Highway Safety Program Manual: Volume 13: Traffic Engineering Services.
ERIC Educational Resources Information Center
National Highway Traffic Safety Administration (DOT), Washington, DC.
Volume 13 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) focuses on traffic engineering services. The introduction outlines the purposes and objectives of Highway Safety Program Standard 13 and the Highway Safety Program Manual. Program development and…
14 CFR 33.75 - Safety analysis.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.75 Safety analysis. (a) (1) The applicant must analyze the engine, including the control system, to assess the likely...
Rail Safety/Equipment Crashworthiness : Volume 3. Proposed Engineering Standards.
DOT National Transportation Integrated Search
1978-07-01
The document, the third of four volumes, contains recommended Engineering Standards prepared in the format of the standards published in the Code of Federal Regulations (Title 49, Transportation, Parts 200). The standards proposed provide improved oc...
Standardized Curriculum for Diesel Engine Mechanics.
ERIC Educational Resources Information Center
Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.
Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: diesel engine mechanics I and II. The eight units in diesel engine mechanics I are as follows: orientation; shop safety; basic shop tools; fasteners; measurement; engine operating principles; engine components; and basic auxiliary…
78 FR 19982 - Special Conditions: Turbomeca Ardiden 3K Turboshaft Engine
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... novel or unusual design feature that is a 30-minute all engines operating (AEO) power rating for... appropriate safety standards for this design feature. These special conditions contain the additional safety... Ardiden 3K engine is the first variant in the new Ardiden 3 series. This engine incorporates a two-stage...
ERIC Educational Resources Information Center
Hauer, Ezra
1991-01-01
Contends that the level of safety built into roads is largely unpremeditated and that roads and highways are not as safe as they might be. Discusses practices, standards, and deficiencies in highway and traffic safety related to geometric design and traffic engineering. Recommends increased transportation engineering professionalism and public…
30 CFR 56.4103 - Fueling internal combustion engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire...
30 CFR 57.4103 - Fueling internal combustion engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 57.4103 Section 57.4103 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 23 Highways 1 2012-04-01 2012-04-01 false Standards. 620.104 Section 620.104 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS ENGINEERING... aeronautical safety. ...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 23 Highways 1 2013-04-01 2013-04-01 false Standards. 620.104 Section 620.104 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS ENGINEERING... aeronautical safety. ...
Design Standards for Engineered Tissues
Nawroth, Janna C.; Parker, Kevin Kit
2013-01-01
Traditional technologies are required to meet specific, quantitative standards of safety and performance. In tissue engineering, similar standards will have to be developed to enable routine clinical use and customized tissue fabrication. In this essay, we discuss a framework of concepts leading towards general design standards for tissue-engineering, focusing in particular on systematic design strategies, control of cell behavior, physiological scaling, fabrication modes and functional evaluation. PMID:23267860
Software Safety Risk in Legacy Safety-Critical Computer Systems
NASA Technical Reports Server (NTRS)
Hill, Janice L.; Baggs, Rhoda
2007-01-01
Safety Standards contain technical and process-oriented safety requirements. Technical requirements are those such as "must work" and "must not work" functions in the system. Process-Oriented requirements are software engineering and safety management process requirements. Address the system perspective and some cover just software in the system > NASA-STD-8719.13B Software Safety Standard is the current standard of interest. NASA programs/projects will have their own set of safety requirements derived from the standard. Safety Cases: a) Documented demonstration that a system complies with the specified safety requirements. b) Evidence is gathered on the integrity of the system and put forward as an argued case. [Gardener (ed.)] c) Problems occur when trying to meet safety standards, and thus make retrospective safety cases, in legacy safety-critical computer systems.
14 CFR 21.16 - Special conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... standards for an aircraft, aircraft engine, or propeller because of a novel or unusual design feature of the aircraft, aircraft engine or propeller, he prescribes special conditions and amendments thereto for the... safety standards for the aircraft, aircraft engine or propeller as the Administrator finds necessary to...
14 CFR 21.16 - Special conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... standards for an aircraft, aircraft engine, or propeller because of a novel or unusual design feature of the aircraft, aircraft engine or propeller, he prescribes special conditions and amendments thereto for the... safety standards for the aircraft, aircraft engine or propeller as the Administrator finds necessary to...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
... Software Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION... Computer Software Used in Safety Systems of Nuclear Power Plants.'' This RG endorses, with clarifications... Electrical and Electronic Engineers (IEEE) Standard 828-2005, ``IEEE Standard for Software Configuration...
14 CFR 33.75 - Safety analysis.
Code of Federal Regulations, 2013 CFR
2013-01-01
... judgment and previous experience combined with sound design and test philosophies. (4) The applicant must... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.75 Safety analysis. (a... the effects of failures and likely combination of failures be verified by test. (c) The primary...
14 CFR 33.75 - Safety analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... judgment and previous experience combined with sound design and test philosophies. (4) The applicant must... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.75 Safety analysis. (a... the effects of failures and likely combination of failures be verified by test. (c) The primary...
14 CFR 33.75 - Safety analysis.
Code of Federal Regulations, 2012 CFR
2012-01-01
... judgment and previous experience combined with sound design and test philosophies. (4) The applicant must... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.75 Safety analysis. (a... the effects of failures and likely combination of failures be verified by test. (c) The primary...
14 CFR 33.75 - Safety analysis.
Code of Federal Regulations, 2014 CFR
2014-01-01
... judgment and previous experience combined with sound design and test philosophies. (4) The applicant must... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.75 Safety analysis. (a... the effects of failures and likely combination of failures be verified by test. (c) The primary...
NASA GSFC Mechanical Engineering Latest Inputs for Verification Standards (GEVS) Updates
NASA Technical Reports Server (NTRS)
Kaufman, Daniel
2003-01-01
This viewgraph presentation provides information on quality control standards in mechanical engineering. The presentation addresses safety, structural loads, nonmetallic composite structural elements, bonded structural joints, externally induced shock, random vibration, acoustic tests, and mechanical function.
ASIL determination for motorbike's Electronics Throttle Control System (ETCS) mulfunction
NASA Astrophysics Data System (ADS)
Zaman Rokhani, Fakhrul; Rahman, Muhammad Taqiuddin Abdul; Ain Kamsani, Noor; Sidek, Roslina Mohd; Saripan, M. Iqbal; Samsudin, Khairulmizam; Khair Hassan, Mohd
2017-11-01
Electronics Throttle Control System (ETCS) is the principal electronic unit in all fuel injection engine motorbike, augmenting the engine performance efficiency in comparison to the conventional carburetor based engine. ETCS is regarded as a safety-critical component, whereby ETCS malfunction can cause unintended acceleration or deceleration event, which can be hazardous to riders. In this study, Hazard Analysis and Risk Assessment, an ISO26262 functional safety standard analysis has been applied on motorbike's ETCS to determine the required automotive safety integrity level. Based on the analysis, the established automotive safety integrity level can help to derive technical and functional safety measures for ETCS development.
Safer Soldering Guidelines and Instructional Resources
ERIC Educational Resources Information Center
Love, Tyler S.; Tomlinson, Joel
2018-01-01
Soldering is a useful and necessary process for many classroom, makerspace, Fab Lab, technology and engineering lab, and science lab activities. As described in this article, soldering can pose many safety risks without proper engineering controls, standard operating procedures, and direct instructor supervision. There are many safety hazards…
Code of Federal Regulations, 2011 CFR
2011-04-01
... 23 Highways 1 2011-04-01 2011-04-01 false Application. 625.3 Section 625.3 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN STANDARDS... standards to traffic engineering, safety, and preventive maintenance projects which include very minor or no...
16 CFR 1000.29 - Directorate for Engineering Sciences.
Code of Federal Regulations, 2010 CFR
2010-01-01
... standards, product safety tests and test methods, performance criteria, design specifications, and quality control standards for consumer products, based on engineering and scientific methods. It conducts... consumer interest groups. The Directorate conducts human factors studies and research of consumer product...
16 CFR 1000.29 - Directorate for Engineering Sciences.
Code of Federal Regulations, 2012 CFR
2012-01-01
... standards, product safety tests and test methods, performance criteria, design specifications, and quality control standards for consumer products, based on engineering and scientific methods. It conducts... consumer interest groups. The Directorate conducts human factors studies and research of consumer product...
ASSIP Study of Real-Time Safety-Critical Embedded Software-Intensive System Engineering Practices
2008-02-01
and assessment 2. product engineering processes 3. tooling processes 6 | CMU/SEI-2008-SR-001 Slide 1 Process Standards IEC/ ISO 12207 Software...and technical effort to align with 12207 IEC/ ISO 15026 System & Software Integrity Levels Generic Safety SAE ARP 4754 Certification Considerations...Process Frameworks in revision – ISO 9001, ISO 9004 – ISO 15288/ ISO 12207 harmonization – RTCA DO-178B, MOD Standard UK 00-56/3, … • Methods & Tools
A Laboratory Safety Program at Delaware.
ERIC Educational Resources Information Center
Whitmyre, George; Sandler, Stanley I.
1986-01-01
Describes a laboratory safety program at the University of Delaware. Includes a history of the program's development, along with standard safety training and inspections now being implemented. Outlines a two-day laboratory safety course given to all graduate students and staff in chemical engineering. (TW)
Code of Federal Regulations, 2010 CFR
2010-10-01
... reasons of safety, reliability and generally applicable engineering purposes. (b) Requests for access to a... and information relate to a denial of access for reasons of lack of capacity, safety, reliability or engineering standards. (c) A utility shall provide a cable television system operator or telecommunications...
77 FR 73354 - Safety Standard for Hand-Held Infant Carriers
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
.... Edwards, Project Manager, Directorate for Engineering Sciences, U.S. Consumer Product Safety Commission, 5..., allergic reactions and near- choking episodes are the most common injuries reported in the remaining 58... modification of the ASTM standard to address the requirements for flammability, surface chemicals, cords...
16 CFR 1031.6 - Extent and form of Commission involvement in the development of voluntary standards.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., engineering support, and information and education programs) and administrative assistance (e.g., travel costs... SAFETY COMMISSION GENERAL COMMISSION PARTICIPATION AND COMMISSION EMPLOYEE INVOLVEMENT IN VOLUNTARY... goals and objectives with regard to voluntary standards and improved consumer product safety; responding...
75 FR 17604 - Federal Motor Vehicle Safety Standards; Roof Crush Resistance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-07
... Safety Analysis & Forensic Engineering, LLC (SAFE) brought to our attention errors in the preamble that incorrectly attributed to it the comments of another organization, Safety Analysis, Inc. Both of these... Safety Analysis, Inc. SAFE noted that there is no affiliation between SAFE and Safety Analysis, Inc. and...
ASME Nuclear Crane Standards for Enhanced Crane Safety and Increased Profit
NASA Astrophysics Data System (ADS)
Parkhurst, Stephen N.
2000-01-01
The ASME NOG-1 standard, 'Rules for Construction of Overhead and Gantry Cranes', covers top running cranes for nuclear facilities; with the ASME NUM-1 standard, 'Rules for Construction of Cranes, Monorails, and Hoists', covering the single girder, underhung, wall and jib cranes, as well as the monorails and hoists. These two ASME nuclear crane standards provide criteria for designing, inspecting and testing overhead handling equipment with enhanced safety to meet the 'defense-in-depth' approach of the United States Nuclear Regulatory Commission (USNRC) documents NUREG 0554 and NUREG 0612. In addition to providing designs for enhanced safety, the ASME nuclear crane standards provide a basis for purchasing overhead handling equipment with standard safety features, based upon accepted engineering principles, and including performance and environmental parameters specific to nuclear facilities. The ASME NOG-1 and ASME NUM-1 standards not only provide enhanced safety for handling a critical load, but also increase profit by minimizing the possibility of load drops, by reducing cumbersome operating restrictions, and by providing the foundation for a sound licensing position. The ASME nuclear crane standards can also increase profit by providing the designs and information to help ensure that the right standard equipment is purchased. Additionally, the ASME nuclear crane standards can increase profit by providing designs and information to help address current issues, such as the qualification of nuclear plant cranes for making 'planned engineered lifts' for steam generator replacement and decommissioning.
49 CFR 229.77 - Current collectors.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical System § 229... engineer's normal position in the cab. Pantographs that automatically rise when released shall have an...
49 CFR 229.77 - Current collectors.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical System § 229... engineer's normal position in the cab. Pantographs that automatically rise when released shall have an...
49 CFR 229.77 - Current collectors.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical System § 229... engineer's normal position in the cab. Pantographs that automatically rise when released shall have an...
49 CFR 229.77 - Current collectors.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical System § 229... engineer's normal position in the cab. Pantographs that automatically rise when released shall have an...
49 CFR 229.77 - Current collectors.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical System § 229... engineer's normal position in the cab. Pantographs that automatically rise when released shall have an...
1991-01-01
acrylic plastic windows in chambers for human occupancy, the design stress should not exceed 800 psi (i.e., conversion factor of 20). 3. installed...pressure vessels for human occupancy Is 10 yr based on the conserva- tive assumption that in that length of time even stressed acrylic in a tropioal...the Safety Standard for Pressure Ves- sels for Human Oc-upancy (ASME PVHO-1 Safety Standard). Since that time, this ASME Safety Standard has
Software Safety Risk in Legacy Safety-Critical Computer Systems
NASA Technical Reports Server (NTRS)
Hill, Janice; Baggs, Rhoda
2007-01-01
Safety-critical computer systems must be engineered to meet system and software safety requirements. For legacy safety-critical computer systems, software safety requirements may not have been formally specified during development. When process-oriented software safety requirements are levied on a legacy system after the fact, where software development artifacts don't exist or are incomplete, the question becomes 'how can this be done?' The risks associated with only meeting certain software safety requirements in a legacy safety-critical computer system must be addressed should such systems be selected as candidates for reuse. This paper proposes a method for ascertaining formally, a software safety risk assessment, that provides measurements for software safety for legacy systems which may or may not have a suite of software engineering documentation that is now normally required. It relies upon the NASA Software Safety Standard, risk assessment methods based upon the Taxonomy-Based Questionnaire, and the application of reverse engineering CASE tools to produce original design documents for legacy systems.
76 FR 7628 - Petition for Waiver of Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-10
... constructed by European manufacturer and meet European safety standards for crashworthiness and related safety... Engineering Task Force report to the Passenger Safety Working Group of the Railroad Safety Advisory Committee... business hours (9 a.m.-5 p.m.) at the above facility. All documents in the public docket are also available...
49 CFR 571.404 - Standard No. 404; Platform lift installations in motor vehicles.
Code of Federal Regulations, 2013 CFR
2013-10-01
... vehicle, with the vehicle's HVAC system turned off, for a minimum of 20 minutes, after which the engine is... Motor Vehicle Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.2Lift... Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.3Platform lifts must be...
49 CFR 571.404 - Standard No. 404; Platform lift installations in motor vehicles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... vehicle, with the vehicle's HVAC system turned off, for a minimum of 20 minutes, after which the engine is... Motor Vehicle Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.2Lift... Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.3Platform lifts must be...
49 CFR 571.404 - Standard No. 404; Platform lift installations in motor vehicles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... vehicle, with the vehicle's HVAC system turned off, for a minimum of 20 minutes, after which the engine is... Motor Vehicle Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.2Lift... Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.3Platform lifts must be...
14 CFR 33.62 - Stress analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.62 Stress analysis. A stress analysis must be performed on each turbine engine showing the design safety margin of each turbine...
14 CFR 33.62 - Stress analysis.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.62 Stress analysis. A stress analysis must be performed on each turbine engine showing the design safety margin of each turbine...
Code of Federal Regulations, 2010 CFR
2010-07-01
... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.526 Carburetors. (a...) Returns collected fuel to the engine induction system after the engine starts, [CGD 74-209, 42 FR 5950...
78 FR 41684 - Special Conditions: Embraer S.A. Model EMB-550 Airplanes, Sudden Engine Stoppage
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-11
... airplane has novel or unusual design features as compared to the state of technology envisioned in the airworthiness standards for transport-category airplanes. These design features include engine size and the... contain adequate or appropriate safety standards for this design feature. These special conditions contain...
Weininger, Sandy
2007-12-01
Developing safe and effective medical devices involves understanding the hazardous situations that can arise in clinical practice and implementing appropriate risk control measures. The hazardous situations may have their roots in the design or in the use of the device. Risk control measures may be engineering or clinically based. A multidisciplinary team of engineers and clinicians is needed to fully identify and assess the risks and implement and evaluate the effectiveness of the control measures. In this paper, I use three issues, calibration/accuracy, response time, and protective measures/alarms, to highlight the contributions of these groups. This important information is captured in standards and regulatory tools to control risk for respiratory gas monitors and pulse oximeters. This paper begins with a discussion of the framework of safety, explaining how voluntary standards and regulatory tools work. The discussion is followed by an examination of how engineering and clinical knowledge are used to support the assurance of safety.
NASA Astrophysics Data System (ADS)
Voskresenskaya, Elena; Vorona-Slivinskaya, Lubov
2018-03-01
The article considers the issues of developing national standards for high-rise construction. The system of standards should provide industrial, operational, economic and terrorist safety of high-rise buildings and facilities. Modern standards of high-rise construction should set the rules for designing engineering systems of high-rise buildings, which will ensure the integrated security of buildings, increase their energy efficiency and reduce the consumption of resources in construction and operation.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-11
... apply to: prototypes (new designs) submitted after January 1, 2012; production testing of designs... Lifesaving Equipment: Production Testing and Harmonization With International Standards AGENCY: Coast Guard... and Standards Directorate, Office of Design and Engineering Standards, Lifesaving and Fire Safety...
49 CFR 192.713 - Transmission lines: Permanent field repair of imperfections and damages.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS...; or (2) Repaired by a method that reliable engineering tests and analyses show can permanently restore...
49 CFR 192.713 - Transmission lines: Permanent field repair of imperfections and damages.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS...; or (2) Repaired by a method that reliable engineering tests and analyses show can permanently restore...
49 CFR 192.713 - Transmission lines: Permanent field repair of imperfections and damages.
Code of Federal Regulations, 2013 CFR
2013-10-01
... (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS...; or (2) Repaired by a method that reliable engineering tests and analyses show can permanently restore...
49 CFR 192.713 - Transmission lines: Permanent field repair of imperfections and damages.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS...; or (2) Repaired by a method that reliable engineering tests and analyses show can permanently restore...
49 CFR 192.713 - Transmission lines: Permanent field repair of imperfections and damages.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS...; or (2) Repaired by a method that reliable engineering tests and analyses show can permanently restore...
Code of Federal Regulations, 2010 CFR
2010-10-01
... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.53 Brake gauges. All... engineer to aid in the control or braking of the train or locomotive shall be located so that they may be...
Mitchell, A H; Parker, G B; Kanamori, H; Rutala, W A; Weber, D J
2017-06-01
The United States Occupational Safety and Health Administration (OSHA) Bloodborne Pathogens Standard as amended by the Needlestick Safety and Prevention Act requiring the use of safety-engineered medical devices to prevent needlesticks and sharps injuries has been in place since 2001. Injury changes over time include differences between those from non-safety compared with safety-engineered medical devices. This research compares two US occupational incident surveillance systems to determine whether these data can be generalized to other facilities and other countries either with legislation in place or considering developing national policies for the prevention of sharps injuries among healthcare personnel. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
30 CFR 77.1000 - Highwalls, pits and spoil banks; plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 77.1000 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND... developed after June 30, 1971, which shall be consistent with prudent engineering design and will insure...
30 CFR 77.1000 - Highwalls, pits and spoil banks; plans.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 77.1000 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND... developed after June 30, 1971, which shall be consistent with prudent engineering design and will insure...
30 CFR 77.1000 - Highwalls, pits and spoil banks; plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 77.1000 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND... developed after June 30, 1971, which shall be consistent with prudent engineering design and will insure...
30 CFR 77.1000 - Highwalls, pits and spoil banks; plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 77.1000 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND... developed after June 30, 1971, which shall be consistent with prudent engineering design and will insure...
49 CFR 192.171 - Compressor stations: Additional safety equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of... must have adequate fire protection facilities. If fire pumps are a part of these facilities, their... event of inadequate cooling or lubrication of the unit. (d) Each compressor station gas engine that...
14 CFR 33.62 - Stress analysis.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Stress analysis. 33.62 Section 33.62... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.62 Stress analysis. A stress analysis must be performed on each turbine engine showing the design safety margin of each turbine...
14 CFR 33.62 - Stress analysis.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Stress analysis. 33.62 Section 33.62... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.62 Stress analysis. A stress analysis must be performed on each turbine engine showing the design safety margin of each turbine...
14 CFR 33.62 - Stress analysis.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Stress analysis. 33.62 Section 33.62... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.62 Stress analysis. A stress analysis must be performed on each turbine engine showing the design safety margin of each turbine...
Analyzing system safety in lithium-ion grid energy storage
NASA Astrophysics Data System (ADS)
Rosewater, David; Williams, Adam
2015-12-01
As grid energy storage systems become more complex, it grows more difficult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to fill the gaps recognized in PRA for designing complex systems and hence be more effective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. We conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.
New Challenges for Intervertebral Disc Treatment Using Regenerative Medicine
Masuda, Koichi
2010-01-01
The development of tissue engineering therapies for the intervertebral disc is challenging due to ambiguities of disease and pain mechanisms in patients, and lack of consensus on preclinical models for safety and efficacy testing. Although the issues associated with model selection for studying orthopedic diseases or treatments have been discussed often, the multifaceted challenges associated with developing intervertebral disc tissue engineering therapies require special discussion. This review covers topics relevant to the clinical translation of tissue-engineered technologies: (1) the unmet clinical need, (2) appropriate models for safety and efficacy testing, (3) the need for standardized model systems, and (4) the translational pathways leading to a clinical trial. For preclinical evaluation of new therapies, we recommend establishing biologic plausibility of efficacy and safety using models of increasing complexity, starting with cell culture, small animals (rats and rabbits), and then large animals (goat and minipig) that more closely mimic nutritional, biomechanical, and surgical realities of human application. The use of standardized and reproducible experimental procedures and outcome measures is critical for judging relative efficacy. Finally, success will hinge on carefully designed clinical trials with well-defined patient selection criteria, gold-standard controls, and objective outcome metrics to assess performance in the early postoperative period. PMID:19903086
ERIC Educational Resources Information Center
Jensen, Jill
2012-01-01
The author's first reaction to learning that the new science standards adopted in Minnesota included engineering was fear and apprehension. She couldn't picture what an engineering project would look like at the elementary level. As a K-5 elementary science specialist, it was now her job to figure out how to incorporate engineering in their…
Development of consistent hazard controls for DOE transuranic waste operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woody, W.J.
2007-07-01
This paper describes the results of a re-engineering initiative undertaken with the Department of Energy's (DOE) Office of Environmental Management (EM) in order to standardize hazard analysis assumptions and methods and resulting safety controls applied to multiple transuranic (TRU) waste operations located across the United States. A wide range of safety controls are historically applied to transuranic waste operations, in spite of the fact that these operations have similar operational characteristics and hazard/accident potential. The re-engineering effort supported the development of a DOE technical standard with specific safety controls designated for accidents postulated during waste container retrieval, staging/storage, venting, onsitemore » movements, and characterization activities. Controls cover preventive and mitigative measures; include both hardware and specific administrative controls; and provide protection to the facility worker, onsite co-located workers and the general public located outside of facility boundaries. The Standard development involved participation from all major DOE sites conducting TRU waste operations. Both safety analysts and operations personnel contributed to the re-engineering effort. Acknowledgment is given in particular to the following individuals who formed a core working group: Brenda Hawks, (DOE Oak Ridge Office), Patrice McEahern (CWI-Idaho), Jofu Mishima (Consultant), Louis Restrepo (Omicron), Jay Mullis (DOE-ORO), Mike Hitchler (WSMS), John Menna (WSMS), Jackie East (WSMS), Terry Foppe (CTAC), Carla Mewhinney (WIPP-SNL), Stephie Jennings (WIPP-LANL), Michael Mikolanis (DOESRS), Kraig Wendt (BBWI-Idaho), Lee Roberts (Fluor Hanford), and Jim Blankenhorn (WSRC). Additional acknowledgment is given to Dae Chung (EM) and Ines Triay (EM) for leadership and management of the re-engineering effort. (authors)« less
Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane
NASA Astrophysics Data System (ADS)
Green, M. A.
2006-04-01
The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, "How is hydrogen different from flammable gasses that are commonly being used all over the world?" This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standards for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.
Propulsion System Advances that Enable a Reusable Liquid Fly Back Booster (LFBB)
NASA Technical Reports Server (NTRS)
Keith, Edward L.; Rothschild, William J.
1998-01-01
This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX / kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.
Propulsion system advances that enable a reusable Liquid Fly Back Booster (LFBB)
NASA Technical Reports Server (NTRS)
Keith, E. L.; Rothschild, W. J.
1998-01-01
This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX/kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Electrical Accident Occupation Blue collar supervisors. 1 Electrical and electronic engineers. 1 Electrical... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910.332 Training. (a... electric shock that is not reduced to a safe level by the electrical installation requirements of §§ 1910...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Electrical Accident Occupation Blue collar supervisors. 1 Electrical and electronic engineers. 1 Electrical... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910.332 Training. (a... electric shock that is not reduced to a safe level by the electrical installation requirements of §§ 1910...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Electrical Accident Occupation Blue collar supervisors. 1 Electrical and electronic engineers. 1 Electrical... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910.332 Training. (a... electric shock that is not reduced to a safe level by the electrical installation requirements of §§ 1910...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Electrical Accident Occupation Blue collar supervisors. 1 Electrical and electronic engineers. 1 Electrical... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910.332 Training. (a... electric shock that is not reduced to a safe level by the electrical installation requirements of §§ 1910...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Electrical Accident Occupation Blue collar supervisors. 1 Electrical and electronic engineers. 1 Electrical... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Safety-Related Work Practices § 1910.332 Training. (a... electric shock that is not reduced to a safe level by the electrical installation requirements of §§ 1910...
Analyzing system safety in lithium-ion grid energy storage
Rosewater, David; Williams, Adam
2015-10-08
As grid energy storage systems become more complex, it grows more di cult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to ll the gaps recognized in PRA for designing complex systems and hence be more e ectivemore » or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. Lastly, we conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.« less
NASA's Software Safety Standard
NASA Technical Reports Server (NTRS)
Ramsay, Christopher M.
2005-01-01
NASA (National Aeronautics and Space Administration) relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft (manned or unmanned) launched that did not have a computer on board that provided vital command and control services. Despite this growing dependence on software control and monitoring, there has been no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Led by the NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard (STD-18l9.13B) has recently undergone a significant update in an attempt to provide that consistency. This paper will discuss the key features of the new NASA Software Safety Standard. It will start with a brief history of the use and development of software in safety critical applications at NASA. It will then give a brief overview of the NASA Software Working Group and the approach it took to revise the software engineering process across the Agency.
Safety and health in the construction of fixed offshore installations in the petroleum industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-01-01
A meeting convened by the ILO (International Labor Office) on safety problems in the offshore petroleum industry recommended the preparation of a code of practice setting out standards for safety and health during the construction of fixed offshore installations. Such a code, to be prepared by the ILO in co-operation with other bodies, including the Inter-Governmental Maritime Consultative Organisation (IMCO), was to take into consideration existing standards applicable to offshore construction activities and to supplement the ILO codes of practice on safety and health in building and civil engineering work, shipbuilding and ship repairing. (Copyright (c) International Labour Organisation 1981.)
Manufacturing Cell Therapies Using Engineered Biomaterials.
Abdeen, Amr A; Saha, Krishanu
2017-10-01
Emerging manufacturing processes to generate regenerative advanced therapies can involve extensive genomic and/or epigenomic manipulation of autologous or allogeneic cells. These cell engineering processes need to be carefully controlled and standardized to maximize safety and efficacy in clinical trials. Engineered biomaterials with smart and tunable properties offer an intriguing tool to provide or deliver cues to retain stemness, direct differentiation, promote reprogramming, manipulate the genome, or select functional phenotypes. This review discusses the use of engineered biomaterials to control human cell manufacturing. Future work exploiting engineered biomaterials has the potential to generate manufacturing processes that produce standardized cells with well-defined critical quality attributes appropriate for clinical testing. Copyright © 2017 Elsevier Ltd. All rights reserved.
49 CFR 571.131 - Standard No. 131; School bus pedestrian safety devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... purpose of this standard is to reduce deaths and injuries by minimizing the likelihood of vehicles passing... opened while the engine is running and the manual override is engaged. S6 Test Procedures. S6.1...
Performance and Safety to NAVSEA Instruction 9310.1A of Lithium-thionyl Chloride Reserve Batteries
NASA Technical Reports Server (NTRS)
Hall, J. C.
1984-01-01
The design, performance and safety of a fully engineered, selfcontained Li/SOCl2 battery as the power source for underwater applications. In addition to meeting the performance standards of the end user this battery is successfully tested under the rigorous safety conditions of NAVSEA Instruction 9310.1A for use on land, aircraft and surface ships.
76 FR 39795 - Special Conditions: Pratt and Whitney Canada Model PT6C-67E Turboshaft Engine
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... Whitney Canada (PWC) model PT6C-67E engines. The engine model will have a novel or unusual design feature... regulations do not contain adequate or appropriate safety standards for this design feature. These proposed... pre-addressed, stamped postcard on which the docket number appears. We will stamp the date on the...
30 CFR 77.403 - Mobile equipment; falling object protective structures (FOPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... which meet the requirements of the Society of Automotive Engineers (SAE) Standard J 231 shall be..., forklift or powered industrial trucks shall be provided with substantial FOPS. Such FOPS shall meet the requirements of the State of California, Division of Industrial Safety, General Safety Orders, Register 72...
30 CFR 77.403 - Mobile equipment; falling object protective structures (FOPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... which meet the requirements of the Society of Automotive Engineers (SAE) Standard J 231 shall be..., forklift or powered industrial trucks shall be provided with substantial FOPS. Such FOPS shall meet the requirements of the State of California, Division of Industrial Safety, General Safety Orders, Register 72...
ARCHITECTURAL AND CIVIL STANDARDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Hanford Atomic Production Operation specification guides and standards for architectural and civil engineering are presented. Information includes construction of roads, railroads, roofs, signs, buildings, building equipment, sewers, fences, safety systems, and drainage systems. Details of this manual are given in TID-4100 (Suppl.). (N.W.R.)
30 CFR Appendix I to Subpart M of... - National Consensus Standards
Code of Federal Regulations, 2013 CFR
2013-07-01
... loaders and bulldozers Society of Automotive Engineers (SAE) minimum performance criteria for falling object protective structures (FOPS) SAE J231—January, 1981. Fork-lift trucks American National Standards Institute (ANSI) safety standard for low lift and high lift trucks, B 56.1, section 7.27—1983; or, American...
30 CFR Appendix I to Subpart M of... - National Consensus Standards
Code of Federal Regulations, 2014 CFR
2014-07-01
... loaders and bulldozers Society of Automotive Engineers (SAE) minimum performance criteria for falling object protective structures (FOPS) SAE J231—January, 1981. Fork-lift trucks American National Standards Institute (ANSI) safety standard for low lift and high lift trucks, B 56.1, section 7.27—1983; or, American...
30 CFR Appendix I to Subpart M of... - National Consensus Standards
Code of Federal Regulations, 2012 CFR
2012-07-01
... loaders and bulldozers Society of Automotive Engineers (SAE) minimum performance criteria for falling object protective structures (FOPS) SAE J231—January, 1981. Fork-lift trucks American National Standards Institute (ANSI) safety standard for low lift and high lift trucks, B 56.1, section 7.27—1983; or, American...
30 CFR Appendix I to Subpart M of... - National Consensus Standards
Code of Federal Regulations, 2013 CFR
2013-07-01
... loaders and bulldozers Society of Automotive Engineers (SAE) minimum performance criteria for falling object protective structures (FOPS) SAE J231—January, 1981. Fork-lift trucks American National Standards Institute (ANSI) safety standard for low lift and high lift trucks, B 56.1, section 7.27—1983; or American...
30 CFR Appendix I to Subpart M of... - National Consensus Standards
Code of Federal Regulations, 2012 CFR
2012-07-01
... loaders and bulldozers Society of Automotive Engineers (SAE) minimum performance criteria for falling object protective structures (FOPS) SAE J231—January, 1981. Fork-lift trucks American National Standards Institute (ANSI) safety standard for low lift and high lift trucks, B 56.1, section 7.27—1983; or American...
30 CFR Appendix I to Subpart M of... - National Consensus Standards
Code of Federal Regulations, 2014 CFR
2014-07-01
... loaders and bulldozers Society of Automotive Engineers (SAE) minimum performance criteria for falling object protective structures (FOPS) SAE J231—January, 1981. Fork-lift trucks American National Standards Institute (ANSI) safety standard for low lift and high lift trucks, B 56.1, section 7.27—1983; or American...
10 CFR 851.27 - Reference sources.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) American Society of Mechanical Engineers (ASME), P.O. Box 2300 Fairfield, NJ 07007. Telephone: 800-843-2763... Electrical Code,” (2005). (5) NFPA 70E, “Standard for Electrical Safety in the Workplace,” (2004). (6... Engineers (ASME) Boilers and Pressure Vessel Code, sections I through XII including applicable Code Cases...
10 CFR 851.27 - Reference sources.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) American Society of Mechanical Engineers (ASME), P.O. Box 2300 Fairfield, NJ 07007. Telephone: 800-843-2763... Electrical Code,” (2005). (5) NFPA 70E, “Standard for Electrical Safety in the Workplace,” (2004). (6... Engineers (ASME) Boilers and Pressure Vessel Code, sections I through XII including applicable Code Cases...
EPA and National Highway Traffic SafetyAdministration (NHTSA) are each finalizing rules to establish a comprehensive Heavy-Duty National Program that will reduce greenhouse gas emissions and fuel consumption for onroad heavy-duty vehicles.
Standardized Curriculum for Automotive Mechanics.
ERIC Educational Resources Information Center
Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.
Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: automotive mechanics I and II. The six units in automotive mechanics I are as follows: orientation and safety; tools, equipment, and manuals; measurement; automotive engines; basic electrical systems; and fuel systems. Automotive…
Safety issues with herbal products.
Marrone, C M
1999-12-01
To review safety issues associated with the use of herbal products. Literature accessed through MEDLINE and other Internet search engines. Key search terms included herbs, dietary supplements, and safety. A misconception exists among consumers that herbal remedies are safe because they are natural. In an effort to provide healthcare practitioners with information necessary for a patient discussion, a review of safety concerns with herbal products was conducted. Several safety concerns exist with herbal products including lack of safety data, absence of quality-control requirements for potency and purity, and lenient labeling standards.
Code of Federal Regulations, 2012 CFR
2012-01-01
... standard may be obtained from the Institute of Electrical and Electronics Engineers, Inc., 345 East 47th... 10 Energy 1 2012-01-01 2012-01-01 false Environmental qualification of electric equipment... Regulatory Approvals § 50.49 Environmental qualification of electric equipment important to safety for...
Computing Q-D Relationships for Storage of Rocket Fuels
NASA Technical Reports Server (NTRS)
Jester, Keith
2005-01-01
The Quantity Distance Measurement Tool is a GIS BASEP computer program that aids safety engineers by calculating quantity-distance (Q-D) relationships for vessels that contain explosive chemicals used in testing rocket engines. (Q-D relationships are standard relationships between specified quantities of specified explosive materials and minimum distances by which they must be separated from persons, objects, and other explosives to obtain specified types and degrees of protection.) The program uses customized geographic-information-system (GIS) software and calculates Q-D relationships in accordance with NASA's Safety Standard For Explosives, Propellants, and Pyrotechnics. Displays generated by the program enable the identification of hazards, showing the relationships of propellant-storage-vessel safety buffers to inhabited facilities and public roads. Current Q-D information is calculated and maintained in graphical form for all vessels that contain propellants or other chemicals, the explosiveness of which is expressed in TNT equivalents [amounts of trinitrotoluene (TNT) having equivalent explosive effects]. The program is useful in the acquisition, siting, construction, and/or modification of storage vessels and other facilities in the development of an improved test-facility safety program.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Appliances. 111.77-3 Section 111.77-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL..., must meet UL safety and construction standards or equivalent standards under § 110.20-1 of this chapter...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Appliances. 111.77-3 Section 111.77-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL..., must meet UL safety and construction standards or equivalent standards under § 110.20-1 of this chapter...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Appliances. 111.77-3 Section 111.77-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL..., must meet UL safety and construction standards or equivalent standards under § 110.20-1 of this chapter...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Appliances. 111.77-3 Section 111.77-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL..., must meet UL safety and construction standards or equivalent standards under § 110.20-1 of this chapter...
7 CFR 1755.901 - Incorporation by Reference.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Electronics Engineers, Inc. ANSI/IEEE C2-2007, The National Electrical Safety Code, 2007 edition, approved.../Electronics Industries Association (TIA/EIA) standards are available from Electronic Industries Association...
7 CFR 1755.901 - Incorporation by Reference.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Electronics Engineers, Inc. ANSI/IEEE C2-2007, The National Electrical Safety Code, 2007 edition, approved.../Electronics Industries Association (TIA/EIA) standards are available from Electronic Industries Association...
7 CFR 1755.901 - Incorporation by Reference.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Electronics Engineers, Inc. ANSI/IEEE C2-2007, The National Electrical Safety Code, 2007 edition, approved.../Electronics Industries Association (TIA/EIA) standards are available from Electronic Industries Association...
7 CFR 1755.901 - Incorporation by Reference.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Electronics Engineers, Inc. ANSI/IEEE C2-2007, The National Electrical Safety Code, 2007 edition, approved.../Electronics Industries Association (TIA/EIA) standards are available from Electronic Industries Association...
Model-based engineering for medical-device software.
Ray, Arnab; Jetley, Raoul; Jones, Paul L; Zhang, Yi
2010-01-01
This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software. 1.
30 CFR 784.16 - Reclamation plan: Siltation structures, impoundments, and refuse piles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Resources Conservation Service's Web site athttp://www.info.usda.gov/scripts/lpsiis.dll/TR/TR_210_60.htm... State program approval process engineering design standards that ensure stability comparable to a 1.3 minimum static safety factor in lieu of engineering tests to establish compliance with the minimum static...
30 CFR 780.25 - Reclamation plan: Siltation structures, impoundments, and refuse piles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Resources Conservation Service's Web site at http://www.info.usda.gov/scripts/lpsiis.dll/TR/TR_210_60.htm... authority may establish through the State program approval process, engineering design standards that ensure stability comparable to a 1.3 minimum static safety factor in lieu of engineering tests to establish...
NASA Technical Reports Server (NTRS)
Rabone, G. R.; Paulson, E.
1973-01-01
Preliminary designs of three integral lift fan engines suitable for commercial certification in the 80's were completed. Emphasis was placed on low cost, simplicity, low noise, low emissions, minimum weight, and design features meeting all commercial standards for fire safety and containment.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-21
... safety factors (including the potential increased risk of burn or fire) associated with compliance with... that improper sizing of VDECS with engines may be occurring. This coupled with a lack of concrete... available, etc.). Based on the lack of concrete evidence from the commenters that it has incurred...
O'Halloran, Niamh; Courtney, Donald; Kerin, Michael J; Lowery, Aoife J
2017-01-01
Adipose-derived stem cells (ADSCs) are rapidly becoming the gold standard cell source for tissue engineering strategies and hold great potential for novel breast reconstruction strategies. However, their use in patients with breast cancer is controversial and their oncological safety, particularly in relation to local disease recurrence, has been questioned. In vitro, in vivo, and clinical studies using ADSCs report conflicting data on their suitability for adipose tissue regeneration in patients with cancer. This review aims to provide an overview of the potential role for ADSCs in breast reconstruction and to examine the evidence relating to the oncologic safety of their use in patients with breast cancer.
Hydrogen Safety Issues Compared to Safety Issues with Methane andPropane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Michael A.
The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, 'How is hydrogen different from flammable gasses that are commonly being used all over the world?' This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standardsmore » for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.« less
Human Factors Engineering Guidelines for Overhead Cranes
NASA Technical Reports Server (NTRS)
Chandler, Faith; Delgado, H. (Technical Monitor)
2001-01-01
This guideline provides standards for overhead crane cabs that can be applied to the design and modification of crane cabs to reduce the potential for human error due to design. This guideline serves as an aid during the development of a specification for purchases of cranes or for an engineering support request for crane design modification. It aids human factors engineers in evaluating existing cranes during accident investigations or safety reviews.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Institute “Code for Pressure Piping, Power Piping.” ASME Code means the American Society of Mechanical Engineers “Boiler and Pressure Vessel Code.” ASME PVHO-1 means the ANSI/ASME standard “Safety Standard for Pressure Vessels for Human Occupancy.” ATA means a measure of pressure expressed in terms of atmosphere...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Institute “Code for Pressure Piping, Power Piping.” ASME Code means the American Society of Mechanical Engineers “Boiler and Pressure Vessel Code.” ASME PVHO-1 means the ANSI/ASME standard “Safety Standard for Pressure Vessels for Human Occupancy.” ATA means a measure of pressure expressed in terms of atmosphere...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Institute “Code for Pressure Piping, Power Piping.” ASME Code means the American Society of Mechanical Engineers “Boiler and Pressure Vessel Code.” ASME PVHO-1 means the ANSI/ASME standard “Safety Standard for Pressure Vessels for Human Occupancy.” ATA means a measure of pressure expressed in terms of atmosphere...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Institute “Code for Pressure Piping, Power Piping.” ASME Code means the American Society of Mechanical Engineers “Boiler and Pressure Vessel Code.” ASME PVHO-1 means the ANSI/ASME standard “Safety Standard for Pressure Vessels for Human Occupancy.” ATA means a measure of pressure expressed in terms of atmosphere...
46 CFR 62.25-30 - Environmental design standards.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM AUTOMATION General Requirements for All Automated Vital Systems § 62.25-30 Environmental design standards. (a... inclination requirements for fire and flooding safety systems are described in 46 CFR 112.05-5(c). (2) Ambient...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadwallader, L.C.
1997-03-01
This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.
Engineering thinking in emergency situations: A new nuclear safety concept
Guarnieri, Franck; Travadel, Sébastien
2014-01-01
The lessons learned from the Fukushima Daiichi accident have focused on preventive measures designed to protect nuclear reactors, and crisis management plans. Although there is still no end in sight to the accident that occurred on March 11, 2011, how engineers have handled the aftermath offers new insight into the capacity of organizations to adapt in situations that far exceed the scope of safety standards based on probabilistic risk assessment and on the comprehensive identification of disaster scenarios. Ongoing crises in which conventional resources are lacking, but societal expectations are high, call for “engineering thinking in emergency situations.” This is a new concept that emphasizes adaptability and resilience within organizations—such as the ability to create temporary new organizational structures; to quickly switch from a normal state to an innovative mode; and to integrate a social dimension into engineering activities. In the future, nuclear safety oversight authorities should assess the ability of plant operators to create and implement effective engineering strategies on the fly, and should require that operators demonstrate the capability for resilience in the aftermath of an accident. PMID:25419015
Engineering thinking in emergency situations: A new nuclear safety concept.
Guarnieri, Franck; Travadel, Sébastien
2014-11-01
The lessons learned from the Fukushima Daiichi accident have focused on preventive measures designed to protect nuclear reactors, and crisis management plans. Although there is still no end in sight to the accident that occurred on March 11, 2011, how engineers have handled the aftermath offers new insight into the capacity of organizations to adapt in situations that far exceed the scope of safety standards based on probabilistic risk assessment and on the comprehensive identification of disaster scenarios. Ongoing crises in which conventional resources are lacking, but societal expectations are high, call for "engineering thinking in emergency situations." This is a new concept that emphasizes adaptability and resilience within organizations-such as the ability to create temporary new organizational structures; to quickly switch from a normal state to an innovative mode; and to integrate a social dimension into engineering activities. In the future, nuclear safety oversight authorities should assess the ability of plant operators to create and implement effective engineering strategies on the fly, and should require that operators demonstrate the capability for resilience in the aftermath of an accident.
Aerospace engineering model identifies risks.
2001-06-01
Issuing a new set of safety standards with which health care institutions must comply is all well and good, but offering those institution's creative tools to aid that compliance is even more significant.
Job Grading Standard for Locomotive Engineer WG-6004.
ERIC Educational Resources Information Center
Civil Service Commission, Washington, DC. Bureau of Policies and Standards.
The standard is used to grade the nonsupervisory work of operating all types of locomotives and trains to transport supplies, equipment, conveyances, and personnel. The work involves skill in operating locomotives under various conditions, and knowledge of the layout of a track system and the safety, signalling, and track use requirements or…
14 CFR 11.19 - What is a special condition?
Code of Federal Regulations, 2011 CFR
2011-01-01
... special conditions when we find that the airworthiness regulations for an aircraft, aircraft engine, or propeller design do not contain adequate or appropriate safety standards, because of a novel or unusual...
14 CFR 11.19 - What is a special condition?
Code of Federal Regulations, 2012 CFR
2012-01-01
... special conditions when we find that the airworthiness regulations for an aircraft, aircraft engine, or propeller design do not contain adequate or appropriate safety standards, because of a novel or unusual...
14 CFR 11.19 - What is a special condition?
Code of Federal Regulations, 2013 CFR
2013-01-01
... special conditions when we find that the airworthiness regulations for an aircraft, aircraft engine, or propeller design do not contain adequate or appropriate safety standards, because of a novel or unusual...
14 CFR 11.19 - What is a special condition?
Code of Federal Regulations, 2014 CFR
2014-01-01
... special conditions when we find that the airworthiness regulations for an aircraft, aircraft engine, or propeller design do not contain adequate or appropriate safety standards, because of a novel or unusual...
14 CFR 11.19 - What is a special condition?
Code of Federal Regulations, 2010 CFR
2010-01-01
... special conditions when we find that the airworthiness regulations for an aircraft, aircraft engine, or propeller design do not contain adequate or appropriate safety standards, because of a novel or unusual...
NASA Technical Reports Server (NTRS)
Miller, James; Leggett, Jay; Kramer-White, Julie
2008-01-01
A team directed by the NASA Engineering and Safety Center (NESC) collected methodologies for how best to develop safe and reliable human rated systems and how to identify the drivers that provide the basis for assessing safety and reliability. The team also identified techniques, methodologies, and best practices to assure that NASA can develop safe and reliable human rated systems. The results are drawn from a wide variety of resources, from experts involved with the space program since its inception to the best-practices espoused in contemporary engineering doctrine. This report focuses on safety and reliability considerations and does not duplicate or update any existing references. Neither does it intend to replace existing standards and policy.
Product Engineering Class in the Software Safety Risk Taxonomy for Building Safety-Critical Systems
NASA Technical Reports Server (NTRS)
Hill, Janice; Victor, Daniel
2008-01-01
When software safety requirements are imposed on legacy safety-critical systems, retrospective safety cases need to be formulated as part of recertifying the systems for further use and risks must be documented and managed to give confidence for reusing the systems. The SEJ Software Development Risk Taxonomy [4] focuses on general software development issues. It does not, however, cover all the safety risks. The Software Safety Risk Taxonomy [8] was developed which provides a construct for eliciting and categorizing software safety risks in a straightforward manner. In this paper, we present extended work on the taxonomy for safety that incorporates the additional issues inherent in the development and maintenance of safety-critical systems with software. An instrument called a Software Safety Risk Taxonomy Based Questionnaire (TBQ) is generated containing questions addressing each safety attribute in the Software Safety Risk Taxonomy. Software safety risks are surfaced using the new TBQ and then analyzed. In this paper we give the definitions for the specialized Product Engineering Class within the Software Safety Risk Taxonomy. At the end of the paper, we present the tool known as the 'Legacy Systems Risk Database Tool' that is used to collect and analyze the data required to show traceability to a particular safety standard
Electrical safety Q&A. A reference guide for the clinical engineer.
2005-02-01
This guide, which ECRI developed to answer the electrical safety questions most frequently asked by member hospitals, features practical advice for addressing electrical safety concerns in the healthcare environment. Questions addressed include: STANDARDS AND APPROVALS: What electrical safety standards apply? How do NFPA 99 and IEC 60601-1 differ? What organizations approve medical devices? LEAKAGE CURRENT LIMITS AND TESTING: How are leakage current limits established? What limits apply to equipment used in the hospital? And how should the limits be applied in special cases, such as the use of PCs in the patient care area or equipment used in the clinical laboratory? ISOLATED POWER: What are its advantages and disadvantages, and is isolated power needed in the operating room? Other topics addressed include double insulation, ground-fault circuit interrupters (GFCIs), and requirements for medical devices used in the home. Supplementary articles discuss acceptable alternatives to UL listing, the use of Hospital Grade plugs, the limitations of leakage current testing of devices connected to isolated power systems, and the debate about whether to designate ORs as wet locations. Experienced clinical engineers should find this guide to be a handy reference, while those new to the field should find it to be a helpful educational resource.
NASA Astrophysics Data System (ADS)
Summerer, L.; Wilcox, R. E.; Bechtel, R.; Harbison, S.
2015-06-01
In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space was adopted, following a multi-year process that involved all major space faring nations under the auspices of a partnership between the UN Committee on the Peaceful Uses of Outer Space and the International Atomic Energy Agency. The Safety Framework reflects an international consensus on best practices to achieve safety. Following the 1992 UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second attempt by the international community to draft guidance promoting the safety of applications of nuclear power sources in space missions. NPS applications in space have unique safety considerations compared with terrestrial applications. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. Potential accident conditions could expose nuclear power sources to extreme physical conditions. The Safety Framework is structured to provide guidance for both the programmatic and technical aspects of safety. In addition to sections containing specific guidance for governments and for management, it contains technical guidance pertinent to the design, development and all mission phases of space NPS applications. All sections of the Safety Framework contain elements directly relevant to engineers and space mission designers for missions involving space nuclear power sources. The challenge for organisations and engineers involved in the design and development processes of space nuclear power sources and applications is to implement the guidance provided in the Safety Framework by integrating it into the existing standard space mission infrastructure of design, development and operational requirements, practices and processes. This adds complexity to the standard space mission and launch approval processes. The Safety Framework is deliberately generic to remain relevantly independent of technological progress, of national organisational setups and of space mission types. Implementing its guidance therefore leaves room for interpretation and adaptation. Relying on reported practices, we analyse the guidance particularly relevant to engineers and space mission designers.
Törner, Marianne; Pousette, Anders
2009-01-01
The often applied engineering approach to safety management in the construction industry needs to be supplemented by organizational measures and measures based on how people conceive and react to their social environment. This requires in-depth knowledge of the broad preconditions for high safety standards in construction. The aim of the study was to comprehensively describe the preconditions and components of high safety standards in the construction industry from the perspective of both experienced construction workers and first-line managers. Five worker safety representatives and 19 first-line managers were interviewed, all strategically selected from within a large Swedish construction project. Phenomenographic methodology was used for data acquisition and analysis and to categorize the information. Nine informants verified the results. The study identified four main categories of work safety preconditions and components: (1) Project characteristics and nature of the work, which set the limits of safety management; (2) Organization and structures, with the subcategories planning, work roles, procedures, and resources; (3) Collective values, norms, and behaviors, with the subcategories climate and culture, and interaction and cooperation; and (4) Individual competence and attitudes, with the subcategories knowledge, ability and experience, and individual attitudes. The results comprehensively describe high safety standards in construction, incorporating organizational, group, individual, and technical aspects. High-quality interaction between different organizational functions and hierarchical levels stood out as important aspects of safety. The results are discussed in relation to previous research into safety and into the social-psychological preconditions for other desired outcomes in occupational settings. The results can guide construction companies in planning and executing construction projects to a high safety standard.
Pollution reduction technology program for turboprop engines
NASA Technical Reports Server (NTRS)
Tomlinson, J. G.
1977-01-01
The reduction of CO, HC, and smoke emissions while maintaining acceptable NO(x) emissions without affecting fuel consumption, durability, maintainability, and safety was accomplished. Component combustor concept screening directed toward the demonstration of advanced combustor technology required to meet the EPA exhaust emissions standards for class P2 turboprop engines was covered. The combustion system for the Allison 501-D22A engine was used, and three combustor design concepts - reverse flow, prechamber, and staged fuel were evaluated.
NASA Technical Reports Server (NTRS)
Gerrish, Harold C; Tessmann, Arthur M
1935-01-01
The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.
SAE J2735 standard : applying the systems engineering process.
DOT National Transportation Integrated Search
1998-11-01
As part of the U.S. Department of Transportations Intelligent Vehicle Initiative (IVI) program, the Federal Highway Administration investigated the human factors research needs for integrating in-vehicle safety and driver information technologies ...
40 CFR 61.349 - Standards: Closed-vent systems and control devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the unit in accordance with good engineering and safety practices for handling flammable, explosive... device shall be made as soon as practicable but no later than 5 calendar days after detection. Repair...
40 CFR 61.349 - Standards: Closed-vent systems and control devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the unit in accordance with good engineering and safety practices for handling flammable, explosive... device shall be made as soon as practicable but no later than 5 calendar days after detection. Repair...
NWTC Engineer Wins Prestigious International Electrotechnical Commission
IEC TC88, the technical committee responsible for writing the international standards for wind energy levels of safety and by defining test methods that provide high-quality, reproducible test results."
A simple approach to industrial laser safety.
Lewandowski, Michael A; Hinz, Michael W
2005-02-01
Industrial applications of lasers include marking, welding, cutting, and other material processing. Lasers used in these ways have significant power output but are generally designed to limit operator exposure to direct or scattered laser radiation to harmless levels in order to meet the Federal Laser Product Performance Standard (21CFR1040) for Class 1 laser products. Interesting challenges occur when companies integrate high power lasers into manufacturing or process control equipment. A significant part of the integration process is developing engineering and administrative controls to produce an acceptable level of laser safety while balancing production, maintenance, and service requirements. 3M Company uses a large number of high power lasers in numerous manufacturing processes. Whether the laser is purchased as a Class 1 laser product or whether it is purchased as a Class 4 laser and then integrated into a manufacturing application, 3M Company has developed an industrial laser safety program that maintains a high degree of laser safety while facilitating the rapid and economical integration of laser technology into the manufacturing workplace. This laser safety program is based on the requirements and recommendations contained in the American National Standard for Safe Use of Lasers, ANSI Z136.1. The fundamental components of the 3M program include hazard evaluation, engineering, administrative, and procedural controls, protective equipment, signs and labels, training, and re-evaluation upon change. This program is implemented in manufacturing facilities and has resulted in an excellent history of laser safety and an effective and efficient use of laser safety resources.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1989-01-01
Work to develop and demonstrate the technology of structural ceramics for automotive engines and similar applications is described. Long-range technology is being sought to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. The Advanced Turbine Technology Application Project (ATTAP) test bed engine is designed such that, when installed in a 3,000 pound inertia weight automobile, it will provide low emissions, 42 miles per gallon fuel economy on diesel fuel, multifuel capability, costs competitive with current spark ignition engines, and noise and safety characteristics that meet Federal standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaSalle, F.R.; Golbeg, P.R.; Chenault, D.M.
For reactor and nuclear facilities, both Title 10, Code of Federal Regulations, Part 50, and US Department of Energy Order 6430.1A require assessments of the interaction of non-Safety Class 1 piping and equipment with Safety Class 1 piping and equipment during a seismic event to maintain the safety function. The safety class systems of nuclear reactors or nuclear facilities are designed to the applicable American Society of Mechanical Engineers standards and Seismic Category 1 criteria that require rigorous analysis, construction, and quality assurance. Because non-safety class systems are generally designed to lesser standards and seismic criteria, they may become missilesmore » during a safe shutdown earthquake. The resistance of piping, tubing, and equipment to seismically generated missiles is addressed in the paper. Gross plastic and local penetration failures are considered with applicable test verification. Missile types and seismic zones of influence are discussed. Field qualification data are also developed for missile evaluation.« less
IEC 61511 and the capital project process--a protective management system approach.
Summers, Angela E
2006-03-17
This year, the process industry has reached an important milestone in process safety-the acceptance of an internationally recognized standard for safety instrumented systems (SIS). This standard, IEC 61511, documents good engineering practice for the assessment, design, operation, maintenance, and management of SISs. The foundation of the standard is established by several requirements in Part 1, Clauses 5-7, which cover the development of a management system aimed at ensuring that functional safety is achieved. The management system includes a quality assurance process for the entire SIS lifecycle, requiring the development of procedures, identification of resources and acquisition of tools. For maximum benefit, the deliverables and quality control checks required by the standard should be integrated into the capital project process, addressing safety, environmental, plant productivity, and asset protection. Industry has become inundated with a multitude of programs focusing on safety, quality, and cost performance. This paper introduces a protective management system, which builds upon the work process identified in IEC 61511. Typical capital project phases are integrated with the management system to yield one comprehensive program to efficiently manage process risk. Finally, the paper highlights areas where internal practices or guidelines should be developed to improve program performance and cost effectiveness.
New Norwegian HSE standard for the offshore industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huse, J.R.
1996-12-31
NORSOK (The competitive standing of the Norwegian offshore sector) is the Norwegian industry initiative to add value, reduce cost and lead time and remove unnecessary activities in offshore field developments and operations. The NORSOK standards are developed by the Norwegian petroleum industry as a part of the NORSOK initiative and are jointly issued by the Norwegian Oil Industry Association and the Federation of Norwegian Engineering Industries. The purpose of the industry standard is to replace the individual oil company specifications for use in existing and future petroleum industry developments, subject to the individual company`s review and application. The NORSOK Health,more » Safety and Environment (HSE) standards covers: Technical Safety, Working Environment, Environmental Care, HSE during Construction. The standards are now being used in ongoing offshore development projects, and the experience with standards shows that the principle aim is being met. The development of standards continues, implementing experience gained.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-09
...:30 a.m. until 12:30 p.m. on April 26. The meeting is open to the public. The purpose of the Committee... should be sent to Krishna K. Banga, Senior Structural Engineer, Facilities Standards Service, Office of..., 2012 (Tele-Conf.) meetings--10:00 a.m. Break for lunch--12:00 p.m. Structural and Fire-Safety sub...
[Research progress of genetic engineering on medicinal plants].
Teng, Zhong-qiu; Shen, Ye
2015-02-01
The application of genetic engineering technology in modern agriculture shows its outstanding role in dealing with food shortage. Traditional medicinal plant cultivation and collection have also faced with challenges, such as lack of resources, deterioration of environment, germplasm of recession and a series of problems. Genetic engineering can be used to improve the disease resistance, insect resistance, herbicides resistant ability of medicinal plant, also can improve the medicinal plant yield and increase the content of active substances in medicinal plants. Thus, the potent biotechnology can play an important role in protection and large area planting of medicinal plants. In the development of medicinal plant genetic engineering, the safety of transgenic medicinal plants should also be paid attention to. A set of scientific safety evaluation and judgment standard which is suitable for transgenic medicinal plants should be established based on the recognition of the particularity of medicinal plants.
Flight Simulation Model Exchange. Volume 1
NASA Technical Reports Server (NTRS)
Murri, Daniel G.; Jackson, E. Bruce
2011-01-01
The NASA Engineering and Safety Center Review Board sponsored an assessment of the draft Standard, Flight Dynamics Model Exchange Standard, BSR/ANSI-S-119-201x (S-119) that was conducted by simulation and guidance, navigation, and control engineers from several NASA Centers. The assessment team reviewed the conventions and formats spelled out in the draft Standard and the actual implementation of two example aerodynamic models (a subsonic F-16 and the HL-20 lifting body) encoded in the Extensible Markup Language grammar. During the implementation, the team kept records of lessons learned and provided feedback to the American Institute of Aeronautics and Astronautics Modeling and Simulation Technical Committee representative. This document contains the results of the assessment.
Flight Simulation Model Exchange. Volume 2; Appendices
NASA Technical Reports Server (NTRS)
Murri, Daniel G.; Jackson, E. Bruce
2011-01-01
The NASA Engineering and Safety Center Review Board sponsored an assessment of the draft Standard, Flight Dynamics Model Exchange Standard, BSR/ANSI-S-119-201x (S-119) that was conducted by simulation and guidance, navigation, and control engineers from several NASA Centers. The assessment team reviewed the conventions and formats spelled out in the draft Standard and the actual implementation of two example aerodynamic models (a subsonic F-16 and the HL-20 lifting body) encoded in the Extensible Markup Language grammar. During the implementation, the team kept records of lessons learned and provided feedback to the American Institute of Aeronautics and Astronautics Modeling and Simulation Technical Committee representative. This document contains the appendices to the main report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trimble, T.; North, D.R.; Green, K.A.H.
1994-05-27
The regulatory impact analysis and support document provides additional information in support of the Final Rulemaking (FRM). This FRM will regulate all new nonroad compression-ignition engines greater than or equal to 37 kilowatts (50 hp), except engines which propel or are used on marine vessels, aircraft engines, engines which propel locomotives, and engines regulated by the Mining, Safety, and Health Administration. The regulated engines are hereafter referred to as nonroad large CI engines. The goal of this regulation is to substantially reduce NOx emission and smoke from nonroad large CI engines beginning in the 1996 model year.
78 FR 55137 - Federal Motor Vehicle Safety Standards; Ejection Mitigation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-09
...This document responds to petitions for reconsideration of a 2011 final rule that established Federal Motor Vehicle Safety Standard (FMVSS) No. 226, ``Ejection mitigation.'' The standard is intended to reduce complete and partial ejections of vehicle occupants through side windows in crashes, particularly rollover crashes. Generally, the issues raised by the petitioners are of two types. The petitioners ask for reconsideration of policy issues relating to the agency's implementation of the standard, and of technical issues concerning engineering aspects of the rule, particularly as to how the compliance test procedure should be conducted or improved. Most of the requested changes were of the latter type. In general, NHTSA is denying the petitions for reconsideration. The few changes we have made in response to the petitions are minor, mostly to clarify the requirements of the standard.
Prototype design of an engineer collision protection system
DOT National Transportation Integrated Search
2012-04-17
This research program was sponsored by the Federal Railroad Administration (FRA) Office of Research and Development in support of the advancement of improved safety standards for passenger rail vehicles. In a train collision, the cab or locomotive en...
The role of evidence, standards and education in rock fishing safety in New South Wales, Australia.
Mitchell, Rebecca J; Ware, Lauren; Bambach, Mike R
2014-12-01
To examine rock fishing-related fatalities and hospitalisations, identify initiatives aimed at improving safety and survey key rock fishing stakeholders about the strengths and limitations of each initiative. This research obtained information from mortality and hospitalisation statistics, the published literature and key stakeholders for opinions on the strengths, limitations and improvements for rock fishing safety initiatives. Injury patterns involving rock fishers have largely remained unchanged over time. The literature revealed that many rock fishing safety initiatives focused on awareness raising and engineering initiatives, but ignored the development of guidelines and the use of enforcement strategies. There had been limited evaluations conducted of any of the initiatives reviewed. It is likely that a combination of evidence-based, standard-focused and education initiatives would be useful in improving rock fishing safety in NSW, provided that the impact of these initiatives were routinely evaluated. Information from this research will be used to inform preventive strategies aimed at improving rock fishing safety through better coordination of the role of evidence in informing standards and practices and the continued evaluation of these initiatives. © 2014 Public Health Association of Australia.
Hofmann-Amtenbrink, Margarethe; Grainger, David W; Hofmann, Heinrich
2015-10-01
Although nanoparticles research is ongoing since more than 30years, the development of methods and standard protocols required for their safety and efficacy testing for human use is still in development. The review covers questions on toxicity, safety, risk and legal issues over the lifecycle of inorganic nanoparticles for medical applications. The following topics were covered: (i) In vitro tests may give only a very first indication of possible toxicity as in the actual methods interactions at systemic level are mainly neglected; (ii) the science-driven and the regulation-driven approaches do not really fit for decisive strategies whether or not a nanoparticle should be further developed and may receive a kind of "safety label". (iii) Cost and time of development are the limiting factors for the drug pipeline. Knowing which property of a nanoparticle makes it toxic it may be feasible to re-engineer the particle for higher safety (safety by design). Testing the safety and efficacy of nanoparticles for human use is still in need of standardization. In this concise review, the author described and discussed the current unresolved issues over the application of inorganic nanoparticles for medical applications. Copyright © 2015 Elsevier Inc. All rights reserved.
A Strategy for Improved System Assurance
2007-06-20
Quality (Measurements Life Cycle Safety, Security & Others) ISO /IEC 12207 * Software Life Cycle Processes ISO 9001 Quality Management System...14598 Software Product Evaluation Related ISO /IEC 90003 Guidelines for the Application of ISO 9001:2000 to Computer Software IEEE 12207 Industry...Implementation of International Standard ISO /IEC 12207 IEEE 1220 Standard for Application and Management of the System Engineering Process Use in
Review and Application of ASME NOG-1 and ASME NUM-1-2000
NASA Technical Reports Server (NTRS)
Lytle, Bradford P.; Delgado, H. (Technical Monitor)
2002-01-01
The intent of the workshop is to review the application of the ASME Nuclear Crane Standards ASME NOG-1 and ASME NUM-1-2000. The ASME Nuclear Crane standards provide a basis for purchasing overhead handling equipment with enhanced safety features, based upon accepted engineering principles, and including performance and environmental parameters specific to nuclear facilities.
Investigation of a Verification and Validation Tool with a Turbofan Aircraft Engine Application
NASA Technical Reports Server (NTRS)
Uth, Peter; Narang-Siddarth, Anshu; Wong, Edmond
2018-01-01
The development of more advanced control architectures for turbofan aircraft engines can yield gains in performance and efficiency over the lifetime of an engine. However, the implementation of these increasingly complex controllers is contingent on their ability to provide safe, reliable engine operation. Therefore, having the means to verify the safety of new control algorithms is crucial. As a step towards this goal, CoCoSim, a publicly available verification tool for Simulink, is used to analyze C-MAPSS40k, a 40,000 lbf class turbo-fan engine model developed at NASA for testing new control algorithms. Due to current limitations of the verification software, several modifications are made to C-MAPSS40k to achieve compatibility with CoCoSim. Some of these modifications sacrifice fidelity to the original model. Several safety and performance requirements typical for turbofan engines are identified and constructed into a verification framework. Preliminary results using an industry standard baseline controller for these requirements are presented. While verification capabilities are demonstrated, a truly comprehensive analysis will require further development of the verification tool.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 23 Highways 1 2013-04-01 2013-04-01 false Purpose. 650.301 Section 650.301 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS BRIDGES... national standards for the proper safety inspection and evaluation of all highway bridges in accordance...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false Purpose. 650.301 Section 650.301 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS BRIDGES... national standards for the proper safety inspection and evaluation of all highway bridges in accordance...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 23 Highways 1 2014-04-01 2014-04-01 false Purpose. 650.301 Section 650.301 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS BRIDGES... national standards for the proper safety inspection and evaluation of all highway bridges in accordance...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 23 Highways 1 2011-04-01 2011-04-01 false Purpose. 650.301 Section 650.301 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS BRIDGES... national standards for the proper safety inspection and evaluation of all highway bridges in accordance...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 23 Highways 1 2012-04-01 2012-04-01 false Purpose. 650.301 Section 650.301 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS BRIDGES... national standards for the proper safety inspection and evaluation of all highway bridges in accordance...
Final Report of the NASA Office of Safety and Mission Assurance Agile Benchmarking Team
NASA Technical Reports Server (NTRS)
Wetherholt, Martha
2016-01-01
To ensure that the NASA Safety and Mission Assurance (SMA) community remains in a position to perform reliable Software Assurance (SA) on NASAs critical software (SW) systems with the software industry rapidly transitioning from waterfall to Agile processes, Terry Wilcutt, Chief, Safety and Mission Assurance, Office of Safety and Mission Assurance (OSMA) established the Agile Benchmarking Team (ABT). The Team's tasks were: 1. Research background literature on current Agile processes, 2. Perform benchmark activities with other organizations that are involved in software Agile processes to determine best practices, 3. Collect information on Agile-developed systems to enable improvements to the current NASA standards and processes to enhance their ability to perform reliable software assurance on NASA Agile-developed systems, 4. Suggest additional guidance and recommendations for updates to those standards and processes, as needed. The ABT's findings and recommendations for software management, engineering and software assurance are addressed herein.
Universal Design: Process, Principles, and Applications
ERIC Educational Resources Information Center
Burgstahler, Sheryl
2009-01-01
Designing any product or environment involves the consideration of many factors, including aesthetics, engineering options, environmental issues, safety concerns, industry standards, and cost. Typically, designers focus their attention on the average user. In contrast, universal design (UD), according to the Center for Universal Design," is…
77 FR 64055 - Safety Standard for Bassinets and Cradles
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-18
... consumer groups, juvenile product manufacturers, and independent child product engineers and experts, and... organizations, laboratories, consumer advocacy groups, consultants, and members of the public in the development...'' as a ``small bed designed exclusively to provide sleeping accommodations for infants supported by...
NASA Technical Reports Server (NTRS)
Maul, William A.; Meyer, Claudia M.
1991-01-01
A rocket engine safety system was designed to initiate control procedures to minimize damage to the engine or vehicle or test stand in the event of an engine failure. The features and the implementation issues associated with rocket engine safety systems are discussed, as well as the specific concerns of safety systems applied to a space-based engine and long duration space missions. Examples of safety system features and architectures are given, based on recent safety monitoring investigations conducted for the Space Shuttle Main Engine and for future liquid rocket engines. Also, the general design and implementation process for rocket engine safety systems is presented.
DOT National Transportation Integrated Search
1996-06-01
This manual has been developed to provide information and guidance to engineering staffs involved with project develop and design of highways. It identifies those standards, specifications, guides, and references approved for use in carrying out the ...
29 CFR 1910.95 - Occupational noise exposure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Occupational Health and Environmental Control § 1910.95 Occupational... engineering controls shall be utilized. If such controls fail to reduce sound levels within the levels of...) Monitoring shall be repeated whenever a change in production, process, equipment or controls increases noise...
29 CFR 1910.95 - Occupational noise exposure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Occupational Health and Environmental Control § 1910.95 Occupational... engineering controls shall be utilized. If such controls fail to reduce sound levels within the levels of...) Monitoring shall be repeated whenever a change in production, process, equipment or controls increases noise...
29 CFR 1910.95 - Occupational noise exposure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Occupational Health and Environmental Control § 1910.95 Occupational... engineering controls shall be utilized. If such controls fail to reduce sound levels within the levels of...) Monitoring shall be repeated whenever a change in production, process, equipment or controls increases noise...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Definitions. 1450.2 Section 1450.2... GRAEME BAKER POOL AND SPA SAFETY ACT REGULATIONS § 1450.2 Definitions. (a) [Reserved] (b) Unblockable... American Society of Mechanical Engineers (ASME), ATTN: Secretary, A112 Standards Committee, Three Park...
10 CFR 963.13 - Preclosure suitability evaluation method.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of the structures, systems, components, equipment, and operator actions intended to mitigate or... and the criteria in § 963.14. DOE will consider the performance of the system in terms of the criteria... protection standard. (b) The preclosure safety evaluation method, using preliminary engineering...
Challenges of Designing the Next Generation of America's Schools.
ERIC Educational Resources Information Center
Duke, Daniel L.
1998-01-01
The Thomas Jefferson Center for Educational Design at the University of Virginia, with associates representing architecture, business, education, engineering, sociology, and technology, wants to redesign both schools and schooling. The goal is to raise standards without destroying hope, promote responsibility without sacrificing safety, expand…
Diffusion of synthetic biology: a challenge to biosafety.
Schmidt, Markus
2008-06-01
One of the main aims of synthetic biology is to make biology easier to engineer. Major efforts in synthetic biology are made to develop a toolbox to design biological systems without having to go through a massive research and technology process. With this "de-skilling" agenda, synthetic biology might finally unleash the full potential of biotechnology and spark a wave of innovation, as more and more people have the necessary skills to engineer biology. But this ultimate domestication of biology could easily lead to unprecedented safety challenges that need to be addressed: more and more people outside the traditional biotechnology community will create self-replicating machines (life) for civil and defence applications, "biohackers" will engineer new life forms at their kitchen table; and illicit substances will be produced synthetically and much cheaper. Such a scenario is a messy and dangerous one, and we need to think about appropriate safety standards now.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... Computer Software and Complex Electronics Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear...-1209, ``Software Requirement Specifications for Digital Computer Software and Complex Electronics used... Electronics Engineers (ANSI/IEEE) Standard 830-1998, ``IEEE Recommended Practice for Software Requirements...
Universal Design in Postsecondary Education: Process, Principles, and Applications
ERIC Educational Resources Information Center
Burgstahler, Sheryl
2009-01-01
Designing any product or environment involves the consideration of many factors, including aesthetics, engineering options, environmental issues, safety concerns, industry standards, and cost. Typically, designers focus their attention on the average user. In contrast, universal design (UD), according to the Center for Universal Design, "is…
30 CFR 77.503-1 - Electric conductors.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Cable Engineers Association—National Electric Manufacturers Association in effect when such cables are... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical...
30 CFR 77.503-1 - Electric conductors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Cable Engineers Association—National Electric Manufacturers Association in effect when such cables are... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical...
30 CFR 77.503-1 - Electric conductors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Cable Engineers Association—National Electric Manufacturers Association in effect when such cables are... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical...
30 CFR 77.503-1 - Electric conductors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Cable Engineers Association—National Electric Manufacturers Association in effect when such cables are... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical...
30 CFR 77.503-1 - Electric conductors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Cable Engineers Association—National Electric Manufacturers Association in effect when such cables are... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical...
77 FR 21311 - Locomotive Safety Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
... brake maintenance are based on this extensive history of study and testing. Over the last several... Working Group discussions, FRA conducted a study to determine the average temperature in each type of locomotive cab commonly used at the time. The study concluded that at the location where the engineer...
76 FR 33161 - Installation and Use of Engine Cut-off Switches on Recreational Vessels
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
...-off switches as a standard safety feature on propulsion machinery and/or starting controls installed... not most, propulsion machinery and/or starting controls installed on recreational vessels are... new subpart N that would cover propulsion machinery capable of developing static thrust of 115 pounds...
Thoughts on Designing Things To NOT Break.
ERIC Educational Resources Information Center
Klajnscek, Rich
1998-01-01
Explains aspects of the design and loading of high-ropes courses and other challenge-course equipment. Discusses the engineer's factor of safety, determined by industry standards or the level of risk considered acceptable; definitions of terms for material strength; and the forces involved in loads sustained by belay ropes and cables. (SV)
49 CFR 229.9 - Movement of non-complying locomotives.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of non-complying locomotives. 229.9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS General § 229.9 Movement of non... restrictions necessary for safely conducting the movement; (2)(i) The engineer in charge of the movement of the...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Design. 237.131 Section 237.131 Transportation... TRANSPORTATION BRIDGE SAFETY STANDARDS Repair and Modification of Bridges § 237.131 Design. Each repair or... component of a bridge shall be designed by a railroad bridge engineer. The design shall specify the manner...
78 FR 57470 - Special Conditions: Eclipse, EA500, Certification of Autothrottle Functions
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-19
... Engine Control System 23-112A-SC for High Intensity Radiated Fields (HIRF) Protection Equivalent Levels... transient. (e) Under rare normal and non-normal conditions, disengagement of any automatic control function... standards that the Administrator considers necessary to establish a level of safety equivalent to that...
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Compliance with owning-agency or military safety of flight notices, FAA airworthiness directives, or..., including appropriate engineering documentation and testing, for aircraft, powerplant, propeller, or... are safe for flight and are inspected and tested, as applicable. (f) Procedures for recording and...
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Compliance with owning-agency or military safety of flight notices, FAA airworthiness directives, or..., including appropriate engineering documentation and testing, for aircraft, powerplant, propeller, or... are safe for flight and are inspected and tested, as applicable. (f) Procedures for recording and...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Compliance with owning-agency or military safety of flight notices, FAA airworthiness directives, or..., including appropriate engineering documentation and testing, for aircraft, powerplant, propeller, or... are safe for flight and are inspected and tested, as applicable. (f) Procedures for recording and...
Maintenance Facilities for Ammunition, Explosives, and Toxics. Design Manual 28.3.
1981-11-01
LOADING DOCK RAMP PROTECTION 28.3-2 8. FIRE PROTECTION 28.3-2 9. SECURITY 28.3-2 10. SAFETY 28.3-2 Section 2. GENERAL AMMUNITION MAINTENANCE SHOPS 28.3...protection in accordance with Section 3 1910.23c, Occupatioual Safety and Health Act Standards Manual. 5 8. FIRE PROTECTION. Fire protection for all...Volume 1, and Fire Protection Engineering, NAVFAC DM-8. 9. SECURITY. Maintenance facilities for ammunition, explosives, and I toxics shall be located so
Murphy, Colleen; Gardoni, Paolo
2017-07-18
The development of the curriculum for engineering education (course requirements as well as extra-curricular activities like study abroad and internships) should be based on a comprehensive understanding of engineers' responsibilities. The responsibilities that are constitutive of being an engineer include striving to fulfill the standards of excellence set by technical codes; to improve the idealized models that engineers use to predict, for example, the behavior of alternative designs; and to achieve the internal goods such as safety and sustainability as they are reflected in the design codes. Globalization has implications for these responsibilities and, in turn, for engineering education, by, for example, modifying the collection of possible solutions recognized for existing problems. In addition, international internships can play an important role in fostering the requisite moral imagination of engineering students.
Updating Human Factors Engineering Guidelines for Conducting Safety Reviews of Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
O, J.M.; Higgins, J.; Stephen Fleger - NRC
The U.S. Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) programs of applicants for nuclear power plant construction permits, operating licenses, standard design certifications, and combined operating licenses. The purpose of these safety reviews is to help ensure that personnel performance and reliability are appropriately supported. Detailed design review procedures and guidance for the evaluations is provided in three key documents: the Standard Review Plan (NUREG-0800), the HFE Program Review Model (NUREG-0711), and the Human-System Interface Design Review Guidelines (NUREG-0700). These documents were last revised in 2007, 2004 and 2002, respectively. The NRC is committed to the periodicmore » update and improvement of the guidance to ensure that it remains a state-of-the-art design evaluation tool. To this end, the NRC is updating its guidance to stay current with recent research on human performance, advances in HFE methods and tools, and new technology being employed in plant and control room design. This paper describes the role of HFE guidelines in the safety review process and the content of the key HFE guidelines used. Then we will present the methodology used to develop HFE guidance and update these documents, and describe the current status of the update program.« less
The role of OSHA violations in serious workplace accidents.
Mendeloff, J
1984-05-01
California accident investigations for 1976 show that violations of the Occupational Safety and Health Administration's safety standards were a contributing factor in 13% to 19% of the 645 deaths reported to the workers' compensation program during that year. However, a panel of safety engineers judged that only about 50% of these violations could have been detected if an inspector had visited the day before the accident. These findings indicate that the potential gains from stronger enforcement of current standards are limited but not insignificant. The likelihood that a violation contributed to a serious accident varied considerably among accident types, industries, and size classes of plants. These findings can be used to increase the efficiency and effectiveness of the OSHA program by means of better targeting of inspections and accident investigations, more intelligent assessment of which violations should be penalized most heavily, and the provision of information to employers and workers about which violations are most consequential.
A Software Safety Risk Taxonomy for Use in Retrospective Safety Cases
NASA Technical Reports Server (NTRS)
Hill, Janice L.
2007-01-01
Safety standards contain technical and process-oriented safely requirements. The best time to include these requirements is early in the development lifecycle of the system. When software safety requirements are levied on a legacy system after the fact, a retrospective safety case will need to be constructed for the software in the system. This can be a difficult task because there may be few to no art facts available to show compliance to the software safely requirements. The risks associated with not meeting safely requirements in a legacy safely-critical computer system must be addressed to give confidence for reuse. This paper introduces a proposal for a software safely risk taxonomy for legacy safely-critical computer systems, by specializing the Software Engineering Institute's 'Software Development Risk Taxonomy' with safely elements and attributes.
Dornish, M; Kaplan, D; Skaugrud, O
2001-11-01
The American Society for Testing and Materials (ASTM) is making a concerted effort to establish standards and guidelines for the entire field of tissue-engineered medical products (TEMPS). Safety, consistency, and functionality of biomaterials used as matrices, scaffolds, and immobilizing agents in TEMPS are a concern. Therefore, the ASTM has established a number of task groups to produce standards and guidelines for such biomaterials. Alginate is a naturally occurring biomaterial used for immobilizing living cells to form an artificial organ, such as encapsulated pancreatic islets. In order to aid in successful clinical applications and to help expedite regulatory approval, the alginate used must be fully documented. The ASTM alginate guide gives information on selection of testing methodologies and safety criteria. Critical parameters such as monomer content, molecular weight, and viscosity, in addition to more general parameters, such as dry matter content, heavy metal content, bioburden, and endotoxin content are described in the ASTM document. In a like manner, the characterization parameters for chitosan, a bioadhesive polycationic polysaccharide, are described in a separate guide. For chitosan, the degree of deacetylation is of critical importance. Control of protein content and, hence, potential for hypersensitivity, endotoxin content, and total bioburden are important in chitosan preparations for TEMPS. Together these two guides represent part of the effort on behalf of the ASTM and other interested parties to ensure quality and standardization in TEMPS.
46 CFR 164.019-3 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Guard-approved PFDs. Commandant means the Chief of the Lifesaving and Fire Safety Division, Office of Engineering and Design Standards, U.S. Coast Guard. Address: Commandant (CG-ENG-4), Attn: Lifesaving and Fire... and III. 3 III. 4B IV (all Ring Buoys). 4BC IV (Buoyant Cushions). 4RB IV (Recreational Ring Buoys...
46 CFR 164.019-3 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Guard-approved PFDs. Commandant means the Chief of the Lifesaving and Fire Safety Division, Office of Engineering and Design Standards, U.S. Coast Guard. Address: Commandant (CG-ENG-4), Attn: Lifesaving and Fire... and III. 3 III. 4B IV (all Ring Buoys). 4BC IV (Buoyant Cushions). 4RB IV (Recreational Ring Buoys...
76 FR 17183 - Aviation Rulemaking Advisory Committee; Transport Airplane and Engine Issues-New Task
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-28
... Harmonization Working Group, to assist in analysis of this task. Recent research shows that regardless of... recommend performance-based standards that allows manufacturers the flexibility to design airplanes to meet... level of safety commensurate with part 25. The working group should consider the following areas of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-25
... Gulfstream GVI airplane. This airplane will have novel or unusual design features associated with the... not contain adequate or appropriate safety standards for these design features. These proposed special... will be an all-new, two- engine jet transport airplane with an executive cabin interior. The maximum...
76 FR 18130 - Special Conditions: Turbomeca Arriel 2D Turboshaft Engine
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-01
... unusual design feature which is a 30-minute power rating. This rating is generally intended to be used for... contain adequate or appropriate safety standards for this design feature. These proposed special... your comments on this proposal, send us a pre-addressed, stamped postcard on which the docket number...
33 CFR 183.528 - Fuel stop valves.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel stop valves. 183.528 Section...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.528 Fuel stop valves. (a) Each electrically operated fuel stop valve in a fuel line between the fuel tank and the engine...
The European space debris safety and mitigation standard
NASA Astrophysics Data System (ADS)
Alby, F.; Alwes, D.; Anselmo, L.; Baccini, H.; Bonnal, C.; Crowther, R.; Flury, W.; Jehn, R.; Klinkrad, H.; Portelli, C.; Tremayne-Smith, R.
2001-10-01
A standard has been proposed as one of the series of ECSS Standards intended to be applied together for the management, engineering and product assurance in space projects and applications. The requirements in the Standard are defined in terms of what must be accomplished, rather than in terms of how to organise and perform the necessary work. This allows existing organisational structures and methods within agencies and industry to be applied where they are effective, and for such structures and methods to evolve as necessary, without the need for rewriting the standards. The Standard comprises management requirements, design requirements and operational requirements. The standard was prepared by the European Debris Mitigation Standard Working Group (EDMSWG) involving members from ASI, BNSC, CNES, DLR and ESA.
Improving Safety through Human Factors Engineering.
Siewert, Bettina; Hochman, Mary G
2015-10-01
Human factors engineering (HFE) focuses on the design and analysis of interactive systems that involve people, technical equipment, and work environment. HFE is informed by knowledge of human characteristics. It complements existing patient safety efforts by specifically taking into consideration that, as humans, frontline staff will inevitably make mistakes. Therefore, the systems with which they interact should be designed for the anticipation and mitigation of human errors. The goal of HFE is to optimize the interaction of humans with their work environment and technical equipment to maximize safety and efficiency. Special safeguards include usability testing, standardization of processes, and use of checklists and forcing functions. However, the effectiveness of the safety program and resiliency of the organization depend on timely reporting of all safety events independent of patient harm, including perceived potential risks, bad outcomes that occur even when proper protocols have been followed, and episodes of "improvisation" when formal guidelines are found not to exist. Therefore, an institution must adopt a robust culture of safety, where the focus is shifted from blaming individuals for errors to preventing future errors, and where barriers to speaking up-including barriers introduced by steep authority gradients-are minimized. This requires creation of formal guidelines to address safety concerns, establishment of unified teams with open communication and shared responsibility for patient safety, and education of managers and senior physicians to perceive the reporting of safety concerns as a benefit rather than a threat. © RSNA, 2015.
Modeling and Hazard Analysis Using STPA
NASA Astrophysics Data System (ADS)
Ishimatsu, Takuto; Leveson, Nancy; Thomas, John; Katahira, Masa; Miyamoto, Yuko; Nakao, Haruka
2010-09-01
A joint research project between MIT and JAXA/JAMSS is investigating the application of a new hazard analysis to the system and software in the HTV. Traditional hazard analysis focuses on component failures but software does not fail in this way. Software most often contributes to accidents by commanding the spacecraft into an unsafe state(e.g., turning off the descent engines prematurely) or by not issuing required commands. That makes the standard hazard analysis techniques of limited usefulness on software-intensive systems, which describes most spacecraft built today. STPA is a new hazard analysis technique based on systems theory rather than reliability theory. It treats safety as a control problem rather than a failure problem. The goal of STPA, which is to create a set of scenarios that can lead to a hazard, is the same as FTA but STPA includes a broader set of potential scenarios including those in which no failures occur but the problems arise due to unsafe and unintended interactions among the system components. STPA also provides more guidance to the analysts that traditional fault tree analysis. Functional control diagrams are used to guide the analysis. In addition, JAXA uses a model-based system engineering development environment(created originally by Leveson and called SpecTRM) which also assists in the hazard analysis. One of the advantages of STPA is that it can be applied early in the system engineering and development process in a safety-driven design process where hazard analysis drives the design decisions rather than waiting until reviews identify problems that are then costly or difficult to fix. It can also be applied in an after-the-fact analysis and hazard assessment, which is what we did in this case study. This paper describes the experimental application of STPA to the JAXA HTV in order to determine the feasibility and usefulness of the new hazard analysis technique. Because the HTV was originally developed using fault tree analysis and following the NASA standards for safety-critical systems, the results of our experimental application of STPA can be compared with these more traditional safety engineering approaches in terms of the problems identified and the resources required to use it.
Problem Reporting Taxonomy and Data Preparation Tool Evaluation
NASA Technical Reports Server (NTRS)
Beil, Robert J.
2010-01-01
A member of the NASA Engineering and Safety Center (NESC) Systems Engineering Office (SEO) Technical Discipline Team (TDT) requested a SEO-managed activity to perform a gap analysis on the proposed NASA Standard 0006, "Common NASA Taxonomy for Problem Reporting, Analysis, and Resolution", and to create an input filter and set of instructions for using the data-mining/data-cleansing tool TechOasis1 with Space Shuttle Program (SSP) problem reporting data. The work that achieved these objectives and deployment of TechOasis are discussed in this report.
Software Development Standard Processes (SDSP)
NASA Technical Reports Server (NTRS)
Lavin, Milton L.; Wang, James J.; Morillo, Ronald; Mayer, John T.; Jamshidian, Barzia; Shimizu, Kenneth J.; Wilkinson, Belinda M.; Hihn, Jairus M.; Borgen, Rosana B.; Meyer, Kenneth N.;
2011-01-01
A JPL-created set of standard processes is to be used throughout the lifecycle of software development. These SDSPs cover a range of activities, from management and engineering activities, to assurance and support activities. These processes must be applied to software tasks per a prescribed set of procedures. JPL s Software Quality Improvement Project is currently working at the behest of the JPL Software Process Owner to ensure that all applicable software tasks follow these procedures. The SDSPs are captured as a set of 22 standards in JPL s software process domain. They were developed in-house at JPL by a number of Subject Matter Experts (SMEs) residing primarily within the Engineering and Science Directorate, but also from the Business Operations Directorate and Safety and Mission Success Directorate. These practices include not only currently performed best practices, but also JPL-desired future practices in key thrust areas like software architecting and software reuse analysis. Additionally, these SDSPs conform to many standards and requirements to which JPL projects are beholden.
NASA's Software Safety Standard
NASA Technical Reports Server (NTRS)
Ramsay, Christopher M.
2007-01-01
NASA relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft launched that does not have a computer on board that will provide command and control services. There have been recent incidents where software has played a role in high-profile mission failures and hazardous incidents. For example, the Mars Orbiter, Mars Polar Lander, the DART (Demonstration of Autonomous Rendezvous Technology), and MER (Mars Exploration Rover) Spirit anomalies were all caused or contributed to by software. The Mission Control Centers for the Shuttle, ISS, and unmanned programs are highly dependant on software for data displays, analysis, and mission planning. Despite this growing dependence on software control and monitoring, there has been little to no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Meanwhile, academia and private industry have been stepping forward with procedures and standards for safety critical systems and software, for example Dr. Nancy Leveson's book Safeware: System Safety and Computers. The NASA Software Safety Standard, originally published in 1997, was widely ignored due to its complexity and poor organization. It also focused on concepts rather than definite procedural requirements organized around a software project lifecycle. Led by NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard has recently undergone a significant update. This new standard provides the procedures and guidelines for evaluating a project for safety criticality and then lays out the minimum project lifecycle requirements to assure the software is created, operated, and maintained in the safest possible manner. This update of the standard clearly delineates the minimum set of software safety requirements for a project without detailing the implementation for those requirements. This allows the projects leeway to meet these requirements in many forms that best suit a particular project's needs and safety risk. In other words, it tells the project what to do, not how to do it. This update also incorporated advances in the state of the practice of software safety from academia and private industry. It addresses some of the more common issues now facing software developers in the NASA environment such as the use of Commercial-Off-the-Shelf Software (COTS), Modified OTS (MOTS), Government OTS (GOTS), and reused software. A team from across NASA developed the update and it has had both NASA-wide internal reviews by software engineering, quality, safety, and project management. It has also had expert external review. This presentation and paper will discuss the new NASA Software Safety Standard, its organization, and key features. It will start with a brief discussion of some NASA mission failures and incidents that had software as one of their root causes. It will then give a brief overview of the NASA Software Safety Process. This will include an overview of the key personnel responsibilities and functions that must be performed for safety-critical software.
Advanced Collaborative Emissions Study (ACES)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon
2013-12-31
The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested enginesmore » was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-14
... the States. Magnus Ericsson and Conny Harlin are part of a team of Volvo engineers and technicians... Swedish CDLs (74 FR 20778). Volvo Application for Exemption Volvo applied for exemption for drivers Magnus... experience and unblemished safety records of Magnus Ericsson and Conny Harlin, and the rigorous training and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... equivalent to that established by the existing airworthiness standards. DATES: Effective Date: August 19... addition, the J182T certification basis includes special conditions and equivalent levels of safety. If the... Sec. 23.961 and adds the possibility of testing non- aviation diesel fuels. To ensure fuel system...
77 FR 22637 - Federal Motor Vehicle Safety Standards; Accelerator Control Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-16
... severing a conductor at one location. The current language of the test procedure in FMVSS No. 124 is... routinely have variable valve lift and/or timing control. In at least one recent engine design, the level of.... Under the 2002 NPRM, a manufacturer could choose any one of the proposed test procedures as a basis for...
Hazard Analysis for the Mark III Space Suit Assembly (SSA) Used in One-g Operations
NASA Technical Reports Server (NTRS)
Mitchell, Kate; Ross, Amy; Blanco, Raul; Wood, Art
2012-01-01
This Hazard Analysis document encompasses the Mark III Space Suit Assembly (SSA) and associated ancillary equipment. It has been prepared using JSC17773, "Preparing Hazard Analyses for JSC Ground Operation", as a guide. The purpose of this document is to present the potential hazards involved in ground (23 % maximum O2, One-g) operations of the Mark III and associated ancillary support equipment system. The hazards listed in this document are specific to suit operations only; each supporting facility (Bldg. 9, etc.) is responsible for test specific Hazard Analyses. A "hazard" is defined as any condition that has the potential for harming personnel or equipment. This analysis was performed to document the safety aspects associated with manned use of the Mark III for pressurized and unpressurized ambient, ground-based, One-g human testing. The hazards identified herein represent generic hazards inherent to all standard JSC test venues for nominal ground test configurations. Non-standard test venues or test specific configurations may warrant consideration of additional hazards analysis prior to test. The cognizant suit engineer is responsible for the safety of the astronaut/test subject, space suit, and suit support personnel. The test requester, for the test supported by the suit test engineer and suited subject, is responsible for overall safety and any necessary Test Readiness Reviews (TRR).
Establishing the need for an engineering standard for agricultural hitch pins.
Deboy, G R; Knapp, W M; Field, W E; Krutz, G W; Corum, C L
2012-04-01
Documented incidents have occurred in which failure or unintentional disengagement of agricultural hitch pins has contributed to property damage and personal injury. An examination of current hitch pin use on a convenience sample of farm operations in Indiana revealed a variety of non-standard, worn and damaged, and inappropriately sized hitch pins in use. Informal interviews with the farm operators confirmed that hitch pin misuse, failure, or disengagement is a relatively widespread problem that remains largely unaddressed. On-site observations also suggested a low use of hitch pin retaining devices or safety chains. A review of prior research revealed that little attention has been given to this problem, and currently no documentation allows for an estimate of the frequency or severity of losses associated with hitch pin misuse, failure, or disengagement. No specific engineering standards were found that directly applied to the design, appropriate selection, or loading capacity of agricultural hitch pins. Major suppliers of replacement hitch pins currently provide little or no information on matching hitch pin size to intended applications, and most replacement hitch pins examined were of foreign origin, with the overwhelming majority imported from China or India. These replacement hitch pins provided no specifications other than diameter, length, and, in some cases, labeling that indicated that the pins had been "heat treated. " Testing of a sample of 11 commercially available replacement hitch pins found variation along the length of the pin shaft and between individual pins in surface hardness, a potential predictor of pin failure. Examination of 17 commercially available replacement pins also revealed a variety of identifiers used to describe pin composition and fabrication methods, e.g., "heat treated." None of the pins examined provided any specifications on loading capacity. It was therefore concluded that there is a need to develop an agricultural hitch pin engineering standard that would reflect current agricultural applications and practices and that would be promoted to both original equipment manufacturers and manufacturers and suppliers of replacement hitch pins. The standard should address the design of composite pins, heat treating, surface hardening, loading capacity and labeling of such, incorporation of unintentional disengagement prevention devices, indicators of the need for replacement due to wear, and safety information that should be included in operator instructions. ASABE is the most appropriate organization to develop such a standard. It was also concluded that agricultural safety and health programs and professionals need to raise the awareness of farmers concerning the appropriate selection and use of agricultural hitch pins, including the need to replace non-standard pins with pins less likely to fail or disengage during use, the need to replace hitch pins with indications of potential failure, and the importance of using appropriate safety chains, especially during transport of equipment behind tractors and trucks on public roads.
Comparison of steady-state and transient CVS cycle emission of an automotive Stirling engine
NASA Technical Reports Server (NTRS)
Farrell, R. A.; Bolton, R. J.
1983-01-01
The Automotive Stirling Engine Development Program is to demonstrate a number of goals for a Stirling-powered vehicle. These goals are related to an achievement of specified maximum emission rates, a combined cycle fuel economy 30 percent better than a comparable internal-combustion engine-powered automobile, multifuel capability, competitive cost and reliability, and a meeting of Federal standards concerning noise and safety. The present investigation is concerned with efforts related to meeting the stringent emission goals. Attention is given to the initial development of a procedure for predicting transient CVS urban cycle gaseous emissions from steady-state engine data, taking into account the employment of the test data from the first-generation automotive Stirling engine. A large amount of steady-state data from three Mod I automotive Stirling engines were used to predict urban CVS cycle emissions for the Mod I Lerma vehicle.
Cardiac tissue engineering: state of the art.
Hirt, Marc N; Hansen, Arne; Eschenhagen, Thomas
2014-01-17
The engineering of 3-dimensional (3D) heart muscles has undergone exciting progress for the past decade. Profound advances in human stem cell biology and technology, tissue engineering and material sciences, as well as prevascularization and in vitro assay technologies make the first clinical application of engineered cardiac tissues a realistic option and predict that cardiac tissue engineering techniques will find widespread use in the preclinical research and drug development in the near future. Tasks that need to be solved for this purpose include standardization of human myocyte production protocols, establishment of simple methods for the in vitro vascularization of 3D constructs and better maturation of myocytes, and, finally, thorough definition of the predictive value of these methods for preclinical safety pharmacology. The present article gives an overview of the present state of the art, bottlenecks, and perspectives of cardiac tissue engineering for cardiac repair and in vitro testing.
Improving safety of aircraft engines: a consortium approach
NASA Astrophysics Data System (ADS)
Brasche, Lisa J. H.
1996-11-01
With over seven million departures per year, air transportation has become not a luxury, but a standard mode of transportation for the United States. A critical aspect of modern air transport is the jet engine, a complex engineered component that has enabled the rapid travel to which we have all become accustomed. One of the enabling technologies for safe air travel is nondestructive evaluation, or NDE, which includes various inspection techniques used to assess the health or integrity of a structure, component, or material. The Engine Titanium Consortium (ETC) was established in 1993 to respond to recommendations made by the Federal Aviation Administration (FAA) Titanium Rotating Components Review Team (TRCRT) for improvements in inspection of engine titanium. Several recent accomplishments of the ETC are detailed in this paper. The objective of the Engine Titanium Consortium is to provide the FAAand the manufacturers with reliable and costeffective new methods and/or improvements in mature methods for detecting cracks, inclusions, and imperfections in titanium. The consortium consists of a team of researchers from academia and industry-namely, Iowa State University, Allied Signal Propulsion Engines, General Electric Aircraft Engines, and Pratt & Whitney Engines-who work together to develop program priorities, organize a program plan, conduct the research, and implement the solutions. The true advantage of the consortium approach is that it brings together the research talents of academia and the engineering talents of industry to tackle a technology-base problem. In bringing industrial competitors together, the consortium ensures that the research results, which have safety implications and result from FAA funds, are shared and become part of the public domain.
Accident analysis and control options in support of the sludge water system safety analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
HEY, B.E.
A hazards analysis was initiated for the SWS in July 2001 (SNF-8626, K Basin Sludge and Water System Preliminary Hazard Analysis) and updated in December 2001 (SNF-10020 Rev. 0, Hazard Evaluation for KE Sludge and Water System - Project A16) based on conceptual design information for the Sludge Retrieval System (SRS) and 60% design information for the cask and container. SNF-10020 was again revised in September 2002 to incorporate new hazards identified from final design information and from a What-if/Checklist evaluation of operational steps. The process hazards, controls, and qualitative consequence and frequency estimates taken from these efforts have beenmore » incorporated into Revision 5 of HNF-3960, K Basins Hazards Analysis. The hazards identification process documented in the above referenced reports utilized standard industrial safety techniques (AIChE 1992, Guidelines for Hazard Evaluation Procedures) to systematically guide several interdisciplinary teams through the system using a pre-established set of process parameters (e.g., flow, temperature, pressure) and guide words (e.g., high, low, more, less). The teams generally included representation from the U.S. Department of Energy (DOE), K Basins Nuclear Safety, T Plant Nuclear Safety, K Basin Industrial Safety, fire protection, project engineering, operations, and facility engineering.« less
Schultz-Altmann, Alexander G T
2008-01-01
The author outlines the principles underlying the standards employed by the Australian Marine Safety Authority to regulate live animal carriers, vessels used for sea transport of livestock, that operate from Australia. The standards are contained in regulations adopted by the Australian Maritime Safety Authority known as Marine Orders. The Cargo and Cargo Handling-Livestock Marine Order has evolved over time with subsequent 'issues' of the order as a consequence of operational experience and specific research. Recent changes have focused on the need to have adequate redundancy in systems and equipment of ships. A history of the development of these regulations is given and is followed by a description of the principles employed to develop the provisions contained in the regulations.
Integrating system safety into the basic systems engineering process
NASA Technical Reports Server (NTRS)
Griswold, J. W.
1971-01-01
The basic elements of a systems engineering process are given along with a detailed description of what the safety system requires from the systems engineering process. Also discussed is the safety that the system provides to other subfunctions of systems engineering.
Fusion Safety Program annual report, fiscal year 1994
NASA Astrophysics Data System (ADS)
Longhurst, Glen R.; Cadwallader, Lee C.; Dolan, Thomas J.; Herring, J. Stephen; McCarthy, Kathryn A.; Merrill, Brad J.; Motloch, Chester C.; Petti, David A.
1995-03-01
This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-10
... Society of Automotive Engineers (SAE) Recommended Practice J918b--Passenger Car Tire Performance Requirements and Test Procedures (January 1967). 2, 3 As part of the strength test, a plunger is driven into a...--Passenger Car Tire Performance Requirements and Test Procedures (January 1967) Section 3.1. \\5\\ FMVSS No...
76 FR 78 - Federal Motor Vehicle Safety Standard; Engine Control Module Speed Limiter Device
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-03
... be equipped with an electronic control module (ECM) that is capable of limiting the maximum speed of the vehicle. 2. The ECM shall be set at no more than 68 mph by the manufacturer. 3. The ECM should be... ECM to be adjusted to let the vehicle exceed 68 mph. 4. Immediately upon the rule taking effect...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-14
... vehicles when 4.1% of the fleet is HV and EV would be 2790 fewer pedestrian and pedalcyclist injuries. We... Engine Vehicles to Hybrid and Electric Vehicles B. Need for Independent Mobility of People Who Are... requirements for hybrid and electric vehicles when operating under 30 kilometers per hour (km/h) (18 mph), when...
Code of Federal Regulations, 2010 CFR
2010-04-01
..., DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Planning, Design, and Construction... design and approval of the PS&E package; (2) A licensed professional engineer will certify that the PS&E meets or exceeds the design, health, and safety standards in appendix B to subpart D for an IRR...
A Primer for DoD Reliability, Maintainability and Safety Standards
1988-03-02
the project engineer and the concurrence of their respective managers. The primary consideration in such cases is the thoroughness of the ...basic approaches to the application of environmental stress screening. In one approach, the government explicitly specifies the screens and screening...TO USE DOD-HDBK-344 (USAF) There are two basic approaches to the application of environmental stress
Curriculum: Integrating Health and Safety Into Engineering Curricula.
ERIC Educational Resources Information Center
Talty, John T.
1985-01-01
National Institute for Occupational Safety and Health instituted a project in 1980 to encourage engineering educators to focus on occupational safety and health issues in engineering curricula. Progress to date is outlined, considering specific results in curriculum development, engineering society interaction, and formation of a teaching…
Waste Technology Engineering Laboratory (324 building)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kammenzind, D.E.
The 324 Facility Standards/Requirements Identification Document (S/RID) is comprised of twenty functional areas. Two of the twenty functional areas (Decontamination and Decommissioning and Environmental Restoration) were determined as nonapplicable functional areas and one functional area (Research and Development and Experimental Activities) was determined applicable, however, requirements are found in other functional areas and will not be duplicated. Each functional area follows as a separate chapter, either containing the S/RID or a justification for nonapplicability. The twenty functional areas listed below follow as chapters: 1. Management Systems; 2. Quality Assurance; 3. Configuration Management; 4. Training and Qualification; 5. Emergency Management; 6.more » Safeguards and Security; 7. Engineering Program; 8. Construction; 9. Operations; 10. Maintenance; 11. Radiation Protection; 12. Fire Protection; 13. Packaging and Transportation; 14. Environmental Restoration; 15. Decontamination and Decommissioning; 16. Waste Management; 17. Research and Development and Experimental Activities; 18. Nuclear Safety; 19. Occupational Safety and Health; 20. Environmental Protection.« less
Environment-friendly drilling operation technology
NASA Astrophysics Data System (ADS)
Luo, Huaidong; Jing, Ning; Zhang, Yanna; Huang, Hongjun; Wei, Jun
2017-01-01
Under the circumstance that international safety and environmental standards being more and more stringent, drilling engineering is facing unprecedented challenges, the extensive traditional process flow is no longer accepted, the new safe and environment-friendly process is more suitable to the healthy development of the industry. In 2015, CNPCIC adopted environment-friendly drilling technology for the first time in the Chad region, ensured the safety of well control, at the same time increased the environmental protection measure, reduced the risk of environmental pollution what obtain the ratification from local government. This technology carries out recovery and disposal of crude oil, cuttings and mud without falling on the ground. The final products are used in road and well site construction, which realizes the reutilization of drilling waste, reduces the operating cost, and provides a strong technical support for cost-cutting and performance-increase of drilling engineering under low oil price.
NASA Technical Reports Server (NTRS)
Patterson, Ashley; Sikes, Larry; Corbin, Cheryl; Rucka, Rebecca
2015-01-01
Special processes require special skills, knowledge and experienced application. For over 15 years, the NASA Johnson Space Center's Receiving, Inspection and Test Facility (RITF) has provided Workmanship Standards compliance training, issuing more than 500 to 800 training completion certificates annually. It is critical that technicians and inspectors are trained and that they maintain their proficiency to implement the applicable standards and specifications. Training services include 'hands-on' training to engineers, technicians, and inspectors in the areas of electrostatic discharge (ESD), soldering, fiber optics, lithium battery handling, torque and wire safety, and wire wrapping.
NASA Technical Reports Server (NTRS)
Gaston, Darilyn M.
1991-01-01
Electrical designers of Orbiter payloads face the challenge of determining proper circuit protection/wire size parameters to satisfy Orbiter engineering and safety requirements. This document is the result of a program undertaken to review test data from all available aerospace sources and perform additional testing to eliminate extrapolation errors. The resulting compilation of data was used to develop guidelines for the selection of wire sizes and circuit protection ratings. The purpose is to provide guidance to the engineering to ensure a design which meets Orbiter standards and which should be applicable to any aerospace design.
1983-09-01
34 o D Qa. : "lo °%S .. " ig.22. aveQuitComand P L %S dU a a Troubleshooting There are several potential problems that the user may encounter when...34 Air Force Civil Engineer, Vol. 3, No. 3 (August 1962 ), pp. 6-7. 40. Roberts, Captain Mike. "Automated Drafting and Design for the Base Civil Engineer... Eglin AFB FL, undated. 216 . - ,. ° - . .. . . .. r! 57. . Explosive Safety Standards. AFR 127-100. Chapter 5: Principles and Application of Explo- sive
75 FR 69165 - Conductor Certification
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-10
...FRA proposes to prescribe regulations for certification of conductors, as required by the Rail Safety Improvement Act of 2008. The proposed rule would require railroads to have a formal program for certifying conductors. As part of that program, railroads would be required to have a formal process for training prospective conductors and determining that all persons are competent before permitting them to serve as a conductor. FRA is proposing this regulation to ensure that only those persons who meet minimum Federal safety standards serve as conductors, to reduce the rate and number of accidents and incidents, and to improve railroad safety. Although this NPRM does not propose any specific amendments to the regulation governing locomotive engineer certification, it does highlight areas in that regulation that may require conforming changes.
NASA Technical Reports Server (NTRS)
1988-01-01
On November 25, 1985, the NASA Chief Engineer established a NASA-wide policy to maintain and to require the use of the NASA standard for aerospace nickel-cadmium cells and batteries. The Associate Administrator for Safety, Reliability, Maintainability, and Quality Assurance stated on December 29, 1986, the intent to retain the NASA standard cell usage policy established by the Office of the Chief Engineer. The current NASA policy is also to incorporate technological advances as they are tested and proven for spaceflight applications. This policy will be implemented by modifying the existing standard cells or by developing new NASA standards and their specifications in accordance with the NASA's Aerospace Battery Systems Program Plan. This NASA Specification for Manufacturing and Performance Requirements of NASA Standard Aerospace Nickel-Cadmium Cells is prepared to provide requirements for the NASA standard nickel-cadmium cell. It is an interim specification pending resolution of the separator material availability. This specification has evolved from over 15 years of nickel-cadmium cell experience by NASA. Consequently, considerable experience has been collected and cell performance has been well characterized from many years of ground testing and from in-flight operations in both geosynchronous (GEO) and low earth orbit (LEO) applications. NASA has developed and successfully used two standard flight qualified cell designs.
2011 Annual Criticality Safety Program Performance Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrea Hoffman
The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection,more » an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The TSR limits fuel plate bundles to 1085 grams U-235, which is the maximum loading of an ATR fuel element. The overloaded fuel plate bundle contained 1097 grams U-235 and was assembled under an 1100 gram U-235 limit in 1982. In 2003, the limit was reduced to 1085 grams citing a new criticality safety evaluation for ATR fuel elements. The fuel plate bundle inventories were not checked for compliance prior to implementing the reduced limit. A subsequent review of the NMIS inventory did not identify further violations. Requirements Management - The INL Criticality Safety program is organized and well documented. The source requirements for the INL Criticality Safety Program are from 10 CFR 830.204, DOE Order 420.1B, Chapter III, 'Nuclear Criticality Safety,' ANSI/ANS 8-series Industry Standards, and DOE Standards. These source requirements are documented in LRD-18001, 'INL Criticality Safety Program Requirements Manual.' The majority of the criticality safety source requirements are contained in DOE Order 420.1B because it invokes all of the ANSI/ANS 8-Series Standards. DOE Order 420.1B also invokes several DOE Standards, including DOE-STD-3007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities.' DOE Order 420.1B contains requirements for DOE 'Heads of Field Elements' to approve the criticality safety program and specific elements of the program, namely, the qualification of criticality staff and the method for preparing criticality safety evaluations. This was accomplished by the approval of SAR-400, 'INL Standardized Nuclear Safety Basis Manual,' Chapter 6, 'Prevention of Inadvertent Criticality.' Chapter 6 of SAR-400 contains sufficient detail and/or reference to the specific DOE and contractor documents that adequately describe the INL Criticality Safety Program per the elements specified in DOE Order 420.1B. The Safety Evaluation Report for SAR-400 specifically recognizes that the approval of SAR-400 approves the INL Criticality Safety Program. No new source requirements were released in 2011. A revision to LRD-18001 is planned for 2012 to clarify design requirements for criticality alarms. Training - Criticality Safety Engineering has developed training and provides training for many employee positions, including fissionable material handlers, facility managers, criticality safety officers, firefighters, and criticality safety engineers. Criticality safety training at the INL is a program strength. A revision to the training module developed in 2010 to supplement MFC certified fissionable material handlers (operators) training was prepared and presented in August of 2011. This training, 'Applied Science of Criticality Safety,' builds upon existing training and gives operators a better understanding of how their criticality controls are derived. Improvements to 00INL189, 'INL Criticality Safety Principles' are planned for 2012 to strengthen fissionable material handler training.« less
Detection of errant laser beams
NASA Astrophysics Data System (ADS)
Taylor, Arthur F. D. S.; Edwards, Stanley A.; Barrett, J. A.; Bandle, Anthony M.
1990-10-01
The new generation of automated laser machine tools poses problems for those responsible for setting safety standards. While traditional safeguarding will frustrate full exploitation of this hybrid technology, wholesale abandonment of effective containment in favour of safety monitoring and control systems is unlikely to be acceptable. Long term, quantitative risk assessment will resolve this dilemma. Short term, guide lines will have to be derived from practical considerations of the laser facility design, materials, primary safety devices and procedures. Earlier risk assessments are reviewed relative to the emerging perspective of high average power laser installations. Aspects of extended beam delivery systems and equipment utilization and maintenance are examined to assess possible interaction with operational safety and in particular the potential to adversely influence errant laser beam occurrances (ELBO). To satisfy international safety standards for a laser enclosure which offers flexibility and is cost effective a detection system is described which continuously surveys the inside of the enclosure. Extensive trials have been carried out with high average power lasers (up to 10kW) where a range of engineering materials has been exposed to a laser beam. It is shown that the ratio of detection and shut down time to the burn through time can be an acceptable risk and thus indicate which materials will prove adequate.
Sequential Analysis: Hypothesis Testing and Changepoint Detection
2014-07-11
it is necessary to estimate in situ the geographical coordinates and other parameters of earthquakes . The standard sensor equipment of a three...components. When an earthquake arises, the sensors begin to record several types of seismic waves (body and surface waves), among which the more important...machines and to increased safety norms. Many structures to be monitored, e.g., civil engineering structures subject to wind and earthquakes , aircraft
University NanoSat Program: AggieSat3
2009-06-01
commercially available product for stereo machine vision developed by Point Grey Research. The current binocular BumbleBee2® system incorporates two...and Fellow of the American Society of Mechanical Engineers (ASME) in 1997. She was awarded the 2007 J. Leland "Lee" Atwood Award from the ASEE...AggieSat2 satellite programs. Additional experience gained in the area of drawing standards, machining capabilities, solid modeling, safety
System safety engineering analysis handbook
NASA Technical Reports Server (NTRS)
Ijams, T. E.
1972-01-01
The basic requirements and guidelines for the preparation of System Safety Engineering Analysis are presented. The philosophy of System Safety and the various analytic methods available to the engineering profession are discussed. A text-book description of each of the methods is included.
Payload Safety: Risk and Characteristic-Based Control of Engineered Nanomaterials
NASA Astrophysics Data System (ADS)
Abou, Seraphin Chally; Saad, Maarouf
2013-09-01
In the last decade progress has been made to assist organizations that are developing payloads intended for flight on the International Space Station (ISS) and/or Space Shuttle. Collaboration programs for comprehensive risk assessment have been initiated between the U.S. and the European Union to generate requirements and data needed to comply with payloads safety and to perform risk assessment and controls guidance. Yet, substantial research gaps remain, as do challenges in the translation of these research findings to control for exposure to nanoscale material payloads, and the health effects. Since nanomaterial structures are different from traditional molecules, some standard material properties can change at size of 50nm or less. Changes in material properties at this scale challenge our understanding of hazards posed by nanomaterial payloads in the ISS realistic exposure conditions, and our ability to anticipate, evaluate, and control potential health issues, and safety. The research question addressed in this framework is: what kind of descriptors can be developed for nanomaterial payloads risks assessment? Methods proposed incorporate elements of characteristic- based risk an alysis: (1) to enable characterization of anthropogenic nanomaterials which can result in incidental from natural nanoparticles; and (2) to better understand safety attributes in terms of human health impacts from exposure to varying types of engineered nanomaterials.
NASA Technical Reports Server (NTRS)
Dischinger, H. Charles, Jr.; Stambolian, Damon B.; Miller, Darcy H.
2008-01-01
The National Aeronautics and Space Administration has long applied standards-derived human engineering requirements to the development of hardware and software for use by astronauts while in flight. The most important source of these requirements has been NASA-STD-3000. While there have been several ground systems human engineering requirements documents, none has been applicable to the flight system as handled at NASA's launch facility at Kennedy Space Center. At the time of the development of previous human launch systems, there were other considerations that were deemed more important than developing worksites for ground crews; e.g., hardware development schedule and vehicle performance. However, experience with these systems has shown that failure to design for ground tasks has resulted in launch schedule delays, ground operations that are more costly than they might be, and threats to flight safety. As the Agency begins the development of new systems to return humans to the moon, the new Constellation Program is addressing this issue with a new set of human engineering requirements. Among these requirements is a subset that will apply to the design of the flight components and that is intended to assure ground crew success in vehicle assembly and maintenance tasks. These requirements address worksite design for usability and for ground crew safety.
Evaluation of Design Assurance Regulations for Safety of Space Navigation Services
NASA Astrophysics Data System (ADS)
Ratti, B.; Sarno, M.; De Andreis, C.
2005-12-01
The European Space Agency (ESA), the European Community (EC), and the European Organisation for the Safety of Air Navigation (Eurocontrol) are contributing to the development of a Global positioning and Navigation Satellite System, known as GNSS. The development programme is carried out in two main steps:• GNSS-1: the first-generation system, based on signals received from the GPS (USA) and GLONASS (Russia) constellations, and augmentation systems like EGNOS (European Geostationary Navigation Overlay Service)• GNSS-2: the second-generation system, that will achieve the ultimate objective of European sovereignty for position determination, navigation and time dissemination. This system, named Galileo, comprises a global space and ground control infrastructure.The Galileo navigation signal will be used in the frame of safety-critical transport applications, thus it is necessary to assess the space safety assurance activity against the civil safety regulations and safety management system.. RTCA DO-254 and IEC 61508 standards, considered as part of best practice engineering references, for the development of safety- related systems in most applications, were selected during phases B2 and C0 of the Galileo project for this purpose.
Recent Advances in Cigarette Ignition Propensity Research and Development
O’Connor, Richard J.; Spalletta, Ron; Connolly, Gregory N.
2009-01-01
Major U.S. cigarette companies for decades conducted research and development regarding cigarette ignition propensity which has continued beyond fire safety standards for cigarettes that have recently been legislated. This paper describes recent scientific advances and technological development based on a comprehensive review of the physical, chemical, and engineering sciences, public health, and trade literature, U.S. and international patents, and research in the tobacco industry document libraries. Advancements since the first implementation of standards have made been in: a) understanding the key parameters involved in cigarette smoldering combustion and ignition of substrates; b) developing new cigarette and paper wrapper designs to reduce ignition propensity, including banded and non-banded cigarette paper approaches, c) assessing toxicology, and d) measuring performance. While the implications of manufacturers’ non-safety related aims are of concern, this research indicates possible alternative designs should experience with fire loss and existing technologies on the market suggest need for improvement. PMID:20495669
Developing an industry-oriented safety curriculum using the Delphi technique.
Chen, Der-Fa; Wu, Tsung-Chih; Chen, Chi-Hsiang; Chang, Shu-Hsuan; Yao, Kai-Chao; Liao, Chin-Wen
2016-09-01
In this study, we examined the development of industry-oriented safety degree curricula at a college level. Based on a review of literature on the practices and study of the development of safety curricula, we classified occupational safety and health curricula into the following three domains: safety engineering, health engineering, and safety and health management. We invited 44 safety professionals to complete a four-round survey that was designed using a modified Delphi technique. We used Chi-square statistics to test the panel experts' consensus on the significance of the items in the three domains and employed descriptive statistics to rank the participants' rating of each item. The results showed that the top three items for each of the three domains were Risk Assessment, Dangerous Machinery and Equipment, and Fire and Explosion Prevention for safety engineering; Ergonomics, Industrial Toxicology, and Health Risk Assessment for health engineering; and Industrial Safety and Health Regulations, Accident Investigation and Analysis, and Emergency Response for safety and health management. Only graduates from safety programmes who possess practical industry-oriented abilities can satisfy industry demands and provide value to the existence of college safety programmes.
30 CFR 250.405 - What are the safety requirements for diesel engines used on a drilling rig?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What are the safety requirements for diesel... are the safety requirements for diesel engines used on a drilling rig? You must equip each diesel engine with an air take device to shut down the diesel engine in the event of a runaway. (a) For a diesel...
Verification and Implementation of Operations Safety Controls for Flight Missions
NASA Technical Reports Server (NTRS)
Smalls, James R.; Jones, Cheryl L.; Carrier, Alicia S.
2010-01-01
There are several engineering disciplines, such as reliability, supportability, quality assurance, human factors, risk management, safety, etc. Safety is an extremely important engineering specialty within NASA, and the consequence involving a loss of crew is considered a catastrophic event. Safety is not difficult to achieve when properly integrated at the beginning of each space systems project/start of mission planning. The key is to ensure proper handling of safety verification throughout each flight/mission phase. Today, Safety and Mission Assurance (S&MA) operations engineers continue to conduct these flight product reviews across all open flight products. As such, these reviews help ensure that each mission is accomplished with safety requirements along with controls heavily embedded in applicable flight products. Most importantly, the S&MA operations engineers are required to look for important design and operations controls so that safety is strictly adhered to as well as reflected in the final flight product.
Standing Naval Forces and Global Security
1993-06-04
standards an- good engineering practices. The team submits a r:-,cr: to !PPC recommending that the prcject be accepted b NATO. 8. Audit . The...established. A system of common funds and trailing audits must be in effect to pay for the infrastructure. NATO infrastructure appears to be a good example to...Search And Rescue and maritime safety monitor marine polution 6. sharing maritime inteiiigence1 5 Commodore Bateman foresees coupling these activities or
Defense of Defense Human Factors Engineering Technical Advisory Group Meeting Summary
2012-07-01
Survivability ( Plaga ) • Wright, N; OSD and DSOC Helicopter Seating Studies Zehner, G; An Overview of USAF Anthropometry Plaga , J & Hill; SAFE Association...predictions. – 1230 - 1430 Standardization - 1472H (Poston) – 1230 - 1430 Human Factors in Extreme Environments & SS ( Plaga ) • Ganey, HCN...Classification (Personnel) LT Chris Foster Dr. Hector Acosta System Safety/Health Hazards/ Survivability (SS/HH/Sv) Mr. John Plaga Technical Society
1997-01-01
supplemented using established literature values for similar aquifer materials . The groundwater sampling activities and analytical results from both...subsurface materials recovered. Observed soil classification types compared very favorably to the soil classifications determined by the CPT tests. 0 2.1.5...other similar substances were handled in a manner consistent with accepted safety procedures and standard operating practices. Well completion materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This final safety evaluation report (FSER) documents the technical review of the System 80+ standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the System 80+ design was submitted by Combustion Engineering, Inc., now Asea Brown Boveri-Combustion Engineering (ABB-CE) as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. System 80+ is a pressurized water reactor with a rated power of 3914 megawatts thermal (MWt) and a design power of 3992 MWt at which accidents are analyzed. Many features of the System 80+ are similar to those of Abb-CE`s Systemmore » 80 design from which it evolved. Unique features of the System 80+ design included: a large spherical, steel containment; an in-containment refueling water storage tank; a reactor cavity flooding system, hydrogen ignitors, and a safety depressurization system for severe accident mitigation; a combustion gas turbine for an alternate ac source; and an advanced digitally based control room. On the basis of its evaluation and independent analyses, the NRC staff concludes that ABB-CE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the System 80+ standard design. This document, Volume 1, contains Chapters 1 through 14 of this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This final safety evaluation report (FSER) documents the technical review of the System 80+ standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the system 80+ design was submitted by Combustion Engineering, Inc., now Asea Brown Boveri-Combustion Engineering (ABB-CE) as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. System 80+ is a pressurized water reactor with a rated power of 3914 megawatts thermal (MWt) and a design power of 3992 MWt at which accidents are analyzed. Many features of the System 80+ are similar to those of ABB-CE`s Systemmore » 80 design from which it evolved. Unique features of the System 80+ design include: a large spherical, steel containment; an in-containment refueling water storage tank; a reactor cavity flooding system, hydrogen ignitors and a safety depressurization system for severe accident mitigation; a combustion gas turbine for an alternate ac source; and an advanced digitally based control room. On the basis of its evaluation and independent analyses, the NRC staff concludes that ABB-CE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the System 80+ standard design. This document, Volume 2, contains Chapters 15 through 22 and Appendices A through E.« less
ERIC Educational Resources Information Center
Farwell, Dianna; And Others
1995-01-01
The purpose of this study was to determine whether and, if so, why engineering faculty include occupational and public health and safety in their undergraduate engineering courses. Data were collected from 157 undergraduate engineering faculty from 65 colleges of engineering in the United States. (LZ)
29 CFR 1918.3 - Incorporation by reference.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Z87.1-2003 are available for purchase only from the American Society of Safety Engineers, 1800 East... American Society of Safety Engineers, 1800 East Oakton Street, Des Plaines, IL 60018-2187; telephone: 847... available for purchase only from the American Society of Safety Engineers, 1800 East Oakton Street, Des...
Anneken, David; Striebich, Richard; DeWitt, Matthew J; Klingshirn, Christopher; Corporan, Edwin
2015-03-01
Aircraft turbine engines are a significant source of particulate matter (PM) and gaseous emissions in the vicinity of airports and military installations. Hazardous air pollutants (HAPs) (e.g., formaldehyde, benzene, naphthalene and other compounds) associated with aircraft emissions are an environmental concern both in flight and at ground level. Therefore, effective sampling, identification, and accurate measurement of these trace species are important to assess their environmental impact. This effort evaluates two established ambient air sampling and analysis methods, U.S. Environmental Protection Agency (EPA) Method TO-11A and National Institute for Occupational Safety and Health (NIOSH) Method 1501, for potential use to quantify HAPs from aircraft turbine engines. The techniques were used to perform analysis of the exhaust from a T63 turboshaft engine, and were examined using certified gas standards transferred through the heated sampling systems used for engine exhaust gaseous emissions measurements. Test results show that the EPA Method TO-11A (for aldehydes) and NIOSH Method 1501 (for semivolatile hydrocarbons) were effective techniques for the sampling and analysis of most HAPs of interest. Both methods showed reasonable extraction efficiencies of HAP species from the sorbent tubes, with the exception of acrolein, styrene, and phenol, which were not well quantified. Formaldehyde measurements using dinitrophenylhydrazine (DNPH) tubes (EPA method TO-11A) were accurate for gas-phase standards, and compared favorably to measurements using gas-phase Fourier-transform infrared (FTIR) spectroscopy. In general, these two standard methodologies proved to be suitable techniques for field measurement of turbine engine HAPs within a reasonable (5-10 minutes) sampling period. Details of the tests, the analysis methods, calibration procedures, and results from the gas standards and T63 engine tested using a conventional JP-8 jet fuel are provided. HAPs from aviation-related sources are important because of their adverse health and environmental impacts in and around airports and flight lines. Simpler, more convenient techniques to measure the important HAPs, especially aldehydes and volatile organic HAPs, are needed to provide information about their occurrence and assist in the development of engines that emit fewer harmful emissions.
NASA Technical Reports Server (NTRS)
Yarbrough, Katherine
2015-01-01
During my internship I worked on two major projects, recommending improvements for the Center's Risk Management Workshop and helping with the strategic planning efforts for Safety and Mission Assurance (S&MA). The risk management improvements is the key project I worked on this semester through my internship, while the strategic planning is the secondary assignment. S&MA Business Office covers both aspects in its delegation, getting both spans some of the work done in the office. A risk is a future event with a negative consequence that has some probability of occurring. Safety and Mission Assurance identifies, analyzes, plans, and tracks risk. The directorate offers the Center a Risk Management Workshop, and part of the ongoing efforts of S&MA is to make continuous improvements to the RM Workshop. By using the Project Management Institute's (PMI) Standard for Risk Management, I performed a gap analysis to make improvements for our materials. I benchmarked the PMI's Risk Management Standard, compared our Risk Management Workshop materials to PMI's standard, and identified any gaps in our material. My major findings were presented to the Business Office of S&MA for a decision on whether or not to incorporate the improvements. These suggestions were made by attending JSC working group meetings, Health, Safety and Environment (HSE) panel reviews and various risk review meetings. The improvements provide better understanding of risk management processes and enhanced risk tracking knowledge and skills. Risk management is an integral part of any engineering discipline, getting exposed to this section of engineering will greatly help shape my career in the future. Johnson Space Center is a world leader in risk management processes; learning risk management here gives me a huge advantage over my peers, as well as understanding decision making in the context of risk management will help me to be a well-rounded engineer. Strategic planning is an area I had not previously studied. Helping with the strategic planning efforts in S&MA has taught me how organizations think and function as a whole. S&MA is adopting a balanced scorecard approach to strategic planning. As part of this planning method strategic themes, objectives, and initiatives are formed. I attended strategic theme team workshops that formed the strategy map for the directorate and gave shape to the plan. Also during these workshops the objectives were discussed and built. Learning the process for strategic planning has helped me better understand how organizations and businesses function, which also helps me to be a more effective employee. Other assignments I had during my internship included completing the Safety and Mission Assurance Technical Excellent Program (STEP) Level 1, as well as doing a two week rotation through the Space Exploration division in S&MA, specifically working with a thermal protection systems (TPS) engineer. While working there, I learned about the Orion capsule and the SpaceX Dragon cargo capsule. I attended meetings to prepare the engineers for the upcoming Critical Design Reviews for both capsules and reviewed test data. Learning risk management, strategic planning, and working in the Space Exploration division has taught me about many aspects of S&MA. My internship at NASA has given me new experiences and taught me numerous subjects that I would have otherwise not learned. This opportunity has expanded my educational horizons and is helping me to become a more useful engineer and employee.
2012 national state safety engineers and traffic engineers peer-to-peer workshop.
DOT National Transportation Integrated Search
2013-11-01
The Illinois Department of Transportation (IDOT) and the Illinois Center for Transportation (ICT) sponsored and hosted the : 2012 National State Safety Engineers and Traffic Engineers Peer-to-Peer Workshop on November 14 and 15, 2012, at the : Hyatt ...
NASA Astrophysics Data System (ADS)
Jovanov, D.; Vollpracht, H. J.; Beles, H.; Popa, V.; Tolea, B. A.
2017-10-01
Most common road safety engineering deficiencies identified by the authors in South Eastern Europe, including Romania, have been collected together and presented in this paper as a part of road safety unbreakably connected to the safe system approach (driver-vehicle-road). In different South Eastern Europe countries Road Safety Audit (RSA), Road Safety Inspection (RSI), as well as Black Spot Management (BSM) was introduced and practical implementation experience enabled the authors to analyze the road safety problems. Typical road safety engineering deficiencies have been presented in 8 different subsections, based on PIARC (World Road Association) RSA approach. This paper presents collected common road safety problems with relevant illustrations (real pictures) with associated accident risks.
Engine performance with a hydrogenated safety fuel
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Young, Alfred W
1933-01-01
This report presents the results of an investigation to determine the engine performance obtained with a hydrogenated safety fuel developed to eliminate fire hazard. The tests were made on a single-cylinder universal test engine at compression ratios of 5.0, 5.5, and 6.0. Most of the tests were made with a fuel-injection system, although one set of runs was made with a carburetor when using gasoline to establish comparative performance. The tests show that the b.m.e.p. obtained with safety fuel when using a fuel-injection system is slightly higher than that obtained with gasoline when using a carburetor, although the fuel consumption with safety fuel is higher. When the fuel-injection system is used with each fuel and with normal engine temperatures the b.m.e.p. with safety fuel is from 2 to 4 percent lower than with gasoline and the fuel consumption about 25 to 30 percent higher. However, a few tests at an engine coolant temperature of 250 F have shown a specific fuel consumption approximating that obtained with gasoline with only a slight reduction in power. The idling of the test engine was satisfactory with the safety fuel. Starting was difficult with a cold engine but could be readily accomplished when the jacket water was hot. It is believed that the use of the safety fuel would practically eliminate crash fires.
Survey of Programs Designed to Improve Employee Morale in Seven Major American Shipyards
1992-07-01
Accident Program A combined union/management/ employee program whereby departmental committees work to design health and safety initiatives to attempt to...STANDARDS DING ENGINEERING ATION Survey of Programs Designed To Improve Employee Morale In Seven Major American Shipyards UNITED STATES NAVY David Taylor...4. TITLE AND SUBTITLE Survey of Programs Designed to Improve Employee Morale in Seven Major American Shipyards 5a. CONTRACT NUMBER 5b. GRANT
NASA Technical Reports Server (NTRS)
Zelkin, Natalie; Henriksen, Stephen
2011-01-01
This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed C-band (5091- to 5150-MHz) airport surface communication system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents an initial high-level safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the C-band communication system after the profile is finalized and system rollout timing is determined. A security risk assessment has been performed by NASA as a parallel activity. While safety analysis is concerned with a prevention of accidental errors and failures, the security threat analysis focuses on deliberate attacks. Both processes identify the events that affect operation of the system; and from a safety perspective the security threats may present safety risks.
Occupational Safety and Health Professionals
ERIC Educational Resources Information Center
Wash, Pat
1975-01-01
The growing concern for safety in both the workplace and in consumer products will create many new jobs through the mid-1980's--especially in private industry. The largest number of safety professionals are safety engineers; others include fire protection engineers, industrial hygienists, loss control and occupational health consultants, and…
Evaluation of the safety and durability of low-cost nonprogrammable electric powered wheelchairs.
Pearlman, Jonathan L; Cooper, Rory A; Karnawat, Jaideep; Cooper, Rosemarie; Boninger, Michael L
2005-12-01
To evaluate whether a selection of low-cost, nonprogrammable electric-powered wheelchairs (EPWs) meets the American National Standards Institute (ANSI)/Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) Wheelchair Standards requirements. Objective comparison tests of various aspects of power wheelchair design and performance of 4 EPW types. Three of each of the following EPWs: Pride Mobility Jet 10 (Pride), Invacare Pronto M50 (Invacare), Electric Mobility Rascal 250PC (Electric Mobility), and the Golden Technologies Alanté GP-201-F (Golden). Rehabilitation engineering research center. Not applicable. Static tipping angle; dynamic tipping score; braking distance; energy consumption; climatic conditioning; power and control systems integrity and safety; and static, impact, and fatigue life (equivalent cycles). Static tipping angle and dynamic tipping score were significantly different across manufacturers for each tipping direction (range, 6.6 degrees-35.6 degrees). Braking distances were significantly different across manufacturers (range, 7.4-117.3 cm). Significant differences among groups were found with analysis of variance (ANOVA). Energy consumption results show that all EPWs can travel over 17 km before the battery is expected to be exhausted under idealized conditions (range, 18.2-32.0 km). Significant differences among groups were found with ANOVA. All EPWs passed the climatic conditioning tests. Several adverse responses were found during the power and control systems testing, including motors smoking during the stalling condition (Electric Mobility), charger safety issues (Electric Mobility, Invacare), and controller failures (Golden). All EPWs passed static and impact testing; 9 of 12 failed fatigue testing (3 Invacare, 3 Golden, 1 Electric Mobility, 2 Pride). Equivalent cycles did not differ statistically across manufacturers (range, 9759-824,628 cycles). Large variability in the results, especially with respect to static tipping, power and control system failures, and fatigue life suggest design improvements must be made to make these low-cost, nonprogrammable EPWs safe and reliable for the consumer. Based on our results, these EPWs do not, in general, meet the ANSI/RESNA Wheelchair Standards requirements.
Human factors engineering in oil and gas--a review of industry guidance.
Robb, Martin; Miller, Gerald
2012-01-01
Oil and gas exploration and production activities are carried out in hazardous environments in many parts of the world. Recent events in the Gulf of Mexico highlight those risks and underline the importance of considering human factors during facility design. Ergonomic factors such as machinery design, facility and accommodation layout and the organization of work activities have been systematically considered over the past twenty years on a limited number of offshore facility design projects to a) minimize the occupational risks to personnel, b) support operations and maintenance tasks and c) improve personnel wellbeing. During this period, several regulators and industry bodies such as the American Bureau of Shipping (ABS), the American Society of Testing and Materials (ASTM), the UK's Health and Safety Executive (HSE), Oil and Gas Producers (OGP), and Norway's Petroleum Safety Authority (PSA) have developed specific HFE design standards and guidance documents for the application of Human Factors Engineering (HFE) to the design and operation of Oil and Gas projects. However, despite the existence of these guidance and recommended design practise documents, and documented proof of their value in enhancing crew safety and efficiency, HFE is still not well understood across the industry and application across projects is inconsistent. This paper summarizes the key Oil and Gas industry bodies' HFE guidance documents, identifies recurring themes and current trends in the use of these standards, provides examples of where and how these HFE standards have been used on past major offshore facility design projects, and suggests criteria for selecting the appropriate HFE strategy and tasks for future major oil and gas projects. It also provides a short history of the application of HFE to the offshore industry, beginning with the use of ASTM F 1166 to a major operator's Deepwater Gulf of Mexico facility in 1990 and the application of HFE to diverse world regions. This latter point highlights the need to consider user populations when selecting HFE design criteria, an aspect strongly emphasized in current industry guidance.
Comparative tests of bench equipment for fuel control system testing of gas-turbine engine
NASA Astrophysics Data System (ADS)
Shendaleva, E. V.
2018-04-01
The relevance of interlaboratory comparative researches is confirmed by attention of world metrological community to this field of activity. Use of the interlaboratory comparative research methodology not only for single gages collation, but also for bench equipment complexes, such as modeling stands for fuel control system testing of gas-turbine engine, is offered. In this case a comparative measure of different bench equipment will be the control fuel pump. Ensuring traceability of measuring result received at test benches of various air enterprises, development and introduction of national standards to practice of bench tests and, eventually, improvement of quality and safety of a aircraft equipment is result of this approach.
Engineering test facility design definition
NASA Technical Reports Server (NTRS)
Bercaw, R. W.; Seikel, G. R.
1980-01-01
The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.
Sandia technology engineering and science accomplishments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-03-01
Sandia is a DOE multiprogram engineering and science laboratory with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. We have major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. Our principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. Selected unclassified technical activities and accomplishments are reported here. Topics include advanced manufacturing technologies, intelligent machines, computationalmore » simulation, sensors and instrumentation, information management, energy and environment, and weapons technology.« less
Rationale for Incorporating Health and Safety into the Curriculum.
ERIC Educational Resources Information Center
Fleischman, Marvin
1988-01-01
Presents a philosophical commentary on the need and rationale for incorporating safety and health into the chemical engineering curriculum. Proposes safety and health assessments as useful teaching methods. Describes an approach to bringing safety and health into undergraduate engineering curricula. Gives examples of integration of these curricula…
30 CFR 250.405 - What are the safety requirements for diesel engines used on a drilling rig?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What are the safety requirements for diesel... Gas Drilling Operations General Requirements § 250.405 What are the safety requirements for diesel engines used on a drilling rig? You must equip each diesel engine with an air take device to shut down the...
System safety engineering in the development of advanced surface transportation vehicles
NASA Technical Reports Server (NTRS)
Arnzen, H. E.
1971-01-01
Applications of system safety engineering to the development of advanced surface transportation vehicles are described. As a pertinent example, the paper describes a safety engineering efforts tailored to the particular design and test requirements of the Tracked Air Cushion Research Vehicle (TACRV). The test results obtained from this unique research vehicle provide significant design data directly applicable to the development of future tracked air cushion vehicles that will carry passengers in comfort and safety at speeds up to 300 miles per hour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsah, K.
This document (1) summarizes the most significant findings of the ''Qualification of Advanced Instrumentation and Control (I&C) Systems'' program initiated by the Nuclear Regulatory Commission (NRC); (2) documents a comparative analysis of U.S. and European qualification standards; and (3) provides recommendations for enhancing regulatory guidance for environmental qualification of microprocessor-based safety-related systems. Safety-related I&C system upgrades of present-day nuclear power plants, as well as I&C systems of Advanced Light-Water Reactors (ALWRs), are expected to make increasing use of microprocessor-based technology. The Nuclear Regulatory Commission (NRC) recognized that the use of such technology may pose environmental qualification challenges different from current,more » analog-based I&C systems. Hence, it initiated the ''Qualification of Advanced Instrumentation and Control Systems'' program. The objectives of this confirmatory research project are to (1) identify any unique environmental-stress-related failure modes posed by digital technologies and their potential impact on the safety systems and (2) develop the technical basis for regulatory guidance using these findings. Previous findings from this study have been documented in several technical reports. This final report in the series documents a comparative analysis of two environmental qualification standards--Institute of Electrical and Electronics Engineers (IEEE) Std 323-1983 and International Electrotechnical Commission (IEC) 60780 (1998)--and provides recommendations for environmental qualification of microprocessor-based systems based on this analysis as well as on the findings documented in the previous reports. The two standards were chosen for this analysis because IEEE 323 is the standard used in the U.S. for the qualification of safety-related equipment in nuclear power plants, and IEC 60780 is its European counterpart. In addition, the IEC document was published in 1998, and should reflect any new qualification concerns, from the European perspective, with regard to the use of microprocessor-based safety systems in power plants.« less
Spaceflight Safety on the North Coast of America
NASA Technical Reports Server (NTRS)
Ciancone, Michael L.; Havenhill, Maria T.; Terlep, Judith A.
1996-01-01
Spaceflight Safety (SFS) engineers at NASA Lewis Research Center (LeRC) are responsible for evaluating the microgravity fluids and combustion experiments, payloads and facilities developed at NASA LeRC which are manifested for spaceflight on the Space Shuttle, the Russian space station Mir, and/or the International Space Station (ISS). An ongoing activity at NASA LeRC is the comprehensive training of its SFS engineers through the creation and use of safety tools and processes. Teams of SFS engineers worked on the development of an Internet website (containing a spaceflight safety knowledge database and electronic templates of safety products) and the establishment of a technical peer review process (known as the Safety Assurance for Lewis Spaceflight Activities (SALSA) review).
Marini, Michelle A; Giangregorio, Maeve; Kraskinski, Joanna C
2004-03-01
Preventing the transmission of bloodborne pathogens to healthcare workers has been a mission and a challenge of the healthcare industry for over 20 years. The development of the Occupational Safety and Health Administration Bloodborne Pathogens Standard in 1991 and the passing of the Needlestick Safety Act in 2000 mandated hospitals to develop an Exposure Control Plan to protect workers from these pathogens. Children's Hospital Boston began implementation of a needleless system in 1993. Employees readily accepted these systems into practice, because they were convenient and easy to use. A marked decrease in exposures to bloodborne pathogens naturally followed, which is consistent with the national data. The transition to intravenous (i.v.) safety devices at Children's Hospital began in 2000 and proved to be more of a challenge. First, the clinicians must choose a safety product, which requires developing and implementing a trial plan with potential catheters. This selection process is especially difficult in pediatrics where successful placement of the smallest-gauge catheter, no. 24, is imperative. After choosing an i.v. safety product, successful transition is dependent upon the thoroughness of i.v. safety device training and a commitment by the clinicians to the use of these products. Although the number of needlestick injuries and subsequent transmission of bloodborne pathogens have been further reduced with the use of i.v. safety devices, needlestick injuries still occur. This results from a lack of familiarity with the engineering of the device and therefore poor technique or a failure to activate the safety mechanism. Staff resistance due to loss of expertise with the new device and patient care concerns are additional barriers to the use of these new products. Addressing these obstacles and providing adequate training for all clinicians were required for successful implementation of these i.v. safety devices.
[Expert investigation on food safety standard system framework construction in China].
He, Xiang; Yan, Weixing; Fan, Yongxiang; Zeng, Biao; Peng, Zhen; Sun, Zhenqiu
2013-09-01
Through investigating food safety standard framework among food safety experts, to summarize the basic elements and principles of food safety standard system, and provide policy advices for food safety standards framework. A survey was carried out among 415 experts from government, professional institutions and the food industry/enterprises using the National Food Safety Standard System Construction Consultation Questionnaire designed in the name of the Secretariat of National Food Safety Standard Committee. Experts have different advices in each group about the principles of food product standards, food additive product standards, food related product standards, hygienic practice, test methods. According to the results, the best solution not only may reflect experts awareness of the work of food safety standards situation, but also provide advices for setting and revision of food safety standards for the next. Through experts investigation, the framework and guiding principles of food safety standard had been built.
Development of instruction in hospital electrical safety for medical education.
Yoo, J H; Broderick, W A
1978-01-01
Although hospital electrical safety is receiving increased attention in the literature of engineers, it is not, at present, reflected in the curricula of medical schools. A possible reason for this omission is that biomedical and/or clinical engineers knowledgeable in electrical safety are not usually trained to teach. One remedy for this problem is to combine the knowledge of engineers with that of instructional developers to design a systematic curriculum for a course in hospital electrical safety. This paper describes such an effort at the University of Texas Health Science Center at San Antonio (UTHSCSA). A biomedical engineer and an instructional developer designed an instructional module in hospital electrical safety; the engineer taught the module, and both evaluated the results. The process and outcome of their collaboration are described. This model was effectively applied in the classroom as a four-hour segment in hospital electrical safety for first-year medical students at UTHSCSA. It is hoped that an additional benefit of this system will be that it offers an opportunity for continuing improvement in this kind of instruction at other medical schools and hospitals.
NASA Technical Reports Server (NTRS)
1992-01-01
This standard specifies the software assurance program for the provider of software. It also delineates the assurance activities for the provider and the assurance data that are to be furnished by the provider to the acquirer. In any software development effort, the provider is the entity or individual that actually designs, develops, and implements the software product, while the acquirer is the entity or individual who specifies the requirements and accepts the resulting products. This standard specifies at a high level an overall software assurance program for software developed for and by NASA. Assurance includes the disciplines of quality assurance, quality engineering, verification and validation, nonconformance reporting and corrective action, safety assurance, and security assurance. The application of these disciplines during a software development life cycle is called software assurance. Subsequent lower-level standards will specify the specific processes within these disciplines.
NASA Technical Reports Server (NTRS)
Lee, Hyung B.; Ghia, Urmila; Bayyuk, Sami; Oberkampf, William L.; Roy, Christopher J.; Benek, John A.; Rumsey, Christopher L.; Powers, Joseph M.; Bush, Robert H.; Mani, Mortaza
2016-01-01
Computational fluid dynamics (CFD) and other advanced modeling and simulation (M&S) methods are increasingly relied on for predictive performance, reliability and safety of engineering systems. Analysts, designers, decision makers, and project managers, who must depend on simulation, need practical techniques and methods for assessing simulation credibility. The AIAA Guide for Verification and Validation of Computational Fluid Dynamics Simulations (AIAA G-077-1998 (2002)), originally published in 1998, was the first engineering standards document available to the engineering community for verification and validation (V&V) of simulations. Much progress has been made in these areas since 1998. The AIAA Committee on Standards for CFD is currently updating this Guide to incorporate in it the important developments that have taken place in V&V concepts, methods, and practices, particularly with regard to the broader context of predictive capability and uncertainty quantification (UQ) methods and approaches. This paper will provide an overview of the changes and extensions currently underway to update the AIAA Guide. Specifically, a framework for predictive capability will be described for incorporating a wide range of error and uncertainty sources identified during the modeling, verification, and validation processes, with the goal of estimating the total prediction uncertainty of the simulation. The Guide's goal is to provide a foundation for understanding and addressing major issues and concepts in predictive CFD. However, this Guide will not recommend specific approaches in these areas as the field is rapidly evolving. It is hoped that the guidelines provided in this paper, and explained in more detail in the Guide, will aid in the research, development, and use of CFD in engineering decision-making.
2010-09-01
DEVELOPMENT TESTING BEING CONDUCTED AT THE REQUEST OF THE MSFC DYNAMICS, LOADS, AND STRENGTH BRANCH (EV31) TO STUDY THE FAILURE BEHAVIOR OF FASTENERS SUBJECTED TO COMBINED SHEAR AND TENSION LOADING. THE DATA FROM THIS TESTING WILL BE USED TO DEVELOP APPROPRIATE STRUCTURAL ANALYSIS METHODS AS PART OF A FASTENER STANDARDS EFFORT SPONSORED BY THE NASA ENGINEERING SAFETY CENTER (NESC). THE TEST FIXTURE WAS DESIGNED AND FABRICATED THROUGH THE MSFC MECHANICAL FABRICATION BRANCH (ES23). THE TESTING ORGANIZATION IS THE MSFC MATERIALS TEST BRANCH (EM10).
2010-09-01
DEVELOPMENT TESTING BEING CONDUCTED AT THE REQUEST OF THE MSFC DYNAMICS, LOADS, AND STRENGTH BRANCH (EV31) TO STUDY THE FAILURE BEHAVIOR OF FASTENERS SUBJECTED TO COMBINED SHEAR AND TENSION LOADING. THE DATA FROM THIS TESTING WILL BE USED TO DEVELOP APPROPRIATE STRUCTURAL ANALYSIS METHODS AS PART OF A FASTENER STANDARDS EFFORT SPONSORED BY THE NASA ENGINEERING SAFETY CENTER (NESC). THE TEST FIXTURE WAS DESIGNED AND FABRICATED THROUGH THE MSFC MECHANICAL FABRICATION BRANCH (ES23). THE TESTING ORGANIZATION IS THE MSFC MATERIALS TEST BRANCH (EM10).
2010-09-01
DEVELOPMENT TESTING BEING CONDUCTED AT THE REQUEST OF THE MSFC DYNAMICS, LOADS, AND STRENGTH BRANCH (EV31) TO STUDY THE FAILURE BEHAVIOR OF FASTENERS SUBJECTED TO COMBINED SHEAR AND TENSION LOADING. THE DATA FROM THIS TESTING WILL BE USED TO DEVELOP APPROPRIATE STRUCTURAL ANALYSIS METHODS AS PART OF A FASTENER STANDARDS EFFORT SPONSORED BY THE NASA ENGINEERING SAFETY CENTER (NESC). THE TEST FIXTURE WAS DESIGNED AND FABRICATED THROUGH THE MSFC MECHANICAL FABRICATION BRANCH (ES23). THE TESTING ORGANIZATION IS THE MSFC MATERIALS TEST BRANCH (EM10).
2010-09-01
DEVELOPMENT TESTING BEING CONDUCTED AT THE REQUEST OF THE MSFC DYNAMICS, LOADS, AND STRENGTH BRANCH (EV31) TO STUDY THE FAILURE BEHAVIOR OF FASTENERS SUBJECTED TO COMBINED SHEAR AND TENSION LOADING. THE DATA FROM THIS TESTING WILL BE USED TO DEVELOP APPROPRIATE STRUCTURAL ANALYSIS METHODS AS PART OF A FASTENER STANDARDS EFFORT SPONSORED BY THE NASA ENGINEERING SAFETY CENTER (NESC). THE TEST FIXTURE WAS DESIGNED AND FABRICATED THROUGH THE MSFC MECHANICAL FABRICATION BRANCH (ES23). THE TESTING ORGANIZATION IS THE MSFC MATERIALS TEST BRANCH (EM10).
Colombini, Daniela; Occhipinti, E; Di Leone, G
2012-01-01
During the last Congress of the International Ergonomics Association (IEA), Beijing, August 2009, an international group was founded aimed at developing a "toolkit for MSD prevention" within IEA and in collaboration with World Health Organization (WHO). Possible users of toolkits are: members of health and safety committees, health and safety representatives, line supervisors; labor inspectors; health workers implementing basic occupational health services; occupational health and safety specialists.According to ISO standard 11228 series and the new Draft CD ISO 12259-2009: Application document guides for the potential user, a computer software ( in Excel®) was create dealing with hazard "mapping" in handicraft The proposed methodology, using specific key enters and quick assessment criteria, allows a simple ergonomics hazard identification and risk estimation. Thus it makes possible to decide for which professional hazards a more exhaustive risk assessment will be necessary and which professional consultant should be involved (occupational physician, safety engineer, industrial hygienist, etc.).
To what extent can theory account for the findings of road safety evaluation studies?
Elvik, Rune
2004-09-01
This paper proposes a conceptual framework that can be used to assess to what extent the findings of road safety evaluation research make sense from a theoretical point of view. The effects of road safety measures are modelled as passing through two causal chains. One of these, termed the engineering effect, refers to the intended effects of a road safety measure on a set of risk factors related to accident occurrence or injury severity. The engineering effect of road safety measures is modelled in terms of nine basic risk factors, one or more of which any road safety measure needs to influence in order to have the intended effect on accidents or injuries. The other causal chain producing the effects of road safety measures is termed the behavioural effect, and refers to road user behavioural adaptations to road safety measures. The behavioural effect is related to the engineering effect, in the sense that certain properties of the engineering effect of a road safety measure influence the likelihood that behavioural adaptation will occur. The behavioural effect of a road safety measure is modelled in terms of six factors that influence the likelihood that behavioural adaptation will occur. The nine basic risk factors representing the engineering effect of a road safety measure, and the six factors influencing the likelihood of behavioural adaptation can be used as checklists in assessing whether or not the findings of road safety evaluation studies make sense from a theoretical point of view. At the current state of knowledge, a more stringent evaluation of the extent to which theory can explain the findings of road safety evaluation studies is, in most cases, not possible. Copyright 2003 Elsevier Ltd.
Building Safer Systems With SpecTRM
NASA Technical Reports Server (NTRS)
2003-01-01
System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.
Image-Directed Fine-needle Aspiration Biopsy of the Thyroid with Safety-engineered Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sibbitt, Randy R., E-mail: THESIBB2@aol.com; Palmer, Dennis J., E-mail: lyonscreek@aol.com; Sibbitt, Wilmer L., E-mail: wsibbitt@salud.unm.edu
2011-10-15
Purpose: The purpose of the present study was to integrate safety-engineered devices into outpatient fine-needle aspiration (FNA) biopsy of the thyroid in an interventional radiology practice. Materials and Methods: The practice center is a tertiary referral center for image-directed FNA thyroid biopsies in difficult patients referred by the primary care physician, endocrinologist, or otolaryngologist. As a departmental quality of care and safety improvement program, we instituted integration of safety devices into our thyroid biopsy procedures and determined the effect on outcome (procedural pain, diagnostic biopsies, inadequate samples, complications, needlesticks to operator, and physician satisfaction) before institution of safety devices (54more » patients) and after institution of safety device implementation (56 patients). Safety devices included a patient safety technology-the mechanical aspirating syringe (reciprocating procedure device), and a health care worker safety technology (antineedlestick safety needle). Results: FNA of thyroid could be readily performed with the safety devices. Safety-engineered devices resulted in a 49% reduction in procedural pain scores (P < 0.0001), a 56% reduction in significant pain (P < 0.002), a 21% increase in operator satisfaction (P < 0.0001), and a 5% increase in diagnostic specimens (P = 0.5). No needlesticks to health care workers or patient injuries occurred during the study. Conclusions: Safety-engineered devices to improve both patient and health care worker safety can be successfully integrated into diagnostic FNA of the thyroid while maintaining outcomes and improving safety.« less
Capturing Essential Information to Achieve Safe Interoperability
Weininger, Sandy; Jaffe, Michael B.; Rausch, Tracy; Goldman, Julian M.
2016-01-01
In this article we describe the role of “clinical scenario” information to assure the safety of interoperable systems, as well as the system’s ability to deliver the requisite clinical functionality to improve clinical care. Described are methods and rationale for capturing the clinical needs, workflow, hazards, and device interactions in the clinical environment. Key user (clinician and clinical engineer) needs and system requirements can be derived from this information, therefore improving the communication from clinicians to medical device and information technology system developers. This methodology is intended to assist the health care community, including researchers, standards developers, regulators, and manufacturers, by providing clinical definition to support requirements in the systems engineering process, particularly those focusing on development of Integrated Clinical Environments described in standard ASTM F2761. Our focus is on identifying and documenting relevant interactions and medical device capabilities within the system using a documentation tool called medical device interface data sheets (MDIDSa) and mitigating hazardous situations related to workflow, product usability, data integration, and the lack of effective medical device-health information technology system integration to achieve safe interoperability. Portions of the analysis of a clinical scenario for a “Patient-controlled analgesia safety interlock” are provided to illustrate the method. Collecting better clinical adverse event information and proposed solutions can help identify opportunities to improve current device capabilities and interoperability and support a Learning Health System to improve health care delivery. Developing and analyzing clinical scenarios are the first steps in creating solutions to address vexing patient safety problems and enable clinical innovation. A web-based research tool for implementing a means of acquiring and managing this information, the Clinical Scenario Repository™, is described. PMID:27387840
Capturing Essential Information to Achieve Safe Interoperability.
Weininger, Sandy; Jaffe, Michael B; Rausch, Tracy; Goldman, Julian M
2017-01-01
In this article, we describe the role of "clinical scenario" information to assure the safety of interoperable systems, as well as the system's ability to deliver the requisite clinical functionality to improve clinical care. Described are methods and rationale for capturing the clinical needs, workflow, hazards, and device interactions in the clinical environment. Key user (clinician and clinical engineer) needs and system requirements can be derived from this information, therefore, improving the communication from clinicians to medical device and information technology system developers. This methodology is intended to assist the health care community, including researchers, standards developers, regulators, and manufacturers, by providing clinical definition to support requirements in the systems engineering process, particularly those focusing on development of Integrated Clinical Environments described in standard ASTM F2761. Our focus is on identifying and documenting relevant interactions and medical device capabilities within the system using a documentation tool called medical device interface data sheets and mitigating hazardous situations related to workflow, product usability, data integration, and the lack of effective medical device-health information technology system integration to achieve safe interoperability. Portions of the analysis of a clinical scenario for a "patient-controlled analgesia safety interlock" are provided to illustrate the method. Collecting better clinical adverse event information and proposed solutions can help identify opportunities to improve current device capabilities and interoperability and support a learning health system to improve health care delivery. Developing and analyzing clinical scenarios are the first steps in creating solutions to address vexing patient safety problems and enable clinical innovation. A Web-based research tool for implementing a means of acquiring and managing this information, the Clinical Scenario Repository™ (MD PnP Program), is described.
Human factors and systems engineering approach to patient safety for radiotherapy.
Rivera, A Joy; Karsh, Ben-Tzion
2008-01-01
The traditional approach to solving patient safety problems in healthcare is to blame the last person to touch the patient. But since the publication of To Err is Human, the call has been instead to use human factors and systems engineering methods and principles to solve patient safety problems. However, an understanding of the human factors and systems engineering is lacking, and confusion remains about what it means to apply their principles. This paper provides a primer on them and their applications to patient safety.
Patient safety - the role of human factors and systems engineering.
Carayon, Pascale; Wood, Kenneth E
2010-01-01
Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety.
System safety in Stirling engine development
NASA Technical Reports Server (NTRS)
Bankaitis, H.
1981-01-01
The DOE/NASA Stirling Engine Project Office has required that contractors make safety considerations an integral part of all phases of the Stirling engine development program. As an integral part of each engine design subtask, analyses are evolved to determine possible modes of failure. The accepted system safety analysis techniques (Fault Tree, FMEA, Hazards Analysis, etc.) are applied in various degrees of extent at the system, subsystem and component levels. The primary objectives are to identify critical failure areas, to enable removal of susceptibility to such failures or their effects from the system and to minimize risk.
Enhancing fire safety at Hydro plants with dry transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemen, D.M.
Hydroelectric plant owners and engineers can use dry-type transformers to reduce fire hazards in auxiliary power systems. The decision to replace a liquid-immersed transformer with a dry-type product has a price: higher unit cost and a need to be more vigilant in detailing transformer specifications. But, whether the change affects only one failed transformer or is part of a plant rehabilitation project, the benefits in safety can be worth it. Voltages on hydroelectric plant auxiliary power systems can range from a 20 kV medium-voltage system to the normal 480-208/120 V low-voltage system. Dry transformers typically are used in such systemsmore » to reduce the fire hazard present with liquid-filled transformers. For a hydro plant owner or engineer seeking alternatives to liquid-filled transformers, there are two main kinds of dry-type transformers to consider: vacuum pressure impregnated (VPI) and cast coil epoxy resin. VPI transformers normally are manufactured in sizes up to 6,000 kVA with primary voltage ratings up to 20 kV. Cast coil transformers can be made in sizes from 75 to 10,000 kVA, with primary voltage ratings up to 34,500 V. Although the same transformer theory applies to dry transformers as to liquid-filled units, the cooling medium, air, required different temperature rise ratings, dielectric tests, and construction techniques to ensure reliability. Consequently, the factory and field tests for dry units are established by a separate set of American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE) standards. Cast coil transformers have several important advantages over VPI units.« less
Searching for 'Unknown Unknowns'
NASA Technical Reports Server (NTRS)
Parsons, Vickie S.
2005-01-01
The NASA Engineering and Safety Center (NESC) was established to improve safety through engineering excellence within NASA programs and projects. As part of this goal, methods are being investigated to enable the NESC to become proactive in identifying areas that may be precursors to future problems. The goal is to find unknown indicators of future problems, not to duplicate the program-specific trending efforts. The data that is critical for detecting these indicators exist in a plethora of dissimilar non-conformance and other databases (without a common format or taxonomy). In fact, much of the data is unstructured text. However, one common database is not required if the right standards and electronic tools are employed. Electronic data mining is a particularly promising tool for this effort into unsupervised learning of common factors. This work in progress began with a systematic evaluation of available data mining software packages, based on documented decision techniques using weighted criteria. The four packages, which were perceived to have the most promise for NASA applications, are being benchmarked and evaluated by independent contractors. Preliminary recommendations for "best practices" in data mining and trending are provided. Final results and recommendations should be available in the Fall 2005. This critical first step in identifying "unknown unknowns" before they become problems is applicable to any set of engineering or programmatic data.
Architecture-Led Safety Process
2016-12-01
Action Hazard Guide 42 Table 18: Comparative Table of Safety and Reliability Terms 47 CMU/SEI-2016-TR-012 | SOFTWARE ENGINEERING INSTITUTE...provides too much thrust Engine is slow to pro- vide commanded thrust (increase or de- crease) Engine will not shut- down when com - manded...Thrust level must be provided at the com - manded level H4: Engine is slow to provide commanded thrust SC3: Engine must provide commanded thrust in
Katz-Navon, Tal; Naveh, Eitan; Stern, Zvi
2007-01-01
The purpose of this paper is to suggest a new safety self-efficacy construct and to explore its antecedents and interaction with standardization to influence in-patient safety. The paper used a survey of 161 nurses using a self-administered questionnaire over a 14-day period in two large Israeli general hospitals. Nurses answered questions relating to four safety self-efficacy antecedents: enactive mastery experiences; managers as safety role models; verbal persuasion; and safety priority, that relate to the perceived level of standardization and safety self-efficacy. Confirmatory factor analysis was used to assess the scale's construct validity. Regression models were used to test hypotheses regarding the antecedents and influence of safety self-efficacy. Results indicate that: managers as safety role models; distributing safety information; and priority given to safety, contributed to safety self-efficacy. Additionally, standardization moderated the effects of safety self-efficacy and patient safety such that safety self-efficacy was positively associated with patient safety when standardization was low rather than high. Hospital managers should be aware of individual motivations as safety self-efficacy when evaluating the potential influence of standardization on patient safety. Theoretically, the study introduces a new safety self-efficacy concept, and captures its antecedents and influence on safety performance. Also, the study suggests safety self-efficacy as a boundary condition for the influence of standardization on safety performance. Implementing standardization in healthcare is problematic because not all processes can be standardized. In this case, self-efficacy plays an important role in securing patient safety. Hence, safety self-efficacy may serve as a "substitute-for-standardization," by promoting staff behaviors that affect patient safety.
Balhara, Kamna S; Peterson, Susan M; Elabd, Mohamed Moheb; Regan, Linda; Anton, Xavier; Al-Natour, Basil Ali; Hsieh, Yu-Hsiang; Scheulen, James; Stewart de Ramirez, Sarah A
2018-04-01
Standardized handoffs may reduce communication errors, but research on handoff in community and international settings is lacking. Our study at a community hospital in the United Arab Emirates characterizes existing handoff practices for admitted patients from emergency medicine (EM) to internal medicine (IM), develops a standardized handoff tool, and assesses its impact on communication and physician perceptions. EM physicians completed a survey regarding handoff practices and expectations. Trained observers utilized a checklist based on the Systems Engineering Initiative for Patient Safety model to observe 40 handoffs. EM and IM physicians collaboratively developed a written tool encouraging bedside handoff of admitted patients. After the intervention, surveys of EM physicians and 40 observations were subsequently repeated. 77.5% of initial observed handoffs occurred face-to-face, with 42.5% at bedside, and in four different languages. Most survey respondents considered face-to-face handoff ideal. Respondents noted 9-13 patients suffering harm due to handoff in the prior month. After handoff tool implementation, 97.5% of observed handoffs occurred face-to-face (versus 77.5%, p = 0.014), with 82.5% at bedside (versus 42.5%, p < 0.001), and all in English. Handoff was streamlined from 7 possible pathways to 3. Most post-intervention survey respondents reported improved workflow (77.8%) and safety (83.3%); none reported patient harm. Respondents and observers noted reduced inefficiency (p < 0.05). Our standardized tool increased face-to-face and bedside handoff, positively impacted workflow, and increased perceptions of safety by EM physicians in an international, non-academic setting. Our three-step approach can be applied towards developing standardized, context-specific inter-specialty handoff in a variety of settings.
Fuel/engine/airframe tradeoff study, phase 1
NASA Technical Reports Server (NTRS)
Peacock, A. T.
1980-01-01
The effects of broadening the specifications for JP-4 and JP-8 fueled on the performance and cost of all USAF aircraft presently using JP-4 as well as those expected to be introduced into the force structure by 1983 are investigated. Test results indicated that there was no impact on engine performance, turbine durability, and coking, however there was a small maintenance cost increase as a result of a small combustor life decrease. Using JP-4 as standard fuel will avoid the use of high demand middle distillate fuels and give producers flexibility. Extensive use of JP-8 in the United States will increase middle distillate demand and cause a slight increase in engine hot-section maintenance. It is also concluded that the maximum allowable freeze point of JP-4 or JP-8 cannot be increased without degrading system performance and safety as critical conditions are approached.
Understanding safety and production risks in rail engineering planning and protection.
Wilson, John R; Ryan, Brendan; Schock, Alex; Ferreira, Pedro; Smith, Stuart; Pitsopoulos, Julia
2009-07-01
Much of the published human factors work on risk is to do with safety and within this is concerned with prediction and analysis of human error and with human reliability assessment. Less has been published on human factors contributions to understanding and managing project, business, engineering and other forms of risk and still less jointly assessing risk to do with broad issues of 'safety' and broad issues of 'production' or 'performance'. This paper contains a general commentary on human factors and assessment of risk of various kinds, in the context of the aims of ergonomics and concerns about being too risk averse. The paper then describes a specific project, in rail engineering, where the notion of a human factors case has been employed to analyse engineering functions and related human factors issues. A human factors issues register for potential system disturbances has been developed, prior to a human factors risk assessment, which jointly covers safety and production (engineering delivery) concerns. The paper concludes with a commentary on the potential relevance of a resilience engineering perspective to understanding rail engineering systems risk. Design, planning and management of complex systems will increasingly have to address the issue of making trade-offs between safety and production, and ergonomics should be central to this. The paper addresses the relevant issues and does so in an under-published domain - rail systems engineering work.
Engineered Nanomaterials, Sexy New Technology and Potential Hazards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaulieu, R A
Engineered nanomaterials enhance exciting new applications that can greatly benefit society in areas of cancer treatments, solar energy, energy storage, and water purification. While nanotechnology shows incredible promise in these and other areas by exploiting nanomaterials unique properties, these same properties can potentially cause adverse health effects to workers who may be exposed during work. Dispersed nanoparticles in air can cause adverse health effects to animals not merely due to their chemical properties but due to their size, structure, shape, surface chemistry, solubility, carcinogenicity, reproductive toxicity, mutagenicity, dermal toxicity, and parent material toxicity. Nanoparticles have a greater likelihood of lungmore » deposition and blood absorption than larger particles due to their size. Nanomaterials can also pose physical hazards due to their unusually high reactivity, which makes them useful as catalysts, but has the potential to cause fires and explosions. Characterization of the hazards (and potential for exposures) associated with nanomaterial development and incorporation in other products is an essential step in the development of nanotechnologies. Developing controls for these hazards are equally important. Engineered controls should be integrated into nanomaterial manufacturing process design according to 10CFR851, DOE Policy 456.1, and DOE Notice 456.1 as safety-related hardware or administrative controls for worker safety. Nanomaterial hazards in a nuclear facility must also meet control requirements per DOE standards 3009, 1189, and 1186. Integration of safe designs into manufacturing processes for new applications concurrent with the developing technology is essential for worker safety. This paper presents a discussion of nanotechnology, nanomaterial properties/hazards and controls.« less
Code of Federal Regulations, 2012 CFR
2012-01-01
... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY...,” U.S. Dept. of Commerce, pp. 181-185, 192. (b) “Human Engineering Guide for Equipment Designers... St., Berkeley, California 94720. (c) “Human Engineering Guide to Equipment Design,” Van Cott and Kin...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY...,” U.S. Dept. of Commerce, pp. 181-185, 192. (b) “Human Engineering Guide for Equipment Designers... St., Berkeley, California 94720. (c) “Human Engineering Guide to Equipment Design,” Van Cott and Kin...
16 CFR § 1207.11 - References.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY...,” U.S. Dept. of Commerce, pp. 181-185, 192. (b) “Human Engineering Guide for Equipment Designers... St., Berkeley, California 94720. (c) “Human Engineering Guide to Equipment Design,” Van Cott and Kin...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY...,” U.S. Dept. of Commerce, pp. 181-185, 192. (b) “Human Engineering Guide for Equipment Designers... St., Berkeley, California 94720. (c) “Human Engineering Guide to Equipment Design,” Van Cott and Kin...
Resetca, Diana; Neschadim, Anton; Medin, Jeffrey A
2016-09-01
Advances in cancer immunotherapies utilizing engineered hematopoietic cells have recently generated significant clinical successes. Of great promise are immunotherapies based on chimeric antigen receptor-engineered T (CAR-T) cells that are targeted toward malignant cells expressing defined tumor-associated antigens. CAR-T cells harness the effector function of the adaptive arm of the immune system and redirect it against cancer cells, overcoming the major challenges of immunotherapy, such as breaking tolerance to self-antigens and beating cancer immune system-evasion mechanisms. In early clinical trials, CAR-T cell-based therapies achieved complete and durable responses in a significant proportion of patients. Despite clinical successes and given the side effect profiles of immunotherapies based on engineered cells, potential concerns with the safety and toxicity of various therapeutic modalities remain. We discuss the concerns associated with the safety and stability of the gene delivery vehicles for cell engineering and with toxicities due to off-target and on-target, off-tumor effector functions of the engineered cells. We then overview the various strategies aimed at improving the safety of and resolving toxicities associated with cell-based immunotherapies. Integrating failsafe switches based on different suicide gene therapy systems into engineered cells engenders promising strategies toward ensuring the safety of cancer immunotherapies in the clinic.
Pelvic ring fractures: implications of vehicle design, crash type, and occupant characteristics.
Rowe, Stephen A; Sochor, Mark S; Staples, Kurtis S; Wahl, Wendy L; Wang, Stewart C
2004-10-01
Pelvic ring fractures (PRFs) are a major cause of morbidity and mortality in motor vehicle collisions (MVCs). Understanding the factors leading to PRFs may help improve vehicle design and safety. This study sought to determine the vehicular, crash, and occupant characteristics that contribute to PRFs. From 1997 to 2003, 240 adult patients involved in lateral or frontal crashes were prospectively studied. Comprehensive crash reconstructions, vehicle analysis, and occupant data were compiled and analyzed as part of the national Crash Injury Research Engineering Network project. Of 240 study patients, 38 had PRFs. The incidence of PRFs was significantly associated with female gender, lateral impact crashes, vehicle incompatibility, and severity of crash. Seat belts and airbags were not protective against PRFs in either lateral or frontal crashes. All vehicles in the current study were less than 6 years old at the time of the MVC and thus reflect newer safety designs. Compared with studies of PRFs in MVCs before the widespread adoption of modern safety standards, our series suggests there has been a modest decrease in the incidence of PRFs in newer vehicles. Current safety standards do not adequately protect against PRFs, especially in lateral MVCs involving incompatibility and female occupants. New technology needs to be developed and implemented. Our data suggest that side impact airbags, alteration of vehicle geometry, and increased reinforcement of side panels and doors may result in fewer PRFs.
Saturn Orbits Car Making into the Twenty-First Century. A Case Study
1993-04-01
two engine variations of the 1.9 liter four-cylinder aluminum block, a standard 85-horsepower, single overhead camshaft (SOHC) 8-valve and a high...performance, 124-horsepower, dual overhead camshafts (DOHC) 16-valve version. Its optional anti-lock braking system was a safety addition not normally found...Treece, James B. "The Planets May be Perfectly Aligned For Saturn’s Lift-Off." Business Week Oct. 22, 1990: 40. Tree %.e, James B. "War, Recession
How Much Safety Do We Need in ChE Education?
ERIC Educational Resources Information Center
Mewis, Jan
1984-01-01
Discusses aims, objectives, and content of a safety course for chemical engineering students. Course emphasizes awareness of hazards, basic concepts and principles of safety engineering, and the ability to recognize, assess, and remedy specific risks occurring in chemical plants. Course implementation is also discussed. (JN)
Assessment of the Draft AIAA S-119 Flight Dynamic Model Exchange Standard
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce; Murri, Daniel G.; Hill, Melissa A.; Jessick, Matthew V.; Penn, John M.; Hasan, David A.; Crues, Edwin Z.; Falck, Robert D.; McCarthy, Thomas G.; Vuong, Nghia;
2011-01-01
An assessment of a draft AIAA standard for flight dynamics model exchange, ANSI/AIAA S-119-2011, was conducted on behalf of NASA by a team from the NASA Engineering and Safety Center. The assessment included adding the capability of importing standard models into real-time simulation facilities at several NASA Centers as well as into analysis simulation tools. All participants were successful at importing two example models into their respective simulation frameworks by using existing software libraries or by writing new import tools. Deficiencies in the libraries and format documentation were identified and fixed; suggestions for improvements to the standard were provided to the AIAA. An innovative tool to generate C code directly from such a model was developed. Performance of the software libraries compared favorably with compiled code. As a result of this assessment, several NASA Centers can now import standard models directly into their simulations. NASA is considering adopting the now-published S-119 standard as an internal recommended practice.
Patient Safety: The Role of Human Factors and Systems Engineering
Carayon, Pascale; Wood, Kenneth E.
2011-01-01
Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety. PMID:20543237
Residential exposure from extremely low frequency electromagnetic field (ELF EMF) radiation
NASA Astrophysics Data System (ADS)
Parthasarathy, Shamesh Raj; Tukimin, Roha
2018-01-01
ELF EMF radiation have received considerable attention as a potential threat to the safety and health of people living in the vicinity of high voltage transmission lines, electric distribution substations, power stations and even in close proximity to electronics and electrical household appliances. The paper highlights the study on the ELF EMF safety assessment performed at residences comprising of an owner-occupied house, a completed vacant house and an under construction condominium. The objectives of this study were to determine the ELF EMF radiation exposure level from the high voltage transmission line, electric distribution substation, power station and electrical household appliances in the residences, and to assess the potential exposure received by the occupants at the assessed locations. The results were logged in the electric and magnetic field strength with the units of volt per meter (V/m) and miliGauss (mG) respectively. The instrument setup and measurement protocols during the assessment were adopted from standard measurement method and procedures stipulated under the Institute of Electrical and Electronics Engineers (IEEE) Standard. The results were compared with the standards recommended in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines.
Raven-II: an open platform for surgical robotics research.
Hannaford, Blake; Rosen, Jacob; Friedman, Diana W; King, Hawkeye; Roan, Phillip; Cheng, Lei; Glozman, Daniel; Ma, Ji; Kosari, Sina Nia; White, Lee
2013-04-01
The Raven-II is a platform for collaborative research on advances in surgical robotics. Seven universities have begun research using this platform. The Raven-II system has two 3-DOF spherical positioning mechanisms capable of attaching interchangeable four DOF instruments. The Raven-II software is based on open standards such as Linux and ROS to maximally facilitate software development. The mechanism is robust enough for repeated experiments and animal surgery experiments, but is not engineered to sufficient safety standards for human use. Mechanisms in place for interaction among the user community and dissemination of results include an electronic forum, an online software SVN repository, and meetings and workshops at major robotics conferences.
Aircraft engine and auxiliary power unit emissions from combusting JP-8 fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimm, L.T.; Sylvia, D.A.; Gerstle, T.C.
1997-12-31
Due to safety considerations and in an effort to standardize Department of Defense fuels, the US Air Force (USAF) replaced the naptha-based JP-4, MIL-T-5624, with the kerosene-based JP-8, MIL-T-83133, as the standard turbine fuel. Although engine emissions from combustion of JP-4 are well documented for criteria pollutants, little information exists for criteria and hazardous air pollutants from combustion of JP-8 fuel. Due to intrinsic differences between these two raw fuels, their combustion products were expected to differ. As part of a broader engine testing program, the Air Force, through the Human Systems Center at Brooks AFB, TX, has contracted tomore » have the emissions characterized from aircraft engines and auxiliary power units (APUs). Criteria pollutant and targeted HAP emissions of selected USAF aircraft engines were quantified during the test program. Emission test results will be used to develop emission factors for the tested aircraft engines and APUs. The Air Force intends to develop a mathematical relationship, using the data collected during this series of tests and from previous tests, to extrapolate existing JP-4 emission factors to representative JP-8 emission factors for other engines. This paper reports sampling methodologies for the following aircraft engine emissions tests: F110-GE-100, F101-GE-102, TF33-P-102, F108-CF-100, T56-A-15, and T39-GE-1A/C. The UH-60A helicopter engine, T700-GE-700, and the C-5A/B and C-130H auxiliary power units (GTCP165-1 and GTCP85-180, respectively) were also tested. Testing was performed at various engine settings to determine emissions of particulate matter, carbon monoxide, nitrogen oxides, sulfur oxides, total hydrocarbon, and selected hazardous air pollutants. Ambient monitoring was conducted concurrently to establish background pollutant concentrations for data correction.« less
Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements
NASA Technical Reports Server (NTRS)
Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl (Compiler); Guo, Ten-Huei
2014-01-01
The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.
Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements
NASA Technical Reports Server (NTRS)
Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl; Guo, Ten-Huei
2015-01-01
The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.
Development of CNG direct injection (CNGDI) clean fuel system for extra power in small engine
NASA Astrophysics Data System (ADS)
Ali, Yusoff; Shamsudeen, Azhari; Abdullah, Shahrir; Mahmood, Wan Mohd Faizal Wan
2012-06-01
A new design of fuel system for CNG engine with direct injection (CNGDI) was developed for a demonstration project. The development of the fuel system was done on the engine with cylinder head modifications, for fuel injector and spark plug openings included in the new cylinder head. The piston was also redesigned for higher compression ratio. The fuel rails and the regulators are also designed for the direct injection system operating at higher pressure about 2.0 MPa. The control of the injection timing for the direct injectors are also controlled by the Electronic Control Unit specially designed for DI by another group project. The injectors are selected after testing with the various injection pressures and spray angles. For the best performance of the high-pressure system, selection is made from the tests on single cylinder research engine (SCRE). The components in the fuel system have to be of higher quality and complied with codes and standards to secure the safety of engine for high-pressure operation. The results of the CNGDI have shown that better power output is produced and better emissions were achieved compared to the aspirated CNG engine.
Safety engineering in handling fuels and lubricants in civil aviation
NASA Astrophysics Data System (ADS)
Protoereiskii, Aleksandr Stepanovich
The book is concerned with methods of improving working conditions, work hygiene, safety engineering, and fire and explosion prevention during the storage and handling of petroleum products at fuel and lubricant storage facilities. The discussion covers methods of protection against static and atmospheric discharges, lightning protection, safety engineering in fuel and lubricant laboratories, and methods of fire prevention and fire extinction. Attention is also given to methods for administering first aid in case of accidents and poisoning.
Systems Engineering and Management Applications of ISO 9001:2015 for Government
NASA Technical Reports Server (NTRS)
Shepherd, Christena C.
2016-01-01
The manufacturing segment of the business world is busy assessing the impact of ISO 9001:2015, and updating their management systems to meet the required compliance date. What does the new revision mean for government agencies that deliver large engineering projects rather than mass production? In fact, the standard, especially the new revision, can be used quite readily for government agencies, or applied to specific projects, once it is understood in terms of the similarities with systems engineering and project management. From there it can be extrapolated to "mission realization" systems, and a Quality Management System (QMS) is a logical result that can bring order to processes and systems that likely already exist in some fashion. ISO 9001:2015 is less product-oriented than previous versions. It can be more broadly applied to public organizations as well as private; and to services (missions) as well as products. The emphasis on risk management in the revised standard provides the needed balance for weighing decisions with respect to cost, schedule, technical, safety, and regulatory compliance; so if this is not part of agency governance already, this is a good place to start, especially for large engineering projects. The Systems Engineering standard used for this analysis is from NASA's NPR 7123.1 NASA Systems Engineering Processes and Requirements; however, those who are more familiar with ISO/IEC 26702 Systems Engineering-application and management of the systems engineering process, or SAE/EIA 632 Processes for Engineering a System will also recognize the similarities. In reality, the QMS outlined by ISO 9001 reinforces the systems engineering processes, and serves to ensure that they are adequately implemented, although most of the ISO 9001 literature emphasizes the production and process aspects of the standard. Rather than beginning with ISO 9001and getting lost in the vocabulary, it is useful to begin with the systems engineering lifecycle. Identification of stakeholder expectations, identifying solutions, creating specific product or service designs, production of the product or service, delivery to the public, and the associated management, planning, and control processes, are a familiar place to begin thinking of the overall system of identifying, designing, and competing a project or mission. Lining up this lifecycle with the ISO requirements (see Figure 1) illustrates how a quality management system is concerned with the same processes, and provides a governance and assurance function. If implemented properly, there are cost savings resulting from less rework, repair, reprocessing, failures, misplaced documents, and similar types of deficiencies1. Starting with an organization's systems engineering processes allows the organization to use their own terminology for a QMS plan, and tailor the plan to their own project or organization, so that it is more easily developed, understood, and implemented.
A Framework to Evaluate the Impact of Armourstones on the Chemical Quality of Surface Water.
Duester, Lars; Wahrendorf, Dierk-Steffen; Brinkmann, Corinna; Fabricius, Anne-Lena; Meermann, Björn; Pelzer, Juergen; Ecker, Dennis; Renner, Monika; Schmid, Harald; Ternes, Thomas A; Heininger, Peter
2017-01-01
Today, basic requirements for construction works include the protection of human health and of the environment. In the tension area between economic demands, circular flow economy and environmental safety, a link between the results from standardized leaching tests and the respective environmental quality standards must be created. To derive maximum release limits of metals and metalloids for armourstones in hydraulic engineering, this link is accomplished via a simple model approach. By treating natural materials and industrial by-products the same way, the article delivers an overview on the recent regulative situation in Europe as well as describes and discusses an innovative approach to derive maximum release limits for monolithic construction products in hydraulic engineering on a conceptual level. On a practical level, a list of test parameters is derived by connecting an extensive dataset (seven armourstone materials with five repetitions and 31 elements tested with the worldwide applied dynamic surface leaching test) with surface water quality standards and predicted no effect concentrations. Finally, the leaching tests results are compared with the envisaged maximum release limits, offering a direct comparison between natural materials and industrial by-products.
49 CFR 385.5 - Safety fitness standard.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 5 2010-10-01 2010-10-01 false Safety fitness standard. 385.5 Section 385.5... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS SAFETY FITNESS PROCEDURES General § 385.5 Safety fitness standard. A motor carrier must meet the safety fitness standard set forth...
49 CFR 385.5 - Safety fitness standard.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 5 2011-10-01 2011-10-01 false Safety fitness standard. 385.5 Section 385.5... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS SAFETY FITNESS PROCEDURES General § 385.5 Safety fitness standard. A motor carrier must meet the safety fitness standard set forth...
Product safety in Great Britain and the Consumer Protection Act 1987.
Jenkins, D W; Davies, B T
1989-09-01
The Consumer Protection Act 1987 imposes new demands on manufacturers regarding the safety of their products. They can be sued directly by any person injured by their defective goods and prosecuted if they fail to meet the new comprehensive general safety requirement and any other safety provision. Product designers and ergonomists need a sound understanding of and involvement in the legal aspects of product safety. It is now essential to take into account what may reasonably be done with goods, or foreseeable conditions of use, in order to satisfy the test of what is "reasonably safe" and meet the level of safety which "persons generally are entitled to expect" under the law. Any significant progress in product safety will now come through developments in technical standards which will be harmonised throughout the European Community. It is essential that ergonomics considerations be taken into account during the drafting of product specifications if users' interests are to be safeguarded more effectively. Ergonomists will be required to make an even greater contribution in the field of product safety, therefore, by assisting in the determination of the new statutory safety criteria. They are uniquely qualified to ensure that the product user is fully considered at the design and assessment stages which can now be looked upon as an essential pre-requisite of the law and not just sound engineering policy.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-05
..., Aviation Safety Engineer, FAA, New York Aircraft Certification Office, Airframe and Propulsion Branch, 1600..., Aerospace Engineer, Aviation Safety Engineer, FAA, New York Aircraft Certification Office, Airframe and Propulsion Branch, 1600 Stewart Ave., suite 410, Westbury, New York 11590, telephone (516) 228-7304, fax (516...
NASA Technical Reports Server (NTRS)
Zelkin, Natalie; Henriksen, Stephen
2011-01-01
This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed L-band (960 to 1164 MHz) terrestrial en route communications system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents a preliminary safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the L-band communication system after the technology is chosen and system rollout timing is determined. The security risk analysis resulted in identifying main security threats to the proposed system as well as noting additional threats recommended for a future security analysis conducted at a later stage in the system development process. The document discusses various security controls, including those suggested in the COCR Version 2.0.
Sensor fault diagnosis of aero-engine based on divided flight status.
Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu
2017-11-01
Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.
Sensor fault diagnosis of aero-engine based on divided flight status
NASA Astrophysics Data System (ADS)
Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu
2017-11-01
Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.
Patient safety trilogy: perspectives from clinical engineering.
Gieras, Izabella; Sherman, Paul; Minsent, Dennis
2013-01-01
This article examines the role a clinical engineering or healthcare technology management (HTM) department can play in promoting patient safety from three different perspectives: a community hospital, a national government health system, and an academic medical center. After a general overview, Izabella Gieras from Huntington Hospital in Pasadena, CA, leads off by examining the growing role of human factors in healthcare technology, and describing how her facility uses clinical simulations in medical equipment evaluations. A section by Paul Sherman follows, examining patient safety initiatives from the perspective of the Veterans Health Administration with a focus on hazard alerts and recalls. Dennis Minsent from Oregon Health & Science University writes about patient safety from an academic healthcare perspective, and details how clinical engineers can engage in multidisciplinary safety opportunities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neupauer, R.M.; Thurmond, S.M.
This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neupauer, R.M.; Thurmond, S.M.
This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.
NASA Astrophysics Data System (ADS)
Wang, Wanshun; Chen, Zhuo; Li, Xiuwen
2018-03-01
The safety monitoring is very important in the operation and management of water resources and hydropower projects. It is the important means to understand the dam running status, to ensure the dam safety, to safeguard people’s life and property security, and to make full use of engineering benefits. This paper introduces the arrangement of engineering safety monitoring system based on the example of a water resource control project. The monitoring results of each monitoring project are analyzed intensively to show the operating status of the monitoring system and to provide useful reference for similar projects.
Tools and Equipment in Nontraditional Spaces: Safety and Liability Issues. Safety Spotlight
ERIC Educational Resources Information Center
Love, Tyler S.; Roy, Ken R.
2017-01-01
"Safety Spotlight" encourages the submission of questions from Technology and Engineering (T&E) Educators, and this month's question involves the risks of placing hazardous equipment (e.g., 3D printer, laser cutter, CNC router, etc.) in a non-technology & engineering lab under the supervision of teachers not certified to teach…
29 CFR 1917.3 - Incorporation by reference.
Code of Federal Regulations, 2011 CFR
2011-07-01
... available for purchase only from the American Society of Safety Engineers, 1800 East Oakton Street, Des... Engineers, 1800 East Oakton Street, Des Plaines, IL 60018-2187; telephone: 847-699-2929. (8) ANSI Z87.1-1989... Society of Safety Engineers, 1800 East Oakton Street, Des Plaines, IL 60018-2187; telephone: 847-699-2929...
NASA Astrophysics Data System (ADS)
Liu, Ting; Tian, Yu; Yang, Lili; Gao, Siyi; Song, Dahu
2018-01-01
This paper introduces the American standard system, the Nuclear Regulatory Commission (NRC)’s responsibility, NRC nuclear safety regulations and standards system, studies on NRC’s standards management and endorsement mode, analyzes the characteristics of NRC standards endorsement management, and points out its disadvantages. This paper draws revelation from the standard management and endorsement model of NRC and points suggestion to China’s nuclear and radiation safety standards management.The issue of the “Nuclear Safety Law”plays an important role in China’s nuclear and radiation safety supervision. Nuclear and radiation safety regulations and standards are strong grips on the implementation of “Nuclear Safety Law”. This paper refers on the experience of international advanced countriy, will effectively promote the improvement of the endorsed management of China’s nuclear and radiation safety standards.
(NESC) NASA Engineering and Safety Center Orion Heat Shield Carr
2014-04-29
(NESC) NASA Engineering and Safety Center Orion Heat Shield Carrier Structure: Titanium Orthogrid heat shield sub-component dynamic test article : person in the photo Jim Jeans (Background: Mike Kirsch, James Ainsworth)
16 CFR 1205.1 - Scope of the standard.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY... subpart A of part 1205 is a consumer product safety standard which prescribes safety requirements for... the standard are subject to the requirements of this standard if they are “consumer products”. “Walk...
16 CFR 1205.1 - Scope of the standard.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY... subpart A of part 1205 is a consumer product safety standard which prescribes safety requirements for... the standard are subject to the requirements of this standard if they are “consumer products”. “Walk...
16 CFR 1205.1 - Scope of the standard.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY... subpart A of part 1205 is a consumer product safety standard which prescribes safety requirements for... the standard are subject to the requirements of this standard if they are “consumer products”. “Walk...
Colombini, Daniela; Occhipinti, E; Di Leone, G
2011-01-01
During the last Congress of the International Ergonomics Association (IEA), Beijing, August 2009, an international group was founded with the task of developing a "toolkit for MSD prevention" under the IEA and in collaboration with the World Health Organization. The possible users of toolkits are: members of health and safety committees; health and safety representatives; line supervisors; foremen; workers; government representatives; health workers providing basic occupational health services; occupational health and safety specialists. According to the ISO standard 11228 series and the new Draft CD ISO 12259-2009: Application document guides for the potential user, our group developed a preliminary "mapping" methodology of occupational hazards in the craft industry, supported by software (Excel). The proposed methodology, using specific key enters and quick assessment criteria, allows a simple ergonomics hazards identification and risk estimation to be made. It is thus possible to decide for which occupational hazards a more exhaustive risk assessment will be necessary and which occupational consultant should be involved (occupational physician, safety engineer, industrial hygienist, etc.).
Taking stock of the occupational safety and health challenges of nanotechnology: 2000-2015
NASA Astrophysics Data System (ADS)
Schulte, P. A.; Roth, G.; Hodson, L. L.; Murashov, V.; Hoover, M. D.; Zumwalde, R.; Kuempel, E. D.; Geraci, C. L.; Stefaniak, A. B.; Castranova, V.; Howard, J.
2016-06-01
Engineered nanomaterials significantly entered commerce at the beginning of the 21st century. Concerns about serious potential health effects of nanomaterials were widespread. Now, approximately 15 years later, it is worthwhile to take stock of research and efforts to protect nanomaterial workers from potential risks of adverse health effects. This article provides and examines timelines for major functional areas (toxicology, metrology, exposure assessment, engineering controls and personal protective equipment, risk assessment, risk management, medical surveillance, and epidemiology) to identify significant contributions to worker safety and health. The occupational safety and health field has responded effectively to identify gaps in knowledge and practice, but further research is warranted and is described. There is now a greater, if imperfect, understanding of the mechanisms underlying nanoparticle toxicology, hazards to workers, and appropriate controls for nanomaterials, but unified analytical standards and exposure characterization methods are still lacking. The development of control-banding and similar strategies has compensated for incomplete data on exposure and risk, but it is unknown how widely such approaches are being adopted. Although the importance of epidemiologic studies and medical surveillance is recognized, implementation has been slowed by logistical issues. Responsible development of nanotechnology requires protection of workers at all stages of the technological life cycle. In each of the functional areas assessed, progress has been made, but more is required.
Taking stock of the occupational safety and health challenges of nanotechnology: 2000-2015.
Schulte, P A; Roth, G; Hodson, L L; Murashov, V; Hoover, M D; Zumwalde, R; Kuempel, E D; Geraci, C L; Stefaniak, A B; Castranova, V; Howard, J
2016-06-01
Engineered nanomaterials significantly entered commerce at the beginning of the 21st century. Concerns about serious potential health effects of nanomaterials were widespread. Now, approximately 15 years later, it is worthwhile to take stock of research and efforts to protect nanomaterial workers from potential risks of adverse health effects. This article provides and examines timelines for major functional areas (toxicology, metrology, exposure assessment, engineering controls and personal protective equipment, risk assessment, risk management, medical surveillance, and epidemiology) to identify significant contributions to worker safety and health. The occupational safety and health field has responded effectively to identify gaps in knowledge and practice, but further research is warranted and is described. There is now a greater, if imperfect, understanding of the mechanisms underlying nanoparticle toxicology, hazards to workers, and appropriate controls for nanomaterials, but unified analytical standards and exposure characterization methods are still lacking. The development of control-banding and similar strategies has compensated for incomplete data on exposure and risk, but it is unknown how widely such approaches are being adopted. Although the importance of epidemiologic studies and medical surveillance is recognized, implementation has been slowed by logistical issues. Responsible development of nanotechnology requires protection of workers at all stages of the technological life cycle. In each of the functional areas assessed, progress has been made, but more is required.
Kuzma, Jennifer; Najmaie, Pouya; Larson, Joel
2009-01-01
The U.S. oversight system for genetically engineered organisms (GEOs) was evaluated to develop hypotheses and derive lessons for oversight of other emerging technologies, such as nanotechnology. Evaluation was based upon quantitative expert elicitation, semi-standardized interviews, and historical literature analysis. Through an interdisciplinary policy analysis approach, blending legal, ethical, risk analysis, and policy sciences viewpoints, criteria were used to identify strengths and weaknesses of GEOs oversight and explore correlations among its attributes and outcomes. From the three sources of data, hypotheses and broader conclusions for oversight were developed. Our analysis suggests several lessons for oversight of emerging technologies: the importance of reducing complexity and uncertainty in oversight for minimizing financial burdens on small product developers; consolidating multi-agency jurisdictions to avoid gaps and redundancies in safety reviews; consumer benefits for advancing acceptance of GEO products; rigorous and independent pre- and post-market assessment for environmental safety; early public input and transparency for ensuring public confidence; and the positive role of public input in system development, informed consent, capacity, compliance, incentives, and data requirements and stringency in promoting health and environmental safety outcomes, as well as the equitable distribution of health impacts. Our integrated approach is instructive for more comprehensive analyses of oversight systems, developing hypotheses for how features of oversight systems affect outcomes, and formulating policy options for oversight of future technological products, especially nanotechnology products.
Taking stock of the occupational safety and health challenges of nanotechnology: 2000–2015
Roth, G.; Hodson, L. L.; Murashov, V.; Hoover, M. D.; Zumwalde, R.; Kuempel, E. D.; Geraci, C. L.; Stefaniak, A. B.; Castranova, V.; Howard, J.
2016-01-01
Engineered nanomaterials significantly entered commerce at the beginning of the 21st century. Concerns about serious potential health effects of nanomaterials were widespread. Now, approximately 15 years later, it is worthwhile to take stock of research and efforts to protect nanomaterial workers from potential risks of adverse health effects. This article provides and examines timelines for major functional areas (toxicology, metrology, exposure assessment, engineering controls and personal protective equipment, risk assessment, risk management, medical surveillance, and epidemiology) to identify significant contributions to worker safety and health. The occupational safety and health field has responded effectively to identify gaps in knowledge and practice, but further research is warranted and is described. There is now a greater, if imperfect, understanding of the mechanisms underlying nanoparticle toxicology, hazards to workers, and appropriate controls for nanomaterials, but unified analytical standards and exposure characterization methods are still lacking. The development of control-banding and similar strategies has compensated for incomplete data on exposure and risk, but it is unknown how widely such approaches are being adopted. Although the importance of epidemiologic studies and medical surveillance is recognized, implementation has been slowed by logistical issues. Responsible development of nanotechnology requires protection of workers at all stages of the technological life cycle. In each of the functional areas assessed, progress has been made, but more is required. PMID:27594804
Nuclear-safety institution in France: emergence and development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallet, B.M.
1986-01-01
This research work examines the social construction of the nuclear-safety institution in France, and the concurrent increased focus on the nuclear-risk issue. Emphasis on risk and safety, as primarily technical issues, can partly be seen as a strategy. Employed by power elites in the nuclear technostructure, this diverts emphasis away from controversial and normative questions regarding the political and social consequences of technology to questions of technology that appear to be absolute to the technology itself. Nuclear safety, which started from a preoccupation with risk related to the nuclear energy research and development process, is examined using the analytic conceptmore » of field. As a social arena patterned to achieve specific tasks, this field is dominated by a body of state engineers recognized to have high-level scientific and administrative competences. It is structured by procedures and administrative hierarchies as well as by technical rules, norms, and standards. These are formalized and rationalized through technical, economic, political, and social needs; over time; they consolidate the field into an institution. The study documents the nuclear-safety institution as an integral part of the nuclear technostructure, which has historically used the specificity of its expertise as a buffer against outside interference.« less
MODEL 9977 B(M)F-96 SAFETY ANALYSIS REPORT FOR PACKAGING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramczyk, G; Paul Blanton, P; Kurt Eberl, K
2006-05-18
This Safety Analysis Report for Packaging (SARP) documents the analysis and testing performed on and for the 9977 Shipping Package, referred to as the General Purpose Fissile Package (GPFP). The performance evaluation presented in this SARP documents the compliance of the 9977 package with the regulatory safety requirements for Type B packages. Per 10 CFR 71.59, for the 9977 packages evaluated in this SARP, the value of ''N'' is 50, and the Transport Index based on nuclear criticality control is 1.0. The 9977 package is designed with a high degree of single containment. The 9977 complies with 10 CFR 71more » (2002), Department of Energy (DOE) Order 460.1B, DOE Order 460.2, and 10 CFR 20 (2003) for As Low As Reasonably Achievable (ALARA) principles. The 9977 also satisfies the requirements of the Regulations for the Safe Transport of Radioactive Material--1996 Edition (Revised)--Requirements. IAEA Safety Standards, Safety Series No. TS-R-1 (ST-1, Rev.), International Atomic Energy Agency, Vienna, Austria (2000). The 9977 package is designed, analyzed and fabricated in accordance with Section III of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code, 1992 edition.« less
45 CFR 156.1110 - Establishment of patient safety standards for QHP issuers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... STANDARDS RELATED TO EXCHANGES Quality Standards § 156.1110 Establishment of patient safety standards for QHP issuers. (a) Patient safety standards. A QHP issuer that contracts with a hospital with greater... 45 Public Welfare 1 2014-10-01 2014-10-01 false Establishment of patient safety standards for QHP...
10 CFR 851.23 - Safety and health standards.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Safety and health standards. 851.23 Section 851.23 Energy DEPARTMENT OF ENERGY WORKER SAFETY AND HEALTH PROGRAM Specific Program Requirements § 851.23 Safety and health standards. (a) Contractors must comply with the following safety and health standards that are...
29 CFR 1925.2 - Safety and health standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 7 2014-07-01 2014-07-01 false Safety and health standards. 1925.2 Section 1925.2 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH STANDARDS FOR FEDERAL SERVICE CONTRACTS § 1925.2 Safety and health standards...
10 CFR 851.23 - Safety and health standards.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Safety and health standards. 851.23 Section 851.23 Energy DEPARTMENT OF ENERGY WORKER SAFETY AND HEALTH PROGRAM Specific Program Requirements § 851.23 Safety and health standards. (a) Contractors must comply with the following safety and health standards that are...
29 CFR 1925.2 - Safety and health standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 7 2010-07-01 2010-07-01 false Safety and health standards. 1925.2 Section 1925.2 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH STANDARDS FOR FEDERAL SERVICE CONTRACTS § 1925.2 Safety and health standards...
10 CFR 851.23 - Safety and health standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Safety and health standards. 851.23 Section 851.23 Energy DEPARTMENT OF ENERGY WORKER SAFETY AND HEALTH PROGRAM Specific Program Requirements § 851.23 Safety and health standards. (a) Contractors must comply with the following safety and health standards that are...
29 CFR 1925.2 - Safety and health standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 7 2012-07-01 2012-07-01 false Safety and health standards. 1925.2 Section 1925.2 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH STANDARDS FOR FEDERAL SERVICE CONTRACTS § 1925.2 Safety and health standards...
29 CFR 1925.2 - Safety and health standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 7 2011-07-01 2011-07-01 false Safety and health standards. 1925.2 Section 1925.2 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH STANDARDS FOR FEDERAL SERVICE CONTRACTS § 1925.2 Safety and health standards...
10 CFR 851.23 - Safety and health standards.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Safety and health standards. 851.23 Section 851.23 Energy DEPARTMENT OF ENERGY WORKER SAFETY AND HEALTH PROGRAM Specific Program Requirements § 851.23 Safety and health standards. (a) Contractors must comply with the following safety and health standards that are...
29 CFR 1925.2 - Safety and health standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 7 2013-07-01 2013-07-01 false Safety and health standards. 1925.2 Section 1925.2 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH STANDARDS FOR FEDERAL SERVICE CONTRACTS § 1925.2 Safety and health standards...
10 CFR 851.23 - Safety and health standards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Safety and health standards. 851.23 Section 851.23 Energy DEPARTMENT OF ENERGY WORKER SAFETY AND HEALTH PROGRAM Specific Program Requirements § 851.23 Safety and health standards. (a) Contractors must comply with the following safety and health standards that are...
NASA Astrophysics Data System (ADS)
Sirviö, Sari; Savolainen, Kai
2011-07-01
NANODEVICE is a research project funded by the European Commission in the context of the 7th Framework Programme. The duration is 48 months starting 1st of April 2009. Due to their unique properties, engineered nanoparticles (ENP) are now used for a myriad of novel applications, and have a great economic and technological importance. However, some of these properties, especially their surface reactivity, have raised health concerns due to their potential health effects. There is currently a shortage of field-worthy, cost-effective ways - especially in real time - for reliable assessment of exposure levels to ENP in workplace air. NANODEVICE will provide new information on the physico-chemical properties of engineered nanoparticles (ENP) and information about their toxicology. The main emphasis of the project is in the development of novel measuring devices to assess the exposure to ENP's from workplace air. The purpose of the project is also to promote the safe use of ENP through guidance, standards and education, implementing of safety objectives in ENP production and handling, and promotion of safety related collaborations through an international nanosafety forum. The main project goal is to develop innovative concepts and reliable methods for characterizing ENP in workplace air with novel, portable and easy-to-use devices suitable for workplaces.
NASA Technical Reports Server (NTRS)
Perchonok, Michele; Russo, Dane M. (Technical Monitor)
2001-01-01
The Space Food Systems Laboratory (SFSL) is a multipurpose laboratory responsible for space food and package research and development. It is located on-site at Johnson Space Center in Building 17. The facility supports the development of flight food, menus, packaging and food related hardware for Shuttle, International Space Station, and Advanced Life Support food systems. All foods used to support NASA ground tests and/or missions must meet the highest standards before they are 'accepted' for use on actual space flights. The foods are evaluated for nutritional content, sensory acceptability, safety, storage and shelf life, and suitability for use in micro-gravity. The food packaging is also tested to determine its functionality and suitability for use in space. Food Scientist, Registered Dieticians, Packaging Engineers, Food Systems Engineers, and Technicians staff the Space Food Systems Laboratory.
NASA African American History Month Profile - Kimberly Ennix-Sandhu (AFRC)
2018-02-20
Kimberly Ennix-Sandhu is the SOFIA Operations Center System Safety Lead at NASA Armstrong Flight Research Center. SOFIA is the Stratospheric Observatory for Infrared Astronomy. Kimberly has worked for NASA for 27 years. She started out in jet and rocket propulsion research engineering and moved to Safety and Mission Assurance as a system safety engineer.
30 CFR 250.405 - What are the safety requirements for diesel engines used on a drilling rig?
Code of Federal Regulations, 2012 CFR
2012-07-01
... engines used on a drilling rig? 250.405 Section 250.405 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.405 What are the safety...
30 CFR 250.405 - What are the safety requirements for diesel engines used on a drilling rig?
Code of Federal Regulations, 2014 CFR
2014-07-01
... engines used on a drilling rig? 250.405 Section 250.405 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.405 What are the safety...
30 CFR 250.405 - What are the safety requirements for diesel engines used on a drilling rig?
Code of Federal Regulations, 2013 CFR
2013-07-01
... engines used on a drilling rig? 250.405 Section 250.405 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.405 What are the safety...
ERIC Educational Resources Information Center
Hadipriono, Fabian C.; And Others
An interactive training model called SAVR (Safety in Construction Using Virtual Reality) was developed to train construction students, novice engineers, and construction workers to prevent falls from scaffolding. The model was implemented in a graphics supercomputer, the ONYX Reality Engine2. The SAVR model provides trainees with an immersive,…
ERIC Educational Resources Information Center
McFarland, Ross A.
Human factors engineering is considered with regard to the design of safety factors for aviation and highway transportation equipment. Current trends and problem areas are identified for jet air transportation and for highway transportation. Suggested solutions to transportation safety problems are developed by applying the techniques of human…
DeJoy, David M; Smith, Todd D; Woldu, Henok; Dyal, Mari-Amanda; Steege, Andrea L; Boiano, James M
2017-07-01
Antineoplastic drugs pose risks to the healthcare workers who handle them. This fact notwithstanding, adherence to safe handling guidelines remains inconsistent and often poor. This study examined the effects of pertinent organizational safety practices and perceived safety climate on the use of personal protective equipment, engineering controls, and adverse events (spill/leak or skin contact) involving liquid antineoplastic drugs. Data for this study came from the 2011 National Institute for Occupational Safety and Health (NIOSH) Health and Safety Practices Survey of Healthcare Workers which included a sample of approximately 1,800 nurses who had administered liquid antineoplastic drugs during the past seven days. Regression modeling was used to examine predictors of personal protective equipment use, engineering controls, and adverse events involving antineoplastic drugs. Approximately 14% of nurses reported experiencing an adverse event while administering antineoplastic drugs during the previous week. Usage of recommended engineering controls and personal protective equipment was quite variable. Usage of both was better in non-profit and government settings, when workers were more familiar with safe handling guidelines, and when perceived management commitment to safety was higher. Usage was poorer in the absence of specific safety handling procedures. The odds of adverse events increased with number of antineoplastic drugs treatments and when antineoplastic drugs were administered more days of the week. The odds of such events were significantly lower when the use of engineering controls and personal protective equipment was greater and when more precautionary measures were in place. Greater levels of management commitment to safety and perceived risk were also related to lower odds of adverse events. These results point to the value of implementing a comprehensive health and safety program that utilizes available hazard controls and effectively communicates and demonstrates the importance of safe handling practices. Such actions also contribute to creating a positive safety climate.
46 CFR 80.25 - Notification of safety standards.
Code of Federal Regulations, 2014 CFR
2014-10-01
... standards, except the 1966 fire safety standards. (ii) This vessel complies with international safety standards developed prior to 1960. There is (or, is not) an automatic sprinkler system fitted in the... international safety standard. There is (or, is not) an automatic sprinkler system fitted in the passenger...
46 CFR 80.25 - Notification of safety standards.
Code of Federal Regulations, 2012 CFR
2012-10-01
... standards, except the 1966 fire safety standards. (ii) This vessel complies with international safety standards developed prior to 1960. There is (or, is not) an automatic sprinkler system fitted in the... international safety standard. There is (or, is not) an automatic sprinkler system fitted in the passenger...
46 CFR 80.25 - Notification of safety standards.
Code of Federal Regulations, 2013 CFR
2013-10-01
... standards, except the 1966 fire safety standards. (ii) This vessel complies with international safety standards developed prior to 1960. There is (or, is not) an automatic sprinkler system fitted in the... international safety standard. There is (or, is not) an automatic sprinkler system fitted in the passenger...
46 CFR 80.25 - Notification of safety standards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... standards, except the 1966 fire safety standards. (ii) This vessel complies with international safety standards developed prior to 1960. There is (or, is not) an automatic sprinkler system fitted in the... international safety standard. There is (or, is not) an automatic sprinkler system fitted in the passenger...
Conservation of Life as a Unifying Theme for Process Safety in Chemical Engineering Education
ERIC Educational Resources Information Center
Klein, James A.; Davis, Richard A.
2011-01-01
This paper explores the use of "conservation of life" as a concept and unifying theme for increasing awareness, application, and integration of process safety in chemical engineering education. Students need to think of conservation of mass, conservation of energy, and conservation of life as equally important in engineering design and analysis.…
Martinetti, Alberto; Chatzimichailidou, Maria Mikela; Maida, Luisa; van Dongen, Leo
2018-04-24
Occupational health and safety (OHS) represents an important field of exploration for the research community: in spite of the growth of technological innovations, the increasing complexity of systems involves critical issues in terms of degradation of the safety levels. In such a situation, new safety management approaches are now mandatory in order to face the safety implications of the current technological evolutions. Along these lines, performing risk-based analysis alone seems not to be enough anymore. The evaluation of robustness, antifragility and resilience of a socio-technical system is now indispensable in order to face unforeseen events. This article will briefly introduce the topics of Safety I and Safety II, resilience engineering and antifragility engineering, explaining correlations, overlapping aspects and synergies. Secondly, the article will discuss the applications of those paradigms to a real accident, highlighting how they can challenge, stimulate and inspire research for improving OHS conditions.
Enhancing the traditional hospital design process: a focus on patient safety.
Reiling, John G; Knutzen, Barbara L; Wallen, Thomas K; McCullough, Susan; Miller, Ric; Chernos, Sonja
2004-03-01
In 2002 St. Joseph's Community Hospital (West Bend, WI), a member of SynergyHealth, brought together leaders in health care and systems engineering to develop a set of safety-driven facility design principles that would guide the hospital design process. DESIGNING FOR SAFETY: Hospital leadership recognized that a cross-departmental team approach would be needed and formed the 11-member Facility Design Advisory Council, which, with departmental teams and the aid of architects, was responsible for overseeing the design process and for ensuring that the safety considerations were met. The design process was a team approach, with input from national experts, patients and families, hospital staff and physicians, architects, contractors, and the community. The new facility, designed using safety-driven design principles, reflects many innovative design elements, including truly standardized patient rooms, new technology to minimize falls, and patient care alcoves for every patient room. The new hospital has been designed with maximum adaptability and flexibility in mind, to accommodate changes and provide for future growth. The architects labeled the innovative design. The Synergy Model, to describe the process of shaping the entire building and its spaces to work efficiently as a whole for the care and safety of patients. Construction began on the new facility in August 2003 and is expected to be completed in 2005.
Alternative Fuels Data Center: Biodiesel Codes, Standards, and Safety
Codes, Standards, and Safety to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Codes, Standards, and Safety on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Codes , Standards, and Safety on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Codes, Standards, and
Fluid-flow-rate metrology: laboratory uncertainties and traceabilities
NASA Astrophysics Data System (ADS)
Mattingly, G. E.
1991-03-01
Increased concerns for improved fluid flowrate measurement are driving the fluid metering community-meter manufacturers and users alike-to search for better verification and documentation for their fluid measurements. These concerns affect both our domestic and international market places they permeate our technologies - aerospace chemical processes automotive bioengineering etc. They involve public health and safety and they impact our national defense. These concerns are based upon the rising value of fluid resources and products and the importance of critical material accountability. These values directly impact the accuracy needs of fluid buyers and sellers in custody transfers. These concerns impact the designers and operators of chemical process systems where control and productivity optimization depend critically upon measurement precision. Public health and safety depend upon the quality of numerous pollutant measurements - both liquid and gaseous. The performance testing of engines - both automotive and aircraft are critically based upon accurate fuel measurements - both liquid and oxidizer streams. Fluid flowrate measurements are established differently from counterparts in length and mass measurement systems because these have the benefits of " identity" standards. For rate measurement systems the metrology is based upon " derived standards" . These use facilities and transfer standards which are designed built characterized and used to constitute basic measurement capabilities and quantify performance - accuracy and precision. Because " identity standards" do not exist for flow measurements facsimiles or equivalents must
41 CFR 50-204.2 - General safety and health standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true General safety and health... Public Contracts PUBLIC CONTRACTS, DEPARTMENT OF LABOR 204-SAFETY AND HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS General Safety and Health Standards § 50-204.2 General safety and health standards. (a) Every...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
... Request--Safety Standard for Walk-Behind Power Lawn Mowers AGENCY: Consumer Product Safety Commission... with the Commission's safety standard for walk- behind power lawn mowers. DATES: Written comments on... of approval of the collection of information required in the Safety Standard for Walk-Behind Power...
Test Methodology to Evaluate the Safety of Materials Using Spark Incendivity
NASA Technical Reports Server (NTRS)
Buhler, Charles; Calle, Carlos; Clements, Sid; Ritz, Mindy; Starnes, Jeff
2007-01-01
For many years scientists and engineers have been searching for the proper test method to evaluate an electrostatic risk for materials used in hazardous environments. A new test standard created by the International Electrotechnical Commission is a promising addition to conventional test methods used throughout industry. The purpose of this paper is to incorporate this test into a proposed new methodology for the evaluation of materials exposed to flammable environments. However, initial testing using this new standard has uncovered some unconventional behavior in materials that conventional test methods were thought to have reconciled. For example some materials tested at higher humidities were more susceptible to incendive discharges than at lower humidity even though the surface resistivity was lower.
Modern traffic control devices to improve safety at rural intersections.
DOT National Transportation Integrated Search
2011-12-01
"Engineers with the Texas Department of Transportation (TxDOT) frequently make changes to traffic control devices : (TCDs) to improve intersection safety. To use available funds judiciously, engineers make incremental changes in : order to select the...
Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; J. Blair Briggs; David W. Nigg
2009-11-01
One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.
Verification and Implementation of Operations Safety Controls for Flight Missions
NASA Technical Reports Server (NTRS)
Jones, Cheryl L.; Smalls, James R.; Carrier, Alicia S.
2010-01-01
Approximately eleven years ago, the International Space Station launched the first module from Russia, the Functional Cargo Block (FGB). Safety and Mission Assurance (S&MA) Operations (Ops) Engineers played an integral part in that endeavor by executing strict flight product verification as well as continued staffing of S&MA's console in the Mission Evaluation Room (MER) for that flight mission. How were these engineers able to conduct such a complicated task? They conducted it based on product verification that consisted of ensuring that safety requirements were adequately contained in all flight products that affected crew safety. S&MA Ops engineers apply both systems engineering and project management principles in order to gain a appropriate level of technical knowledge necessary to perform thorough reviews which cover the subsystem(s) affected. They also ensured that mission priorities were carried out with a great detail and success.
78 FR 37706 - Safety Standards for Infant Walkers and Infant Swings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-24
... Danny Keysar Child Product Safety Notification Act, if ASTM revises the underlying voluntary standard... CONSUMER PRODUCT SAFETY COMMISSION 16 CFR Parts 1216 and 1223 Safety Standards for Infant Walkers... the Danny Keysar Child Product Safety Notification Act, the U.S. Consumer Product Safety Commission...
49 CFR 385.5 - Safety fitness standard.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 5 2012-10-01 2012-10-01 false Safety fitness standard. 385.5 Section 385.5... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS SAFETY FITNESS PROCEDURES General § 385.5 Safety fitness standard. The satisfactory safety rating is based on the degree of...
49 CFR 385.5 - Safety fitness standard.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 5 2013-10-01 2013-10-01 false Safety fitness standard. 385.5 Section 385.5... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS SAFETY FITNESS PROCEDURES General § 385.5 Safety fitness standard. The satisfactory safety rating is based on the degree of...
49 CFR 385.5 - Safety fitness standard.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 5 2014-10-01 2014-10-01 false Safety fitness standard. 385.5 Section 385.5... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS SAFETY FITNESS PROCEDURES General § 385.5 Safety fitness standard. The satisfactory safety rating is based on the degree of...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-21
... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2011-0127] Pipeline Safety: Meetings of the Technical Pipeline Safety Standards Committee and the Technical Hazardous Liquid Pipeline Safety Standards Committee AGENCY: Pipeline and Hazardous Materials...
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei; Litt, Jonathan S.
2007-01-01
Gas turbine engines are designed to provide sufficient safety margins to guarantee robust operation with an exceptionally long life. However, engine performance requirements may be drastically altered during abnormal flight conditions or emergency maneuvers. In some situations, the conservative design of the engine control system may not be in the best interest of overall aircraft safety; it may be advantageous to "sacrifice" the engine to "save" the aircraft. Motivated by this opportunity, the NASA Aviation Safety Program is conducting resilient propulsion research aimed at developing adaptive engine control methodologies to operate the engine beyond the normal domain for emergency operations to maximize the possibility of safely landing the damaged aircraft. Previous research studies and field incident reports show that the propulsion system can be an effective tool to help control and eventually land a damaged aircraft. Building upon the flight-proven Propulsion Controlled Aircraft (PCA) experience, this area of research will focus on how engine control systems can improve aircraft safe-landing probabilities under adverse conditions. This paper describes the proposed research topics in Engine System Requirements, Engine Modeling and Simulation, Engine Enhancement Research, Operational Risk Analysis and Modeling, and Integrated Flight and Propulsion Controller Designs that support the overall goal.
Basic Wind Tech Course - Lesson Plans and Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swapp, Andy
2011-07-01
The funds from this project were used to purchase tools and instrumentation to help replicate actual on-the-job wind energy scenarios which provided the students with the practical or applied components of wind energy jobs. This project enhanced the educational experiences provided for the students in terms of engineering and science components of wind energy by using electronics, control systems, and electro-mechanical instrumentation to help students learn standardized wind-specific craftsman skills. In addition the tools and instrumentation helped the students learn the safety necessary to work in the wind industry.
Colombini, D; Di Leone, G; Occhipinti, E; Montomoli, L; Ruschioni, A; Giambartolomei, M; Ardissone, S; Fanti, M; Pressiani, S; Placci, M; Cerbai, M; Preite, S
2009-01-01
During the last Congress of the International Ergonomics Association (IEA), Beijing - China August 2009, in collaboration with World Health Organization an international group for developing a "toolkit for MSD prevention" was founded. Possible users of toolkits are: members of a health and safety committee; health and safety representatives; line supervisors; foremen; workers; government representatives; health workers implementing basic occupational health services; occupational health and safety specialists. According with ISO standard 11228 series and their ISO Application document for the Key enters and Quick Assessment (green/red conditions), our group developed a first mapping methodology of occupational hazards in handicraft, working with the support of the information technology (Excel). This methodology, utilizing specific key enters and quick evaluation, allows a simple risk estimation. So it is possible to decide for which occupational hazards will be necessary an exhaustive assessment and to which professional consultant it is better to direct them to (worker's doctor, engineer, chemical, etc.).
White, C L
1992-04-01
A new standard set forth by the Occupational Safety and Health Administration (OSHA) requires healthcare employers to implement sweeping new controls in areas such as record keeping, engineering, hazard prevention, and work practice. Through the bloodborne pathogen standard, which went into effect on March 6, OSHA acknowledges that healthcare workers face significant health risks as a result of occupational exposure to blood and other infectious materials. Although most prudent healthcare providers already adhere to the Centers for Disease Control's universal precautions, the OSHA regulations include several additional mandatory measures that are more specific and stringent. The additional measures include the development of an exposure control plan, procedures for responding to an employee's exposure to bloodborne pathogens, the implementation of certain engineering and work practice controls to eliminate or minimize on-the-job exposure risks, and the provision of personal protective equipment and information and training programs. OSHA estimates that the greatest cost component of implementing procedures to bring a facility into compliance is attributable to the purchase of personal protective equipment. Although the costs of compliance are substantial, OSHA has estimated that these costs represent less than 1 percent of the healthcare industry's annual revenues. Violation of the bloodborne pathogen standard may result in penalties of up to $70,000, depending on the severity of the infraction. Criminal penalties are also possible for willful violations that result in worker death.
Heat Transfer Principles in Thermal Calculation of Structures in Fire
Zhang, Chao; Usmani, Asif
2016-01-01
Structural fire engineering (SFE) is a relatively new interdisciplinary subject, which requires a comprehensive knowledge of heat transfer, fire dynamics and structural analysis. It is predominantly the community of structural engineers who currently carry out most of the structural fire engineering research and design work. The structural engineering curriculum in universities and colleges do not usually include courses in heat transfer and fire dynamics. In some institutions of higher education, there are graduate courses for fire resistant design which focus on the design approaches in codes. As a result, structural engineers who are responsible for structural fire safety and are competent to do their jobs by following the rules specified in prescriptive codes may find it difficult to move toward performance-based fire safety design which requires a deep understanding of both fire and heat. Fire safety engineers, on the other hand, are usually focused on fire development and smoke control, and may not be familiar with the heat transfer principles used in structural fire analysis, or structural failure analysis. This paper discusses the fundamental heat transfer principles in thermal calculation of structures in fire, which might serve as an educational guide for students, engineers and researchers. Insights on problems which are commonly ignored in performance based fire safety design are also presented. PMID:26783379
Safety in laboratories: Indian scenario.
Mustafa, Ajaz; Farooq, A Jan; Qadri, Gj; S A, Tabish
2008-07-01
Health and safety in clinical laboratories is becoming an increasingly important subject as a result of emergence of highly infectious diseases such as Hepatitis and HIV. A cross sectional study was carried out to study the safety measures being adopted in clinical laboratories of India. Heads of laboratories of teaching hospitals of India were subjected to a standardized, pretested questionnaire. Response rate was 44.8%. only 60% of laboratories had person in-charge of safety in laboratory. Seventy three percent of laboratories had safety education program regarding hazards. In 91% of laboratories staff is using protective clothing while working in laboratories. Hazardous material regulations are followed in 78% of laboratories. Regular health check ups are carried among laboratory staff in 43.4% of laboratories.Safety manual is available in 56.5% of laboratories. 73.9% of laboratories are equipped with fire extinguishers. Fume cupboards are provided in 34.7% of laboratories and they are regularly checked in 87.5% of these laboratories. In 78.26% of laboratories suitable measures are taken to minimize formation of aerosols.In 95.6% of laboratories waste is disposed off as per bio-medical waste management handling rules. Laboratory of one private medical college was accredited with NABL and safety parameters were better in that laboratory. Installing safety engineered devices apparently contributes to significant decrease in injuries in laboratories; laboratory safety has to be a part of overall quality assurance programme in hospitals. Accreditation has to be made necessary for all laboratories.
Heget, Jeffrey R; Bagian, James P; Lee, Caryl Z; Gosbee, John W
2002-12-01
In 1998 the Veterans Health Administration (VHA) created the National Center for Patient Safety (NCPS) to lead the effort to reduce adverse events and close calls systemwide. NCPS's aim is to foster a culture of safety in the Department of Veterans Affairs (VA) by developing and providing patient safety programs and delivering standardized tools, methods, and initiatives to the 163 VA facilities. To create a system-oriented approach to patient safety, NCPS looked for models in fields such as aviation, nuclear power, human factors, and safety engineering. Core concepts included a non-punitive approach to patient safety activities that emphasizes systems-based learning, the active seeking out of close calls, which are viewed as opportunities for learning and investigation, and the use of interdisciplinary teams to investigate close calls and adverse events through a root cause analysis (RCA) process. Participation by VA facilities and networks was voluntary. NCPS has always aimed to develop a program that would be applicable both within the VA and beyond. NCPS's full patient safety program was tested and implemented throughout the VA system from November 1999 to August 2000. Program components included an RCA system for use by caregivers at the front line, a system for the aggregate review of RCA results, information systems software, alerts and advisories, and cognitive acids. Following program implementation, NCPS saw a 900-fold increase in reporting of close calls of high-priority events, reflecting the level of commitment to the program by VHA leaders and staff.
76 FR 10246 - Updating Fire Safety Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-24
... DEPARTMENT OF VETERANS AFFAIRS 38 CFR Parts 17 and 59 RIN 2900-AN57 Updating Fire Safety Standards... regulations and update the standards for VA approval of such facilities, including standards for fire safety... to ``RIN 2900-AN57--Updating Fire Safety [[Page 10247
Decision support and disease management: a logic engineering approach.
Fox, J; Thomson, R
1998-12-01
This paper describes the development and application of PROforma, a unified technology for clinical decision support and disease management. Work leading to the implementation of PROforma has been carried out in a series of projects funded by European agencies over the past 13 years. The work has been based on logic engineering, a distinct design and development methodology that combines concepts from knowledge engineering, logic programming, and software engineering. Several of the projects have used the approach to demonstrate a wide range of applications in primary and specialist care and clinical research. Concurrent academic research projects have provided a sound theoretical basis for the safety-critical elements of the methodology. The principal technical results of the work are the PROforma logic language for defining clinical processes and an associated suite of software tools for delivering applications, such as decision support and disease management procedures. The language supports four standard objects (decisions, plans, actions, and enquiries), each of which has an intuitive meaning with well-understood logical semantics. The development toolset includes a powerful visual programming environment for composing applications from these standard components, for verifying consistency and completeness of the resulting specification and for delivering stand-alone or embeddable applications. Tools and applications that have resulted from the work are described and illustrated, with examples from specialist cancer care and primary care. The results of a number of evaluation activities are included to illustrate the utility of the technology.
46 CFR 128.130 - Vital systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... auxiliaries vital to the vessel's survivability and safety. (10) Any other marine-engineering system... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS MARINE ENGINEERING: EQUIPMENT... vessel's survivability and safety. For the purpose of this subchapter, the following are vital systems...
46 CFR 128.130 - Vital systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... auxiliaries vital to the vessel's survivability and safety. (10) Any other marine-engineering system... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS MARINE ENGINEERING: EQUIPMENT... vessel's survivability and safety. For the purpose of this subchapter, the following are vital systems...
46 CFR 128.130 - Vital systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... auxiliaries vital to the vessel's survivability and safety. (10) Any other marine-engineering system... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS MARINE ENGINEERING: EQUIPMENT... vessel's survivability and safety. For the purpose of this subchapter, the following are vital systems...
46 CFR 128.130 - Vital systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... auxiliaries vital to the vessel's survivability and safety. (10) Any other marine-engineering system... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS MARINE ENGINEERING: EQUIPMENT... vessel's survivability and safety. For the purpose of this subchapter, the following are vital systems...
[Study on the reorganization of standards related to food contact ceramics and porcelains].
Zhang, Jianbo; Zhu, Lei; Zhang, Hong; Liu, Shan; Wang, Zhutian
2014-07-01
To solve the problem of overlap, iterance and conflict among current standards related to food contact ceramics and porcelains. To collect all the current standards related to food contact ceramics and porcelains and reorganize them following the settled principles and method and list the standards that need to be revoked, revised, incorporated, or keep valid and excluded from the food safety standard system. 19 standards were collected in this study and reorganized. The main food safety indexes in these standards were the limits for lead and cadmium that released from food contact ceramics and porcelains. There were released limits for lead and cadmium in 10 standards, including 4 horizontal standards and 6 commodity standards. The provisions in these 10 standards were in conflict. And as a result of this, the 4 horizontal standards were suggested to be incorporated and revised to one food safety standard, while the 6 commodity standards were suggested to be revised and exclude the lead and cadmium provisions. Another 7 commodity standards only referenced provisions for lead and cadmium limits from horizontal standards, and these 7 standards were suggested to be excluded from food safety standard system. There were no food safety indexes in 2 standards of the 19 standards, these standards were considered not related to food safety and no need to be reorganized. There were conflicts about the released limits of lead and cadmium among the current standards related to food contact ceramics and porcelains. So, it is necessary to a set up a new food safety standard for released lead and cadmium permissible limits which can apply to all food contact ceramics and porcelains. This food safety standard should be based on food safety risk assessment and the actual situations of manufacture and usage of food contact ceramics and porcelains. The provisions in international standards and relative standards from other countries can also provide references to this standard.
NASA Technical Reports Server (NTRS)
Snyder, C. T.; Drinkwater, F. J., III; Fry, E. B.; Forrest, R. D.
1973-01-01
Data for use in development of takeoff airworthiness standards for new aircraft designs such as the supersonic transport (SST) and the large wide-body subsonic jet transport are provided. An advanced motion simulator was used to compare the performance and handling characteristics of three representative large jet transports during specific flight certification tasks. Existing regulatory constraints and methods for determining rotation speed were reviewed, and the effects on takeoff performance of variations in rotation speed, pitch attitude, and pitch attitude rate during the rotation maneuver were analyzed. A limited quantity of refused takeoff information was obtained. The aerodynamics, wing loading, and thrust-to-weight ratio of the subject SST resulted in takeoff speeds limited by climb (rather than lift-off) considerations. Take-off speeds based on U.S. subsonic transport requirements were found unacceptable because of the criticality of rotation-abuse effects on one-engine-inoperative climb performance. Adequate safety margin was provided by takeoff speeds based on proposed Anglo-French supersonic transport (TSS) criteria, with the limiting criterion being that takeoff safety speed be at least 1.15 times the one-engine-inoperative zero-rate-of-climb speed. Various observations related to SST certification are presented.
Focus on: Washington Hospital Center, Biomedical Engineering Department.
Hughes, J D
1995-01-01
The Biomedical Engineering Department of the Washington Hospital Center provides clinical engineering services to an urban 907-bed, tertiary care teaching hospital and a variety of associated healthcare facilities. With an annual budget of over $3,000,000, the 24-person department provides cradle-to-grave support for a host of sophisticated medical devices and imaging systems such as lasers, CT scanners, and linear accelerators as well as traditional patient care instrumentation. Hallmarks of the department include its commitment to customer service and patient care, close collaboration with clinicians and quality assurance teams throughout the hospital system, proactive involvement in all phases of the technology management process, and shared leadership in safety standards with the hospital's risk management group. Through this interactive process, the department has assisted the Center not only in the acquisition of 11,000 active devices with a value of more than $64 million, but also in becoming one of the leading providers of high technology healthcare in the Washington, DC metropolitan area.
NASA Astrophysics Data System (ADS)
Burke, David A.
One of the pillars of aviation safety is assuring sound engineering practices through airworthiness certification. As Unmanned Aircraft Systems (UAS) grow in popularity, the need for airworthiness standards and verification methods tailored for UAS becomes critical. While airworthiness practices for large UAS may be similar to manned aircraft, it is clear that small UAS require a paradigm shift from the airworthiness practices of manned aircraft. Although small in comparison to manned aircraft these aircraft are not merely remote controlled toys. Small UAS may be complex aircraft flying in the National Airspace System (NAS) over populated areas for extended durations and beyond line of sight of the operators. A comprehensive systems engineering framework for certifying small UAS at the system level is needed. This work presents a point based tool that evaluates small UAS by rewarding good engineering practices in design, analysis, and testing. The airworthiness requirements scale with vehicle size and operational area, while allowing flexibility for new technologies and unique configurations.
Development of Diesel Engine Operated Forklift Truck for Explosive Gas Atmospheres
NASA Astrophysics Data System (ADS)
Vishwakarma, Rajendra Kumar; Singh, Arvind Kumar; Ahirwal, Bhagirath; Sinha, Amalendu
2018-02-01
For the present study, a prototype diesel engine operated Forklift truck of 2 t capacity is developed for explosive gas atmosphere. The parts of the Forklift truck are assessed against risk of ignition of the explosive gases, vapors or mist grouped in Gr. IIA and having ignition temperature more than 200°C. Identification of possible sources of ignition and their control or prevention is the main objective of this work. The design transformation of a standard Forklift truck into a special Forklift truck is made on prototype basis. The safety parameters of the improved Forklift truck are discussed in this paper. The specially designed Forklift truck is useful in industries where explosive atmospheres may present during normal working conditions and risk of explosion is a concern during handling or transportation of materials. This indigenous diesel engine based Forklift truck for explosive gas atmosphere classified as Zone 1 and Zone 2 area and gas group IIA is developed first time in India in association with the Industry.
30 CFR 6.20 - MSHA acceptance of equivalent non-MSHA product safety standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false MSHA acceptance of equivalent non-MSHA product... LABORATORIES AND NON-MSHA PRODUCT SAFETY STANDARDS § 6.20 MSHA acceptance of equivalent non-MSHA product safety standards. (a) MSHA will accept non-MSHA product safety standards, or groups of standards, as equivalent...
30 CFR 6.20 - MSHA acceptance of equivalent non-MSHA product safety standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false MSHA acceptance of equivalent non-MSHA product... LABORATORIES AND NON-MSHA PRODUCT SAFETY STANDARDS § 6.20 MSHA acceptance of equivalent non-MSHA product safety standards. (a) MSHA will accept non-MSHA product safety standards, or groups of standards, as equivalent...
30 CFR 6.20 - MSHA acceptance of equivalent non-MSHA product safety standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false MSHA acceptance of equivalent non-MSHA product... LABORATORIES AND NON-MSHA PRODUCT SAFETY STANDARDS § 6.20 MSHA acceptance of equivalent non-MSHA product safety standards. (a) MSHA will accept non-MSHA product safety standards, or groups of standards, as equivalent...
30 CFR 6.20 - MSHA acceptance of equivalent non-MSHA product safety standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false MSHA acceptance of equivalent non-MSHA product... LABORATORIES AND NON-MSHA PRODUCT SAFETY STANDARDS § 6.20 MSHA acceptance of equivalent non-MSHA product safety standards. (a) MSHA will accept non-MSHA product safety standards, or groups of standards, as equivalent...
30 CFR 6.20 - MSHA acceptance of equivalent non-MSHA product safety standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false MSHA acceptance of equivalent non-MSHA product... LABORATORIES AND NON-MSHA PRODUCT SAFETY STANDARDS § 6.20 MSHA acceptance of equivalent non-MSHA product safety standards. (a) MSHA will accept non-MSHA product safety standards, or groups of standards, as equivalent...
Combining System Safety and Reliability to Ensure NASA CoNNeCT's Success
NASA Technical Reports Server (NTRS)
Havenhill, Maria; Fernandez, Rene; Zampino, Edward
2012-01-01
Hazard Analysis, Failure Modes and Effects Analysis (FMEA), the Limited-Life Items List (LLIL), and the Single Point Failure (SPF) List were applied by System Safety and Reliability engineers on NASA's Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project. The integrated approach involving cross reviews of these reports by System Safety, Reliability, and Design engineers resulted in the mitigation of all identified hazards. The outcome was that the system met all the safety requirements it was required to meet.
Just Culture: A Foundation for Balanced Accountability and Patient Safety
Boysen, Philip G.
2013-01-01
Background The framework of a just culture ensures balanced accountability for both individuals and the organization responsible for designing and improving systems in the workplace. Engineering principles and human factors analysis influence the design of these systems so they are safe and reliable. Methods Approaches for improving patient safety introduced here are (1) analysis of error, (2) specific tools to enhance safety, and (3) outcome engineering. Conclusion The just culture is a learning culture that is constantly improving and oriented toward patient safety. PMID:24052772
High Reliability Engine Control Demonstrated for Aircraft Engines
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei
1999-01-01
For a dual redundant-control system, which is typical for short-haul aircraft, if a failure is detected in a control sensor, the engine control is transferred to a safety mode and an advisory is issued for immediate maintenance action to replace the failed sensor. The safety mode typically results in severely degraded engine performance. The goal of the High Reliability Engine Control (HREC) program was to demonstrate that the neural-network-based sensor validation technology can safely operate an engine by using the nominal closed-loop control during and after sensor failures. With this technology, engine performance could be maintained, and the sensor could be replaced as a conveniently scheduled maintenance action.
An approach for the semantic interoperability of ISO EN 13606 and OpenEHR archetypes.
Martínez-Costa, Catalina; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás
2010-10-01
The communication between health information systems of hospitals and primary care organizations is currently an important challenge to improve the quality of clinical practice and patient safety. However, clinical information is usually distributed among several independent systems that may be syntactically or semantically incompatible. This fact prevents healthcare professionals from accessing clinical information of patients in an understandable and normalized way. In this work, we address the semantic interoperability of two EHR standards: OpenEHR and ISO EN 13606. Both standards follow the dual model approach which distinguishes information and knowledge, this being represented through archetypes. The solution presented here is capable of transforming OpenEHR archetypes into ISO EN 13606 and vice versa by combining Semantic Web and Model-driven Engineering technologies. The resulting software implementation has been tested using publicly available collections of archetypes for both standards.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-16
... Standards Service Aviation Safety Inspectors; Correction AGENCY: Federal Aviation Administration (FAA), DOT... ``Restrictions on Operators Employing Former Flight Standards Service Aviation Safety Inspectors'' (76 FR 52231... of, a Flight Standards Service Aviation Safety Inspector, and had direct responsibility to inspect...
40 CFR 1039.105 - What smoke standards must my engines meet?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What smoke standards must my engines... Emission Standards and Related Requirements § 1039.105 What smoke standards must my engines meet? (a) The smoke standards in this section apply to all engines subject to emission standards under this part...
40 CFR 1039.105 - What smoke standards must my engines meet?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What smoke standards must my engines... Emission Standards and Related Requirements § 1039.105 What smoke standards must my engines meet? (a) The smoke standards in this section apply to all engines subject to emission standards under this part...
40 CFR 1039.105 - What smoke standards must my engines meet?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What smoke standards must my engines... Emission Standards and Related Requirements § 1039.105 What smoke standards must my engines meet? (a) The smoke standards in this section apply to all engines subject to emission standards under this part...
40 CFR 1039.105 - What smoke standards must my engines meet?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What smoke standards must my engines... Emission Standards and Related Requirements § 1039.105 What smoke standards must my engines meet? (a) The smoke standards in this section apply to all engines subject to emission standards under this part...
40 CFR 1039.105 - What smoke standards must my engines meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What smoke standards must my engines... Emission Standards and Related Requirements § 1039.105 What smoke standards must my engines meet? (a) The smoke standards in this section apply to all engines subject to emission standards under this part...
Apollo experience report: Safety activities
NASA Technical Reports Server (NTRS)
Rice, C. N.
1975-01-01
A description is given of the flight safety experiences gained during the Apollo Program and safety, from the viewpoint of program management, engineering, mission planning, and ground test operations was discussed. Emphasis is placed on the methods used to identify the risks involved in flight and in certain ground test operations. In addition, there are discussions on the management and engineering activities used to eliminate or reduce these risks.
Safety impact of engineering treatments on undivided rural roads.
Pérez, I
2006-01-01
This article presents an evaluation of the safety impacts of four engineering treatments implemented in the Autonomous Community of Madrid (Spain): highway upgrading; updating and improvement of traffic signing; repainting of pavement markings and pavement resurfacings. This evaluation was carried out using the Empirical Bayes method with a comparison group. The functioning of a methodology to test the significance of the safety impact is described. The results show that highway upgrading has a positive and significant safety impact, while the updating and improvement of traffic signing, the repainting of road markings and pavement resurfacings do not exhibit a significant impact on safety.
24 CFR 51.203 - Safety standards.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Safety standards. 51.203 Section 51... Conventional Fuels or Chemicals of an Explosive or Flammable Nature § 51.203 Safety standards. The following... from a hazard: (a) Thermal Radiation Safety Standard. Projects shall be located so that: (1) The...
41 CFR 50-204.2 - General safety and health standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... health standards. 50-204.2 Section 50-204.2 Public Contracts and Property Management Other Provisions Relating to Public Contracts PUBLIC CONTRACTS, DEPARTMENT OF LABOR 204-SAFETY AND HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS General Safety and Health Standards § 50-204.2 General safety and health...
75 FR 17641 - Updating Fire Safety Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-07
... DEPARTMENT OF VETERANS AFFAIRS 38 CFR Parts 17 and 59 RIN 2900-AN57 Updating Fire Safety Standards... for VA approval of such facilities, including standards for fire safety and heating and cooling... submitted in response to ``RIN 2900-AN57--Updating Fire Safety Standards.'' Copies of comments received will...
24 CFR 51.203 - Safety standards.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Safety standards. 51.203 Section 51... Conventional Fuels or Chemicals of an Explosive or Flammable Nature § 51.203 Safety standards. The following... from a hazard: (a) Thermal Radiation Safety Standard. Projects shall be located so that: (1) The...
76 FR 8699 - Locomotive Safety Standards; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
.... FRA-2009-0094 and FRA-2009-0095, Notice No. 2] RIN 2130-AC16 Locomotive Safety Standards; Correction... notifying the public that the correct docket number for the Locomotive Safety Standards notice of proposed... locomotive safety standards. See 76 FR 2200. The NPRM established a public docket to receive comments in...
77 FR 23159 - Locomotive Safety Standards; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-18
.... FRA-2009-0094 and FR-2009-0095, Notice No. 4] RIN 2130-AC16 Locomotive Safety Standards; Correction... notifying the public that the correct docket number for the Locomotive Safety Standards final rule is FRA... rule related to locomotive safety standards. See 77 FR 21312. The final rule established a public...
46 CFR 80.25 - Notification of safety standards.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Notification of safety standards. 80.25 Section 80.25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS DISCLOSURE OF SAFETY STANDARDS AND COUNTRY OF REGISTRY § 80.25 Notification of safety standards. (a) Each owner, operator, agent...
Code of Federal Regulations, 2010 CFR
2010-04-01
... Radiation Safety Standards Committee (TEPRSSC). 14.120 Section 14.120 Food and Drugs FOOD AND DRUG... Technical Electronic Products Radiation Safety Standards Committee § 14.120 Establishment of the Technical Electronic Product Radiation Safety Standards Committee (TEPRSSC). The Technical Electronic Product Radiation...
Code of Federal Regulations, 2011 CFR
2011-04-01
... Radiation Safety Standards Committee (TEPRSSC). 14.120 Section 14.120 Food and Drugs FOOD AND DRUG... Technical Electronic Products Radiation Safety Standards Committee § 14.120 Establishment of the Technical Electronic Product Radiation Safety Standards Committee (TEPRSSC). The Technical Electronic Product Radiation...
Code of Federal Regulations, 2012 CFR
2012-04-01
... Radiation Safety Standards Committee (TEPRSSC). 14.120 Section 14.120 Food and Drugs FOOD AND DRUG... Technical Electronic Products Radiation Safety Standards Committee § 14.120 Establishment of the Technical Electronic Product Radiation Safety Standards Committee (TEPRSSC). The Technical Electronic Product Radiation...
Code of Federal Regulations, 2014 CFR
2014-04-01
... Radiation Safety Standards Committee (TEPRSSC). 14.120 Section 14.120 Food and Drugs FOOD AND DRUG... Technical Electronic Products Radiation Safety Standards Committee § 14.120 Establishment of the Technical Electronic Product Radiation Safety Standards Committee (TEPRSSC). The Technical Electronic Product Radiation...
Code of Federal Regulations, 2013 CFR
2013-04-01
... Radiation Safety Standards Committee (TEPRSSC). 14.120 Section 14.120 Food and Drugs FOOD AND DRUG... Technical Electronic Products Radiation Safety Standards Committee § 14.120 Establishment of the Technical Electronic Product Radiation Safety Standards Committee (TEPRSSC). The Technical Electronic Product Radiation...
78 FR 9623 - Federal Motor Vehicle Safety Standards; Air Brake Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-11
... [Docket No. NHTSA-2013-0011] RIN 2127-AL11 Federal Motor Vehicle Safety Standards; Air Brake Systems... rule that amended the Federal motor vehicle safety standard for air brake systems by requiring... published a final rule in the Federal Register amending Federal Motor Vehicle Safety Standard (FMVSS) No...
40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for other testing. (2) NOX standards apply based on the engine's model year and maximum in-use engine... Engines (g/kW-hr) Emission standards Model year Maximum in-use engine speed Less than130 RPM 130-2000RPM a... Tier 1 NOX standards apply as specified in 40 CFR part 94 for engines originally manufactured in model...
40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for other testing. (2) NOX standards apply based on the engine's model year and maximum in-use engine... Engines (g/kW-hr) Emission standards Model year Maximum in-use engine speed Less than130 RPM 130-2000RPM a... Tier 1 NOX standards apply as specified in 40 CFR part 94 for engines originally manufactured in model...
40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for other testing. (2) NOX standards apply based on the engine's model year and maximum in-use engine... Engines (g/kW-hr) Emission standards Model year Maximum in-use engine speed Less than130 RPM 130-2000RPM a... standards apply as specified in 40 CFR part 94 for engines originally manufactured in model years 2004...
40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for other testing. (2) NOX standards apply based on the engine's model year and maximum in-use engine... Engines (g/kW-hr) Emission standards Model year Maximum in-use engine speed Less than130 RPM 130-2000RPM a... standards apply as specified in 40 CFR part 94 for engines originally manufactured in model years 2004...
40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for other testing. (2) NOX standards apply based on the engine's model year and maximum in-use engine... Engines (g/kW-hr) Emission standards Model year Maximum in-use engine speed Less than130 RPM 130-2000RPM a... Tier 1 NOX standards apply as specified in 40 CFR part 94 for engines originally manufactured in model...
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission standards if I am a stationary CI internal combustion engine manufacturer? 60.4203 Section 60.4203... Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a stationary CI internal combustion engine manufacturer? Engines manufactured by...
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission standards if I am a stationary CI internal combustion engine manufacturer? 60.4203 Section 60.4203... Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a stationary CI internal combustion engine manufacturer? Engines manufactured by...
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...
50 CFR 600.355 - National Standard 10-Safety of Life at Sea.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false National Standard 10-Safety of Life at Sea... Standards § 600.355 National Standard 10—Safety of Life at Sea. (a) Standard 10. Conservation and management measures shall, to the extent practicable, promote the safety of human life at sea. (b) General. (1...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakubowski, E.M.; Borland, M.M.; Norris, L.
1995-06-01
The U.S. Army Edgewood Research, Development and Engineering Center, the U.S. Army Aberdeen Proving Ground Support Activity, Directorate of Safety, Health and the Environment and SciTech Services Inc., an independent contractor, have developed an approach for screening environmental samples for the presence of chemical warfare agents. Since 1918, the Edgewood area of Aberdeen Proving Ground has been a research and testing ground for toxic agent compounds. Since these materials are considered highly toxic, screening for their presence in environmental samples is necessary for safe shipment to contract laboratories for testing by EPA guidelines. The screening ensures worker safety and maintainsmore » U.S. Army standards for transportation of materials potentially contaminated with chemical warfare agents. This paper describes the screening methodology.« less
Bindi, L; Ossicini, A
2007-01-01
The project "The publication of good practices and good techniques for prevention" is one the priorities of nail. This computerized system for the collection of good practices and standards of Good Technology is aimed to health and safety of workers. The basic objective of the database is to provide a valuable tool, usable, dynamic and implemented, in order to facilitate and direct the access to BP and BT it by people responsible for SSL. At the same time constitutes a tool strategically important for enterprises (especially SMEs) in terms of technological innovation and competitiveness, related to the prevention, safety and health of workers. The realization of this project has involved many of the professionals (chemists, engineers, doctors, biologists, geologists, etc.), and everyone gives his intake of qualified professional competence.
46 CFR 50.01-15 - Scope of regulations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... choice of materials for machinery, boilers, pressure vessels, safety valves, and piping systems upon which safety of life is dependent. (b) Since this subchapter contains the marine engineering details, it... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Basis and...
46 CFR 50.01-15 - Scope of regulations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... choice of materials for machinery, boilers, pressure vessels, safety valves, and piping systems upon which safety of life is dependent. (b) Since this subchapter contains the marine engineering details, it... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Basis and...
46 CFR 50.01-15 - Scope of regulations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... choice of materials for machinery, boilers, pressure vessels, safety valves, and piping systems upon which safety of life is dependent. (b) Since this subchapter contains the marine engineering details, it... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Basis and...
46 CFR 50.01-15 - Scope of regulations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... choice of materials for machinery, boilers, pressure vessels, safety valves, and piping systems upon which safety of life is dependent. (b) Since this subchapter contains the marine engineering details, it... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Basis and...
46 CFR 50.01-15 - Scope of regulations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... choice of materials for machinery, boilers, pressure vessels, safety valves, and piping systems upon which safety of life is dependent. (b) Since this subchapter contains the marine engineering details, it... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Basis and...
Safety engineering: KTA code of practice. Lifting mechanisms in nuclear plant
NASA Astrophysics Data System (ADS)
Lifting mechanisms safety requirements are discussed in accordance with the present state of development of science and engineering for the protection of life, health, and assets against the dangers of nuclear energy and the ill effects of ionizing radiation.
Commercial Human Spaceflight: Self-Regulation is the Future
NASA Astrophysics Data System (ADS)
Sgobba, Tommaso
2013-09-01
In 2004, the US private spaceflight industry welcomed a law (i.e. the Commercial Space Launch Amendment Act (CSLAA)) postponing until December 23, 2012 or until an accident occurs, the ability by the FAA to issue safety standards and regulations except for aspects of public safety. The Congress later extended the original deadline nearly three years to October 1, 2015.It goes without saying that while government regulations are postponed a commercial spaceflight company has in any case all interest to build a safe vehicles according to the state-of-art. No doubt that their engineers will routinely apply well established technical standards for developing or procuring subsystems and equipment, like pressurized tanks, batteries or pyro valves. They will also at certain points take decisions about redundancy levels when defining, for example, the on-board computers architecture, or the landing system. There will be trade-offs to be made considering cost and mass constraints and acceptable risk thresholds defined. Some key safety decisions will be taken at technical level, other will be necessarily deferred to the company management due to potential impact on the overall project cost and schedule.Therefore the on-going debate is not truly about making or not a commercial space system safe (for those on-board), but about who should bear, at this initial stage of industry development, responsibility to ensure that best practices are known and consistently applied. Responsibility which traditionally belongs to government agencies but that the CSLAA "de facto" delegates to each manufacturer.This paper tries to demonstrate that the traditional model of government establishing detailed safety regulations and certifying compliance is no longer valid for the development of highly advanced systems, and that the current trend is instead for relevant industrial community as a whole to take the lead in developing detailed safety standards and policies and verifying their implementation while the government maintains only an overall supervisory role.An example of such trend comes from the Presidential Commission that investigated the Deepwater Horizon oil-rig disaster in the Gulf of Mexico of April 2010 (11 workers killed plus an oil spill that caused anenvironmental catastrophe), recommended that "the gas and oil industry must move towards developing a notion of safety as a collective responsibility. Industry should establish a "Safety Institute"...this would be an-industry created, self-policing entity aimed at developing, adopting, and enforcing standards of excellence to ensure continuous improvement in safety and operational integrity offshore".Similarly, this paper recommends to put in place a self- regulatory scheme based on standards established by industry, and on compliance verification performed by an independent industrial organization.This paper will show also that a similar set-up in the commercial maritime business, initially adopted more than two and half centuries ago in support of the insurance industry, has eventually evolved into a well- integrated public/industry shared regulatory framework at national and international level.
Engineering and public health at CDC.
Earnest, G Scott; Reed, Laurence D; Conover, D; Estill, C; Gjessing, C; Gressel, M; Hall, R; Hudock, S; Hudson, H; Kardous, C; Sheehy, J; Topmiller, J; Trout, D; Woebkenberg, M; Amendola, A; Hsiao, H; Keane, P; Weissman, D; Finfinger, G; Tadolini, S; Thimons, E; Cullen, E; Jenkins, M; McKibbin, R; Conway, G; Husberg, B; Lincoln, J; Rodenbeck, S; Lantagne, D; Cardarelli, J
2006-12-22
Engineering is the application of scientific and technical knowledge to solve human problems. Using imagination, judgment, and reasoning to apply science, technology, mathematics, and practical experience, engineers develop the design, production, and operation of useful objects or processes. During the 1940s, engineers dominated the ranks of CDC scientists. In fact, the first CDC director, Assistant Surgeon General Mark Hollis, was an engineer. CDC engineers were involved in malaria control through the elimination of standing water. Eventually the CDC mission expanded to include prevention and control of dengue, typhus, and other communicable diseases. The development of chlorination, water filtration, and sewage treatment were crucial to preventing waterborne illness. Beginning in the 1950s, CDC engineers began their work to improve public health while developing the fields of environmental health, industrial hygiene, and control of air pollution. Engineering disciplines represented at CDC today include biomedical, civil, chemical, electrical, industrial, mechanical, mining, and safety engineering. Most CDC engineers are located in the National Institute for Occupational Safety and Health (NIOSH) and the Agency for Toxic Substances and Disease Registry (ATSDR). Engineering research at CDC has a broad stakeholder base. With the cooperation of industry, labor, trade associations, and other stakeholders and partners, current work includes studies of air contaminants, mining, safety, physical agents, ergonomics, and environmental hazards. Engineering solutions remain a cornerstone of the traditional "hierarchy of controls" approach to reducing public health hazards.
NREL Provides First-of-its-Kind Guidance Promoting Safety Standards for
Promoting Safety Standards for Natural Gas Vehicle Maintenance Facilities NREL Provides First-of-its-Kind Guidance Promoting Safety Standards for Natural Gas Vehicle Maintenance Facilities December 1, 2017 The U.S vehicle maintenance facilities with a new handbook and webinar that outline safety factors and standards
NASA Technical Reports Server (NTRS)
1963-01-01
The following report highlights some of the work accomplished by the Aviation Safety Engineering and Research Division of the Flight Safety Foundations since the last report to the NASA Committee on Aircraft Operating Problems on 22 May 1963. The information presented is in summary form. Additional details may be provided upon request of the reports themselves may be obtained from AvSER.
Urban construction and safety project
NASA Technical Reports Server (NTRS)
Hogarth, P. T.
1976-01-01
Technology utilization projects in the area of urban construction and safety included the following: development of undercarpet and baseboard flat conductor cables, flood insurance studies, tornado safety engineering, the Project TECH house at the Langley Research Center, assistance to the City of Atlanta in their environmental habitability and resource allocation program, and market assessment of a solid state diesel engine controller. The flat conductor cable and the flood insurance studies are given particular attention.
Performance of a Fuel-Injection Spark-Ignition Engine Using a Hydrogenated Safety Fuel
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Young, Alfred W
1934-01-01
This report presents the performance of a single-cylinder test engine using a hydrogenated safety fuel. The safety fuel has a flash point of 125 degrees f. (Cleveland open-dup method), which is high enough to remove most of the fire hazard, and an octane number of 95, which permits higher compression ratios to be used than are permissible with most undoped gasolines.
A literature review of safety culture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Kerstan Suzanne; Stevens-Adams, Susan Marie; Wenner, Caren A.
2013-03-01
Workplace safety has been historically neglected by organizations in order to enhance profitability. Over the past 30 years, safety concerns and attention to safety have increased due to a series of disastrous events occurring across many different industries (e.g., Chernobyl, Upper Big-Branch Mine, Davis-Besse etc.). Many organizations have focused on promoting a healthy safety culture as a way to understand past incidents, and to prevent future disasters. There is an extensive academic literature devoted to safety culture, and the Department of Energy has also published a significant number of documents related to safety culture. The purpose of the current endeavormore » was to conduct a review of the safety culture literature in order to understand definitions, methodologies, models, and successful interventions for improving safety culture. After reviewing the literature, we observed four emerging themes. First, it was apparent that although safety culture is a valuable construct, it has some inherent weaknesses. For example, there is no common definition of safety culture and no standard way for assessing the construct. Second, it is apparent that researchers know how to measure particular components of safety culture, with specific focus on individual and organizational factors. Such existing methodologies can be leveraged for future assessments. Third, based on the published literature, the relationship between safety culture and performance is tenuous at best. There are few empirical studies that examine the relationship between safety culture and safety performance metrics. Further, most of these studies do not include a description of the implementation of interventions to improve safety culture, or do not measure the effect of these interventions on safety culture or performance. Fourth, safety culture is best viewed as a dynamic, multi-faceted overall system composed of individual, engineered and organizational models. By addressing all three components of safety culture, organizations have a better chance of understanding, evaluating, and making positive changes towards safety within their own organization.« less
Kulanthayan, S; See, Lai Git; Kaviyarasu, Y; Nor Afiah, M Z
2012-05-01
Almost half of the global traffic crashes involve vulnerable groups such as pedestrian, cyclists and two-wheeler users. The main objective of this study was to determine the factors that influence standard of the safety helmets used amongst food delivery workers by presence of Standard and Industrial Research Institute of Malaysia (SIRIM) certification label. A cross sectional study was conducted amongst 150 food delivery workers from fast food outlets in the vicinity of Selangor and Kuala Lumpur. During observation, safety helmets were classified as standard safety helmet in the presence of SIRIM label and non-standard in the absence of the label. They were approached for questionnaire participation once consent was obtained and were requested to exchange their safety helmet voluntarily with a new one after the interview. Data analysis was carried out using SPSS. Chi square and logistic regression analysis was applied to determine the significance and odds ratio of the variables studied, respectively (penetration test, age, education level, knowledge, crash history, types of safety helmet, marital status and years of riding experience) against the presence of SIRIM label. The response rate for this study was 85.2%. The prevalence of non-standard helmets use amongst fast food delivery workers was 55.3%. Safety helmets that failed the penetration test had higher odds of being non-standard helmets compared with safety helmets passing the test. Types of safety helmet indicated half-shell safety helmets had higher odds to be non-standard safety helmets compared to full-shell safety helmets. Riders with more years of riding experience were in high odds of wearing non-standard safety helmets compared to riders with less riding experience. Non-standard (non-SIRIM approved) helmets were more likely to be half-shell helmets, were more likely to fail the standards penetration test, and were more likely to be worn by older, more experienced riders. The implications of these findings are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
GPM Timeline Inhibits For IT Processing
NASA Technical Reports Server (NTRS)
Dion, Shirley K.
2014-01-01
The Safety Inhibit Timeline Tool was created as one approach to capturing and understanding inhibits and controls from IT through launch. Global Precipitation Measurement (GPM) Mission, which launched from Japan in March 2014, was a joint mission under a partnership between the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM was one of the first NASA Goddard in-house programs that extensively used software controls. Using this tool during the GPM buildup allowed a thorough review of inhibit and safety critical software design for hazardous subsystems such as the high gain antenna boom, solar array, and instrument deployments, transmitter turn-on, propulsion system release, and instrument radar turn-on. The GPM safety team developed a methodology to document software safety as part of the standard hazard report. As a result of this process, a new tool safety inhibit timeline was created for management of inhibits and their controls during spacecraft buildup and testing during IT at GSFC and at the launch range in Japan. The Safety Inhibit Timeline Tool was a pathfinder approach for reviewing software that controls the electrical inhibits. The Safety Inhibit Timeline Tool strengthens the Safety Analysts understanding of the removal of inhibits during the IT process with safety critical software. With this tool, the Safety Analyst can confirm proper safe configuration of a spacecraft during each IT test, track inhibit and software configuration changes, and assess software criticality. In addition to understanding inhibits and controls during IT, the tool allows the Safety Analyst to better communicate to engineers and management the changes in inhibit states with each phase of hardware and software testing and the impact of safety risks. Lessons learned from participating in the GPM campaign at NASA and JAXA will be discussed during this session.
ERIC Educational Resources Information Center
Mobley, Michael
1984-01-01
The findings of industrial safety engineers in the areas of accident causation and prevention are wholly applicable to adventure programs. Adventure education instructors can use safety engineering concepts to assess the risk in a particular activity, understand factors that cause accidents, and intervene to minimize injuries and damages if…
NASA aviation safety program aircraft engine health management data mining tools roadmap
DOT National Transportation Integrated Search
2000-04-01
Aircraft Engine Health Management Data Mining Tools is a project led by NASA Glenn Research Center in support of the NASA Aviation Safety Program's Aviation System Monitoring and Modeling Thrust. The objective of the Glenn-led effort is to develop en...
NASA Technical Reports Server (NTRS)
Taylor, Robert W.; Nash, Sally K.
2007-01-01
While technical training and advanced degree's assure proficiency at specific tasks within engineering disciplines, they fail to address the potential for communication breakdown and decision making errors familiar to multicultural environments where language barriers, intimidating personalities and interdisciplinary misconceptions exist. In an effort to minimize these pitfalls to effective panel review, NASA's lead safety engineers to the ISS Safety Review Panel (SRP), and Payload Safety Review Panel (PSRP) initiated training with their engineers, in conjunction with the panel chairs, and began a Panel Resource Management (PRM) program. The intent of this program focuses on the ability to reduce the barriers inhibiting effective participation from all panel attendees by bolstering participants confidence levels through increased communication skills, situational awareness, debriefing, and a better technical understanding of requirements and systems.
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.
2010-01-01
The NASA Engineering and Safety Center (NESC), initially formed in 2003, is an independently funded NASA Program whose dedicated team of technical experts provides objective engineering and safety assessments of critical, high risk projects. The GN&C Technical Discipline Team (TDT) is one of fifteen such discipline-focused teams within the NESC organization. The TDT membership is composed of GN&C specialists from across NASA and its partner organizations in other government agencies, industry, national laboratories, and universities. This paper will briefly define the vision, mission, and purpose of the NESC organization. The role of the GN&C TDT will then be described in detail along with an overview of how this team operates and engages in its objective engineering and safety assessments of critical NASA projects. This paper will then describe selected recent experiences, over the period 2007 to present, of the GN&C TDT in which they directly performed or supported a wide variety of NESC assessments and consultations.
NASA Technical Reports Server (NTRS)
Buden, D.
1991-01-01
Topics dealing with nuclear safety are addressed which include the following: general safety requirements; safety design requirements; terrestrial safety; SP-100 Flight System key safety requirements; potential mission accidents and hazards; key safety features; ground operations; launch operations; flight operations; disposal; safety concerns; licensing; the nuclear engine for rocket vehicle application (NERVA) design philosophy; the NERVA flight safety program; and the NERVA safety plan.
29 CFR 1910.5 - Applicability of standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS General § 1910.5 Applicability of standards. (a) Except as provided in... enforce standards or regulations affecting occupational safety or health. (c)(1) If a particular standard...
29 CFR 1910.5 - Applicability of standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS General § 1910.5 Applicability of standards. (a) Except as provided in... enforce standards or regulations affecting occupational safety or health. (c)(1) If a particular standard...
Geopolymer concrete for structural use: Recent findings and limitations
NASA Astrophysics Data System (ADS)
Nuruddin, M. F.; Malkawi, A. B.; Fauzi, A.; Mohammed, B. S.; Almattarneh, H. M.
2016-06-01
Geopolymer binders offer a possible solution for several problems that facing the current cement industry. These binders exhibit similar or better engineering properties compared to cement and can utilize several types of waste materials. This paper presents the recent research progress regarding the structural behaviour of reinforced geopolymer concrete members including beams, columns and slabs. The reported results showed that the structural behaviour of the reinforced geopolymer concrete members is similar to the known behaviour of the ordinary reinforced concrete members. In addition, the currently available standards have been conservatively used for analysis and designing of reinforced geopolymer concrete structures. On the other hand, the main hurdles facing the spread of geopolymer concrete was the absence of standards and the concerns about the long-term properties. Other issues included the safety, cost and liability.
Impact of low gravity on water electrolysis operation
NASA Technical Reports Server (NTRS)
Powell, F. T.; Schubert, F. H.; Lee, M. G.
1989-01-01
Advanced space missions will require oxygen and hydrogen utilities for several important operations including the following: (1) propulsion; (2) electrical power generation and storage; (3) environmental control and life support; (4) extravehicular activity; (5) in-space manufacturing and (6) in-space science activities. An experiment suited to a Space Shuttle standard middeck payload has been designed for the Static Feed Water Electrolysis technology which has been viewed as being capable of efficient, reliable oxygen and hydrogen generation with few subsystem components. The program included: end use design requirements, phenomena to be studied, Space Shuttle Orbiter experiment constraints, experiment design and data requirements, and test hardware requirements. The objectives are to obtain scientific and engineering data for future research and development and to focus on demonstrating and monitoring for safety of a standard middeck payload.
The Design of a Practical Enterprise Safety Management System
NASA Astrophysics Data System (ADS)
Gabbar, Hossam A.; Suzuki, Kazuhiko
This book presents design guidelines and implementation approaches for enterprise safety management system as integrated within enterprise integrated systems. It shows new model-based safety management where process design automation is integrated with enterprise business functions and components. It proposes new system engineering approach addressed to new generation chemical industry. It will help both the undergraduate and professional readers to build basic knowledge about issues and problems of designing practical enterprise safety management system, while presenting in clear way, the system and information engineering practices to design enterprise integrated solution.
Research and technology at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
1983-01-01
Cryogenic engineering, hypergolic engineering, hazardous warning, structures and mechanics, computer sciences, communications, meteorology, technology applications, safety engineering, materials analysis, biomedicine, and engineering management and training aids research are reviewed.
29 CFR 505.6 - Safety and health standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false Safety and health standards. 505.6 Section 505.6 Labor... HUMANITIES § 505.6 Safety and health standards. (a) Standards. Section 5(i)(2) and section 7(g)(2) of the Act... dangerous to the health and safety of the employees engaged in such project or production. Compliance with...
29 CFR 505.6 - Safety and health standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 3 2014-07-01 2014-07-01 false Safety and health standards. 505.6 Section 505.6 Labor... HUMANITIES § 505.6 Safety and health standards. (a) Standards. Section 5(i)(2) and section 7(g)(2) of the Act... dangerous to the health and safety of the employees engaged in such project or production. Compliance with...
29 CFR 505.6 - Safety and health standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 3 2011-07-01 2011-07-01 false Safety and health standards. 505.6 Section 505.6 Labor... HUMANITIES § 505.6 Safety and health standards. (a) Standards. Section 5(i)(2) and section 7(g)(2) of the Act... dangerous to the health and safety of the employees engaged in such project or production. Compliance with...
29 CFR 505.6 - Safety and health standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 3 2012-07-01 2012-07-01 false Safety and health standards. 505.6 Section 505.6 Labor... HUMANITIES § 505.6 Safety and health standards. (a) Standards. Section 5(i)(2) and section 7(g)(2) of the Act... dangerous to the health and safety of the employees engaged in such project or production. Compliance with...
29 CFR 505.6 - Safety and health standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 3 2013-07-01 2013-07-01 false Safety and health standards. 505.6 Section 505.6 Labor... HUMANITIES § 505.6 Safety and health standards. (a) Standards. Section 5(i)(2) and section 7(g)(2) of the Act... dangerous to the health and safety of the employees engaged in such project or production. Compliance with...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-09
... standard issued under the Danny Keysar Child Product Safety Notification Act was based, the revision... standard. Section 26(c) of the CPSA also provides that states or political subdivisions of states may apply... CONSUMER PRODUCT SAFETY COMMISSION 16 CFR Parts 1215, 1217 and 1219 Revisions to Safety Standards...
48 CFR 1352.271-82 - Department of Labor occupational safety and health standards for ship repair.
Code of Federal Regulations, 2014 CFR
2014-10-01
... occupational safety and health standards for ship repair. 1352.271-82 Section 1352.271-82 Federal Acquisition... of Provisions and Clauses 1352.271-82 Department of Labor occupational safety and health standards... Occupational Safety and Health Standards for Ship Repair (APR 2010) The contractor, in performance of all work...
48 CFR 1352.271-82 - Department of Labor occupational safety and health standards for ship repair.
Code of Federal Regulations, 2011 CFR
2011-10-01
... occupational safety and health standards for ship repair. 1352.271-82 Section 1352.271-82 Federal Acquisition... of Provisions and Clauses 1352.271-82 Department of Labor occupational safety and health standards... Occupational Safety and Health Standards for Ship Repair (APR 2010) The contractor, in performance of all work...
48 CFR 1352.271-82 - Department of Labor occupational safety and health standards for ship repair.
Code of Federal Regulations, 2013 CFR
2013-10-01
... occupational safety and health standards for ship repair. 1352.271-82 Section 1352.271-82 Federal Acquisition... of Provisions and Clauses 1352.271-82 Department of Labor occupational safety and health standards... Occupational Safety and Health Standards for Ship Repair (APR 2010) The contractor, in performance of all work...
48 CFR 1352.271-82 - Department of Labor occupational safety and health standards for ship repair.
Code of Federal Regulations, 2012 CFR
2012-10-01
... occupational safety and health standards for ship repair. 1352.271-82 Section 1352.271-82 Federal Acquisition... of Provisions and Clauses 1352.271-82 Department of Labor occupational safety and health standards... Occupational Safety and Health Standards for Ship Repair (APR 2010) The contractor, in performance of all work...
30 CFR 6.30 - MSHA listing of equivalent non-MSHA product safety standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false MSHA listing of equivalent non-MSHA product... LABORATORIES AND NON-MSHA PRODUCT SAFETY STANDARDS § 6.30 MSHA listing of equivalent non-MSHA product safety standards. MSHA evaluated the following non-MSHA product safety standards and determined that they provide...
30 CFR 6.30 - MSHA listing of equivalent non-MSHA product safety standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false MSHA listing of equivalent non-MSHA product... LABORATORIES AND NON-MSHA PRODUCT SAFETY STANDARDS § 6.30 MSHA listing of equivalent non-MSHA product safety standards. MSHA evaluated the following non-MSHA product safety standards and determined that they provide...
30 CFR 6.30 - MSHA listing of equivalent non-MSHA product safety standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false MSHA listing of equivalent non-MSHA product... LABORATORIES AND NON-MSHA PRODUCT SAFETY STANDARDS § 6.30 MSHA listing of equivalent non-MSHA product safety standards. MSHA evaluated the following non-MSHA product safety standards and determined that they provide...
30 CFR 6.30 - MSHA listing of equivalent non-MSHA product safety standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false MSHA listing of equivalent non-MSHA product... LABORATORIES AND NON-MSHA PRODUCT SAFETY STANDARDS § 6.30 MSHA listing of equivalent non-MSHA product safety standards. MSHA evaluated the following non-MSHA product safety standards and determined that they provide...
30 CFR 6.30 - MSHA listing of equivalent non-MSHA product safety standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false MSHA listing of equivalent non-MSHA product... LABORATORIES AND NON-MSHA PRODUCT SAFETY STANDARDS § 6.30 MSHA listing of equivalent non-MSHA product safety standards. MSHA evaluated the following non-MSHA product safety standards and determined that they provide...
48 CFR 1352.271-82 - Department of Labor occupational safety and health standards for ship repair.
Code of Federal Regulations, 2010 CFR
2010-10-01
... occupational safety and health standards for ship repair. 1352.271-82 Section 1352.271-82 Federal Acquisition... of Provisions and Clauses 1352.271-82 Department of Labor occupational safety and health standards... Occupational Safety and Health Standards for Ship Repair (APR 2010) The contractor, in performance of all work...
Traceability of Software Safety Requirements in Legacy Safety Critical Systems
NASA Technical Reports Server (NTRS)
Hill, Janice L.
2007-01-01
How can traceability of software safety requirements be created for legacy safety critical systems? Requirements in safety standards are imposed most times during contract negotiations. On the other hand, there are instances where safety standards are levied on legacy safety critical systems, some of which may be considered for reuse for new applications. Safety standards often specify that software development documentation include process-oriented and technical safety requirements, and also require that system and software safety analyses are performed supporting technical safety requirements implementation. So what can be done if the requisite documents for establishing and maintaining safety requirements traceability are not available?
Modular closed-loop control of diabetes.
Patek, S D; Magni, L; Dassau, E; Karvetski, C; Toffanin, C; De Nicolao, G; Del Favero, S; Breton, M; Man, C Dalla; Renard, E; Zisser, H; Doyle, F J; Cobelli, C; Kovatchev, B P
2012-11-01
Modularity plays a key role in many engineering systems, allowing for plug-and-play integration of components, enhancing flexibility and adaptability, and facilitating standardization. In the control of diabetes, i.e., the so-called "artificial pancreas," modularity allows for the step-wise introduction of (and regulatory approval for) algorithmic components, starting with subsystems for assured patient safety and followed by higher layer components that serve to modify the patient's basal rate in real time. In this paper, we introduce a three-layer modular architecture for the control of diabetes, consisting in a sensor/pump interface module (IM), a continuous safety module (CSM), and a real-time control module (RTCM), which separates the functions of insulin recommendation (postmeal insulin for mitigating hyperglycemia) and safety (prevention of hypoglycemia). In addition, we provide details of instances of all three layers of the architecture: the APS© serving as the IM, the safety supervision module (SSM) serving as the CSM, and the range correction module (RCM) serving as the RTCM. We evaluate the performance of the integrated system via in silico preclinical trials, demonstrating 1) the ability of the SSM to reduce the incidence of hypoglycemia under nonideal operating conditions and 2) the ability of the RCM to reduce glycemic variability.
For the safe use of lasers in educational institutions: elementary through university
NASA Astrophysics Data System (ADS)
Seeber, Fredrick P.
1995-10-01
The use of lasers by the academic community continues to dramatically escalate. Academia is inundated with a profusion of lasers, each with a diverse function. Traditional departments such as biology, chemistry, and physics have introduced the use of lasers as an essential element of tutelage. Even the more distinctive departments such as Cancer Research, Civil Engineering, Earth and Planetary Science, Plasma Fusion, Spectroscopy, and so forth, have incorporated the laser in the composition of their educational mechanism. The literature indicates most ocular accidents happen during alignment procedures, which is an everyday activity for educational laboratories. Also, the improper use of laser safety eye wear is a major area of concern for laser safety in education institutions. More Class II, III, and IV lasers are used in universities, colleges, laser electro-optic technical colleges and high schools than probably any other area: for teaching, research, laboratory experiments, and demonstrations. Relatively large numbers of students work in laboratory groups in confined area, with various lasers of different wavelengths in the same laboratory. Open cavity and beam paths of Class IV lasers are common in these environments. Most educational institutions do not have laser safety officers or standard operation procedures. This paper will discuss the development of a new laser safety standard by an ANSI ad-hoc committee and by the executive committee of the ANSI Z-136 intended to provide adequate, reasonable, and practical guidance for educators, students, and spectators found in classrooms, lecture halls, and laboratories associated with universities, colleges, high, and elementary schools.
SAFETY AND SECURITY BUILDING, TRA614. ELEVATIONS. SECTIONS. TWO ROOF LEVELS. ...
SAFETY AND SECURITY BUILDING, TRA-614. ELEVATIONS. SECTIONS. TWO ROOF LEVELS. BLAW-KNOX 3150-814-2, 3/1950. INL INDEX NO. 531-0614-00-098-100703, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
SAFETY AND SECURITY BUILDING, TRA614. SIMPLIFIED FLOOR LAYOUT AND WEST ...
SAFETY AND SECURITY BUILDING, TRA-614. SIMPLIFIED FLOOR LAYOUT AND WEST ELEVATION. BLAW-KNOX 3150-14-1, 1/1950. INL INDEX NO. 531-0614-00-098-100024, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Rethinking healthcare as a safety--critical industry.
Lwears, Robert
2012-01-01
The discipline of ergonomics, or human factors engineering, has made substantial contributions to both the development of a science of safety, and to the improvement of safety in a wide variety of hazardous industries, including nuclear power, aviation, shipping, energy extraction and refining, military operations, and finance. It is notable that healthcare, which in most advanced societies is a substantial sector of the economy (eg, 15% of US gross domestic product) and has been associated with large volumes of potentially preventable morbidity and mortality, has heretofore not been viewed as a safety-critical industry. This paper proposes that improving safety performance in healthcare must involve a re-envisioning of healthcare itself as a safety-critical industry, but one with considerable differences from most engineered safety-critical systems. This has implications both for healthcare, and for conceptions of safety-critical industries.
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission standards if I am a manufacturer of stationary CI internal combustion engines? 60.4203 Section 60... Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a manufacturer of stationary CI internal combustion engines...
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission standards if I am a manufacturer of stationary CI internal combustion engines? 60.4203 Section 60... Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a manufacturer of stationary CI internal combustion engines...
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission standards if I am a manufacturer of stationary CI internal combustion engines? 60.4203 Section 60... Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a manufacturer of stationary CI internal combustion engines...
Brenner, Sara A; Neu-Baker, Nicole M; Eastlake, Adrienne C; Beaucham, Catherine C; Geraci, Charles L
2016-11-01
The ubiquitous use of engineered nanomaterials-particulate materials measuring approximately 1-100 nanometers (nm) on their smallest axis, intentionally engineered to express novel properties-in semiconductor fabrication poses unique issues for protecting worker health and safety. Use of new substances or substances in a new form may present hazards that have yet to be characterized for their acute or chronic health effects. Uncharacterized or emerging occupational health hazards may exist when there is insufficient validated hazard data available to make a decision on potential hazard and risk to exposed workers under condition of use. To advance the knowledge of potential worker exposure to engineered nanomaterials, the National Institute for Occupational Safety and Health Nanotechnology Field Studies Team conducted an on-site field evaluation in collaboration with on-site researchers at a semiconductor research and development facility on April 18-21, 2011. The Nanomaterial Exposure Assessment Technique (2.0) was used to perform a complete exposure assessment. A combination of filter-based sampling and direct-reading instruments was used to identify, characterize, and quantify the potential for worker inhalation exposure to airborne alumina and amorphous silica nanoparticles associated with th e chemical mechanical planarization wafer polishing process. Engineering controls and work practices were evaluated to characterize tasks that might contribute to potential exposures and to assess existing engineering controls. Metal oxide structures were identified in all sampling areas, as individual nanoparticles and agglomerates ranging in size from 60 nm to >1,000 nm, with varying structure morphology, from long and narrow to compact. Filter-based samples indicated very little aerosolized material in task areas or worker breathing zone. Direct-reading instrument data indicated increased particle counts relative to background in the wastewater treatment area; however, particle counts were very low overall, indicating a well-controlled working environment. Recommendations for employees handling or potentially exposed to engineered nanomaterials include hazard communication, standard operating procedures, conservative ventilation systems, and prevention through design in locations where engineered nanomaterials are used or stored, and routine air sampling for occupational exposure assessment and analysis.
ATV Engineering Support Team Safety Console Preparation for the Johannes Kepler Mission
NASA Astrophysics Data System (ADS)
Chase, R.; Oliefka, L.
2010-09-01
This paper describes the improvements to be implemented in the Safety console position of the Engineering Support Team(EST) at the Automated Transfer Vehicle(ATV) Control Centre(ATV-CC) for the upcoming ATV Johannes Kepler mission. The ATV missions to the International Space Station are monitored and controlled from the ATV-CC in Toulouse, France. The commanding of ATV is performed by the Vehicle Engineering Team(VET) in the main control room under authority of the Flight Director. The EST performs a monitoring function in a room beside the main control room. One of the EST positions is the Safety console, which is staffed by safety engineers from ESA and the industrial prime contractor, Astrium. The function of the Safety console is to check whether the hazard controls are available throughout the mission as required by the Hazard Reports approved by the ISS Safety Review Panel. Safety console preparation activities were limited prior to the first ATV mission due to schedule constraints, and the safety engineers involved have been working to improve the readiness for ATV 2. The following steps have been taken or are in process, and will be described in this paper: • review of the implementation of Operations Control Agreement Documents(OCADs) that record the way operational hazard controls are performed to meet the needs of the Hazard Reports(typically in Flight Rules and Crew Procedures), • crosscheck of operational control needs and implementations with respect to ATV's first flight observations and post flight evaluations, with a view to identifying additional, obsolete or revised operational hazard controls, • participation in the Flight Rule review and update process carried out between missions, • participation in the assessment of anomalies observed during the first ATV mission, to ensure that any impacts are addressed in the ATV 2 safety documentation, • preparation of a Safety console handbook to provide lists of important safety aspects to be monitored at various stages of the mission, including links to relevant Hazard Reports, Flight Rules, and supporting documentation, • participation to training courses conducted in the frame of the ATV Training Academy(ATAC), and provision of courses related to safety for the other members of the VET and EST, • participation to simulations conducted at ATV-CC, including off-nominal cases. The result of these activities will be an improved level of readiness for the ATV 2 mission.
Tomás Vecina, Santiago; Mozota Duarte, Julián; Ortega Marcos, Miguel; Gracia Ruiz Navarro, María; Borillo, Vicente; San Juan Gago, Leticia; Roqueta Egea, Fermin; Chanovas Borrás, Manuel
2016-01-01
To test a strategy to reduce the rate of adverse events in patients and safety problems for emergency department staff who insert peripheral venous catheters (PVCs). The strategy consisted of training, implementing a protocol, and introducing safety-engineered PVCs. Prospective, multicenter, observational, preauthorization study in patients requiring PVC placement in an emergency department. The study had 2 phases. The first consisted of training, implementing a protocol for using conventional PVCs, and monitoring practice. The second phase introduced safety-engineered PVC sets. The number of adverse events in patients and threats to safety for staff were compared between the 2 phases. A total of 520 patients were included, 180 in the first phase and 340 in the second. We detected breaches in aseptic technique, failure to maintain a sterile field, and improper management of safety equipment and devices. Some practices improved significantly during the second phase. Eighty-six adverse events occurred in the first phase and 52 (15.4%) in the second; the between-phase difference was not statistically significant. The incidence of postinfusion phlebitis was 50% lower in the second phase. Seven splash injuries and 1 accidental puncture occurred with conventional PVCs in the first phase; 2 splash injuries occurred with the safety-engineered PVCs in the second phase (36% decrease, P = .04). Differences were particularly noticeable for short-term PVC placements (P = .02). Combining training, a protocol, and the use of safety-engineered PVC sets offers an effective strategy for improving patient and staff safety.