Real-time failure control (SAFD)
NASA Technical Reports Server (NTRS)
Panossian, Hagop V.; Kemp, Victoria R.; Eckerling, Sherry J.
1990-01-01
The Real Time Failure Control program involves development of a failure detection algorithm, referred as System for Failure and Anomaly Detection (SAFD), for the Space Shuttle Main Engine (SSME). This failure detection approach is signal-based and it entails monitoring SSME measurement signals based on predetermined and computed mean values and standard deviations. Twenty four engine measurements are included in the algorithm and provisions are made to add more parameters if needed. Six major sections of research are presented: (1) SAFD algorithm development; (2) SAFD simulations; (3) Digital Transient Model failure simulation; (4) closed-loop simulation; (5) SAFD current limitations; and (6) enhancements planned for.
14 CFR 23.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Unsymmetrical loads due to engine failure. 23.367 Section 23.367 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... may be based on the limit pilot forces specified in § 23.397 except that lower forces may be assumed...
14 CFR 25.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Unsymmetrical loads due to engine failure. 25.367 Section 25.367 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... may be based on the control forces specified in § 25.397(b) except that lower forces may be assumed...
14 CFR 25.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Unsymmetrical loads due to engine failure. 25.367 Section 25.367 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... may be based on the control forces specified in § 25.397(b) except that lower forces may be assumed...
14 CFR 23.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Unsymmetrical loads due to engine failure. 23.367 Section 23.367 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... may be based on the limit pilot forces specified in § 23.397 except that lower forces may be assumed...
14 CFR 23.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Unsymmetrical loads due to engine failure. 23.367 Section 23.367 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... may be based on the limit pilot forces specified in § 23.397 except that lower forces may be assumed...
46 CFR 112.25-5 - Failure of power from the normal source.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Failure of power from the normal source. 112.25-5 Section 112.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas...
46 CFR 112.25-5 - Failure of power from the normal source.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Failure of power from the normal source. 112.25-5 Section 112.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas...
46 CFR 112.25-5 - Failure of power from the normal source.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Failure of power from the normal source. 112.25-5 Section 112.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas...
46 CFR 112.25-5 - Failure of power from the normal source.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Failure of power from the normal source. 112.25-5 Section 112.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas...
46 CFR 112.25-5 - Failure of power from the normal source.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Failure of power from the normal source. 112.25-5 Section 112.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas...
14 CFR 63.41 - Retesting after failure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Retesting after failure. 63.41 Section 63.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... failure. An applicant for a flight engineer certificate who fails a written test or practical test for...
14 CFR 63.41 - Retesting after failure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Retesting after failure. 63.41 Section 63.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... failure. An applicant for a flight engineer certificate who fails a written test or practical test for...
14 CFR 63.41 - Retesting after failure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Retesting after failure. 63.41 Section 63.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... failure. An applicant for a flight engineer certificate who fails a written test or practical test for...
14 CFR 63.41 - Retesting after failure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Retesting after failure. 63.41 Section 63.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... failure. An applicant for a flight engineer certificate who fails a written test or practical test for...
40 CFR 86.430-78 - Vehicle failure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Vehicle failure. 86.430-78 Section 86...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles, General Provisions § 86.430-78 Vehicle failure. Any test vehicle which incurs...
40 CFR 86.430-78 - Vehicle failure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Vehicle failure. 86.430-78 Section 86...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles, General Provisions § 86.430-78 Vehicle failure. Any test vehicle which incurs...
40 CFR 86.430-78 - Vehicle failure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle failure. 86.430-78 Section 86...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles, General Provisions § 86.430-78 Vehicle failure. Any test vehicle which incurs...
40 CFR 86.430-78 - Vehicle failure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Vehicle failure. 86.430-78 Section 86...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles, General Provisions § 86.430-78 Vehicle failure. Any test vehicle which incurs...
40 CFR 86.430-78 - Vehicle failure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Vehicle failure. 86.430-78 Section 86...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles, General Provisions § 86.430-78 Vehicle failure. Any test vehicle which incurs...
Engine Icing Modeling and Simulation (Part 2): Performance Simulation of Engine Rollback Phenomena
NASA Technical Reports Server (NTRS)
May, Ryan D.; Guo, Ten-Huei; Veres, Joseph P.; Jorgenson, Philip C. E.
2011-01-01
Ice buildup in the compressor section of a commercial aircraft gas turbine engine can cause a number of engine failures. One of these failure modes is known as engine rollback: an uncommanded decrease in thrust accompanied by a decrease in fan speed and an increase in turbine temperature. This paper describes the development of a model which simulates the system level impact of engine icing using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). When an ice blockage is added to C-MAPSS40k, the control system responds in a manner similar to that of an actual engine, and, in cases with severe blockage, an engine rollback is observed. Using this capability to simulate engine rollback, a proof-of-concept detection scheme is developed and tested using only typical engine sensors. This paper concludes that the engine control system s limit protection is the proximate cause of iced engine rollback and that the controller can detect the buildup of ice particles in the compressor section. This work serves as a feasibility study for continued research into the detection and mitigation of engine rollback using the propulsion control system.
14 CFR 25.629 - Aeroelastic stability requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... propeller or rotating device that contributes significant dynamic forces. Compliance with this section must...) Any single failure in any flutter damper system. (3) For airplanes not approved for operation in icing... dynamic forces, any single failure of the engine structure that would reduce the rigidity of the...
46 CFR 113.43-5 - Power supply.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Power supply. 113.43-5 Section 113.43-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Steering Failure Alarm Systems § 113.43-5 Power supply. Each steering failure alarm...
46 CFR 113.43-5 - Power supply.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Power supply. 113.43-5 Section 113.43-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Steering Failure Alarm Systems § 113.43-5 Power supply. Each steering failure alarm...
46 CFR 113.43-5 - Power supply.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Power supply. 113.43-5 Section 113.43-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Steering Failure Alarm Systems § 113.43-5 Power supply. Each steering failure alarm...
46 CFR 112.20-5 - Failure of power from the normal source or final emergency power source.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Failure of power from the normal source or final emergency power source. 112.20-5 Section 112.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary...
46 CFR 112.20-5 - Failure of power from the normal source or final emergency power source.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Failure of power from the normal source or final emergency power source. 112.20-5 Section 112.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary...
46 CFR 112.20-5 - Failure of power from the normal source or final emergency power source.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Failure of power from the normal source or final emergency power source. 112.20-5 Section 112.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary...
46 CFR 112.20-5 - Failure of power from the normal source or final emergency power source.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Failure of power from the normal source or final emergency power source. 112.20-5 Section 112.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary...
46 CFR 112.20-5 - Failure of power from the normal source or final emergency power source.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Failure of power from the normal source or final emergency power source. 112.20-5 Section 112.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary...
Life prediction technologies for aeronautical propulsion systems
NASA Technical Reports Server (NTRS)
Mcgaw, Michael A.
1987-01-01
Fatigue and fracture problems continue to occur in aeronautical gas turbine engines. Components whose useful life is limited by these failure modes include turbine hot-section blades, vanes and disks. Safety considerations dictate that catastrophic failures be avoided, while economic considerations dictate that noncatastrophic failures occur as infrequently as possible. The design decision is therefore in making the tradeoff between engine performance and durability. The NASA Lewis Research Center has contributed to the aeropropulsion industry in the areas of life prediction technology for 30 years, developing creep and fatigue life prediction methodologies for hot-section materials. Emphasis is placed on the development of methods capable of handling both thermal and mechanical fatigue under severe environments. Recent accomplishments include the development of more accurate creep-fatigue life prediction methods such as the total strain version of Lewis' Strainrange Partitioning (SRP) and the HOST-developed Cyclic Damage Accumulation (CDA) model. Other examples include the Double Damage Curve Approach (DDCA), which provides greatly improved accuracy for cumulative fatigue design rules.
Distributed optical fiber-based monitoring approach of spatial seepage behavior in dike engineering
NASA Astrophysics Data System (ADS)
Su, Huaizhi; Ou, Bin; Yang, Lifu; Wen, Zhiping
2018-07-01
The failure caused by seepage is the most common one in dike engineering. As to the characteristics of seepage in dike, such as longitudinal extension engineering, the randomness, strong concealment and small initial quantity order, by means of distributed fiber temperature sensor system (DTS), adopting an improved optical fiber layer layout scheme, the location of initial interpolation point of the saturation line is obtained. With the barycentric Lagrange interpolation collocation method (BLICM), the infiltrated surface of dike full-section is generated. Combined with linear optical fiber monitoring seepage method, BLICM is applied in an engineering case, which shows that a real-time seepage monitoring technique is presented in full-section of dike based on the combination method.
Reliability Prediction for Combustors and Turbines. Volume I.
1977-06-01
comprised of many sophisticated components utilizing the latest in high-strength materials and technology. This is especially true in the turbine component...JT9D engine. This inspection technique makes use of a horoscope probe to look into the en- gine hot section while the engine remains installed in the...engine can now be removed based on results observed with the horoscope . This type of failure can be caused by any of the three primary turbine airfoil
NASA Technical Reports Server (NTRS)
Biesiadny, T. J.; Mcdonald, G. E.; Hendricks, R. C.; Little, J. K.; Robinson, R. A.; Klann, G. A.; Lassow, E. S.
1985-01-01
The results of an experimental and analytical evaluation of ceramic turbine tip shrouds within a small turbine engine operating environment are presented. The ceramic shrouds were subjected to 1001 cycles between idle and high power and steady-state conditions for a total of 57.8 engine hr. Posttest engine inspection revealed mud-flat surface cracking, which was attributed to microcracking under tension with crack penetration to the ceramic and bond coat interface. Sections and micrographs tend to corroborate the thesis. The engine test data provided input to a thermomechanical analysis to predict temperature and stress profiles throughout the ceramic gas-path seal. The analysis predicts cyclic thermal stresses large enough to cause the seal to fail. These stresses are, however, mitigated by inelastic behavior of the shroud materials and by the microfracturing that tensile stresses produce. Microfracturing enhances shroud longevity during early life but provides the failure mechanism during life but provides the failure mechanism during extended life when coupled with the time dependent inelastic materials effects.
Detailed Post-Soft Impact Progressive Damage Assessment for Hybrid Structure Jet Engines
NASA Technical Reports Server (NTRS)
Siddens, Aaron; Bayandor, Javid; Celestina, Mark L.
2014-01-01
Currently, certification of engine designs for resistance to bird strike is reliant on physical tests. Predictive modeling of engine structural damage has mostly been limited to evaluation of individual forward section components, such as fan blades within a fixed frame of reference, to direct impact with a bird. Such models must be extended to include interactions among engine components under operating conditions to evaluate the full extent of engine damage. This paper presents the results of a study aim to develop a methodology for evaluating bird strike damage in advanced propulsion systems incorporating hybrid composite/metal structures. The initial degradation and failure of individual fan blades struck by a bird were investigated. Subsequent damage to other fan blades and engine components due to resultant violent fan assembly vibrations and fragmentation was further evaluated. Various modeling parameters for the bird and engine components were investigated to determine guidelines for accurately capturing initial damage and progressive failure of engine components. Then, a novel hybrid structure modeling approach was investigated and incorporated into the crashworthiness methodology. Such a tool is invaluable to the process of design, development, and certification of future advanced propulsion systems.
The application of probabilistic design theory to high temperature low cycle fatigue
NASA Technical Reports Server (NTRS)
Wirsching, P. H.
1981-01-01
Metal fatigue under stress and thermal cycling is a principal mode of failure in gas turbine engine hot section components such as turbine blades and disks and combustor liners. Designing for fatigue is subject to considerable uncertainty, e.g., scatter in cycles to failure, available fatigue test data and operating environment data, uncertainties in the models used to predict stresses, etc. Methods of analyzing fatigue test data for probabilistic design purposes are summarized. The general strain life as well as homo- and hetero-scedastic models are considered. Modern probabilistic design theory is reviewed and examples are presented which illustrate application to reliability analysis of gas turbine engine components.
NASA Technical Reports Server (NTRS)
Duffy, S. F.; Hu, J.; Hopkins, D. A.
1995-01-01
The article begins by examining the fundamentals of traditional deterministic design philosophy. The initial section outlines the concepts of failure criteria and limit state functions two traditional notions that are embedded in deterministic design philosophy. This is followed by a discussion regarding safety factors (a possible limit state function) and the common utilization of statistical concepts in deterministic engineering design approaches. Next the fundamental aspects of a probabilistic failure analysis are explored and it is shown that deterministic design concepts mentioned in the initial portion of the article are embedded in probabilistic design methods. For components fabricated from ceramic materials (and other similarly brittle materials) the probabilistic design approach yields the widely used Weibull analysis after suitable assumptions are incorporated. The authors point out that Weibull analysis provides the rare instance where closed form solutions are available for a probabilistic failure analysis. Since numerical methods are usually required to evaluate component reliabilities, a section on Monte Carlo methods is included to introduce the concept. The article concludes with a presentation of the technical aspects that support the numerical method known as fast probability integration (FPI). This includes a discussion of the Hasofer-Lind and Rackwitz-Fiessler approximations.
Ceramic Composite Development for Gas Turbine Engine Hot Section Components
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; VANrOODE, mARK
2006-01-01
The development of ceramic materials for incorporation into the hot section of gas turbine engines has been ongoing for about fifty years. Researchers have designed, developed, and tested ceramic gas turbine components in rigs and engines for automotive, aero-propulsion, industrial, and utility power applications. Today, primarily because of materials limitations and/or economic factors, major challenges still remain for the implementation of ceramic components in gas turbines. For example, because of low fracture toughness, monolithic ceramics continue to suffer from the risk of failure due to unknown extrinsic damage events during engine service. On the other hand, ceramic matrix composites (CMC) with their ability to display much higher damage tolerance appear to be the materials of choice for current and future engine components. The objective of this paper is to briefly review the design and property status of CMC materials for implementation within the combustor and turbine sections for gas turbine engine applications. It is shown that although CMC systems have advanced significantly in thermo-structural performance within recent years, certain challenges still exist in terms of producibility, design, and affordability for commercial CMC turbine components. Nevertheless, there exist some recent successful efforts for prototype CMC components within different engine types.
PRA and Risk Informed Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernsen, Sidney A.; Simonen, Fredric A.; Balkey, Kenneth R.
2006-01-01
The Boiler and Pressure Vessel Code (BPVC) of the American Society of Mechanical Engineers (ASME) has introduced a risk based approach into Section XI that covers Rules for Inservice Inspection of Nuclear Power Plant Components. The risk based approach requires application of the probabilistic risk assessments (PRA). Because no industry consensus standard existed for PRAs, ASME has developed a standard to evaluate the quality level of an available PRA needed to support a given risk based application. The paper describes the PRA standard, Section XI application of PRAs, and plans for broader applications of PRAs to other ASME nuclear codesmore » and standards. The paper addresses several specific topics of interest to Section XI. Important consideration are special methods (surrogate components) used to overcome the lack of PRA treatments of passive components in PRAs. The approach allows calculations of conditional core damage probabilities both for component failures that cause initiating events and failures in standby systems that decrease the availability of these systems. The paper relates the explicit risk based methods of the new Section XI code cases to the implicit consideration of risk used in the development of Section XI. Other topics include the needed interactions of ISI engineers, plant operating staff, PRA specialists, and members of expert panels that review the risk based programs.« less
Life modeling of thermal barrier coatings for aircraft gas turbine engines
NASA Technical Reports Server (NTRS)
Miller, Robert A.
1988-01-01
Thermal barrier coating life models developed under the NASA Lewis Research Center's Hot Section Technology (HOST) program are summarized. An initial laboratory model and three design-capable models are discussed. Current understanding of coating failure mechanisms are also summarized.
2015-01-01
Procedure. The simulated annealing (SA) algorithm is a well-known local search metaheuristic used to address discrete, continuous, and multiobjective...design of experiments (DOE) to tune the parameters of the optimiza- tion algorithm . Section 5 shows the results of the case study. Finally, concluding... metaheuristic . The proposed method is broken down into two phases. Phase I consists of a Monte Carlo simulation to obtain the simulated percentage of failure
Failure of engineering artifacts: a life cycle approach.
Del Frate, Luca
2013-09-01
Failure is a central notion both in ethics of engineering and in engineering practice. Engineers devote considerable resources to assure their products will not fail and considerable progress has been made in the development of tools and methods for understanding and avoiding failure. Engineering ethics, on the other hand, is concerned with the moral and social aspects related to the causes and consequences of technological failures. But what is meant by failure, and what does it mean that a failure has occurred? The subject of this paper is how engineers use and define this notion. Although a traditional definition of failure can be identified that is shared by a large part of the engineering community, the literature shows that engineers are willing to consider as failures also events and circumstance that are at odds with this traditional definition. These cases violate one or more of three assumptions made by the traditional approach to failure. An alternative approach, inspired by the notion of product life cycle, is proposed which dispenses with these assumptions. Besides being able to address the traditional cases of failure, it can deal successfully with the problematic cases. The adoption of a life cycle perspective allows the introduction of a clearer notion of failure and allows a classification of failure phenomena that takes into account the roles of stakeholders involved in the various stages of a product life cycle.
7 CFR 1779.47 - Economic feasibility requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... determine economic feasibility as well as financial viability. The borrower's consulting engineer may... success or failure of the facility is dependent on individual businesses, then the economic viability of... 7 Agriculture 12 2014-01-01 2013-01-01 true Economic feasibility requirements. 1779.47 Section...
7 CFR 1779.47 - Economic feasibility requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... determine economic feasibility as well as financial viability. The borrower's consulting engineer may... success or failure of the facility is dependent on individual businesses, then the economic viability of... 7 Agriculture 12 2012-01-01 2012-01-01 false Economic feasibility requirements. 1779.47 Section...
7 CFR 1779.47 - Economic feasibility requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... determine economic feasibility as well as financial viability. The borrower's consulting engineer may... success or failure of the facility is dependent on individual businesses, then the economic viability of... 7 Agriculture 12 2011-01-01 2011-01-01 false Economic feasibility requirements. 1779.47 Section...
7 CFR 1779.47 - Economic feasibility requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... determine economic feasibility as well as financial viability. The borrower's consulting engineer may... success or failure of the facility is dependent on individual businesses, then the economic viability of... 7 Agriculture 12 2013-01-01 2013-01-01 false Economic feasibility requirements. 1779.47 Section...
Ferrographic and spectrometer oil analysis from a failed gas turbine engine
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.
1982-01-01
An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, a plasma, an atomic absorption, and an emission spectrometer to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations ( 2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure.
Failure is an option: Reactions to failure in elementary engineering design projects
NASA Astrophysics Data System (ADS)
Johnson, Matthew M.
Recent reform documents in science education have called for teachers to use epistemic practices of science and engineering researchers to teach disciplinary content (NRC, 2007; NRC, 2012; NGSS Lead States, 2013). Although this creates challenges for classroom teachers unfamiliar with engineering, it has created a need for high quality research about how students and teachers engage in engineering activities to improve curriculum development and teaching pedagogy. While framers of the Next Generation Science Standards (NRC, 2012; NGSS Lead States 2013) focused on the similarities of the practices of science researchers and engineering designers, some have proposed that engineering has a unique set of epistemic practices, including improving from failure (Cunningham & Carlsen, 2014; Cunningham & Kelly, in review). While no one will deny failures occur in science, failure in engineering is thought of in fundamentally different ways. In the study presented here, video data from eight classes of elementary students engaged in one of two civil engineering units were analyzed using methods borrowed from psychology, anthropology, and sociolinguistics to investigate: 1) the nature of failure in elementary engineering design; 2) the ways in which teachers react to failure; and 3) how the collective actions of students and teachers support or constrain improvement in engineering design. I propose new ways of considering the types and causes of failure, and note three teacher reactions to failure: the manager, the cheerleader, and the strategic partner. Because the goal of iteration in engineering is improvement, I also studied improvement. Students only systematically improve when they have the opportunity, productive strategies, and fair comparisons between prototypes. I then investigate the use of student engineering journals to assess learning from the process of improvement after failure. After discussion, I consider implications from this work as well as future research to advance our understanding in this area.
14 CFR 29.87 - Height-velocity envelope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Category A engine isolation requirements, the height-velocity envelope for complete power failure must be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Height-velocity envelope. 29.87 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.87 Height-velocity envelope. (a...
Ferrographic and spectrographic analysis of oil sampled before and after failure of a jet engine
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.
1980-01-01
An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph as well as plasma, atomic absorption, and emission spectrometers. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism, nor a high level of wear debris was detected in the oil sample from the engine just prior to the test in which the failure occurred. However, low concentrations of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure.
Turbofan engine demonstration of sensor failure detection
NASA Technical Reports Server (NTRS)
Merrill, Walter C.; Delaat, John C.; Abdelwahab, Mahmood
1991-01-01
In the paper, the results of a full-scale engine demonstration of a sensor failure detection algorithm are presented. The algorithm detects, isolates, and accommodates sensor failures using analytical redundancy. The experimental hardware, including the F100 engine, is described. Demonstration results were obtained over a large portion of a typical flight envelope for the F100 engine. They include both subsonic and supersonic conditions at both medium and full, nonafter burning, power. Estimated accuracy, minimum detectable levels of sensor failures, and failure accommodation performance for an F100 turbofan engine control system are discussed.
Novel Thin Film Sensor Technology for Turbine Engine Hot Section Components
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.
2007-01-01
Degradation and damage that develops over time in hot section components can lead to catastrophic failure of the turbine section of aircraft engines. A range of thin film sensor technology has been demonstrated enabling on-component measurement of multiple parameters either individually or in sensor arrays including temperature, strain, heat flux, and flow. Conductive ceramics are beginning to be investigated as new materials for use as thin film sensors in the hot section, leveraging expertise in thin films and high temperature materials. The current challenges are to develop new sensor and insulation materials capable of withstanding the extreme hot section environment, and to develop techniques for applying sensors onto complex high temperature structures for aging studies of hot propulsion materials. The technology research and development ongoing at NASA Glenn Research Center for applications to future aircraft, launch vehicles, space vehicles, and ground systems is outlined.
Ferrographic and spectrometer oil analysis from a failed gas turbine engine
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.
1983-01-01
An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor parts that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, and with plasma, atomic absorption, and emission spectrometers to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations (2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure. Previously announced in STAR as N83-12433
Lox/Gox related failures during Space Shuttle Main Engine development
NASA Technical Reports Server (NTRS)
Cataldo, C. E.
1981-01-01
Specific rocket engine hardware and test facility system failures are described which were caused by high pressure liquid and/or gaseous oxygen reactions. The failures were encountered during the development and testing of the space shuttle main engine. Failure mechanisms are discussed as well as corrective actions taken to prevent or reduce the potential of future failures.
14 CFR 33.17 - Fire protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection. 33.17 Section 33.17... STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.17 Fire protection. (a) The design and... fire during normal operation and failure conditions, and must minimize the effect of such a fire. In...
Factors that Affect Operational Reliability of Turbojet Engines
NASA Technical Reports Server (NTRS)
1956-01-01
The problem of improving operational reliability of turbojet engines is studied in a series of papers. Failure statistics for this engine are presented, the theory and experimental evidence on how engine failures occur are described, and the methods available for avoiding failure in operation are discussed. The individual papers of the series are Objectives, Failure Statistics, Foreign-Object Damage, Compressor Blades, Combustor Assembly, Nozzle Diaphrams, Turbine Buckets, Turbine Disks, Rolling Contact Bearings, Engine Fuel Controls, and Summary Discussion.
Is it possible to identify a trend in problem/failure data
NASA Technical Reports Server (NTRS)
Church, Curtis K.
1990-01-01
One of the major obstacles in identifying and interpreting a trend is the small number of data points. Future trending reports will begin with 1983 data. As the problem/failure data are aggregated by year, there are just seven observations (1983 to 1989) for the 1990 reports. Any statistical inferences with a small amount of data will have a large degree of uncertainty. Consequently, a regression technique approach to identify a trend is limited. Though trend determination by failure mode may be unrealistic, the data may be explored for consistency or stability and the failure rate investigated. Various alternative data analysis procedures are briefly discussed. Techniques that could be used to explore problem/failure data by failure mode are addressed. The data used are taken from Section One, Space Shuttle Main Engine, of the Calspan Quarterly Report dated April 2, 1990.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Patricia Slinger (left), a test engineer, and Monica Hagley, an avionics test engineer, look at a replacement orbiter point sensor chassis. Components are being tested to determine why one of the four liquid hydrogen tank low- level fuel cut-off sensors failed in a routine prelaunch check during the launch countdown July 13. The failure caused mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).
Low-cycle fatigue analysis of a cooled copper combustion chamber
NASA Technical Reports Server (NTRS)
Miller, R. W.
1974-01-01
A three-dimensional finite element elastoplastic strain analysis was performed for the throat section of regeneratively cooled rocket engine combustion chamber. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the engine operating cycle. The strain range was used in conjunction with OFHC copper isothermal fatigue test data to predict engine low-cycle fatigue life. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen chamber which was fatigue tested to failure at the NASA Lewis Research Center.
Life prediction technologies for aeronautical propulsion systems
NASA Technical Reports Server (NTRS)
Mcgaw, Michael A.
1990-01-01
Fatigue and fracture problems continue to occur in aeronautical gas turbine engines. Components whose useful life is limited by these failure modes include turbine hot-section blades, vanes, and disks. Safety considerations dictate that catastrophic failures be avoided, while economic considerations dictate that catastrophic failures be avoided, while economic considerations dictate that noncatastrophic failures occur as infrequently as possible. Therefore, the decision in design is making the tradeoff between engine performance and durability. LeRC has contributed to the aeropropulsion industry in the area of life prediction technology for over 30 years, developing creep and fatigue life prediction methodologies for hot-section materials. At the present time, emphasis is being placed on the development of methods capable of handling both thermal and mechanical fatigue under severe environments. Recent accomplishments include the development of more accurate creep-fatigue life prediction methods such as the total strain version of LeRC's strain-range partitioning (SRP) and the HOST-developed cyclic damage accumulation (CDA) model. Other examples include the development of a more accurate cumulative fatigue damage rule - the double damage curve approach (DDCA), which provides greatly improved accuracy in comparison with usual cumulative fatigue design rules. Other accomplishments in the area of high-temperature fatigue crack growth may also be mentioned. Finally, we are looking to the future and are beginning to do research on the advanced methods which will be required for development of advanced materials and propulsion systems over the next 10-20 years.
NASA Technical Reports Server (NTRS)
Riff, Richard
1988-01-01
The prediction of inelastic behavior of metallic materials at elevated temperatures has increased in importance in recent years. The operating conditions within the hot section of a rocket motor or a modern gas turbine engine present an extremely harsh thermomechanical environment. Large thermal transients are induced each time the engine is started or shut down. Additional thermal transients from an elevated ambient occur whenever the engine power level is adjusted to meet flight requirements. The structural elements employed in such hot sections, as well as any engine components located therein, must be capable of withstanding such extreme conditions. Failure of a component would, due to the critical nature of the hot section, lead to an immediate and catastrophic loss in power. Consequently, assuring satisfactory long term performance for such components is a major concern. Nonisothermal loading of structures often causes excursion of stress well into the inelastic range. Moreover, the influence of geometry changes on the response is also significant in most cases. Therefore, both material and geometric nonlinear effects are considered.
Learning from Engineering Failures: A Case Study of the Deepwater Horizon
ERIC Educational Resources Information Center
Rose, Mary Annette; Hunt, Brian
2012-01-01
Natural catastrophes and engineering failures provide timely, motivating, and conceptually rich backdrops for learning. Engineering educators have long embraced case studies of engineering failures as a sound pedagogical strategy for meeting several learning standards, such as "design within realistic constraints", and teaching failure…
14 CFR 25.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the engine compressor from the turbine or from loss of the turbine blades are considered to be... § 25.367 Unsymmetrical loads due to engine failure. (a) The airplane must be designed for the unsymmetrical loads resulting from the failure of the critical engine. Turbopropeller airplanes must be designed...
14 CFR 25.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the engine compressor from the turbine or from loss of the turbine blades are considered to be... § 25.367 Unsymmetrical loads due to engine failure. (a) The airplane must be designed for the unsymmetrical loads resulting from the failure of the critical engine. Turbopropeller airplanes must be designed...
14 CFR 25.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the engine compressor from the turbine or from loss of the turbine blades are considered to be... § 25.367 Unsymmetrical loads due to engine failure. (a) The airplane must be designed for the unsymmetrical loads resulting from the failure of the critical engine. Turbopropeller airplanes must be designed...
Instructional Changes Adopted for an Engineering Course: Cluster Analysis on Academic Failure
Álvarez-Bermejo, José A.; Belmonte-Ureña, Luis J.; Martos-Martínez, África; Barragán-Martín, Ana B.; Simón-Márquez, María M.
2016-01-01
As first year students come from diverse backgrounds, basic skills should be accessible to everyone as soon as possible. Transferring such skills to these students is challenging, especially in highly technical courses. Ensuring that essential knowledge is acquired quickly promotes the student’s self-esteem and may positively influence failure rates. Metaphors can help do this. Metaphors are used to understand the unknown. This paper shows how we made a turn in student learning at the University of Almeria. Our hypothesis assumed that metaphors accelerate the acquisition of basic knowledge so that other skills built on that foundation are easily learned. With these goals in mind, we changed the way we teach by using metaphors and abstract concepts in a computer organization course, a technical course in the first year of an information technology engineering degree. Cluster analysis of the data on collective student performance after this methodological change clearly identified two distinct groups. These two groups perfectly matched the “before and after” scenarios of the use of metaphors. The study was conducted during 11 academic years (2002/2003 to 2012/2013). The 475 observations made during this period illustrate the usefulness of this change in teaching and learning, shifting from a propositional teaching/learning model to a more dynamic model based on metaphors and abstractions. Data covering the whole period showed favorable evolution of student achievement and reduced failure rates, not only in this course, but also in many of the following more advanced courses. The paper is structured in five sections. The first gives an introduction, the second describes the methodology. The third section describes the sample and the study carried out. The fourth section presents the results and, finally, the fifth section discusses the main conclusions. PMID:27895611
14 CFR 33.94 - Blade containment and rotor unbalance tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... fire and without failure of its mounting attachments when operated for at least 15 seconds, unless the..., component testing, or service experience may be substitute for one of the engine tests prescribed in paragraphs (a)(1) and (a)(2) of this section if— (1) That test, of the two prescribed, produces the least...
14 CFR 33.94 - Blade containment and rotor unbalance tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... fire and without failure of its mounting attachments when operated for at least 15 seconds, unless the..., component testing, or service experience may be substitute for one of the engine tests prescribed in paragraphs (a)(1) and (a)(2) of this section if— (1) That test, of the two prescribed, produces the least...
14 CFR 33.94 - Blade containment and rotor unbalance tests.
Code of Federal Regulations, 2014 CFR
2014-01-01
... fire and without failure of its mounting attachments when operated for at least 15 seconds, unless the..., component testing, or service experience may be substitute for one of the engine tests prescribed in paragraphs (a)(1) and (a)(2) of this section if— (1) That test, of the two prescribed, produces the least...
14 CFR 33.94 - Blade containment and rotor unbalance tests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... fire and without failure of its mounting attachments when operated for at least 15 seconds, unless the..., component testing, or service experience may be substitute for one of the engine tests prescribed in paragraphs (a)(1) and (a)(2) of this section if— (1) That test, of the two prescribed, produces the least...
14 CFR 33.94 - Blade containment and rotor unbalance tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... fire and without failure of its mounting attachments when operated for at least 15 seconds, unless the..., component testing, or service experience may be substitute for one of the engine tests prescribed in paragraphs (a)(1) and (a)(2) of this section if— (1) That test, of the two prescribed, produces the least...
76 FR 8661 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
... engine models requiring inspections. We are proposing this AD to prevent failure of the fuel injector... repetitive inspection compliance time. We issued that AD to prevent failure of the fuel injector fuel lines... engine models requiring inspection. We are issuing this AD to prevent failure of the fuel injector fuel...
NASA Technical Reports Server (NTRS)
Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.
1992-01-01
An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes, These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.
NASA Technical Reports Server (NTRS)
Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.
1992-01-01
An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.
Reusable Rocket Engine Maintenance Study
NASA Technical Reports Server (NTRS)
Macgregor, C. A.
1982-01-01
Approximately 85,000 liquid rocket engine failure reports, obtained from 30 years of developing and delivering major pump feed engines, were reviewed and screened and reduced to 1771. These were categorized into 16 different failure modes. Failure propagation diagrams were established. The state of the art of engine condition monitoring for in-flight sensors and between flight inspection technology was determined. For the 16 failure modes, the potential measurands and diagnostic requirements were identified, assessed and ranked. Eight areas are identified requiring advanced technology development.
STS-51 pad abort. OV103-engine 2033 (ME-2) fuel flowmeter sensor open circuit
NASA Technical Reports Server (NTRS)
1993-01-01
The STS-51 initial launch attempt of Discovery (OV-103) was terminated on KSC launch pad 39B on 12 Aug. 1993 at 9:12 AM E.S.T. due to a sensor redundancy failure in the liquid hydrogen system of ME-2 (Engine 2033). The event description and time line are summarized. Propellant loading was initiated on 12 Aug. 1993 at 12:00 AM EST. All space shuttle main engine (SSME) chill parameters and Launch Commit Criteria (LCC) were nominal. At engine start plus 1.34 seconds a Failure Identification (FID) was posted against Engine 2033 for exceeding the 1800 spin intra-channel (A1-A2) Fuel Flowrate sensor channel qualification limit. The engine was shut down at 1.50 seconds followed by Engines 2032 and 2030. All shut down sequences were nominal and the mission was safely aborted. SSME Avionics hardware and software performed nominally during the incident. A review of vehicle data table (VDT) data and controller software logic revealed no failure indications other than the single FID 111-101, Fuel Flowrate Intra-Channel Test Channel A disqualification. Software logic was executed according to requirements and there was no anomalous controller software operation. Immediately following the abort, a Rocketdyne/NASA failure investigation team was assembled. The team successfully isolated the failure cause to an open circuit in a Fuel Flowrate Sensor. This type of failure has occurred eight previous times in ground testing. The sensor had performed acceptably on three previous flights of the engine and SSME flight history shows 684 combined fuel flow rate sensor channel flights without failure. The disqualification of an Engine 2 (SSME No. 2033) Fuel Flowrate sensor channel was a result of an instrumentation failure and not engine performance. All other engine operations were nominal. This disqualification resulted in an engine shutdown and safe sequential shutdown of all three engines prior to ignition of the solid boosters.
Adaptive Failure Compensation for Aircraft Tracking Control Using Engine Differential Based Model
NASA Technical Reports Server (NTRS)
Liu, Yu; Tang, Xidong; Tao, Gang; Joshi, Suresh M.
2006-01-01
An aircraft model that incorporates independently adjustable engine throttles and ailerons is employed to develop an adaptive control scheme in the presence of actuator failures. This model captures the key features of aircraft flight dynamics when in the engine differential mode. Based on this model an adaptive feedback control scheme for asymptotic state tracking is developed and applied to a transport aircraft model in the presence of two types of failures during operation, rudder failure and aileron failure. Simulation results are presented to demonstrate the adaptive failure compensation scheme.
NASA Technical Reports Server (NTRS)
Packard, Michael H.
2002-01-01
Probabilistic Structural Analysis (PSA) is now commonly used for predicting the distribution of time/cycles to failure of turbine blades and other engine components. These distributions are typically based on fatigue/fracture and creep failure modes of these components. Additionally, reliability analysis is used for taking test data related to particular failure modes and calculating failure rate distributions of electronic and electromechanical components. How can these individual failure time distributions of structural, electronic and electromechanical component failure modes be effectively combined into a top level model for overall system evaluation of component upgrades, changes in maintenance intervals, or line replaceable unit (LRU) redesign? This paper shows an example of how various probabilistic failure predictions for turbine engine components can be evaluated and combined to show their effect on overall engine performance. A generic model of a turbofan engine was modeled using various Probabilistic Risk Assessment (PRA) tools (Quantitative Risk Assessment Software (QRAS) etc.). Hypothetical PSA results for a number of structural components along with mitigation factors that would restrict the failure mode from propagating to a Loss of Mission (LOM) failure were used in the models. The output of this program includes an overall failure distribution for LOM of the system. The rank and contribution to the overall Mission Success (MS) is also given for each failure mode and each subsystem. This application methodology demonstrates the effectiveness of PRA for assessing the performance of large turbine engines. Additionally, the effects of system changes and upgrades, the application of different maintenance intervals, inclusion of new sensor detection of faults and other upgrades were evaluated in determining overall turbine engine reliability.
USAF Evaluation of an Automated Adaptive Flight Training System
1975-10-01
system. C. What is the most effective wav to utilize the system in ^jierational training’ Student opinion for this question JS equally divided...None Utility hydraulic failure Flap failure left engine failure Right engine failure Stah 2 aug failure No g\\ ro approach procedure, no MIDI
NASA Technical Reports Server (NTRS)
Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.
1992-01-01
An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.
75 FR 63060 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A. Model PIAGGIO P-180 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-14
... failure of engine oil dipsticks, installed on Pratt & Whitney Canada (P&WC) PT6A66 and PT6A66B engines... subsequent corrosion, can cause incorrect reading of the engine oil low level on the Refuel/Ground Test Panel. If left uncorrected, this situation could lead to in-flight engine failure(s). We are issuing this AD...
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Choi, Sung R.; Ghosn, Louis J.; Miller, rober A.
2005-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. A fundamental understanding of the sintering and thermal cycling induced delamination of thermal barrier coating systems under engine-like heat flux conditions will potentially help to improve the coating temperature capability. In this study, a test approach is established to emphasize the real-time monitoring and assessment of the coating thermal conductivity, which can initially increase under the steady-state high temperature thermal gradient test due to coating sintering, and later decrease under the thermal gradient cyclic test due to coating cracking and delamination. Thermal conductivity prediction models have been established for a ZrO2-(7- 8wt%)Y2O3 model coating system in terms of heat flux, time, and testing temperatures. The coating delamination accumulation is then assessed based on the observed thermal conductivity response under the combined steady-state and cyclic thermal gradient tests. The coating thermal gradient cycling associated delaminations and failure mechanisms under simulated engine heat-flux conditions will be discussed in conjunction with the coating sintering and fracture testing results.
Analysis of the STS-126 Flow Control Valve Structural-Acoustic Coupling Failure
NASA Technical Reports Server (NTRS)
Jones, Trevor M.; Larko, Jeffrey M.; McNelis, Mark E.
2010-01-01
During the Space Transportation System mission STS-126, one of the main engine's flow control valves incurred an unexpected failure. A section of the valve broke off during liftoff. It is theorized that an acoustic mode of the flowing fuel, coupled with a structural mode of the valve, causing a high cycle fatigue failure. This report documents the analysis efforts conducted in an attempt to verify this theory. Hand calculations, computational fluid dynamics, and finite element methods are all implemented and analyses are performed using steady-state methods in addition to transient analysis methods. The conclusion of the analyses is that there is a critical acoustic mode that aligns with a structural mode of the valve
40 CFR 1065.410 - Maintenance limits for stabilized test engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... engineering grade tools to identify bad engine components. Any equipment, instruments, or tools used for... no longer use it as an emission-data engine. Also, if your test engine has a major mechanical failure... your test engine has a major mechanical failure that requires you to take it apart, you may no longer...
40 CFR 1065.410 - Maintenance limits for stabilized test engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... engineering grade tools to identify bad engine components. Any equipment, instruments, or tools used for... no longer use it as an emission-data engine. Also, if your test engine has a major mechanical failure... your test engine has a major mechanical failure that requires you to take it apart, you may no longer...
The Effect of Modified Control Limits on the Performance of a Generic Commercial Aircraft Engine
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; May, Ryan D.; Gou, Ten-Huei; Litt, Jonathan S.
2012-01-01
This paper studies the effect of modifying the control limits of an aircraft engine to obtain additional performance. In an emergency situation, the ability to operate an engine above its normal operating limits and thereby gain additional performance may aid in the recovery of a distressed aircraft. However, the modification of an engine s limits is complex due to the risk of an engine failure. This paper focuses on the tradeoff between enhanced performance and risk of either incurring a mechanical engine failure or compromising engine operability. The ultimate goal is to increase the engine performance, without a large increase in risk of an engine failure, in order to increase the probability of recovering the distressed aircraft. The control limit modifications proposed are to extend the rotor speeds, temperatures, and pressures to allow more thrust to be produced by the engine, or to increase the rotor accelerations and allow the engine to follow a fast transient. These modifications do result in increased performance; however this study indicates that these modifications also lead to an increased risk of engine failure.
Levee reliability analyses for various flood return periods - a case study in southern Taiwan
NASA Astrophysics Data System (ADS)
Huang, W.-C.; Yu, H.-W.; Weng, M.-C.
2015-04-01
In recent years, heavy rainfall conditions have caused disasters around the world. To prevent losses by floods, levees have often been constructed in inundation-prone areas. This study performed reliability analyses for the Chiuliao First Levee in southern Taiwan. The failure-related parameters were the water level, the scouring depth, and the in situ friction angle. Three major failure mechanisms were considered: the slope sliding failure of the levee and the sliding and overturning failures of the retaining wall. When the variability of the in situ friction angle and the scouring depth are considered for various flood return periods, the variations of the factor of safety for the different failure mechanisms show that the retaining wall sliding and overturning failures are more sensitive to the change of the friction angle. When the flood return period is greater than 2 years, the levee could fail with slope sliding for all values of the water level difference. The results of levee stability analysis considering the variability of different parameters could aid engineers in designing the levee cross sections, especially with potential failure mechanisms in mind.
Kim, Hoyeol; Cong, Weilong; Zhang, Hong-Chao; Liu, Zhichao
2017-01-01
As a prospective candidate material for surface coating and repair applications, nickel-based superalloy Inconel 718 (IN718) was deposited on American Iron and Steel Institute (AISI) 4140 alloy steel substrate by laser engineered net shaping (LENS) to investigate the compatibility between two dissimilar materials with a focus on interface bonding and fracture behavior of the hybrid specimens. The results show that the interface between the two dissimilar materials exhibits good metallurgical bonding. Through the tensile test, all the fractures occurred in the as-deposited IN718 section rather than the interface or the substrate, implying that the as-deposited interlayer bond strength is weaker than the interfacial bond strength. From the fractography using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS), three major factors affecting the tensile fracture failure of the as-deposited part are (i) metallurgical defects such as incompletely melted powder particles, lack-of-fusion porosity, and micropores; (ii) elemental segregation and Laves phase, and (iii) oxide formation. The fracture failure mechanism is a combination of all these factors which are detrimental to the mechanical properties and structural integrity by causing premature fracture failure of the as-deposited IN718. PMID:28772702
Design and implementation of a novel mechanical testing system for cellular solids.
Nazarian, Ara; Stauber, Martin; Müller, Ralph
2005-05-01
Cellular solids constitute an important class of engineering materials encompassing both man-made and natural constructs. Materials such as wood, cork, coral, and cancellous bone are examples of cellular solids. The structural analysis of cellular solid failure has been limited to 2D sections to illustrate global fracture patterns. Due to the inherent destructiveness of 2D methods, dynamic assessment of fracture progression has not been possible. Image-guided failure assessment (IGFA), a noninvasive technique to analyze 3D progressive bone failure, has been developed utilizing stepwise microcompression in combination with time-lapsed microcomputed tomographic imaging (microCT). This method allows for the assessment of fracture progression in the plastic region, where much of the structural deformation/energy absorption is encountered in a cellular solid. Therefore, the goal of this project was to design and fabricate a novel micromechanical testing system to validate the effectiveness of the stepwise IGFA technique compared to classical continuous mechanical testing, using a variety of engineered and natural cellular solids. In our analysis, we found stepwise compression to be a valid approach for IGFA with high precision and accuracy comparable to classical continuous testing. Therefore, this approach complements the conventional mechanical testing methods by providing visual insight into the failure propagation mechanisms of cellular solids. (c) 2005 Wiley Periodicals, Inc.
Kim, Hoyeol; Cong, Weilong; Zhang, Hong-Chao; Liu, Zhichao
2017-03-25
As a prospective candidate material for surface coating and repair applications, nickel-based superalloy Inconel 718 (IN718) was deposited on American Iron and Steel Institute (AISI) 4140 alloy steel substrate by laser engineered net shaping (LENS) to investigate the compatibility between two dissimilar materials with a focus on interface bonding and fracture behavior of the hybrid specimens. The results show that the interface between the two dissimilar materials exhibits good metallurgical bonding. Through the tensile test, all the fractures occurred in the as-deposited IN718 section rather than the interface or the substrate, implying that the as-deposited interlayer bond strength is weaker than the interfacial bond strength. From the fractography using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS), three major factors affecting the tensile fracture failure of the as-deposited part are (i) metallurgical defects such as incompletely melted powder particles, lack-of-fusion porosity, and micropores; (ii) elemental segregation and Laves phase, and (iii) oxide formation. The fracture failure mechanism is a combination of all these factors which are detrimental to the mechanical properties and structural integrity by causing premature fracture failure of the as-deposited IN718.
Apparatus for sensor failure detection and correction in a gas turbine engine control system
NASA Technical Reports Server (NTRS)
Spang, H. A., III; Wanger, R. P. (Inventor)
1981-01-01
A gas turbine engine control system maintains a selected level of engine performance despite the failure or abnormal operation of one or more engine parameter sensors. The control system employs a continuously updated engine model which simulates engine performance and generates signals representing real time estimates of the engine parameter sensor signals. The estimate signals are transmitted to a control computational unit which utilizes them in lieu of the actual engine parameter sensor signals to control the operation of the engine. The estimate signals are also compared with the corresponding actual engine parameter sensor signals and the resulting difference signals are utilized to update the engine model. If a particular difference signal exceeds specific tolerance limits, the difference signal is inhibited from updating the model and a sensor failure indication is provided to the engine operator.
Failure detection and correction for turbofan engines
NASA Technical Reports Server (NTRS)
Corley, R. C.; Spang, H. A., III
1977-01-01
In this paper, a failure detection and correction strategy for turbofan engines is discussed. This strategy allows continuing control of the engines in the event of a sensor failure. An extended Kalman filter is used to provide the best estimate of the state of the engine based on currently available sensor outputs. Should a sensor failure occur the control is based on the best estimate rather than the sensor output. The extended Kalman filter consists of essentially two parts, a nonlinear model of the engine and up-date logic which causes the model to track the actual engine. Details on the model and up-date logic are presented. To allow implementation, approximations are made to the feedback gain matrix which result in a single feedback matrix which is suitable for use over the entire flight envelope. The effect of these approximations on stability and response is discussed. Results from a detailed nonlinear simulation indicate that good control can be maintained even under multiple failures.
Levee reliability analyses for various flood return periods - a case study in Southern Taiwan
NASA Astrophysics Data System (ADS)
Huang, W.-C.; Yu, H.-W.; Weng, M.-C.
2015-01-01
In recent years, heavy rainfall conditions have caused damages around the world. To prevent damages by floods, levees have often been constructed in prone-to-inundation areas. This study performed reliability analyses for the Chiuliao 1st Levee located in southern Taiwan. The failure-related parameters were the water level, the scouring depth, and the in-situ friction angle. Three major failure mechanisms were considered, including the slope sliding failure of the levee, and the sliding and overturning failures of the retaining wall. When the variabilities of the in-situ friction angle and the scouring depth are considered for various flood return periods, the variations of the factor of safety (FS) for the different failure mechanisms show that the retaining wall sliding and overturning failures are more sensitive to the variability of the friction angle. When the flood return period is greater than 2 years, the levee can undergo slope sliding failure for all values of the water level difference. The results for levee stability analysis considering the variability of different parameters could assist engineers in designing the levee cross sections, especially with potential failure mechanisms in mind.
14 CFR 23.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the engine compressor from the turbine or from loss of the turbine blades are considered to be... be designed for the unsymmetrical loads resulting from the failure of the critical engine including...
14 CFR 23.367 - Unsymmetrical loads due to engine failure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the engine compressor from the turbine or from loss of the turbine blades are considered to be... be designed for the unsymmetrical loads resulting from the failure of the critical engine including...
Analysis of middle bearing failure in rotor jet engine using tip-timing and tip-clearance techniques
NASA Astrophysics Data System (ADS)
Rzadkowski, R.; Rokicki, E.; Piechowski, L.; Szczepanik, R.
2016-08-01
The reported problem is the failure of the middle bearing in an aircraft rotor engine. Tip-timing and tip-clearance and variance analyses are carried out on a compressor rotor blade in the seventh stage above the middle bearing. The experimental analyses concern both an aircraft engine with a middle bearing in good working order and an engine with a damaged middle bearing. A numerical analysis of seventh stage blade free vibration is conducted to explain the experimental results. This appears to be an effective method of predicting middle bearing failure. The results show that variance first increases in the initial stages of bearing failure, but then starts to decrease and stabilize, and then again decrease shortly before complete bearing failure.
Requirements: Towards an understanding on why software projects fail
NASA Astrophysics Data System (ADS)
Hussain, Azham; Mkpojiogu, Emmanuel O. C.
2016-08-01
Requirement engineering is at the foundation of every successful software project. There are many reasons for software project failures; however, poorly engineered requirements process contributes immensely to the reason why software projects fail. Software project failure is usually costly and risky and could also be life threatening. Projects that undermine requirements engineering suffer or are likely to suffer from failures, challenges and other attending risks. The cost of project failures and overruns when estimated is very huge. Furthermore, software project failures or overruns pose a challenge in today's competitive market environment. It affects the company's image, goodwill, and revenue drive and decreases the perceived satisfaction of customers and clients. In this paper, requirements engineering was discussed. Its role in software projects success was elaborated. The place of software requirements process in relation to software project failure was explored and examined. Also, project success and failure factors were also discussed with emphasis placed on requirements factors as they play a major role in software projects' challenges, successes and failures. The paper relied on secondary data and empirical statistics to explore and examine factors responsible for the successes, challenges and failures of software projects in large, medium and small scaled software companies.
Stresses in Circular Plates with Rigid Elements
NASA Astrophysics Data System (ADS)
Velikanov, N. L.; Koryagin, S. I.; Sharkov, O. V.
2018-05-01
Calculations of residual stress fields are carried out by numerical and static methods, using the flat cross-section hypothesis. The failure of metal when exposed to residual stresses is, in most cases, brittle. The presence in the engineering structures of rigid elements often leads to the crack initiation and structure failure. This is due to the fact that rigid elements under the influence of external stresses are stress concentrators. In addition, if these elements are fixed by welding, the residual welding stresses can lead to an increase in stress concentration and, ultimately, to failure. The development of design schemes for such structures is a very urgent task for complex technical systems. To determine the stresses in a circular plate with a welded circular rigid insert under the influence of an external load, one can use the solution of the plane stress problem for annular plates in polar coordinates. The polar coordinates of the points are the polar radius and the polar angle, and the stress state is determined by normal radial stresses, tangential and shearing stresses. The use of the above mentioned design schemes, formulas, will allow more accurate determination of residual stresses in annular welded structures. This will help to establish the most likely directions of failure and take measures at the stages of designing, manufacturing and repairing engineering structures to prevent these failures. However, it must be taken into account that the external load, the presence of insulation can lead to a change in the residual stress field.
Modeling Marrow Failure and MDS for Novel Therapeutics
2017-03-01
predisposition syndrome Shwachman-Diamond syndrome (SDS) into which a deletion of the MDS-associated region of 7q has been genomically engineered . We...associated region of 7q has been genomically engineered . We will perform functional genomic screens to identify genes and molecular pathways with...disease arising from marrow failure. 2. Keywords Bone marrow failure, clonal evolution, induced pluripotent stem cells, genomic engineering 3
Analysis of Gas Turbine Engine Failure Modes.
1974-01-01
failure due to factors ex- ternal (foreign to the power plant. Because in practice it is virtually impossible to distinguish accurately between the two, all...45 55 APPEN’DIX E WHEN DISCO ’=RED z z J-79 ENGINE AND HIGH FAILURE COMPONENTS H z Compressor R or242 Copeo R F4 -C H C s SeH UPi 0. 0- H U 4 C, Engine
NASA Technical Reports Server (NTRS)
Delucia, R. A.; Mangano, G. J.
1977-01-01
Statistics on gas turbine rotor failures that have occurred in U.S. commercial aviation during 1975 are presented. The compiled data were analyzed to establish: (1) The incidence of rotor failures and the number of contained and uncontained rotor bursts; (2) The distribution of rotor bursts with respect to engine rotor component; i.e., fan, compressor or turbine; (3) The type of rotor fragment (disk, rim or blade) typically generated at burst; (4) The cause of failure; (5) The type of engines involved; and (6) The flight condition at the time of failure.
Lv, Zhijin; Qin, Qian; Jiang, Bei; Luan, Yingcheng; Yu, Hengchang
2018-01-01
In order to solve the supporting problem in underground engineering with high stress, square steel confined concrete (SQCC) supporting method is adopted to enhance the control on surrounding rocks, and the control effect is remarkable. The commonly used cross section shapes of confined concrete arch are square and circular. At present, designers have no consensus on which kind is more proper. To search for the answer, this paper makes an analysis on the mechanical properties of the two shapes of the cross-sections. A full-scale indoor comparative test was carried out on the commonly used straight-wall semi-circular SQCC arch and circular steel confined concrete arch (CCC arch). This test is based on self-developed full-scale test system for confined concrete arch. Our research, combining with the numerical analysis, shows: (1) SQCC arch is consistent with CCC arch in the deformation and failure mode. The largest damages parts are at the legs of both of them. (2) The SQCC arch's bearing capability is 1286.9 kN, and the CCC arch's ultimate bearing capability is 1072.4kN. Thus, the SQCC arch's bearing capability is 1.2 times that of the CCC arch. (3) The arches are subjected to combined compression and bending, bending moment is the main reason for the arch failure. The section moment of inertia of SQCC arch is 1.26 times of that of CCC arch, and the former is better than the latter in bending performance. The ultimate bearing capacity is positively correlated with the size of the moment of inertia. Based on the above research, the engineering suggestions are as follows: (1) To improve the bearing capacity of the arch, the cross-sectional shape of the chamber should be optimized and the arch bearing mode changed accordingly. (2) The key damaged positions, such as the arch leg, should be reinforced, optimizing the state of force on the arch. SQCC arches should be used for supporting in underground engineering, which is under stronger influence of the bending moment and non-uniform load on the supporting arches. The research results could provide a theoretical basis for the design of confined concrete support in underground engineering.
Qin, Qian; Jiang, Bei; Luan, Yingcheng; Yu, Hengchang
2018-01-01
In order to solve the supporting problem in underground engineering with high stress, square steel confined concrete (SQCC) supporting method is adopted to enhance the control on surrounding rocks, and the control effect is remarkable. The commonly used cross section shapes of confined concrete arch are square and circular. At present, designers have no consensus on which kind is more proper. To search for the answer, this paper makes an analysis on the mechanical properties of the two shapes of the cross-sections. A full-scale indoor comparative test was carried out on the commonly used straight-wall semi-circular SQCC arch and circular steel confined concrete arch (CCC arch). This test is based on self-developed full-scale test system for confined concrete arch. Our research, combining with the numerical analysis, shows: (1) SQCC arch is consistent with CCC arch in the deformation and failure mode. The largest damages parts are at the legs of both of them. (2) The SQCC arch’s bearing capability is 1286.9 kN, and the CCC arch’s ultimate bearing capability is 1072.4kN. Thus, the SQCC arch’s bearing capability is 1.2 times that of the CCC arch. (3) The arches are subjected to combined compression and bending, bending moment is the main reason for the arch failure. The section moment of inertia of SQCC arch is 1.26 times of that of CCC arch, and the former is better than the latter in bending performance. The ultimate bearing capacity is positively correlated with the size of the moment of inertia. Based on the above research, the engineering suggestions are as follows: (1) To improve the bearing capacity of the arch, the cross-sectional shape of the chamber should be optimized and the arch bearing mode changed accordingly. (2) The key damaged positions, such as the arch leg, should be reinforced, optimizing the state of force on the arch. SQCC arches should be used for supporting in underground engineering, which is under stronger influence of the bending moment and non-uniform load on the supporting arches. The research results could provide a theoretical basis for the design of confined concrete support in underground engineering. PMID:29447187
Perspectives on Failure in the Classroom by Elementary Teachers New to Teaching Engineering
ERIC Educational Resources Information Center
Lottero-Perdue, Pamela S.; Parry, Elizabeth A.
2017-01-01
This mixed methods study examines perspectives on failure in the classroom by elementary teachers new to teaching engineering. The study participants included 254 teachers in third, fourth, and fifth grade who responded to survey questions about failure, as well as a subset of 38 of those teachers who participated in interviews about failure. The…
NASA Technical Reports Server (NTRS)
Holanda, R.; Frause, L. M.
1977-01-01
The reliability of 45 state-of-the-art strain gage systems under full scale engine testing was investigated. The flame spray process was used to install 23 systems on the first fan rotor of a YF-100 engine; the others were epoxy cemented. A total of 56 percent of the systems failed in 11 hours of engine operation. Flame spray system failures were primarily due to high gage resistance, probably caused by high stress levels. Epoxy system failures were principally erosion failures, but only on the concave side of the blade. Lead-wire failures between the blade-to-disk jump and the control room could not be analyzed.
Adaptive Failure Compensation for Aircraft Flight Control Using Engine Differentials: Regulation
NASA Technical Reports Server (NTRS)
Yu, Liu; Xidong, Tang; Gang, Tao; Joshi, Suresh M.
2005-01-01
The problem of using engine thrust differentials to compensate for rudder and aileron failures in aircraft flight control is addressed in this paper in a new framework. A nonlinear aircraft model that incorporates engine di erentials in the dynamic equations is employed and linearized to describe the aircraft s longitudinal and lateral motion. In this model two engine thrusts of an aircraft can be adjusted independently so as to provide the control flexibility for rudder or aileron failure compensation. A direct adaptive compensation scheme for asymptotic regulation is developed to handle uncertain actuator failures in the linearized system. A design condition is specified to characterize the system redundancy needed for failure compensation. The adaptive regulation control scheme is applied to the linearized model of a large transport aircraft in which the longitudinal and lateral motions are coupled as the result of using engine thrust differentials. Simulation results are presented to demonstrate the effectiveness of the adaptive compensation scheme.
Propulsion and Energetics Panel Working Group 11 on Aircraft Fire Safety. Volume 2. Main Report
1979-11-01
which make burning metal particles a potent igni- tion source and extinguishment of bulk metal fires a difficult task. In the latter case, the difficulty...aircraft to fires induced by uncon- tained engine failures and internal engine metal fires . With respect to the uncontained engine failure current engine
77 FR 74123 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
... Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... Rolls-Royce Deutschland Ltd & Co KG (RRD) models Tay 620-15 and Tay 650-15 turbofan engines. This... proposing this AD to prevent failure of the LPC rotor disc assembly, uncontained engine failure, and damage...
Elementary students' engagement in failure-prone engineering design tasks
NASA Astrophysics Data System (ADS)
Andrews, Chelsea Joy
Although engineering education has been practiced at the undergraduate level for over a century, only fairly recently has the field broadened to include the elementary level; the pre-college division of the American Society of Engineering Education was established in 2003. As a result, while recent education standards require engineering in elementary schools, current studies are still filling in basic research on how best to design and implement elementary engineering activities. One area in need of investigation is how students engage with physical failure in design tasks. In this dissertation, I explore how upper elementary students engage in failure-prone engineering design tasks in an out-of-school environment. In a series of three empirical case studies, I look closely at how students evaluate failed tests and decide on changes to their design constructions, how their reasoning evolves as they repeatedly encounter physical failure, and how students and facilitators co-construct testing norms where repetitive failure is manageable. I also briefly investigate how students' engagement differs in a task that features near-immediate success. By closely examining student groups' discourse and their interactions with their design constructions, I found that these students: are able to engage in iteration and see failure-as-feedback with minimal externally-imposed structure; seem to be designing in a more sophisticated manner, attending to multiple causal factors, after experiencing repetitive failure; and are able to manage the stress and frustration of repetitive failure, provided the co-constructed testing norms of the workshop environment are supportive of failure management. These results have both pedagogical implications, in terms of how to create and facilitate design tasks, and methodological implications--namely, I highlight the particular insights afforded by a case study approach for analyzing engagement in design tasks.
Determination of Turbine Blade Life from Engine Field Data
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.
2013-01-01
It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal-mechanical fatigue (TMF) as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) TMF, (2) Oxidation/erosion (O/E), and (3) Other. From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L10 blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to O/E equaled that attributed to TMF. The category that contributed most to blade failure was Other. If there were no blade failures attributed to O/E and TMF, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.
System safety in Stirling engine development
NASA Technical Reports Server (NTRS)
Bankaitis, H.
1981-01-01
The DOE/NASA Stirling Engine Project Office has required that contractors make safety considerations an integral part of all phases of the Stirling engine development program. As an integral part of each engine design subtask, analyses are evolved to determine possible modes of failure. The accepted system safety analysis techniques (Fault Tree, FMEA, Hazards Analysis, etc.) are applied in various degrees of extent at the system, subsystem and component levels. The primary objectives are to identify critical failure areas, to enable removal of susceptibility to such failures or their effects from the system and to minimize risk.
NASA Technical Reports Server (NTRS)
Behbehani, K.
1980-01-01
A new sensor/actuator failure analysis technique for turbofan jet engines was developed. Three phases of failure analysis, namely detection, isolation, and accommodation are considered. Failure detection and isolation techniques are developed by utilizing the concept of Generalized Likelihood Ratio (GLR) tests. These techniques are applicable to both time varying and time invariant systems. Three GLR detectors are developed for: (1) hard-over sensor failure; (2) hard-over actuator failure; and (3) brief disturbances in the actuators. The probability distribution of the GLR detectors and the detectability of sensor/actuator failures are established. Failure type is determined by the maximum of the GLR detectors. Failure accommodation is accomplished by extending the Multivariable Nyquest Array (MNA) control design techniques to nonsquare system designs. The performance and effectiveness of the failure analysis technique are studied by applying the technique to a turbofan jet engine, namely the Quiet Clean Short Haul Experimental Engine (QCSEE). Single and multiple sensor/actuator failures in the QCSEE are simulated and analyzed and the effects of model degradation are studied.
A demonstration of an intelligent control system for a reusable rocket engine
NASA Technical Reports Server (NTRS)
Musgrave, Jeffrey L.; Paxson, Daniel E.; Litt, Jonathan S.; Merrill, Walter C.
1992-01-01
An Intelligent Control System for reusable rocket engines is under development at NASA Lewis Research Center. The primary objective is to extend the useful life of a reusable rocket propulsion system while minimizing between flight maintenance and maximizing engine life and performance through improved control and monitoring algorithms and additional sensing and actuation. This paper describes current progress towards proof-of-concept of an Intelligent Control System for the Space Shuttle Main Engine. A subset of identifiable and accommodatable engine failure modes is selected for preliminary demonstration. Failure models are developed retaining only first order effects and included in a simplified nonlinear simulation of the rocket engine for analysis under closed loop control. The engine level coordinator acts as an interface between the diagnostic and control systems, and translates thrust and mixture ratio commands dictated by mission requirements, and engine status (health) into engine operational strategies carried out by a multivariable control. Control reconfiguration achieves fault tolerance if the nominal (healthy engine) control cannot. Each of the aforementioned functionalities is discussed in the context of an example to illustrate the operation of the system in the context of a representative failure. A graphical user interface allows the researcher to monitor the Intelligent Control System and engine performance under various failure modes selected for demonstration.
High-Heat-Flux Cyclic Durability of Thermal and Environmental Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Ghosn, Louis L.; Miller, Robert A.
2007-01-01
Advanced ceramic thermal and environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect the engine components and further raise engine temperatures. For the supersonic vehicles currently envisioned in the NASA fundamental aeronautics program, advanced gas turbine engines will be used to provide high power density thrust during the extended supersonic flight of the aircraft, while meeting stringent low emission requirements. Advanced ceramic coating systems are critical to the performance, life and durability of the hot-section components of the engine systems. In this work, the laser and burner rig based high-heat-flux testing approaches were developed to investigate the coating cyclic response and failure mechanisms under simulated supersonic long-duration cruise mission. The accelerated coating cracking and delamination mechanism under the engine high-heat-flux, and extended supersonic cruise time conditions will be addressed. A coating life prediction framework may be realized by examining the crack initiation and propagation in conjunction with environmental degradation under high-heat-flux test conditions.
Prestraining and Its Influence on Subsequent Fatigue Life
NASA Technical Reports Server (NTRS)
Halford, Gary R.; Mcgaw, Michael A.; Kalluri, Sreeramesh
1995-01-01
An experimental program was conducted to study the damaging effects of tensile and compressive prestrains on the fatigue life of nickel-base, Inconel 718 superalloy at room temperature. To establish baseline fatigue behavior, virgin specimens with a solid uniform gage section were fatigued to failure under fully-reversed strain-control. Additional specimens were prestrained to 2 percent, 5 percent, and 10 percent (engineering strains) in the tensile direction and to 2 percent (engineering strain) in the compressive direction under stroke-control, and were subsequently fatigued to failure under fully-reversed strain-control. Experimental results are compared with estimates of remaining fatigue lives (after prestraining) using three life prediction approaches: (1) the Linear Damage Rule; (2) the Linear Strain and Life Fraction Rule; and (3) the nonlinear Damage Curve Approach. The Smith-Watson-Topper parameter was used to estimate fatigue lives in the presence of mean stresses. Among the cumulative damage rules investigated, best remaining fatigue life predictions were obtained with the nonlinear Damage Curve Approach.
The role of failure/problems in engineering: A commentary of failures experienced - lessons learned
NASA Technical Reports Server (NTRS)
Ryan, R. S.
1992-01-01
The written version of a series of seminars given to several aerospace companies and three NASA centers are presented. The results are lessons learned through a study of the problems experienced in 35 years of engineering. The basic conclusion is that the primary cause of problems has not been mission technologies, as important as technology is, but the neglect of basic principles. Undergirding this is the lack of a systems focus from determining requirements through design, verification, and operations phases. Many of the concepts discussed are fundamental to total quality management (TQM) and can be used to augment this product enhanced philosophy. Fourteen principles are addressed with problems experienced and are used as examples. Included is a discussion of the implication of constraints, poorly defined requirements, and schedules. Design guidelines, lessons learned, and future tasks are listed. Two additional sections are included that deal with personal lessons learned and thoughts on future thrusts (TQM).
Questioning the Role of Requirements Engineering in the Causes of Safety-Critical Software Failures
NASA Technical Reports Server (NTRS)
Johnson, C. W.; Holloway, C. M.
2006-01-01
Many software failures stem from inadequate requirements engineering. This view has been supported both by detailed accident investigations and by a number of empirical studies; however, such investigations can be misleading. It is often difficult to distinguish between failures in requirements engineering and problems elsewhere in the software development lifecycle. Further pitfalls arise from the assumption that inadequate requirements engineering is a cause of all software related accidents for which the system fails to meet its requirements. This paper identifies some of the problems that have arisen from an undue focus on the role of requirements engineering in the causes of major accidents. The intention is to provoke further debate within the emerging field of forensic software engineering.
System for Anomaly and Failure Detection (SAFD) system development
NASA Technical Reports Server (NTRS)
Oreilly, D.
1992-01-01
This task specified developing the hardware and software necessary to implement the System for Anomaly and Failure Detection (SAFD) algorithm, developed under Technology Test Bed (TTB) Task 21, on the TTB engine stand. This effort involved building two units; one unit to be installed in the Block II Space Shuttle Main Engine (SSME) Hardware Simulation Lab (HSL) at Marshall Space Flight Center (MSFC), and one unit to be installed at the TTB engine stand. Rocketdyne personnel from the HSL performed the task. The SAFD algorithm was developed as an improvement over the current redline system used in the Space Shuttle Main Engine Controller (SSMEC). Simulation tests and execution against previous hot fire tests demonstrated that the SAFD algorithm can detect engine failure as much as tens of seconds before the redline system recognized the failure. Although the current algorithm only operates during steady state conditions (engine not throttling), work is underway to expand the algorithm to work during transient condition.
Selected Systems Engineering Process Deficiencies and Their Consequences
NASA Technical Reports Server (NTRS)
Thomas, Lawrence Dale
2006-01-01
The systems engineering process is well established and well understood. While this statement could be argued in the light of the many systems engineering guidelines and that have been developed, comparative review of these respective descriptions reveal that they differ primarily in the number of discrete steps or other nuances, and are at their core essentially common. Likewise, the systems engineering textbooks differ primarily in the context for application of systems engineering or in the utilization of evolved tools and techniques, not in the basic method. Thus, failures in systems engineering cannot credibly be attributed to implementation of the wrong systems engineering process among alternatives. However, numerous systems failures can be attributed to deficient implementation of the systems engineering process. What may clearly be perceived as a system engineering deficiency in retrospect can appear to be a well considered system engineering efficiency in real time - an efficiency taken to reduce cost or meet a schedule, or more often both. Typically these efficiencies are grounded on apparently solid rationale, such as reuse of heritage hardware or software. Over time, unintended consequences of a systems engineering process deficiency may begin to be realized, and unfortunately often the consequence is system failure. This paper describes several actual cases of system failures that resulted from deficiencies in their systems engineering process implementation, including the Ariane 5 and the Hubble Space Telescope.
Selected systems engineering process deficiencies and their consequences
NASA Astrophysics Data System (ADS)
Thomas, L. Dale
2007-06-01
The systems engineering process is well established and well understood. While this statement could be argued in the light of the many systems engineering guidelines and that have been developed, comparative review of these respective descriptions reveal that they differ primarily in the number of discrete steps or other nuances, and are at their core essentially common. Likewise, the systems engineering textbooks differ primarily in the context for application of systems engineering or in the utilization of evolved tools and techniques, not in the basic method. Thus, failures in systems engineering cannot credibly be attributed to implementation of the wrong systems engineering process among alternatives. However, numerous system failures can be attributed to deficient implementation of the systems engineering process. What may clearly be perceived as a systems engineering deficiency in retrospect can appear to be a well considered system engineering efficiency in real time—an efficiency taken to reduce cost or meet a schedule, or more often both. Typically these efficiencies are grounded on apparently solid rationale, such as reuse of heritage hardware or software. Over time, unintended consequences of a systems engineering process deficiency may begin to be realized, and unfortunately often the consequence is systems failure. This paper describes several actual cases of system failures that resulted from deficiencies in their systems engineering process implementation, including the Ariane 5 and the Hubble Space Telescope.
Research in the comprehension of engineering lectures by non-native speakers
NASA Technical Reports Server (NTRS)
Olsen, L. A.; Huckin, T. N.
1981-01-01
Failure by foreign students to perceive the rhetorical structure or overall organization of an engineering lecture, rendering them unable to understand it, is discussed. Equally serious failure by such students to perceive the organizing role of theory in structuring the activities in their field is reported. Failure to identify the role of theory in the problem-solving process that underlies engineering is emphasized. Engineering was not seen as a series of on-going problems where each stage of solution exposed new problems to be solved. Implications for course planners and material designers are discussed.
Determination of Turbine Blade Life from Engine Field Data
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.
2012-01-01
It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal mechanical fatigue as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) Thermal-mechanical fatigue, (2) Oxidation/Erosion, and (3) "Other." From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L(sub 10) blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to oxidation/erosion equaled that attributed to thermal-mechanical fatigue. The category that contributed most to blade failure was Other. If there were there no blade failures attributed to oxidation/erosion and thermal-mechanical fatigue, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.
STS-55 pad abort: Engine 2011 oxidizer preburner augmented spark igniter check valve leak
NASA Technical Reports Server (NTRS)
1993-01-01
The STS-55 initial launch attempt of Columbia (OV102) was terminated on KSC launch pad A March 22, 1993 at 9:51 AM E.S.T. due to violation of an ME-3 (Engine 2011) Launch Commit Criteria (LCC) limit exceedance. The event description and timeline are summarized. Propellant loading was initiated on 22 March, 1993 at 1:15 AM EST. All SSME chill parameters and launch commit criteria (LCC) were nominal. At engine start plus 1.44 seconds, a Failure Identification (FID) was posted against Engine 2011 for exceeding the 50 psia Oxidizer Preburner (OPB) purge pressure redline. The engine was shut down at 1.50 seconds followed by Engines 2034 and 2030. All shut down sequences were nominal and the mission was safely aborted. The OPB purge pressure redline violation and the abort profile/overlay for all three engines are depicted. SSME Avionics hardware and software performed nominally during the incident. A review of vehicle data table (VDT) data and controller software logic revealed no failure indications other than the single FID 013-414, OPB purge pressure redline exceeded. Software logic was executed according to requirements and there was no anomalous controller software operation. Immediately following the abort, a Rocketdyne/NASA failure investigation team was assembled. The team successfully isolated the failure cause to the oxidizer preburner augmented spark igniter purge check valve not being fully closed due to contamination. The source of the contaminant was traced to a cut segment from a rubber O-ring which was used in a fine clean tool during valve production prior to 1992. The valve was apparently contaminated during its fabrication in 1985. The valve had performed acceptably on four previous flights of the engine, and SSME flight history shows 780 combined check valve flights without failure. The failure of an Engine 3 (SSME No. 2011) check valve to close was sensed by onboard engine instruments even though all other engine operations were normal. This resulted in an engine shutdown and safe sequential shutdown of all three engines prior to ignition of the solid boosters.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Nemeth, Noel N.
2017-01-01
Advanced environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect emerging light-weight SiC/SiC ceramic matrix composite (CMC) engine components, further raising engine operating temperatures and performance. Because the environmental barrier coating systems are critical to the performance, reliability and durability of these hot-section ceramic engine components, a prime-reliant coating system along with established life design methodology are required for the hot-section ceramic component insertion into engine service. In this paper, we have first summarized some observations of high temperature, high-heat-flux environmental degradation and failure mechanisms of environmental barrier coating systems in laboratory simulated engine environment tests. In particular, the coating surface cracking morphologies and associated subsequent delamination mechanisms under the engine level high-heat-flux, combustion steam, and mechanical creep and fatigue loading conditions will be discussed. The EBC compostion and archtechture improvements based on advanced high heat flux environmental testing, and the modeling advances based on the integrated Finite Element Analysis Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program will also be highlighted. The stochastic progressive damage simulation successfully predicts mud flat damage pattern in EBCs on coated 3-D specimens, and a 2-D model of through-the-thickness cross-section. A 2-parameter Weibull distribution was assumed in characterizing the coating layer stochastic strength response and the formation of damage was therefore modeled. The damage initiation and coalescence into progressively smaller mudflat crack cells was demonstrated. A coating life prediction framework may be realized by examining the surface crack initiation and delamination propagation in conjunction with environmental degradation under high-heat-flux and environment load test conditions.
Health management system for rocket engines
NASA Technical Reports Server (NTRS)
Nemeth, Edward
1990-01-01
The functional framework of a failure detection algorithm for the Space Shuttle Main Engine (SSME) is developed. The basic algorithm is based only on existing SSME measurements. Supplemental measurements, expected to enhance failure detection effectiveness, are identified. To support the algorithm development, a figure of merit is defined to estimate the likelihood of SSME criticality 1 failure modes and the failure modes are ranked in order of likelihood of occurrence. Nine classes of failure detection strategies are evaluated and promising features are extracted as the basis for the failure detection algorithm. The failure detection algorithm provides early warning capabilities for a wide variety of SSME failure modes. Preliminary algorithm evaluation, using data from three SSME failures representing three different failure types, demonstrated indications of imminent catastrophic failure well in advance of redline cutoff in all three cases.
NASA Technical Reports Server (NTRS)
2005-01-01
The successful development of advanced aerospace engines depends greatly on the capabilities of high performance materials and structures. Advanced materials, such as nickel based single crystal alloys, metal foam, advanced copper alloys, and ceramics matrix composites, have been engineered to provide higher engine temperature and stress capabilities. Thermal barrier coatings have been developed to improve component durability and fuel efficiency, by reducing the substrate hot wall metal temperature and protecting against oxidation and blanching. However, these coatings are prone to oxidation and delamination failures. In order to implement the use of these materials in advanced engines, it is necessary to understand and model the evolution of damage of the metal substrate as well as the coating under actual engine conditions. The models and the understanding of material behavior are utilized in the development of a life prediction methodology for hot section components. The research activities were focused on determining the stress and strain fields in an engine environment under combined thermo-mechanical loads to develop life prediction methodologies consistent with the observed damage formation of the coating and the substrates.
1991-01-01
either the metallic or plastic composite pressure envelope. The ASME Boiler and Pressure Vessel Code Section 8 provides such design criteria, and the...fabricated of metallic or piastic composite materials. To preclude potential catastrophic failures of windows designed on the basis of inadequate data, in...pressure-resistant acrylic windows (reference 12). Acrylic windows are usually machined from Plexiglas G plate, which is limited in thickness to 4 inches
Hainsworth, S V; Fitzpatrick, M E
2007-06-01
Forensic engineering is the application of engineering principles or techniques to the investigation of materials, products, structures or components that fail or do not perform as intended. In particular, forensic engineering can involve providing solutions to forensic problems by the application of engineering science. A criminal aspect may be involved in the investigation but often the problems are related to negligence, breach of contract, or providing information needed in the redesign of a product to eliminate future failures. Forensic engineering may include the investigation of the physical causes of accidents or other sources of claims and litigation (for example, patent disputes). It involves the preparation of technical engineering reports, and may require giving testimony and providing advice to assist in the resolution of disputes affecting life or property.This paper reviews the principal methods available for the analysis of failed components and then gives examples of different component failure modes through selected case studies.
NASA Technical Reports Server (NTRS)
Merrill, W. C.
1986-01-01
A hypothetical turbofan engine simplified simulation with a multivariable control and sensor failure detection, isolation, and accommodation logic (HYTESS II) is presented. The digital program, written in FORTRAN, is self-contained, efficient, realistic and easily used. Simulated engine dynamics were developed from linearized operating point models. However, essential nonlinear effects are retained. The simulation is representative of the hypothetical, low bypass ratio turbofan engine with an advanced control and failure detection logic. Included is a description of the engine dynamics, the control algorithm, and the sensor failure detection logic. Details of the simulation including block diagrams, variable descriptions, common block definitions, subroutine descriptions, and input requirements are given. Example simulation results are also presented.
Development of a GIS-based failure investigation system for highway soil slopes
NASA Astrophysics Data System (ADS)
Ramanathan, Raghav; Aydilek, Ahmet H.; Tanyu, Burak F.
2015-06-01
A framework for preparation of an early warning system was developed for Maryland, using a GIS database and a collective overlay of maps that highlight highway slopes susceptible to soil slides or slope failures in advance through spatial and statistical analysis. Data for existing soil slope failures was collected from geotechnical reports and field visits. A total of 48 slope failures were recorded and analyzed. Six factors, including event precipitation, geological formation, land cover, slope history, slope angle, and elevation were considered to affect highway soil slope stability. The observed trends indicate that precipitation and poor surface or subsurface drainage conditions are principal factors causing slope failures. 96% of the failed slopes have an open drainage section. A majority of the failed slopes lie in regions with relatively high event precipitation ( P>200 mm). 90% of the existing failures are surficial erosion type failures, and only 1 out of the 42 slope failures is deep rotational type failure. More than half of the analyzed slope failures have occurred in regions having low density land cover. 46% of failures are on slopes with slope angles between 20° and 30°. Influx of more data relating to failed slopes should give rise to more trends, and thus the developed slope management system will aid the state highway engineers in prudential budget allocation and prioritizing different remediation projects based on the literature reviewed on the principles, concepts, techniques, and methodology for slope instability evaluation (Leshchinsky et al., 2015).
Code of Federal Regulations, 2014 CFR
2014-01-01
... usage. (b) Engine or drive system cooling fan blade protection. (1) If an engine or rotor drive system... fan blade fails. This must be shown by showing that— (i) The fan blades are contained in case of failure; (ii) Each fan is located so that a failure will not jeopardize safety; or (iii) Each fan blade...
Code of Federal Regulations, 2012 CFR
2012-01-01
... usage. (b) Engine or drive system cooling fan blade protection. (1) If an engine or rotor drive system... fan blade fails. This must be shown by showing that— (i) The fan blades are contained in case of failure; (ii) Each fan is located so that a failure will not jeopardize safety; or (iii) Each fan blade...
Code of Federal Regulations, 2010 CFR
2010-01-01
... usage. (b) Engine or drive system cooling fan blade protection. (1) If an engine or rotor drive system... fan blade fails. This must be shown by showing that— (i) The fan blades are contained in case of failure; (ii) Each fan is located so that a failure will not jeopardize safety; or (iii) Each fan blade...
Code of Federal Regulations, 2011 CFR
2011-01-01
... usage. (b) Engine or drive system cooling fan blade protection. (1) If an engine or rotor drive system... fan blade fails. This must be shown by showing that— (i) The fan blades are contained in case of failure; (ii) Each fan is located so that a failure will not jeopardize safety; or (iii) Each fan blade...
Code of Federal Regulations, 2013 CFR
2013-01-01
... usage. (b) Engine or drive system cooling fan blade protection. (1) If an engine or rotor drive system... fan blade fails. This must be shown by showing that— (i) The fan blades are contained in case of failure; (ii) Each fan is located so that a failure will not jeopardize safety; or (iii) Each fan blade...
75 FR 69858 - Airworthiness Directives; Eurocopter France (Eurocopter) Model AS332L2 Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-16
... MCAI AD states that a hard landing occurred during in-flight engine failure (one engine inoperative (OEI)) training. An examination revealed the failure of the right-hand main reduction gear module... freewheel unit. In case of a freewheel unit failure on one of the two MGB inputs, either inadvertently or as...
Nanomaterials for Cardiac Myocyte Tissue Engineering.
Amezcua, Rodolfo; Shirolkar, Ajay; Fraze, Carolyn; Stout, David A
2016-07-19
Since their synthesizing introduction to the research community, nanomaterials have infiltrated almost every corner of science and engineering. Over the last decade, one such field has begun to look at using nanomaterials for beneficial applications in tissue engineering, specifically, cardiac tissue engineering. During a myocardial infarction, part of the cardiac muscle, or myocardium, is deprived of blood. Therefore, the lack of oxygen destroys cardiomyocytes, leaving dead tissue and possibly resulting in the development of arrhythmia, ventricular remodeling, and eventual heart failure. Scarred cardiac muscle results in heart failure for millions of heart attack survivors worldwide. Modern cardiac tissue engineering research has developed nanomaterial applications to combat heart failure, preserve normal heart tissue, and grow healthy myocardium around the infarcted area. This review will discuss the recent progress of nanomaterials for cardiovascular tissue engineering applications through three main nanomaterial approaches: scaffold designs, patches, and injectable materials.
NASA Astrophysics Data System (ADS)
Makarova, A. N.; Makarov, E. I.; Zakharov, N. S.
2018-03-01
In the article, the issue of correcting engineering servicing regularity on the basis of actual dependability data of cars in operation is considered. The purpose of the conducted research is to increase dependability of transport-technological machines by correcting engineering servicing regularity. The subject of the research is the mechanism of engineering servicing regularity influence on reliability measure. On the basis of the analysis of researches carried out before, a method of nonparametric estimation of car failure measure according to actual time-to-failure data was chosen. A possibility of describing the failure measure dependence on engineering servicing regularity by various mathematical models is considered. It is proven that the exponential model is the most appropriate for that purpose. The obtained results can be used as a separate method of engineering servicing regularity correction with certain operational conditions taken into account, as well as for the technical-economical and economical-stochastic methods improvement. Thus, on the basis of the conducted researches, a method of engineering servicing regularity correction of transport-technological machines in the operational process was developed. The use of that method will allow decreasing the number of failures.
Failure mode analysis to predict product reliability.
NASA Technical Reports Server (NTRS)
Zemanick, P. P.
1972-01-01
The failure mode analysis (FMA) is described as a design tool to predict and improve product reliability. The objectives of the failure mode analysis are presented as they influence component design, configuration selection, the product test program, the quality assurance plan, and engineering analysis priorities. The detailed mechanics of performing a failure mode analysis are discussed, including one suggested format. Some practical difficulties of implementation are indicated, drawn from experience with preparing FMAs on the nuclear rocket engine program.
NASA Astrophysics Data System (ADS)
Dulo, D. A.
Safety critical software systems permeate spacecraft, and in a long term venture like a starship would be pervasive in every system of the spacecraft. Yet software failure today continues to plague both the systems and the organizations that develop them resulting in the loss of life, time, money, and valuable system platforms. A starship cannot afford this type of software failure in long journeys away from home. A single software failure could have catastrophic results for the spaceship and the crew onboard. This paper will offer a new approach to developing safe reliable software systems through focusing not on the traditional safety/reliability engineering paradigms but rather by focusing on a new paradigm: Resilience and Failure Obviation Engineering. The foremost objective of this approach is the obviation of failure, coupled with the ability of a software system to prevent or adapt to complex changing conditions in real time as a safety valve should failure occur to ensure safe system continuity. Through this approach, safety is ensured through foresight to anticipate failure and to adapt to risk in real time before failure occurs. In a starship, this type of software engineering is vital. Through software developed in a resilient manner, a starship would have reduced or eliminated software failure, and would have the ability to rapidly adapt should a software system become unstable or unsafe. As a result, long term software safety, reliability, and resilience would be present for a successful long term starship mission.
Durability Testing of Tank Track Rubber Compounds under Cyclic Loading
1987-10-15
depiction of time-to-failure vs applied ( engineering ) stress for 15TP-14AX rubber compounds in creep experiments at 23"C. (After McKenna (1...behavior of the 15TP-14AX rubber was carried out at 23, 75, 125 and 175 OC. The logarithm of the time to failure vs. the applied ( engineering ) stress is...4 3I. I I 5 10 15 a/MPa Figure 3-7 Semilogarith±ic depiction of time-to--failure vs applied ( engineering ) stress for 15TP-14AX rubber compounds in
Neural Network-Based Sensor Validation for Turboshaft Engines
NASA Technical Reports Server (NTRS)
Moller, James C.; Litt, Jonathan S.; Guo, Ten-Huei
1998-01-01
Sensor failure detection, isolation, and accommodation using a neural network approach is described. An auto-associative neural network is configured to perform dimensionality reduction on the sensor measurement vector and provide estimated sensor values. The sensor validation scheme is applied in a simulation of the T700 turboshaft engine in closed loop operation. Performance is evaluated based on the ability to detect faults correctly and maintain stable and responsive engine operation. The set of sensor outputs used for engine control forms the network input vector. Analytical redundancy is verified by training networks of successively smaller bottleneck layer sizes. Training data generation and strategy are discussed. The engine maintained stable behavior in the presence of sensor hard failures. With proper selection of fault determination thresholds, stability was maintained in the presence of sensor soft failures.
76 FR 78863 - Airworthiness Directives; Rolls-Royce Corporation Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-20
... engines. This proposed AD was prompted by seven cases reported of released turbine blades and shrouds... wheels for cracks in the turbine blades. We are proposing this AD to prevent failure of 3rd or 4th stage turbine wheel blades which could cause engine failure and damage to the airplane. DATES: We must receive...
Hydraulic integration and shrub growth form linked across continental aridity gradients
H. Jochen Schenk; Christine M. Goedhart; Marisa Nordenstahl; Hugo I. Martinez Cabrera; Cynthia S. Jones
2008-01-01
Both engineered hydraulic systems and plant hydraulic systems are protected against failure by resistance, reparability, and redundancy. A basic rule of reliability engineering is that the level of independent redundancy should increase with increasing risk of fatal system failure. Here we show that hydraulic systems of plants function as predicted by this engineering...
NASA Technical Reports Server (NTRS)
Cornford, S.; Gibbel, M.
1997-01-01
NASA's Code QT Test Effectiveness Program is funding a series of applied research activities focused on utilizing the principles of physics and engineering of failure and those of engineering economics to assess and improve the value-added by the various validation and verification activities to organizations.
76 FR 79051 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-21
... models requiring inspections. We are issuing this AD to prevent failure of the fuel injector fuel lines... to prevent failure of the fuel injector fuel lines that would allow fuel to spray into the engine... injector nozzles, and replace as necessary any fuel injector fuel line and clamp that does not meet all...
NASA Astrophysics Data System (ADS)
Singh, Krishan P.; Snorrason, Arni
1984-02-01
Important breach parameters were identified and their ranges were estimated from a detailed study of historical earthdam failures due to overtopping. The U.S. Army Corps of Engineers Hydrologic Engineering Center (HEC) and the National Weather Service (NWS) dam breach models were chosen for evaluation and simulation. Both models use similar input data and breach descriptions, but the HEC uses the hydrologic routing method (modified Puls method), whereas the NWS uses the St. Vénant equations for routing. Information on eight dams in Illinois was taken from the Corps of Engineers inspection reports, and surveyed cross-sections of the downstream channels were supplied by the Division of Water Resources of the Illinois Department of Transportation. Various combinations of breach parameters (failure time, TF; depth of overtopping, hf; and breach size, B) were used for breach simulations by both methods with the 1.00PMF, 0.50PMF and 0.25PMF (probable maximum flood) inflow hydrographs. In general, the flood stage profiles predicted by the NWS were smoother and more reasonable than those predicted by the HEC. For channels with relatively steep slopes, the methods compared fairly well, whereas for the channels with mild slope, the HEC model often predicted oscillating, erratic flood stages, mainly due to its inability to route flood waves satisfactorily in non-prismatic channels. The breach outflow peaks are affected significantly by B but less so by hf. The ratio of outflow peak to inflow peak and the effect of TF on outflow decrease as the drainage area above the dam and impounded storage increase. Flood stage profiles predicted with cross-sections taken from 7.5' maps compared favorably with those predicted using surveyed cross-sections. For the range of breach parameters studied, the range of outflow peaks and flood stages downstream from the dam can be determined for regulatory and disaster prevention measures.
Development and Evaluation of TiAl Sheet Structures for Hypersonic Applications
NASA Technical Reports Server (NTRS)
Draper, S. L.; Krause, D.; Lerch, B.; Locci, I. E.; Doehnert, B.; Nigam, R.; Das, G.; Sickles, P.; Tabernig, B.; Reger, N.;
2007-01-01
A cooperative program between the National Aeronautics and Space Administration (NASA), the Austrian Space Agency (ASA), Pratt & Whitney, Engineering Evaluation and Design, and Plansee AG was undertaken to determine the feasibility of achieving significant weight reduction of hypersonic propulsion system structures through the utilization of TiAl. A trade study defined the weight reduction potential of TiAl technologies as 25 to 35 percent compared to the baseline Ni-base superalloy for a stiffener structure in an inlet, combustor, and nozzle section of a hypersonic scramjet engine (ref. 1). A scramjet engine inlet cowl flap was designed, along with a representative subelement, using design practices unique to TiAl. A sub-element was fabricated and tested to assess fabricability and structural performance and validate the design system. The TiAl alloy selected was Plansee's third generation alloy Gamma Met PX (Plansee AG ), a high temperature, high strength gamma-TiAl alloy with high Nb content (refs. 2 and 3). Characterization of Gamma Met PX sheet, including tensile, creep, and fatigue testing was performed. Additionally, design-specific coupons were fabricated and tested in order to improve subelement test predictions. Based on the sheet characterization and results of the coupon tests, the subelement failure location and failure load were accurately predicted.
NASA Technical Reports Server (NTRS)
Wheeler, J. T.
1990-01-01
The Weibull process, identified as the inhomogeneous Poisson process with the Weibull intensity function, is used to model the reliability growth assessment of the space shuttle main engine test and flight failure data. Additional tables of percentage-point probabilities for several different values of the confidence coefficient have been generated for setting (1-alpha)100-percent two sided confidence interval estimates on the mean time between failures. The tabled data pertain to two cases: (1) time-terminated testing, and (2) failure-terminated testing. The critical values of the three test statistics, namely Cramer-von Mises, Kolmogorov-Smirnov, and chi-square, were calculated and tabled for use in the goodness of fit tests for the engine reliability data. Numerical results are presented for five different groupings of the engine data that reflect the actual response to the failures.
Reusable rocket engine turbopump condition monitoring
NASA Technical Reports Server (NTRS)
Hampson, M. E.
1984-01-01
Significant improvements in engine readiness with reductions in maintenance costs and turn-around times can be achieved with an engine condition monitoring systems (CMS). The CMS provides health status of critical engine components, without disassembly, through monitoring with advanced sensors. Engine failure reports over 35 years were categorized into 20 different modes of failure. Rotor bearings and turbine blades were determined to be the most critical in limiting turbopump life. Measurement technologies were matched to each of the failure modes identified. Three were selected to monitor the rotor bearings and turbine blades: the isotope wear detector and fiberoptic deflectometer (bearings), and the fiberoptic pyrometer (blades). Signal processing algorithms were evaluated for their ability to provide useful health data to maintenance personnel. Design modifications to the Space Shuttle Main Engine (SSME) high pressure turbopumps were developed to incorporate the sensors. Laboratory test fixtures have been designed for monitoring the rotor bearings and turbine blades in simulated turbopump operating conditions.
The effect of preignition on cylinder temperatures, pressures, power output, and piston failures
NASA Technical Reports Server (NTRS)
Corrington, Lester C; Fisher, William F
1947-01-01
An investigation was conducted using a cylinder of a V-type liquid-cooled engine to observe the behavior of the cylinder when operated under preignition conditions. Data were recorded that showed cylinder-head temperatures, time of ignition, engine speed, power output, and change in maximum cylinder pressure as a function of time as the engine entered preignition and was allowed to operate under preignition conditions for a short time. The effects of the following variables on the engine behavior during preignition were investigated: fuel-air ratio, power level, aromatic content of fuel, engine speed, mixture temperature, and preignition source. The power levels at which preignition would cause complete piston failure for the selected engine operating conditions and the types of failure encountered when using various values of clearance between the piston and cylinder barrel were determined. The fuels used had performance numbers high enough to preclude any possibility of knock throughout the test program.
Development and testing of the infrared radiometer for the Mariner Venus/Mercury 1973 spacecraft
NASA Technical Reports Server (NTRS)
Clarke, T. C.
1975-01-01
The science objectives, development history, functional description, and testing of the Mariner Venus/Mercury 1973 infrared radiometer are discussed. Included in the functional description section is a thorough discussion of the IRR optical system, electronic operation, and thermal control. Signal development and its conversion to engineering units is traced, starting with the radiant space object, passing through the IRR optics and electronics, and culminating with data number development and interpretation. The test program section includes discussion of IRR calibration and alignment verification. Finally, the problems and failures encountered by the IRR during the period of its development and testing are reviewed.
NASA Astrophysics Data System (ADS)
Gordon, Craig A.
This thesis examines the ability of a small, single-engine airplane to return to the runway following an engine failure shortly after takeoff. Two sets of trajectories are examined. One set of trajectories has the airplane fly a straight climb on the runway heading until engine failure. The other set of trajectories has the airplane perform a 90° turn at an altitude of 500 feet and continue until engine failure. Various combinations of wind speed, wind direction, and engine failure times are examined. The runway length required to complete the entire flight from the beginning of the takeoff roll to wheels stop following the return to the runway after engine failure is calculated for each case. The optimal trajectories following engine failure consist of three distinct segments: a turn back toward the runway using a large bank angle and angle of attack; a straight glide; and a reversal turn to align the airplane with the runway. The 90° turn results in much shorter required runway lengths at lower headwind speeds. At higher headwind speeds, both sets of trajectories are limited by the length of runway required for the landing rollout, but the straight climb cases generally require a lower angle of attack to complete the flight. The glide back to the runway is performed at an airspeed below the best glide speed of the airplane due to the need to conserve potential energy after the completion of the turn back toward the runway. The results are highly dependent on the rate of climb of the airplane during powered flight. The results of this study can aid the pilot in determining whether or not a return to the runway could be performed in the event of an engine failure given the specific wind conditions and runway length at the time of takeoff. The results can also guide the pilot in determining the takeoff profile that would offer the greatest advantage in returning to the runway.
NASA Technical Reports Server (NTRS)
Gibbel, Mark; Larson, Timothy
2000-01-01
An Engineering-of-Failure approach to designing and executing an accelerated product qualification test was performed to support a risk assessment of a "work-around" necessitated by an on-orbit failure of another piece of hardware on the Mars Global Surveyor spacecraft. The proposed work-around involved exceeding the previous qualification experience both in terms of extreme cold exposure level and in terms of demonstrated low cycle fatigue life for the power shunt assemblies. An analysis was performed to identify potential failure sites, modes and associated failure mechanisms consistent with the new use conditions. A test was then designed and executed which accelerated the failure mechanisms identified by analysis. Verification of the resulting failure mechanism concluded the effort.
NASA Technical Reports Server (NTRS)
Biermann, A.E.; Braithwaite, Willis M.
1955-01-01
An investigation of the endurance characteristics, at high Mach number, of the J65-W-7 engine was made in an altitude chamber at the Lewis laboratory. The investigation was made to determine whether this engine can be operated at flight conditions of Mach 2 at 35,000-feet altitude (inlet temperature, 250 F) as a limited-service-life engine Failure of the seventh-stage aluminum compressor blades occurred in both engines tested and was attributed to insufficient strength of the blade fastenings at the elevated temperatures. For the conditions of these tests, the results showed that it is reasonable to expect 10 to 15 minutes of satisfactory engine operation before failure. The high temperatures and pressures imposed upon the compressor housing caused no permanent deformation. In general, the performance of the engines tested was only slightly affected by the high ram conditions of this investigation. There was no discernible depreciation of performance with time prior to failure.
Sensor failure detection for jet engines
NASA Technical Reports Server (NTRS)
Merrill, Walter C.
1988-01-01
The use of analytical redundancy to improve gas turbine engine control system reliability through sensor failure detection, isolation, and accommodation is surveyed. Both the theoretical and application papers that form the technology base of turbine engine analytical redundancy research are discussed. Also, several important application efforts are reviewed. An assessment of the state-of-the-art in analytical redundancy technology is given.
ERIC Educational Resources Information Center
Lottero-Perdue, Pamela S.; Parry, Elizabeth A.
2017-01-01
This mixed-methods study examines how teachers who have taught one or two units of the Engineering is Elementary (EiE) curriculum for two years reported on: students' responses to design failure; the ways in which they, the teachers, supported these students and used fail words (e.g. fail, failure); and the teachers' broad perspectives and…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
... showed that it was mainly the result of failure of the Proportional Pressure Reducing Valve (PPRV) (also... identified as the primary source of vibrations for the PPRV, and it has also been determined that failure of... TAE 125 engines. The investigations showed that it was mainly the result of failure of the PPRV due to...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... is separated from the engine. This AD was prompted by seven reports of uncontained failures of LPT... engine failure and damage to the airplane. DATES: This AD is effective September 26, 2011. ADDRESSES: You... reports of uncontained failures of LPT rotor stage 3 disks and eight reports of cracked LPT rotor stage 3...
Risk analysis of gravity dam instability using credibility theory Monte Carlo simulation model.
Xin, Cao; Chongshi, Gu
2016-01-01
Risk analysis of gravity dam stability involves complicated uncertainty in many design parameters and measured data. Stability failure risk ratio described jointly by probability and possibility has deficiency in characterization of influence of fuzzy factors and representation of the likelihood of risk occurrence in practical engineering. In this article, credibility theory is applied into stability failure risk analysis of gravity dam. Stability of gravity dam is viewed as a hybrid event considering both fuzziness and randomness of failure criterion, design parameters and measured data. Credibility distribution function is conducted as a novel way to represent uncertainty of influence factors of gravity dam stability. And combining with Monte Carlo simulation, corresponding calculation method and procedure are proposed. Based on a dam section, a detailed application of the modeling approach on risk calculation of both dam foundation and double sliding surfaces is provided. The results show that, the present method is feasible to be applied on analysis of stability failure risk for gravity dams. The risk assessment obtained can reflect influence of both sorts of uncertainty, and is suitable as an index value.
NASA Astrophysics Data System (ADS)
Bruyere, C. L.; Tye, M. R.; Holland, G. J.; Done, J.
2015-12-01
Graceful failure acknowledges that all systems will fail at some level and incorporates the potential for failure as a key component of engineering design, community planning, and the associated research and development. This is a fundamental component of the ECEP, an interdisciplinary partnership bringing together scientific, engineering, cultural, business and government expertise to develop robust, well-communicated predictions and advice on the impacts of weather and climate extremes in support of decision-making. A feature of the partnership is the manner in which basic and applied research and development is conducted in direct collaboration with the end user. A major ECEP focus is the Global Risk and Resilience Toolbox (GRRT) that is aimed at developing public-domain, risk-modeling and response data and planning system in support of engineering design, and community planning and adaptation activities. In this presentation I will outline the overall ECEP and GRIP activities, and expand on the 'graceful failure' concept. Specific examples for direct assessment and prediction of hurricane impacts and damage potential will be included.
Fault Tree Based Diagnosis with Optimal Test Sequencing for Field Service Engineers
NASA Technical Reports Server (NTRS)
Iverson, David L.; George, Laurence L.; Patterson-Hine, F. A.; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
When field service engineers go to customer sites to service equipment, they want to diagnose and repair failures quickly and cost effectively. Symptoms exhibited by failed equipment frequently suggest several possible causes which require different approaches to diagnosis. This can lead the engineer to follow several fruitless paths in the diagnostic process before they find the actual failure. To assist in this situation, we have developed the Fault Tree Diagnosis and Optimal Test Sequence (FTDOTS) software system that performs automated diagnosis and ranks diagnostic hypotheses based on failure probability and the time or cost required to isolate and repair each failure. FTDOTS first finds a set of possible failures that explain exhibited symptoms by using a fault tree reliability model as a diagnostic knowledge to rank the hypothesized failures based on how likely they are and how long it would take or how much it would cost to isolate and repair them. This ordering suggests an optimal sequence for the field service engineer to investigate the hypothesized failures in order to minimize the time or cost required to accomplish the repair task. Previously, field service personnel would arrive at the customer site and choose which components to investigate based on past experience and service manuals. Using FTDOTS running on a portable computer, they can now enter a set of symptoms and get a list of possible failures ordered in an optimal test sequence to help them in their decisions. If facilities are available, the field engineer can connect the portable computer to the malfunctioning device for automated data gathering. FTDOTS is currently being applied to field service of medical test equipment. The techniques are flexible enough to use for many different types of devices. If a fault tree model of the equipment and information about component failure probabilities and isolation times or costs are available, a diagnostic knowledge base for that device can be developed easily.
Risk Analysis of Earth-Rock Dam Failures Based on Fuzzy Event Tree Method
Fu, Xiao; Gu, Chong-Shi; Su, Huai-Zhi; Qin, Xiang-Nan
2018-01-01
Earth-rock dams make up a large proportion of the dams in China, and their failures can induce great risks. In this paper, the risks associated with earth-rock dam failure are analyzed from two aspects: the probability of a dam failure and the resulting life loss. An event tree analysis method based on fuzzy set theory is proposed to calculate the dam failure probability. The life loss associated with dam failure is summarized and refined to be suitable for Chinese dams from previous studies. The proposed method and model are applied to one reservoir dam in Jiangxi province. Both engineering and non-engineering measures are proposed to reduce the risk. The risk analysis of the dam failure has essential significance for reducing dam failure probability and improving dam risk management level. PMID:29710824
NASA Technical Reports Server (NTRS)
Smart, Christian
1998-01-01
During 1997, a team from Hernandez Engineering, MSFC, Rocketdyne, Thiokol, Pratt & Whitney, and USBI completed the first phase of a two year Quantitative Risk Assessment (QRA) of the Space Shuttle. The models for the Shuttle systems were entered and analyzed by a new QRA software package. This system, termed the Quantitative Risk Assessment System(QRAS), was designed by NASA and programmed by the University of Maryland. The software is a groundbreaking PC-based risk assessment package that allows the user to model complex systems in a hierarchical fashion. Features of the software include the ability to easily select quantifications of failure modes, draw Event Sequence Diagrams(ESDs) interactively, perform uncertainty and sensitivity analysis, and document the modeling. This paper illustrates both the approach used in modeling and the particular features of the software package. The software is general and can be used in a QRA of any complex engineered system. The author is the project lead for the modeling of the Space Shuttle Main Engines (SSMEs), and this paper focuses on the modeling completed for the SSMEs during 1997. In particular, the groundrules for the study, the databases used, the way in which ESDs were used to model catastrophic failure of the SSMES, the methods used to quantify the failure rates, and how QRAS was used in the modeling effort are discussed. Groundrules were necessary to limit the scope of such a complex study, especially with regard to a liquid rocket engine such as the SSME, which can be shut down after ignition either on the pad or in flight. The SSME was divided into its constituent components and subsystems. These were ranked on the basis of the possibility of being upgraded and risk of catastrophic failure. Once this was done the Shuttle program Hazard Analysis and Failure Modes and Effects Analysis (FMEA) were used to create a list of potential failure modes to be modeled. The groundrules and other criteria were used to screen out the many failure modes that did not contribute significantly to the catastrophic risk. The Hazard Analysis and FMEA for the SSME were also used to build ESDs that show the chain of events leading from the failure mode occurence to one of the following end states: catastrophic failure, engine shutdown, or siccessful operation( successful with respect to the failure mode under consideration).
Evaluation of lightweight material concepts for aircraft turbine engine rotor failure protection
DOT National Transportation Integrated Search
1997-07-01
Results of the evaluation of lightweight materials for aircraft turbine engine rotor failure protection are presented in this report. The program consisted of two phases. Phase 1 was an evaluation of a group of composite materials which could possibl...
Full-Authority Fault-Tolerant Electronic Engine Control System for Variable Cycle Engines.
1982-04-01
single internally self-checked VLSI micro - processor . The selected configuration is an externally checked pair of com- mercially available...Electronic Engine Control FPMH Failures per Million Hours FTMP Fault Tolerant Multi- Processor FTSC Fault Tolerant Spaceborn Computer GRAMP Generalized...Removal * MTBR Mean Time Between Repair MTTF Mean Time to Failure xiii List of Abbreviations (continued) - NH High Pressure Rotor Speed O&S Operating
Fujita, B; Zimmermann, W-H
2017-08-01
There is a pressing need for the development of advanced heart failure therapeutics. Current state-of-the-art is protection from neurohumoral overstimulation, which fails to address the underlying cause of heart failure, namely loss of cardiomyocytes. Implantation of stem cell-derived cardiomyocytes via tissue-engineered myocardium is being advanced to realize the remuscularization of the failing heart. Here, we discuss pharmacological challenges pertaining to the clinical translation of tissue-engineered heart repair with a focus on engineered heart muscle (EHM). © 2017 American Society for Clinical Pharmacology and Therapeutics.
Reliability and Confidence Interval Analysis of a CMC Turbine Stator Vane
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Gyekenyesi, John P.; Mital, Subodh K.
2008-01-01
High temperature ceramic matrix composites (CMC) are being explored as viable candidate materials for hot section gas turbine components. These advanced composites can potentially lead to reduced weight, enable higher operating temperatures requiring less cooling and thus leading to increased engine efficiencies. However, these materials are brittle and show degradation with time at high operating temperatures due to creep as well as cyclic mechanical and thermal loads. In addition, these materials are heterogeneous in their make-up and various factors affect their properties in a specific design environment. Most of these advanced composites involve two- and three-dimensional fiber architectures and require a complex multi-step high temperature processing. Since there are uncertainties associated with each of these in addition to the variability in the constituent material properties, the observed behavior of composite materials exhibits scatter. Traditional material failure analyses employing a deterministic approach, where failure is assumed to occur when some allowable stress level or equivalent stress is exceeded, are not adequate for brittle material component design. Such phenomenological failure theories are reasonably successful when applied to ductile materials such as metals. Analysis of failure in structural components is governed by the observed scatter in strength, stiffness and loading conditions. In such situations, statistical design approaches must be used. Accounting for these phenomena requires a change in philosophy on the design engineer s part that leads to a reduced focus on the use of safety factors in favor of reliability analyses. The reliability approach demands that the design engineer must tolerate a finite risk of unacceptable performance. This risk of unacceptable performance is identified as a component's probability of failure (or alternatively, component reliability). The primary concern of the engineer is minimizing this risk in an economical manner. The methods to accurately determine the service life of an engine component with associated variability have become increasingly difficult. This results, in part, from the complex missions which are now routinely considered during the design process. These missions include large variations of multi-axial stresses and temperatures experienced by critical engine parts. There is a need for a convenient design tool that can accommodate various loading conditions induced by engine operating environments, and material data with their associated uncertainties to estimate the minimum predicted life of a structural component. A probabilistic composite micromechanics technique in combination with woven composite micromechanics, structural analysis and Fast Probability Integration (FPI) techniques has been used to evaluate the maximum stress and its probabilistic distribution in a CMC turbine stator vane. Furthermore, input variables causing scatter are identified and ranked based upon their sensitivity magnitude. Since the measured data for the ceramic matrix composite properties is very limited, obtaining a probabilistic distribution with their corresponding parameters is difficult. In case of limited data, confidence bounds are essential to quantify the uncertainty associated with the distribution. Usually 90 and 95% confidence intervals are computed for material properties. Failure properties are then computed with the confidence bounds. Best estimates and the confidence bounds on the best estimate of the cumulative probability function for R-S (strength - stress) are plotted. The methodologies and the results from these analyses will be discussed in the presentation.
Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.
Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S
2013-10-01
Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.
High Reliability Engine Control Demonstrated for Aircraft Engines
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei
1999-01-01
For a dual redundant-control system, which is typical for short-haul aircraft, if a failure is detected in a control sensor, the engine control is transferred to a safety mode and an advisory is issued for immediate maintenance action to replace the failed sensor. The safety mode typically results in severely degraded engine performance. The goal of the High Reliability Engine Control (HREC) program was to demonstrate that the neural-network-based sensor validation technology can safely operate an engine by using the nominal closed-loop control during and after sensor failures. With this technology, engine performance could be maintained, and the sensor could be replaced as a conveniently scheduled maintenance action.
On Correlated Failures in Survivable Storage Systems
2002-05-01
Littlewood, D.R. Miller, “Conceptual modeling of coincident failures in multiversion software”, IEEE Transactions on Software Engineering, Volume: 15 Issue...Recovery in Multiversion Software”. IEEE Transaction on Software Engineering, Vol. 16 No.3, March 1990 [Plank1997] J. Plank “A tutorial on Reed-Solomon
14 CFR 33.75 - Safety analysis.
Code of Federal Regulations, 2013 CFR
2013-01-01
... judgment and previous experience combined with sound design and test philosophies. (4) The applicant must... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.75 Safety analysis. (a... the effects of failures and likely combination of failures be verified by test. (c) The primary...
14 CFR 33.75 - Safety analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... judgment and previous experience combined with sound design and test philosophies. (4) The applicant must... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.75 Safety analysis. (a... the effects of failures and likely combination of failures be verified by test. (c) The primary...
14 CFR 33.75 - Safety analysis.
Code of Federal Regulations, 2012 CFR
2012-01-01
... judgment and previous experience combined with sound design and test philosophies. (4) The applicant must... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.75 Safety analysis. (a... the effects of failures and likely combination of failures be verified by test. (c) The primary...
14 CFR 33.75 - Safety analysis.
Code of Federal Regulations, 2014 CFR
2014-01-01
... judgment and previous experience combined with sound design and test philosophies. (4) The applicant must... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.75 Safety analysis. (a... the effects of failures and likely combination of failures be verified by test. (c) The primary...
Sensor failure detection for jet engines using analytical redundance
NASA Technical Reports Server (NTRS)
Merrill, W. C.
1984-01-01
Analytical redundant sensor failure detection, isolation and accommodation techniques for gas turbine engines are surveyed. Both the theoretical technology base and demonstrated concepts are discussed. Also included is a discussion of current technology needs and ongoing Government sponsored programs to meet those needs.
NASA Technical Reports Server (NTRS)
Stewart, E. C.; Brown, P. W.; Yenni, K. R.
1986-01-01
A simulation study was conducted to investigate the piloting problems associated with failure of an engine on a generic light twin-engine airplane. A primary piloting problem for a light twin-engine airplane after an engine failure is maintaining precise control of the airplane in the presence of large steady control forces. To address this problem, a simulated automatic trim system which drives the trim tabs as an open-loop function of propeller slipstream measurements was developed. The simulated automatic trim system was found to greatly increase the controllability in asymmetric powered flight without having to resort to complex control laws or an irreversible control system. However, the trim-tab control rates needed to produce the dramatic increase in controllability may require special design consideration for automatic trim system failures. Limited measurements obtained in full-scale flight tests confirmed the fundamental validity of the proposed control law.
Reliability analysis of C-130 turboprop engine components using artificial neural network
NASA Astrophysics Data System (ADS)
Qattan, Nizar A.
In this study, we predict the failure rate of Lockheed C-130 Engine Turbine. More than thirty years of local operational field data were used for failure rate prediction and validation. The Weibull regression model and the Artificial Neural Network model including (feed-forward back-propagation, radial basis neural network, and multilayer perceptron neural network model); will be utilized to perform this study. For this purpose, the thesis will be divided into five major parts. First part deals with Weibull regression model to predict the turbine general failure rate, and the rate of failures that require overhaul maintenance. The second part will cover the Artificial Neural Network (ANN) model utilizing the feed-forward back-propagation algorithm as a learning rule. The MATLAB package will be used in order to build and design a code to simulate the given data, the inputs to the neural network are the independent variables, the output is the general failure rate of the turbine, and the failures which required overhaul maintenance. In the third part we predict the general failure rate of the turbine and the failures which require overhaul maintenance, using radial basis neural network model on MATLAB tool box. In the fourth part we compare the predictions of the feed-forward back-propagation model, with that of Weibull regression model, and radial basis neural network model. The results show that the failure rate predicted by the feed-forward back-propagation artificial neural network model is closer in agreement with radial basis neural network model compared with the actual field-data, than the failure rate predicted by the Weibull model. By the end of the study, we forecast the general failure rate of the Lockheed C-130 Engine Turbine, the failures which required overhaul maintenance and six categorical failures using multilayer perceptron neural network (MLP) model on DTREG commercial software. The results also give an insight into the reliability of the engine turbine under actual operating conditions, which can be used by aircraft operators for assessing system and component failures and customizing the maintenance programs recommended by the manufacturer.
NASA Technical Reports Server (NTRS)
Rogallo, Vernon L.; Yaggy, Paul F.; McCloud, John L., III
1954-01-01
An investigation of a decoupler and a controlled-feathering device incorporated with the YT-56A turboprop engine has been made to determine the effectiveness of these devices in reducing the high negative thrust (drag) which accompanies power failure of this type of engine. Power failures were simulated by fuel cut-off, both without either device free to operate, and with each device free to operate singly. The investigation was made through an airspeed range from 50 to 230 mph. It was found that with neither device free to operate, the drag levels realized after power failures at airspeeds above 170 mph would impose vertical tail loads higher than those allowable for the YC-130, the airplane for which the test power package was designed. These levels were reached in approximately one second. The maximum drag realized after power failure was not appreciably altered by the use of the decoupler although the decoupler did put a limit on the duration of the peak drag. The controlled-feathering device maintained a level of essentially zero drag after power failure. The use of the decoupler in the YT-56A engine complicates windmilling air-starting procedures and makes it necessary to place operating restrictions on the engine to assure safe flight at low-power conditions,
Failure analysis of a tool steel torque shaft
NASA Technical Reports Server (NTRS)
Reagan, J. R.
1981-01-01
A low design load drive shaft used to deliver power from an experimental exhaust heat recovery system to the crankshaft of an experimental diesel truck engine failed during highway testing. An independent testing laboratory analyzed the failure by routine metallography and attributed the failure to fatigue induced by a banded microstructure. Visual examination by NASA of the failed shaft plus the knowledge of the torsional load that it carried pointed to a 100 percent ductile failure with no evidence of fatigue. Scanning electron microscopy confirmed this. Torsional test specimens were produced from pieces of the failed shaft and torsional overload testing produced identical failures to that which had occurred in the truck engine. This pointed to a failure caused by a high overload and although the microstructure was defective it was not the cause of the failure.
Probabilistic failure assessment with application to solid rocket motors
NASA Technical Reports Server (NTRS)
Jan, Darrell L.; Davidson, Barry D.; Moore, Nicholas R.
1990-01-01
A quantitative methodology is being developed for assessment of risk of failure of solid rocket motors. This probabilistic methodology employs best available engineering models and available information in a stochastic framework. The framework accounts for incomplete knowledge of governing parameters, intrinsic variability, and failure model specification error. Earlier case studies have been conducted on several failure modes of the Space Shuttle Main Engine. Work in progress on application of this probabilistic approach to large solid rocket boosters such as the Advanced Solid Rocket Motor for the Space Shuttle is described. Failure due to debonding has been selected as the first case study for large solid rocket motors (SRMs) since it accounts for a significant number of historical SRM failures. Impact of incomplete knowledge of governing parameters and failure model specification errors is expected to be important.
NASA Technical Reports Server (NTRS)
Santi, Louis M.; Butas, John P.; Aguilar, Robert B.; Sowers, Thomas S.
2008-01-01
The J-2X is an expendable liquid hydrogen (LH2)/liquid oxygen (LOX) gas generator cycle rocket engine that is currently being designed as the primary upper stage propulsion element for the new NASA Ares vehicle family. The J-2X engine will contain abort logic that functions as an integral component of the Ares vehicle abort system. This system is responsible for detecting and responding to conditions indicative of impending Loss of Mission (LOM), Loss of Vehicle (LOV), and/or catastrophic Loss of Crew (LOC) failure events. As an earth orbit ascent phase engine, the J-2X is a high power density propulsion element with non-negligible risk of fast propagation rate failures that can quickly lead to LOM, LOV, and/or LOC events. Aggressive reliability requirements for manned Ares missions and the risk of fast propagating J-2X failures dictate the need for on-engine abort condition monitoring and autonomous response capability as well as traditional abort agents such as the vehicle computer, flight crew, and ground control not located on the engine. This paper describes the baseline J-2X abort subsystem concept of operations, as well as the development process for this subsystem. A strategy that leverages heritage system experience and responds to an evolving engine design as well as J-2X specific test data to support abort system development is described. The utilization of performance and failure simulation models to support abort system sensor selection, failure detectability and discrimination studies, decision threshold definition, and abort system performance verification and validation is outlined. The basis for abort false positive and false negative performance constraints is described. Development challenges associated with information shortfalls in the design cycle, abort condition coverage and response assessment, engine-vehicle interface definition, and abort system performance verification and validation are also discussed.
NASA Astrophysics Data System (ADS)
Belapurkar, Rohit K.
Future aircraft engine control systems will be based on a distributed architecture, in which, the sensors and actuators will be connected to the Full Authority Digital Engine Control (FADEC) through an engine area network. Distributed engine control architecture will allow the implementation of advanced, active control techniques along with achieving weight reduction, improvement in performance and lower life cycle cost. The performance of a distributed engine control system is predominantly dependent on the performance of the communication network. Due to the serial data transmission policy, network-induced time delays and sampling jitter are introduced between the sensor/actuator nodes and the distributed FADEC. Communication network faults and transient node failures may result in data dropouts, which may not only degrade the control system performance but may even destabilize the engine control system. Three different architectures for a turbine engine control system based on a distributed framework are presented. A partially distributed control system for a turbo-shaft engine is designed based on ARINC 825 communication protocol. Stability conditions and control design methodology are developed for the proposed partially distributed turbo-shaft engine control system to guarantee the desired performance under the presence of network-induced time delay and random data loss due to transient sensor/actuator failures. A fault tolerant control design methodology is proposed to benefit from the availability of an additional system bandwidth and from the broadcast feature of the data network. It is shown that a reconfigurable fault tolerant control design can help to reduce the performance degradation in presence of node failures. A T-700 turbo-shaft engine model is used to validate the proposed control methodology based on both single input and multiple-input multiple-output control design techniques.
A systems engineering approach to automated failure cause diagnosis in space power systems
NASA Technical Reports Server (NTRS)
Dolce, James L.; Faymon, Karl A.
1987-01-01
Automatic failure-cause diagnosis is a key element in autonomous operation of space power systems such as Space Station's. A rule-based diagnostic system has been developed for determining the cause of degraded performance. The knowledge required for such diagnosis is elicited from the system engineering process by using traditional failure analysis techniques. Symptoms, failures, causes, and detector information are represented with structured data; and diagnostic procedural knowledge is represented with rules. Detected symptoms instantiate failure modes and possible causes consistent with currently held beliefs about the likelihood of the cause. A diagnosis concludes with an explanation of the observed symptoms in terms of a chain of possible causes and subcauses.
Application of Weibull analysis to SSME hardware
NASA Technical Reports Server (NTRS)
Gray, L. A. B.
1986-01-01
Generally, it has been documented that the wearing of engine parts forms a failure distribution which can be approximated by a function developed by Weibull. The purpose here is to examine to what extent the Weibull distribution approximates failure data for designated engine parts of the Space Shuttle Main Engine (SSME). The current testing certification requirements will be examined in order to establish confidence levels. An examination of the failure history of SSME parts/assemblies (turbine blades, main combustion chamber, or high pressure fuel pump first stage impellers) which are limited in usage by time or starts will be done by using updated Weibull techniques. Efforts will be made by the investigator to predict failure trends by using Weibull techniques for SSME parts (turbine temperature sensors, chamber pressure transducers, actuators, and controllers) which are not severely limited by time or starts.
NASA Astrophysics Data System (ADS)
Akintorinwa, O. J.; Oluwole, S. T.
2018-06-01
For several decades, geophysical prospecting method coupled with geotechnical analysis has become increasingly useful in evaluating the subsurface for both pre and post engineering investigations. Shallow geophysical tool is often used alongside geotechnical method to evaluate subsurface soil for engineering study to obtain information which may include the subsurface lithology and their thicknesses, competence of the bedrock and depths to its upper interface, and competence of the material that make up the overburden, especially the shallow section which serves as host for foundations of engineering structures (Aina et al., 1996; Adewumi and Olorunfemi, 2005; and Idornigie et al., 2006). This information helps the engineers to correctly locate and design the foundation of engineering structures. The information also serves as guide to the choice of design and suitable materials needed for road construction (Akinlabi and Adeyemi, 2014). Lack of knowledge of the properties of subsurface may leads to the failure of most engineering structures. Therefore, it is of great importance to carry out a pre-construction investigation of a proposed site in order to ascertain the fitness of the host earth material.
Design and Demonstration of Emergency Control Modes for Enhanced Engine Performance
NASA Technical Reports Server (NTRS)
Liu, Yuan; Litt, Jonathan S.; Guo, Ten-Huei
2013-01-01
A design concept is presented for developing control modes that enhance aircraft engine performance during emergency flight scenarios. The benefits of increased engine performance to overall vehicle survivability during these situations may outweigh the accompanied elevated risk of engine failure. The objective involves building control logic that can consistently increase engine performance beyond designed maximum levels based on an allowable heightened probability of failure. This concept is applied to two previously developed control modes: an overthrust mode that increases maximum engine thrust output and a faster response mode that improves thrust response to dynamic throttle commands. This paper describes the redesign of these control modes and presents simulation results demonstrating both enhanced engine performance and robust maintenance of the desired elevated risk level.
NASA Technical Reports Server (NTRS)
Hopson, Charles B.
1987-01-01
The results of an analysis performed on seven successive Space Shuttle Main Engine (SSME) static test firings, utilizing envelope detection of external accelerometer data are discussed. The results clearly show the great potential for using envelope detection techniques in SSME incipient failure detection.
76 FR 64283 - Airworthiness Directives; Rolls-Royce plc (RR) Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-18
... currently requires inspecting the intermediate-pressure (IP) compressor rotor shaft rear balance land for...-Trent 800 IP compressor rotor shafts that have been found cracked. This proposed AD would continue to... identified above could lead to IP compressor rotor shaft failure, uncontained engine failure, and damage to...
Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure
Finosh, G.T.; Jayabalan, Muthu
2012-01-01
Regeneration of myocardium through regenerative therapy and tissue engineering is appearing as a prospective treatment modality for patients with end-stage heart failure. Focusing on this area, this review highlights the new developments and challenges in the regeneration of myocardial tissue. The role of various cell sources, calcium ion and cytokine on the functional performance of regenerative therapy is discussed. The evolution of tissue engineering and the role of tissue matrix/scaffold, cell adhesion and vascularisation on tissue engineering of cardiac tissue implant are also discussed. PMID:23507781
Finosh, G T; Jayabalan, Muthu
2012-01-01
Regeneration of myocardium through regenerative therapy and tissue engineering is appearing as a prospective treatment modality for patients with end-stage heart failure. Focusing on this area, this review highlights the new developments and challenges in the regeneration of myocardial tissue. The role of various cell sources, calcium ion and cytokine on the functional performance of regenerative therapy is discussed. The evolution of tissue engineering and the role of tissue matrix/scaffold, cell adhesion and vascularisation on tissue engineering of cardiac tissue implant are also discussed.
Continuous fiber ceramic matrix composites for heat engine components
NASA Technical Reports Server (NTRS)
Tripp, David E.
1988-01-01
High strength at elevated temperatures, low density, resistance to wear, and abundance of nonstrategic raw materials make structural ceramics attractive for advanced heat engine applications. Unfortunately, ceramics have a low fracture toughness and fail catastrophically because of overload, impact, and contact stresses. Ceramic matrix composites provide the means to achieve improved fracture toughness while retaining desirable characteristics, such as high strength and low density. Materials scientists and engineers are trying to develop the ideal fibers and matrices to achieve the optimum ceramic matrix composite properties. A need exists for the development of failure models for the design of ceramic matrix composite heat engine components. Phenomenological failure models are currently the most frequently used in industry, but they are deterministic and do not adequately describe ceramic matrix composite behavior. Semi-empirical models were proposed, which relate the failure of notched composite laminates to the stress a characteristic distance away from the notch. Shear lag models describe composite failure modes at the micromechanics level. The enhanced matrix cracking stress occurs at the same applied stress level predicted by the two models of steady state cracking. Finally, statistical models take into consideration the distribution in composite failure strength. The intent is to develop these models into computer algorithms for the failure analysis of ceramic matrix composites under monotonically increasing loads. The algorithms will be included in a postprocessor to general purpose finite element programs.
Mechanical Testing of Hydrogels in Cartilage Tissue Engineering: Beyond the Compressive Modulus
Xiao, Yinghua; Friis, Elizabeth A.; Gehrke, Stevin H.
2013-01-01
Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context. PMID:23448091
Modal test of Shuttle engine nozzle
NASA Technical Reports Server (NTRS)
Johnston, G. D.; Coleman, A. D.
1983-01-01
A structural failure occurred on the main propulsion test stand at NSTL causing a hydrogen fire and damage to the engines to be used on the Orbiter Columbia. Scattered accelerometer measurements indicated very high response levels at 254 hertz and 311 hertz. The Engine Office at MSFC asked the Dynamics Test Branch to try and find out what caused the failure. All three nozzles were sent to Huntsville for testing. Modal test data revealed very quickly how the failure occurred in the steerhorn and also pointed out two other structural problems. A complete set of data is presented along with a narrative explanation of the steps taken to identify and verify the structural problem.
Comparison of defects in ProTaper hand-operated and engine-driven instruments after clinical use.
Cheung, G S P; Bian, Z; Shen, Y; Peng, B; Darvell, B W
2007-03-01
To compare the type of defects and mode of material failure of engine-driven and hand-operated ProTaper instruments after clinical use. A total of 401 hand-operated and 325 engine-driven ProTaper instruments were discarded from an endodontic clinic over 17 months. Those that had fractured were examined for plastic deformation in lateral view and remounted for fractographical examination in scanning electron microscope. The mode of fracture was classified as 'fatigue' or 'shear' failure. The lengths of fractured segments in both instruments were recorded. Any distortion in hand instrument was noted. Data were analysed using chi-square, Fisher's exact or Student's t-test, where appropriate. Approximately 14% of all discarded hand-operated instruments and 14% of engine-driven instruments were fractured. About 62% of hand instruments failed because of shear fracture, compared with approximately 66% of engine-driven instruments as a result of fatigue (P < 0.05). Approximately 16% of hand instruments were affected by shear, and either remained intact or was fractured, compared with 5% of engine-driven instruments (P < 0.05). The length of the broken fragment was significantly shorter in hand versus engine-driven group (P < 0.05). Approximately 7% of hand instruments were discarded intact but distorted (rarely for engine-driven instruments); all were in the form of unscrewing of the flutes. The location of defects in hand Finishing instruments was significantly closer to the tip than that for Shaping instruments (P < 0.05). Under the conditions of this study (possibly high usage), the failure mode of ProTaper engine-driven and hand-operated instruments appeared to be different, with shear failure being more prevalent in the latter.
Rocket engine diagnostics using qualitative modeling techniques
NASA Technical Reports Server (NTRS)
Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy
1992-01-01
Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system has been created. The qualitative model describes the effects of seal failures on the system steady-state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.
Rocket engine diagnostics using qualitative modeling techniques
NASA Technical Reports Server (NTRS)
Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy
1992-01-01
Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system was created. The qualitative model describes the effects of seal failures on the system steady state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.
Failure analysis of a Stirling engine heat pipe
NASA Technical Reports Server (NTRS)
Moore, Thomas J.; Cairelli, James E.; Khalili, Kaveh
1989-01-01
Failure analysis was conducted on a heat pipe from a Stirling Engine test rig which was designed to operate at 1073 K. Premature failure had occurred due to localized overheating at the leading edge of the evaporator fin. It was found that a crack had allowed air to enter the fin and react with the sodium coolant. The origin of the crack was found to be located at the inner surface of the Inconel 600 fin where severe intergranular corrosion had taken place.
Advanced detection, isolation and accommodation of sensor failures: Real-time evaluation
NASA Technical Reports Server (NTRS)
Merrill, Walter C.; Delaat, John C.; Bruton, William M.
1987-01-01
The objective of the Advanced Detection, Isolation, and Accommodation (ADIA) Program is to improve the overall demonstrated reliability of digital electronic control systems for turbine engines by using analytical redundacy to detect sensor failures. The results of a real time hybrid computer evaluation of the ADIA algorithm are presented. Minimum detectable levels of sensor failures for an F100 engine control system are determined. Also included are details about the microprocessor implementation of the algorithm as well as a description of the algorithm itself.
Foil Bearing Starting Considerations and Requirements for Rotorcraft Engine Applications
NASA Technical Reports Server (NTRS)
Radil, Kevin C.; DellaCorte, Christopher
2009-01-01
Foil gas bearings under development for rotorcraft-sized, hot core engine applications have been susceptible to damage from the slow acceleration and rates typically encountered during the pre-ignition stage in conventional engines. Recent laboratory failures have been assumed to be directly linked to operating foil bearings below their lift-off speed while following conventional startup procedures for the engines. In each instance, the continuous sliding contact between the foils and shaft was believed to thermally overload the bearing and cause the engines to fail. These failures highlight the need to characterize required acceleration rates and minimum operating speeds for these applications. In this report, startup experiments were conducted with a large, rotorcraft engine sized foil bearing under moderate load and acceleration rates to identify the proper start procedures needed to avoid bearing failure. The results showed that a bearing under a 39.4 kPa static load can withstand a modest acceleration rate of 500 rpm/s and excessive loitering below the bearing lift-off speed provided an adequate solid lubricant is present.
77 FR 26943 - Airworthiness Directives; Pratt & Whitney Canada Turboprop Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
...) first stage sun gears and planet gears installed in the reduction gearbox. This AD was prompted by failures of certain first stage sun gears manufactured by TAATI. We are issuing this AD to prevent failure of the sun gear and planet gears which will result in an engine in-flight shut down, possible...
ERIC Educational Resources Information Center
Lai, Polly K.; Portolese, Alisha; Jacobson, Michael J.
2017-01-01
This paper presents a study that applied both "productive failure" (PF) and "authentic learning" instructional approaches in online learning activities for early-career process engineers' professional development. This study compares participants learning with either a PF (low-to-high [LH]) or a more traditional (high-to-low)…
Investigation of the fuel feed line failures on the Space Shuttle main engine
NASA Technical Reports Server (NTRS)
Larson, E. W.
1980-01-01
The Space Shuttle Main Engine (SSME) development program experienced two similar appearing fuel feed line failures during the shutdown portion of two engine tests. Failure investigations into each incident showed that a few cycles of high-amplitude transient strain occurring during the start and cutoff portions of each test could have either accumulated damage and led to a fatigue failure after 46 tests, or caused rupture in a low-strength weld joint. The cause of the high strain was traced to a period of unsteady flow separation during the start and cutoff of each test coincident with the oblique shock approaching the nozzle exit. Since elimination of the flow separation was impractical, the steps taken to allow engine development and flight preparations to continue were: (1) establish the safe operating life of the nozzle, (2) reinforce all low-strength welds, and (3) eliminate the use of thin-wall fuel feed lines. In parallel, the feed line was redesigned and fabrication was initiated on units to be incorporated into the development program.
Grain Boundary Engineering the Mechanical Properties of Allvac 718Plus(Trademark) Superalloy
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Telesman, Jack; Garg, Anita; Lin, Peter; Provenzano, virgil; Heard, Robert; Miller, Herbert M.
2010-01-01
Grain Boundary Engineering can enhance the population of structurally-ordered "low S" Coincidence Site Lattice (CSL) grain boundaries in the microstructure. In some alloys, these "special" grain boundaries have been reported to improve overall resistance to corrosion, oxidation, and creep resistance. Such improvements could be quite beneficial for superalloys, especially in conditions which encourage damage and cracking at grain boundaries. Therefore, the effects of GBE processing on high-temperature mechanical properties of the cast and wrought superalloy Allvac 718Plus (Allvac ATI) were screened. Bar sections were subjected to varied GBE processing, and then consistently heat treated, machined, and tested at 650 C. Creep, tensile stress relaxation, and dwell fatigue crack growth tests were performed. The influences of GBE processing on microstructure, mechanical properties, and associated failure modes are discussed.
A combined field/remote sensing approach for characterizing landslide risk in coastal areas
NASA Astrophysics Data System (ADS)
Francioni, Mirko; Coggan, John; Eyre, Matthew; Stead, Doug
2018-05-01
Understanding the key factors controlling slope failure mechanisms in coastal areas is the first and most important step for analyzing, reconstructing and predicting the scale, location and extent of future instability in rocky coastlines. Different failure mechanisms may be possible depending on the influence of the engineering properties of the rock mass (including the fracture network), the persistence and type of discontinuity and the relative aspect or orientation of the coastline. Using a section of the North Coast of Cornwall, UK, as an example we present a multi-disciplinary approach for characterizing landslide risk associated with coastal instabilities in a blocky rock mass. Remotely captured terrestrial and aerial LiDAR and photogrammetric data were interrogated using Geographic Information System (GIS) techniques to provide a framework for subsequent analysis, interpretation and validation. The remote sensing mapping data was used to define the rock mass discontinuity network of the area and to differentiate between major and minor geological structures controlling the evolution of the North Coast of Cornwall. Kinematic instability maps generated from aerial LiDAR data using GIS techniques and results from structural and engineering geological surveys are presented. With this method, it was possible to highlight the types of kinematic failure mechanism that may generate coastal landslides and highlight areas that are more susceptible to instability or increased risk of future instability. Multi-temporal aerial LiDAR data and orthophotos were also studied using GIS techniques to locate recent landslide failures, validate the results obtained from the kinematic instability maps through site observations and provide improved understanding of the factors controlling the coastal geomorphology. The approach adopted is not only useful for academic research, but also for local authorities and consultancy's when assessing the likely risks of coastal instability.
Failure modes and effects analysis automation
NASA Technical Reports Server (NTRS)
Kamhieh, Cynthia H.; Cutts, Dannie E.; Purves, R. Byron
1988-01-01
A failure modes and effects analysis (FMEA) assistant was implemented as a knowledge based system and will be used during design of the Space Station to aid engineers in performing the complex task of tracking failures throughout the entire design effort. The three major directions in which automation was pursued were the clerical components of the FMEA process, the knowledge acquisition aspects of FMEA, and the failure propagation/analysis portions of the FMEA task. The system is accessible to design, safety, and reliability engineers at single user workstations and, although not designed to replace conventional FMEA, it is expected to decrease by many man years the time required to perform the analysis.
NASA Technical Reports Server (NTRS)
Delaat, John C.; Merrill, Walter C.
1990-01-01
The objective of the Advanced Detection, Isolation, and Accommodation Program is to improve the overall demonstrated reliability of digital electronic control systems for turbine engines. For this purpose, an algorithm was developed which detects, isolates, and accommodates sensor failures by using analytical redundancy. The performance of this algorithm was evaluated on a real time engine simulation and was demonstrated on a full scale F100 turbofan engine. The real time implementation of the algorithm is described. The implementation used state-of-the-art microprocessor hardware and software, including parallel processing and high order language programming.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. On the table is a refurbished, spare orbiter point sensor chassis and a motherboard. Components are being tested to determine why one of the four liquid hydrogen tank low-level fuel cut-off sensors failed in a routine prelaunch check during the launch countdown July 13. The failure caused mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).
An Example of Concurrent Engineering
NASA Technical Reports Server (NTRS)
Rowe, Sidney; Whitten, David; Cloyd, Richard; Coppens, Chris; Rodriguez, Pedro
1998-01-01
The Collaborative Engineering Design and Analysis Room (CEDAR) facility allows on-the- spot design review capability for any project during all phases of development. The required disciplines assemble in this facility to work on any problems (analysis, manufacturing, inspection, etc.) associated with a particular design. A small highly focused team of specialists can meet in this room to better expedite the process of developing a solution to an engineering task within the framework of the constraints that are unique to each discipline. This facility provides the engineering tools and translators to develop a concept within the confines of the room or with remote team members that could access the team's data from other locations. The CEDAR area is envisioned as excellent for failure investigation meetings to be conducted where the computer capabilities can be utilized in conjunction with the Smart Board display to develop failure trees, brainstorm failure modes, and evaluate possible solutions.
Three-point bending of honeycomb sandwich beams with facesheet perforations
NASA Astrophysics Data System (ADS)
Su, Pengbo; Han, Bin; Zhao, Zhongnan; Zhang, Qiancheng; Lu, Tian Jian
2017-12-01
A novel square honeycomb-cored sandwich beam with perforated bottom facesheet is investigated under three-point bending, both analytically and numerically. Perforated square holes in the bottom facesheet are characterized by the area ratio of the hole to intact facesheet (perforation ratio). While for large-scale engineering applications like the decks of cargo vehicles and transportation ships, the perforations are needed to facilitate the fabrication process (e.g., laser welding) as well as service maintenance, it is demonstrated that these perforations, when properly designed, can also enhance the resistance of the sandwich to bending. For illustration, fair comparisons among competing sandwich designs having different perforation ratios but equal mass is achieved by systematically thickening the core webs. Further, the perforated sandwich beam is designed with a relatively thick facesheet to avoid local indention failure so that it mainly fails in two competing modes: (1) bending failure, i.e., yielding of beam cross-section and buckling of top facesheet caused by bending moment; (2) shear failure, i.e., yielding and buckling of core webs due to shear forcing. The sensitivity of the failure loads to the ratio of core height to beam span is also discussed for varying perforation ratios. As the perforation ratio is increased, the load of shear failure increases due to thickening core webs, while that of bending failure decreases due to the weakening bottom facesheet. Design of a sandwich beam with optimal perforation ratio is realized when the two failure loads are equal, leading to significantly enhanced failure load (up to 60% increase) relative to that of a non-perforated sandwich beam with equal mass.
NASA Technical Reports Server (NTRS)
Merrill, W. C.; Delaat, J. C.
1986-01-01
An advanced sensor failure detection, isolation, and accommodation (ADIA) algorithm has been developed for use with an aircraft turbofan engine control system. In a previous paper the authors described the ADIA algorithm and its real-time implementation. Subsequent improvements made to the algorithm and implementation are discussed, and the results of an evaluation presented. The evaluation used a real-time, hybrid computer simulation of an F100 turbofan engine.
1979-06-01
failure and other information. These reports were prepared by personnel from the Mis- souri Geology and Land Survey, Applied Engineering and Urban...34Report of the National Lead Stifling Basin Washout, Madison County, Missouri", Applied Engineering and Urban Geology, Geo- logy and Land Survey, 30...failure and other information are contained in reports by personnel from the Missouri Geology and Land Survey, Applied Engineering and Urban Geology
[Examination of safety improvement by failure record analysis that uses reliability engineering].
Kato, Kyoichi; Sato, Hisaya; Abe, Yoshihisa; Ishimori, Yoshiyuki; Hirano, Hiroshi; Higashimura, Kyoji; Amauchi, Hiroshi; Yanakita, Takashi; Kikuchi, Kei; Nakazawa, Yasuo
2010-08-20
How the maintenance checks of the medical treatment system, including start of work check and the ending check, was effective for preventive maintenance and the safety improvement was verified. In this research, date on the failure of devices in multiple facilities was collected, and the data of the trouble repair record was analyzed by the technique of reliability engineering. An analysis of data on the system (8 general systems, 6 Angio systems, 11 CT systems, 8 MRI systems, 8 RI systems, and the radiation therapy system 9) used in eight hospitals was performed. The data collection period assumed nine months from April to December 2008. Seven items were analyzed. (1) Mean time between failures (MTBF) (2) Mean time to repair (MTTR) (3) Mean down time (MDT) (4) Number found by check in morning (5) Failure generation time according to modality. The classification of the breakdowns per device, the incidence, and the tendency could be understood by introducing reliability engineering. Analysis, evaluation, and feedback on the failure generation history are useful to keep downtime to a minimum and to ensure safety.
Imminent Engine Failure Probe Investigation.
probe signature determination, development of data recording techniques, accumulation of data during durability testing of T56 or TF41 engines and...any other opportunistic gas turbine engine test. The electrostatic probe demonstrated some capability to detect engine distress in TF41 and T56 engines
NASA Astrophysics Data System (ADS)
Li, Gen; Tang, Chun-An; Liang, Zheng-Zhao
2017-01-01
Multi-scale high-resolution modeling of rock failure process is a powerful means in modern rock mechanics studies to reveal the complex failure mechanism and to evaluate engineering risks. However, multi-scale continuous modeling of rock, from deformation, damage to failure, has raised high requirements on the design, implementation scheme and computation capacity of the numerical software system. This study is aimed at developing the parallel finite element procedure, a parallel rock failure process analysis (RFPA) simulator that is capable of modeling the whole trans-scale failure process of rock. Based on the statistical meso-damage mechanical method, the RFPA simulator is able to construct heterogeneous rock models with multiple mechanical properties, deal with and represent the trans-scale propagation of cracks, in which the stress and strain fields are solved for the damage evolution analysis of representative volume element by the parallel finite element method (FEM) solver. This paper describes the theoretical basis of the approach and provides the details of the parallel implementation on a Windows - Linux interactive platform. A numerical model is built to test the parallel performance of FEM solver. Numerical simulations are then carried out on a laboratory-scale uniaxial compression test, and field-scale net fracture spacing and engineering-scale rock slope examples, respectively. The simulation results indicate that relatively high speedup and computation efficiency can be achieved by the parallel FEM solver with a reasonable boot process. In laboratory-scale simulation, the well-known physical phenomena, such as the macroscopic fracture pattern and stress-strain responses, can be reproduced. In field-scale simulation, the formation process of net fracture spacing from initiation, propagation to saturation can be revealed completely. In engineering-scale simulation, the whole progressive failure process of the rock slope can be well modeled. It is shown that the parallel FE simulator developed in this study is an efficient tool for modeling the whole trans-scale failure process of rock from meso- to engineering-scale.
NASA Astrophysics Data System (ADS)
Wang, Zheng; Wang, Zengquan; Wang, A.-na; Zhuang, Li; Wang, Jinwei
2016-10-01
As turbocharging diesel engines for vehicle application are applied in plateau area, the environmental adaptability of engines has drawn more attention. For the environmental adaptability problem of turbocharging diesel engines for vehicle application, the present studies almost focus on the optimization of performance match between turbocharger and engine, and the reliability problem of turbocharger is almost ignored. The reliability problem of compressor impeller of turbocharger for vehicle application when diesel engines operate in plateau area is studied. Firstly, the rule that the rotational speed of turbocharger changes with the altitude height is presented, and the potential failure modes of compressor impeller are analyzed. Then, the failure behavior models of compressor impeller are built, and the reliability models of compressor impeller operating in plateau area are developed. Finally, the rule that the reliability of compressor impeller changes with the altitude height is studied, the measurements for improving the reliability of the compressor impellers of turbocharger operating in plateau area are given. The results indicate that when the operating speed of diesel engine is certain, the rotational speed of turbocharger increases with the increase of altitude height, and the failure risk of compressor impeller with the failure modes of hub fatigue and blade resonance increases. The reliability of compressor impeller decreases with the increase of altitude height, and it also decreases as the increase of number of the mission profile cycle of engine. The method proposed can not only be used to evaluating the reliability of compressor impeller when diesel engines operate in plateau area but also be applied to direct the structural optimization of compressor impeller.
Graphical Displays Assist In Analysis Of Failures
NASA Technical Reports Server (NTRS)
Pack, Ginger; Wadsworth, David; Razavipour, Reza
1995-01-01
Failure Environment Analysis Tool (FEAT) computer program enables people to see and better understand effects of failures in system. Uses digraph models to determine what will happen to system if set of failure events occurs and to identify possible causes of selected set of failures. Digraphs or engineering schematics used. Also used in operations to help identify causes of failures after they occur. Written in C language.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-08
... Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY... installed on a limited number of engines. No defective washers have been shipped as spare parts. This... consequent ignition failure, possibly resulting in damage to the engine, in- flight engine shutdown and...
40 CFR 1065.410 - Maintenance limits for stabilized test engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065... scheduled maintenance on emission data engines must be representative of what is planned to be available to... no longer use it as an emission-data engine. Also, if your test engine has a major mechanical failure...
40 CFR 1065.410 - Maintenance limits for stabilized test engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065... scheduled maintenance on emission data engines must be representative of what is planned to be available to... no longer use it as an emission-data engine. Also, if your test engine has a major mechanical failure...
Structures and geriatrics from a failure analysis experience viewpoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopper, D.M.
In a failure analysis consulting engineering practice one sees a variety of structural failures from which observations may be made concerning geriatric structures. Representative experience with power plants, refineries, offshore structures, and forensic investigations is summarized and generic observations are made regarding the maintenance of fitness for purpose of structures. Although it is important to optimize the engineering design for a range of operational and environmental variables, it is essential that fabrication and inspection controls exist along with common sense based ongoing monitoring and operations procedures. 18 figs.
NASA Technical Reports Server (NTRS)
Hartman, Edwin P
1938-01-01
Wind tunnel tests of a 15-foot-span model of a two-engine low wing transport airplane were made as a preliminary study of the emergency arising from the failure of one engine in flight. Two methods of reducing the initial yawing moment resulting from the failure of one engine were investigated and the equilibrium conditions were explored for two basic modes on one engine, one with zero angle of sideslip and the other with several degrees of sideslip. The added drag resulting from the unsymmetrical attitudes required for flight on one engine was determined for the model airplane. The effects of the application of power upon the stability, controllability, lift, and drag of the model airplane were measured. A dynamic pressure survey of the propeller slipstream was made in the neighborhood of the tail surfaces at three angles of attack. The added parasite drag of the model airplane resulting from the unfavorable conditions of flight on one engine was estimated. From 35 to 50 percent of this added drag was due to the drag of the dead engine propeller and the other 50 to 65 percent was due to the unsymmetrical attitude of the airplane. The mode of flight on one engine in which the angle of sideslip was zero was found to require less power than the mode in which the angle of sideslip was several degrees.
Testing of a variable-stroke Stirling engine
NASA Technical Reports Server (NTRS)
Thieme, Lanny G.; Allen, David J.
1986-01-01
Testing of a variable-stroke Stirling engine at NASA Lewis has been completed. In support of the DOE Stirling Engine Highway Vehicle Systems Program, the engine was tested for about 70 hours total with both He and H2 as working fluids over a range of pressures and strokes. A direct comparison was made of part-load efficiencies obtained with variable-stroke (VS) and variable-pressure operation. Two failures with the variable-angle swash-plate drive system limited testing to low power levels. These failures are not thought to be caused by problems inherent with the VS concept but do emphasize the need for careful design in the area of the crossheads.
Testing of a variable-stroke Stirling engine
NASA Technical Reports Server (NTRS)
Thieme, L. G.; Allen, D. J.
1986-01-01
Testing of a variable-stroke Stirling engine at NASA Lewis has been completed. In support of the DOE Stirling Engine Highway Vehicle Systems Program, the engine was tested for about 70 hours total with both He and H2 working fluids over a range of pressures and strokes. A direct comparison was made of part-load efficiencies obtained with variable-stroke (VS) and variable-pressure operation. Two failures with the variable-angle swash-plate drive system limited testing to low power levels. These failures are not thought to be caused by problems inherent with the VS concept but do emphasize the need for careful design in the area of the crossheads.
Advanced orbit transfer vehicle propulsion system study
NASA Technical Reports Server (NTRS)
Cathcart, J. A.; Cooper, T. W.; Corringrato, R. M.; Cronau, S. T.; Forgie, S. C.; Harder, M. J.; Mcallister, J. G.; Rudman, T. J.; Stoneback, V. W.
1985-01-01
A reuseable orbit transfer vehicle concept was defined and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine were presented. The major characteristics of the vehicle preliminary design include a low lift to drag aerocapture capability, main propulsion system failure criteria of fail operational/fail safe, and either two main engines with an attitude control system for backup or three main engines to meet the failure criteria. A maintenance and servicing approach was also established for the advanced vehicle and engine concepts. Design tradeoff study conclusions were based on the consideration of reliability, performance, life cycle costs, and mission flexibility.
Reusable rocket engine intelligent control system framework design, phase 2
NASA Technical Reports Server (NTRS)
Nemeth, ED; Anderson, Ron; Ols, Joe; Olsasky, Mark
1991-01-01
Elements of an advanced functional framework for reusable rocket engine propulsion system control are presented for the Space Shuttle Main Engine (SSME) demonstration case. Functional elements of the baseline functional framework are defined in detail. The SSME failure modes are evaluated and specific failure modes identified for inclusion in the advanced functional framework diagnostic system. Active control of the SSME start transient is investigated, leading to the identification of a promising approach to mitigating start transient excursions. Key elements of the functional framework are simulated and demonstration cases are provided. Finally, the advanced function framework for control of reusable rocket engines is presented.
Real-time sensor data validation
NASA Technical Reports Server (NTRS)
Bickmore, Timothy W.
1994-01-01
This report describes the status of an on-going effort to develop software capable of detecting sensor failures on rocket engines in real time. This software could be used in a rocket engine controller to prevent the erroneous shutdown of an engine due to sensor failures which would otherwise be interpreted as engine failures by the control software. The approach taken combines analytical redundancy with Bayesian belief networks to provide a solution which has well defined real-time characteristics and well-defined error rates. Analytical redundancy is a technique in which a sensor's value is predicted by using values from other sensors and known or empirically derived mathematical relations. A set of sensors and a set of relations among them form a network of cross-checks which can be used to periodically validate all of the sensors in the network. Bayesian belief networks provide a method of determining if each of the sensors in the network is valid, given the results of the cross-checks. This approach has been successfully demonstrated on the Technology Test Bed Engine at the NASA Marshall Space Flight Center. Current efforts are focused on extending the system to provide a validation capability for 100 sensors on the Space Shuttle Main Engine.
Differential reliability : probabilistic engineering applied to wood members in bending-tension
Stanley K. Suddarth; Frank E. Woeste; William L. Galligan
1978-01-01
Reliability analysis is a mathematical technique for appraising the design and materials of engineered structures to provide a quantitative estimate of probability of failure. Two or more cases which are similar in all respects but one may be analyzed by this method; the contrast between the probabilities of failure for these cases allows strong analytical focus on the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raudsepp, E.
A test is given to determine if an engineer suffers from one of the three barriers to technical success: fear of success, fear of failure, or perfectionism. As in most such tests, the middle way is best. Successful engineers know that perfection cannot be attained, that they don't have time to worry about failure or success, and that by aiming and perservering in doing things well, success can be achieved.
Application of Function-Failure Similarity Method to Rotorcraft Component Design
NASA Technical Reports Server (NTRS)
Roberts, Rory A.; Stone, Robert E.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)
2002-01-01
Performance and safety are the top concerns of high-risk aerospace applications at NASA. Eliminating or reducing performance and safety problems can be achieved with a thorough understanding of potential failure modes in the designs that lead to these problems. The majority of techniques use prior knowledge and experience as well as Failure Modes and Effects as methods to determine potential failure modes of aircraft. During the design of aircraft, a general technique is needed to ensure that every potential failure mode is considered, while avoiding spending time on improbable failure modes. In this work, this is accomplished by mapping failure modes to specific components, which are described by their functionality. The failure modes are then linked to the basic functions that are carried within the components of the aircraft. Using this technique, designers can examine the basic functions, and select appropriate analyses to eliminate or design out the potential failure modes. The fundamentals of this method were previously introduced for a simple rotating machine test rig with basic functions that are common to a rotorcraft. In this paper, this technique is applied to the engine and power train of a rotorcraft, using failures and functions obtained from accident reports and engineering drawings.
Failure mode prediction for composite structural insulated panels with MgO board facings
NASA Astrophysics Data System (ADS)
Smakosz, Łukasz; Kreja, Ireneusz
2018-01-01
Sandwich panels are readily used in civil engineering due to their high strength to weight ratio and the ease and speed of assembly. The idea of a sandwich section is to combine thin and durable facings with a light-weight core and the choice of materials used allows obtaining the desired behaviour. Panels in consideration consist of MgO (magnesium oxide) board facings and expanded polystyrene core and are characterized by immunity to biological corrosion, a high thermal insulation and a relatively low impact on environment. Customizing the range of panels to meet market needs requires frequent size changes, leading to different failure modes, which are identified in a series of costly full-scale laboratory tests. A nonlinear numerical model was created with a use of a commercial ABAQUS code and a user-defined procedure, which is able to reproduce observed failure mechanisms; its parameters were established on the basis of small-scale tests and numerical experiments. The model was validated by a comparison with the results of the full-scale bending and compression tests. The results obtained were in satisfactory agreement with the test data.
Boyd, Douglas D
2015-04-01
Accidents in twin-engine aircraft carry a higher risk of fatality compared with single engine aircraft and constitute 9% of all general aviation accidents. The different flight profile (higher airspeed, service ceiling, increased fuel load, and aircraft yaw in engine failure) may make comparable studies on single-engine aircraft accident causes less relevant. The objective of this study was to identify the accident causes for non-commercial operations in twin engine aircraft. A NTSB accident database query for accidents in twin piston engine airplanes of 4-8 seat capacity with a maximum certified weight of 3000-8000lbs. operating under 14CFR Part 91 for the period spanning 2002 and 2012 returned 376 accidents. Accident causes and contributing factors were as per the NTSB final report categories. Total annual flight hour data for the twin engine piston aircraft fleet were obtained from the FAA. Statistical analyses employed Chi Square, Fisher's Exact and logistic regression analysis. Neither the combined fatal/non-fatal accident nor the fatal accident rate declined over the period spanning 2002-2012. Under visual weather conditions, the largest number, n=27, (27%) of fatal accidents was attributed to malfunction with a failure to follow single engine procedures representing the most common contributing factor. In degraded visibility, poor instrument approach procedures resulted in the greatest proportion of fatal crashes. Encountering thunderstorms was the most lethal of all accident causes with all occupants sustaining fatal injuries. At night, a failure to maintain obstacle/terrain clearance was the most common accident cause leading to 36% of fatal crashes. The results of logistic regression showed that operations at night (OR 3.7), off airport landings (OR 14.8) and post-impact fire (OR 7.2) all carried an excess risk of a fatal flight. This study indicates training areas that should receive increased emphasis for twin-engine training/recency. First, increased training should be provided on single engine procedures in the event of an engine failure. Second, more focus should be placed on instrument approaches and recovery from unusual aircraft attitude where visibility is degraded. Third, pilots should be made aware of appropriate speed selection for inadvertent flights in convective weather. Finally, emphasizing the importance of conducting night operations under instrument flight rules with its altitude restrictions should lead to a diminished proportion of accidents attributed to failure to maintain obstacle/terrain clearance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Preliminary Study on Acoustic Detection of Faults Experienced by a High-Bypass Turbofan Engine
NASA Technical Reports Server (NTRS)
Boyle, Devin K.
2014-01-01
The vehicle integrated propulsion research (VIPR) effort conducted by NASA and several partners provided an unparalleled opportunity to test a relatively low TRL concept regarding the use of far field acoustics to identify faults occurring in a high bypass turbofan engine. Though VIPR Phase II ground based aircraft installed engine testing wherein a multitude of research sensors and methods were evaluated, an array of acoustic microphones was used to determine the viability of such an array to detect failures occurring in a commercially representative high bypass turbofan engine. The failures introduced during VIPR testing included commanding the engine's low pressure compressor (LPC) exit and high pressure compressor (HPC) 14th stage bleed values abruptly to their failsafe positions during steady state
Studies and analyses of the space shuttle main engine
NASA Technical Reports Server (NTRS)
Tischer, Alan E.; Glover, R. C.
1987-01-01
The primary objectives were to: evaluate ways to maximize the information yield from the current Space Shuttle Main Engine (SSME) condition monitoring sensors, identify additional sensors or monitoring capabilities which would significantly improve SSME data, and provide continuing support of the Main Engine Cost/Operations (MECO) model. In the area of SSME condition monitoring, the principal tasks were a review of selected SSME failure data, a general survey of condition monitoring, and an evaluation of the current engine monitoring system. A computerized data base was developed to assist in modeling engine failure information propagations. Each of the above items is discussed in detail. Also included is a brief discussion of the activities conducted in support of the MECO model.
Advanced Engine Health Management Applications of the SSME Real-Time Vibration Monitoring System
NASA Technical Reports Server (NTRS)
Fiorucci, Tony R.; Lakin, David R., II; Reynolds, Tracy D.; Turner, James E. (Technical Monitor)
2000-01-01
The Real Time Vibration Monitoring System (RTVMS) is a 32-channel high speed vibration data acquisition and processing system developed at Marshall Space Flight Center (MSFC). It Delivers sample rates as high as 51,200 samples/second per channel and performs Fast Fourier Transform (FFT) processing via on-board digital signal processing (DSP) chips in a real-time format. Advanced engine health assessment is achieved by utilizing the vibration spectra to provide accurate sensor validation and enhanced engine vibration redlines. Discrete spectral signatures (such as synchronous) that are indicators of imminent failure can be assessed and utilized to mitigate catastrophic engine failures- a first in rocket engine health assessment. This paper is presented in viewgraph form.
NASA Technical Reports Server (NTRS)
Middleton, D. B.; Hurt, G. J., Jr.; Bergeron, H. P.; Patton, J. M., Jr.; Deal, P. L.; Champine, R. A.
1975-01-01
A moving-base simulator investigation of the problems of recovery and landing of a STOL aircraft after failure of an outboard engine during final approach was made. The approaches were made at 75 knots along a 6 deg glide slope. The engine was failed at low altitude and the option to go around was not allowed. The aircraft was simulated with each of three control systems, and it had four high-bypass-ratio fan-jet engines exhausting against large triple-slotted wing flaps to produce additional lift. A virtual-image out-the-window television display of a simulated STOL airport was operating during part of the investigation. Also, a simple heads-up flight director display superimposed on the airport landing scene was used by the pilots to make some of the recoveries following an engine failure. The results of the study indicated that the variation in visual cues and/or motion cues had little effect on the outcome of a recovery, but they did have some effect on the pilot's response and control patterns.
NASA Technical Reports Server (NTRS)
Wilson, R. E.; Riccio, J. R.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Ascent Thrust Vector Control (ATVC) Actuator hardware are documented. The function of the Ascent Thrust Vector Control Actuators (ATVC) is to gimbal the main engines to provide for attitude and flight path control during ascent. During first stage flight, the SRB nozzles provide nearly all the steering. After SRB separation, the Orbiter is steered by gimbaling of its main engines. There are six electrohydraulic servoactuators, one pitch and one yaw for each of the three main engines. Each servoactuator is composed of four electrohydraulic servovalve assemblies, one second stage power spool valve assembly, one primary piston assembly and a switching valve. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Critical failures resulting in loss of ATVC were mainly due to loss of hydraulic fluid, fluid contamination and mechanical failures.
76 FR 56637 - Airworthiness Directives; Lycoming Engines Model IO-720-A1B Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
... Airworthiness Directives; Lycoming Engines Model IO-720-A1B Reciprocating Engines AGENCY: Federal Aviation... directive (AD) for certain model IO-720-A1B Lycoming Engines reciprocating engines. This AD requires a... crankshaft due to incorrect parts installed. We are issuing this AD to prevent engine crankshaft failure and...
A real time microcomputer implementation of sensor failure detection for turbofan engines
NASA Technical Reports Server (NTRS)
Delaat, John C.; Merrill, Walter C.
1989-01-01
An algorithm was developed which detects, isolates, and accommodates sensor failures using analytical redundancy. The performance of this algorithm was demonstrated on a full-scale F100 turbofan engine. The algorithm was implemented in real-time on a microprocessor-based controls computer which includes parallel processing and high order language programming. Parallel processing was used to achieve the required computational power for the real-time implementation. High order language programming was used in order to reduce the programming and maintenance costs of the algorithm implementation software. The sensor failure algorithm was combined with an existing multivariable control algorithm to give a complete control implementation with sensor analytical redundancy. The real-time microprocessor implementation of the algorithm which resulted in the successful completion of the algorithm engine demonstration, is described.
NASA Technical Reports Server (NTRS)
Gunter, E. J.; Humphris, R. R.; Severson, S. J.
1983-01-01
Cryogenic turbomachinery used to pump high pressure fuel (liquid H2) and oxidizer (liquid O2) to the main engines of the Space Shuttle have experienced rotor instabilities. Subsynchronous whirl, an extremely destructive instability, has caused bearing failures and severe rubs in the seals. These failures have resulted in premature engine shutdowns or, in many instances, have limited the power level to which the turbopumps could be operated. The feasibility of using an eddy current type of damping mechanism for the Space Shuttle Main Engine is outlined.
Cheung, Gary S P; Shen, Ya; Darvell, Brian W
2007-10-01
The purpose of this study was to compare the low-cycle fatigue (LCF) behavior of electropolished and nonelectropolished nickel-titanium (NiTi) instruments of the same design in hypochlorite. Forty-five electropolished and 62 nonelectropolished NiTi engine files were subjected to rotational bending at various curvatures in 1.2% hypochlorite solution. Number of revolutions to failure, crack-initiation sites, extent of slow crack extension into the fracture cross-section, and surface-strain amplitude were noted. A linear relationship was found between LCF life and surface-strain amplitude for both groups, with no discernible difference between the two (p > 0.05). No electropolished instrument showed more than one crack origin, significantly fewer than for the nonelectropolished instruments (p < 0.05). The square root of crack extension and strain amplitude were inversely related. Although surface smoothness is enhanced by electropolishing, this did not protect the instrument from LCF failure.
Investigation of HP Turbine Blade Failure in a Military Turbofan Engine
NASA Astrophysics Data System (ADS)
Mishra, R. K.; Thomas, Johny; Srinivasan, K.; Nandi, Vaishakhi; Bhatt, R. Raghavendra
2017-04-01
Failure of a high pressure (HP) turbine blade in a military turbofan engine is investigated to determine the root cause of failure. Forensic and metallurgical investigations are carried out on the affected blades. The loss of coating and the presence of heavily oxidized intergranular fracture features including substrate material aging and airfoil curling in the trailing edge of a representative blade indicate that the coating is not providing adequate oxidation protection and the blade material substrate is not suitable for the application at hand. Coating spallation followed by substrate oxidation and aging leading to intergranular cracking and localized trailing edge curling is the root cause of the blade failure. The remaining portion of the blade fracture surface showed ductile overload features in the final failure. The damage observed in downstream components is due to secondary effects.
Engine throat/nozzle optics for plume spectroscopy
NASA Technical Reports Server (NTRS)
Bickford, R. L.; Duncan, D. B.
1991-01-01
The Task 2.0 Engine Throat/Nozzle Optics for Plume Spectroscopy, effort was performed under the NASA LeRC Development of Life Prediction Capabilities for Liquid Propellant Rocket Engines program. This Task produced the engineering design of an optical probe to enable spectroscopic measurements within the SSME main chamber. The probe mounts on the SSME nozzle aft manifold and collects light emitted from the throat plane and chamber. Light collected by the probe is transferred to a spectrometer through a fiber optic cable. The design analyses indicate that the probe will function throughout the engine operating cycle and is suitable for both test stand and flight operations. By detecting metallic emissions that are indicative of component degradation or incipient failure, engine shutdown can be initiated before catastrophic failure. This capability will protect valuable test stand hardware and provide enhanced mission safety.
Thin Film Ceramic Strain Sensor Development for High Temperature Environments
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M.; Laster, Kimala L.
2008-01-01
The need for sensors to operate in harsh environments is illustrated by the need for measurements in the turbine engine hot section. The degradation and damage that develops over time in hot section components can lead to catastrophic failure. At present, the degradation processes that occur in the harsh hot section environment are poorly characterized, which hinders development of more durable components, and since it is so difficult to model turbine blade temperatures, strains, etc, actual measurements are needed. The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in harsh environments. The effort at the NASA Glenn Research Center (GRC) to develop high temperature thin film ceramic static strain gauges for application in turbine engines is described, first in the fan and compressor modules, and then in the hot section. The near-term goal of this research effort was to identify candidate thin film ceramic sensor materials and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. A thorough literature search was conducted for ceramics that have the potential for application as high temperature thin film strain gauges chemically and physically compatible with the NASA GRCs microfabrication procedures and substrate materials. Test results are given for tantalum, titanium and zirconium-based nitride and oxynitride ceramic films.
Deriving Function-failure Similarity Information for Failure-free Rotorcraft Component Design
NASA Technical Reports Server (NTRS)
Roberts, Rory A.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)
2002-01-01
Performance and safety are the top concerns of high-risk aerospace applications at NASA. Eliminating or reducing performance and safety problems can be achieved with a thorough understanding of potential failure modes in the design that lead to these problems. The majority of techniques use prior knowledge and experience as well as Failure Modes and Effects as methods to determine potential failure modes of aircraft. The aircraft design needs to be passed through a general technique to ensure that every potential failure mode is considered, while avoiding spending time on improbable failure modes. In this work, this is accomplished by mapping failure modes to certain components, which are described by their functionality. In turn, the failure modes are then linked to the basic functions that are carried within the components of the aircraft. Using the technique proposed in this paper, designers can examine the basic functions, and select appropriate analyses to eliminate or design out the potential failure modes. This method was previously applied to a simple rotating machine test rig with basic functions that are common to a rotorcraft. In this paper, this technique is applied to the engine and power train of a rotorcraft, using failures and functions obtained from accident reports and engineering drawings.
Engineering and Software Engineering
NASA Astrophysics Data System (ADS)
Jackson, Michael
The phrase ‘software engineering' has many meanings. One central meaning is the reliable development of dependable computer-based systems, especially those for critical applications. This is not a solved problem. Failures in software development have played a large part in many fatalities and in huge economic losses. While some of these failures may be attributable to programming errors in the narrowest sense—a program's failure to satisfy a given formal specification—there is good reason to think that most of them have other roots. These roots are located in the problem of software engineering rather than in the problem of program correctness. The famous 1968 conference was motivated by the belief that software development should be based on “the types of theoretical foundations and practical disciplines that are traditional in the established branches of engineering.” Yet after forty years of currency the phrase ‘software engineering' still denotes no more than a vague and largely unfulfilled aspiration. Two major causes of this disappointment are immediately clear. First, too many areas of software development are inadequately specialised, and consequently have not developed the repertoires of normal designs that are the indispensable basis of reliable engineering success. Second, the relationship between structural design and formal analytical techniques for software has rarely been one of fruitful synergy: too often it has defined a boundary between competing dogmas, at which mutual distrust and incomprehension deprive both sides of advantages that should be within their grasp. This paper discusses these causes and their effects. Whether the common practice of software development will eventually satisfy the broad aspiration of 1968 is hard to predict; but an understanding of past failure is surely a prerequisite of future success.
Importance Sampling in the Evaluation and Optimization of Buffered Failure Probability
2015-07-01
12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 Vancouver, Canada, July 12-15, 2015...Importance Sampling in the Evaluation and Optimization of Buffered Failure Probability Marwan M. Harajli Graduate Student, Dept. of Civil and Environ...criterion is usually the failure probability . In this paper, we examine the buffered failure probability as an attractive alternative to the failure
14 CFR 33.70 - Engine life-limited parts.
Code of Federal Regulations, 2014 CFR
2014-01-01
... parts are rotor and major static structural parts whose primary failure is likely to result in a....70 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.70 Engine life...
Methodology for Physics and Engineering of Reliable Products
NASA Technical Reports Server (NTRS)
Cornford, Steven L.; Gibbel, Mark
1996-01-01
Physics of failure approaches have gained wide spread acceptance within the electronic reliability community. These methodologies involve identifying root cause failure mechanisms, developing associated models, and utilizing these models to inprove time to market, lower development and build costs and higher reliability. The methodology outlined herein sets forth a process, based on integration of both physics and engineering principles, for achieving the same goals.
77 FR 40479 - Airworthiness Directives; Rolls-Royce Corporation Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-10
... inspection (FPI) on certain 3rd and 4th stage turbine wheels for cracks in the turbine blades. We are issuing this AD to prevent failure of 3rd or 4th stage turbine wheel blades which could cause engine failure... certain 3rd and 4th stage turbine wheels for cracks in the turbine blades. Comments We gave the public the...
Main propulsion system design recommendations for an advanced Orbit Transfer Vehicle
NASA Technical Reports Server (NTRS)
Redd, L.
1985-01-01
Various main propulsion system configurations of an advanced OTV are evaluated with respect to the probability of nonindependent failures, i.e., engine failures that disable the entire main propulsion system. Analysis of the life-cycle cost (LCC) indicates that LCC is sensitive to the main propulsion system reliability, vehicle dry weight, and propellant cost; it is relatively insensitive to the number of missions/overhaul, failures per mission, and EVA and IVA cost. In conclusion, two or three engines are recommended in view of their highest reliability, minimum life-cycle cost, and fail operational/fail safe capability.
40 CFR 1048.325 - What happens if an engine family fails the production-line testing requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... steps you must take to remedy the cause of the engine family's production-line failure. All the engines... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What happens if an engine family fails... SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.325 What happens if an engine family fails...
40 CFR 1045.325 - What happens if an engine family fails the production-line testing requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... steps you must take to remedy the cause of the engine family's production-line failure. All the engines... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What happens if an engine family fails... PROPULSION MARINE ENGINES AND VESSELS Testing Production-line Engines § 1045.325 What happens if an engine...
Model Based Autonomy for Robust Mars Operations
NASA Technical Reports Server (NTRS)
Kurien, James A.; Nayak, P. Pandurang; Williams, Brian C.; Lau, Sonie (Technical Monitor)
1998-01-01
Space missions have historically relied upon a large ground staff, numbering in the hundreds for complex missions, to maintain routine operations. When an anomaly occurs, this small army of engineers attempts to identify and work around the problem. A piloted Mars mission, with its multiyear duration, cost pressures, half-hour communication delays and two-week blackouts cannot be closely controlled by a battalion of engineers on Earth. Flight crew involvement in routine system operations must also be minimized to maximize science return. It also may be unrealistic to require the crew have the expertise in each mission subsystem needed to diagnose a system failure and effect a timely repair, as engineers did for Apollo 13. Enter model-based autonomy, which allows complex systems to autonomously maintain operation despite failures or anomalous conditions, contributing to safe, robust, and minimally supervised operation of spacecraft, life support, In Situ Resource Utilization (ISRU) and power systems. Autonomous reasoning is central to the approach. A reasoning algorithm uses a logical or mathematical model of a system to infer how to operate the system, diagnose failures and generate appropriate behavior to repair or reconfigure the system in response. The 'plug and play' nature of the models enables low cost development of autonomy for multiple platforms. Declarative, reusable models capture relevant aspects of the behavior of simple devices (e.g. valves or thrusters). Reasoning algorithms combine device models to create a model of the system-wide interactions and behavior of a complex, unique artifact such as a spacecraft. Rather than requiring engineers to all possible interactions and failures at design time or perform analysis during the mission, the reasoning engine generates the appropriate response to the current situation, taking into account its system-wide knowledge, the current state, and even sensor failures or unexpected behavior.
26 CFR 301.6653-1 - Failure to pay tax.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Failure to pay tax. 301.6653-1 Section 301.6653... Additions to the Tax and Additional Amounts § 301.6653-1 Failure to pay tax. (a) Negligence or intentional... paragraph (b)(2) of this section. (e) Failure to pay stamp tax. Any person (as defined in section 6671(b...
Life modeling of thermal barrier coatings for aircraft gas turbine engines
NASA Technical Reports Server (NTRS)
Miller, R. A.
1989-01-01
Thermal barrier coating life models developed under the NASA Lewis Research Center's Hot Section Technology (HOST) Program are summarized. An initial laboratory model and three design-capable models are discussed. Current understanding of coating failure mechanisms are also summarized. The materials and structural aspects of thermal barrier coatings have been successfully integrated under the HOST program to produce models which may now or in the near future be used in design. Efforts on this program continue at Pratt and Whitney Aircraft where their model is being extended to the life prediction of physical vapor deposited thermal barrier coatings.
Thermal barrier coatings for gas-turbine engine applications.
Padture, Nitin P; Gell, Maurice; Jordan, Eric H
2002-04-12
Hundreds of different types of coatings are used to protect a variety of structural engineering materials from corrosion, wear, and erosion, and to provide lubrication and thermal insulation. Of all these, thermal barrier coatings (TBCs) have the most complex structure and must operate in the most demanding high-temperature environment of aircraft and industrial gas-turbine engines. TBCs, which comprise metal and ceramic multilayers, insulate turbine and combustor engine components from the hot gas stream, and improve the durability and energy efficiency of these engines. Improvements in TBCs will require a better understanding of the complex changes in their structure and properties that occur under operating conditions that lead to their failure. The structure, properties, and failure mechanisms of TBCs are herein reviewed, together with a discussion of current limitations and future opportunities.
NASA Technical Reports Server (NTRS)
Bull, John; Mah, Robert; Davis, Gloria; Conley, Joe; Hardy, Gordon; Gibson, Jim; Blake, Matthew; Bryant, Don; Williams, Diane
1995-01-01
Failures of aircraft primary flight-control systems to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. , DC-1O crash, B-747 crash, C-5 crash, B-52 crash, and others). Dryden Flight Research Center (DFRC) investigated the use of engine thrust for emergency flight control of several airplanes, including the B-720, Lear 24, F-15, C-402, and B-747. A series of three piloted simulation tests have been conducted at Ames Research Center to investigate propulsion control for safely landing a medium size jet transport which has experienced a total primary flight-control failure. The first series of tests was completed in July 1992 and defined the best interface for the pilot commands to drive the engines. The second series of tests was completed in August 1994 and investigated propulsion controlled aircraft (PCA) display requirements and various command modes. The third series of tests was completed in May 1995 and investigated PCA full-flight envelope capabilities. This report describes the concept of a PCA, discusses pilot controls, displays, and procedures; and presents the results of piloted simulation evaluations of the concept by a cross-section of air transport pilots.
A Take Stock of Turbine Blades Failure Phenomenon
NASA Astrophysics Data System (ADS)
Roy, Abhijit
2018-02-01
Turbine Blade design and engineering is one of the most complicated and important aspects of turbine technology. Experiments with blades can be simple or very complicated, depending upon parameters of analysis. Turbine blades are subjected to vigorous environments, such as high temperatures, high stresses, and a potentially high vibration environment. All these factors can lead to blade failures, which can destroy the turbine, and engine, so careful design is the prime consideration to resist those conditions. A high cycle of fatigue of compressor and turbine blades due to high dynamic stress caused by blade vibration and resonance within the operating range of machinery is common failure mode for turbine machine. Continuous study and investigation on failure of turbine blades are going on since last five decades. Some review papers published during these days aiming to present a review on recent studies and investigations done on failures of turbine blades. All the detailed literature related with the turbine blades has not been described but emphasized to provide all the methodologies of failures adopted by various researches to investigate turbine blade. This paper illustrate on various factors of failure.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
... Section 6707A and the Failure To Include on Any Return or Statement Any Information Required To Be... respect to the penalties applicable to the failure to include on any return or statement any information... (TD 9425) relating to the penalty under section 6707A for the failure to include on any return or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asano, M.
1979-08-28
The invention discloses an emission control apparatus for internal combustion engine includes an exhaust composition sensor to sense the mixture ratio, a circuit for clamping the mixture ratio to a predetermined constant value to prevent the mixture from becoming too rich or too lean when a failure should occur in the control loop, for example, in the exhaust composition sensor failure and a circuit for interrupting the clamping circuit when the engine operating condition is such that the sensor is caused to produce low voltage signals although the sensor is functioning properly.
40 CFR 1054.325 - What happens if an engine family fails the production-line testing requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... steps you must take to remedy the cause of the engine family's production-line failure. All the engines... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What happens if an engine family fails... SPARK-IGNITION ENGINES AND EQUIPMENT Production-line Testing § 1054.325 What happens if an engine family...
Detecting Solenoid Valve Deterioration in In-Use Electronic Diesel Fuel Injection Control Systems
Tsai, Hsun-Heng; Tseng, Chyuan-Yow
2010-01-01
The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves. PMID:22163597
Detecting solenoid valve deterioration in in-use electronic diesel fuel injection control systems.
Tsai, Hsun-Heng; Tseng, Chyuan-Yow
2010-01-01
The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves.
Eagle RTS: A design for a regional transport aircraft
NASA Technical Reports Server (NTRS)
Bryer, Paul; Buckles, Jon; Lemke, Paul; Peake, Kirk
1992-01-01
This university design project concerns the Eagle RTS (Regional Transport System), a 66 passenger, twin turboprop aircraft with a range of 836 nautical miles. It will operate with a crew of two pilots and two flight attendents. This aircraft will employ the use of aluminum alloys and composite materials to reduce the aircraft weight and increase aerodynamic efficiency. The Eagle RTS will use narrow body aerodynamics with a canard configuration to improve performance. Leading edge technology will be used in the cockpit to improve flight handling and safety. The Eagle RTS propulsion system will consist of two turboprop engines with a total thrust of approximately 6300 pounds, 3150 pounds thrust per engine, for the cruise configuration. The engines will be mounted on the aft section of the aircraft to increase passenger safety in the event of a propeller failure. Aft mounted engines will also increase the overall efficiency of the aircraft by reducing the aircraft's drag. The Eagle RTS is projected to have a takeoff distance of approximately 4700 feet and a landing distance of 6100 feet. These distances will allow the Eagle RTS to land at the relatively short runways of regional airports.
14 CFR 23.149 - Minimum control speed.
Code of Federal Regulations, 2012 CFR
2012-01-01
... extended; and (5) All propeller controls in the position recommended for approach with all engines... engine is suddenly made inoperative, it is possible to maintain control of the airplane with that engine... not more than 5 degrees. The method used to simulate critical engine failure must represent the most...
14 CFR 23.149 - Minimum control speed.
Code of Federal Regulations, 2014 CFR
2014-01-01
... extended; and (5) All propeller controls in the position recommended for approach with all engines... engine is suddenly made inoperative, it is possible to maintain control of the airplane with that engine... not more than 5 degrees. The method used to simulate critical engine failure must represent the most...
Aeronautical Engineering. A Continuing Bibliography with Indexes
1987-09-01
engines 482 01 AERONAUTICS (GENERAL) i-10 aircraft equipped with turbine engine ...rate adaptive control with applications to lateral Statistics on aircraft gas turbine engine rotor failures Unified model for the calculation of blade ...PUMPS p 527 A87-35669 to test data for a composite prop-tan model Gas turbine combustor and engine augmentor tube GENERAL AVIATION AIRCRAFT
Inpatient preanalytic process improvements.
Wagar, Elizabeth A; Phipps, Ron; Del Guidice, Robert; Middleton, Lavinia P; Bingham, John; Prejean, Cheryl; Johnson-Hamilton, Martha; Philip, Pheba; Le, Ngoc Han; Muses, Waheed
2013-12-01
Phlebotomy services are a common target for preanalytic improvements. Many new, quality engineering tools have recently been applied in clinical laboratories. However, data on relatively few projects have been published. This example describes a complete application of current, quality engineering tools to improve preanalytic phlebotomy services. To decrease the response time in the preanalytic inpatient laboratory by 25%, to reduce the number of incident reports related to preanalytic phlebotomy, and to make systematic process changes that satisfied the stakeholders. The Department of Laboratory Medicine, General Services Section, at the University of Texas MD Anderson Cancer Center (Houston) is responsible for inpatient phlebotomy in a 24-hour operation, which serves 689 inpatient beds. The study director was project director of the Division of Pathology and Laboratory Medicine's Quality Improvement Section and was assisted by 2 quality technologists and an industrial engineer from MD Anderson Office of Performance Improvement. After implementing each solution, using well-recognized, quality tools and metrics, the response time for blood collection decreased by 23%, which was close to meeting the original responsiveness goal of 25%. The response time between collection and arrival in the laboratory decreased by 8%. Applicable laboratory-related incident reports were reduced by 43%. Comprehensive application of quality tools, such as statistical control charts, Pareto diagrams, value-stream maps, process failure modes and effects analyses, fishbone diagrams, solution prioritization matrices, and customer satisfaction surveys can significantly improve preset goals for inpatient phlebotomy.
Processes in construction of failure management expert systems from device design information
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Lance, Nick
1987-01-01
This paper analyzes the tasks and problem solving methods used by an engineer in constructing a failure management expert system from design information about the device to te diagnosed. An expert test engineer developed a trouble-shooting expert system based on device design information and experience with similar devices, rather than on specific expert knowledge gained from operating the device or troubleshooting its failures. The construction of the expert system was intensively observed and analyzed. This paper characterizes the knowledge, tasks, methods, and design decisions involved in constructing this type of expert system, and makes recommendations concerning tools for aiding and automating construction of such systems.
Analysis of strain gage reliability in F-100 jet engine testing at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Holanda, R.
1983-01-01
A reliability analysis was performed on 64 strain gage systems mounted on the 3 rotor stages of the fan of a YF-100 engine. The strain gages were used in a 65 hour fan flutter research program which included about 5 hours of blade flutter. The analysis was part of a reliability improvement program. Eighty-four percent of the strain gages survived the test and performed satisfactorily. A post test analysis determined most failure causes. Five failures were caused by open circuits, three failed gages showed elevated circuit resistance, and one gage circuit was grounded. One failure was undetermined.
NASA Technical Reports Server (NTRS)
Glover, R. C.; Kelley, B. A.; Tischer, A. E.
1986-01-01
The results of a review of the Space Shuttle Main Engine (SSME) failure data for the period 1980 through 1983 are presented. The data was collected, evaluated, and ranked according to procedures established during this study. A number of conclusions and recommendations are made based upon this failure data review. The results of a state-of-the-art diagnostic survey are also presented. This survey covered a broad range of diagnostic sensors and techniques and the findings were evaluated for application to the SSME. Finally, a discussion of the initial activities for the on-going SSME diagnostic evaluation is included.
2007-12-09
KENNEDY SPACE CENTER, FLA. -- On the Shuttle Landing Facility at NASA's Kennedy Space Center, STS-122 Pilot Alan Poindexter heads for the plane for the return trip to Houston. The crew is flying back to Houston after launch of space shuttle Atlantis was delayed when a failure occurred in a fuel sensor system while the vehicle's external fuel tank was being filled. One of the four engine cutoff, or ECO, sensors inside the liquid hydrogen section of the tank gave a false reading and NASA's current Launch Commit Criteria require that all four sensors function properly. The sensor system is one of several that protect the shuttle's main engines by triggering their shut down if fuel runs unexpectedly low. Space shuttle Atlantis' STS-122 mission now is targeted to launch no earlier than Jan. 2. The liftoff date depends on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-09
KENNEDY SPACE CENTER, FLA. -- On the Shuttle Landing Facility at NASA's Kennedy Space Center, STS-122 Mission Specialist Stanley Love heads for the plane for the return trip to Houston. The crew is flying back to Houston after launch of space shuttle Atlantis was delayed when a failure occurred in a fuel sensor system while the vehicle's external fuel tank was being filled. One of the four engine cutoff, or ECO, sensors inside the liquid hydrogen section of the tank gave a false reading and NASA's current Launch Commit Criteria require that all four sensors function properly. The sensor system is one of several that protect the shuttle's main engines by triggering their shut down if fuel runs unexpectedly low. Space shuttle Atlantis' STS-122 mission now is targeted to launch no earlier than Jan. 2. The liftoff date depends on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-09
KENNEDY SPACE CENTER, FLA. -- On the Shuttle Landing Facility at NASA's Kennedy Space Center, STS-122 Commander Steve Frick heads for the plane for the return trip to Houston. The crew is flying back to Houston after launch of space shuttle Atlantis was delayed when a failure occurred in a fuel sensor system while the vehicle's external fuel tank was being filled. One of the four engine cutoff, or ECO, sensors inside the liquid hydrogen section of the tank gave a false reading and NASA's current Launch Commit Criteria require that all four sensors function properly. The sensor system is one of several that protect the shuttle's main engines by triggering their shut down if fuel runs unexpectedly low. Space shuttle Atlantis' STS-122 mission now is targeted to launch no earlier than Jan. 2. The liftoff date depends on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-09
KENNEDY SPACE CENTER, FLA. -- On the Shuttle Landing Facility at NASA's Kennedy Space Center, STS-122 Mission Specialist Leland Melvin heads for the plane for the return trip to Houston. The crew is flying back to Houston after launch of space shuttle Atlantis was delayed when a failure occurred in a fuel sensor system while the vehicle's external fuel tank was being filled. One of the four engine cutoff, or ECO, sensors inside the liquid hydrogen section of the tank gave a false reading and NASA's current Launch Commit Criteria require that all four sensors function properly. The sensor system is one of several that protect the shuttle's main engines by triggering their shut down if fuel runs unexpectedly low. Space shuttle Atlantis' STS-122 mission now is targeted to launch no earlier than Jan. 2. The liftoff date depends on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
Linear quadratic servo control of a reusable rocket engine
NASA Technical Reports Server (NTRS)
Musgrave, Jeffrey L.
1991-01-01
A design method for a servo compensator is developed in the frequency domain using singular values. The method is applied to a reusable rocket engine. An intelligent control system for reusable rocket engines was proposed which includes a diagnostic system, a control system, and an intelligent coordinator which determines engine control strategies based on the identified failure modes. The method provides a means of generating various linear multivariable controllers capable of meeting performance and robustness specifications and accommodating failure modes identified by the diagnostic system. Command following with set point control is necessary for engine operation. A Kalman filter reconstructs the state while loop transfer recovery recovers the required degree of robustness while maintaining satisfactory rejection of sensor noise from the command error. The approach is applied to the design of a controller for a rocket engine satisfying performance constraints in the frequency domain. Simulation results demonstrate the performance of the linear design on a nonlinear engine model over all power levels during mainstage operation.
Reliability Estimation of Aero-engine Based on Mixed Weibull Distribution Model
NASA Astrophysics Data System (ADS)
Yuan, Zhongda; Deng, Junxiang; Wang, Dawei
2018-02-01
Aero-engine is a complex mechanical electronic system, based on analysis of reliability of mechanical electronic system, Weibull distribution model has an irreplaceable role. Till now, only two-parameter Weibull distribution model and three-parameter Weibull distribution are widely used. Due to diversity of engine failure modes, there is a big error with single Weibull distribution model. By contrast, a variety of engine failure modes can be taken into account with mixed Weibull distribution model, so it is a good statistical analysis model. Except the concept of dynamic weight coefficient, in order to make reliability estimation result more accurately, three-parameter correlation coefficient optimization method is applied to enhance Weibull distribution model, thus precision of mixed distribution reliability model is improved greatly. All of these are advantageous to popularize Weibull distribution model in engineering applications.
40 CFR 63.9375 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... malfunction, regardless or whether or not such failure is permitted by this subpart. Engine means any internal.... Malfunction means any sudden, infrequent, and not reasonably preventable failure of air pollution control... potential to cause, the emission limitations in an applicable standard to be exceeded. Failures that are...
40 CFR 63.9375 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... malfunction, regardless or whether or not such failure is permitted by this subpart. Engine means any internal.... Malfunction means any sudden, infrequent, and not reasonably preventable failure of air pollution control... potential to cause, the emission limitations in an applicable standard to be exceeded. Failures that are...
40 CFR 63.9375 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... malfunction, regardless or whether or not such failure is permitted by this subpart. Engine means any internal.... Malfunction means any sudden, infrequent, and not reasonably preventable failure of air pollution control... potential to cause, the emission limitations in an applicable standard to be exceeded. Failures that are...
40 CFR 63.9375 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... malfunction, regardless or whether or not such failure is permitted by this subpart. Engine means any internal.... Malfunction means any sudden, infrequent, and not reasonably preventable failure of air pollution control... potential to cause, the emission limitations in an applicable standard to be exceeded. Failures that are...
Wong, Kam Cheong
2016-04-06
Clinicians use various clinical reasoning tools such as Ishikawa diagram to enhance their clinical experience and reasoning skills. Failure mode and effects analysis, which is an engineering methodology in origin, can be modified and applied to provide inputs into an Ishikawa diagram. The human biliary system is used to illustrate a modified failure mode and effects analysis. The anatomical and physiological processes of the biliary system are reviewed. Failure is defined as an abnormality caused by infective, inflammatory, obstructive, malignancy, autoimmune and other pathological processes. The potential failures, their effect(s), main clinical features, and investigation that can help a clinician to diagnose at each anatomical part and physiological process are reviewed and documented in a modified failure mode and effects analysis table. Relevant medical and surgical cases are retrieved from the medical literature and weaved into the table. A total of 80 clinical cases which are relevant to the modified failure mode and effects analysis for the human biliary system have been reviewed and weaved into a designated table. The table is the backbone and framework for further expansion. Reviewing and updating the table is an iterative and continual process. The relevant clinical features in the modified failure mode and effects analysis are then extracted and included in the relevant Ishikawa diagram. This article illustrates an application of engineering methodology in medicine, and it sows the seeds of potential cross-pollination between engineering and medicine. Establishing a modified failure mode and effects analysis can be a teamwork project or self-directed learning process, or a mix of both. Modified failure mode and effects analysis can be deployed to obtain inputs for an Ishikawa diagram which in turn can be used to enhance clinical experiences and clinical reasoning skills for clinicians, medical educators, and students.
Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2000-01-01
Thermal barrier coatings have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, the issue of coating durability under high temperature cyclic conditions is still of major concern. The coating failure is closely related to thermal stresses and oxidation in the coating systems. Coating shrinkage cracking resulting from ceramic sintering and creep at high temperatures can further accelerate the coating failure process. The purpose of this paper is to address critical issues such as ceramic sintering and creep, thermal fatigue and their relevance to coating life prediction. Novel test approaches have been established to obtain critical thermophysical and thermomechanical properties of the coating systems under near-realistic temperature and stress gradients encountered in advanced engine systems. Emphasis is placed on the dynamic changes of the coating thermal conductivity and elastic modulus, fatigue and creep interactions, and resulting failure mechanisms during the simulated engine tests. Detailed experimental and modeling results describing processes occurring in the thermal barrier coating systems provide a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.
NASA Technical Reports Server (NTRS)
Huang, Zhao-Feng; Fint, Jeffry A.; Kuck, Frederick M.
2005-01-01
This paper is to address the in-flight reliability of a liquid propulsion engine system for a launch vehicle. We first establish a comprehensive list of system and sub-system reliability drivers for any liquid propulsion engine system. We then build a reliability model to parametrically analyze the impact of some reliability parameters. We present sensitivity analysis results for a selected subset of the key reliability drivers using the model. Reliability drivers identified include: number of engines for the liquid propulsion stage, single engine total reliability, engine operation duration, engine thrust size, reusability, engine de-rating or up-rating, engine-out design (including engine-out switching reliability, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction), propellant specific hazards, engine start and cutoff transient hazards, engine combustion cycles, vehicle and engine interface and interaction hazards, engine health management system, engine modification, engine ground start hold down with launch commit criteria, engine altitude start (1 in. start), Multiple altitude restart (less than 1 restart), component, subsystem and system design, manufacturing/ground operation support/pre and post flight check outs and inspection, extensiveness of the development program. We present some sensitivity analysis results for the following subset of the drivers: number of engines for the propulsion stage, single engine total reliability, engine operation duration, engine de-rating or up-rating requirements, engine-out design, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction, and engine health management system implementation (basic redlines and more advanced health management systems).
Advances in Thrust-Based Emergency Control of an Airplane
NASA Technical Reports Server (NTRS)
Creech, Gray; Burken, John J.; Burcham, Bill
2003-01-01
Engineers at NASA's Dryden Flight Research Center have received a patent on an emergency flight-control method implemented by a propulsion-controlled aircraft (PCA) system. Utilizing the preexisting auto-throttle and engine-pressure-ratio trim controls of the airplane, the PCA system provides pitch and roll control for landing an airplane safely without using aerodynamic control surfaces that have ceased to function because of a primary-flight-control-system failure. The installation of the PCA does not entail any changes in pre-existing engine hardware or software. [Aspects of the method and system at previous stages of development were reported in Thrust-Control System for Emergency Control of an Airplane (DRC-96-07), NASA Tech Briefs, Vol. 25, No. 3 (March 2001), page 68 and Emergency Landing Using Thrust Control and Shift of Weight (DRC-96-55), NASA Tech Briefs, Vol. 26, No. 5 (May 2002), page 58.]. Aircraft flight-control systems are designed with extensive redundancy to ensure low probabilities of failure. During recent years, however, several airplanes have exhibited major flight-control-system failures, leaving engine thrust as the last mode of flight control. In some of these emergency situations, engine thrusts were successfully modulated by the pilots to maintain flight paths or pitch angles, but in other situations, lateral control was also needed. In the majority of such control-system failures, crashes resulted and over 1,200 people died. The challenge lay in creating a means of sufficient degree of thrust-modulation control to safely fly and land a stricken airplane. A thrust-modulation control system designed for this purpose was flight-tested in a PCA an MD-11 airplane. The results of the flight test showed that without any operational control surfaces, a pilot can land a crippled airplane (U.S. Patent 5,330,131). The installation of the original PCA system entailed modifications not only of the flight-control computer (FCC) of the airplane but also of each engine-control computer. Inasmuch as engine-manufacturer warranties do not apply to modified engines, the challenge became one of creating a PCA system that does not entail modifications of the engine computers.
NASA Astrophysics Data System (ADS)
Cauffriez, Laurent
2017-01-01
This paper deals with the modeling of a random failures process of a Safety Instrumented System (SIS). It aims to identify the expected number of failures for a SIS during its lifecycle. Indeed, the fact that the SIS is a system being tested periodically gives the idea to apply Bernoulli trials to characterize the random failure process of a SIS and thus to verify if the PFD (Probability of Failing Dangerously) experimentally obtained agrees with the theoretical one. Moreover, the notion of "odds on" found in Bernoulli theory allows engineers and scientists determining easily the ratio between “outcomes with success: failure of SIS” and “outcomes with unsuccess: no failure of SIS” and to confirm that SIS failures occur sporadically. A Stochastic P-temporised Petri net is proposed and serves as a reference model for describing the failure process of a 1oo1 SIS architecture. Simulations of this stochastic Petri net demonstrate that, during its lifecycle, the SIS is rarely in a state in which it cannot perform its mission. Experimental results are compared to Bernoulli trials in order to validate the powerfulness of Bernoulli trials for the modeling of the failures process of a SIS. The determination of the expected number of failures for a SIS during its lifecycle opens interesting research perspectives for engineers and scientists by completing the notion of PFD.
Liver regenerative medicine: advances and challenges.
Chistiakov, Dimitry A
2012-01-01
Liver transplantation is the standard care for many end-stage liver diseases. However, donor organs are scarce and some people succumb to liver failure before a donor is found. Liver regenerative medicine is a special interdisciplinary field of medicine focused on the development of new therapies incorporating stem cells, gene therapy and engineered tissues in order to repair or replace the damaged organ. In this review we consider the emerging progress achieved in the hepatic regenerative medicine within the last decade. The review starts with the characterization of liver organogenesis, fetal and adult stem/progenitor cells. Then, applications of primary hepatocytes, embryonic and adult (mesenchymal, hematopoietic and induced pluripotent) stem cells in cell therapy of liver diseases are considered. Current advances and challenges in producing mature hepatocytes from stem/progenitor cells are discussed. A section about hepatic tissue engineering includes consideration of synthetic and natural biomaterials in engineering scaffolds, strategies and achievements in the development of 3D bioactive matrices and 3D hepatocyte cultures, liver microengineering, generating bioartificial liver and prospects for fabrication of the bioengineered liver. Copyright © 2012 S. Karger AG, Basel.
The Problem of Ensuring Reliability of Gas Turbine Engines
NASA Astrophysics Data System (ADS)
Nozhnitsky, Yu A.
2018-01-01
Requirements to advanced engines for civil aviation are discussing. Some significant problems of ensuring reliability of advanced gas turbine engines are mentioned. Special attention is paid to successful utilization of new materials and critical technologies. Also the problem of excluding failure of engine part due to low cycle or high cycle fatigue is discussing.
Elementary Students' Engagement in Failure-Prone Engineering Design Tasks
ERIC Educational Resources Information Center
Andrews, Chelsea Joy
2017-01-01
Although engineering education has been practiced at the undergraduate level for over a century, only fairly recently has the field broadened to include the elementary level; the pre-college division of the American Society of Engineering Education was established in 2003. As a result, while recent education standards require engineering in…
78 FR 31851 - Harmonization of Airworthiness Standards-Gust and Maneuver Load Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-28
... airplanes equipped with wing-mounted engines; revise the engine torque loads criteria; add an engine failure... equipped with wing-mounted engines. Following an accident in which an airplane shed a large wing- mounted...-93-137, November 15, 1993). This recommendation was specifically aimed at gust loads on wing-mounted...
Katrina: macro-ethical issues for engineers.
Newberry, Byron
2010-09-01
Hurricane Katrina was one of the worst disasters in United States history. Failures within New Orleans' engineered hurricane protection system (levees and floodwalls) contributed to the severity of the event and have drawn considerable public attention. In the time since Katrina, forensic investigations have uncovered a range of issues and problems related to the engineering work. In this article, my goal is to distill from these investigations, and the related literature that has accumulated, some overarching macro-ethical issues that are relevant for all engineers. I attempt to frame these issues, using illustrative examples taken from Katrina, in a way that might be of pedagogical use and benefit for engineering educators interested in engaging their students in discussions of engineering ethics, societal impact of engineered systems, engineering design, or related topics. Some of the issues discussed are problems of unanticipated failure modes, faulty assumptions, lack or misuse of information, the importance of resiliency, the effects of time, balancing competing interests, attending to the details of interfaces, the fickleness of risk perception, and how the past constrains the present.
40 CFR 1042.325 - What happens if an engine family fails the production-line testing requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... specifies steps you must take to remedy the cause of the engine family's production-line failure. All the... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What happens if an engine family fails... MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Testing Production-line Engines § 1042.325 What happens...
Sliding Mode Control of the X-33 with an Engine Failure
NASA Technical Reports Server (NTRS)
Shtessel, Yuri B.; Hall, Charles E.
2000-01-01
Ascent flight control of the X-3 is performed using two XRS-2200 linear aerospike engines. in addition to aerosurfaces. The baseline control algorithms are PID with gain scheduling. Flight control using an innovative method. Sliding Mode Control. is presented for nominal and engine failed modes of flight. An easy to implement, robust controller. requiring no reconfiguration or gain scheduling is demonstrated through high fidelity flight simulations. The proposed sliding mode controller utilizes a two-loop structure and provides robust. de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of engine failure, bounded external disturbances (wind gusts) and uncertain matrix of inertia. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues. Conditions that restrict engine failures to robustness domain of the sliding mode controller are derived. Overall stability of a two-loop flight control system is assessed. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in the presence of external disturbances and vehicle inertia uncertainties, as well as the single engine failed case. The designed robust controller will significantly reduce the time and cost associated with flying new trajectory profiles or orbits, with new payloads, and with modified vehicles
Code of Federal Regulations, 2013 CFR
2013-10-01
..., search and rescue, law enforcement, aeronautical research, or biological or geological resource..., and which would normally require major repair or replacement of the affected component. Engine failure or damage limited to an engine if only one engine fails or is damaged, bent fairings or cowling...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., search and rescue, law enforcement, aeronautical research, or biological or geological resource..., and which would normally require major repair or replacement of the affected component. Engine failure or damage limited to an engine if only one engine fails or is damaged, bent fairings or cowling...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., search and rescue, law enforcement, aeronautical research, or biological or geological resource..., and which would normally require major repair or replacement of the affected component. Engine failure or damage limited to an engine if only one engine fails or is damaged, bent fairings or cowling...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., search and rescue, law enforcement, aeronautical research, or biological or geological resource..., and which would normally require major repair or replacement of the affected component. Engine failure or damage limited to an engine if only one engine fails or is damaged, bent fairings or cowling...
NASA Technical Reports Server (NTRS)
Myers, L. P.; Burcham, F. W., Jr.
1983-01-01
Substantial benefits of a full authority digital electronic engine control on an air breathing engine were demonstrated repeatedly in simulation studies, ground engine tests, and engine altitude test facilities. A digital engine electronic control system showed improvements in efficiency, performance, and operation. An additional benefit of full authority digital controls is the capability of detecting and correcting failures and providing engine health diagnostics.
Stimulating Creativity and Innovation through Intelligent Fast Failure
ERIC Educational Resources Information Center
Tahirsylaj, Armend S.
2012-01-01
Literature on creativity and innovation has discussed the issue of failure in the light of its benefits and limitations for enhancing human potential in all domains of life, but in business, science, engineering, and industry more specifically. In this paper, the Intelligent Fast Failure (IFF) as a useful tool of creativity and innovation for…
NASA Astrophysics Data System (ADS)
Estep, Daniel Douglas
Several advantages, such as high strength-to-weight ratio, high stiffness, superior corrosion resistance, and high fatigue and impact resistance, among others, make FRPs an attractive alternative to conventional construction materials for use in developing new structures as well as rehabilitating in-service infrastructure. As the number of infrastructure applications using FRPs grows, the need for the development of a uniform Load and Resistance Factor Design (LRFD) approach, including design procedures and examples, has become paramount. Step-by-step design procedures and easy-to-use design formulas are necessary to assure the quality and safety of FRP structural systems by reducing the possibility of design and construction errors. Since 2008, the American Society of Civil Engineers (ASCE), in coordination with the American Composites Manufacturers Association (ACMA), has overseen the development of the Pre-Standard for Load and Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) Structures using probability-based limit states design. The fifth chapter of the pre-standard focuses on the design of members in flexure and shear under different failure modes, where the current failure load prediction models proposed within have been shown to be highly inaccurate based on experimental data and evaluation performed by researchers at the West Virginia University Constructed Facilities Center. A new prediction model for determining the critical flexural load capacity of pultruded GFRP square and rectangular box beams is presented within. This model shows that the type of failure can be related to threshold values of the beam span-to-depth ratio (L/h) and total flange width-to-thickness ratio (bf /t), resulting in three governing modes of failure: local buckling failure in the compression flange (4 ≤ L/h < 6), combined strain failure at the web-flange junction (6 ≤ L/h ≤ 10), and bending failure in the tension flange (10 < L/h ≤ 42). Broadly, the proposed equations are predicting critical flexural load capacities within +/-22.3% of experimental data for all cases, with over 70% of all experimental data with within +/-10% error. A second prediction model was developed for predicting the critical lateral-torsional buckling (LTB) load for pultruded GFRP open sections, including wide flange (WF) sections and channels. Multiple LTB equations from several sources were considered and applied but yielded inaccurate results, leading to the development of this new critical buckling load prediction model based on the well-established elastic LTB strength equation for steel. By making a series of modifications to equations for calculating the weak axis moment of inertia, torsional warping constant, and torsion constant for open sections, as well as recognizing the influence of the shear lag phenomenon, the critical LTB load is predicted within +/-15.2% of experimental data for all channel and WF specimens tested and evaluated in the study.
NASA Technical Reports Server (NTRS)
Arakere, Nagaraj K.; Swanson, Gregory R.
2000-01-01
High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.
Heart Failure - Multiple Languages
... Heart Failure - العربية (Arabic) Bilingual PDF Health Information Translations Bosnian (bosanski) Expand Section Heart Failure - bosanski (Bosnian) Bilingual PDF Health Information Translations Chinese, Simplified (Mandarin dialect) (简体中文) Expand Section Heart ...
Predicted performance of an integrated modular engine system
NASA Technical Reports Server (NTRS)
Binder, Michael; Felder, James L.
1993-01-01
Space vehicle propulsion systems are traditionally comprised of a cluster of discrete engines, each with its own set of turbopumps, valves, and a thrust chamber. The Integrated Modular Engine (IME) concept proposes a vehicle propulsion system comprised of multiple turbopumps, valves, and thrust chambers which are all interconnected. The IME concept has potential advantages in fault-tolerance, weight, and operational efficiency compared with the traditional clustered engine configuration. The purpose of this study is to examine the steady-state performance of an IME system with various components removed to simulate fault conditions. An IME configuration for a hydrogen/oxygen expander cycle propulsion system with four sets of turbopumps and eight thrust chambers has been modeled using the Rocket Engine Transient Simulator (ROCETS) program. The nominal steady-state performance is simulated, as well as turbopump thrust chamber and duct failures. The impact of component failures on system performance is discussed in the context of the system's fault tolerant capabilities.
Rate-based structural health monitoring using permanently installed sensors
2017-01-01
Permanently installed sensors are becoming increasingly ubiquitous, facilitating very frequent in situ measurements and consequently improved monitoring of ‘trends’ in the observed system behaviour. It is proposed that this newly available data may be used to provide prior warning and forecasting of critical events, particularly system failure. Numerous damage mechanisms are examples of positive feedback; they are ‘self-accelerating’ with an increasing rate of damage towards failure. The positive feedback leads to a common time-response behaviour which may be described by an empirical relation allowing prediction of the time to criticality. This study focuses on Structural Health Monitoring of engineering components; failure times are projected well in advance of failure for fatigue, creep crack growth and volumetric creep damage experiments. The proposed methodology provides a widely applicable framework for using newly available near-continuous data from permanently installed sensors to predict time until failure in a range of application areas including engineering, geophysics and medicine. PMID:28989308
29 CFR 2200.101 - Failure to obey rules.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 9 2012-07-01 2012-07-01 false Failure to obey rules. 2200.101 Section 2200.101 Labor... Miscellaneous Provisions § 2200.101 Failure to obey rules. (a) Sanctions. When any party has failed to plead or...). (c) Discovery sanctions. This section does not apply to sanctions for failure to comply with orders...
29 CFR 2200.101 - Failure to obey rules.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 9 2010-07-01 2010-07-01 false Failure to obey rules. 2200.101 Section 2200.101 Labor... Miscellaneous Provisions § 2200.101 Failure to obey rules. (a) Sanctions. When any party has failed to plead or...). (c) Discovery sanctions. This section does not apply to sanctions for failure to comply with orders...
29 CFR 2200.101 - Failure to obey rules.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 9 2011-07-01 2011-07-01 false Failure to obey rules. 2200.101 Section 2200.101 Labor... Miscellaneous Provisions § 2200.101 Failure to obey rules. (a) Sanctions. When any party has failed to plead or...). (c) Discovery sanctions. This section does not apply to sanctions for failure to comply with orders...
29 CFR 2200.101 - Failure to obey rules.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 9 2013-07-01 2013-07-01 false Failure to obey rules. 2200.101 Section 2200.101 Labor... Miscellaneous Provisions § 2200.101 Failure to obey rules. (a) Sanctions. When any party has failed to plead or...). (c) Discovery sanctions. This section does not apply to sanctions for failure to comply with orders...
29 CFR 2200.101 - Failure to obey rules.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 9 2014-07-01 2014-07-01 false Failure to obey rules. 2200.101 Section 2200.101 Labor... Miscellaneous Provisions § 2200.101 Failure to obey rules. (a) Sanctions. When any party has failed to plead or...). (c) Discovery sanctions. This section does not apply to sanctions for failure to comply with orders...
43 CFR 4.1163 - Effect of failure to file.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Effect of failure to file. 4.1163 Section... APPEALS PROCEDURES Special Rules Applicable to Surface Coal Mining Hearings and Appeals Review of Section 521 Notices of Violation and Orders of Cessation § 4.1163 Effect of failure to file. Failure to file...
Failure environment analysis tool applications
NASA Astrophysics Data System (ADS)
Pack, Ginger L.; Wadsworth, David B.
1993-02-01
Understanding risks and avoiding failure are daily concerns for the women and men of NASA. Although NASA's mission propels us to push the limits of technology, and though the risks are considerable, the NASA community has instilled within, the determination to preserve the integrity of the systems upon which our mission and, our employees lives and well-being depend. One of the ways this is being done is by expanding and improving the tools used to perform risk assessment. The Failure Environment Analysis Tool (FEAT) was developed to help engineers and analysts more thoroughly and reliably conduct risk assessment and failure analysis. FEAT accomplishes this by providing answers to questions regarding what might have caused a particular failure; or, conversely, what effect the occurrence of a failure might have on an entire system. Additionally, FEAT can determine what common causes could have resulted in other combinations of failures. FEAT will even help determine the vulnerability of a system to failures, in light of reduced capability. FEAT also is useful in training personnel who must develop an understanding of particular systems. FEAT facilitates training on system behavior, by providing an automated environment in which to conduct 'what-if' evaluation. These types of analyses make FEAT a valuable tool for engineers and operations personnel in the design, analysis, and operation of NASA space systems.
Failure environment analysis tool applications
NASA Technical Reports Server (NTRS)
Pack, Ginger L.; Wadsworth, David B.
1993-01-01
Understanding risks and avoiding failure are daily concerns for the women and men of NASA. Although NASA's mission propels us to push the limits of technology, and though the risks are considerable, the NASA community has instilled within, the determination to preserve the integrity of the systems upon which our mission and, our employees lives and well-being depend. One of the ways this is being done is by expanding and improving the tools used to perform risk assessment. The Failure Environment Analysis Tool (FEAT) was developed to help engineers and analysts more thoroughly and reliably conduct risk assessment and failure analysis. FEAT accomplishes this by providing answers to questions regarding what might have caused a particular failure; or, conversely, what effect the occurrence of a failure might have on an entire system. Additionally, FEAT can determine what common causes could have resulted in other combinations of failures. FEAT will even help determine the vulnerability of a system to failures, in light of reduced capability. FEAT also is useful in training personnel who must develop an understanding of particular systems. FEAT facilitates training on system behavior, by providing an automated environment in which to conduct 'what-if' evaluation. These types of analyses make FEAT a valuable tool for engineers and operations personnel in the design, analysis, and operation of NASA space systems.
Failure environment analysis tool applications
NASA Technical Reports Server (NTRS)
Pack, Ginger L.; Wadsworth, David B.
1994-01-01
Understanding risks and avoiding failure are daily concerns for the women and men of NASA. Although NASA's mission propels us to push the limits of technology, and though the risks are considerable, the NASA community has instilled within it, the determination to preserve the integrity of the systems upon which our mission and, our employees lives and well-being depend. One of the ways this is being done is by expanding and improving the tools used to perform risk assessment. The Failure Environment Analysis Tool (FEAT) was developed to help engineers and analysts more thoroughly and reliably conduct risk assessment and failure analysis. FEAT accomplishes this by providing answers to questions regarding what might have caused a particular failure; or, conversely, what effect the occurrence of a failure might have on an entire system. Additionally, FEAT can determine what common causes could have resulted in other combinations of failures. FEAT will even help determine the vulnerability of a system to failures, in light of reduced capability. FEAT also is useful in training personnel who must develop an understanding of particular systems. FEAT facilitates training on system behavior, by providing an automated environment in which to conduct 'what-if' evaluation. These types of analyses make FEAT a valuable tool for engineers and operations personnel in the design, analysis, and operation of NASA space systems.
Software Risk Identification for Interplanetary Probes
NASA Technical Reports Server (NTRS)
Dougherty, Robert J.; Papadopoulos, Periklis E.
2005-01-01
The need for a systematic and effective software risk identification methodology is critical for interplanetary probes that are using increasingly complex and critical software. Several probe failures are examined that suggest more attention and resources need to be dedicated to identifying software risks. The direct causes of these failures can often be traced to systemic problems in all phases of the software engineering process. These failures have lead to the development of a practical methodology to identify risks for interplanetary probes. The proposed methodology is based upon the tailoring of the Software Engineering Institute's (SEI) method of taxonomy-based risk identification. The use of this methodology will ensure a more consistent and complete identification of software risks in these probes.
NASA Technical Reports Server (NTRS)
Miller, Robert A.
2009-01-01
NASA has played a central role in the development of thermal barrier coatings (TBCs) for gas turbine applications. This report discusses the history of TBCs emphasizing the role NASA has played beginning with (1) frit coatings in the 1940s and 1950s; (2) thermally sprayed coatings for rocket application in the 1960s and early 1970s; (3) the beginnings of the modern era of turbine section coatings in the mid 1970s; and (4) failure mechanism and life prediction studies in the 1980s and 1990s. More recent efforts are also briefly discussed.
NASA Technical Reports Server (NTRS)
Litt, Jonathan; Kurtkaya, Mehmet; Duyar, Ahmet
1994-01-01
This paper presents an application of a fault detection and diagnosis scheme for the sensor faults of a helicopter engine. The scheme utilizes a model-based approach with real time identification and hypothesis testing which can provide early detection, isolation, and diagnosis of failures. It is an integral part of a proposed intelligent control system with health monitoring capabilities. The intelligent control system will allow for accommodation of faults, reduce maintenance cost, and increase system availability. The scheme compares the measured outputs of the engine with the expected outputs of an engine whose sensor suite is functioning normally. If the differences between the real and expected outputs exceed threshold values, a fault is detected. The isolation of sensor failures is accomplished through a fault parameter isolation technique where parameters which model the faulty process are calculated on-line with a real-time multivariable parameter estimation algorithm. The fault parameters and their patterns can then be analyzed for diagnostic and accommodation purposes. The scheme is applied to the detection and diagnosis of sensor faults of a T700 turboshaft engine. Sensor failures are induced in a T700 nonlinear performance simulation and data obtained are used with the scheme to detect, isolate, and estimate the magnitude of the faults.
NASA Technical Reports Server (NTRS)
Delucia, R. A.; Salvino, J. T.
1981-01-01
This report presents statistical information relating to the number of gas turbine engine rotor failures which occurred in commercial aviation service use. The predominant failure involved blade fragments, 82.4 percent of which were contained. Although fewer rotor rim, disk, and seal failures occurred, 33.3%, 100% and 50% respectively were uncontained. Sixty-five percent of the 166 rotor failures occurred during the takeoff and climb stages of flight.
Code of Federal Regulations, 2010 CFR
2010-10-01
... associated with the performance of, a governmental function such as firefighting, search and rescue, law... normally require major repair or replacement of the affected component. Engine failure or damage limited to an engine if only one engine fails or is damaged, bent fairings or cowling, dented skin, small...
A Study of Failure Criteria of Fibrous Composite Materials
NASA Technical Reports Server (NTRS)
Paris, Federico; Jackson, Karen E. (Technical Monitor)
2001-01-01
The research described in this paper is focused on two areas: (1) evaluation of existing composite failure criteria in the nonlinear, explicit transient dynamic finite element code, MSC.Dytran, and (2) exploration of the possibilities for modification of material and failure models to account for large deformations, progressive failure, and interaction of damage accumulation with stress/strain response of laminated composites. Following a review of the MSC.Dytran user manual, a bibliographical review of existing failure criteria of composites was performed. The papers considered most interesting for the objective of this report are discussed in section 2. The failure criteria included in the code under consideration are discussed in section 3. A critical summary of the present procedures to perform analysis and design of composites is presented in section 4. A study of the most important historical failure criteria for fibrous composite materials and some of the more recent modifications proposed were studied. The result of this analysis highlighted inadequacies in the existing failure criteria and the need to perform some numerical analyses to elucidate the answer to questions on which some of the proposed criteria are based. A summary of these ideas, which is a proposal of studies to be developed, is presented in section 5. Finally, some ideas for future developments are summarized in section 6.
Qualitative and temporal reasoning in engine behavior analysis
NASA Technical Reports Server (NTRS)
Dietz, W. E.; Stamps, M. E.; Ali, M.
1987-01-01
Numerical simulation models, engine experts, and experimental data are used to generate qualitative and temporal representations of abnormal engine behavior. Engine parameters monitored during operation are used to generate qualitative and temporal representations of actual engine behavior. Similarities between the representations of failure scenarios and the actual engine behavior are used to diagnose fault conditions which have already occurred, or are about to occur; to increase the surveillance by the monitoring system of relevant engine parameters; and to predict likely future engine behavior.
26 CFR 6a.6652(g)-1 - Failure to make return or furnish statement required under section 6039C.
Code of Federal Regulations, 2010 CFR
2010-04-01
... required under section 6039C. 6a.6652(g)-1 Section 6a.6652(g)-1 Internal Revenue INTERNAL REVENUE SERVICE... OMNIBUS RECONCILIATION ACT OF 1980 § 6a.6652(g)-1 Failure to make return or furnish statement required... limitation under § 6a.6652(g)-1(b)(3) with respect to failure to meet the requirements of section 6039C(c), U...
26 CFR 6a.6652(g)-1 - Failure to make return or furnish statement required under section 6039C.
Code of Federal Regulations, 2012 CFR
2012-04-01
... required under section 6039C. 6a.6652(g)-1 Section 6a.6652(g)-1 Internal Revenue INTERNAL REVENUE SERVICE... OMNIBUS RECONCILIATION ACT OF 1980 § 6a.6652(g)-1 Failure to make return or furnish statement required... limitation under § 6a.6652(g)-1(b)(3) with respect to failure to meet the requirements of section 6039C(c), U...
26 CFR 6a.6652(g)-1 - Failure to make return or furnish statement required under section 6039C.
Code of Federal Regulations, 2014 CFR
2014-04-01
... required under section 6039C. 6a.6652(g)-1 Section 6a.6652(g)-1 Internal Revenue INTERNAL REVENUE SERVICE... OMNIBUS RECONCILIATION ACT OF 1980 § 6a.6652(g)-1 Failure to make return or furnish statement required... limitation under § 6a.6652(g)-1(b)(3) with respect to failure to meet the requirements of section 6039C(c), U...
26 CFR 6a.6652(g)-1 - Failure to make return or furnish statement required under section 6039C.
Code of Federal Regulations, 2011 CFR
2011-04-01
... required under section 6039C. 6a.6652(g)-1 Section 6a.6652(g)-1 Internal Revenue INTERNAL REVENUE SERVICE... OMNIBUS RECONCILIATION ACT OF 1980 § 6a.6652(g)-1 Failure to make return or furnish statement required... limitation under § 6a.6652(g)-1(b)(3) with respect to failure to meet the requirements of section 6039C(c), U...
26 CFR 6a.6652(g)-1 - Failure to make return or furnish statement required under section 6039C.
Code of Federal Regulations, 2013 CFR
2013-04-01
... required under section 6039C. 6a.6652(g)-1 Section 6a.6652(g)-1 Internal Revenue INTERNAL REVENUE SERVICE... OMNIBUS RECONCILIATION ACT OF 1980 § 6a.6652(g)-1 Failure to make return or furnish statement required... limitation under § 6a.6652(g)-1(b)(3) with respect to failure to meet the requirements of section 6039C(c), U...
40 CFR 86.1336-84 - Engine starting, restarting, and shutdown.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (4) If a failure to start occurs during the hot start portion of the test and is caused by engine... stalling. (1) If the engine stalls during the initial idle period of either the cold or hot start test, the engine shall be restarted immediately using the appropriate cold or hot starting procedure and the test...
40 CFR 86.1336-84 - Engine starting, restarting, and shutdown.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (4) If a failure to start occurs during the hot start portion of the test and is caused by engine... stalling. (1) If the engine stalls during the initial idle period of either the cold or hot start test, the engine shall be restarted immediately using the appropriate cold or hot starting procedure and the test...
40 CFR 86.1336-84 - Engine starting, restarting, and shutdown.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (4) If a failure to start occurs during the hot start portion of the test and is caused by engine... stalling. (1) If the engine stalls during the initial idle period of either the cold or hot start test, the engine shall be restarted immediately using the appropriate cold or hot starting procedure and the test...
77 FR 74125 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
... Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Company (GE) CF34-8C and CF34-8E turbofan engines with certain part numbers (P/N) of operability bleed... received reports of three failure events of OBV ring lock fuel fittings on GE CF34-8C turbofan engines. Two...
75 FR 11072 - Airworthiness Directives; Turbomeca Arriel 1B, 1D, 1D1, and 1S1 Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-10
... blades since we issued AD 2008-07-01. We are proposing this AD to prevent the failure of 2nd stage... comments electronically. Mail: Docket Management Facility, U.S. Department of Transportation, 1200 New... CONTACT: Kevin Dickert, Aerospace Engineer, Engine Certification Office, FAA, Engine and Propeller...
On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sappok, Alex; Ragaller, Paul; Herman, Andrew
The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directlymore » monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications. The testing included controlled engine dynamometer evaluations, which characterized soot slip from various filter failure modes, as well as on-road fleet vehicle tests. The results show a high sensitivity to detect conditions resulting in soot leakage from the particulate filter, as well as potential for direct detection of structural failures including internal cracks and melted regions within the filter media itself. Furthermore, the measurements demonstrate, for the first time, the capability to employ a direct and continuous monitor of particulate filter diagnostics to both prevent and detect potential failure conditions in the field.« less
Tapered Roller Bearing Damage Detection Using Decision Fusion Analysis
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Kreider, Gary; Fichter, Thomas
2006-01-01
A diagnostic tool was developed for detecting fatigue damage of tapered roller bearings. Tapered roller bearings are used in helicopter transmissions and have potential for use in high bypass advanced gas turbine aircraft engines. A diagnostic tool was developed and evaluated experimentally by collecting oil debris data from failure progression tests conducted using health monitoring hardware. Failure progression tests were performed with tapered roller bearings under simulated engine load conditions. Tests were performed on one healthy bearing and three pre-damaged bearings. During each test, data from an on-line, in-line, inductance type oil debris sensor and three accelerometers were monitored and recorded for the occurrence of bearing failure. The bearing was removed and inspected periodically for damage progression throughout testing. Using data fusion techniques, two different monitoring technologies, oil debris analysis and vibration, were integrated into a health monitoring system for detecting bearing surface fatigue pitting damage. The data fusion diagnostic tool was evaluated during bearing failure progression tests under simulated engine load conditions. This integrated system showed improved detection of fatigue damage and health assessment of the tapered roller bearings as compared to using individual health monitoring technologies.
NASA Astrophysics Data System (ADS)
McCrea, Terry
The Shuttle Processing Contract (SPC) workforce consists of Lockheed Space Operations Co. as prime contractor, with Grumman, Thiokol Corporation, and Johnson Controls World Services as subcontractors. During the design phase, reliability engineering is instrumental in influencing the development of systems that meet the Shuttle fail-safe program requirements. Reliability engineers accomplish this objective by performing FMEA (failure modes and effects analysis) to identify potential single failure points. When technology, time, or resources do not permit a redesign to eliminate a single failure point, the single failure point information is formatted into a change request and presented to senior management of SPC and NASA for risk acceptance. In parallel with the FMEA, safety engineering conducts a hazard analysis to assure that potential hazards to personnel are assessed. The combined effort (FMEA and hazard analysis) is published as a system assurance analysis. Special ground rules and techniques are developed to perform and present the analysis. The reliability program at KSC is vigorously pursued, and has been extremely successful. The ground support equipment and facilities used to launch and land the Space Shuttle maintain an excellent reliability record.
Application of Single Crystal Failure Criteria: Theory and Turbine Blade Case Study
NASA Technical Reports Server (NTRS)
Sayyah, Tarek; Swanson, Gregory R.; Schonberg, W. P.
1999-01-01
The orientation of the single crystal material within a structural component is known to affect the strength and life of the part. The first stage blade of the High Pressure Fuel Turbopump (HPFTP)/ Alternative Turbopump Development (ATD), of the Space Shuttle Main Engine (SSME) was used to study the effects of secondary axis'orientation angles on the failure rate of the blade. A new failure criterion was developed based on normal and shear strains on the primary crystallographic planes. The criterion was verified using low cycle fatigue (LCF) specimen data and a finite element model of the test specimens. The criterion was then used to study ATD/HPFTP first stage blade failure events. A detailed ANSYS finite element model of the blade was used to calculate the failure parameter for the different crystallographic orientations. A total of 297 cases were run to cover a wide range of acceptable orientations within the blade. Those orientations are related to the base crystallographic coordinate system that was created in the ANSYS finite element model. Contour plots of the criterion as a function of orientation for the blade tip and attachment were obtained. Results of the analysis revealed a 40% increase in the failure parameter due to changing of the primary and secondary axes of material orientations. A comparison between failure criterion predictions and actual engine test data was then conducted. The engine test data comes from two ATD/HPFTP builds (units F3- 4B and F6-5D), which were ground tested on the SSME at the Stennis Space Center in Mississippi. Both units experienced cracking of the airfoil tips in multiple blades, but only a few cracks grew all the way across the wall of the hollow core airfoil.
Combining System Safety and Reliability to Ensure NASA CoNNeCT's Success
NASA Technical Reports Server (NTRS)
Havenhill, Maria; Fernandez, Rene; Zampino, Edward
2012-01-01
Hazard Analysis, Failure Modes and Effects Analysis (FMEA), the Limited-Life Items List (LLIL), and the Single Point Failure (SPF) List were applied by System Safety and Reliability engineers on NASA's Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project. The integrated approach involving cross reviews of these reports by System Safety, Reliability, and Design engineers resulted in the mitigation of all identified hazards. The outcome was that the system met all the safety requirements it was required to meet.
NASA Technical Reports Server (NTRS)
1973-01-01
This summary provides the general engineering community with the accumulated experience from ALERT reports issued by NASA and the Government-Industry. Data Exchange Program, and related experience gained by Government and industry. It provides expanded information on selected topics by relating the problem area (failure) to the cause, the investigation and findings, the suggestions for avoidance (inspections, screening tests, proper part applications, requirements for manufacturer's plant facilities, etc.), and failure analysis procedures. Diodes, integrated circuits, and transistors are covered in this volume.
ATS-6 engineering performance report. Volume 2: Orbit and attitude controls
NASA Technical Reports Server (NTRS)
Wales, R. O. (Editor)
1981-01-01
Attitude control is reviewed, encompassing the attitude control subsystem, spacecraft attitude precision pointing and slewing adaptive control experiment, and RF interferometer experiment. The spacecraft propulsion system (SPS) is discussed, including subsystem, SPS design description and validation, orbital operations and performance, in-orbit anomalies and contingency operations, and the cesium bombardment ion engine experiment. Thruster failure due to plugging of the propellant feed passages, a major cause for mission termination, are considered among the critical generic failures on the satellite.
14 CFR 33.28 - Engine control systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Applicability. These requirements are applicable to any system or device that is part of engine type design...) Aircraft-supplied data. Single failures leading to loss, interruption or corruption of aircraft-supplied...
14 CFR 33.28 - Engine control systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Applicability. These requirements are applicable to any system or device that is part of engine type design...) Aircraft-supplied data. Single failures leading to loss, interruption or corruption of aircraft-supplied...
14 CFR 33.28 - Engine control systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Applicability. These requirements are applicable to any system or device that is part of engine type design...) Aircraft-supplied data. Single failures leading to loss, interruption or corruption of aircraft-supplied...
14 CFR 33.28 - Engine control systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Applicability. These requirements are applicable to any system or device that is part of engine type design...) Aircraft-supplied data. Single failures leading to loss, interruption or corruption of aircraft-supplied...
14 CFR 33.28 - Engine control systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Applicability. These requirements are applicable to any system or device that is part of engine type design...) Aircraft-supplied data. Single failures leading to loss, interruption or corruption of aircraft-supplied...
Code of Federal Regulations, 2013 CFR
2013-01-01
... prevent local hot spots; (c) Exhaust gases must discharge clear of the engine air intake, fuel system... after the failure of an attempted engine start; (g) Each exhaust heat exchanger must incorporate means...
Code of Federal Regulations, 2012 CFR
2012-01-01
... prevent local hot spots; (c) Exhaust gases must discharge clear of the engine air intake, fuel system... after the failure of an attempted engine start; (g) Each exhaust heat exchanger must incorporate means...
Code of Federal Regulations, 2014 CFR
2014-01-01
... prevent local hot spots; (c) Exhaust gases must discharge clear of the engine air intake, fuel system... after the failure of an attempted engine start; (g) Each exhaust heat exchanger must incorporate means...
Code of Federal Regulations, 2010 CFR
2010-01-01
... prevent local hot spots; (c) Exhaust gases must discharge clear of the engine air intake, fuel system... after the failure of an attempted engine start; (g) Each exhaust heat exchanger must incorporate means...
Code of Federal Regulations, 2011 CFR
2011-01-01
... prevent local hot spots; (c) Exhaust gases must discharge clear of the engine air intake, fuel system... after the failure of an attempted engine start; (g) Each exhaust heat exchanger must incorporate means...
Publications - RI 2015-5 | Alaska Division of Geological & Geophysical
data 7.5 M Metadata - Read me Keywords Active Fault; Akutan; Coastal; Dutch Harbor; Earthquake ; Earthquake Related Slope Failure; Emergency Preparedness; Engineering; Engineering Geology; Fault
26 CFR 301.6653-1 - Failure to pay tax.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 26 Internal Revenue 18 2012-04-01 2012-04-01 false Failure to pay tax. 301.6653-1 Section 301.6653... Additions to the Tax and Additional Amounts § 301.6653-1 Failure to pay tax. (a) Negligence or intentional... an underpayment— (i) The addition to the tax under section 6651, relating to failure to file a tax...
26 CFR 301.6653-1 - Failure to pay tax.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 18 2011-04-01 2011-04-01 false Failure to pay tax. 301.6653-1 Section 301.6653... Additions to the Tax and Additional Amounts § 301.6653-1 Failure to pay tax. (a) Negligence or intentional... an underpayment— (i) The addition to the tax under section 6651, relating to failure to file a tax...
26 CFR 301.6653-1 - Failure to pay tax.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 18 2013-04-01 2013-04-01 false Failure to pay tax. 301.6653-1 Section 301.6653... Additions to the Tax and Additional Amounts § 301.6653-1 Failure to pay tax. (a) Negligence or intentional... an underpayment— (i) The addition to the tax under section 6651, relating to failure to file a tax...
26 CFR 301.6653-1 - Failure to pay tax.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 26 Internal Revenue 18 2014-04-01 2014-04-01 false Failure to pay tax. 301.6653-1 Section 301.6653... Additions to the Tax and Additional Amounts § 301.6653-1 Failure to pay tax. (a) Negligence or intentional... an underpayment— (i) The addition to the tax under section 6651, relating to failure to file a tax...
ISS Fiber Optic Failure Investigation Root Cause Report
NASA Technical Reports Server (NTRS)
Leidecker, Henning; Plante, Jeannette
2000-01-01
In August of 1999, Boeing Corporation (Boeing) engineers began investigating failures of optical fiber being used on International Space Station flight hardware. Catastrophic failures of the fiber were linked to a defect in the glass fiber. Following several meetings of Boeing and NASA engineers and managers, Boeing created and led an investigation team, which examined the reliability of the cable installed in the U.S. Lab. NASA Goddard Space Flight Center's Components Technologies and Radiation Effects Branch (GSFC) led a team investigating the root cause of the failures. Information was gathered from: regular telecons and other communications with the investigation team, investigative trips to the cable distributor's plant, the cable manufacturing plant and the fiber manufacturing plant (including a review of build records), destructive and non-destructive testing, and expertise supplied by scientists from Dupont, and Lucent-Bell Laboratories. Several theories were established early on which were not able to completely address the destructive physical analysis and experiential evidence. Lucent suggested hydrofluoric acid (HF) etching of the glass and successfully duplicated the "rocket engine" defect. Strength testing coupled with examination of the low strength break sites linked features in the polyimide coating with latent defect sites. The information provided below explains what was learned about the susceptibility of the pre-cabled fiber to failure when cabled as it was for Space Station and the nature of the latent defects.
Biomaterial strategies for alleviation of myocardial infarction
Venugopal, Jayarama Reddy; Prabhakaran, Molamma P.; Mukherjee, Shayanti; Ravichandran, Rajeswari; Dan, Kai; Ramakrishna, Seeram
2012-01-01
World Health Organization estimated that heart failure initiated by coronary artery disease and myocardial infarction (MI) leads to 29 per cent of deaths worldwide. Heart failure is one of the leading causes of death in industrialized countries and is expected to become a global epidemic within the twenty-first century. MI, the main cause of heart failure, leads to a loss of cardiac tissue impairment of left ventricular function. The damaged left ventricle undergoes progressive ‘remodelling’ and chamber dilation, with myocyte slippage and fibroblast proliferation. Repair of diseased myocardium with in vitro-engineered cardiac muscle patch/injectable biopolymers with cells may become a viable option for heart failure patients. These events reflect an apparent lack of effective intrinsic mechanism for myocardial repair and regeneration. Motivated by the desire to develop minimally invasive procedures, the last 10 years observed growing efforts to develop injectable biomaterials with and without cells to treat cardiac failure. Biomaterials evaluated include alginate, fibrin, collagen, chitosan, self-assembling peptides, biopolymers and a range of synthetic hydrogels. The ultimate goal in therapeutic cardiac tissue engineering is to generate biocompatible, non-immunogenic heart muscle with morphological and functional properties similar to natural myocardium to repair MI. This review summarizes the properties of biomaterial substrates having sufficient mechanical stability, which stimulates the native collagen fibril structure for differentiating pluripotent stem cells and mesenchymal stem cells into cardiomyocytes for cardiac tissue engineering. PMID:21900319
Failure Mode and Effects Analysis (FMEA) Introductory Overview
2012-06-14
Failure Mode and Effects Analysis ( FMEA ) Introductory Overview TARDEC Systems Engineering Risk Management Team POC: Kadry Rizk or Gregor Ratajczak...2. REPORT TYPE Briefing Charts 3. DATES COVERED 01-05-2012 to 23-05-2012 4. TITLE AND SUBTITLE Failure Mode and Effects Analysis ( FMEA ) 5a...18 WELCOME Welcome to “An introductory overview of Failure Mode and Effects Analysis ( FMEA )”, A brief concerning the use and benefits of FMEA
Hydraulic integration and shrub growth form linked across continental aridity gradients.
H. Jochen Schenk; Susana Espino; Christine M. Goedhart; Marisa Nordenstahl; Hugo I. Martinez Cabrera; Cynthia S. Jones
2009-01-01
Both engineered hydraulic systems and plant hydraulic systems are protected against failure by resistance, reparability, and redundancy. A basic rule of reliability engineering is that the level of...
Honig, Shanee; Oron-Gilad, Tal
2018-01-01
While substantial effort has been invested in making robots more reliable, experience demonstrates that robots operating in unstructured environments are often challenged by frequent failures. Despite this, robots have not yet reached a level of design that allows effective management of faulty or unexpected behavior by untrained users. To understand why this may be the case, an in-depth literature review was done to explore when people perceive and resolve robot failures, how robots communicate failure, how failures influence people's perceptions and feelings toward robots, and how these effects can be mitigated. Fifty-two studies were identified relating to communicating failures and their causes, the influence of failures on human-robot interaction (HRI), and mitigating failures. Since little research has been done on these topics within the HRI community, insights from the fields of human computer interaction (HCI), human factors engineering, cognitive engineering and experimental psychology are presented and discussed. Based on the literature, we developed a model of information processing for robotic failures (Robot Failure Human Information Processing, RF-HIP), that guides the discussion of our findings. The model describes the way people perceive, process, and act on failures in human robot interaction. The model includes three main parts: (1) communicating failures, (2) perception and comprehension of failures, and (3) solving failures. Each part contains several stages, all influenced by contextual considerations and mitigation strategies. Several gaps in the literature have become evident as a result of this evaluation. More focus has been given to technical failures than interaction failures. Few studies focused on human errors, on communicating failures, or the cognitive, psychological, and social determinants that impact the design of mitigation strategies. By providing the stages of human information processing, RF-HIP can be used as a tool to promote the development of user-centered failure-handling strategies for HRIs.
Dehnavieh, Reza; Ebrahimipour, Hossein; Molavi-Taleghani, Yasamin; Vafaee-Najar, Ali; Noori Hekmat, Somayeh; Esmailzdeh, Hamid
2014-12-25
Pediatric emergency has been considered as a high risk area, and blood transfusion is known as a unique clinical measure, therefore this study was conducted with the purpose of assessing the proactive risk assessment of blood transfusion process in Pediatric Emergency of Qaem education- treatment center in Mashhad, by the Healthcare Failure Mode and Effects Analysis (HFMEA) methodology. This cross-sectional study analyzed the failure mode and effects of blood transfusion process by a mixture of quantitative-qualitative method. The proactive HFMEA was used to identify and analyze the potential failures of the process. The information of the items in HFMEA forms was collected after obtaining a consensus of experts' panel views via the interview and focus group discussion sessions. The Number of 77 failure modes were identified for 24 sub-processes enlisted in 8 processes of blood transfusion. Totally 13 failure modes were identified as non-acceptable risk (a hazard score above 8) in the blood transfusion process and were transferred to the decision tree. Root causes of high risk modes were discussed in cause-effect meetings and were classified based on the UK national health system (NHS) approved classifications model. Action types were classified in the form of acceptance (11.6%), control (74.2%) and elimination (14.2%). Recommendations were placed in 7 categories using TRIZ ("Theory of Inventive Problem Solving.") The re-engineering process for the required changes, standardizing and updating the blood transfusion procedure, root cause analysis of blood transfusion catastrophic events, patient identification bracelet, training classes and educational pamphlets for raising awareness of personnel, and monthly gathering of transfusion medicine committee have all been considered as executive strategies in work agenda in pediatric emergency.
Dehnavieh, Reza; Ebrahimipour, Hossein; Molavi-Taleghani, Yasamin; Vafaee-Najar, Ali; Hekmat, Somayeh Noori; Esmailzdeh, Hamid
2015-01-01
Introduction: Pediatric emergency has been considered as a high risk area, and blood transfusion is known as a unique clinical measure, therefore this study was conducted with the purpose of assessing the proactive risk assessment of blood transfusion process in Pediatric Emergency of Qaem education- treatment center in Mashhad, by the Healthcare Failure Mode and Effects Analysis (HFMEA) methodology. Methodology: This cross-sectional study analyzed the failure mode and effects of blood transfusion process by a mixture of quantitative-qualitative method. The proactive HFMEA was used to identify and analyze the potential failures of the process. The information of the items in HFMEA forms was collected after obtaining a consensus of experts’ panel views via the interview and focus group discussion sessions. Results: The Number of 77 failure modes were identified for 24 sub-processes enlisted in 8 processes of blood transfusion. Totally 13 failure modes were identified as non-acceptable risk (a hazard score above 8) in the blood transfusion process and were transferred to the decision tree. Root causes of high risk modes were discussed in cause-effect meetings and were classified based on the UK national health system (NHS) approved classifications model. Action types were classified in the form of acceptance (11.6%), control (74.2%) and elimination (14.2%). Recommendations were placed in 7 categories using TRIZ (“Theory of Inventive Problem Solving.”) Conclusion: The re-engineering process for the required changes, standardizing and updating the blood transfusion procedure, root cause analysis of blood transfusion catastrophic events, patient identification bracelet, training classes and educational pamphlets for raising awareness of personnel, and monthly gathering of transfusion medicine committee have all been considered as executive strategies in work agenda in pediatric emergency. PMID:25560332
Educating Engineers in Information Utilization.
ERIC Educational Resources Information Center
Borovansky, Vladimir T.
1987-01-01
Traditionally engineers are not heaviest users of information resources. This can be traced to lack of emphasis on information sources in engineering education. Failure to use available knowledge leads to reinventing the wheel and losing the race for technological superiority. Few U.S. universities offer formal courses in information resources in…
ERIC Educational Resources Information Center
Freeman, Amy Louise
2009-01-01
A primary gateway to a career in engineering is the attainment of the bachelor of science degree in engineering. In contrast, a common barrier to becoming an engineer is failure to attain the degree. Those variables that are related to college graduation are often in place prior to college admission. The purpose of this study was to examine the…
Survey of Failure in Engineering Education and Industry
NASA Astrophysics Data System (ADS)
Arimitsu, Yutaka; Yagi, Hidetsugu
Students have failure experiences in the project-based learning but they do not profess their experiences. On the other hand, failures and accidents, in the industrial world, are analyzed frequently, and a knowledge data base on failure and QC activities have been introduced. To turn failure experience in education to advantage, the authors survey the properties of failures in project based learning and views of students, teachers and managers of design divisions in companies. Teachers and students regard failure experiences as instructive and acceptable. The typical causes of failure in educational institutions are luck of skill in manufacturing and inadequate planning, which are minor causes of failure in the industry. To establish a knowledge data base on failure in educational institutions, properties of failure in education should be taken into account.
Control methods for aiding a pilot during STOL engine failure transients
NASA Technical Reports Server (NTRS)
Nelson, E. R.; Debra, D. B.
1976-01-01
Candidate autopilot control laws that control the engine failure transient sink rates by demonstrating the engineering application of modern state variable control theory were defined. The results of approximate modal analysis were compared to those derived from full state analyses provided from computer design solutions. The aircraft was described, and a state variable model of its longitudinal dynamic motion due to engine and control variations was defined. The classical fast and slow modes were assumed to be sufficiently different to define reduced order approximations of the aircraft motion amendable to hand analysis control definition methods. The original state equations of motion were also applied to a large scale state variable control design program, in particular OPTSYS. The resulting control laws were compared with respect to their relative responses, ease of application, and meeting the desired performance objectives.
Engineering for reliability in at-home chronic disease management
Kendall, Logan; Eschler, Jordan; Lozano, Paula; McClure, Jennifer B.; Vizer, Lisa M.; Ralston, James D.; Pratt, Wanda
2014-01-01
Individuals with chronic conditions face challenges with maintaining lifelong adherence to self-management activities. Although reminders can help support the cognitive demands of managing daily and future health tasks, we understand little of how they fit into people’s daily lives. Utilizing a maximum variation sampling method, we interviewed and compared the experiences of 20 older adults with diabetes and 19 mothers of children with asthma to understand reminder use for at-home chronic disease management. Based on our participants’ experiences, we contend that many self-management failures should be viewed as systems failures, rather than individual failures and non-compliance. Furthermore, we identify key principles from reliability engineering that both explain current behavior and suggest strategies to improve patient reminder systems. PMID:25954384
Quantitative ultrasonic evaluation of mechanical properties of engineering materials
NASA Technical Reports Server (NTRS)
Vary, A.
1978-01-01
Current progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength properties of engineering materials is reviewed. Even where conventional NDE techniques have shown that a part is free of overt defects, advanced NDE techniques should be available to confirm the material properties assumed in the part's design. There are many instances where metallic, composite, or ceramic parts may be free of critical defects while still being susceptible to failure under design loads due to inadequate or degraded mechanical strength. This must be considered in any failure prevention scheme that relies on fracture analysis. This review will discuss the availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions.
Engineering for reliability in at-home chronic disease management.
Kendall, Logan; Eschler, Jordan; Lozano, Paula; McClure, Jennifer B; Vizer, Lisa M; Ralston, James D; Pratt, Wanda
2014-01-01
Individuals with chronic conditions face challenges with maintaining lifelong adherence to self-management activities. Although reminders can help support the cognitive demands of managing daily and future health tasks, we understand little of how they fit into people's daily lives. Utilizing a maximum variation sampling method, we interviewed and compared the experiences of 20 older adults with diabetes and 19 mothers of children with asthma to understand reminder use for at-home chronic disease management. Based on our participants' experiences, we contend that many self-management failures should be viewed as systems failures, rather than individual failures and non-compliance. Furthermore, we identify key principles from reliability engineering that both explain current behavior and suggest strategies to improve patient reminder systems.
A Tissue Engineered Model of Aging: Interdependence and Cooperative Effects in Failing Tissues.
Acun, A; Vural, D C; Zorlutuna, P
2017-07-11
Aging remains a fundamental open problem in modern biology. Although there exist a number of theories on aging on the cellular scale, nearly nothing is known about how microscopic failures cascade to macroscopic failures of tissues, organs and ultimately the organism. The goal of this work is to bridge microscopic cell failure to macroscopic manifestations of aging. We use tissue engineered constructs to control the cellular-level damage and cell-cell distance in individual tissues to establish the role of complex interdependence and interactions between cells in aging tissues. We found that while microscopic mechanisms drive aging, the interdependency between cells plays a major role in tissue death, providing evidence on how cellular aging is connected to its higher systemic consequences.
14 CFR 25.1192 - Engine accessory section diaphragm.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine accessory section diaphragm. 25.1192....1192 Engine accessory section diaphragm. For reciprocating engines, the engine power section and all portions of the exhaust system must be isolated from the engine accessory compartment by a diaphragm that...
14 CFR 25.1192 - Engine accessory section diaphragm.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine accessory section diaphragm. 25.1192....1192 Engine accessory section diaphragm. For reciprocating engines, the engine power section and all portions of the exhaust system must be isolated from the engine accessory compartment by a diaphragm that...
14 CFR 25.1192 - Engine accessory section diaphragm.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine accessory section diaphragm. 25.1192....1192 Engine accessory section diaphragm. For reciprocating engines, the engine power section and all portions of the exhaust system must be isolated from the engine accessory compartment by a diaphragm that...
Thematic mapper flight model preshipment review data package. Volume 3, part C: System data
NASA Technical Reports Server (NTRS)
1982-01-01
Failure reports for flight model-1 of the thematic mapper are summarized showing the symptom and cause of failure as well as the corrective action taken. Each report is keyed to the major subsystem against which the failure occurred. Requests for deviation/waiver are listed by number, description, and current status. Copies of engineering proposals are included.
ERIC Educational Resources Information Center
Simpson, Amber; Maltese, Adam
2017-01-01
The term failure typically evokes negative connotations in educational settings and is likely to be accompanied by negative emotional states, low sense of confidence, and lack of persistence. These negative emotional and behavioral states may factor into an individual not pursuing a degree or career in science, technology, engineering, or…
2015-01-01
Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining. PMID:26549926
Murphy, M M
2016-02-01
Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining.
Fatigue failure of regenerator screens in a high frequency Stirling engine
NASA Technical Reports Server (NTRS)
Hull, David R.; Alger, Donald L.; Moore, Thomas J.; Scheuermann, Coulson M.
1988-01-01
Failure of Stirling Space Power Demonstrator Engine (SPDE) regenerator screens was investigated. After several hours of operation the SPDE was shut down for inspection and on removing the regenator screens, debris of unknown origin was discovered along with considerable cracking of the screens in localized areas. Metallurgical analysis of the debris determined it to be cracked-off-deformed pieces of the 41 micron thickness Type 304 stainless steel wire screen. Scanning electron microscopy of the cracked screens revealed failures occurring at wire crossovers and fatigue striations on the fracture surface of the wires. Thus, the screen failure can be characterized as a fatigue failure of the wires. The crossovers were determined to contain 30 percent reduction in wire thickness and a highly worked microstructure occurring from the manufacturing process of the wire screens. Later it was found that reduction in wire thickness occurred because the screen fabricator had subjected it to a light cold-roll process after weaving. Installation of this screen left a clearance in the regenerator allowing the screens to move. The combined effects of the reduction in wire thickness, stress concentration (caused by screen movement), and highly worked microstructure at the wire crossovers led to the fatigue failure of the screens.
NASA Astrophysics Data System (ADS)
Murphy, M. M.
2016-02-01
Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining.
NASA Astrophysics Data System (ADS)
Munteanu, Daniel
2018-04-01
The main goal of the BraMat 2017 Conference was, as for the previous editions, to stimulate an international exchange of information in the field of materials science and engineering and to establish future research directions. The main topics of this edition included: Metallic materials (Section I), Biomaterials (Section II), Ceramics, polymers and composite materials (Section III), Surface engineering (Section IV), Nanomaterials (Section V), Welding engineering (Section VI), Safety engineering (Section VII), and Magnesium science and engineering (Section VIII).
NASA Astrophysics Data System (ADS)
Protalinsky, O. M.; Shcherbatov, I. A.; Stepanov, P. V.
2017-11-01
A growing number of severe accidents in RF call for the need to develop a system that could prevent emergency situations. In a number of cases accident rate is stipulated by careless inspections and neglects in developing repair programs. Across the country rates of accidents are growing because of a so-called “human factor”. In this regard, there has become urgent the problem of identification of the actual state of technological facilities in power engineering using data on engineering processes running and applying artificial intelligence methods. The present work comprises four model states of manufacturing equipment of engineering companies: defect, failure, preliminary situation, accident. Defect evaluation is carried out using both data from SCADA and ASEPCR and qualitative information (verbal assessments of experts in subject matter, photo- and video materials of surveys processed using pattern recognition methods in order to satisfy the requirements). Early identification of defects makes possible to predict the failure of manufacturing equipment using mathematical techniques of artificial neural network. In its turn, this helps to calculate predicted characteristics of reliability of engineering facilities using methods of reliability theory. Calculation of the given parameters provides the real-time estimation of remaining service life of manufacturing equipment for the whole operation period. The neural networks model allows evaluating possibility of failure of a piece of equipment consistent with types of actual defects and their previous reasons. The article presents the grounds for a choice of training and testing samples for the developed neural network, evaluates the adequacy of the neural networks model, and shows how the model can be used to forecast equipment failure. There have been carried out simulating experiments using a computer and retrospective samples of actual values for power engineering companies. The efficiency of the developed model for different types of manufacturing equipment has been proved. There have been offered other research areas in terms of the presented subject matter.
NASA Astrophysics Data System (ADS)
Gledhill, Andrew
Thermal barrier coatings (TBCs) are ceramic coatings used on component in the hottest sections of gas turbine engines, used for power generation and aviation. These coatings insulate the underlying metal components and allow for much higher engine operating temperatures, improving the engine efficiency. These increase temperatures engender a new set of materials problems for TBCs. Operating temperatures in engines are now high enough for silicate impurities, either present in the fuel or ingested into the engines, to melt and adhere to the surface of the TBCs. The effects of four such impurities, two coal fly ashes, a petroleum coke-fly ash blend, and volcanic ash from the Eyjafjallajokull volcano were tested with conventional yttria-stabilized zirconia (YSZ) coatings, and found to penetrate through the entire thickness of the coating. This penetration reduces the strain tolerance of the coatings, and can result in premature failure. Testing on a newly built thermal gradient burner rig with simultaneous injection of ash impurities has shown a reduction of life up to 99.6% in these coatings when ash is present. Coatings of an alternative ceramic, gadolinium zirconate (Gd2Zr 2O7), were found to form a dense reaction layer with each of these impurities, preventing further penetration of the molten ash. This dense layer also reduces the strain tolerance, but these coatings were found to have a significantly higher life than the YSZ coatings. Testing with a small amount of ash baked onto the samples showed thirteen times the life of YSZ coatings. When the ash is continuously sprayed onto the hot sample, the life of the Gd2Zr2O7 coatings was nearly twice that of the YSZ. Finally, a delamination model was employed to explain the degradation of both types of coatings. This elastic model that takes into account the degree of penetration, differential cooling in thermal gradient testing, and thermal expansion mismatch with the underlying substrate, predicted the failure of YSZ coatings with the observed degree of penetration. The model shows that deposition optimization can be employed to further enhance the life of Gd 2Zr2O7coatings.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-08
... Failure To Submit a Complete State Implementation Plan for Section 110(a) Pertaining to the 2006 Fine... submission for some or all of these specific requirements. The finding of failure to submit for some or all... making a finding of failure to submit SIPs, or elements of SIPs, required by the CAA, where states have...
Fabry-Perot interferometer development for rocket engine plume spectroscopy
NASA Astrophysics Data System (ADS)
Bickford, R. L.; Madzsar, G.
1990-07-01
This paper describes a new rugged high-resolution Fabry-Perot interferometer (FPI) designed for rocket engine plume spectroscopy, which is capable of detecting spectral signatures of eroding engine components during rocket engine tests and/or flight operations. The FPI system will make it possible to predict and to respond to the incipient rocket engine failures and to indicate the presence of rocket components degradation. The design diagram of the FPI spectrometer is presented.
Fabry-Perot interferometer development for rocket engine plume spectroscopy
NASA Technical Reports Server (NTRS)
Bickford, R. L.; Madzsar, G.
1990-01-01
This paper describes a new rugged high-resolution Fabry-Perot interferometer (FPI) designed for rocket engine plume spectroscopy, which is capable of detecting spectral signatures of eroding engine components during rocket engine tests and/or flight operations. The FPI system will make it possible to predict and to respond to the incipient rocket engine failures and to indicate the presence of rocket components degradation. The design diagram of the FPI spectrometer is presented.
Sensor Based Engine Life Calculation: A Probabilistic Perspective
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei; Chen, Philip
2003-01-01
It is generally known that an engine component will accumulate damage (life usage) during its lifetime of use in a harsh operating environment. The commonly used cycle count for engine component usage monitoring has an inherent range of uncertainty which can be overly costly or potentially less safe from an operational standpoint. With the advance of computer technology, engine operation modeling, and the understanding of damage accumulation physics, it is possible (and desirable) to use the available sensor information to make a more accurate assessment of engine component usage. This paper describes a probabilistic approach to quantify the effects of engine operating parameter uncertainties on the thermomechanical fatigue (TMF) life of a selected engine part. A closed-loop engine simulation with a TMF life model is used to calculate the life consumption of different mission cycles. A Monte Carlo simulation approach is used to generate the statistical life usage profile for different operating assumptions. The probabilities of failure of different operating conditions are compared to illustrate the importance of the engine component life calculation using sensor information. The results of this study clearly show that a sensor-based life cycle calculation can greatly reduce the risk of component failure as well as extend on-wing component life by avoiding unnecessary maintenance actions.
Probabilistic framework for product design optimization and risk management
NASA Astrophysics Data System (ADS)
Keski-Rahkonen, J. K.
2018-05-01
Probabilistic methods have gradually gained ground within engineering practices but currently it is still the industry standard to use deterministic safety margin approaches to dimensioning components and qualitative methods to manage product risks. These methods are suitable for baseline design work but quantitative risk management and product reliability optimization require more advanced predictive approaches. Ample research has been published on how to predict failure probabilities for mechanical components and furthermore to optimize reliability through life cycle cost analysis. This paper reviews the literature for existing methods and tries to harness their best features and simplify the process to be applicable in practical engineering work. Recommended process applies Monte Carlo method on top of load-resistance models to estimate failure probabilities. Furthermore, it adds on existing literature by introducing a practical framework to use probabilistic models in quantitative risk management and product life cycle costs optimization. The main focus is on mechanical failure modes due to the well-developed methods used to predict these types of failures. However, the same framework can be applied on any type of failure mode as long as predictive models can be developed.
Fault detection and accommodation testing on an F100 engine in an F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, L. P.; Baer-Riedhart, J. L.; Maxwell, M. D.
1985-01-01
The fault detection and accommodation (FDA) methodology for digital engine-control systems may range from simple comparisons of redundant parameters to the more complex and sophisticated observer models of the entire engine system. Evaluations of the various FDA schemes are done using analytical methods, simulation, and limited-altitude-facility testing. Flight testing of the FDA logic has been minimal because of the difficulty of inducing realistic faults in flight. A flight program was conducted to evaluate the fault detection and accommodation capability of a digital electronic engine control in an F-15 aircraft. The objective of the flight program was to induce selected faults and evaluate the resulting actions of the digital engine controller. Comparisons were made between the flight results and predictions. Several anomalies were found in flight and during the ground test. Simulation results showed that the inducement of dual pressure failures was not feasible since the FDA logic was not designed to accommodate these types of failures.
14 CFR 25.1189 - Shutoff means.
Code of Federal Regulations, 2014 CFR
2014-01-01
... powerplant or engine mount structural failure. (h) Each shutoff valve must have a means to relieve excessive...) Each engine installation and each fire zone specified in § 25.1181(a)(4) and (5) must have a means to... required for— (1) Lines, fittings, and components forming an integral part of an engine; and (2) Oil...
14 CFR 25.1189 - Shutoff means.
Code of Federal Regulations, 2010 CFR
2010-01-01
... powerplant or engine mount structural failure. (h) Each shutoff valve must have a means to relieve excessive...) Each engine installation and each fire zone specified in § 25.1181(a)(4) and (5) must have a means to... required for— (1) Lines, fittings, and components forming an integral part of an engine; and (2) Oil...
14 CFR 25.1189 - Shutoff means.
Code of Federal Regulations, 2013 CFR
2013-01-01
... powerplant or engine mount structural failure. (h) Each shutoff valve must have a means to relieve excessive...) Each engine installation and each fire zone specified in § 25.1181(a)(4) and (5) must have a means to... required for— (1) Lines, fittings, and components forming an integral part of an engine; and (2) Oil...
14 CFR 25.1189 - Shutoff means.
Code of Federal Regulations, 2012 CFR
2012-01-01
... powerplant or engine mount structural failure. (h) Each shutoff valve must have a means to relieve excessive...) Each engine installation and each fire zone specified in § 25.1181(a)(4) and (5) must have a means to... required for— (1) Lines, fittings, and components forming an integral part of an engine; and (2) Oil...
14 CFR 25.1189 - Shutoff means.
Code of Federal Regulations, 2011 CFR
2011-01-01
... powerplant or engine mount structural failure. (h) Each shutoff valve must have a means to relieve excessive...) Each engine installation and each fire zone specified in § 25.1181(a)(4) and (5) must have a means to... required for— (1) Lines, fittings, and components forming an integral part of an engine; and (2) Oil...
76 FR 65421 - Airworthiness Directives; Schempp-Hirth Flugzeugbau GmbH Gliders
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-21
... the unsafe condition as: It has been reported that small cracks on engine pylons, in the area of the lower engine support, were not detected through the ``standard'' inspection required by the daily... not detected and corrected, could lead to an engine pylon failure and consequent damage to the...
76 FR 77380 - Airworthiness Directives; Pratt & Whitney Canada Turboprop Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-13
... Timken Alcor Aerospace Technologies, Inc. (TAATI) first stage reduction sun gears and/or the interacting... of a certain TAATI PMA sun gear, installed since December 22, 2008. We are issuing this AD to prevent failure of the sun gear, which will result in an engine in- flight shut down, possible uncontained engine...
AADL and Model-based Engineering
2014-10-20
and MBE Feiler, Oct 20, 2014 © 2014 Carnegie Mellon University We Rely on Software for Safe Aircraft Operation Embedded software systems ...D eveloper Compute Platform Runtime Architecture Application Software Embedded SW System Engineer Data Stream Characteristics Latency...confusion Hardware Engineer Why do system level failures still occur despite fault tolerance techniques being deployed in systems ? Embedded software
Adaptive model-based control systems and methods for controlling a gas turbine
NASA Technical Reports Server (NTRS)
Brunell, Brent Jerome (Inventor); Mathews, Jr., Harry Kirk (Inventor); Kumar, Aditya (Inventor)
2004-01-01
Adaptive model-based control systems and methods are described so that performance and/or operability of a gas turbine in an aircraft engine, power plant, marine propulsion, or industrial application can be optimized under normal, deteriorated, faulted, failed and/or damaged operation. First, a model of each relevant system or component is created, and the model is adapted to the engine. Then, if/when deterioration, a fault, a failure or some kind of damage to an engine component or system is detected, that information is input to the model-based control as changes to the model, constraints, objective function, or other control parameters. With all the information about the engine condition, and state and directives on the control goals in terms of an objective function and constraints, the control then solves an optimization so the optimal control action can be determined and taken. This model and control may be updated in real-time to account for engine-to-engine variation, deterioration, damage, faults and/or failures using optimal corrective control action command(s).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-23
... showed that the Fuel Filter Bypass Valve poppet in the Fuel Oil Heat Exchanger (FOHE) on that engine had... a dormant failure that could result in an unsafe condition. The PW615F-A engine Fuel Filter Bypass... that the Fuel Filter Bypass Valve poppet in the Fuel Oil Heat Exchanger (FOHE) on that engine had worn...
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIESEL ENGINE GEARS AND GEARING PRINCIPLES AND THE OPERATING PRINCIPLES AND MAINTENANCE OF POWER DIVIDERS (GEAR BOXES) USED IN DIESEL ENGINE POWER TRANSMISSION. TOPICS ARE (1) THE PURPOSE OF THE ENGINE GEARS, (2) INSPECTING FOR GEAR FAILURES, (3) INSPECTING FOR SHAFT…
Metallurgical failure analysis of MH-1A reactor core hold-down bolts. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawthorne, J.R.; Watson, H.E.
1976-11-01
The Naval Research Laboratory has performed a failure analysis on two MH-1A reactor core hold-down bolts that broke in service. Adherence to fabrication specifications, post-service properties and possible causes of bolt failure were investigated. The bolt material was verified as 17-4PH precipitation hardening stainless steel. Measured bolt dimensions also were in accordance with fabrication drawing specifications. Bolt failure occurred in the region of a locking pin hole which reduced the bolt net section by 47 percent. The failure analysis indicates that the probable cause of failure was net section overloading resulting from a lateral bending force on the bolt. Themore » analysis indicates that net section overloading could also have resulted from combined tensile stresses (bolt preloading plus differential thermal expansion). Recommendations are made for improved bolting.« less
Therapeutic uses of microencapsulated genetically engineered cells.
Chang, T M; Prakash, S
1998-05-01
Microencapsulated genetically engineered cells have the potential to treat a wide range of diseases. For example, in experimental animals, implanted microencapsulated cells have been used to secrete growth hormone to treat dwarfism, neurotrophic factors for amyotrophic lateral sclerosis, beta-endorphin to decrease pain, factor XI for hemophilia B, and nerve growth factors to protect axotomized neurons. For some applications, microencapsulated cells can even be given orally. They can be engineered to remove unwanted molecules from the body as they travel through the intestine, and are finally excreted in the stool without being retained in the body. This application has enormous potential for the removal of urea in kidney failure, ammonia in liver failure and amino acids such as phenylalanine in phenylketonuria and other inborn errors of metabolism.
Commercial Aircraft Maintenance Experience Relating to Engine External Hardware
NASA Technical Reports Server (NTRS)
Soditus, Sharon M.
2006-01-01
Airlines are extremely sensitive to the amount of dollars spent on maintaining the external engine hardware in the field. Analysis reveals that many problems revolve around a central issue, reliability. Fuel and oil leakage due to seal failure and electrical fault messages due to wire harness failures play a major role in aircraft delays and cancellations (D&C's) and scheduled maintenance. Correcting these items on the line requires a large investment of engineering resources and manpower after the fact. The smartest and most cost effective philosophy is to build the best hardware the first time. The only way to do that is to completely understand and model the operating environment, study the field experience of similar designs and to perform extensive testing.
The use of laterally vectored thrust to counter thrust asymmetry in a tactical jet aircraft
NASA Technical Reports Server (NTRS)
1983-01-01
A nonlinear, six degree-of-freedom flight simulator for a twin engine tactical jet was built on a hybrid computer to investigate lateral vectoring of the remaining thrust component for the case of a single engine failure at low dynamic pressures. Aircraft control was provided by an automatic controller rather than a pilot, and thrust vector control was provided by an open-loop controller that deflected a vane (located on the periphery of each exhaust jet and normally streamlined for noninterference with the flow). Lateral thrust vectoring decreased peak values of lateral control deflections, eliminated the requirement for steady-state lateral aerodynamic control deflections, and decreased the amount of altitude lost for a single engine failure.
NASA Technical Reports Server (NTRS)
Maul, William A.; Meyer, Claudia M.
1991-01-01
A rocket engine safety system was designed to initiate control procedures to minimize damage to the engine or vehicle or test stand in the event of an engine failure. The features and the implementation issues associated with rocket engine safety systems are discussed, as well as the specific concerns of safety systems applied to a space-based engine and long duration space missions. Examples of safety system features and architectures are given, based on recent safety monitoring investigations conducted for the Space Shuttle Main Engine and for future liquid rocket engines. Also, the general design and implementation process for rocket engine safety systems is presented.
28 CFR 51.40 - Failure to complete submissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Failure to complete submissions. 51.40 Section 51.40 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED Processing of Submissions § 51.40 Failure...
28 CFR 51.40 - Failure to complete submissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Failure to complete submissions. 51.40 Section 51.40 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED Processing of Submissions § 51.40 Failure...
28 CFR 51.40 - Failure to complete submissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Failure to complete submissions. 51.40 Section 51.40 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED Processing of Submissions § 51.40 Failure...
40 CFR 700.49 - Failure to remit fees.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Failure to remit fees. 700.49 Section 700.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT GENERAL Fees § 700.49 Failure to remit fees. EPA will not consider a section 5 notice to be...
40 CFR 700.49 - Failure to remit fees.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Failure to remit fees. 700.49 Section 700.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT GENERAL Fees § 700.49 Failure to remit fees. EPA will not consider a section 5 notice to be...
28 CFR 51.40 - Failure to complete submissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Failure to complete submissions. 51.40 Section 51.40 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED Processing of Submissions § 51.40 Failure...
28 CFR 51.40 - Failure to complete submissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Failure to complete submissions. 51.40 Section 51.40 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED Processing of Submissions § 51.40 Failure...
40 CFR 700.49 - Failure to remit fees.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Failure to remit fees. 700.49 Section 700.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT GENERAL Fees § 700.49 Failure to remit fees. EPA will not consider a section 5 notice to be...
40 CFR 700.49 - Failure to remit fees.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Failure to remit fees. 700.49 Section 700.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT GENERAL Fees § 700.49 Failure to remit fees. EPA will not consider a section 5 notice to be...
40 CFR 700.49 - Failure to remit fees.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Failure to remit fees. 700.49 Section 700.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT GENERAL Fees § 700.49 Failure to remit fees. EPA will not consider a section 5 notice to be...
Reliability of ceramics for heat engine applications
NASA Technical Reports Server (NTRS)
1980-01-01
The advantages and disadvantages associated with the use of monolithic ceramics in heat engines are discussed. The principle gaps in the state of understanding of ceramic material, failure origins, nondestructive tests as well as life prediction are included.
Strain gage system evaluation program
NASA Technical Reports Server (NTRS)
Dolleris, G. W.; Mazur, H. J.; Kokoszka, E., Jr.
1978-01-01
A program was conducted to determine the reliability of various strain gage systems when applied to rotating compressor blades in an aircraft gas turbine engine. A survey of current technology strain gage systems was conducted to provide a basis for selecting candidate systems for evaluation. Testing and evaluation was conducted in an F 100 engine. Sixty strain gage systems of seven different designs were installed on the first and third stages of an F 100 engine fan. Nineteen strain gage failures occurred during 62 hours of engine operation, for a survival rate of 68 percent. Of the failures, 16 occurred at blade-to-disk leadwire jumps (84 percent), two at a leadwire splice (11 percent), and one at a gage splice (5 percent). Effects of erosion, temperature, G-loading, and stress levels are discussed. Results of a post-test analysis of the individual components of each strain gage system are presented.
Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission
Zhang, Zhiheng; Yang, Guoan; Hu, Kun
2018-01-01
Fatigue failure is the main type of failure that occurs in gas turbine engine blades and an online monitoring method for detecting fatigue cracks in blades is urgently needed. Therefore, in this present study, we propose the use of acoustic emission (AE) monitoring for the online identification of the blade status. Experiments on fatigue crack propagation based on the AE monitoring of gas turbine engine blades and TC11 titanium alloy plates were conducted. The relationship between the cumulative AE hits and the fatigue crack length was established, before a method of using the AE parameters to determine the crack propagation stage was proposed. A method for predicting the degree of crack propagation and residual fatigue life based on the AE energy was obtained. The results provide a new method for the online monitoring of cracks in the gas turbine engine blade. PMID:29693556
Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.
Zhang, Zhiheng; Yang, Guoan; Hu, Kun
2018-04-25
Fatigue failure is the main type of failure that occurs in gas turbine engine blades and an online monitoring method for detecting fatigue cracks in blades is urgently needed. Therefore, in this present study, we propose the use of acoustic emission (AE) monitoring for the online identification of the blade status. Experiments on fatigue crack propagation based on the AE monitoring of gas turbine engine blades and TC11 titanium alloy plates were conducted. The relationship between the cumulative AE hits and the fatigue crack length was established, before a method of using the AE parameters to determine the crack propagation stage was proposed. A method for predicting the degree of crack propagation and residual fatigue life based on the AE energy was obtained. The results provide a new method for the online monitoring of cracks in the gas turbine engine blade.
23 CFR 669.13 - Effect of failure to certify or to adequately obtain proof of payment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS ENFORCEMENT OF HEAVY VEHICLE USE TAX § 669.13 Effect of failure... not adequately obtaining proof of payment of the heavy vehicle use tax as a condition of registration...
Ultrasonic Spectroscopy of Stainless Steel Sandwich Panels
NASA Technical Reports Server (NTRS)
Cosgriff, Laura M.; Lerch, Bradley A.; Hebsur, Mohan G.; Baaklini, George Y.; Ghosn, Louis J.
2003-01-01
Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment material systems for next generation engines. In order to improve the production for these systems, nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, are being utilized to evaluate the brazing quality between the 17-4PH stainless steel face plates and the 17-4PH stainless steel foam core. Based on NDE data, shear tests are performed on sections representing various levels of brazing quality from an initial batch of these sandwich structures. Metallographic characterization of brazing is done to corroborate NDE findings and the observed shear failure mechanisms.
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Prosser, William H.
2011-01-01
The Director of the NASA Engineering and Safety Center (NESC), requested an independent assessment of the anomalous gaseous hydrogen (GH2) flow incident on the Space Shuttle Program (SSP) Orbiter Vehicle (OV)-105 during the Space Transportation System (STS)-126 mission. The main propulsion system (MPS) engine #2 GH2 flow control valve (FCV) LV-57 transition from low towards high flow position without being commanded. Post-flight examination revealed that the FCV LV-57 poppet had experienced a fatigue failure that liberated a section of the poppet flange. The NESC assessment provided a peer review of the computational fluid dynamics (CFD), stress analysis, and impact testing. A probability of detection (POD) study was requested by the SSP Orbiter Project for the eddy current (EC) nondestructive evaluation (NDE) techniques that were developed to inspect the flight FCV poppets. This report contains the findings and recommendations from the NESC assessment.
NASA Astrophysics Data System (ADS)
Bunget, Gheorghe; Tilmon, Brevin; Yee, Andrew; Stewart, Dylan; Rogers, James; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya
2018-04-01
Widespread damage in aging aircraft is becoming an increasing concern as both civil and military fleet operators are extending the service lifetime of their aircraft. Metallic components undergoing variable cyclic loadings eventually fatigue and form dislocations as precursors to ultimate failure. In order to characterize the progression of fatigue damage precursors (DP), the acoustic nonlinearity parameter is measured as the primary indicator. However, using proven standard ultrasonic technology for nonlinear measurements presents limitations for settings outside of the laboratory environment. This paper presents an approach for ultrasonic inspection through automated immersion scanning of hot section engine components where mature ultrasonic technology is used during periodic inspections. Nonlinear ultrasonic measurements were analyzed using wavelet analysis to extract multiple harmonics from the received signals. Measurements indicated strong correlations of nonlinearity coefficients and levels of fatigue in aluminum and Ni-based superalloys. This novel wavelet cross-correlation (WCC) algorithm is a potential technique to scan for fatigue damage precursors and identify critical locations for remaining life prediction.
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Prosser, William H.
2011-01-01
The Director of the NASA Engineering and Safety Center (NESC), requested an independent assessment of the anomalous gaseous hydrogen (GH2) flow incident on the Space Shuttle Program (SSP) Orbiter Vehicle (OV)-105 during the Space Transportation System (STS)-126 mission. The main propulsion system (MPS) engine #2 GH2 flow control valve (FCV) LV-57 transition from low towards high flow position without being commanded. Post-flight examination revealed that the FCV LV-57 poppet had experienced a fatigue failure that liberated a section of the poppet flange. The NESC assessment provided a peer review of the computational fluid dynamics (CFD), stress analysis, and impact testing. A probability of detection (POD) study was requested by the SSP Orbiter Project for the eddy current (EC) nondestructive evaluation (NDE) techniques that were developed to inspect the flight FCV poppets. This report contains the Appendices to the main report.
NASA Technical Reports Server (NTRS)
Golden, Johnny L.
2016-01-01
The International Space Station (ISS) utilizes two large rotating mechanisms, the solar alpha rotary joints (SARJs), as part of the solar arrays' alignment system for more efficient power generation. Each SARJ is a 10.3m circumference, nitrided 15-5PH steel race ring of triangular cross-section, with 12 sets of trundle bearing assemblies transferring load across the rolling joint. The SARJ mechanism rotates continuously and slowly - once every orbit, or every 90 minutes. In 2007, the starboard SARJ suffered a lubrication failure, resulting in severe damage (spalling) to one of the race ring surfaces. Extensive effort was conducted to prevent the port SARJ from suffering the same failure, and fortunately that effort was ultimately successful in also recovering the functionality of the starboard SARJ. The M&P engineering function was key in determining the cause of failure and the means for mechanism recovery. From a M&P lessons-learned perspective, observations are made concerning the original SARJ design parameters (boundary conditions), the perceived need for nitriding the race ring, the test conditions employed during qualification, the environmental controls used for the hardware preflight, and the lubrication robustness necessary for complex kinematic mechanisms expecting high-reliability and long-life.
Advanced Gas Turbine (AGT) Technology Project
NASA Technical Reports Server (NTRS)
1986-01-01
Engine testing, ceramic component fabrication and evaluation, component performance rig testing, and analytical studies comprised AGT 100 activities during the 1985 year. Ten experimental assemblies (builds) were evaluated using two engines. Accrued operating time was 120 hr of burning and 170 hr total, bringing cumulative total operating time to 395 hr, all devoid of major failures. Tests identified the generator seals as the primary working fluid leakage sources. Power transfer clutch operation was demonstrated. An alpha SiC gasifier rotor engine test resulted in blade tip failures. Recurring case vibration and shaft whip have limited gasifier shaft speeds to 84%. Ceramic components successfully engine tested now include the SiC scroll assembly, Si3N3 turbine rotor, combustor assembly, regenerator disk bulkhead, turbine vanes, piston rings, and couplings. A compressor shroud design change to reduce heat recirculation back to the inlet was executed. Ceramic components activity continues to focus on the development of state-of-the-art material strength characteristics in full-scale engine hardware. Fiber reinforced glass-ceramic composite turbine (inner) backplates were fabricated by Corning Glass Works. The BMAS/III material performed well in engine testing. Backplates of MAS material have not been engine tested.
NASA Technical Reports Server (NTRS)
Chen, Robert T. N.; Zhao, Yi-Yuan; Aiken, Edwin W. (Technical Monitor)
1995-01-01
Engine failure represents a major safety concern to helicopter operations, especially in the critical flight phases of takeoff and landing from/to small, confined areas. As a result, the JAA and FAA both certificate a transport helicopter as either Category-A or Category-B according to the ability to continue its operations following engine failures. A Category-B helicopter must be able to land safely in the event of one or all engine failures. There is no requirement, however, for continued flight capability. In contrast, Category-A certification, which applies to multi-engine transport helicopters with independent engine systems, requires that they continue the flight with one engine inoperative (OEI). These stringent requirements, while permitting its operations from rooftops and oil rigs and flight to areas where no emergency landing sites are available, restrict the payload of a Category-A transport helicopter to a value safe for continued flight as well as for landing with one engine inoperative. The current certification process involves extensive flight tests, which are potentially dangerous, costly, and time consuming. These tests require the pilot to simulate engine failures at increasingly critical conditions, Flight manuals based on these tests tend to provide very conservative recommendations with regard to maximum takeoff weight or required runway length. There are very few theoretical studies on this subject to identify the fundamental parameters and tradeoff factors involved. Furthermore, a capability for real-time generation of OEI optimal trajectories is very desirable for providing timely cockpit display guidance to assist the pilot in reducing his workload and to increase safety in a consistent and reliable manner. A joint research program involving NASA Ames Research Center, the FAA, and the University of Minnesota is being conducted to determine OEI optimal control strategies and the associated optimal,trajectories for continued takeoff (CTO), rejected takeoff (RTO), balked landing (BL), and continued landing (CL) for a twin engine helicopter in both VTOL and STOL terminal-area operations. This proposed paper will present the problem formulation, the optimal control solution methods, and the key results of the trajectory optimization studies for both STOL and VTOL OEI operations. In addition, new results concerning the recently developed methodology, which enable a real-time generation of optimal OEI trajectories, will be presented in the paper. This new real-time capability was developed to support the second piloted simulator investigation on cockpit displays for Category-A operations being scheduled for the NASA Ames Vertical Motion Simulator in June-August of 1995. The first VMS simulation was conducted in 1994 and reported.
A predictive model for failure properties of thermoset resins
NASA Technical Reports Server (NTRS)
Caruthers, James M.; Bowles, Kenneth J.
1989-01-01
A predictive model for the three-dimensional failure behavior of engineering polymers has been developed in a recent NASA-sponsored research program. This model acknowledges the underlying molecular deformation mechanisms and thus accounts for the effects of different chemical compositions, crosslink density, functionality of the curing agent, etc., on the complete nonlinear stress-strain response including yield. The material parameters required by the model can be determined from test-tube quantities of a new resin in only a few days. Thus, we can obtain a first-order prediction of the applicability of a new resin for an advanced aerospace application without synthesizing the large quantities of material needed for failure testing. This technology will effect order-of-magnitude reductions in the time and expense required to develop new engineering polymers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiCostanzo, D; Ayan, A; Woollard, J
Purpose: To predict potential failures of hardware within the Varian TrueBeam linear accelerator in order to proactively replace parts and decrease machine downtime. Methods: Machine downtime is a problem for all radiation oncology departments and vendors. Most often it is the result of unexpected equipment failure, and increased due to lack of in-house clinical engineering support. Preventative maintenance attempts to assuage downtime, but often is ineffective at preemptively preventing many failure modes such as MLC motor failures, the need to tighten a gantry chain, or the replacement of a jaw motor, among other things. To attempt to alleviate downtime, softwaremore » was developed in house that determines the maximum value of each axis enumerated in the Truebeam trajectory log files. After patient treatments, this data is stored in a SQL database. Microsoft Power BI is used to plot the average maximum error of each day of each machine as a function of time. The results are then correlated with actual faults that occurred at the machine with the help of Varian service engineers. Results: Over the course of six months, 76,312 trajectory logs have been written into the database and plotted in Power BI. Throughout the course of analysis MLC motors have been replaced on three machines due to the early warning of the trajectory log analysis. The service engineers have also been alerted to possible gantry issues on one occasion due to the aforementioned analysis. Conclusion: Analyzing the trajectory log data is a viable and effective early warning system for potential failures of the TrueBeam linear accelerator. With further analysis and tightening of the tolerance values used to determine a possible imminent failure, it should be possible to pinpoint future issues more thoroughly and for more axes of motion.« less
Fractography of modern engineering materials: Composites and metals, Second volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masters, J.E.; Gilbertson, L.N.
1993-01-01
This book contains the manuscripts of eleven papers that were presented at the Second Symposium on Fractography of Modern Engineering Materials held in May 1992. The numerous advances in materials science in the six year period following the First Symposium dictated this second meeting. Not only had new materials been developed in the intervening years, but understanding of older materials had also progressed. Similarly, advances in the technology and the techniques of fractography had occurred. The objective of the symposium was to extend the colloquy on fractography to include these many advances. The paper may be divided into three sections:more » Unique Fractographic Techniques; Metallic Materials; Polymeric and Composite Materials. The section titles reflect the diversity of materials discussed in the meeting. The range of materials included cross-linked polyethylene, AISI 52100 steel, 2024 aluminum, and a variety of organic and metal matrix fibrous composites. The case studies presented also covered a wide range. They included failure investigations of an antenna used in deep space exploration and chemical storage tanks. Advances in the techniques of fractography were also reflected in a number of presentations; quantitative techniques and expert systems were also subjects of presentations. A short precis of each paper is included here to assist the readers in identifying works of particular interest.« less
Real-time diagnostics of the reusable rocket engine using on-line system identification
NASA Technical Reports Server (NTRS)
Guo, T.-H.; Merrill, W.; Duyar, A.
1990-01-01
A model-based failure diagnosis system has been proposed for real-time diagnosis of SSME failures. Actuation, sensor, and system degradation failure modes are all considered by the proposed system. In the case of SSME actuation failures, it was shown that real-time identification can effectively be used for failure diagnosis purposes. It is a direct approach since it reduces the detection, isolation, and the estimation of the extent of the failures to the comparison of parameter values before and after the failure. As with any model-based failure detection system, the proposed approach requires a fault model that embodies the essential characteristics of the failure process. The proposed diagnosis approach has the added advantage that it can be used as part of an intelligent control system for failure accommodation purposes.
NASA Technical Reports Server (NTRS)
Anderson, Leif F.; Harrington, Sean P.; Omeke, Ojei, II; Schwaab, Douglas G.
2009-01-01
This is a case study on revised estimates of induced failure for International Space Station (ISS) on-orbit replacement units (ORUs). We devise a heuristic to leverage operational experience data by aggregating ORU, associated function (vehicle sub -system), and vehicle effective' k-factors using actual failure experience. With this input, we determine a significant failure threshold and minimize the difference between the actual and predicted failure rates. We conclude with a discussion on both qualitative and quantitative improvements the heuristic methods and potential benefits to ISS supportability engineering analysis.
Research on measurement of aviation magneto ignition strength and balance
NASA Astrophysics Data System (ADS)
Gao, Feng; He, Zhixiang; Zhang, Dingpeng
2017-12-01
Aviation magneto ignition system failure accounted for two-thirds of the total fault aviation piston engine and above. At present the method used for this failure diagnosis is often depended on the visual inspections in the civil aviation maintenance field. Due to human factors, the visual inspections cannot provide ignition intensity value and ignition equilibrium deviation value among the different spark plugs in the different cylinder of aviation piston engine. So air magneto ignition strength and balance testing has become an aviation piston engine maintenance technical problem needed to resolve. In this paper, the ultraviolet sensor with detection wavelength of 185~260nm and driving voltage of 320V DC is used as the core of ultraviolet detection to detect the ignition intensity of Aviation magneto ignition system and the balance deviation of the ignition intensity of each cylinder. The experimental results show that the rotational speed within the range 0 to 3500 RPM test error less than 0.34%, ignition strength analysis and calculation error is less than 0.13%, and measured the visual inspection is hard to distinguish between high voltage wire leakage failure of deviation value of 200 pulse ignition strength balance/Sec. The method to detect aviation piston engine maintenance of magneto ignition system fault has a certain reference value.
Vascularisation to improve translational potential of tissue engineering systems for cardiac repair.
Dilley, Rodney J; Morrison, Wayne A
2014-11-01
Cardiac tissue engineering is developing as an alternative approach to heart transplantation for treating heart failure. Shortage of organ donors and complications arising after orthotopic transplant remain major challenges to the modern field of heart transplantation. Engineering functional myocardium de novo requires an abundant source of cardiomyocytes, a biocompatible scaffold material and a functional vasculature to sustain the high metabolism of the construct. Progress has been made on several fronts, with cardiac cell biology, stem cells and biomaterials research particularly promising for cardiac tissue engineering, however currently employed strategies for vascularisation have lagged behind and limit the volume of tissue formed. Over ten years we have developed an in vivo tissue engineering model to construct vascularised tissue from various cell and tissue sources, including cardiac tissue. In this article we review the progress made with this approach and others, together with their potential to support a volume of engineered tissue for cardiac tissue engineering where contractile mass impacts directly on functional outcomes in translation to the clinic. It is clear that a scaled-up cardiac tissue engineering solution required for clinical treatment of heart failure will include a robust vascular supply for successful translation. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Failure Maps for Rectangular 17-4PH Stainless Steel Sandwiched Foam Panels
NASA Technical Reports Server (NTRS)
Raj, S. V.; Ghosn, L. J.
2007-01-01
A new and innovative concept is proposed for designing lightweight fan blades for aircraft engines using commercially available 17-4PH precipitation hardened stainless steel. Rotating fan blades in aircraft engines experience a complex loading state consisting of combinations of centrifugal, distributed pressure and torsional loads. Theoretical failure plastic collapse maps, showing plots of the foam relative density versus face sheet thickness, t, normalized by the fan blade span length, L, have been generated for rectangular 17-4PH sandwiched foam panels under these three loading modes assuming three failure plastic collapse modes. These maps show that the 17-4PH sandwiched foam panels can fail by either the yielding of the face sheets, yielding of the foam core or wrinkling of the face sheets depending on foam relative density, the magnitude of t/L and the loading mode. The design envelop of a generic fan blade is superimposed on the maps to provide valuable insights on the probable failure modes in a sandwiched foam fan blade.
Investigation of Tapered Roller Bearing Damage Detection Using Oil Debris Analysis
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Krieder, Gary; Fichter, Thomas
2006-01-01
A diagnostic tool was developed for detecting fatigue damage to tapered roller bearings. Tapered roller bearings are used in helicopter transmissions and have potential for use in high bypass advanced gas turbine aircraft engines. This diagnostic tool was developed and evaluated experimentally by collecting oil debris data from failure progression tests performed by The Timken Company in their Tapered Roller Bearing Health Monitoring Test Rig. Failure progression tests were performed under simulated engine load conditions. Tests were performed on one healthy bearing and three predamaged bearings. During each test, data from an on-line, in-line, inductance type oil debris sensor was monitored and recorded for the occurrence of debris generated during failure of the bearing. The bearing was removed periodically for inspection throughout the failure progression tests. Results indicate the accumulated oil debris mass is a good predictor of damage on tapered roller bearings. The use of a fuzzy logic model to enable an easily interpreted diagnostic metric was proposed and demonstrated.
NASA Technical Reports Server (NTRS)
Thomas, J. M.; Hanagud, S.
1975-01-01
The results of two questionnaires sent to engineering experts are statistically analyzed and compared with objective data from Saturn V design and testing. Engineers were asked how likely it was for structural failure to occur at load increments above and below analysts' stress limit predictions. They were requested to estimate the relative probabilities of different failure causes, and of failure at each load increment given a specific cause. Three mathematical models are constructed based on the experts' assessment of causes. The experts' overall assessment of prediction strength fits the Saturn V data better than the models do, but a model test option (T-3) based on the overall assessment gives more design change likelihood to overstrength structures than does an older standard test option. T-3 compares unfavorably with the standard option in a cost optimum structural design problem. The report reflects a need for subjective data when objective data are unavailable.
The Impact of Subject Indexes on Semantic Indeterminacy in Enterprise Document Retrieval
ERIC Educational Resources Information Center
Schymik, Gregory
2012-01-01
Ample evidence exists to support the conclusion that enterprise search is failing its users. This failure is costing corporate America billions of dollars every year. Most enterprise search engines are built using web search engines as their foundations. These search engines are optimized for web use and are inadequate when used inside the…
38. Historic photo of Building 202 test cell interior, showing ...
38. Historic photo of Building 202 test cell interior, showing damage to test stand A and rocket engine after failure and explosion of engine, December 12, 1958. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-49376. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-21
... the Regional Jet engine TCGB [throttle control gearbox] P/Ns: 2100140-003, 2100140- 005 & 2100140-007... Viselli, Senior Aviation Safety Engineer, Avionic & Flight Test Branch, ANE-172, FAA, New York Aircraft...: There has been numerous reported failures of the Regional Jet engine TCGB P/Ns: 2100140-003, 2100140-005...
Failure to Get Admissions in a Discipline of Their Own Choice: Voices of Dejected Students
ERIC Educational Resources Information Center
Rana, Naeem Akhtar; Tuba, Naeem
2017-01-01
Attaining a professional engineering degree is a dream of many pre-engineering intermediate students in Pakistan. Several students face scarcity of resources to accomplish and enliven their dreams of getting admission into an engineering institute, which results in great hardships and turmoil for them. The literature reveals that quantitative work…
Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause
NASA Astrophysics Data System (ADS)
Yang, Y. P.; Mohr, W. C.
2015-11-01
Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, <1 year, which has been a problem for a long time. The failure occurred in the weld joining an end bell to a roll shell and resulted in the complete 360° separation of the end bell from the roll shell. The heat transfer analysis was conducted to predict the temperature history of the roll by modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.
Designing and Implementation of a Heart Failure Telemonitoring System
Safdari, Reza; Jafarpour, Maryam; Mokhtaran, Mehrshad; Naderi, Nasim
2017-01-01
Introduction: The aim of this study was to identify patients at-risk, enhancing self-care management of HF patients at home and reduce the disease exacerbations and readmissions. Method: In this research according to standard heart failure guidelines and Semi-structured interviews with 10 heart failure Specialists, a draft heart failure rule set for alerts and patient instructions was developed. Eventually, the clinical champion of the project vetted the rule set. Also we designed a transactional system to enhance monitoring and follow up of CHF patients. With this system, CHF patients are required to measure their physiological measurements (vital signs and body weight) every day and to submit their symptoms using the app. additionally, based on their data, they will receive customized notifications and motivation messages to classify risk of disease exacerbation. The architecture of system comprised of six major components: 1) a patient data collection suite including a mobile app and website; 2) Data Receiver; 3) Database; 4) a Specialists expert Panel; 5) Rule engine classifier; 6) Notifier engine. Results: This system has implemented in Iran for the first time and we are currently in the testing phase with 10 patients to evaluate the technical performance of our system. The developed expert system generates alerts and instructions based on the patient’s data and the notify engine notifies responsible nurses and physicians and sometimes patients. Detailed analysis of those results will be reported in a future report. Conclusion: This study is based on the design of a telemonitoring system for heart failure self-care that intents to overcome the gap that occurs when patients discharge from the hospital and tries to accurate requirement of readmission. A rule set for classifying and resulting automated alerts and patient instructions for heart failure telemonitoring was developed. It also facilitates daily communication among patients and heart failure clinicians so any deterioration in health could be identified immediately. PMID:29114106
Designing and Implementation of a Heart Failure Telemonitoring System.
Safdari, Reza; Jafarpour, Maryam; Mokhtaran, Mehrshad; Naderi, Nasim
2017-09-01
The aim of this study was to identify patients at-risk, enhancing self-care management of HF patients at home and reduce the disease exacerbations and readmissions. In this research according to standard heart failure guidelines and Semi-structured interviews with 10 heart failure Specialists, a draft heart failure rule set for alerts and patient instructions was developed. Eventually, the clinical champion of the project vetted the rule set. Also we designed a transactional system to enhance monitoring and follow up of CHF patients. With this system, CHF patients are required to measure their physiological measurements (vital signs and body weight) every day and to submit their symptoms using the app. additionally, based on their data, they will receive customized notifications and motivation messages to classify risk of disease exacerbation. The architecture of system comprised of six major components: 1) a patient data collection suite including a mobile app and website; 2) Data Receiver; 3) Database; 4) a Specialists expert Panel; 5) Rule engine classifier; 6) Notifier engine. This system has implemented in Iran for the first time and we are currently in the testing phase with 10 patients to evaluate the technical performance of our system. The developed expert system generates alerts and instructions based on the patient's data and the notify engine notifies responsible nurses and physicians and sometimes patients. Detailed analysis of those results will be reported in a future report. This study is based on the design of a telemonitoring system for heart failure self-care that intents to overcome the gap that occurs when patients discharge from the hospital and tries to accurate requirement of readmission. A rule set for classifying and resulting automated alerts and patient instructions for heart failure telemonitoring was developed. It also facilitates daily communication among patients and heart failure clinicians so any deterioration in health could be identified immediately.
Equation of State and Damage in Polyethylene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coe, Joshua Damon; Brown, Eric; Cady, Carl Mcelhinney
The dynamic response of polymers differs significantly from those of metals, upon which many of the National Laboratories' deformation, damage, and failure models are based. Their moduli, yield strength, and damage characteristics are highly strain rate-, temperature-, and phase-dependent, requiring models that encompass a wide range of phenomena including some not in equilibrium. Recently, Los Alamos developed the Glassy Amorphous Polymer (GAP) 1 model [1] to address limitations in existing models of polymer deformation. GAP captures both volumetric (equation of state) and deviatoric (shear) response, including a non-equilibrium component to the former (a feature determined to be crucial in capturingmore » the low-pressure, viscoelastic response to impact loading). GAP has already been applied to polymers such as PMMA, PTFE, epoxy, and Kel-F 800, but with an emphasis on impact response as opposed to damage or failure. The current effort was launched to address this gap in predictive capability. For reasons that will be made clear, semi-crystalline polyethylene (PE) was chosen to serve as a model system for parameterization and validation. PE (-C 2H 4-)n is one of the most widely used polymers in industrial and engineering contexts, chiey due to the versatility of its mechanical response. This response can be tuned through network and chain structure, degree of crystallinity, and molecular weight. PE is found in several forms including low density (LDPE), high density (HDPE), and ultra-high molecular weight (UHMWPE). The focus here was on HDPE and UHMWPE, of pedigree described in the following section. Materials were well-characterized prior to study and are representative of semi-crystalline polymers of interest to DOE and DoD. Semi-crystalline PE undergoes a glass transition at low temperature (-35°C) and melts across a range of moderate temperatures (~80-180°C), depending on its structure. It is typically inert chemically, has low strength and high ductility, and the high strength and anisotropy of UHMWPE ber, in particular, have driven its use in engineering, impact, and armor applications. Surprisingly little is known, however, about the influence of PE's crystalline structure and associated phase transitions (including melt) on its response to dynamic compression. A broad suite of experiments was used to calibrate the GAP model for HDPE and UHMWPE. Section IV examines the effects of tensile strain on the structure and integrity of PE crystalline domains. These data were used to inform the preliminary damage model described in Section XII, whose roots lie in statistical physics and network theory. The viscoelastic and plastic components of GAP rely heavily on the stress-strain data of Section VI, which also include dynamic extrusion and Taylor anvil experiments used to validate the damage model. The thermal data of Section X provide crucial inputs to the equilibrium EOS in GAP, as well as the much broader range SESAME EOS whose construction is outlined in Section XI. Section VII details plate impact experiments characterizing the low-pressure shock locus and failure (spall) using in situ electromagnetic gauges. A previously reported \\cusp" in the principal Hugoniot near 0.5 kbar was confirmed, and a multi-wave structure was observed over a limited input stress range above the cusp. This cusp is believed due to solid-solid phase transitions associated with the crystalline domains of the polymer.« less
Lessons Learned from Recent Failure and Incident Investigations of Composite Structures
NASA Technical Reports Server (NTRS)
Ransom, J. B.; Glaessgen, E. H.; Raju, L. S.; Knight, N. F., Jr.; Reeder, J. R.
2008-01-01
During the past few decades, NASA Langley Research Center (LaRC) has supported several large-scale failure and incident investigations and numerous requests for engineering consultations. Although various extenuating circumstances contributed to each of these incidents, in all cases, the failure resulted from accumulation and/or propagation of damage that reduced the load carrying capability of the structure to a level below that which was needed to sustain structural loads. A brief overview of various failure and incident investigations supported by LaRC, including some of the computational and experimental methodologies that have been applied, is presented. An important outcome of many of these failure and incident investigations is the development of an improved understanding of not only the state-of-the-art in experimental and analytical methods but also the state-of-the-art in the design and manufacturing processes that may contribute to such failures. In order to provide insight into such large-scale investigations, a series of lessons learned were captured. Awareness of these lessons learned is highly beneficial to engineers involved in similar investigations. Therefore, it is prudent that the lessons learned are disseminated such that they can be built upon in other investigations and in ensuing research and development activities.
Fatigue failure of regenerator screens in a high frequency Stirling engine
NASA Technical Reports Server (NTRS)
Hull, David R.; Alger, Donald L.; Moore, Thomas J.; Scheuermann, Coulson M.
1987-01-01
Failure of Stirling Space Power Demonstrator Engine (SPDE) regenerator screens was investigated. After several hours of operation the SPDE was shut down for inspection and on removing the regenerator screens, debris of unknown origin was discovered along with considerable cracking of the screens in localized areas. Metallurgical analysis of the debris determined it to be cracked-off-deformed pieces of the 41 micron thickness Type 304 stainless steel wire screen. Scanning electron microscopy of the cracked screens revealed failures occurring at wire crossovers and fatigue striations on the fracture surface of the wires. Thus, the screen failure can be characterized as a fatigue failure of the wires. The crossovers were determined to contain a 30 percent reduction in wire thickness and a highly worked microstructure occurring from the manufacturing process of the wire screens. Later it was found that reduction in wire thickness occurred because the screen fabricator had subjected it to a light cold-roll process after weaving. Installation of this screen left a clearance in the regenerator allowing the screens to move. The combined effects of the reduction in wire thickness, stress concentration (caused by screen movement), and highly worked microstructure at the wire crossovers led to the fatigue failure of the screens.
Goal-Function Tree Modeling for Systems Engineering and Fault Management
NASA Technical Reports Server (NTRS)
Patterson, Jonathan D.; Johnson, Stephen B.
2013-01-01
The draft NASA Fault Management (FM) Handbook (2012) states that Fault Management (FM) is a "part of systems engineering", and that it "demands a system-level perspective" (NASAHDBK- 1002, 7). What, exactly, is the relationship between systems engineering and FM? To NASA, systems engineering (SE) is "the art and science of developing an operable system capable of meeting requirements within often opposed constraints" (NASA/SP-2007-6105, 3). Systems engineering starts with the elucidation and development of requirements, which set the goals that the system is to achieve. To achieve these goals, the systems engineer typically defines functions, and the functions in turn are the basis for design trades to determine the best means to perform the functions. System Health Management (SHM), by contrast, defines "the capabilities of a system that preserve the system's ability to function as intended" (Johnson et al., 2011, 3). Fault Management, in turn, is the operational subset of SHM, which detects current or future failures, and takes operational measures to prevent or respond to these failures. Failure, in turn, is the "unacceptable performance of intended function." (Johnson 2011, 605) Thus the relationship of SE to FM is that SE defines the functions and the design to perform those functions to meet system goals and requirements, while FM detects the inability to perform those functions and takes action. SHM and FM are in essence "the dark side" of SE. For every function to be performed (SE), there is the possibility that it is not successfully performed (SHM); FM defines the means to operationally detect and respond to this lack of success. We can also describe this in terms of goals: for every goal to be achieved, there is the possibility that it is not achieved; FM defines the means to operationally detect and respond to this inability to achieve the goal. This brief description of relationships between SE, SHM, and FM provide hints to a modeling approach to provide formal connectivity between the nominal (SE), and off-nominal (SHM and FM) aspects of functions and designs. This paper describes a formal modeling approach to the initial phases of the development process that integrates the nominal and off-nominal perspectives in a model that unites SE goals and functions of with the failure to achieve goals and functions (SHM/FM). This methodology and corresponding model, known as a Goal-Function Tree (GFT), provides a means to represent, decompose, and elaborate system goals and functions in a rigorous manner that connects directly to design through use of state variables that translate natural language requirements and goals into logical-physical state language. The state variable-based approach also provides the means to directly connect FM to the design, by specifying the range in which state variables must be controlled to achieve goals, and conversely, the failures that exist if system behavior go out-of-range. This in turn allows for the systems engineers and SHM/FM engineers to determine which state variables to monitor, and what action(s) to take should the system fail to achieve that goal. In sum, the GFT representation provides a unified approach to early-phase SE and FM development. This representation and methodology has been successfully developed and implemented using Systems Modeling Language (SysML) on the NASA Space Launch System (SLS) Program. It enabled early design trade studies of failure detection coverage to ensure complete detection coverage of all crew-threatening failures. The representation maps directly both to FM algorithm designs, and to failure scenario definitions needed for design analysis and testing. The GFT representation provided the basis for mapping of abort triggers into scenarios, both needed for initial, and successful quantitative analyses of abort effectiveness (detection and response to crew-threatening events).
First-Ply-Failure Performance of Composite Clamped Spherical Shells
NASA Astrophysics Data System (ADS)
Ghosh, A.; Chakravorty, D.
2018-05-01
The failure aspects of composites are available for plates, but studies of the literature on shells unveils that similar reports on them are very limited in number. The aim of this work was to investigate the first-ply-failure of industrially and aesthetically important spherical shells under uniform loadings. Apart from solving benchmark problems, numerical experiments were carried out with different variations of their parameters to obtain the first-ply-failure stresses by using the finite-element method. The load was increased in steps, and the lamina strains and stresses were put into well-established failure criteria to evaluate their first-ply-failure stress, the failed ply, the point of initiation of failure, and failure modes and tendencies. The results obtained are analyzed to extract the points of engineering significance.
Slope failures in municipal solid waste dumps and landfills: a review.
Blight, Geoffrey
2008-10-01
Between 1977 and 2005 six large-scale failures of municipal solid waste dumps and landfills have been recorded in the technical literature. The volumes of waste mobilized in the failures varied from 10-12 000 m(3) in a failure that killed nearly 300 people to 1.5 million m(3) in a failure that caused no deaths or injuries. Of the six failures, four occurred in dumps that, as far as is known, had not been subjected to any prior technical investigation of their shear stability. The remaining two failures occurred in engineer-designed landfills, one of which practised leachate recirculation, and the other co-disposed of liquid waste along with solid waste. The paper reviews, describes and analyses the failures and summarizes their causes.
Application of Improved Genetic Algorithm to Service Restoration Problem for Distribution Systems
NASA Astrophysics Data System (ADS)
Michibata, Ikuo; Aoki, Hidenori
The problem of recovery from power-system failures is the problem of handling operations that make it possible to supply power from other lines in response to power-system failures or construction by switching between the opened and closed states of sectionalizing switches. Considerable research has already been conducted with regard to this issue. This paper addresses the issue of determining target systems for final recovery in cases when some sections remain subject to power failure (i.e., sound bank capacity < load capacity). For this purpose, intersection is conducted only for parameters within such power-failure sections. In such research, calculations are implemented by setting a value of 2 to the sectionalizing switches of a single parameter. In addition, when the state of a sound section changes due to mutation improvements, the method of simultaneously changing the selected points and neighboring sectionalizing switches is applied. It is clear that the proposed method, consisting of conventional GA only, is superior in terms of average fitness values.
NASA Technical Reports Server (NTRS)
Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon M.; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.
2011-01-01
Causal factors in aviation accidents and incidents related to system/component failure/malfunction (SCFM) were examined for Federal Aviation Regulation Parts 121 and 135 operations to establish future requirements for the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project. Data analyzed includes National Transportation Safety Board (NSTB) accident data (1988 to 2003), Federal Aviation Administration (FAA) incident data (1988 to 2003), and Aviation Safety Reporting System (ASRS) incident data (1993 to 2008). Failure modes and effects analyses were examined to identify possible modes of SCFM. A table of potential adverse conditions was developed to help evaluate IVHM research technologies. Tables present details of specific SCFM for the incidents and accidents. Of the 370 NTSB accidents affected by SCFM, 48 percent involved the engine or fuel system, and 31 percent involved landing gear or hydraulic failure and malfunctions. A total of 35 percent of all SCFM accidents were caused by improper maintenance. Of the 7732 FAA database incidents affected by SCFM, 33 percent involved landing gear or hydraulics, and 33 percent involved the engine and fuel system. The most frequent SCFM found in ASRS were turbine engine, pressurization system, hydraulic main system, flight management system/flight management computer, and engine. Because the IVHM Project does not address maintenance issues, and landing gear and hydraulic systems accidents are usually not fatal, the focus of research should be those SCFMs that occur in the engine/fuel and flight control/structures systems as well as power systems.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; DeHaye, Michael; DeLessio, Steven
2011-01-01
The LOX-Hydrogen J-2X Rocket Engine, which is proposed for use as an upper-stage engine for numerous earth-to-orbit and heavy lift launch vehicle architectures, is presently in the design phase and will move shortly to the initial development test phase. Analysis of the design has revealed numerous potential resonance issues with hardware in the turbomachinery turbine-side flow-path. The analysis of the fuel pump turbine blades requires particular care because resonant failure of the blades, which are rotating in excess of 30,000 revolutions/minutes (RPM), could be catastrophic for the engine and the entire launch vehicle. This paper describes a series of probabilistic analyses performed to assess the risk of failure of the turbine blades due to resonant vibration during past and present test series. Some significant results are that the probability of failure during a single complete engine hot-fire test is low (1%) because of the small likelihood of resonance, but that the probability increases to around 30% for a more focused turbomachinery-only test because all speeds will be ramped through and there is a greater likelihood of dwelling at more speeds. These risk calculations have been invaluable for use by program management in deciding if risk-reduction methods such as dampers are necessary immediately or if the test can be performed before the risk-reduction hardware is ready.
Auxiliary engine digital interface unit (DIU)
NASA Technical Reports Server (NTRS)
1972-01-01
This auxiliary propulsion engine digital unit controls both the valving of the fuel and oxidizer to the engine combustion chamber and the ignition spark required for timely and efficient engine burns. In addition to this basic function, the unit is designed to manage it's own redundancy such that it is still operational after two hard circuit failures. It communicates to the data bus system several selected information points relating to the operational status of the electronics as well as the engine fuel and burning processes.
Flight-Tested Prototype of BEAM Software
NASA Technical Reports Server (NTRS)
Mackey, Ryan; Tikidjian, Raffi; James, Mark; Wang, David
2006-01-01
Researchers at JPL have completed a software prototype of BEAM (Beacon-based Exception Analysis for Multi-missions) and successfully tested its operation in flight onboard a NASA research aircraft. BEAM (see NASA Tech Briefs, Vol. 26, No. 9; and Vol. 27, No. 3) is an ISHM (Integrated Systems Health Management) technology that automatically analyzes sensor data and classifies system behavior as either nominal or anomalous, and further characterizes anomalies according to strength, duration, and affected signals. BEAM (see figure) can be used to monitor a wide variety of physical systems and sensor types in real time. In this series of tests, BEAM monitored the engines of a Dryden Flight Research Center F-18 aircraft, and performed onboard, unattended analysis of 26 engine sensors from engine startup to shutdown. The BEAM algorithm can detect anomalies based solely on the sensor data, which includes but is not limited to sensor failure, performance degradation, incorrect operation such as unplanned engine shutdown or flameout in this example, and major system faults. BEAM was tested on an F-18 simulator, static engine tests, and 25 individual flights totaling approximately 60 hours of flight time. During these tests, BEAM successfully identified planned anomalies (in-flight shutdowns of one engine) as well as minor unplanned anomalies (e.g., transient oil- and fuel-pressure drops), with no false alarms or suspected false-negative results for the period tested. BEAM also detected previously unknown behavior in the F- 18 compressor section during several flights. This result, confirmed by direct analysis of the raw data, serves as a significant test of BEAM's capability.
Failure of Non-Circular Composite Cylinders
NASA Technical Reports Server (NTRS)
Hyer, M. W.
2004-01-01
In this study, a progressive failure analysis is used to investigate leakage in internally pressurized non-circular composite cylinders. This type of approach accounts for the localized loss of stiffness when material failure occurs at some location in a structure by degrading the local material elastic properties by a certain factor. The manner in which this degradation of material properties takes place depends on the failure modes, which are determined by the application of a failure criterion. The finite-element code STAGS, which has the capability to perform progressive failure analysis using different degradation schemes and failure criteria, is utilized to analyze laboratory scale, graphite-epoxy, elliptical cylinders with quasi-isotropic, circumferentially-stiff, and axially-stiff material orthotropies. The results are divided into two parts. The first part shows that leakage, which is assumed to develop if there is material failure in every layer at some axial and circumferential location within the cylinder, does not occur without failure of fibers. Moreover before fibers begin to fail, only matrix tensile failures, or matrix cracking, takes place, and at least one layer in all three cylinders studied remain uncracked, preventing the formation of a leakage path. That determination is corroborated by the use of different degradation schemes and various failure criteria. Among the degradation schemes investigated are the degradation of different engineering properties, the use of various degradation factors, the recursive or non-recursive degradation of the engineering properties, and the degradation of material properties using different computational approaches. The failure criteria used in the analysis include the noninteractive maximum stress criterion and the interactive Hashin and Tsai-Wu criteria. The second part of the results shows that leakage occurs due to a combination of matrix tensile and compressive, fiber tensile and compressive, and inplane shear failure modes in all three cylinders. Leakage develops after a relatively low amount of fiber damage, at about the same pressure for three material orthotropies, and at approximately the same location.
Application of a truncated normal failure distribution in reliability testing
NASA Technical Reports Server (NTRS)
Groves, C., Jr.
1968-01-01
Statistical truncated normal distribution function is applied as a time-to-failure distribution function in equipment reliability estimations. Age-dependent characteristics of the truncated function provide a basis for formulating a system of high-reliability testing that effectively merges statistical, engineering, and cost considerations.
Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline
USDA-ARS?s Scientific Manuscript database
Ecosystems worldwide are facing increasingly severe and prolonged droughts during which hydraulic failure from drought-induced embolism can lead to organ or whole plant death. Understanding the determinants of xylem failure across species is critical especially in leaves, the engine of plant growth....
Embedded expert system for space shuttle main engine maintenance
NASA Technical Reports Server (NTRS)
Pooley, J.; Thompson, W.; Homsley, T.; Teoh, W.; Jones, J.; Lewallen, P.
1987-01-01
The SPARTA Embedded Expert System (SEES) is an intelligent health monitoring system that directs analysis by placing confidence factors on possible engine status and then recommends a course of action to an engineer or engine controller. The technique can prevent catastropic failures or costly rocket engine down time because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable rocket engine systems. The SEES methodology synergistically integrates vibration analysis, pattern recognition and communications theory techniques with an artificial intelligence technique - the Embedded Expert System (EES).
Cell transplantation and genetic engineering: new approaches to cardiac pathology.
Leor, Jonathan; Barbash, Israel M
2003-10-01
The remarkable progress in experimental cell transplantation, stem cell biology and genetic engineering promise new therapy and hopefully a cure for patients with end stage heart failure. Engineering of viable cardiac grafts with the potential to grow and remodel will provide new solutions to the serious problems of heart donor shortage. The ability to replace the injured heart muscle will have a dramatic influence on medicine, especially with the increasing number of patients with heart failure. This innovative research, now tested in human patients, still faces significant problems that need to be solved before it can be considered as an established therapeutic tool. The present review will focus on selected topics related to the promise and obstacles associated with cell transplantation, with and without genetic manipulation, for myocardial repair.
Global Failure Modes in High Temperature Composite Structures
NASA Technical Reports Server (NTRS)
Knauss, W. G.
1998-01-01
Composite materials have been considered for many years as the major advance in the construction of energy efficient aerospace structures. Notable advances have been made in understanding the special design considerations that set composites apart from the usual "isotropic" engineering materials such as the metals. As a result, a number of significant engineering designs have been accomplished. However, one shortcoming of the currently favored composites is their relatively unforgiving behavior with respect to failure (brittleness) under seemingly mild impact conditions and large efforts are underway to rectify that situation, much along the lines of introducing thermoplastic matrix materials. Because of their relatively more pronounced (thermo) viscoelastic behavior these materials respond with "toughness" in fracture situations. From the point of view of applications requiring material strength, this property is highly desirable. This feature impacts several important and distinct engineering problems which have been' considered under this grant and cover the 1) effect of impact damage on structural (buckling) stability of composite panels, the 2) effect of time dependence on the progression of buckling instabilities, and the 3) evolution of damage and fracture at generic thickness discontinuities in structures. The latter topic has serious implications for structural stability problems (buckling failure in reinforced shell structures) as well as failure progression in stringer-reinforced shell structures. This grant has dealt with these issues. Polymer "toughness" is usually associated with uncrosslinked or thermo-plastic polymers. But, by comparison with their thermoset counterparts they tend to exhibit more pronounced time dependent material behavior; also, that time dependence can occur at lower temperatures which places restriction in the high temperature use of these "newer and tougher" materials that are not quite so serious with the thermoset matrix materials. From a structural point of view the implications of this material behavior are potentially severe in that structural failure characteristics are no longer readily observed in short term qualification tests so characteristic for aerospace structures built from typical engineering metals.
Advanced Materials and Coatings for Aerospace Applications
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
2004-01-01
In the application area of aerospace tribology, researchers and developers must guarantee the highest degree of reliability for materials, components, and systems. Even a small tribological failure can lead to catastrophic results. The absence of the required knowledge of tribology, as Professor H.P. Jost has said, can act as a severe brake in aerospace vehicle systems-and indeed has already done so. Materials and coatings must be able to withstand the aerospace environments that they encounter, such as vacuum terrestrial, ascent, and descent environments; be resistant to the degrading effects of air, water vapor, sand, foreign substances, and radiation during a lengthy service; be able to withstand the loads, stresses, and temperatures encountered form acceleration and vibration during operation; and be able to support reliable tribological operations in harsh environments throughout the mission of the vehicle. This presentation id divided into two sections: surface properties and technology practice related to aerospace tribology. The first section is concerned with the fundamental properties of the surfaces of solid-film lubricants and related materials and coatings, including carbon nanotubes. The second is devoted to applications. Case studies are used to review some aspects of real problems related to aerospace systems to help engineers and scientists to understand the tribological issues and failures. The nature of each problem is analyzed, and the tribological properties are examined. All the fundamental studies and case studies were conducted at the NASA Glenn Research Center.
Finite Element Study on Continuous Rotating versus Reciprocating Nickel-Titanium Instruments.
El-Anwar, Mohamed I; Yousief, Salah A; Kataia, Engy M; El-Wahab, Tarek M Abd
2016-01-01
In the present study, GTX and ProTaper as continuous rotating endodontic files were numerically compared with WaveOne reciprocating file using finite element analysis, aiming at having a low cost, accurate/trustworthy comparison as well as finding out the effect of instrument design and manufacturing material on its lifespan. Two 3D finite element models were especially prepared for this comparison. Commercial engineering CAD/CAM package was used to model full detailed flute geometries of the instruments. Multi-linear materials were defined in analysis by using real strain-stress data of NiTi and M-Wire. Non-linear static analysis was performed to simulate the instrument inside root canal at a 45° angle in the apical portion and subjected to 0.3 N.cm torsion. The three simulations in this study showed that M-Wire is slightly more resistant to failure than conventional NiTi. On the other hand, both materials are fairly similar in case of severe locking conditions. For the same instrument geometry, M-Wire instruments may have longer lifespan than the conventional NiTi ones. In case of severe locking conditions both materials will fail similarly. Larger cross sectional area (function of instrument taper) resisted better to failure than the smaller ones, while the cross sectional shape and its cutting angles could affect instrument cutting efficiency.
Failure Assessment of Brazed Structures
NASA Technical Reports Server (NTRS)
Flom, Yuri
2012-01-01
Despite the great advances in analytical methods available to structural engineers, designers of brazed structures have great difficulties in addressing fundamental questions related to the loadcarrying capabilities of brazed assemblies. In this chapter we will review why such common engineering tools as Finite Element Analysis (FEA) as well as many well-established theories (Tresca, von Mises, Highest Principal Stress, etc) don't work well for the brazed joints. This chapter will show how the classic approach of using interaction equations and the less known Coulomb-Mohr failure criterion can be employed to estimate Margins of Safety (MS) in brazed joints.
STS-114 Engine Cut-off Sensor Anomaly Technical Consultation Report
NASA Technical Reports Server (NTRS)
Wilson, Timmy R.; Kichak, Robert A.; Ungar, Eugene K.; Cherney, Robert; Rickman, Steve L.
2009-01-01
The NESC consultation team participated in real-time troubleshooting of the Main Propulsion System (MPS) Engine Cutoff (ECO) sensor system failures during STS-114 launch countdown. The team assisted with External Tank (ET) thermal and ECO Point Sensor Box (PSB) circuit analyses, and made real-time inputs to the Space Shuttle Program (SSP) problem resolution teams. Several long-term recommendations resulted. One recommendation was to conduct cryogenic tests of the ECO sensors to validate, or disprove, the theory that variations in circuit impedance due to cryogenic effects on swaged connections within the sensor were the root cause of STS-114 failures.
A Framework for Creating a Function-based Design Tool for Failure Mode Identification
NASA Technical Reports Server (NTRS)
Arunajadai, Srikesh G.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)
2002-01-01
Knowledge of potential failure modes during design is critical for prevention of failures. Currently industries use procedures such as Failure Modes and Effects Analysis (FMEA), Fault Tree analysis, or Failure Modes, Effects and Criticality analysis (FMECA), as well as knowledge and experience, to determine potential failure modes. When new products are being developed there is often a lack of sufficient knowledge of potential failure mode and/or a lack of sufficient experience to identify all failure modes. This gives rise to a situation in which engineers are unable to extract maximum benefits from the above procedures. This work describes a function-based failure identification methodology, which would act as a storehouse of information and experience, providing useful information about the potential failure modes for the design under consideration, as well as enhancing the usefulness of procedures like FMEA. As an example, the method is applied to fifteen products and the benefits are illustrated.
A Review of Research on Bird Impacting on Jet Engines
NASA Astrophysics Data System (ADS)
Jin, Yuecheng
2018-03-01
Bird strikes can lead to permanent deformations, sudden decrease of thrust, even engine failure during the flight. Bird strikes on rotating blades can also cause slices of birds hitting other parts which may lead to greater damages. Bird strikes cannot be completely avoided. However, reduction of bird impacting on jet engines can be achieved by suitable design and manufacturing, through the mathematical modelling, simulation analysis and practical experiment of jet engines.
Initial testing of a variable-stroke Stirling engine
NASA Technical Reports Server (NTRS)
Thieme, L. G.
1985-01-01
In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems Program, NASA Lewis Research Center is evaluating variable-stroke control for Stirling engines. The engine being tested is the Advenco Stirling engine; this engine was manufactured by Philips Research Laboratories of the Netherlands and uses a variable-angle swash-plate drive to achieve variable stroke operation. The engine is described, initial steady-state test data taken at Lewis are presented, a major drive system failure and subsequent modifications are described. Computer simulation results are presented to show potential part-load efficiency gains with variable-stroke control.
Failure Modes and Effects Analysis (FMEA): A Bibliography
NASA Technical Reports Server (NTRS)
2000-01-01
Failure modes and effects analysis (FMEA) is a bottom-up analytical process that identifies process hazards, which helps managers understand vulnerabilities of systems, as well as assess and mitigate risk. It is one of several engineering tools and techniques available to program and project managers aimed at increasing the likelihood of safe and successful NASA programs and missions. This bibliography references 465 documents in the NASA STI Database that contain the major concepts, failure modes or failure analysis, in either the basic index of the major subject terms.
1993-04-15
Czyryca from the Naval Surface Warfare Center gave a Plenary Aodress on Lessons Learned in Metallurgical Failure Analyses of Naval Machinery. The...processing methods take many years to implement, because of the large capital investments and the learning process involved, we feel confident that they will...signals experienced by the self. Filters are an indistinguishable part of the self. As we learn about the causes of our failures, and see that we can
Full hoop casing for midframe of industrial gas turbine engine
Myers, Gerald A.; Charron, Richard C.
2015-12-01
A can annular industrial gas turbine engine, including: a single-piece rotor shaft spanning a compressor section (82), a combustion section (84), a turbine section (86); and a combustion section casing (10) having a section (28) configured as a full hoop. When the combustion section casing is detached from the engine and moved to a maintenance position to allow access to an interior of the engine, a positioning jig (98) is used to support the compressor section casing (83) and turbine section casing (87).
Kim, Hoyeol; Liu, Zhichao; Cong, Weilong; Zhang, Hong-Chao
2017-01-01
AISI 4140 powder was directly deposited on AISI 4140 wrought substrate using laser engineered net shaping (LENS) to investigate the compatibility of a LENS-deposited part with the substrate. Tensile testing at room temperature was performed to evaluate the interface bond performance and fracture behavior of the test specimens. All the samples failed within the as-deposited zone, indicating that the interfacial bond is stronger than the interlayer bond inside the deposit. The fracture surfaces were analyzed using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS). Results show that the tensile fracture failure of the as-deposited part is primarily affected by lack-of-fusion defects, carbide precipitation, and oxide particles inclusions, which causes premature failure of the deposit by deteriorating the mechanical properties and structural integrity. PMID:29120374
Kim, Hoyeol; Liu, Zhichao; Cong, Weilong; Zhang, Hong-Chao
2017-11-09
AISI 4140 powder was directly deposited on AISI 4140 wrought substrate using laser engineered net shaping (LENS) to investigate the compatibility of a LENS-deposited part with the substrate. Tensile testing at room temperature was performed to evaluate the interface bond performance and fracture behavior of the test specimens. All the samples failed within the as-deposited zone, indicating that the interfacial bond is stronger than the interlayer bond inside the deposit. The fracture surfaces were analyzed using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS). Results show that the tensile fracture failure of the as-deposited part is primarily affected by lack-of-fusion defects, carbide precipitation, and oxide particles inclusions, which causes premature failure of the deposit by deteriorating the mechanical properties and structural integrity.
CONFIG: Qualitative simulation tool for analyzing behavior of engineering devices
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Basham, Bryan D.; Harris, Richard A.
1987-01-01
To design failure management expert systems, engineers mentally analyze the effects of failures and procedures as they propagate through device configurations. CONFIG is a generic device modeling tool for use in discrete event simulation, to support such analyses. CONFIG permits graphical modeling of device configurations and qualitative specification of local operating modes of device components. Computation requirements are reduced by focussing the level of component description on operating modes and failure modes, and specifying qualitative ranges of variables relative to mode transition boundaries. Simulation processing occurs only when modes change or variables cross qualitative boundaries. Device models are built graphically, using components from libraries. Components are connected at ports by graphical relations that define data flow. The core of a component model is its state transition diagram, which specifies modes of operation and transitions among them.
Operational modes, health, and status monitoring
NASA Astrophysics Data System (ADS)
Taljaard, Corrie
2016-08-01
System Engineers must fully understand the system, its support system and operational environment to optimise the design. Operations and Support Managers must also identify the correct metrics to measure the performance and to manage the operations and support organisation. Reliability Engineering and Support Analysis provide methods to design a Support System and to optimise the Availability of a complex system. Availability modelling and Failure Analysis during the design is intended to influence the design and to develop an optimum maintenance plan for a system. The remote site locations of the SKA Telescopes place emphasis on availability, failure identification and fault isolation. This paper discusses the use of Failure Analysis and a Support Database to design a Support and Maintenance plan for the SKA Telescopes. It also describes the use of modelling to develop an availability dashboard and performance metrics.
Independent Orbiter Assessment (IOA): Analysis of the hydraulics/water spray boiler subsystem
NASA Technical Reports Server (NTRS)
Duval, J. D.; Davidson, W. R.; Parkman, William E.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Orbiter Hydraulics/Water Spray Boiler Subsystem. The hydraulic system provides hydraulic power to gimbal the main engines, actuate the main engine propellant control valves, move the aerodynamic flight control surfaces, lower the landing gear, apply wheel brakes, steer the nosewheel, and dampen the external tank (ET) separation. Each hydraulic system has an associated water spray boiler which is used to cool the hydraulic fluid and APU lubricating oil. The IOA analysis process utilized available HYD/WSB hardware drawings, schematics and documents for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 430 failure modes analyzed, 166 were determined to be PCIs.
Decrease the Number of Glovebox Glove Breaches and Failures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtle, Jackie C.
2013-12-24
Los Alamos National Laboratory (LANL) is committed to the protection of the workers, public, and environment while performing work and uses gloveboxes as engineered controls to protect workers from exposure to hazardous materials while performing plutonium operations. Glovebox gloves are a weak link in the engineered controls and are a major cause of radiation contamination events which can result in potential worker exposure and localized contamination making operational areas off-limits and putting programmatic work on hold. Each day of lost opportunity at Technical Area (TA) 55, Plutonium Facility (PF) 4 is estimated at $1.36 million. Between July 2011 and Junemore » 2013, TA-55-PF-4 had 65 glovebox glove breaches and failures with an average of 2.7 per month. The glovebox work follows the five step safety process promoted at LANL with a decision diamond interjected for whether or not a glove breach or failure event occurred in the course of performing glovebox work. In the event that no glove breach or failure is detected, there is an additional decision for whether or not contamination is detected. In the event that contamination is detected, the possibility for a glove breach or failure event is revisited.« less
NASA Technical Reports Server (NTRS)
1997-01-01
The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1995 are presented.
Structures Division 1994 Annual Report
NASA Technical Reports Server (NTRS)
1996-01-01
The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1994 are presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-03
... an inspection of the aft engine mount to determine if the center link assembly is correctly installed... reports indicating that operators found that the center link assembly for the aft engine mount was... prevent increased structural loads on the aft engine mount, which could result in failure of the aft...
Environmental Degradation of Nickel-Based Superalloys Due to Gypsiferous Desert Dusts
2015-09-17
twenty-five years of continuous operation in the dusty environments of Southwest Asia have shown that degradation of gas turbine engine components...proven to initiate hot corrosion at temperatures associated with modern gas turbine engine operation, which are beyond the range at which sodium sulfate...Relevant Research into Failure Due to Molten Deposits . . . . . . . . . 13 2.1 The Gas Turbine Engine
Case Study of a Discontinued Start-Up Engineering Program: Critical Challenges and Lessons Learned
ERIC Educational Resources Information Center
Friess, Wilhelm A.
2017-01-01
The explanatory case study presented here analyzes the factors that have contributed to the failure of a start-up engineering program launched at an off-campus site, and aimed at imparting the first two years of the BSc Mechanical, Electrical, Computer and Civil Engineering utilizing an integrated curriculum. Findings indicate the root cause for…
ERIC Educational Resources Information Center
Garces, Andres; Sanchez-Barba, Luis Fernando
2011-01-01
We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…
RIGHT ENGINE MAINTENANCE ON BOEING 737200. THE COWLING OF THE ...
RIGHT ENGINE MAINTENANCE ON BOEING 737-200. THE COWLING OF THE RIGHT ENGINE IS OPEN, AND THE CREW IS WORKING ON THE JACK SCREWS THAT REGULATE THE FLAPS. MECHANICS WILL CHANGE ALL FUEL AND OIL FILTERS AS WELL AS CHECKING CHIP DETECTORS FOR METAL PARTICLES THAT INDICATE BEARING FAILURE. - Greater Buffalo International Airport, Maintenance Hangar, Buffalo, Erie County, NY
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-10
... and strut forward bulkhead of the forward engine mount and adjacent support structure, and visual... cracked hanger fittings, back-up angles, and bulkhead of the forward engine mount, which could lead to failure of the hanger fitting and bulkhead and consequent separation of the engine from the airplane...
A puzzle assembly strategy for fabrication of large engineered cartilage tissue constructs.
Nover, Adam B; Jones, Brian K; Yu, William T; Donovan, Daniel S; Podolnick, Jeremy D; Cook, James L; Ateshian, Gerard A; Hung, Clark T
2016-03-21
Engineering of large articular cartilage tissue constructs remains a challenge as tissue growth is limited by nutrient diffusion. Here, a novel strategy is investigated, generating large constructs through the assembly of individually cultured, interlocking, smaller puzzle-shaped subunits. These constructs can be engineered consistently with more desirable mechanical and biochemical properties than larger constructs (~4-fold greater Young׳s modulus). A failure testing technique was developed to evaluate the physiologic functionality of constructs, which were cultured as individual subunits for 28 days, then assembled and cultured for an additional 21-35 days. Assembled puzzle constructs withstood large deformations (40-50% compressive strain) prior to failure. Their ability to withstand physiologic loads may be enhanced by increases in subunit strength and assembled culture time. A nude mouse model was utilized to show biocompatibility and fusion of assembled puzzle pieces in vivo. Overall, the technique offers a novel, effective approach to scaling up engineered tissues and may be combined with other techniques and/or applied to the engineering of other tissues. Future studies will aim to optimize this system in an effort to engineer and integrate robust subunits to fill large defects. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Puzzle Assembly Strategy for Fabrication of Large Engineered Cartilage Tissue Constructs
Nover, Adam B.; Jones, Brian K.; Yu, William T.; Donovan, Daniel S.; Podolnick, Jeremy D.; Cook, James L.; Ateshian, Gerard A.; Hung, Clark T.
2016-01-01
Engineering of large articular cartilage tissue constructs remains a challenge as tissue growth is limited by nutrient diffusion. Here, a novel strategy is investigated, generating large constructs through the assembly of individually cultured, interlocking, smaller puzzle-shaped subunits. These constructs can be engineered consistently with more desirable mechanical and biochemical properties than larger constructs (~4-fold greater Young's modulus). A failure testing technique was developed to evaluate the physiologic functionality of constructs, which were cultured as individual subunits for 28 days, then assembled and cultured for an additional 21-35 days. Assembled puzzle constructs withstood large deformations (40-50% compressive strain) prior to failure. Their ability to withstand physiologic loads may be enhanced by increases in subunit strength and assembled culture time. A nude mouse model was utilized to show biocompatibility and fusion of assembled puzzle pieces in vivo. Overall, the technique offers a novel, effective approach to scaling up engineered tissues and may be combined with other techniques and/or applied to the engineering of other tissues. Future studies will aim to optimize this system in an effort to engineer and integrate robust subunits to fill large defects. PMID:26895780
Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements
NASA Technical Reports Server (NTRS)
Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl (Compiler); Guo, Ten-Huei
2014-01-01
The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.
Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements
NASA Technical Reports Server (NTRS)
Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl; Guo, Ten-Huei
2015-01-01
The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.
46 CFR 11.920 - Subjects for MODU endorsements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... systems: Marine engineering terminology X X X X X X X Engineering equipment, operations and failures X X X... X X Medical care: Knowledge and use of: First aid X X X X X X X First response medical action X X X...
46 CFR 11.920 - Subjects for MODU endorsements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... systems: Marine engineering terminology X X X X X X X Engineering equipment, operations and failures X X X... X X Medical care: Knowledge and use of: First aid X X X X X X X First response medical action X X X...
46 CFR 11.920 - Subjects for MODU endorsements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... systems: Marine engineering terminology X X X X X X X Engineering equipment, operations and failures X X X... X X Medical care: Knowledge and use of: First aid X X X X X X X First response medical action X X X...
14 CFR 25.629 - Aeroelastic stability requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... weights are used, their effectiveness and strength, including supporting structure, must be substantiated... of any single element of the structure supporting any engine, independently mounted propeller shaft... dynamic forces, any single failure of the engine structure that would reduce the rigidity of the...
14 CFR 25.629 - Aeroelastic stability requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... weights are used, their effectiveness and strength, including supporting structure, must be substantiated... of any single element of the structure supporting any engine, independently mounted propeller shaft... dynamic forces, any single failure of the engine structure that would reduce the rigidity of the...
14 CFR 25.629 - Aeroelastic stability requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... weights are used, their effectiveness and strength, including supporting structure, must be substantiated... of any single element of the structure supporting any engine, independently mounted propeller shaft... dynamic forces, any single failure of the engine structure that would reduce the rigidity of the...
14 CFR 25.629 - Aeroelastic stability requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... weights are used, their effectiveness and strength, including supporting structure, must be substantiated... of any single element of the structure supporting any engine, independently mounted propeller shaft... dynamic forces, any single failure of the engine structure that would reduce the rigidity of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-31
... engine speeds during steady-state operations. These actions are intended to alert pilots to avoid certain... alert pilots to avoid certain engine speeds during steady-state operations, prevent failure of the third...
14 CFR 33.70 - Engine life-limited parts.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., hubs, shafts, high-pressure casings, and non-redundant mount components. For the purposes of this... life before hazardous engine effects can occur. These steps include validated analysis, test, or... assessments to address the potential for failure from material, manufacturing, and service induced anomalies...
14 CFR 33.70 - Engine life-limited parts.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., hubs, shafts, high-pressure casings, and non-redundant mount components. For the purposes of this... life before hazardous engine effects can occur. These steps include validated analysis, test, or... assessments to address the potential for failure from material, manufacturing, and service induced anomalies...
46 CFR 11.920 - Subjects for MODU endorsements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... systems: Marine engineering terminology X X X X X X X Engineering equipment, operations and failures X X X... X X Medical care: Knowledge and use of: First aid X X X X X X X First response medical action X X X...
neutron-Induced Failures in semiconductor Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wender, Stephen Arthur
2017-03-13
Single Event Effects are a very significant failure mode in modern semiconductor devices that may limit their reliability. Accelerated testing is important for semiconductor industry. Considerable more work is needed in this field to mitigate the problem. Mitigation of this problem will probably come from Physicists and Electrical Engineers working together
Types of rotor failure and characteristics of fragments
NASA Technical Reports Server (NTRS)
Mccarthy, D.
1977-01-01
Noncontained rotor failures in U.K. engines resulting from low cycle fatigue, low cycle fatigue with superimposed high cycle fatigue, and overheating and-or overspeeding were analyzed. The size, shape, weight, velocity, energy, and direction of the fragments released from turbines and compressors were studied and are presented in graph.
1994-08-01
prevea.ied the destruction of both an ONA DC-10 following an engine explosion and fire during takeoff at JFK Airport , and the EAL DC-9 following failure of...explosion and fire during takeoff at JFK Airport , and the EAL DC-9, following failure of the fuselage at the aft pressure bulkhead on landing at Fort