of experiencing the transition from pre-college to First-Year Engineering. These categories of description included Foreclosure, Frustration, Tedium, Connection, and Engaging Others. With the exception of the first category which was characterized by a lack of passion and commitment to engineering, the remaining four categories formed a hierarchical relationship representing increasing integration in First-Year Engineering. The outcome space that emerged from this study captured a variety of positive and negative ways that the participants experienced their transitions to First-Year Engineering. Positive outcomes included increased familiarity and confidence with the material being taught in First-Year Engineering, a stronger commitment and drive to be successful in engineering, and the ability to encourage and incorporate input from others in the design process. Negative outcomes included less interest in First-Year Engineering projects, disappointment at the lack of alignment with pre-college engineering, and a struggle to connect with their peers. While not initially guided by Self-Determination Theory, the results of this study align with aspects of Self-Determination Theory, and the relationships between the results of this study and the motivational factors of competence, autonomy, and relatedness are explored. Finally, implications for First-Year and pre-college engineering instructional practices are presented, along with a plan for future work.
Research project for increasing pool of minority engineers
NASA Technical Reports Server (NTRS)
Rogers, Decatur B.
1995-01-01
The Tennessee State University (TSU) Research Project for Increasing the Pool of Minority Engineers is designed to develop engineers who have academic and research experiences in technical areas of interest to NASA. These engineers will also have some degree of familiarity with NASA Lewis Research Center as a result of interaction with Lewis engineers, field trips and internships at Lewis. The Research Project has four components, which are: (1) Minority Introduction to Engineering (MITE), a high school precollege program, (2) engineering and technology previews, (3) the NASA LeRC Scholars program which includes scholarships and summer internships, and (4) undergraduate research experiences on NASA sponsored research. MITE is a two-week summer engineering camp designed to introduce minority high school students to engineering by exposing them to: (1) engineering role models (engineering students and NASA engineer), (2) field trips to engineering firms, (3) in addition to introducing youth to the language of the engineer (i.e., science, mathematics, technical writing, computers, and the engineering laboratory). Three MITE camps are held on the campus of TSU with an average of 40 participants. MITE has grown from 25 participants at its inception in 1990 to 118 participants in 1994 with participants from 17 states, including the District of Columbia, and 51 percent of the participants were female. Over the four-year period, 77 percent of the seniors who participated in MITE have gone to college, while 53 percent of those seniors in college are majoring in science, engineering or mathematics (SEM). This first Engineering and Technology Previews held in 1993 brought 23 youths from Cleveland, Ohio to TSU for a two-day preview of engineering and college life. Two previews are scheduled for 1994-1995. The NASA LeRC Scholars program provides scholarships and summer internships for minority engineering students majoring in electrical or mechanical engineering. Presently six (6) engineering students are in the Scholars program. The average GPA for the scholars is 3.239. Each scholar must maintain a minimum GPA of 3.000/4.000. NASA LeRC Fred Higgs has been awarded a GEM Fellowship. In addition, he will be presenting a paper entitled 'Design of Helical Spring Using Probabilistic Design Methodology' at the Middle Tennessee Section ASME Student Design Presentations in Nashville on March 23rd and at the National Conference on Undergraduate Research to be held at Union College, Schenectady, New York on April 20-22, 1995. Each of the scholars is working on one of the three NASA sponsored research projects in the college.
The Complex Dynamics of Student Engagement in Novel Engineering Design Activities
NASA Astrophysics Data System (ADS)
McCormick, Mary
In engineering design, making sense of "messy," design situations is at the heart of the discipline (Schon, 1983); engineers in practice bring structure to design situations by organizing, negotiating, and coordinating multiple aspects (Bucciarelli, 1994; Stevens, Johri, & O'Connor, 2014). In classroom settings, however, students are more often given well-defined, content-focused engineering tasks (Jonassen, 2014). These tasks are based on the assumption that elementary students are unable to grapple with the complexity or open-endedness of engineering design (Crismond & Adams, 2012). The data I present in this dissertation suggest the opposite. I show that students are not only able to make sense of, or frame (Goffman, 1974), complex design situations, but that their framings dynamically involve their nascent abilities for engineering design. The context of this work is Novel Engineering, a larger research project that explores using children's literature as an access point for engineering design. Novel Engineering activities are inherently messy: there are characters with needs, settings with implicit constraints, and rich design situations. In a series of three studies, I show how students' framings of Novel Engineering design activities involve their reasoning and acting as beginning engineers. In the first study, I show two students whose caring for the story characters contributes to their stability in framing the task: they identify the needs of their fictional clients and iteratively design a solution to meet their clients' needs. In the second, I show how students' shifting and negotiating framings influence their engineering assumptions and evaluation criteria. In the third, I show how students' coordinating framings involve navigating a design process to meet clients' needs, classroom expectations, and technical requirements. Collectively, these studies contribute to literature by documenting students' productive beginnings in engineering design. The implications span research and practice, specifically targeting how we attend to and support students as they engage in engineering design.
Genetically Engineered Humanized Mouse Models for Preclinical Antibody Studies
Proetzel, Gabriele; Wiles, Michael V.; Roopenian, Derry C.
2015-01-01
The use of genetic engineering has vastly improved our capabilities to create animal models relevant in preclinical research. With the recent advances in gene-editing technologies, it is now possible to very rapidly create highly tunable mouse models as needs arise. Here, we provide an overview of genetic engineering methods, as well as the development of humanized neonatal Fc receptor (FcRn) models and their use for monoclonal antibody in vivo studies. PMID:24150980
NASA Astrophysics Data System (ADS)
Bush, Susan M.
The effects of Hurricane Hugo could have been much worse, in terms of lives lost and structural damage, according to postdisaster study teams. As part of the National Research Council's Committee on Natural Disasters, teams were sent to the disaster sites almost immediately after Hugo struck on September 18.Meteorologists, wind engineers, coastal geologists, civil engineers, structural engineers, and other members of the study teams presented their findings at a briefing held November 28 in Washington, D.C.
2010-12-24
Los Angeles Police Department ) 3. LACSD ( Los Angeles County Sheriff’ Department ) 4. USDHS (US Department of Homeland Security) Candidate Roster... The present study used archival data from a UCLA (University of California Los Angeles ) engineering course in which nominally student teams prepare...psychological literature. The present study used archival data from a UCLA (University of California Los Angeles ) engineering course
Biotechnology Process Engineering Center at MIT Home
Bioengineering / Engineering Research Centers Georgia Tech / Emory Center for the Engineering of Living Tissues University of Washington / Engineered Biomaterials Engineering Research Center Vanderbilt University / VaNTH Surgical Systems and Technology Univesity of Hawaii / Marine Bioproducts Engineering Center Funding Sources
76 FR 37084 - Board on Coastal Engineering Research
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-24
... DEPARTMENT OF DEFENSE Department of the Army; Corps of Engineers Board on Coastal Engineering... following committee meeting: Name of Committee: Board on Coastal Engineering Research. Date of Meeting: July... coastal engineering field and the objectives of the Chief of Engineers. Proposed Agenda: The goal of the...
75 FR 28593 - Board on Coastal Engineering Research
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
... DEPARTMENT OF DEFENSE Department of the Army; Corps of Engineers Board on Coastal Engineering... following committee meeting: Name of Committee: Board on Coastal Engineering Research. Date of Meeting: June... coastal engineering field and the objectives of the Chief of Engineers. Proposed Agenda: The goal of the...
A candidate V/STOL research aircraft design concept using an S-3A aircraft and 2 Pegasus 11 engines
NASA Technical Reports Server (NTRS)
Lampkin, B. A.
1980-01-01
A candidate V/STOL research aircraft concept which uses an S-3A airframe and two Pegasus 11 engines was studied to identify a feasible V/STOL national flight facility that could be obtained at the lowest possible cost for the demonstration of V/STOL technology, inflight simulation, and flight research. The rationale for choosing the configuration, a description of the configuration, and the capability of a fully developed aircraft are discussed.
NASA Astrophysics Data System (ADS)
Weller, R. A.; Bell, R. E.; Geller, L.
2015-12-01
A Committee convened by the National Academies of Sciences, Engineering, and Medicine carried out a study (at the request of NSF's Division of Polar Programs) to develop a strategic vision for the coming decade of NSF's investments in Antarctic and Southern Ocean research. The study was informed by extensive efforts to gather ideas from researchers across the United States. This presentation will provide an overview of the Committee's recommendations—regarding an overall strategic framework for a robust U.S. Antarctic program, regarding the specific areas of research recommended as highest priority for NSF support, and regarding the types of infrastructure, logistical support, data management, and other critical foundations for enabling and adding lasting value to the proposed research .
ERIC Educational Resources Information Center
Tolley, Patricia Ann Separ
2009-01-01
The purpose of this correlational study was to examine the effects of a residential learning community and enrollment in an introductory engineering course to engineering students' perceptions of the freshman year experience, academic performance, and persistence. The sample included students enrolled in a large, urban, public, research university…
ERIC Educational Resources Information Center
Mlambo, Yeukai Angela
2017-01-01
Black African women are grossly underrepresented as academic staff in engineering programs at South African universities. The problem is exacerbated at historically White institutions (HWI) where Black women are simply absent as engineering research and teaching staff. The absence of Black African women in the academy occurs despite Black African…
Women, Strategic Identity Management, and Persistence in College Engineering
ERIC Educational Resources Information Center
Naphan, Dara Elizabeth
2016-01-01
In this dissertation, I researched factors that predicted women's likelihood of persistence in college engineering. Women are less likely to study engineering in college than men, and when they do, they are more likely to switch out to another major. As a male-dominated field, micro-aggressions and other forms of discrimination from males are not…
ERIC Educational Resources Information Center
Morrison, Briana Marie Keafer
2013-01-01
Women continue to be underrepresented among engineering faculty despite decades of reform and intervention. To understand why more graduate women do not pursue careers in academia, this mixed methods study focuses on the experiences of women currently in graduate engineering programs, and how the graduate culture shapes their development and…
Analysis of Consolidation of Intermediate Level Maintenance for Atlantic Fleet T700-GE-401 Engines
1992-06-01
1978) and Gross, Kahn, and Marsh (1983) are applicable. Also pertinent is a study on spare aircraft engine requirements by Evanovich and Measell (1989...Verlag, New York. Center for Naval Analyses Research Memorandum CRM90-100, Spare Aircraft Engine Requirements, by P.J. Evanovich and B.H. Measell , July
ERIC Educational Resources Information Center
Nelson, Regina K.
2013-01-01
A mixed-methods research study was designed to test whether undergraduate engineering students were better prepared to learn advanced topics in biomedical engineering if they learned physiology via a quantitative, concept-based approach rather than a qualitative, system-based approach. Experiments were conducted with undergraduate engineering…
Implementation of a Multidisciplinary Professional Skills Course at an Electrical Engineering School
ERIC Educational Resources Information Center
Gider, F.; Likar, B.; Kern, T.; Miklavcic, D.
2012-01-01
This paper describes a case study of an innovative approach to teaching at an engineering school. The postgraduate course "Project Work and Communication in Research and Development (R&D)" was developed at the Faculty of Electrical Engineering of the University of Ljubljana, Ljubljana, Slovenia. The main aim of the course was to make…
ERIC Educational Resources Information Center
Antink-Meyer, Allison; Meyer, Daniel Z.
2016-01-01
The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This…
ERIC Educational Resources Information Center
Cavlazoglu, Baki; Stuessy, Carol L.
2017-01-01
Stakeholders in STEM education have called for integrating engineering content knowledge into STEM-content classrooms. To answer the call, stakeholders in science education announced a new framework, Next Generation Science Standards, which focuses on the integration of science and engineering in K-12 science education. However, research indicates…
ERIC Educational Resources Information Center
Johnson, Amy M.; Ozogul, Gamze; DiDonato, Matt D.; Reisslein, Martin
2013-01-01
Computer-based multimedia presentations employing animated agents (avatars) can positively impact perceptions about engineering; the current research advances our understanding of this effect to pre-college populations, the main target for engineering outreach. The study examines the effectiveness of a brief computer-based intervention with…
ERIC Educational Resources Information Center
Lawler, James; Iturralde, Val; Goldstein, Allan; Joseph, Anthony
2015-01-01
College curricula of engineering and information systems do not afford frequent engagement with individuals with disabilities. The authors of this research study analyzed the benefits of disability films for a community film festival of largely engineering and information systems students and individuals with developmental and intellectual…
ERIC Educational Resources Information Center
Wendell, Kristen Bethke
2011-01-01
This research illustrates how varying enactments of an engineering-design-based science curriculum shaped the development of students' domain-specific scientific ideas and practices. In this comparative case study rooted in the analytical perspectives of activity theory and learning environments, student and teacher participants in three…
Talking to Texts and Sketches: The Function of Written and Graphic Mediation in Engineering Design.
ERIC Educational Resources Information Center
Lewis, Barbara
2000-01-01
Describes the author's research that explores the role of language, particularly texts, in the engineering design process. Notes that results of this case study support a new "mediated" model of engineering design as an inventional activity in which designers use talk, written language, and other symbolic representations as tools to think about…
ERIC Educational Resources Information Center
Gimenez, J.; Thondhlana, J.
2012-01-01
In engineering, like in many other disciplines, collaborative writing (CW) has been identified as a central practice in both the academy and industry. A number of studies have shown that both students and professionals in this field write most discipline-specific genres collaboratively. Despite its centrality, CW in engineering is still an…